Science.gov

Sample records for level suitei ni

  1. On the Metastable Level in Ni-like Ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V; Terracol, S; Safronova, U I

    2004-09-14

    The lowest excited level in Ni-like ions, 3d{sup 9}4s {sup 3}D{sub 3}, decays only via a magnetic octupole (M3) decay. They present calculated values of transition wavelengths and rates for ions with 30 {le} Z {le} 100. They have observed this line in Xe{sup 26+}, using the Livermore EBIT-I electron beam ion trap and a microcalorimeter, as well as a high-resolution flat-field grating spectrometer.

  2. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    NASA Astrophysics Data System (ADS)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    to 380 dpa at 650°C in a Tandetron linear accelerator. The level of irradiation dose was chosen similar to the irradiation conditions of the next-generation nuclear reactors. The theoretical maximum depth of the DII (maximum depth of damage (MDD)) was calculated as 1.35 µm using the SRIM-2013 program; the laminar microstructure of the eutectic was simulated using the lattice parameters of the eutectic before irradiation. The experimental MDD was 1.47 µm, as determined through transmission electron microscope (TEM) images and the DII was characterized using µX-ray diffraction and TEM. The elimination of cubic phase of the intermetallic Ni3Si, the suppression of lamellae of the α-Ni phase, the generation of dislocation loops and lines, all of these changes generated by the irradiation are clear evidences that the DII was severe. Based on theoretical and experimental evidence, we propose that the amount of phases, alternate of lamellae with different chemical concentrations of silicon and lamellae spatial distribution have a direct relation with the severe evolution of the DII.

  3. El Niño-Southern Oscillation and Snow Level in the western United States

    NASA Astrophysics Data System (ADS)

    Svoma, B. M.

    2013-12-01

    Snow level, the elevation that snowfall transitions to rainfall, is directly related to the snow covered area resulting from a given snowfall event. With snow level variability quantified from records of (1) wet-bulb zero heights at ten rawinsonde sites (1957-2010), (2) empirical snow level estimates from precipitation and snowfall observations in ten watersheds (~1924-2009), and (3) 850-700 hPa thicknesses (1948-2010), the relationship between El Niño-Southern Oscillation and the elevation of snow level in the western United States is established. The statistical relationship between the Southern Oscillation Index and these snow level proxies is determined by the change in the empirical probability density function from moderate values of the Southern Oscillation Index to extreme values of the Southern Oscillation Index. For all three data sources, the results suggest that El Niño events are linked to higher snow levels across nearly the entire western United States. The strength of this signal generally decreases with distance from the Pacific Ocean and results suggest that the southern Rockies experience slightly decreased snow levels during El Niño events. A snow covered area analysis derived from observations by NASA's Moderate Resolution Imaging Spectrometer (MODIS) supports this El Niño signal in snow level. There is little evidence for a significant and spatially coherent La Niña relationship with snow level. It is likely that the elevated snow levels are due to the tendency for more maritime characteristics of mid-latitude cyclones during El Niño events while decreased snow levels in the southern Rockies are likely due to the transition of maritime air masses to continental air masses along with deeper troughs. To lend support for this hypothesis, the leading modes of synoptic scale flow during winter precipitation events will be identified for separate regions of the western United States using the North American Regional Reanalysis dataset.

  4. El Niño-Southern Oscillation and snow level in the western United States

    NASA Astrophysics Data System (ADS)

    Svoma, Bohumil M.

    2011-12-01

    The relationship between El Niño-Southern Oscillation and the elevation of snow level in the western United States is established. Snow level variability is quantified from records of (1) wet-bulb zero heights at ten rawinsonde sites (1957-2010), (2) empirically estimated snow levels over ten adjacent watersheds from precipitation and snowfall observations (˜1924-2009), and (3) 850-700 hPa thicknesses (1948-2010). The statistical relationship between these variables and the Southern Oscillation Index is established through the examination of the change in the empirical probability density function from moderate values of the Southern Oscillation Index to extreme values of the Southern Oscillation Index. For all data sources, results suggest that El Niño events are linked to higher snow levels across much of the western United States. Considering the known effects of El Niño on airflow over the western United States, the elevated snow levels are likely due to the more maritime characteristics of midlatitude cyclones. The strength of this signal decreases with distance from the Pacific Ocean and the southern Rockies display slightly decreased snow levels during El Niño events, likely due to the transition of maritime air masses to continental air masses. A snow covered area analysis derived from the Terra MODIS observations supports this El Niño signal in snow level. There is little evidence for a significant and spatially coherent La Niña relationship with snow level. This ENSO signal in snow level is apparent in the data with trend removed and for the cold and warm phases of the Pacific Decadal Oscillation.

  5. An interhemispheric tropical sea level seesaw due to El Niño Taimasa

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; McGregor, S.; Stuecker, M. F.; Cai, W.

    2013-12-01

    During strong El Niño events, sea level drops around some tropical western Pacific islands by up to 20-30 cm. Such extreme events (referred to as ';taimasa' in Samoa) expose shallow reefs, thereby damaging associated coastal ecosystems and contributing to the formation of ';flat topped coral heads' often referred to as microatolls. We show that during the termination of strong El Niño events, a southward movement of weak trade winds and development of an anomalous anticyclone in the Philippine Sea force an interhemispheric sea level seesaw in the tropical Pacific which enhances and prolongs extreme low sea levels in the southwestern Pacific. Spectral features, in addition to wind forced linear shallow water ocean model experiments, identify an interaction between El Niño and the annual cycle as the main cause of these sea level anomalies. Given the well established seasonal prediction skill for El Niño events and their seasonally paced termination, our analysis suggests that long-duration extreme sea level drops may also be highly predictable.

  6. Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment.

    PubMed

    Gudelis, A; Druteikiene, R; Luksiene, B; Gvozdaite, R; Nielsen, S P; Hou, X; Mazeika, J; Petrosius, R

    2010-06-01

    Two RBMK-1500 reactor units operated in Lithuania in the 1987-2004 period (one of them was stopped for decommissioning in 2004). This study presents a preliminary investigation of surface deposition density levels of (55)Fe and (63)Ni in moss samples collected in the close vicinity of the Ignalina NPP. Non-destructive analysis by the HPGe gamma-spectrometry was followed by radiochemical separation. Radiochemical analysis was based on anion-exchange and extraction chromatography. (55)Fe and (63)Ni activities were measured by liquid scintillation counting (LSC). The results indicate that the deposition values of (55)Fe are generally higher than those of (60)Co and (63)Ni. PMID:18818005

  7. Gamow-Teller decay population of 64Ni levels in the decay of 1+ 64Co

    NASA Astrophysics Data System (ADS)

    Pauwels, D.; Radulov, D.; Walters, W. B.; Darby, I. G.; De Witte, H.; Diriken, J.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Huyse, M.; Köster, U.; Marsh, B. A.; Popescu, L.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van de Walle, J.; Van Duppen, P.; Venhart, M.; Wimmer, K.

    2012-12-01

    The 64Co β-decay feeding levels in the well-studied 64Ni nucleus were investigated. Whereas the previously known 64Co decay scheme merely contained 2 γ rays, the decay scheme established in this work contains 18, of which 5 are observed in this work and 6 were previously observed in an (n,γ) study but not placed in the 64Ni level scheme. Surprisingly, one additional level—placed at an excitation energy of 3578.7 keV—could be determined. The observed β-decay paths involve allowed νf5/2→πf7/2 and νp1/2→πp3/2 transitions. Three strongly fed levels around 4 MeV are interpreted to possess possible proton-intruder character.

  8. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  9. Fine-structure energy levels and autoionizing width calculations of magnesium-like Ni XVII

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Gao, Wenjing; Zhou, Chao; Zhang, Ling

    2013-05-01

    We have calculated highly excited fine-structure energy levels and their autoionizing width of 3 pns 3 P 1 ( n = 11-26), 3 pns 1 P 1 ( n = 10-22), 3 pnd 3 D 1 ( n = 11-26), 3 pnd 3 P 1 ( n = 10-21), 3 pnd 1 P 1( n = 10-21), 3 dnp 3 D 1 ( n = 7-30), 3 dnp 3 P 1 ( n = 7-28), 3 dnp 1 P 1 ( n = 7-28), 3 dnf 3 D 1 ( n = 7, 9-27), 3 dnf 3 P 1 ( n = 7, 9-27), and 3 dnf 1 P 1 ( n = 7, 9-27) for magnesium-like Ni XVII. The calculations are based upon the relativistic Breit-Pauli R-matrix approximation combining with the QB method of Quigley-Berrington (L. Quigley, K. A. Berrington, Pelan J. Comput. Phys. Commun. 114, 225 (1998)). We have reported the many unpublished energy values and autoionizing width of the J = 1 odd states of magnesium-like Ni XVII.

  10. Level densities and spin cutoff parameters for 60Co and 62Ni from proton evaporation spectra

    NASA Astrophysics Data System (ADS)

    Voinov, Alexander; Grimes, Steven; Brune, Carl R.; Burger, Alexander; Gorgen, Andreas; Guttormsen, Magne; Larsen, Ann Cecilie; Massey, Tomas; Siem, Sunniva

    2013-10-01

    Prediction of reaction cross sections remains a major problem in applications such as data evaluations or/and astrophysics reaction rate calculations. There is big progress in the development of nuclear reaction codes which now include different reaction mechanisms. However, these codes use many input parameters. The variety of input parameters helps us to describe existing experimental data but it creates problems when it comes to predictions. The uncertainties of the level density and the spin cutoff parameter cause the major concern. The proton spectra from α and lithium induced reactions have been measured and analyzed with the Hauser-Feshbach model. Different input level density models have been tested. The level densities and spin cutoff parameters were obtained with Monte-Carlo technique taking into account known spins of discrete low-lying levels of residual nuclei. It was found that the best description is achieved with the Gilbert and Cameron model functions. Excitation energy dependence of spin cutoff parameters was found to be different for 60Co and 62Ni nuclei. It is inconsistent with Fermi-gas model which is usually used to calculate spin cutoff parameters.

  11. Evolution of Fermi level position and Schottky barrier height at Ni/MgO(0 0 1) interface

    NASA Astrophysics Data System (ADS)

    Mi, Y. Y.; Wang, S. J.; Dong, Y. F.; Chai, J. W.; Pan, J. S.; Huan, A. C. H.; Ong, C. K.

    2005-12-01

    Fermi level evolution and Schottky barrier height (SBH) for Ni/MgO(0 0 1) interfaces have been studied using X-ray photoelectron technique. It was found that upward band bending occurred at the initial Ni growth stage and Ni bulk properties recovered after 6-8 Å thickness. The measured Schottky barrier heights are strongly interface structure-dependent, with the variation in the range of 3.1 eV for perfect interface to 1.6 eV for defect-rich interface. First-principles calculations on the evolution of SBH for the initial growth of Ni on perfect MgO(0 0 1) surface are combined with experimental results to investigate the underlying microscopic mechanism. Adatom-induced states (or interfacial bonding states), MIGS and defects states were used to rationalize the evolution of Fermi level and corresponding SBH for various interface structures. This work shows that SBH can be engineered by interface structure control, and is expected to shed light on the effect of interface structures on the formation mechanism of SBH at metal/oxide interface.

  12. ALCHEMI of Fe-doped B2-ordered NiAl alloys with different doping levels

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1994-09-01

    The ALCHEMI technique yields exact expressions for best-fit parameters in terms of ionization localization constants and site distributions of 3 elements distributed over two sublattices. In this paper, a graphical plotting technique is applied to Fe-doped NiAl B2-ordered alloys Ni{sub 0.5-x}Fe{sub x}Al{sub 0.5}, with x=0.02 or 0.10. The thin foil samples were examined in an electron microscope with an x-ray spectrometer.

  13. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).

    PubMed

    Lau, Kai-Chung; Chang, Yih Chung; Shi, Xiaoyu; Ng, C Y

    2010-09-21

    The ionization energy (IE) of NiC and the 0 K bond dissociation energies (D(0)) and heats of formation at 0 K (ΔH(o)(f0)) and 298 K (ΔH(o)(f298)) for NiC and NiC(+) are predicted by the wavefunction based CCSDTQ(Full)/CBS approach and the multireference configuration interaction (MRCI) method with Davidson correction (MRCI+Q). The CCSDTQ(Full)/CBS calculations presented here involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation, core-valence electronic (CV), spin-orbit coupling (SO), and scalar relativistic effect (SR) corrections. The present calculations provide the correct symmetry predictions for the ground states of NiC and NiC(+) to be (1)∑(+) and (2)∑(+), respectively. The CCSDTQ(Full)/CBS IE(NiC)=8.356 eV is found to compare favorably with the experimental IE value of 8.372 05±0.000 06 eV. The predicted IE(NiC) value at the MRCI+Q/cc-pwCV5Z level, including the ZPVE, SO, and SR effects is 8.00 eV, which is 0.37 eV lower than the experimental value. This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ(Full)/CBS method is capable of providing reliable IE predictions for 3d-transition metal carbides, such as FeC and NiC. Furthermore, the CCSDTQ(Full)/CBS calculations give the prediction of D(0)(Ni-C)-D(0)(Ni(+)-C)=0.688 eV, which is also consistent with the experimental determination of 0.732 21±0.000 06 eV, whereas the MRCI+Q calculations (with relativistic and CV effects) predict a significantly lower value of 0.39 eV for D(0)(Ni-C)-D(0)(Ni(+)-C). The analysis of the correction terms shows that the CV and valence-valence electronic correlations beyond CCSD(T) wavefunction and the relativistic effect make significant contributions to the calculated thermochemical properties of NiC/NiC(+). For the experimental D(0) and ΔH(o)(f0) values of

  14. A method to detect low-level 63Ni activity for estimating fast neutron fluence from the Hiroshima atomic bomb.

    PubMed

    Ito, Y; Shibata, T; Imamura, M; Shibata, S; Nogawa, N; Uwamino, Y; Shizuma, K

    1999-06-01

    The Hiroshima and Nagasaki atomic bombs resulted in the worst reported exposure of radiation to the human body. The data of survivors have provided the basis for the risk estimation for ionizing radiation, and thus are widely used as the basis of radiation safety. In this report we have studied a new method to detect the low-level 63Ni activity in copper samples in order to estimate the fast neutron fluence from the Hiroshima atomic bomb. Only 0.8 x 10(-3) Bq g(-1) of 63Ni is expected to be produced by the atomic bomb in a copper sample with the 63Cu(n, p)63Ni reaction at a distance of 500 m from the hypocenter. Our method has the required level of sensitivity for determination of the fast neutron fluence out to distances of at least 500 m, and perhaps as far as 1,000 m. We have already investigated and collected some bomb-irradiated copper samples for further study.

  15. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    SciTech Connect

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  16. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    NASA Astrophysics Data System (ADS)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-01

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  17. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.

    PubMed

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  18. The effect of two types of El Niño on the southerly low-level jets in North America

    NASA Astrophysics Data System (ADS)

    Yu, Lejiang; Zhong, Shiyuan; Heilman, Warren E.; Bian, Xindi

    2016-08-01

    Low-level jets (LLJs) are frequent weather phenomena in many regions of North America and have profound impacts on precipitation and wind energy. We used a 31 year (1979-2010) three-hourly reanalysis data set to examine the teleconnection between southerly LLJ activity in North America and the two dominant patterns of the equatorial Pacific Ocean sea surface temperature anomalies characterized by El Niño and El Niño Modoki. We show that El Niño and El Niño Modoki exert different effects on the jet activities, and the results vary by region and by season. Overall, El Niño Modoki affects jet activity all year round, but El Niño's influence is limited mostly to the cold season (October-March). El Niño Modoki induces larger changes in jet frequency, but El Niño's influence extends to larger regions. A better understanding of this teleconnection can be used to improve seasonal predictions of precipitation and wind energy resources in regions of North America.

  19. Microstructures of La 1.85Sr 0.15CuO 4 doped with Ni at high doping level

    NASA Astrophysics Data System (ADS)

    Wu, X. S.; Jiang, S. S.; Pan, F. M.; Lin, J.; Xu, N.; Mao Zhiqiang; Xu Gaoji; Zhang Yuheng

    1996-02-01

    Ceramic superconductors of La 1.85Sr 0.15Cu 1- yNi yO 4 with 0.00 ≤ y ≤ 0.50 were synthesized. There is no impurity phase detected in the entire Ni doped region. The structure of these Ni-doped samples was characterized by X-ray diffraction studies. The atomic structural parameters were obtained by Rietveld refinements for the Ni-doped samples with y ≤ 0.50. Some meaningful bond distances were determined according to the refined results. According to the variations of some bond distances with y, the whole doping range could be divided into two regions: low doping level (LDL) and high doping level (HDL). The bond length between the two apical oxygen atoms in the CuO 6 octahedra for the Ni-doped samples increased with increasing content of Ni in the LDL, and decreased in the HDL. The average bond distance of LaO was not changed in the whole doping region. The metal-insulator transition was also observed in this Ni-doped system.

  20. Suppression of near-Fermi level electronic states at the interface in a LaNiO3/SrTiO3 superlattice.

    PubMed

    Kaiser, A M; Gray, A X; Conti, G; Son, J; Greer, A; Perona, A; Rattanachata, A; Saw, A Y; Bostwick, A; Yang, S; Yang, S-H; Gullikson, E M; Kortright, J B; Stemmer, S; Fadley, C S

    2011-09-01

    Standing-wave-excited photoemission is used to study a SrTiO3/LaNiO3 superlattice. Rocking curves of core-level and valence band spectra are used to derive layer-resolved spectral functions, revealing a suppression of electronic states near the Fermi level in the multilayer as compared to bulk LaNiO3. Further analysis shows that the suppression of these states is not homogeneously distributed over the LaNiO3 layers but is more pronounced near the interfaces. Possible origins of this effect and its relationship to a previously observed metal-insulator-transition in ultrathin LaNiO3 films are discussed. PMID:22026689

  1. Suppression of Near-Fermi Level Electronic States at the Interface in a LaNiO3/SrTiO3 Superlattice

    NASA Astrophysics Data System (ADS)

    Kaiser, A. M.; Gray, A. X.; Conti, G.; Son, J.; Greer, A.; Perona, A.; Rattanachata, A.; Saw, A. Y.; Bostwick, A.; Yang, S.; Yang, S.-H.; Gullikson, E. M.; Kortright, J. B.; Stemmer, S.; Fadley, C. S.

    2011-09-01

    Standing-wave-excited photoemission is used to study a SrTiO3/LaNiO3 superlattice. Rocking curves of core-level and valence band spectra are used to derive layer-resolved spectral functions, revealing a suppression of electronic states near the Fermi level in the multilayer as compared to bulk LaNiO3. Further analysis shows that the suppression of these states is not homogeneously distributed over the LaNiO3 layers but is more pronounced near the interfaces. Possible origins of this effect and its relationship to a previously observed metal-insulator-transition in ultrathin LaNiO3 films are discussed.

  2. Wafer-level integration of NiTi shape memory alloy on silicon using Au-Si eutectic bonding

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Bushra, Sobia; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2013-01-01

    This paper reports on the wafer level integration of NiTi shape memory alloy (SMA) sheets with silicon substrates through Au-Si eutectic bonding. Different bond parameters, such as Au layer thicknesses and substrate surface treatments were evaluated. The amount of gold in the bond interface is the most important parameter to achieve a high bond yield; the amount can be determined by the barrier layers between the Au and Si or by the amount of Au deposition. Deposition of a gold layer of more than 1 μm thickness before bonding gives the most promising results. Through patterning of the SMA sheet and by limiting bonding to small areas, stresses created by the thermal mismatch between Si and NiTi are reduced. With a gold layer of 1 μm thickness and bond areas between 200 × 200 and 800 × 800 μm2 a high bond strength and a yield above 90% is demonstrated.

  3. Fermi Level shifting, Charge Transfer and Induced Magnetic Coupling at La0.7Ca0.3MnO3/LaNiO3 Interface

    PubMed Central

    Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong

    2015-01-01

    A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088

  4. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery.

    PubMed

    Bakırdere, Sezgin; Bölücek, Cemal; Yaman, Mehmet

    2016-03-01

    In the present study, levels of metal contamination caused by former lead mining area were figured out. For this purpose, Pb, Cd, Cu, Ni, and Mn were determined not only in sediment samples taken from different places of the mining area but also in some plants taken around the mining place. In the digestion of plant samples, dry ashing procedure was applied. Flame atomic absorption spectrophotometer (FAAS) was used in the determination of analytes of interest. All the parameters in digestion and detection procedures were optimized to obtain efficient digestion and high sensitivities for analytes. Standard addition and direct calibration methods were applied to find whether there was any matrix interference to affect the determination of analytes. Mn concentration was found to be the highest for each sample analyzed. Lead concentration was found to be between 41 and 249 mg/kg in soil/sediment samples and between 2.2 and 1003 mg/kg in plant samples. The highest contamination levels for all of the analytes with the exception of Cd were found in current sediment sample.

  5. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery.

    PubMed

    Bakırdere, Sezgin; Bölücek, Cemal; Yaman, Mehmet

    2016-03-01

    In the present study, levels of metal contamination caused by former lead mining area were figured out. For this purpose, Pb, Cd, Cu, Ni, and Mn were determined not only in sediment samples taken from different places of the mining area but also in some plants taken around the mining place. In the digestion of plant samples, dry ashing procedure was applied. Flame atomic absorption spectrophotometer (FAAS) was used in the determination of analytes of interest. All the parameters in digestion and detection procedures were optimized to obtain efficient digestion and high sensitivities for analytes. Standard addition and direct calibration methods were applied to find whether there was any matrix interference to affect the determination of analytes. Mn concentration was found to be the highest for each sample analyzed. Lead concentration was found to be between 41 and 249 mg/kg in soil/sediment samples and between 2.2 and 1003 mg/kg in plant samples. The highest contamination levels for all of the analytes with the exception of Cd were found in current sediment sample. PMID:26837380

  6. Sunspots, El Niño, and the levels of Lake Victoria, East Africa

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Ruzmaikin, Alexander; Conway, Declan; Verburg, Piet; Mason, Peter J.

    2007-08-01

    An association of high sunspot numbers with rises in the level of Lake Victoria, East Africa, has been the focus of many investigations and vigorous debate during the last century. In this paper, we show that peaks in the ~11-year sunspot cycle were accompanied by Victoria level maxima throughout the 20th century, due to the occurrence of positive rainfall anomalies ~1 year before solar maxima. Similar patterns also occurred in at least five other East African lakes, which indicates that these sunspot-rainfall relationships were broadly regional in scale. Although irradiance fluctuations associated with the sunspot cycle are weak, their effects on tropical rainfall could be amplified through interactions with sea surface temperatures and atmospheric circulation systems, including ENSO. If this Sun-rainfall relationship persists in the future, then sunspot cycles can be used for long-term prediction of precipitation anomalies and associated outbreaks of insect-borne disease in much of East Africa. In that case, unusually wet rainy seasons and Rift Valley Fever epidemics should occur a year or so before the next solar maximum, which is expected to occur in 2011-2012 AD.

  7. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    PubMed

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin.

  8. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins

    PubMed Central

    2012-01-01

    After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50), entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38) cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line. PMID:22531032

  9. Metallothionein-Like Proteins and Energy Reserve Levels after Ni and Pb Exposure in the Pacific White Prawn Penaeus vannamei

    PubMed Central

    Nunez-Nogueira, Gabriel; Mouneyrac, Catherine; Muntz, Alice; Fernandez-Bringas, Laura

    2010-01-01

    This study analyzed the changes in metallothionein-like proteins (MTLPs) and Energy Reserves (ERs) in hepatopancreas and abdominal muscle of the white prawn Penaeus vannamei. Realistic metal concentration exposure for 10 days to Ni and Pb in solution revealed that juvenile prawns partially induce MTLP in hepatopancreas after Pb exposure. Ni was distributed equally between soluble and insoluble fractions, while Pb was present only in the insoluble fraction, suggesting different detoxification strategy. No changes in lipids and glycogen concentration were detected under these experimental conditions in both tissues analyzed. MTLP could not be considered as a suitable indicator for lead exposure in hepatopancreas. PMID:20862200

  10. Comparative evaluation of pentraxin 3 levels in GCF during canine retraction with active tieback and NiTi coil spring: An in vivo study

    PubMed Central

    Patel, Pratik; Shanthraj, Ravi; Bhagyalakshmi, A; Garg, Nekta; Vallakati, Anisha

    2016-01-01

    Objectives: To compare the levels of pentraxin 3 (PTX-3) in gingival crevicular fluid (GCF) in patients undergoing orthodontic canine retraction with active tieback and nickel titanium (NiTi) coil spring. Materials and Methods: Fifteen patients of the age group 15–25 years with first premolar extraction undergoing canine retraction were selected. One month after placement of 0.019” × 0.025” stainless steel wire, canine retraction was started with active tieback (150 g force) on upper right quadrant and NiTi coil spring (150 g force) on upper left quadrant. GCF samples were collected 1 h before commencement of canine retraction and thereafter at intervals of 1 h, 1 day, 1 week, and 2 weeks after application of force. The collected GCF was eluted from the microcapillary pipette in 100 μl phosphate-buffered saline (pH 5–7.2). The samples were analyzed for PTX-3 levels by the ELISA technique. Results: The mean levels of PTX-3 at 1 h before canine retraction (baseline) was 1.30 ± 0.22 ng/ml and at 1 h 1.66 ± 0.33 ng/ml, 1 day 2.65 ± 0.09 ng/ml, 1 week 1.96 ± 0.15 ng/ml, and 2 weeks 1.37 ± 0.18 ng/ml in active tieback group. The mean levels of PTX-3 at 1 h before canine retraction was 1.32 ± 0.30 ng/ml, and at 1 h 1.71 ± 0.39 ng/ml, 1 day 2.78 ± 0.12 ng/ml, 1 week 2.52 ± 0.18 ng/ml, and 2 weeks 2.12 ± 0.17 ng/ml in NiTi coil spring group. A significant difference of P < 0.001 was found in PTX-3 levels in GCF during canine retraction between active tieback and NiTi coil spring at 1 day, 1 week, and 2 weeks. Conclusion: The results showed that PTX-3 levels increased from 1 h after application of orthodontic force and reached peak at 1 day, followed by a gradual decrease at 1 week and 2 weeks in both active tie back and NiTi coil spring groups. PMID:27127751

  11. Angle-resolved photoemission extended fine structure of the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    SciTech Connect

    Huff, W.R. |; Chen, Y.; Kellar, S.A.; Moler, E.J. |; Hussain, Z.; Huang, Z.Q.; Zheng, Y.; Shirley, D.A.

    1997-07-01

    We report a non-s initial-state angle-resolved photoemission extended fine-structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial-state data, the p initial-state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest neighbors to the emitter. Evidence was seen for single-scattering events from the same plane as the emitters and double-scattering events. Using a recently developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. {copyright} {ital 1997} {ital The American Physical Society}

  12. Atomic absorption spectrophotometric determination of microgram levels of Co, Ni, Cu, Pb, and Zn in soil and sediment extracts containing large amounts of Mn and Fe

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1973-01-01

    An atomic absorption spectrophotometric method has been developed for the determination of seven metal ions in the hydroxylamine extract of soils and sediments. Mn, Fe, and Zn are directly determined in the aqueous extract upon dilution. Co, Ni, Cu, and Pb in a separate aliquot of the extract are chelated with APDC (ammonium pyrrolidine dithiocarbamate) and extracted into MIBK (methyl isobutyl ketone) before determination. Data are presented to show the quantitative recovery of microgram levels of Co, Ni, Cu, and Pb by APDC-MIBK chelation-extraction from synthetic solutions containing as much as 2,000 ug/ml (micrograms per milliliter) Mn or 50 ug/ml Fe. Recovery of known amounts of the metal ions from sample solutions is equally satisfactory. Reproducible results are obtained by replicate analyses of two sediment samples for the seven metals.

  13. Lifetimes of the hyperfine levels of 3d94s 3D3 in high-Z Ni-like ions

    NASA Astrophysics Data System (ADS)

    Du, Weijie; Andersson, Martin; Yao, Ke; Brage, Tomas; Hutton, Roger; Zou, Yaming

    2013-07-01

    Based on the multi-configuration Dirac-Hartree-Fock method and using the GRASPVU package, a theoretical investigation was performed to study the lifetimes of hyperfine levels of the first excited level 3d94s 3D3 in Ni-like ions (Z = 72-79) for all stable isotopes with nuclear spin. Comparisons between hyperfine-induced electric quadrupole transition rates and the pure magnetic octupole transition rates show that the extra electric quadrupole transition channel caused by the nuclear magnetic dipole and electric quadrupole hyperfine interaction is important for most hyperfine levels in each individual ion. Lifetimes of most hyperfine levels are sensitive to this extra decay channel. Extreme cases are found in 181Ta, 185Re and 187Re, where lifetimes of some hyperfine levels are shortened by more than an order of magnitude.

  14. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level

    SciTech Connect

    Liu, Zengcai; Zhen, Honghe; Kim, Yoongu; Liang, Chengdu

    2011-01-01

    Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.

  15. Chemical bonding and charge redistribution - Valence band and core level correlations for the Ni/Si, Pd/Si, and Pt/Si systems

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Madhukar, A.

    1982-01-01

    Via a systematic study of the correlation between the core and valence level X-ray photoemission spectra, the nature of the chemical bonding and charge redistribution for bulk transition metal silicides has been examined. Particular emphasis is placed on Pt2Si and PtSi. It is observed that the strength of the metal (d)-silicon (p) interaction increases in the order Ni2Si, Pd2Si, Pt2Si. It is also observed that both the metal and silicon core lines shift to higher binding energy as the silicides are formed. The notion of charge redistribution for metallic bonds is invoked to explain these data.

  16. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth. PMID:23744099

  17. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers

    NASA Astrophysics Data System (ADS)

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S.; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-06-01

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ~3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ~3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  18. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  19. Microscopic level investigation of Ni(II) sorption on Na-rectorite by EXAFS technique combined with statistical F-tests.

    PubMed

    Ren, Xuemei; Yang, Shitong; Hu, Fengchun; He, Bo; Xu, Jinzhang; Tan, Xiaoli; Wang, Xiangke

    2013-05-15

    Extended X-ray absorption fine structure (EXAFS) spectroscopy combined with statistical F-tests is used to investigate the local atomic structures of Ni(II) adsorbed on Na-rectorite. The EXAFS analysis results of Ni(II) sorption samples indicate that the first coordination shell consists of ~6 O at the Ni-O interatomic distance (R) of ~2.04 Å. The presence of Ni backscattering at R(Ni-Ni) = 3.06 Å in the second coordination shell suggests the formation of Ni(II) precipitate. The results of F-tests show that the Ni(II) precipitate is Ni-Al layered double hydroxide (LDH). Our results demonstrate that Ni(II) ions are retained via different mechanisms depending on solution conditions. At low pH, Ni retention is controlled mainly by the outer-sphere surface complexation. With increasing pH, outer-sphere and inner-sphere surface complexation dominate Ni uptake. Furthermore, Ni surface loading increases with temperature increasing at pH 6.5 due to the formation of inner-sphere surface complexes and Ni-Al LDH. The formation of Ni-Al LDH becomes the dominate mechanism at the elevated pH and temperature. In the presence of humic substances, the sorption of Ni(II) on Na-rectorite is dominated by the formation of ternary surface complexes. These results are important to understand the physicochemical behavior of Ni(II) in the natural environment. PMID:23500786

  20. Sea level response to the 1986-1987 El Niño-Southern Oscillation Event in the western Pacific in the vicinity of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ridgway, K. R.; Godfrey, J. S.; Meyers, G.; Bailey, R.

    1993-01-01

    Sea levels at the Papua New Guinea coast responded to the 1986-87 El Niño-Southern Oscillation (ENSO) event much as would be expected for points on the inshore edge of a western boundary current driven by remote sea level disturbances. The first empirical orthogonal function of sea level in the region accounts for 60% of the variance, and shows a clear western boundary current signal. Sea level observations from tide gauges and estimates from adjacent expendable bathythermographs (XBTs) are in good agreement, so XBT data are used to supplement sea level results; specifically, we obtain an estimate of the western boundary current as a function of depth. The anomalous transport through Vitiaz Strait varied by about 15 Sv during the event, with possibly more following the eastern New Ireland coast. The western boundary current response appears to be located entirely equatorward of the inflow feeding it, as expected from linear theory. The boundary current followed the Trobriand Island ridge, rather than the main Papua New Guinea coastline, and appears to bifurcate along southern New Britain. A maximum response to the ENSO occurred south of New Ireland, where steric sea level appeared to vary by up to 45 cm due to the ENSO event; this may be an inertial feature.

  1. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations

    PubMed Central

    Zhang, Hao; Douglas, Jack F.

    2012-01-01

    Recent studies of the dynamics of diverse condensed amorphous materials have indicated significant heterogeneity in the local mobility and a progressive increase in collective particle motion upon cooling that takes the form of string-like particle rearrangements. In a previous paper (Part I), we examined the possibility that fluctuations in potential energy E and particle mobility μ associated with this ‘dynamic heterogeneity’ might offer information about the scale of collective motion in glassy materials based on molecular dynamics simulations of the glassy interfacial region of Ni nanoparticles (NPs) at elevated temperatures. We found that the noise exponent associated with fluctuations in the Debye-Waller factor, a mobility related quantity, was directly proportional to the scale of collective motion L under a broad range of conditions, but the noise exponent associated with E(t) fluctuations was seemingly unrelated to L. In the present work, we focus on this unanticipated difference between potential energy and mobility fluctuations by examining these quantities at an atomic scale. We find that the string atoms exhibit a jump-like motion between two well-separated bands of energy states and the rate at which these jumps occur seems to be consistent with the phenomenology of the ‘slow-beta’ relaxation process of glass-forming liquids. Concurrently with these local E(t) jumps, we also find ‘quake-like’ particle displacements having a power-law distribution in magnitude so that particle displacement fluctuations within the strings are strikingly different from local E(t) fluctuations. An analysis of these E(t) fluctuations suggests that we are dealing with ‘discrete breather’ excitations in which large energy fluctuations develop in arrays of non-linear oscillators by virtue of large anharmonicity in the interparticle interactions and discreteness effects associated with particle packing. We quantify string collective motions on a fast caging

  2. Extended calculations of level and transition properties in the nitrogen isoelectronic sequence: Cr XVIII, Fe XX, Ni XXII, and Zn XXIV

    NASA Astrophysics Data System (ADS)

    Radžiūtė, L.; Ekman, J.; Jönsson, P.; Gaigalas, G.

    2015-10-01

    Extensive multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations and relativistic configuration interaction (RCI) calculations are performed for 272 states of the 2s22p3, 2s2p4, 2p5, 2s22p23l, 2s2p33l, and 2p43l (l = 0,1,2) configurations in the nitrogen-like ions Cr XVIII, Fe XX, Ni XXII, and Zn XXIV. Valence, core-valence, and core-core electron correlation effects are accounted for through large configuration state function expansions. Calculated energy levels are compared with data from other calculations and with experimental data from the NIST database. Landé gJ-factors; hyperfine structures; isotope shifts; and radiative electric dipole (E1), electric quadrupole (E2), and magnetic dipole (M1) transition rates are given for all ions. The accuracy of the calculated energy levels is high enough to facilitate identification of observed spectral lines involving the 2l43l' configurations, for which experimental data are largely missing. Tables 5-21 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A61

  3. Recycling Ni from Contaminated and Mineralized Soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rare plant species accumulate potentially valuable concentrations of some metals. Alyssum murale readily accumulates over 2% Ni in aboveground dry matter when grown on Ni-mineralized serpentine soils in Oregon, allowing production of “hay” biomass with at least 400 kg Ni ha-1 with low levels of fer...

  4. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus

    PubMed Central

    Choi, Seong Yeol; Kim, Sooyeon; Lyuck, Sungsoo; Kim, Seung Bum; Mitchell, Robert J.

    2015-01-01

    A violacein-producing bacterial strain was isolated and identified as a relative of Duganella violaceinigra YIM 31327 based upon phylogenetic analyses using the 16S rRNA, gyrB and vioA gene sequences and a fatty acid methyl ester (FAME) analysis. This new strain was designated D. violaceinigra str. NI28. Although these two strains appear related based upon these analyses, the new isolate was phenotypically different from the type strain as it grew 25% faster on nutrient media and produced 45-fold more violacein. When compared with several other violacein producing strains, including Janthinobacterium lividum, D. violaceinigra str. NI28 was the best violacein producer. For instance, the crude violacein yield with D. violaceinigra str. NI28 was 6.0 mg/OD at 24 hours, a value that was more than two-fold higher than all the other strains. Finally, the antibacterial activity of D. violaceinigra str. NI28 crude violacein was assayed using several multidrug resistant Staphylococcus aureus. Addition of 30 μM crude violacein led to a 96% loss in the initial S. aureus population while the minimum inhibitory concentration was 1.8 μM. Consequently, this novel isolate represents a phenotypic variant of D. violaceinigra capable of producing much greater quantities of crude violacein, an antibiotic effective against multidrug resistant S. aureus. PMID:26489441

  5. Structure of the near-surface layer of NiTi on the meso- and microscale levels after ion-beam surface treatment

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Poletika, T. M. Girsova, S. L.; Tverdichlebova, A. V.; Shulepov, I. A.

    2014-11-14

    Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were also examined.

  6. Sterics level the rates of proton transfer to [Ni(XPh){PhP(CH₂CH₂PPh₂)₂}]⁺ (X = O, S or Se).

    PubMed

    Alwaaly, Ahmed; Henderson, Richard A

    2014-09-01

    Rates of proton transfers between lutH(+) (lut = 2,6-dimethylpyridine) and [Ni(XPh)(PhP{CH2CH2PPh2}2)](+) (X = O, S or Se) are slow and show little variation (k(O) : k(S) : k(Se) = 1 : 12 : 9). This unusual behaviour is a consequence of sterics affecting the optimal interaction between the reactants prior to proton transfer.

  7. The dependence of helium generation rate on nickel content of Fe-Cr-Ni alloys irradiated at high dpa levels in fast reactors

    SciTech Connect

    Garner, F.A.; Oliver, B.M.; Greenwood, L.R.

    1997-04-01

    With a few exceptions in the literature, it is generally accepted that it is nickel in Fe-Cr-Ni alloys that produces most of the transmutant helium and that the helium generation rate should scale linearly with the nickel content. Surprisingly, this assumption is based only on irradiations of pure nickel and has never been tested in an alloy series. There have also been no extensive tests of the predictions for helium production in alloys in various fast reactors spectra.

  8. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.

    PubMed

    Roccotiello, Enrica; Serrano, Helena Cristina; Mariotti, Mauro Giorgio; Branquinho, Cristina

    2016-06-01

    High nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10. At the highest concentration tested (500 mg Ni L(-1)), A. utriculata accumulated 1100 mg Ni per kilogram in its leaves, without an effects on its biomass. Plant water content increased significantly with Ni accumulation. Ni treatment did not, or only slightly, affected chlorophyll fluorescence parameters. The photosynthetic efficiency (FV/FM) of A. utriculata was stable between Ni treatments (always ≥ 0.8) and the photosynthetic performance of the plant under Ni stress remained high (performance index = 1.5). These findings support that A. utriculata has several mechanisms to avoid severe damage to its photosynthetic apparatus, confirming the tolerance of this species to Ni under hyperaccumulation. PMID:26983814

  9. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    SciTech Connect

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A.

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  10. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (˜5-15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  11. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (∼5–15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  12. First principles exploration of NiO and its ions NiO+ and NiO-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2013-02-01

    We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.

  13. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    NASA Astrophysics Data System (ADS)

    Jin, K.; Bei, H.; Zhang, Y.

    2016-04-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm-2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  14. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGESBeta

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  15. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  16. Monoligated monovalent Ni: the 3d(Ni)9 manifold of states of NiCu and comparison to the 3d9 States of AlNi, NiH, NiCl, and NiF.

    PubMed

    Rothschopf, Gretchen K; Morse, Michael D

    2005-12-22

    A dispersed fluorescence investigation of the low-lying electronic states of NiCu has allowed the observation of four out of the five states that derive from the 3d(Ni)9 3d(Cu)10 sigma2 manifold. Vibrational levels of the ground X2delta(5/2) state corresponding to v = 0-11 are observed and are fit to provide omega(e) = 275.93 +/- 1.06 cm(-1) and omega(e)x(e) = 1.44 +/- 0.11 cm(-1). The v = 0 levels of the higher lying states deriving from the 3d(Ni)9 3d(Cu)10 sigma2 manifold are located at 912, 1466, and 1734 cm(-1), and these states are assigned to omega values of 3/2, 1/2, and 3/2, respectively. The last of these assignments is based on selection rules and is unequivocal; the first two are based on a comparison to ab initio and ligand field calculations and could conceivably be in error. It is also possible that the v = 0 level of the state found at 912 cm(-1) is not observed, so that T0 for the lowest excited state actually lies near 658 cm(-1). These results are modeled using a matrix Hamiltonian based on the existence of a ground manifold of states deriving from the 3d9 configuration on nickel. This matrix Hamiltonian is also applied to the spectroscopically well-known molecules AlNi, NiH, NiCl, and NiF. The term energies of the 2sigma+, 2pi, and 2delta states of these molecules, which all derive from a 3d9 configuration on the nickel atom, display a clear and understandable trend as a function of the electronegativity of the ligands.

  17. Electronic transport properties of ultra-thin Ni and Ni-C nanowires.

    PubMed

    Zhang, Leining; Wu, Weikang; Zhou, Yi; Ren, Hongru; Dong, Jichen; Li, Hui

    2016-02-21

    The structures and electronic transport properties of ultra-thin Ni and Ni-C nanowires obtained from carbon nanotube (CNT) templates are theoretically investigated. C atoms tend to locate at the central positions of nanowires and are surrounded by Ni atoms. Spin polarization at the Fermi level is not responsible for the spin filtration of these nanowires. Increasing C concentration can improve the resistance of nanowires by abating the number of electronic transmission channels and the coupling of electron orbitals between Ni atoms. Moreover, with the increase of diameter, the conductance of these nanowires increases as well. This study is helpful for guiding the synthesis of nanowires with desired applications. PMID:26818090

  18. Charge ordering in Ni1 +/Ni2 + nickelates: La4Ni3O8 and La3Ni2O6

    NASA Astrophysics Data System (ADS)

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.; Norman, Michael R.

    2016-08-01

    Ab initio calculations allow us to establish a close connection between the Ruddlesden-Popper layered nickelates and cuprates not only in terms of filling of d levels (close to d9) but also because they show Ni1 +(S =1 /2 ) /Ni2 +(S =0 ) stripe ordering. The insulating charge-ordered ground state is obtained from a combination of structural distortions and magnetic order. The Ni2 + ions are in a low-spin configuration (S =0 ) yielding an antiferromagnetic arrangement of Ni1 + S =1 /2 ions like the long-sought spin-1/2 antiferromagnetic insulator analog of the cuprate parent materials. The analogy extends further with the main contribution to the bands near the Fermi energy coming from hybridized Ni dx2-y2 and O p states.

  19. Magnetic properties of the intermetallic compounds PrNiSn and NdNiSn

    NASA Astrophysics Data System (ADS)

    Beirne, Eamonn Daniel

    Inelastic neutron scattering has been used to determine the crystalline electric field (CEF) excitations in the intermetallic compound PrNiSn. Polycrystalline samples of PiNiSn are found to have 7 excitations up to 30 meV, with strong low-lying modes at 2.0, 3.5, and 5.1 meV. The site symmetry of Pr3+ in this system is such that the degeneracy of the 9 levels in the J = 4 ground state multiplet is removed completely by the crystal field. From fitting this data, it is clear that the ground state is a singlet that couples to each of the other 8 excited states. The wavefunctions of the levels are determined and a level scheme proposed for this material. Inelastic scattering results are also presented for a single crystal of PrNiSn. The dispersion of the low-lying E = 3.5 meV CEF excitation is documented, showing 4 distinct modes corresponding to the 4 Pr ions in the unit cell. Susceptibility and magnetisation results for PrNiSn and NdNiSn are presented. From these measurements it is clear that the PrNiSn does not order magnetically down to 2K, whereas NdNiSn has an antifenomagnetic transition at TN = 3.1K. Resistivity measurements on PrNiSn also show no evidence of a magnetic transition, but there are gradient changes at around 4.5K and 12K. This corresponds to a local maximum at 12K and local minimum at 4.5K along the b-axis in this compound. Measurements on single crystals of these compounds show strong anisotropy in both cases, attributed to CEF effects. From the proposed CEF level scheme, the bulk properties such as the susceptibility can be modelled. Neutron powder diffraction measurements on both PrNiSn and NdNiSn confirm that there is no magnetic transition down to 1.6K in PrNiSn, and TN is confirmed for NdNiSn. Structural Rietveld fitting confirms the room temperature orthorhombic structure in both systems down to low temperature, but the magnetic structure of NdNiSn can not be determined. This is due to the magnetic peaks below TN doubling up, indicating a

  20. Model calculations and measurements of the emission of a barium plasma in the spectral range of high-n Rydberg levels in a near Ni-like state

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Abdallah, J., Jr.; Faenov, A. Ya; Pikuz, T. A.; Skobelev, I. Yu; Flora, F.; Francucci, M.; Martellucci, S.

    2010-09-01

    The Los Alamos suite of atomic codes is used to model several high-resolution spectral measurements from recent laser-produced plasma experiments involving barium fluoride targets. The spectral range of observation is from 7.8 to 9.5 Å and the observed lines correspond to 3-5, 3-6, 3-7 and 3-8 transitions of principal quantum number, for Ga-like through Co-like barium ions. The observed spectra are complicated because of many overlapping lines from the various ion stages in a small wavelength region. A MUTA model that includes many configurations is compared to a detailed level-to-level collisional-radiative model that includes fewer configurations. Spectra are calculated to show the sensitivity to plasma temperature, density and size. The contributions to the spectra for the individual ion stages are also presented. The model calculations are in reasonable agreement with experiment.

  1. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    PubMed

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants. PMID:24419246

  2. Effects of a multi-pronged intervention on children's activity levels at recess: the Aventuras para Niños study.

    PubMed

    Elder, John P; McKenzie, Thomas L; Arredondo, Elva M; Crespo, Noe C; Ayala, Guadalupe X

    2011-03-01

    Latino children spend more time in sedentary activities than other American children, and only ~1 in 5 Latino children in public elementary and middle schools meet all 6 fitness standards in statewide fitness testing. Schools that facilitate physical activity (PA) by maintaining playgrounds and providing physical education classes have children who are more active and less overweight. The aims of the present study were to examine the extent to which several social and physical environmental changes in school settings resulted in observed changes in area characteristics and children's activity levels during recess. Thirteen elementary schools serving predominantly Mexican American children were randomized into control or activity and nutrition environmental intervention conditions. Playgrounds and activities were restructured in 6 intervention schools to promote more PA. After 1 y, there were no overall statistical differences between treatment groups in PA or sedentary behavior in these settings and results did not differ by gender. Changing the social and physical environments to promote children's moderate-to-vigorous PA is important to the design of active and healthy recess environments. The present results are not conclusive as to the link between these interventions and actual behavior, but show sufficient promise for further population and setting specific research. PMID:22332049

  3. Granger causality from changes in level of atmospheric CO2 to global surface temperature and the El Niño-Southern Oscillation, and a candidate mechanism in global photosynthesis

    NASA Astrophysics Data System (ADS)

    Leggett, L. M. W.; Ball, D. A.

    2015-10-01

    A significant difference, now of some 16 years' duration, has been shown to exist between the observed global surface temperature trend and that expected from the majority of climate simulations. For its own sake, and to enable better climate prediction for policy use, the reasons behind this mismatch need to be better understood. While an increasing number of possible causes have been proposed, the candidate causes have not yet converged. With this background, this paper reinvestigates the relationship between change in the level of CO2 and two of the major climate variables, atmospheric temperature and the El Niño-Southern Oscillation (ENSO). Using time-series analysis in the form of dynamic regression modelling with autocorrelation correction, it is shown that first-difference CO2 leads temperature and that there is a highly statistically significant correlation between first-difference CO2 and temperature. Further, a correlation is found for second-difference CO2 with the Southern Oscillation Index, the atmospheric-pressure component of ENSO. This paper also shows that both these correlations display Granger causality. It is shown that the first-difference CO2 and temperature model shows no trend mismatch in recent years. These results may contribute to the prediction of future trends for global temperature and ENSO. Interannual variability in the growth rate of atmospheric CO2 is standardly attributed to variability in the carbon sink capacity of the terrestrial biosphere. The terrestrial biosphere carbon sink is created by the difference between photosynthesis and respiration (net primary productivity): a major way of measuring global terrestrial photosynthesis is by means of satellite measurements of vegetation reflectance, such as the Normalized Difference Vegetation Index (NDVI). In a preliminary analysis, this study finds a close correlation between an increasing NDVI and the increasing climate model/temperature mismatch (as quantified by the difference

  4. Overall Photocatalytic Water Splitting with NiOx-SrTiO3 – A Revised Mechanism

    SciTech Connect

    Townsend, Troy K.; Browning, Nigel D.; Osterloh, Frank

    2012-11-01

    NiOx (0 < x < 1) modified SrTiO3 (STO) is one of the best studied photocatalyst for overall water splitting under UV light. The established mechanism for this and many other NiOx containing catalysts assumes water oxidation to occur at the early transition metal oxide and water reduction at NiOx. Here we show that NiOx-STO is more likely a three component Ni-STO-NiO catalyst, in which STO absorbs the light, Ni reduces protons, and NiO oxidizes water. This interpretation is based on systematic H2/O2 evolution tests of appropriately varied catalyst compositions using oxidized, chemically and photochemically added nickel and NiO nanoparticle cocatalysts. Surface photovoltage (SPV) measurements reveal that Ni(0) serves as an electron trap (site for water reduction) and that NiO serves as a hole trap (site for water oxidation). Electrochemical measurements show that the overpotential for water oxidation correlates with NiO content, whereas the water reduction overpotential depends on Ni content. Photodeposition experiments with NiCl2 and H2PtCl6 on NiO-STO show that electrons are available on the STO surface, not on the NiO particles. Based on photoelectrochemistry, both NiO and Ni particles suppress the Fermi level in STO, but the effect of this shift on catalytic activity is not clear. Overall, the results suggest a revised role for NiO in NiOx-STO and in many other nickel-containing water splitting systems, including NiOx-La:KTaO3, and many layered perovskites.

  5. Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China.

    PubMed

    Wang, Yu; Wang, Shengli; Nan, Zhongren; Ma, Jianmin; Zang, Fei; Chen, Yazhou; Li, Yepu; Zhang, Qian

    2015-12-01

    Effects of heavy metal on uptake of mineral nutrition elements in plants have attracted widespread interest and been widely explored. This paper reports the translocation and accumulation behaviors of Ni in the organs of mature wheat plants by means of pot experiment using the sierozem collected from northwestern China as experimental soil. Effect of Ni on accumulation of Cu, Mn, Ca, and Mg is also demonstrated. It was found that influence of Ni on wheat plants differed greatly at different Ni levels. Ni content in the organs of wheat plants increased with the increase in Ni level, and the increasing rate decreased when the Ni level was higher than 400 mg/kg. Ni was mainly accumulated in the roots and less distributed in the shoots, shells, and grains. When the Ni level was lower than 400 mg/kg, the bioconcentration factor (BCF) of the roots was higher than 1, suggesting that Ni was taken in against a concentration gradient. The average translocation factor (TF) of wheat plants was 0.221, indicating the weak ability of wheat plants in translocating Ni toward the aboveground parts. Since Ni is readily accumulated in the grains of wheat plants at lower Ni level, concerns in health risks might be raised. Excess Ni in wheat plants could inhibit the transfer of Cu, Mn, and Mg to grains, leading to the accumulation of Ca, Mg, and Mn in the shoots and shells of wheat plants. The increase in Ni content can disturb the uptake and distribution of mineral nutrition elements in the organs of plants, resulting in the toxic effect of Ni on wheat plants. Results from this study provide a scientific support to prevent or control heavy metal pollution in an arid region.

  6. Effects of Cycling Conditions of Active Material From Discharged Ni Positive Plates Studied by Inelastic Neutron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Eckert, Juergen; Varma, Ravi; Diebolt, Lisa; Reid, Margaret

    1998-01-01

    The objectives of this presentation are: identify atomic-level signatures of electrochemical activity of the active material on the Ni positive plates of Ni-H2 batteries, relate finding to cycling conditions and histories, and develop INS spectroscopy as a non-destructive testing technique for the evaluation of Ni-positive plates of Ni-H2 batteries.

  7. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  8. Measurement of {sup 63}Ni and {sup 59}Ni by accelerator mass spectrometry using characteristic projectile x-rays

    SciTech Connect

    McAninch, J.E.; Hainsworth, L.J.; Marchetti, A.A.

    1996-05-01

    The long-lived isotopes of nickel ({sup 59}Ni, {sup 63}Ni) have current and potential use in a number of applications including cosmic radiation studies, biomedical tracing, characterization of low-level radioactive wastes, and neutron dosimetry. Methods are being developed at LLNL for the routine detection of these isotopes by AMS. One intended application is in Hiroshima dosimetry. The reaction {sup 63}Cu(n,p){sup 63}Ni has been identified as one of a small number of reactions which might be used for the direct determination of the fast neutron fluence emitted by the Hiroshima bomb. AMS measurement of {sup 63}Ni(t{sub 1/2} = 100 y) requires the chemical removal of {sup 63}Cu, which is a stable isobar of {sup 63}Ni. Following the electrochemical separation of Ni from gram-sized copper samples, the Cu concentration is further lowered to < 2 x 10{sup -8} (Cu/Ni) using the reaction of Ni with carbon monoxide to form the gas Ni(CO){sub 4}. The Ni(CO){sub 4} is thermally decomposed directly in sample holders for measurement by AMS. After analysis in the AMS spectrometer, the ions are identified using characteristic projectile x-rays, allowing further rejection of remaining {sup 63}Cu. In a demonstration experiment, {sup 63}Ni was measured in Cu wires (2-20 g) which had been exposed to neutrons from a {sup 252}Cf source. We successfully measured {sup 63}Ni at levels necessary for the measurement of Cu samples exposed near the Hiroshima hypocenter. For the demonstration samples, the Cu content was chemically reduced by a factor of 10{sup 12} with quantitative retention of {sup 63}Ni. Detection sensitivity (3{sigma}) was {approximately}20 fg {sup 63}Ni in 1 mg Ni carrier ({sup 63}Ni/Ni {approx} 2 x 10{sup -11}). Significant improvements in sensitivity are expected with planned incremental changes in the methods. Preliminary results indicate that a similar sensitivity is achievable for {sup 59}Ni (t{sub 1/2} = 10{sup 5} y).

  9. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  10. Oxygen vacancies and ordering of d-levels control voltage suppression in oxide cathodes: the case of spinel LiNi0.5Mn1.5O4-δ

    SciTech Connect

    Sushko, Petr V.; Rosso, Kevin M.; Zhang, Jiguang; Liu, Jun; Sushko, Maria L.

    2013-06-19

    Spinel Li-Mn rich oxides form one of the most promising classes of high voltage cathode materials for next generation Li-ion batteries for electric vehicle applications. Our simulations for spinel LiNi0.5Mn1.5O4 (LNMO) show that neutral oxygen vacancies promote formation of Ni-rich regions, which are negatively charged with respect to the lattice. This makes the electrons associated with these vacancies to localize on Mn3+ eg states of two types: shallow states in the Ni-rich regions and deep states in the Ni-poor regions. The positive electrostatic potential produced by the oxygen vacancies and the existence of the shallow and deep Mn3+ states result in appearance of the low-voltage region at high Li content and high-voltage region at low Li content. This is consistent with characteristic changes in the voltage capacity curves observed experimentally during electrochemical cycling. We propose that doping LNMO with judiciously selected cations can help to remedy voltage suppression effects. This approach may also be used to enhance the electrochemical stability of Li-Mn rich oxides, which tend to experience continuous voltage fade.

  11. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  12. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  13. Low-lying excitations in 72Ni

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoyborg, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Shaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2016-03-01

    Low-lying excited states in 72Ni have been investigated in an in-flight fission experiment at the RIBF facility of the RIKEN Nishina Center. The combination of the state-of-the-art BigRIPS and EURICA setups has allowed for a very accurate study of the β decay from 72Co to 72Ni, and has provided first experimental information on the decay sequence 72Fe→72Co→72Ni and on the delayed neutron-emission branch 73Co→72Ni . Accordingly, we report nearly 60 previously unobserved γ transitions which deexcite 21 new levels in 72Ni. Evidence for the location of the so-sought-after (42+) ,(62+) , and (81+) seniority states is provided. As well, the existence of a low-spin β -decaying isomer in odd-odd neutron-rich Co isotopes is confirmed for mass A =72 . The new experimental information is compared to simple shell-model calculations including only neutron excitations across the f p g shells. It is shown that, in general, the calculations reproduce well the observed states.

  14. Ni cycling in mangrove sediments from New Caledonia

    NASA Astrophysics Data System (ADS)

    Noël, Vincent; Morin, Guillaume; Juillot, Farid; Marchand, Cyril; Brest, Jessica; Bargar, John R.; Muñoz, Manuel; Marakovic, Grégory; Ardo, Sandy; Brown, Gordon E.

    2015-11-01

    Covering more than 70% of tropical and subtropical coastlines, mangrove intertidal forests are well known to accumulate potentially toxic trace metals in their sediments, and thus are generally considered to play a protective role in marine and lagoon ecosystems. However, the chemical forms of these trace metals in mangrove sediments are still not well known, even though their molecular-level speciation controls their long-term behavior. Here we report the vertical and lateral changes in the chemical forms of nickel, which accumulates massively in mangrove sediments downstream from lateritized ultramafic deposits from New Caledonia, where one of nature's largest accumulations of nickel occurs. To accomplish this we used Ni K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy data in combination with microscale chemical analyses using Scanning Electron Microscopy coupled with Energy-Dispersive X-ray Spectroscopy (SEM-EDXS). After Principal Component and Target Transform analyses (PCA-TT), the EXAFS data of the mangrove sediments were reliably least-squares fitted by linear combination of 3-components chosen from a large model compound spectral database including synthetic and natural Ni-bearing sulfides, clay minerals, oxyhydroxides, and organic complexes. Our results show that in the inland salt flat Ni is hosted in minerals inherited from the eroded lateritic materials, i.e. Ni-poor serpentine (44-58%), Ni-rich talc (20-31%), and Ni-goethite (18-24%). In contrast, in the hydromorphic sediments beneath the vegetated Avicennia and Rhizophora stands, a large fraction of Ni is partly redistributed into a neoformed smectite pool (20-69% of Ni-montmorillonite), and Ni speciation significantly changes with depth in the sediment. Indeed, Ni-rich talc (25-56%) and Ni-goethite (15-23%) disappear below ∼15 cm depth in the sediment and are replaced by Ni-sorbed pyrite (23-52%) in redox-active intermediate depth layers and by pyrite (34-55%) in the deepest

  15. Transmutation-induced embrittlement of V-Ti-Ni and V-Ni alloys in HFIR

    SciTech Connect

    Ohnuki, S.; Takahashi, H.; Garner, F.A.; Pawel, J.E.

    1996-04-01

    Vanadium, V-1Ni, V-10Ti and V-10Ti-1Ni (at %) were irradiated in HFIR to doses ranging from 18 to 30 dpa and temperatures between 300 and 600C. Since the irradiation was conducted in a highly thermalized neutron spectrum without shielding against thermal neutrons, significant levels of chromium (15-22%) were formed by transmutation. The addition of such large chromium levels strongly elevated the ductile to brittle transition temperature. At higher irradiation temperatures radiation-induced segregation of transmutant Cr and solute Ti at specimen surfaces leads to strong increases in the density of the alloy.

  16. Ni-Co laterite deposits

    USGS Publications Warehouse

    Marsh, Erin E.; Anderson, Eric D.

    2011-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.

  17. Synthesis and cyclic oxidation behavior of a (Ni, Pt) Al coating on a desulfurized Ni-base superalloy

    SciTech Connect

    Zhang, Y.; Lee, W.Y.; Haynes, J.A.; Wright, I.G.; Pint, B.A.; Cooley, K.M.; Liaw, P.K.

    1999-10-01

    The influences of sulfur impurities and Pt incorporation on the scale adhesion behavior of aluminide coatings were studied and compared. Low-sulfur NiAl coatings were prepared on a desulfurized, yttrium-free, single-crystal Ni-based superalloy by a modified version of a conventional aluminizing procedure based on chemical vapor deposition. The sulfur level in the resulting NiAl coatings was measured to be less than {approximately}0.5 ppmw by glow-discharge mass spectroscopy. Platinum-modified aluminide coatings were synthesized by first electroplating a thin layer of Pt({approximately}7 {micro}m) on the superalloy, followed by the same low-sulfur aluminizing procedure. The measured sulfur content in the (Ni,Pt)Al coating was substantially higher than that of the low-sulfur NiAl coating due to contamination during the Pt electroplating process. A very adherent {alpha}-Al{sub 2}O{sub 3} scale formed on the grain surfaces of the low-sulfur NiAl coating during cyclic oxidation testing at 1,150 C, but scale spallation eventually occurred over many of the NiAl grain boundaries. In contrast, despite the higher level of sulfur in the (NI,Pt)Al coating, a very adherent scale was formed over both the coating grain surfaces and grain boundaries during thermal cycling. These results suggest that Pt additions can mitigate the detrimental influence of sulfur on scale adhesion.

  18. First-principles study of the magnetism of Ni-doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Luo, Min; Hao Shen, Yu; Hao Chu, Jun

    2016-09-01

    The magnetic properties of Ni-doped monolayer MoS2 are investigated using the density function theory. The results show that two Ni-doped systems of the nearest-neighbor configuration are ferromagnetic. The p-d hybridization between the Ni dopant and its neighboring S atoms results in the splitting of energy levels near the Fermi energy. These results suggest the p-d hybridization mechanism for the magnetism of the Ni-doped MoS2 monolayer. The magnetic moment disappears with increasing Ni-Ni distance. Our studies predict the nearest two-Ni-doped MoS2 monolayers to be candidates for thin dilute magnetic semiconductors. Moreover, the formation energy calculations indicate that it would be easier to incorporate Ni atoms into a S-rich MoS2 monolayer in the experiment.

  19. Advanced Chinese NiTi alloy wire and clinical observations.

    PubMed

    Chen, R; Zhi, Y F; Arvystas, M G

    1992-01-01

    Chinese NiTi wire was studied on the bench with six other nickel-titanium-alloy wires. Bending and torsional tests were conducted and temperatures of phase transformation compared. The Chinese NiTi wire was found to have a low stiffness, high springback and constant bending and torsional moments on unloading, in a very large deformation region. It can produce a gentle, nearly constant force. These factors make it desirable for clinical application. Included in this paper are clinical observations of case selected from over 100 patients in current treatment with Chinese NiTi wires. Chinese NiTi wire reduced the leveling and alignment phase of treatment without discomfort to the patient. Chinese NiTi wire can be used in both children and adults. PMID:1445516

  20. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  1. Impact of Ni doping on critical parameters of PdTe superconductor

    NASA Astrophysics Data System (ADS)

    Goyal, Reena; Jha, Rajveer; Tiwari, Brajesh; Dixit, Ambesh; Awana, V. P. S.

    2016-07-01

    We report the effect of Ni doping on superconductivity of PdTe. The superconducting parameters like critical temperature (T c ), upper critical field (H c2) and normalized specific-heat jump (ΔC/γT c ) are reported for Ni doped Pd1-x Ni x Te. Samples of series Pd1-x NixTe with nominal compositions x = 0, 0.01, 0.05, 0.07, 0.1, 0.15, 0.2, 0.3 and 1.0 are synthesized via the vacuum shield solid state reaction route. All the studied samples of Pd1-x Ni x Te series are crystallized in a hexagonal crystal structure as refined by the Rietveld method to space group P63/mmc. Both the electrical resistivity and magnetic measurements revealed that T c decreases with increasing Ni concentration in Pd1-x Ni x Te. Magnetotransport measurements suggest that flux is better pinned for 20% Ni doped PdTe as compared to other compositions of Pd1-x Ni x Te. The effect and contribution of Ni 3d electron to electronic structure and density of states near the Fermi level in Pd1-x Ni x Te are also studied using first-principle calculations within the spin polarized local density approximation. The overlap of bands at the Fermi level for NiTe is larger as compared to PdTe. Also the density of states just below the Fermi level (in conduction band) drops much lower for PdTe than as for NiTe. In summary, Ni doping in Pd1-x Ni x Te superconductor suppresses superconductivity moderately and also Ni is of non-magnetic character in these compounds.

  2. Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices

    NASA Astrophysics Data System (ADS)

    Sarkar, P. K.; Bhattacharjee, S.; Barman, A.; Kanjilal, A.; Roy, A.

    2016-10-01

    The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>103) and endurance (104) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed.

  3. Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices.

    PubMed

    Sarkar, P K; Bhattacharjee, S; Barman, A; Kanjilal, A; Roy, A

    2016-10-28

    The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>10(3)) and endurance (10(4)) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed.

  4. Multilevel programming in Cu/NiO y /NiO x /Pt unipolar resistive switching devices.

    PubMed

    Sarkar, P K; Bhattacharjee, S; Barman, A; Kanjilal, A; Roy, A

    2016-10-28

    The application of a NiO y /NiO x bilayer in resistive switching (RS) devices with x > y was studied for its ability to achieve reliable multilevel cell (MLC) characteristics. A sharp change in resistance brought about by sweeping the voltage, along with an improved on/off ratio (>10(3)) and endurance (10(4)) were achieved in the bilayer structure as compared to the single NiO x layer devices. Moreover, it was found that nonvolatile and stable resistance levels, especially the multiple low-resistance states of Cu/NiO y /NiO x /Pt memory devices, could be controlled by varying the compliance current. All the multilevel resistance states of the Cu/NiO y /NiO x /Pt bilayer devices were stable for up to 500 consecutive dc switching cycles, as compared to the Cu/NiO x /Pt single layer devices. The temperature-dependent variation of the high and low resistance states of both the bilayer and single layer devices was further investigated to elucidate the charge conduction mechanism. Finally, based on a detailed analysis of the experimental results, comparisons of the possible models for RS in bilayer and single layer memory devices have also been discussed. PMID:27651380

  5. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase. PMID:26488197

  6. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase.

  7. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  8. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    SciTech Connect

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat; İyigör, Ahmet; Candan, Abdullah

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso program package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.

  9. Magnetic properties of Ni/NiO nanocomposites synthesized by one step solution combustion method

    NASA Astrophysics Data System (ADS)

    Ganeshchandra Prabhu, V.; Shajira, P. S.; Lakshmi, N.; Junaid Bushiri, M.

    2015-12-01

    Ni/NiO nanocomposites were synthesized using solution combustion method and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and carbon, hydrogen, nitrogen (CHN) analyser. The Ni or NiO content in Ni/NiO nanocomposites vary with the quantity of HNO3 used for the synthesis. Magnetic coercivity (Hc) of Ni/NiO nanocomposites is found to be 413 Oe which can be used in magnetic applications. A feeble exchange bias of 7 Oe is seen from the NiO rich Ni/NiO.

  10. Structures and energetics of Ni24-Ni55 clusters

    NASA Astrophysics Data System (ADS)

    Wetzel, Thiele L.; DePristo, Andrew E.

    1996-07-01

    We predict stable geometrical structures and interaction energies of Ni clusters using non self-consistent electron density functional based corrected effective medium (CEM) and MD/MC-CEM methods. A plot of the reaction energies for the atomic ejection process, NiN+1→NiN+Ni, for Ni24-Ni55 displays a number of informative characteristics: (a) peaks and valleys represent internal structural rearrangement in which the number of core atoms increases by at least one and; (b) a plateau at N=50-54 is associated with the closing of the second MacKay icosahedron at Ni55. The lowest energy structures of NiN clusters for N=24-55 are dissimilar generally to those of both rare gas clusters and fragments of the bulk crystal lattice except where a stable icosahedral or bulk core is present. The growth scheme for N<50 is determined by the stability and structure of the changing number of core atoms. By contrast, the growth scheme for 51≤N≤55 is determined by the addition of surface atoms to a very stable and invariant 13-atom icosahedral core. The theoretical predictions are compared to available model growth schemes and experimental data.

  11. Coherent nuclear resonant scattering by {sup 61}Ni using the nuclear lighthouse effect

    SciTech Connect

    Roth, T.; Leupold, O.; Wille, H.-C.; Rueffer, R.; Quast, K.W.; Burkel, E.; Roehlsberger, R.

    2005-04-01

    We have observed coherent nuclear resonant scattering of synchrotron radiation from the 67.41-keV level of {sup 61}Ni. The time evolution of the forward scattering signal was recorded by employing the nuclear lighthouse effect. This method is used to investigate Moessbauer isotopes in a coherent scattering process with synchrotron radiation at high transition energies. The decay of the excited ensemble of nuclei in Ni metal shows quantum beats that allowed the determination of the magnetic hyperfine field at the {sup 61}Ni nucleus. Moreover, we determined the lifetime of the 67.41-keV level of {sup 61}Ni to be 7.4(1) ns.

  12. Effect of major cations (Ca2+, Mg2+, Na+, K+) and anions (SO4(2-), Cl- , NO3-) on Ni accumulation and toxicity in aquatic plant (Lemna minor L.): implications For Ni risk assessment.

    PubMed

    Gopalapillai, Yamini; Hale, Beverley; Vigneault, Bernard

    2013-04-01

    The effect of major cation activity (Ca(2+) , Mg(2+) , Na(+) , K(+) ) on Ni toxicity, with dose expressed as exposure (total dissolved Ni concentration NiTot ) or free Ni ion activity (in solution Ni(2+) ), or as tissue residue (Ni concentration in plant tissue NiTiss ) to the aquatic plant Lemna minor L. was examined. In addition, Ni accumulation kinetics was explored to provide mechanistic insight into current approaches of toxicity modeling, such as the tissue residue approach and the biotic ligand model (BLM), and the implications for plant Ni risk assessment. Major cations did not inhibit Ni accumulation via competitive inhibition as expected by the BLM framework. For example, Ca(2+) and Mg(2+) (sulfate as counter-anion) had an anticompetitive effect on Ni accumulation, suggesting that Ca or Mg forms a ternary complex with Ni-biotic ligand. The counter-anion of the added Ca (sulfate, chloride, or nitrate) affected plant response (percentage of root growth inhibition) to Ni. Generally, sulfate and chloride influenced plant response while nitrate did not, even when compared within the same range of Ca(2+) , which suggests that the anion dominated the observed plant response. Overall, although an effect of major cations on Ni toxicity to L. minor L. was observed at a physiological level, Ni(2+) or NiTot alone modeled plant response, generally within a span of twofold, over a wide range of water chemistry. Thus, consideration of major cation competition for improving Ni toxicity predictions in risk assessment for aquatic plants may not be necessary.

  13. Electric Monopole Transition Strengths in 62Ni

    NASA Astrophysics Data System (ADS)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.

    2016-09-01

    Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.

  14. NiTi superelasticity via atomistic simulations

    NASA Astrophysics Data System (ADS)

    Chowdhury, Piyas; Ren, Guowu; Sehitoglu, Huseyin

    2015-12-01

    The NiTi shape memory alloys (SMAs) are promising candidates for the next-generation multifunctional materials. These materials are superelastic i.e. they can fully recover their original shape even after fairly large inelastic deformations once the mechanical forces are removed. The superelasticity reportedly stems from atomic scale crystal transformations. However, very few computer simulations have emerged, elucidating the transformation mechanisms at the discrete lattice level, which underlie the extraordinary strain recoverability. Here, we conduct breakthrough molecular dynamics modelling on the superelastic behaviour of the NiTi single crystals, and unravel the atomistic genesis thereof. The deformation recovery is clearly traced to the reversible transformation between austenite and martensite crystals through simulations. We examine the mechanistic origin of the tension-compression asymmetries and the effects of pressure/temperature/strain rate variation isolatedly. Hence, this work essentially brings a new dimension to probing the NiTi performance based on the mesoscale physics under more complicated thermo-mechanical loading scenarios.

  15. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  16. Interdiffusion behavior of Pt-modified γ-Ni + γ'-Ni3Al alloys coupled to Ni-Al-based alloys

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenari; Wang, Wen; Sordelet, Daniel J.; Gleeson, Brian

    2005-07-01

    The effect of platinum addition on the interdiffusion behavior of γ-Ni + γ'-Ni3Al alloys was studied by using diffusion couples comprised of a Ni-Al-Pt alloy mated to a Ni-Al, Ni-Al-Cr, or Ni-based commercial alloy. The commercial alloys studied were CMSX-4 and CMSX-10. Diffusion annealing was at 1150 °C for up to 100 hours. An Al-enriched γ'-layer often formed in the interdiffusion zone of a given couple during diffusion annealing due to the uphill diffusion of Al. This uphill diffusion was ascribed to Pt addition decreasing the chemical activity of aluminum in the γ + γ' alloys. For a given diffusion couple end member, the thickening kinetics of the γ' layer that formed increased with increasing Pt content in the Ni-Al-Pt γ + γ' alloy. The γ'-layer thickening kinetics in diffusion couples with Cr showed less of a dependence on Pt concentration. Inference of a negative effect of Pt and positive effect of Cr on the Al diffusion in this system enabled explanation of the observed interdiffusion behaviors. There was no or minimal formation of detrimental topologically close-packed (TCP) phases in the interdiffusion zone of the couples with CMSX-4 or CMSX-10. An overlay Pt-modified γ + γ' coating on CMSX-4 showed excellent oxidation resistance when exposed to air for 1000 hours at 1150 °C. Moreover, the Al content in the coating was maintained at a relatively high level due to Al replenishment from the CMSX-4 substrate.

  17. On the discontinuous precipitation reaction and solute redistribution in a Cu-15%Ni-8%Sn alloy

    SciTech Connect

    Alili, B.; Bradai, D.; Zieba, P.

    2008-10-15

    Optical and transmission electron microscopy studies have been undertaken in order to clarify some morphological aspects of the discontinuous precipitation (DP) reaction in a Cu-15Ni-8Sn (wt.%) alloy in the temperature range 800-950 K. The DP reaction proceeds in the ternary Cu-Ni-Sn system relatively fast (in binary Cu-Ni alloy is not present) with typical morphological features like change of growth direction, appearance and disappearance of solute-rich {gamma} lamellae. A fine continuous precipitation of single Ni and Sn-rich phase was also evidenced within the solute-depleted {alpha} lamellae. An energy-dispersive X-ray analysis showed the level of partitioning of the alloying elements. Most of the Ni and Sn is located in the {gamma} lamellae. However, the formula of the {gamma} lamellae is still close to (Cu{sub 3}Sn), which indicates that some Cu atoms are replaced by Ni.

  18. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    PubMed

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant.

  19. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    SciTech Connect

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  20. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers.

    PubMed

    Kang, Kibum; Kim, Sung-Kyu; Kim, Cheol-Joo; Jo, Moon-Ho

    2008-02-01

    We report a controllably reproducible and spontaneous growth of single-crystalline NiSix nanowires using NiOx/Ni seed layers during SiH4 chemical vapor deposition (CVD). We provide evidence that upon the reactions of SiH4 (vapor)-Ni seed layers (solid), the presence of the NiOx overlayer on Ni seed layers plays the key role to promote the spontaneous one-dimensional growth of NiSix single crystals without employing catalytic nanocrystals. Specifically, the spontaneous nanowire formation on the NiOx overlayer is understood within the frame of the SiH4 vapor-phase reaction with out-diffused Ni from the Ni underlayers, where the Ni diffusion is controlled by the NiOx overlayers for the limited nucleation. We show that single-crystalline NiSix nanowires by this self-organized fashion in our synthesis display a narrow diameter distribution, and their average length is set by the thickness of the Ni seed layers. We argue that our simple CVD method employing the bilayers of transition metal and their oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal-silicide nanowires in large scales.

  1. Low salinity enhances NI-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas).

    PubMed

    Blewett, Tamzin A; Wood, Chris M

    2015-12-01

    Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. PMID:26233920

  2. Low salinity enhances NI-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas).

    PubMed

    Blewett, Tamzin A; Wood, Chris M

    2015-12-01

    Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation.

  3. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD.

    PubMed

    Broering, Ellen P; Dillon, Stephanie; Gale, Eric M; Steiner, Ramsey A; Telser, Joshua; Brunold, Thomas C; Harrop, Todd C

    2015-04-20

    Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (Ni

  4. Behavior of Ni, Zn and Cr during low temperature aqueous Fe oxidation processes on Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Yan S.; McLennan, Scott M.

    2013-05-01

    The behavior of Ni(II), Zn(II) and Cr(III) during the melanterite (FeSO4·7H2O) to hematite (α-Fe2O3) oxidative transformations involving evolution pathways via jarosite ((H3O,K)Fe3(OH)6(SO4)2), schwertmannite (Fe8O8(OH)6(SO4)) and goethite (α-FeOOH) were investigated in an acidic saturated MgSO4 matrix. Results provide important clues about how elevated levels of trace elements are incorporated into the secondary Fe mineralogy assemblages found on Mars and the mechanism for formation of hematitic concretions at Meridiani Planum on Mars. Our results demonstrate that starting at the same concentrations in the initial solution, final amounts of Ni, Zn and Cr in hematite via different pathways are very different. In Path 1 (melanterite → jarosite → hematite), partitioning of Ni, Zn and Cr into jarosite and hematite (formed through dissolution of jarosite) is most likely in the order: Cr > Zn > Ni. In Path 2 (melanterite → schwertmannite → goethite → hematite), schwertmannite and goethite exhibited strong affinities for divalent Ni and Zn. During such a pathway, Ni should accumulate more than Zn by at least a factor of two, and partitioning of Ni, Zn and Cr to the hematite is most likely in the order: Cr > Ni > Zn. Therefore, our results suggest that the high Ni and moderate Zn distribution pattern observed in Meridiani hematitic spherule-bearing samples can be explained best by the schwertmannite-goethite to hematite pathway (Path 2), without need for an additional high Ni source in this region. Although the lack of goethite at Meridiani renders it uncertain if goethite ever served as a precursor to facilitate hematite formation, dehydration of nano-crystalline goethite is thermodynamically favored and cannot be ruled out. On the other hand, if hematitic concretions were formed by dissolution of jarosite (Path 1), then much higher initial Ni/Zn ratios than 1 in initial diagenetic fluids may be necessary to explain the elevated levels of Ni in the spherules

  5. Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X  =  Al, Ga and Sn) and Ni2VAl.

    PubMed

    Sreenivasa Reddy, P V; Kanchana, V; Vaitheeswaran, G; Singh, David J

    2016-03-23

    A first-principles study of the electronic and superconducting properties of the Ni2VAl Heusler compound is presented. The electron-phonon coupling constant of λ(ep)=0.68 is obtained, which leads to a superconducting transition temperature of Tc = ~ 4K (assuming a Coulomb pseudopotential μ(*)=0.13), which is a relatively high transition temperature for Ni based Heusler alloys. The electronic density of states reveals a significant hybridization between Ni-eg and V-t(2g) states around the Fermi level. The Fermi surface, consisting of two electron pockets around the X-points of the Brillouin zone, exhibits nesting and leads to a Kohn anomaly of the phonon dispersion relation for the transverse acoustic mode TA2 along the (1, 1, 0) direction, which is furthermore found to soften with pressure. As a consequence, T(c) and λ(ep) vary non-monotonically under pressure. The calculations are compared to similar calculations performed for the Ni2NbX (X  =  Al, Ga and Sn) Heusler alloys, which experimentally have been identified as superconductors. The experimental trend in T(c) is well reproduced, and reasonable quantitative agreement is obtained. The calculated T(c) of Ni2VAl is larger than either calculated or observed T(c)s of any of the Nb compounds. The Fermi surfaces of Ni2NbAl and Ni2NbGa consist of only a single electron pocket around the X point, however under compression a second electron pocket similar to that of Ni2VAl emerges Ni2NbAl and the T(c) increases non-monotonically in all the compounds. Fermi surface nesting and associated Kohn anomalies are a common feature of all four compounds, albeit weakest in Ni2VAl.

  6. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  7. RELATIVISTIC R-MATRIX CLOSE-COUPLING CALCULATIONS FOR PHOTOIONIZATION OF Si-LIKE Ni XV

    SciTech Connect

    Singh, Jagjit; Jha, A. K. S.; Mohan, Man

    2010-02-01

    We present relativistic close-coupling photoionization calculations of Ni XV using the Breit-Pauli R-matrix method to obtain photoionization cross section of Ni XV from the ground state 3s {sup 2}3p {sup 2}({sup 3} P {sub 0}) and the lowest four 3s {sup 2}3p {sup 2} ({sup 3} P {sub 1,2}, {sup 1} D {sub 2}, {sup 1} S {sub 0}) excited states. A multiconfiguration eigenfunction expansion of the core Ni XVI is employed with configurations 3s {sup 2}3p, 3s3p {sup 2}, 3s {sup 2}3d, 3p {sup 3}, 3s3p3d, 3p {sup 2}3d, 3s3d {sup 2}, 3p3d {sup 2}. We have included the lowest 40 target level states of Ni XVI in the photoionization calculations of Ni XV. Cross sections are determined by the Rydberg series of autoionizing resonances converging to several ionic states of Ni XVI. In our calculations, we have taken into account all the important physical effects such as exchange, channel coupling, and short-range correlation. Further, relativistic effects are incorporated by including mass correction, Darwin term, and spin-orbit interaction terms. The present calculations using the lowest 40 target levels of Ni XVI are presented for the first time and can be useful for modeling the ionization balance of Ni XV in laboratory and astrophysical plasmas.

  8. Thermal modeling of NiH2 batteries

    NASA Technical Reports Server (NTRS)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  9. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  10. Quasirelativistic calculation of the vibronic spectra of NiH and NiD

    NASA Astrophysics Data System (ADS)

    Marian, C. M.

    1990-07-01

    Large ab initio calculations on the low-lying 2Δ, 2Π, and 2Σ+ electronic states of NiH have been performed employing a relativistically corrected Hamiltonian. The relative ordering of the unperturbed electronic states is found to be 2Δ<2Σ+<2Π. Diagonal and off-diagonal spin-orbit matrix elements have been evaluated within the Breit-Pauli approximation and were used to couple the individual vibronic functions. With the exception of <2Σ+1/2‖HSO‖2Π1/2>, the spin-orbit matrix elements are found to be nearly independent of the internuclear distance. Their magnitude is determined by coupling matrix elements of the components of a pure atomic d9 configuration. The deflection of the <2Σ+1/2‖HSO‖2Π1/2> matrix element from the d9 limit at shorter bond distances can be attributed to increased admixture of d10 character in the 2Σ+ wave function. For NiH the v=0, J=2.5 level of the 2Δ3/2 state is calculated at 1014 cm-1, in excellent agreement with experiments (1012 cm-1). The lower of the heavily mixed 2Σ+1/2 and 2Π1/2 combinations with total angular momentum J=2.5 is located at 2279 cm-1, approximately 150 cm-1 above the corresponding experimental value. Shifting the 2Σ+ potential curve by -250 cm-1 brings the calculated levels of the Ω=1/2 system into almost perfect agreement with observed levels averaged over e and f components. The upper, experimentally not yet determined component is predicted at approximately 3655 cm-1, close to the v=2 level of the 2Δ5/2 state. The 2Π3/2 v=0, J=2.5 and the 2Δ3/2 v=1, J=2.5 levels, located at 2631 and 3091 cm-1, are considerably mixed. Excitation energies to several higher-lying vibronic states of NiH and a corresponding analysis of the vibronic spectrum of the NiD isotope are also reported.

  11. Oxygen potentials in Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] systems

    SciTech Connect

    Kale, G.M.; Fray, D.J. . Dept. of Mining and Mineral Engineering)

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4] equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu[sub 2]O [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + NiO, Pt (-) and (+) Pt, Ni + NiO [vert bar][vert bar] (Y[sub 2]O[sub 3])ZrO[sub 2] [vert bar][vert bar] Ni + Cr[sub 2]O[sub 3] + NiCr[sub 2]O[sub 4], Pt (-) in the temperature range of 800 to 1,300 K and 1,100 to 1,460 K, respectively. The electromotive force (emf) of both he cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. for the coexistence of the two-phase mixture of Ni + NiO, [Delta][mu][sub O[sub 2

  12. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  13. Metal/silicon interface formation - The Ni/Si and Pd/Si systems

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Madhukar, A.; Mayer, J. W.

    1981-01-01

    The valence level spectra of the Ni/Si and Pd/Si systems have been investigated using high resolution X-ray photoelectron spectroscopy. Temperature dependence studies for Ni deposited on thin thermal SiO2 demonstrate the importance of metal aggregation effects in the interpretation of binding energies as chemical shifts. Temperature studies for the Ni/Si system indicate that substantial chemical interaction occurs at the interface at temperatures as low as 100 K. These studies also show the presence of Ni in interstitial voids in the Si near the interface. A comparative study of the core and valence band features for the Ni and Pd silicides provides many valuable insights and a self-consistent picture of the attendent valence charge redistribution and its influence on the observed chemical shifts.

  14. Nuclear structure in the neutron-rich doubly magic sup 78 Ni region

    SciTech Connect

    Hill, J.C.; Wohn, F.K.; Winger, J.A.; Warburton, E.K.; Gill, R.L.; Schuhmann, R.B.; Brookhaven National Lab., Upton, NY; Clark Univ., Worcester, MA )

    1989-01-01

    The magic numbers Z=28 and N=50 imply that very neutron-rich {sup 78}Ni, which has not yet been observed, is doubly magic. The {sup 78}Ni region was investigated by studying the N=50 isotones and neutron-rich Zn isotopes. Results on the level structure of {sup 83}As, {sup 74}Zn, and {sup 76}Zn populated in the decays of {sup 83}Ge, {sup 74}Cu, and {sup 76}Cu are presented. The parent nuclides were produced and mass separated using the TRISTAN facility on-line to the High-Flux Beam Reactor at Brookhaven. The systematics of the N=50 isotones and even-A Zn isotopes are discussed and compared with shell-model calculations involving active nucleons outside of a {sup 78}Ni and {sup 66}Ni core, respectively. The extent to which the {sup 78}Ni region can be considered doubly magic is assessed. 43 refs., 7 figs.

  15. Early ⁵⁶Ni decay gamma rays from SN2014J suggest an unusual explosion.

    PubMed

    Diehl, Roland; Siegert, Thomas; Hillebrandt, Wolfgang; Grebenev, Sergei A; Greiner, Jochen; Krause, Martin; Kromer, Markus; Maeda, Keiichi; Röpke, Friedrich; Taubenberger, Stefan

    2014-09-01

    Type Ia supernovae result from binary systems that include a carbon-oxygen white dwarf, and these thermonuclear explosions typically produce 0.5 solar mass of radioactive (56)Ni. The (56)Ni is commonly believed to be buried deeply in the expanding supernova cloud. In SN2014J, we detected the lines at 158 and 812 kiloelectron volts from (56)Ni decay (time ~8.8 days) earlier than the expected several-week time scale, only ~20 days after the explosion and with flux levels corresponding to roughly 10% of the total expected amount of (56)Ni. Some mechanism must break the spherical symmetry of the supernova and at the same time create a major amount of (56)Ni at the outskirts. A plausible explanation is that a belt of helium from the companion star is accreted by the white dwarf, where this material explodes and then triggers the supernova event.

  16. Early ⁵⁶Ni decay gamma rays from SN2014J suggest an unusual explosion.

    PubMed

    Diehl, Roland; Siegert, Thomas; Hillebrandt, Wolfgang; Grebenev, Sergei A; Greiner, Jochen; Krause, Martin; Kromer, Markus; Maeda, Keiichi; Röpke, Friedrich; Taubenberger, Stefan

    2014-09-01

    Type Ia supernovae result from binary systems that include a carbon-oxygen white dwarf, and these thermonuclear explosions typically produce 0.5 solar mass of radioactive (56)Ni. The (56)Ni is commonly believed to be buried deeply in the expanding supernova cloud. In SN2014J, we detected the lines at 158 and 812 kiloelectron volts from (56)Ni decay (time ~8.8 days) earlier than the expected several-week time scale, only ~20 days after the explosion and with flux levels corresponding to roughly 10% of the total expected amount of (56)Ni. Some mechanism must break the spherical symmetry of the supernova and at the same time create a major amount of (56)Ni at the outskirts. A plausible explanation is that a belt of helium from the companion star is accreted by the white dwarf, where this material explodes and then triggers the supernova event. PMID:25081484

  17. Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts

    SciTech Connect

    Senanayake, Sanjaya D; Evans, Jaime; Agnoli, Stefano; Barrio, Laura; Chen, Tsung-Liang; Hrbek, Jan; Radriguez, Jose

    2011-01-01

    X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO2(111) surfaces. Upon adsorption on CeO2(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500 800 K) leads to partial reduction of the ceria substrate with the formation of Ni2? species that exists as NiO and/or Ce1-xNixO2-y. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO2(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce?3 cations, CO dissociates on the surface at 300 K forming NiCx compounds that may be involved in the formation of CH4 at higher temperatures. At medium and large Ni coverages ([0.3 ML), the Ni/CeO2(111) surfaces are able to catalyze the production of methane from CO and H2, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (\\0.3 ML), the Ni/CeO2(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water gas shift reaction.

  18. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  19. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times. PMID:22283487

  20. Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation

    SciTech Connect

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L.

    2012-12-10

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  1. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  2. Ultra-separation of nickel from copper metal for the measurement of 63Ni by AMS

    NASA Astrophysics Data System (ADS)

    Marchetti, A. A.; Hainsworth, L. J.; McAninch, J. E.; Leivers, M. R.; Jones, P. R.; Proctor, I. D.; Straume, T.

    1997-03-01

    Measurements of 63Ni (t{1}/{2} = 100 yr) produced by the reaction 63Cu(n,p)63Ni could be used in the assessment of fast-neutron fluence from the Hiroshima atomic bomb. Such measurements would add new information to help resolve the current discrepancy between measured thermal neutron activation values and those calculated with the DS86 dosimetry system. It has been estimated that the 63Ni production at 5 m from the hypocenter was (1.4 ± 0.1) × 107 atoms/g Cu. Because of its sensitivity, accelerator mass spectrometry (AMS) is ideal for measurements at this low level. However, 63Ni has to be separated from large amounts of stable atomic isobar 63Cu (69% of pure Cu). In this study, a procedure is presented for the electrochemical separation of ultra-low amounts of Ni from Cu. The method was developed using samples of electrical Cu wire that were irradiated with fission neutrons from a 252Cf source. The wire samples were electrochemically dissolved in a solution containing 1 mg of Ni carrier. The Cu was selectively deposited on a cathode at controlled potential. Measurements of total Ni after electroseparation indicate ˜ 100% carrier recovery. To prevent Cu contamination, AMS targets were prepared by nickel carbonyl generation. The AMS results show a successful quantitative separation of ˜ 107 atoms of 63Ni from 2-20 g samples of Cu.

  3. Characterization of solidification and weldability of Fe-29Ni-17Co alloys

    SciTech Connect

    Robino, C.V.; Hills, C.R.; Hlava, P.F.

    1992-01-01

    Applications for the controlled thermal expansion alloy Fe-29Ni-17Co often require joining by fusion welding processes. In addition, these applications usually require hermetic and high reliability joints. The small size of typical components normally dictates the use of autogenous welding processes, so that the hot cracking tendency of Fe-29Ni-17Co is of concem. The solidification behavoir and hot cracking tendency of commercial Fe-29Ni-17Co has been evaluated using diffcrential thermal analysis (DTA), Varestraint testing, light and electron microscopy, and laser welding trials. DTA and microstructural analysis indicated that the solidification of Fe-29Ni-17Co occurs as single phase austenite, does not exhibit the formation of terminal solidification phases, and results in only minimal segregation of major alloying elements. Varestraitit testing indicated that the hot cracking behavior of Fe-29Ni-17Co is similar to, though somewhat more pronounced than, 304L and 316 stainless steels. Relative to other Fe-Ni-Co and Ni-based alloys, however, the hot cracking response of this alloy is fiverable. Pulsed laser welding trials indicated that the phosphorus and sulfur levels in this heat of Fe-29Ni-17Co were insufficient to pmmote cracking in bead-on-plate welds.

  4. Characterization of solidification and weldability of Fe-29Ni-17Co alloys.

    SciTech Connect

    Robino, C.V.; Hills, C.R.; Hlava, P.F.

    1992-10-01

    Applications for the controlled thermal expansion alloy Fe-29Ni-17Co often require joining by fusion welding processes. In addition, these applications usually require hermetic and high reliability joints. The small size of typical components normally dictates the use of autogenous welding processes, so that the hot cracking tendency of Fe-29Ni-17Co is of concem. The solidification behavoir and hot cracking tendency of commercial Fe-29Ni-17Co has been evaluated using diffcrential thermal analysis (DTA), Varestraint testing, light and electron microscopy, and laser welding trials. DTA and microstructural analysis indicated that the solidification of Fe-29Ni-17Co occurs as single phase austenite, does not exhibit the formation of terminal solidification phases, and results in only minimal segregation of major alloying elements. Varestraitit testing indicated that the hot cracking behavior of Fe-29Ni-17Co is similar to, though somewhat more pronounced than, 304L and 316 stainless steels. Relative to other Fe-Ni-Co and Ni-based alloys, however, the hot cracking response of this alloy is fiverable. Pulsed laser welding trials indicated that the phosphorus and sulfur levels in this heat of Fe-29Ni-17Co were insufficient to pmmote cracking in bead-on-plate welds.

  5. Spectroscopic study of the 64,66,68Ni isotopes populated in 64Ni + 238U collisions

    NASA Astrophysics Data System (ADS)

    Broda, R.; Pawłat, T.; Królas, W.; Janssens, R. V. F.; Zhu, S.; Walters, W. B.; Fornal, B.; Chiara, C. J.; Carpenter, M. P.; Hoteling, N.; Iskra, Ł. W.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Stefanescu, I.; Wang, X.; Wrzesiński, J.

    2012-12-01

    Excited states in 64Ni, 66Ni, and 68Ni were populated in quasielastic and deep-inelastic reactions of a 430-MeV 64Ni beam on a thick 238U target. Level schemes including many nonyrast states were established up to respective excitation energies of 6.8, 8.2, and 7.8 MeV on the basis of γ-ray coincidence events measured with the Gammasphere array. Spin-parity assignments were deduced from an angular-correlation analysis and from observed γ-decay patterns, but information from earlier γ-spectroscopy and nuclear-reaction studies was used as well. The spin assignments for nonyrast states were supported further by their observed population pattern in quasielastic reactions selected through a cross-coincidence technique. Previously established isomeric-state decays in 66Ni and 68Ni were verified and delineated more extensively through a delayed-coincidence analysis. A number of new states located above these long-lived states were identified. Shell-model calculations were carried out in the p3/2f5/2p1/2g9/2 model space with two effective interactions using a 56Ni core. Satisfactory agreement between experimental and computed level energies was achieved, even though the calculations indicate that all the states are associated with rather complex configurations. This complexity is illustrated through the discussion of the structure of the negative-parity states and of the M1 decays between them. The best agreement between data and calculations was achieved for 68Ni, the nucleus where the calculated states have the simplest structure. In this nucleus, the existence of two low-spin states reported recently was confirmed as well. Results of the present study do not indicate any involvement of collective degrees of freedom and confirm the validity of a shell-model description in terms of neutron excitations combined with a closed Z = 28 proton shell. Further improvements to the calculations are desirable.

  6. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    NASA Astrophysics Data System (ADS)

    Huan, Z.; Fratila-Apachitei, L. E.; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel-titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  7. California Niño/Niña

    PubMed Central

    Yuan, Chaoxia; Yamagata, Toshio

    2014-01-01

    The present study shows the existence of intrinsic coastal air-sea coupled phenomenon in the coastal ocean off Baja California and California in boreal summer for the first time. It contributes significantly to the interannual sea surface temperature (SST) anomalies there. An initial decrease/increase in the equatorward alongshore surface winds weakens/strengthens the coastal upwelling and raises/lowers the coastal SSTs through oceanic mixed-layer processes. The resultant coastal warming/cooling, in turn, heats/cools the overlying atmosphere anomalously, decreases/increases the atmospheric pressure in the lower troposphere, generates an anomalous cross-shore pressure gradient, and thus reinforces or maintains the alongshore surface wind anomalies. The regional air-sea coupled phenomenon seems to be analogous to the well-known El Niño/Southern Oscillation (ENSO) in the tropical Pacific but with much smaller time and space scales, and may be referred to as California Niño/Niña in its intrinsic sense. PMID:24763062

  8. Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5,5) boron nitride nanotubes.

    PubMed

    Tontapha, Sarawut; Ruangpornvisuti, Vithaya; Wanno, Banchob

    2013-01-01

    The adsorption of CO onto Ni-doped boron nitride nanotubes (BNNTs) was investigated using density functional theory at the B3LYP/LanL2DZ level of theory. The structures of the Ni-doped BNNTs and their CO-adsorbed configurations were obtained. It was found that the strength of adsorption of CO onto Ni-doped perfect BNNTs is higher than that on defective BNNTs. The electronic properties of all of the adsorption configurations of CO on Ni-doped BNNTs are reported. PMID:22864627

  9. Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers.

    PubMed

    Aydoğmuş, Tarık; Bor, Sakir

    2012-11-01

    In the scope of the present study, Ni-rich TiNi (Ti-50.6 at %Ni) foams with porosities in the range 38-59% were produced by space holder technique using spherical magnesium powders as space formers. Single phase porous TiNi alloys produced with spherical pores were subjected to loading-unloading cycles in compression up to 250 MPa stress levels at different temperatures in as-processed and aged conditions. It has been observed that strength, elastic modulus and critical stress for inducing martensite decrease with increasing porosity. Partial superelasticity was observed for all porosity levels at different test temperatures and conditions employed. Irrecoverable strain was found to decrease with pre-straining and with increasing test temperature. Unlike in bulk TiNi alloys a constant stress plateau has not been observed during the compression testing of porous TiNi alloys. Instead linear superelasticity with a quite steep slope allowing 5% applied strain to be recovered after pre-straining or aging was observed. Even at test temperatures higher than austenite finish temperature in as-sintered and aged condition, strain applied could not be recovered fully due to martensite stabilization resulting from heavy deformation of macro-pore walls and sintering necks. TiNi foams produced with porosities in the range of 38-51% meet the main requirements of biomaterials in terms of mechanical properties for use as bone implant.

  10. Mechanical Properties of NiTi-Based Foam with High Porosity for Implant Applications

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Yu, Hao; Young, Marcus L.

    2015-11-01

    In order to better understand NiTi-based shape memory alloy foams for implant applications, Ni40Ti50Cu10 foams were heat treated and then deformed under incremental and cyclic compression loading. After heat treatment, the microstructure consists of a (Ni,Cu)Ti matrix with small (Ni,Cu)4Ti3 precipitates and a large Ti2(Ni,Cu) secondary phase. The heat-treated Ni40Ti50Cu10 foam exhibits a two-step transformation, involving B19' → B19 and B19 → B2 on heating and B2 → B19 and B19 → B19' on cooling, respectively. One Ni40Ti50Cu10 foam was compression loaded for 10 cycles at each subsequent strain level, i.e., 1, 2, 3, 4, 5, and 6 % strain. In each set of compressive stress-strain loops, the maximum stress level decreases due to plastic damage accumulation and/or retention of transformed martensite. Cross-sectional images from micro-computed tomography were collected during compression loading, which shows very uniform deformation without severe structural damage even up to 5 % strain. Localized deformation is visible at 6 % strain.

  11. Can Ni phosphides become viable hydroprocessing catalysts?

    SciTech Connect

    Soled, S.; Miseo, S.; Baumgartner, J.; Guzman, J.; Bolin, T.; Meyer, R.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventional supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).

  12. Ni/TiO2 Ultraviolet Detector

    NASA Astrophysics Data System (ADS)

    Mohamadzade Lajvardi, Mehdi; Jahangiri, Mojtaba

    2016-03-01

    The fabrication technology of solid-state photon detectors based on semiconductors other than silicon is yet to mature, but their recent progress opens new possibilities. Such devices are especially attractive for ultraviolet radiation level measurements because semiconductor materials with band gaps larger than 3.0 eV can be used as “visible-blind” detectors, the operation of which do not require using visible light filters. Here, fabrication and characterization of a UV detector based on nickel/titanium dioxide Schottky junction is reported. The operation of the device is described based on the photoelectric mechanism taking place in the carrier- depleted oxide adjacent to the Ni layer. Simplicity of fabrication, cost-effectiveness and fast response are the positive features of the device. These features of the device are compared with those of the previously reported Ag/TiO2 UV detectors.

  13. Sputtering deposition of magnetic Ni nanoparticles directly onto an enzyme surface: a novel method to obtain a magnetic biocatalyst.

    PubMed

    Bussamara, Roberta; Eberhardt, Dario; Feil, Adriano F; Migowski, Pedro; Wender, Heberton; de Moraes, Diogo P; Machado, Giovanna; Papaléo, Ricardo M; Teixeira, Sérgio R; Dupont, Jairton

    2013-02-14

    A simple one-step method based on the sputtering deposition of Ni nanoparticles (NP) has been developed for the production of magnetic biocatalysts, avoiding the complications and drawbacks of methods based on chemical functionalisation or coating of magnetic NP. This new technique provided high levels of recovery, reusability and catalytic activity for the lipase-Ni biocatalyst.

  14. Magical NiTi expander

    PubMed Central

    Katti, Chandrika Girish; Katti, Girish; Kallur, Ravi; Ghali, Srinivas Rao

    2013-01-01

    A 24-year-old male patient was referred to our department for expansion of the constricted maxillary arch as a presurgical procedure for the correction of congenital facial disfigurement. On examination, the patient had a convex profile, increased interlabial gap, tongue thrust, limited mouth opening, posterior crossbite, asymmetric ‘V’-shaped maxillary arch with severe constriction, crowding of anterior teeth in the maxillary arch and a massive open bite. Radiographic investigations included orthopantomograph and occlusal radiographs. The patient photographs and models were analysed. On careful evaluation, the treatment for maxillary arch expansion was planned with a nickel titanium (NiTi) slow maxillary expander along with fixed mechanotherapy for alignment of teeth. An unexpectedly successful outcome was appreciated from the treatment. An emphasis should be laid on selecting and treating the case of constricted arches with a surgical or non-surgical approach, as expansion can be achieved orthodontically by using NiTi expanders. PMID:23867876

  15. Inhibitive effects of nickel chloride (NiCl₂) on thymocytes.

    PubMed

    Tang, Kun; Guo, Hongrui; Deng, Jie; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Wang, Xun; Wu, Bangyuan; Li, Jian; Yin, Shuang

    2015-04-01

    The purpose of this study was to define the inhibitive effects of dietary nickel chloride (NiCl2) on thymocytes in broilers fed on diets supplemented with 0, 300, 600, and 900 mg/kg of NiCl2 for 42 days. We examined the changes of cell cycle phase, percentages of apoptotic cells, T cell subsets, cytokines, and mRNA expression of apoptotic proteins (bcl-2, bax, and caspase-3) in thymocytes by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). In the NiCl2-treated broilers, the percentages of thymocytes in G0/G1 phase were increased, whereas thymocytes in the S phase and the proliferation index were decreased. The percentages of apoptotic thymocytes were increased. Also, the mRNA expression levels of bax and caspase-3 were increased, and mRNA expression levels of bcl-2 were decreased. The percentages of CD3(+), CD3(+)CD4(+), and CD3(+)CD8(+) T lymphocytes in the thymus and peripheral blood were diminished. Concurrently, thymic cytokine (interleukin-1 beta (IL-1β), interleukin-2 (IL-2), interleukin-10 (IL-10), interleukin-12 p35 subunit (IL-12p35), interleukin-12 p40 subunit (IL-12p40), interleukin-21 (IL-21), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), thymosin β4, thymosin β10, and thymosin β15) mRNA expression levels were decreased. The abovementioned results showed that dietary NiCl2 in excess of 300 mg/kg inhibited thymocyte growth by arresting cell cycle, increasing apoptosis percentage, altering apoptotic protein mRNA expression levels, and downregulating cytokine expression levels. PMID:25547965

  16. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn,Fe,Co) from first-principles calculations

    SciTech Connect

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni{sub 2}MnGa have been calculated. The formation energies of the cubic phase of Ni{sub 2}XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni{sub 2}MnGa to Ni{sub 2}CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below E{sub F}. There are two bond types existing in Ni{sub 2}XGa: one is between neighboring Ni atoms in Ni{sub 2}MnGa; the other is between Ni and X atoms in Ni{sub 2}FeGa and Ni{sub 2}CoGa alloys.

  17. One Nucleon Transfer Reactions Around 68Ni at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Patronis, N.; Raabe, R.; Bildstein, V.; Bree, N.; Gernhäuser, R.; Huyse, M.; Kröll, Th.; Krücken, R.; Mahgoub, M.; Maierbeck, P.; Stefanescu, I.; van de Walle, J.; van Duppen, P.

    2008-05-01

    The newly built position sensitive Si detectors array of nearly 4π angular coverage which is going to be installed at the REX-ISOLDE facility at CERN is briefly presented. This setup will be combined with the Miniball detectors array, constituting a unique tool for the study of one-nucleon transfer reactions. The experimental study of d(66Ni,p)67Ni reaction will be proposed, as a starting point for a series of experiments aiming to the study of the single particle character of the levels of the odd mass neutron reach unstable Ni isotopes. In this contribution, the feasibility and sensitivity of the experiment is presented.

  18. Intermixing at Ni n/Cu( 0 0 1 ) interface and its effects on the magnetic properties of Ni

    NASA Astrophysics Data System (ADS)

    Yang, Zongxian; Wu, Ruqian

    2002-01-01

    Effects of interfacial interdiffusion on electronic and magnetic properties of Ni n/Cu(0 0 1) system are studied by using the full-potential linearized-augmented-plane-wave method with the generalized-gradient approximation for the exchange correlation interactions. Three systems, namely NiCu/Cu(0 0 1), Ni 3/NiCu/Cu(0 0 1), and NiCu/Ni 3/Cu(0 0 1) are used to simulate the intermixing in Ni n/Cu(0 0 1). Ni atoms in NiCu/Cu(0 0 1) are magnetically dead, while magnetic moment of Ni atom is significantly reduced in the alloy layer to 0.19 μB/atom in Ni 3/NiCu/Cu(0 0 1) and to 0.57 μB/atom in NiCu/Ni 3/Cu(0 0 1).

  19. Measured Activities of Al and Ni in gamma-(Ni) and gamma'-(Ni)3Al in the Ni-Al-Pt System

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2007-01-01

    Adding Pt to Ni-Al coatings is critical to achieving the required oxidation protection of Ni-based superalloys, but the nature of the Pt effect remains unresolved. This research provides a fundamental part of the answer by measuring the influence of Pt on the activities of Al and Ni in gamma-(Ni), gamma prime-(Ni)3Al and liquid in the Ni-Al-Pt system. Measurements have been made at 25 compositions in the Ni-rich corner over the temperature range, T = 1400-1750 K, by the vapor pressure technique with a multiple effusion-cell mass spectrometer (multi-cell KEMS). These measurements clearly show adding Pt (for X(sub Pt) less than 0.25) decreases a(Al) while increasing a(Ni). This solution behavior supports the idea that Pt increases Al transport to an alloy / Al2O3 interface and also limits the interaction between the coating and substrate alloys in the gamma-(Ni) + gamma prime-(Ni)3Al region. This presentation will review the progress of this study.

  20. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  1. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  2. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-01

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel. PMID:21505665

  3. Ni on the CeO₂(110) and (100) surfaces: adsorption vs. substitution effects on the electronic and geometric structures and oxygen vacancies.

    PubMed

    Li, W Q; Srinivasan, S Goverapet; Salahub, D R; Heine, T

    2016-04-28

    We report density functional theory (DFT) calculations of the interactions of both Ni adsorbate and substitutional dopant with the ceria (110) and (100) surfaces to explain the origin of the activity of Ni/ceria catalysts. Our results indicate that the Ni adatom on the (110) surface prefers to adsorb on a two-fold bridge site over a hollow site up to 0.25 ML coverage, and the most stable position of a Ni adsorbate on the (100) surface was found to be the bridge site where the Ni atom is coordinated to two surface O atoms. The Ni(+) oxidation state for the Ni adatom on the (110) surface was found to be more favorable than the Ni(2+) state on the two-fold bridge site while on the (100) surface, a Ni adatom prefers its Ni(2+) oxidation state over the Ni(+) oxidation state. With increasing coverage, the binding energy of a Ni adatom on the (110) surface was found to decrease from -0.45 eV at 0.083 ML coverage to -0.32 eV at 0.25 ML coverage. Oxidation of the Ni adatom to Ni(+) reduces one Ce(4+) ion on the ceria surface to Ce(3+) which preferred to be located next to the Ni(+) ion in the nearest neighbor location. The Ce(3+) ions on the (100) surface also prefer to stay in the vicinity of the adsorbed Ni atom, while they prefer to be located away from the Ni adatom on the (111) surface. No reduction of Ce(4+) ions was observed upon substitution of Ce atoms by Ni atoms. Two Ni substituents preferred to be distributed on adjacent metal ion sites on the (110) surface. Ni adsorbate and substituent on the (110) surface were both found to induce significant structural distortions. In comparison to the pure ceria (110) and (100) surfaces, we show that a Ni adsorbate increases the energy required to create an oxygen vacancy while a Ni dopant reduces it. While multiple dopants on the (110) surface do reduce the vacancy formation energy, the degree of reduction is smaller compared to a single dopant indicating the presence of an optimum level of doping to obtain enhanced

  4. Recent advances in NiMH battery technology

    NASA Astrophysics Data System (ADS)

    Fetcenko, M. A.; Ovshinsky, S. R.; Reichman, B.; Young, K.; Fierro, C.; Koch, J.; Zallen, A.; Mays, W.; Ouchi, T.

    Nickel-metal hydride (NiMH) is a commercially important rechargeable battery technology for both consumer and industrial applications due to design flexibility, excellent energy and power, environmental acceptability and cost. [1] From the initial product introduction in 1991 of cylindrical cells having an energy of 54 Wh kg -1, today's small consumer cells have a specific energy over 100 Wh kg -1. Numerous licensed manufacturers produce a myriad of NiMH products ranging from 30 mAh button cells to a wide variety of consumer cylindrical products, prismatic cells up to 250 Ah for electric buses and 6 Ah multicell modules for hybrid electric vehicles. Power has increased from under 200 to 1200 W kg -1 commercially and up to 2000 W kg -1 at a development level [2]. Early NiMH batteries had limited operating temperatures while today's batteries can provide excellent power at cold temperatures of -30 °C and provide over 90% capacity at 70 °C. Many of these product performance advances are a result of innovations to the metal hydride and nickel hydroxide materials. We will report on some of these key material advances which provide today's NiMH performance and new materials to allow higher energy, power and significant cost reduction.

  5. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    SciTech Connect

    Palagin, Dennis Doye, Jonathan P. K.

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  6. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu; Phanikumar, Gandham

    2016-10-01

    The present investigation reports phase and microstructure evolution during solidification of novel Ni-rich Ni-Ti-based alloys, Ni60Ti40, Ni50Cu10Ti40, Ni48Cu10Co2Ti40, and Ni48Cu10Co2Ti38Ta2 during suction casting. The design philosophy of the multicomponent alloys involves judicious selection of alloying elements such as Cu, Co, and Ta in the near Ni60Ti40 eutectic alloy by replacing both Ni and Ti so that phase mixture in the microstructure remains the same from the binary to quinary alloy. The basic objective is to study the effect of addition of Cu, Co, and Ta on the phase evolution and transformation in the Ni-rich Ni-Ti-based alloys. The detailed electron microscopic studies on these suction cast alloys reveal the presence of ultrafine eutectic lamellae between NiTi and Ni3Ti phases along with dendritic NiTi and Ti2Ni phases. It has also been observed that in the binary (Ni60Ti40) alloy, the ordered NiTi (B2) phase transforms to trigonal (R) phase followed by NiTi martensitic phase (M-phase), i.e., B2 → R-phase → M-phase during solid-state cooling. However, the addition of alloying elements such as Cu, Co to the binary (Ni60Ti40) alloy suppresses the martensitic transformation of the ordered NiTi (B2) dendrite. Thus, in the ternary and quaternary alloys, the ordered NiTi (B2) phase is transformed to only trigonal (R) phase, i.e., B2 → R-phase. The secondary precipitate of Ti2Ni has been observed in all of the studied alloys. Interestingly, Ni48Cu10Co2Ti38Ta2 quinary alloy shows the disordered nature of NiTi dendrites. The experimentally observed solidification path is in good agreement with Gulliver-Scheil simulated path for binary alloy, whereas simulated solidification path deviates from the experimental results in case of ternary, quaternary, and quinary alloys.

  7. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production.

  8. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  9. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  10. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    SciTech Connect

    Bates, MK; Jia, QY; Ramaswamy, N; Allen, RJ; Mukerjee, S

    2015-03-12

    We report a Ni-Cr/C electrocatalyst with unpreeedented massactivity for the hydrogen evolution reaction (HER). in alkaline electrolyte. The HER Oietics of numerous binary and ternary Ni-alloys and composite Ni/metal-euride/C samples were evaluated in aquebus 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni-Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to munerous binary dor ternary Ni-alloys, inCluding Ni Mg materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a, sink for the H-ads, intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiO content and that the Cr2O3 appears to stabilize the composite NiO component-under HER conditions (where NiOx would typically be reduced to metallic Ni-0). Furthermore, in contrast to Pt, the Ni(O-x)/Cr2O3 catalyst appears resistant to poisoning by the anion.exchange ionomer (AEI), a serloua consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a: detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI.

  11. Ni clay neoformation on montmorillonite surface.

    PubMed

    Dähn, R; Scheidegger, A; Manceau, A; Schlegel, M; Baeyens, B; Bradbury, M H

    2001-03-01

    Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

  12. DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces

    NASA Astrophysics Data System (ADS)

    Mohsenzadeh, Abas; Richards, Tobias; Bolton, Kim

    2016-02-01

    Density functional theory (DFT) calculations were used to study the water gas shift (WGS) reaction on Ni(111), Ni(100) and Ni(110) surfaces. The adsorption energy for ten species involved in the reaction together with activation barriers and reaction energies for the nine most important elementary steps were determined using the same model and DFT methods. The results reveal that these energies are sensitive to the surface structure. In spite of this, the WGS reaction occurs mainly via the direct (also referred to as redox) pathway with the CO + O → CO2 reaction as the rate determining step on all three surfaces. The activation barrier obtained for this rate limiting step decreases in the order Ni(110) > Ni(111) > Ni(100). Therefore, if O species are present on the surfaces then the WGS reaction is fastest on the Ni(100) surface. However, the barrier for desorption of H2O (which is the source of the O species) is lower than its dissociation reaction on the Ni(111) and Ni(100) surfaces, but not on the Ni(110) surface. Hence, at low H2O(g) pressures, the direct pathway on the Ni(110) surface will dominate and will be the rate limiting step. The calculations also show that the reason that the WGS reaction does not primarily occur via the formate pathway is that this species is a stable intermediate on all surfaces. The reactions studied here support the Brønsted-Evans-Polanyi (BEP) principles with an R2 value of 0.99.

  13. Observations and modeling of San Diego beaches during El Niño

    NASA Astrophysics Data System (ADS)

    Doria, André; Guza, R. T.; O'Reilly, William C.; Yates, M. L.

    2016-08-01

    Subaerial sand levels were observed at five southern California beaches for 16 years, including notable El Niños in 1997-98 and 2009-10. An existing, empirical shoreline equilibrium model, driven with wave conditions estimated using a regional buoy network, simulates well the seasonal changes in subaerial beach width (e.g. the cross-shore location of the MSL contour) during non-El Niño years, similar to previous results with a 5-year time series lacking an El Niño winter. The existing model correctly identifies the 1997-98 El Niño winter conditions as more erosive than 2009-10, but overestimates shoreline erosion during both El Niños. The good skill of the existing equilibrium model in typical conditions does not necessarily extrapolate to extreme erosion on these beaches where a few meters thick sand layer often overlies more resistant layers. The modest over-prediction of the 2009-10 El Niño is reduced by gradually decreasing the model mobility of highly eroded shorelines (simulating cobbles, kelp wrack, shell hash, or other stabilizing layers). Over prediction during the more severe 1997-98 El Niño is corrected by stopping model erosion when resilient surfaces (identified with aerial imagery) are reached. The trained model provides a computationally simple (e.g. nonlinear first order differential equation) representation of the observed relationship between incident waves and shoreline change.

  14. (001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    SciTech Connect

    Yeo, Hong Goo Trolier-McKinstry, Susan

    2014-07-07

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O₃ (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO₂ grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO₃ films were integrated by CSD on the HfO₂ coated substrates. A high level of (001) LaNiO₃ and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ~36 μC/cm², while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6 C/m² for hot-poled (001) oriented PZT film on Ni.

  15. CH4–CO2 reforming over Ni-substituted barium hexaaluminate catalysts

    SciTech Connect

    Gardner, Todd H.; Spivey, James J.; Kugler, Edwin L.; Pakhare, Devendra

    2013-03-01

    A series of Ni-substituted barium hexaaluminate catalysts, Ba{sub 0.75}Ni{sub y}Al{sub 12-y}O{sub 19-δ} (y = 0.4, 0.6 and 1.0), were tested for CO{sub 2} reforming of CH{sub 4} at temperatures between 200 and 900 °C. Temperature programmed surface reaction results show that the reaction lights-off in a temperature range between 448 and 503 °C with a consistent decrease in light-off temperature with increasing Ni substitution. Isothermal runs performed at 900 °C show near equilibrium conversion and stable product concentrations for 18 h on all catalysts. Temperature programmed oxidation of the used catalysts show that the amount of carbon deposited on the catalyst increases with Ni substitution. High resolution XRD of the used Ba{sub 0.75}Ni{sub 0.4}Al{sub 11.6}O{sub 19-δ} catalyst shows a statistically significant contraction of the unit cell which is the result of NiO reduction from the lattice. XRD of the used catalyst also confirms the presence of graphitic carbon. XPS and ICP measurements of the as prepared catalysts show that lower levels of Ni substitution result in an increasing proportion of Ba at the surface.

  16. Electronic and magnetic properties of X-doped (X=Ni, Pd, Pt) WS2 monolayer

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Xia, Congxin; Dai, Xianqi; Wang, Tianxing; Chen, Peng; Tian, Liang

    2016-09-01

    We investigate the electronic and magnetic properties of X-doped (X=Ni, Pd, Pt) WS2 monolayer using the first-principles methods based on density functional theory. The results show that WS2 monolayer doped by Ni, Pd and Pt is ferromagnetic. The impurity states near the Fermi level depend highly on the atomic size and electronegativity. For different X-doped WS2, the formation energy is lower under S-rich conditions, which indicates that it is energy favorable and relatively easier to incorporate X atom into WS2 under S-rich experimental conditions. Moreover, Ni-doped system owns the lowest formation energy compared with other atoms under S-rich experimental condition. Our studies predict X-doped (X=Ni, Pd, Pt) WS2 monolayers to be candidates for thin dilute magnetic semiconductors. Ni-doped WS2 has relatively wide half-metallic gap. So Ni-doped WS2 is the most ideal for spin injection among Ni, Pd, and Pt, which is important for application in semiconductor spintronics.

  17. New low-energy 0+ state and shape coexistence in 70Ni

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; Crider, B. P.; Liddick, S. N.; Ayangeakaa, A. D.; Carpenter, M. P.; Carroll, J. J.; Chen, J.; Chiara, C. J.; David, H. M.; Dombos, A. C.; Go, S.; Harker, J.; Janssens, R. V. F.; Larson, N.; Lauritsen, T.; Lewis, R.; Quinn, S. J.; Recchia, F.; Seweryniak, D.; Spyrou, A.; Suchyta, S.; Walters, W. B.; Zhu, S.

    2015-12-01

    In recent models, the neutron-rich Ni isotopes around N =40 are predicted to exhibit multiple low-energy excited 0+ states attributed to neutron and proton excitations across both the N =40 and Z =28 shell gaps. In 68Ni, the three observed 0+ states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (02+) state at an energy of 1567 keV has been discovered in 70Ni by using β -delayed, γ -ray spectroscopy following the decay of 70Co. The precipitous drop in the energy of the prolate-deformed 0+ level between 68Ni and 70Ni with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large f p g9 /2d5 /2 model space, which predict a 02+ state at 1525 keV in 70Ni. The result extends the shape-coexistence picture in the region to 70Ni and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.

  18. High performance p-type NiOx thin-film transistor by Sn doping

    NASA Astrophysics Data System (ADS)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  19. Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Ullah, Asmat; Mushtaq, M.; Kamran, M.; Hussain, S. S.; Mumtaz, M.

    2016-11-01

    We reported systematic study on structural and magnetic properties of nickel/nickel oxide (Ni/NiO) nanoparticles annealed under air atmosphere at different temperatures in the range 400-800 °C. The XRD spectra revealed two phases such as Ni and NiO. The average crystallite size increases with increasing annealing temperature. A phase diagram was developed between two phases versus annealing temperature using XRD analysis. At lower annealing temperatures, Ni phase is dominant which does not easily undergo oxidation to form NiO. The NiO phase increases with increasing annealing temperature. FTIR spectroscopy revealed an increase in the NiO phase content at higher annealing temperature, which is in agreement with the XRD analysis. SEM images showed that nanoparticles are well separated at lower annealing temperatures but get agglomerated at higher annealing temperatures. The ferromagnetic (FM) Ni phase content and saturation magnetization (Ms) showed nearly the same trend with increasing annealing temperature. The nanoparticles annealed at 500 °C and 800 °C revealed highest and lowest Ms values, respectively, which is in accordance with the XRD phase diagram. Coercivity showed an overall decreasing trend with increasing annealing temperature due to decreased concentration of FM Ni phase and increasing average crystallite size. All these measurements indicate that the structural and magnetic properties of Ni/NiO nanoparticles are strongly influenced by the annealing temperature.

  20. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  1. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  2. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface. PMID:24928669

  3. Characterization of Electrodeposited Nanoporous Ni and NiCu Films

    NASA Astrophysics Data System (ADS)

    Koboski, Kyla; Hampton, Jennifer

    2013-03-01

    Nanoporous thin films are interesting candidates to catalyze certain reactions because of their large surface areas. This project focuses on the deposition of Ni and NiCu thin films on a Au substrate and further explores the catalysis of the hydrogen evolution reaction (HER). Depositions are created using controlled potential electrolysis. Samples are then dealloyed using linear sweep voltammetry. Before and after the dealloying, all the samples are characterized using multiple techniques. Electrochemical capacitance measurements allow comparisons of sample roughness. HER measurements characterize the reactivity of the sample with respect to the specific catalytic reaction. The Tafel equation is fit to the data to obtain information about the kinetics of the HER of the samples. Other methods for characterizing the samples include scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The use of SEM allows images to be taken of the deposition to determine the change in the structure pre- and post- dealloy of the sample. EDS allows the elemental composition of the deposition to be determined before and after the dealloy stage. This material is based upon work supported by the National Science Foundation under RUI Grant DMR-1104725, MRI Grant CHE-1126462, MRI Grant CHE-0959282, and ARI grant PHY-0963317.

  4. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795

    PubMed Central

    Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.

    2014-01-01

    Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736

  5. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795.

    PubMed

    Zinke, J; Rountrey, A; Feng, M; Xie, S-P; Dissard, D; Rankenburg, K; Lough, J M; McCulloch, M T

    2014-01-01

    Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736

  6. Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795.

    PubMed

    Zinke, J; Rountrey, A; Feng, M; Xie, S-P; Dissard, D; Rankenburg, K; Lough, J M; McCulloch, M T

    2014-04-01

    Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise.

  7. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  8. Effect of Ni2+ substitution on structural and magnetic properties of Ni-Zn ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivas, Ch.; Tirupanyam, B. V.; Satish, A.; Seshubai, V.; Sastry, D. L.; Caltun, O. F.

    2015-05-01

    A series of co-precipitated NixZn1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles heat treated at 200 °C were produced in order to understand the influence of substitution level on structural and magnetic properties including magnetocrystalline anisotropy. The XRD, FE-SEM, VSM and FC-ZFC techniques were used to characterize the samples. It is observed that as Ni2+ concentration increases crystallite size (D), saturation magnetization (Ms) and blocking temperature (TB) and decreases coercive field (Hc). All particles exhibit superparamagnetism at room temperature and hence lie in the single domain range. The magnetic anisotropy constant (K) is estimated to be maximum for Ni0.5Zn0.5Fe2O4 sample, whose particle size is the smallest. The results are interpreted presuming the presence of core shell interactions and/or cation redistribution that influence the magnetic properties of these ferrite nano particles.

  9. Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.

    PubMed

    Chambers, Geoffrey M; Huynh, Mioy T; Li, Yulong; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B; Reijerse, Edward; Lubitz, Wolfgang

    2016-01-19

    A new class of synthetic models for the active site of [NiFe]-hydrogenases are described. The Ni(I/II)(SCys)2 and Fe(II)(CN)2CO sites are represented with (RC5H4)Ni(I/II) and Fe(II)(diphos)(CO) modules, where diphos = 1,2-C2H4(PPh2)2(dppe) or cis-1,2-C2H2(PPh2)2(dppv). The two bridging thiolate ligands are represented by CH2(CH2S)2(2-) (pdt(2-)), Me2C(CH2S)2(2-) (Me2pdt(2-)), and (C6H5S)2(2-). The reaction of Fe(pdt)(CO)2(dppe) and [(C5H5)3Ni2]BF4 affords [(C5H5)Ni(pdt)Fe(dppe)(CO)]BF4 ([1a]BF4). Monocarbonyl [1a]BF4 features an S = 0 Ni(II)Fe(II) center with five-coordinated iron, as proposed for the Ni-SIa state of the enzyme. One-electron reduction of [1a](+) affords the S = 1/2 derivative [1a](0), which, according to density functional theory (DFT) calculations and electron paramagnetic resonance and Mössbauer spectroscopies, is best described as a Ni(I)Fe(II) compound. The Ni(I)Fe(II) assignment matches that for the Ni-L state in [NiFe]-hydrogenase, unlike recently reported Ni(II)Fe(I)-based models. Compound [1a](0) reacts with strong acids to liberate 0.5 equiv of H2 and regenerate [1a](+), indicating that H2 evolution is catalyzed by [1a](0). DFT calculations were used to investigate the pathway for H2 evolution and revealed that the mechanism can proceed through two isomers of [1a](0) that differ in the stereochemistry of the Fe(dppe)CO center. Calculations suggest that protonation of [1a](0) (both isomers) affords Ni(III)-H-Fe(II) intermediates, which represent mimics of the Ni-C state of the enzyme.

  10. Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Cathelineau, Michel; Quesnel, Benoît; Gautier, Pierre; Boulvais, Philippe; Couteau, Clément; Drouillet, Maxime

    2016-02-01

    In New Caledonian Ni deposits, the richest Ni silicate ores occur in fractures within the bedrock and saprolite, generally several tens of meters to hundred meters below the present-day surface. Fracture-related Ni silicate ore accounts for high Ni grades, at least a few weight percent above the average exploited grade (2.5 %). These Ni-rich veins are affected by active dissolution-precipitation processes at the level of the water table. Ni in solution is precipitated as silicates in thin layer cementing joints. This mineralization is characterized by chemical and mineralogical concentric zoning with an outer green rim around an inner white zone composed, from the edge to the centre of the block, (i) a highly oxidized and altered zone, (ii) a green pure Ni-rich pimelite zone, (iii) a zone (limited to a few centimetres) with a mixture of Ni-poor kerolite and Ni-rich pimelite and intermediate colours and (iv) a large white Mg-kerolite mineralization zone. This study proposes that the concentric zonation results from evapo-precipitation process related to alternate periods of hydration and drying, induced by water table movements. This extensive dispersion of Ni in concentrically zoned ores can partly explain the rather monotonous Ni grade of the bulk exploitation at the base of the regolith with values between 2 and 3 wt%.

  11. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  12. Re-engineering a NiFe hydrogenase to increase the H2 production bias while maintaining native levels of O2 tolerance† †Electronic supplementary information (ESI) available: Experimental protocol details and Fig. S1–S7. See DOI: 10.1039/c6cc00515b Click here for additional data file.

    PubMed Central

    Flanagan, Lindsey A.; Wright, John J.; Roessler, Maxie M.; Moir, James W.

    2016-01-01

    Naturally occurring oxygen tolerant NiFe membrane bound hydrogenases have a conserved catalytic bias towards hydrogen oxidation which limits their technological value. We present an Escherichia coli Hyd-1 amino acid exchange that apparently causes the catalytic rate of H2 production to double but does not impact the O2 tolerance. PMID:27055899

  13. Fluorescent Chemosensors for Selective and Sensitive Detection of Phosmet/Chlorpyrifos with Octahedral Ni(2+) Complexes.

    PubMed

    Raj, Pushap; Singh, Amanpreet; Kaur, Kamalpreet; Aree, Thammarat; Singh, Ajnesh; Singh, Narinder

    2016-05-16

    The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.

  14. The effects of hydrogen on the creep rupture properties of fe-ni alloys

    NASA Astrophysics Data System (ADS)

    Schuster, G. B. A.; Yeske, R. A.; Altstetter, C. J.

    1980-10-01

    Creep tests were run on Fe-Ni alloys with nominal compositions of 100 pct Ni, 75 pct Ni-25 pct Fe, 50 pct Ni-50 pct Fe, 25 pet Ni-75 pet Fe and 100 pct Fe. Test temperatures were 898, 1073 and 1198 K, and the stress levels ranged from 6.5 to 80.1 MPa—varying with temperature and composition. Tests were conducted in a hydrogen or helium atmosphere, and creep rates, specimen elongations and rupture lifetimes were recorded. Grain boundary sliding measurements were made on nickel specimens to determine the fraction of strain due to grain boundary sliding at rupture. An alternating atmosphere test was also conducted on nickel specimens to see if a change in test atmosphere while the test was in progress would change creep rates. Finally metallographic studies were made of the fracture surfaces of all the test specimens using a light microscope and SEM. Results of the tests showed that hydrogen reduced the creep rupture lifetime of the 100 pct Ni and 75 pct Ni-25 pct Fe by as much as 80 pct. The lower Ni alloys showed little or no effect. The alternating atmosphere test showed no change in the creep rates of the Ni specimens when the atmosphere was cycled. Grain boundary sliding measurements showed no significant difference in the fraction of total strain due to grain boundary sliding. Metallography revealed no clear differences between fracture surfaces of specimens tested in hydrogen or helium. Causes for the observed creep behavior modification are explored.

  15. Bioavailability and trophic transfer of sediment-bound Ni and U in a southeastern wetland system.

    PubMed

    Punshon, T; Gaines, K F; Jenkins Jr, R A

    2003-01-01

    Elemental composition of soil, herbaceous and woody plant species, and the muscle and liver tissue of two common small mammal species were determined in a wetland ecosystem contaminated with Ni and U from nuclear target processing activities at the Savannah River Site, Aiken, SC. Species studied were black willow ( Salix nigra L.), rushes ( Juncus effusus L.), marsh rice rat ( Oryzomys palustris), and cotton rat ( Sigmodon hispidus). Two mature trees were sampled around the perimeter of the former de facto settling basin, and transect lines sampling rushes and trapping small mammals were laid across the wetland area, close to a wooden spillway that previously enclosed the pond. Ni and U concentrations were elevated to contaminant levels; with a total concentration of 1,065 (+/- 54) mg kg(-1) U and 526.7 (+/-18.3) mg kg(-1) Ni within the soil. Transfer of contaminants into woody and herbaceous plant tissues was higher for Ni than for U, which appeared to remain bound to the outside of root tissues, with very little (0.03 +/- 0.001 mg kg(-1)) U detectable within the leaf tissues. This indicated a lower bioavailability of U than the cocontaminant Ni. Trees sampled from the drier margins of the pond area contained more Ni within their leaf tissues than the rushes sampled from the wetter floodplain area, with leaf tissues concentrations of Ni of approximately 75.5 (+/- 3.6) mg kg(-1) Ni. Ni concentrations were also elevated in small mammal tissues. Transfer factors of contaminants indicated that U bioavailability is negligable in this wetland ecosystem.

  16. Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity.

    PubMed

    Wilson, James R; Gameiro, Marcio; Mischaikow, Konstantin; Kalies, William; Voorhees, Peter W; Barnett, Scott A

    2009-02-01

    A method is described for quantitatively analyzing the level of interconnectivity of solid-oxide fuel cell electrode phases. The method was applied to the three-dimensional microstructure of a Ni-Y2O3-stabilized ZrO2 (Ni-YSZ) anode active layer measured by focused ion beam scanning electron microscopy. Each individual contiguous network of Ni, YSZ, and porosity was identified and labeled according to whether it was contiguous with the rest of the electrode. It was determined that the YSZ phase was 100% connected, whereas at least 86% of the Ni and 96% of the pores were connected. Triple-phase boundary (TPB) segments were identified and evaluated with respect to the contiguity of each of the three phases at their locations. It was found that 11.6% of the TPB length was on one or more isolated phases and hence was not electrochemically active.

  17. Prolidase-Associated Trace Elements (Mn, Zn, Co, and Ni) in the Patients with Parkinson's Disease.

    PubMed

    Verma, Akhilesh Kumar; Keshari, Anand Kumar; Raj, Janak; Kumari, Renu; Kumar, Tarun; Sharma, Vivek; Singh, Tej Bali; Srivastava, Shalabh; Srivastava, Ragini

    2016-05-01

    Micronutrients and trace elements have been identified to play an important role in the development of Parkinson's disease (PD). In our previous study, we observed that prolidase activity is associated with oxidative stress and progression of PD. In present study, we aimed to study the association of prolidase-associated trace elements, such as Co, Mn, Ni, and Zn in the plasma of patients with PD by inductively coupled plasma spectrometry. Plasma levels of Co, Mn, and Ni were significantly increased, whereas plasma levels of Zn was significantly decreased (all P < 0.05) in the patients with PD than healthy controls. Plasma prolidase activity was not correlated to its associated trace elements in PD. A positive, linear, and significant correlation was observed between age and Co, and Mn, and Ni while negative and non-significant between age and status of Zn in the patients. Co, Mn, and Ni were continually elevated with increase in age as well as duration of disease in the patients with PD, whereas status of Zn was continually decreased. Thus, the study concluded that trace elements Co, Ni, and Mn status were increased and Zn status was decreased in the plasma of patients with PD. It is also concluded that elevated Co, Mn, and Ni has been associated with progression of Parkinson's disease.

  18. Who is El Niño?

    NASA Astrophysics Data System (ADS)

    Philander, S. George

    It is a curious story, about a phenomenon we first welcomed as a blessing but now view with dismay, if not horror [Philander, 1998]. We named it El Niño for the child Jesus, provided it with relatives—La Niña and ENSO—and are devoting innumerable studies to the description and idealization of this family. These scriptures provide such a broad spectrum of historical, cultural, and scientific perspectives that there is now confusion about the identity of El Niño. Trenberth [1997] summarizes the situation as follows.The atmospheric component tied to El Niño is termed the “Southern Oscillation.” Scientists often call the phenomenon where the atmosphere and ocean collaborate ENSO, short for El Niño-Southern Oscillation. El Niño then corresponds to the warm phase of ENSO. The opposite “La Niña” (“the girl” in Spanish) phase consists of a basinwide cooling of the tropical Pacific and thus the cold phase of ENSO. However, for the public, the term for the whole phenomenon is “El Niño.”

  19. Ion scattering experiment on Ni(110) surface

    SciTech Connect

    Nicholas, B.; Rambabu, B.; Collins, W.E.

    1986-01-01

    Light emission from excited neutral scattered Ne and sputtered Ni were investigated using the LEIS method. A 5-keV Ne/sup +/ beam was used to bombard a Ni(110) surface. Results of the light emission data is presented and compared with neutral production of Ne. 4 refs., 3 figs.

  20. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    SciTech Connect

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-11-07

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  1. Formation of dioxins on NiO and NiCl2 at different oxygen concentrations.

    PubMed

    Yang, Jie; Yan, Mi; Li, Xiaodong; Lu, Shengyong; Chen, Tong; Yan, Jianhua; Olie, Kees; Buekens, Alfons

    2015-08-01

    Model fly ash (MFA) containing activated carbon (AC) as source of carbon, NaCl as source of chlorine and either NiO or NiCl2 as de novo catalyst, was heated for 1h at 350 °C in a carrier gas flow composed of N2 containing 0, 6, 10, and 21 vol.% O2, to study the formation of PCDD/Fs (dioxins) and its dependence on oxygen. The formation of PCDD/Fs with NiCl2 was stronger by about two orders of magnitude than with NiO and the difference augmented with rising oxygen concentration. The thermodynamics of the NiO-NiCl2 system were represented, X-ray absorption near edge structural (XANES) spectroscopy allowed to probe the state of oxidation of the nickel catalyst in the MFA and individual metal species were distinguished using the LCF (Linear combination fitting) technique: thus three supplemental nickel compounds (Ni2O3, Ni(OH)2, and Ni) were found in the fly ash. Principal Component Analysis (PCA) indicates that both Ni2O3 and NiCl2 probably played an important role in the formation of PCDD/Fs. PMID:25951618

  2. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  3. Catalytic dry reforming of methane over ni-substituted hexaaluminates

    SciTech Connect

    Gardner, T; Kugler, E; Spivey, J

    2012-01-01

    CO2 re-use as an oxidant at point emission sources represents a potentially viable option to reducing CO2 footprint. CO2-CH4 reforming performance for a series of Ba0.75NiyAl12-yO19-(y = 0.2, 0.4, 0.6, 0.8 and 1.0) catalysts are examined over the temperature range 200 to 900 °C. The catalysts exhibit unique CO2 adsorption characteristics that are directly related to surface bascity and the extent of Ni-substitution. The systematic study of the Ni substitution level on both structural and catalytic effects indicates that the segregation of Ba at the surface produces an effect on surface basicity and carbon deposition. The relationship between catalyst activity and structure is characterized by EXAFS, XRD, XPS and TPR1,2.

  4. p-Type NiO Hybrid Visible Photodetector.

    PubMed

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light. PMID:26654105

  5. p-Type NiO Hybrid Visible Photodetector.

    PubMed

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light.

  6. Skeletal Ni Catalysts Prepared from Amorphous Ni-Zr Alloys: Enhanced Catalytic Performance for Hydrogen Generation from Ammonia Borane.

    PubMed

    Nozaki, Ai; Tanihara, Yasutomo; Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kohsuke; Nagase, Takeshi; Yasuda, Hiroyuki Y; Yamashita, Hiromi

    2016-02-01

    Skeletal Ni catalysts were prepared from Ni-Zr alloys, which possess different chemical composition and atomic arrangements, by a combination of thermal treatment and treatment with aqueous HF. Hydrogen generation from ammonia borane over the skeletal Ni catalysts proceeded efficiently, whereas the amorphous Ni-Zr alloy was inactive. Skeletal Ni prepared from amorphous Ni30 Zr70 alloy had a higher catalytic activity than that prepared from amorphous Ni40 Zr60 and Ni50 Zr50 alloys. The atomic arrangement of the Ni-Zr alloy also strongly affected the surface structure and catalytic activities. Thermal treatment of the amorphous Ni-Zr alloys at a temperature slightly lower than the crystallization temperature led to an increase of the number of surface-exposed Ni atoms and an enhancement of the catalytic activities for hydrogen generation from ammonia borane. The skeletal Ni catalysts also showed excellent durability and recyclability.

  7. A ternary Ni-Al-W EAM potential for Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Fan, Qin-Na; Wang, Chong-Yu; Yu, Tao; Du, Jun-Ping

    2015-01-01

    Based on experiments and first-principles calculations, a ternary Ni-Al-W embedded-atom-method (EAM) potential is constructed for the Ni-based single crystal superalloys. The potential predicts that W atoms do not tend to form clusters in γ(Ni), which is consistent with experiments. The impurity diffusion of W in γ(Ni) is investigated using the five-frequency model. The diffusion coefficients and the diffusion activation energy of W are in reasonable agreement with the data in literatures. By W doping, the lattice misfit between the two phases decreases and the elastic constants of γ‧(Ni3Al) increase. As for alloyed elements Co, Re and W, the pinning effect of solute atom on the γ(Ni)/γ‧(Ni3Al) misfit dislocation increases with the increasing of the atomic radius.

  8. Direct observation of infinite NiO2 planes in LaNiO2 films

    NASA Astrophysics Data System (ADS)

    Ikeda, Ai; Krockenberger, Yoshiharu; Irie, Hiroshi; Naito, Michio; Yamamoto, Hideki

    2016-06-01

    Epitaxial thin films of LaNiO2, which is an oxygen-deficient perovskite with “infinite layers” of Ni1+O2, were prepared by a low-temperature reduction of LaNiO3 single-crystal films on NdGaO3 substrates. We report the high-angle annular dark-field and bright-field scanning transmission electron microscopy observations of infinite NiO2 planes of c-axis-oriented LaNiO2 epitaxial thin films with a layer stacking sequence of NiO2/La/NiO2. Resistivity measurements on the films show T 2 dependence between 400 and 150 K and a negative Hall coefficient.

  9. Predictability of the Ningaloo Niño/Niña.

    PubMed

    Doi, Takeshi; Behera, Swadhin K; Yamagata, Toshio

    2013-01-01

    The seasonal prediction of the coastal oceanic warm event off West Australia, recently named the Ningaloo Niño, is explored by use of a state-of-the-art ocean-atmosphere coupled general circulation model. The Ningaloo Niño/Niña, which generally matures in austral summer, is found to be predictable two seasons ahead. In particular, the unprecedented extreme warm event in February 2011 was successfully predicted 9 months in advance. The successful prediction of the Ningaloo Niño is mainly due to the high prediction skill of La Niña in the Pacific. However, the model deficiency to underestimate its early evolution and peak amplitude needs to be improved. Since the Ningaloo Niño/Niña has potential impacts on regional societies and industries through extreme events, the present success of its prediction may encourage development of its early warning system. PMID:24100593

  10. Nanoscale structural heterogeneity in Ni-rich half-Heusler TiNiSn

    SciTech Connect

    Douglas, Jason E. Pollock, Tresa M.; Chater, Philip A.; Brown, Craig M.; Seshadri, Ram

    2014-10-28

    The structural implications of excess Ni in the TiNiSn half-Heusler compound are examined through a combination of synchrotron x-ray and neutron scattering studies, in conjunction with first principles density functional theory calculations on supercells. Despite the phase diagram suggesting that TiNiSn is a line compound with no solid solution, for small x in TiNi{sub 1+x}Sn there is indeed an appearance—from careful analysis of the scattering—of some solubility, with the excess Ni occupying the interstitial tetrahedral site in the half-Heusler structure. The analysis performed here would point to the excess Ni not being statistically distributed, but rather occurring as coherent nanoclusters. First principles calculations of energetics, carried out using supercells, support a scenario of Ni interstitials clustering, rather than a statistical distribution.

  11. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  12. Oscillatory surface relaxations in Ni, Al, and their ordered alloys

    SciTech Connect

    Chen, S.P.; Voter, A.F.; Srolovitz, D.J.

    1986-09-15

    Results from simulations of Ni, Al, Ni/sub 3/Al, and NiAl show long-range, oscillatory surface relaxations that decay exponentially into the bulk. Pure fcc Ni and Al have oscillation periods that are close to the nearest-neighbor distance, independent of crystal face. This is shown to be due to surface smoothing and steric effects. In Ni/sub 3/Al and NiAl, the surface planes are rippled, with the Ni-Ni and Al-Al interlayer spacings oscillating 180/sup 0/ out of phase. Very good agreement between our results and experimentally measured atomic relaxations is obtained.

  13. XAFS study of Ni (II) aminovinylketone complexes

    NASA Astrophysics Data System (ADS)

    Yalovega, Galina E.; Vlasenko, Valerii G.; Uraev, Ali I.; Garnovskii, Alexander D.; Soldatov, Alexander V.

    2006-11-01

    The functional properties of the active sites in a metalloproteins depend on coordination geometry of metal, the number and the nature of coordination ligands. The Ni K-edge XAFS spectra of novel nickel complexes as models for the MeN 2O 2(S 2) active site in metalloproteins were measured and analyzed. Theoretical analysis of the Ni K-edge XANES was performed using FDMNES code based on the finite difference method (FDM) to solve the Schrödinger equation beyond muffin-tin approximations and self-consistent full multiple-scattering approach (code FEFF8.2). It was found that the spectrum is almost totally formed by the octahedron of the nearest neighbor atoms around Ni ion in the II (Ni) complex. The III (Ni) complex active center exists in square-planar configuration with shorter distances.

  14. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  15. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  16. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  17. Intermixing in Cu/Ni multilayers induced by cold rolling

    SciTech Connect

    Wang, Z.; Perepezko, J. H.; Larson, D.; Reinhard, D.

    2015-04-28

    Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which is also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.

  18. Effect of Ni precursor solution concentration on the magnetic properties and exchange bias of Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Marques, D. P.; Ferreira, J. M. F.

    2014-09-01

    We report on a comparative study of the exchange bias effect and magnetic properties of Ni-NiO nanoparticulate systems synthesized by the chemical reduction of NiCl2 solution of two different molar concentrations—1 M (high) and 0.05 M (low)—followed by annealing of the dried precipitate in the temperature range 400-600 °C in air. Interestingly, the samples derived from the low molarity solution have higher Ni content and larger crystallite size than those prepared from their high molarity counterparts. These molarity dependent features subsequently modulate the magnitude of the exchange bias field in the samples, which is found to be absent or small in the 0.05 M series, but of moderate value in the 1 M samples. The different physical attributes of the particles derived from different concentrations of Ni-precursor solution are explained by invoking different nucleation kinetics and supersaturation degrees surrounding the viable growing nucleus. Furthermore, an observed increase of exchange bias with increasing annealing temperature, in contrast to the reported agglomeration of particles on annealing and subsequent reduction in bias magnitude, has been explained in correlation to the Ni-NiO interface density.

  19. Effects of 1997-1998 El Niño on the dynamics of the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil)

    NASA Astrophysics Data System (ADS)

    Garcia, A. M.; Vieira, J. P.; Winemiller, K. O.

    2003-06-01

    High rainfall associated with El Niño events significantly increases runoff and stream discharge in southern Brazil. High freshwater discharge changes salinity, temperature, and water circulation patterns that can affect the fish estuarine assemblage. Using long-term data obtained from standardized surveys, we analyzed fish assemblage structure and dynamics in shallow waters of the Patos Lagoon estuary in southern Brazil before, during, and after the 1997-1998 El Niño event. Overall, the relative abundance of all the fish groups in the estuary was about five times lower during the El Niño than before and after. Freshwater vagrants were the only group with greater abundance during El Niño. Fish species richness was higher in the estuary during the El Niño event, when many freshwater species expanded their ranges into the Patos Lagoon estuary, than before or after the El Niño. El Niño-induced assemblage changes were not highly persistent, and the estuarine fish assemblage returned to its pre-El Niño state within 18 months after the El Niño period. Densities of many marine and estuarine fishes increased to pre-El Niño levels within 3-6 months of the end of the El Niño period. We suggested that the rapid recovery of fish estuarine populations after the 1997-1998 El Niño may have been caused by one or some combination of: (a) enhanced productivity stimulated by nutrients contained in newly deposited alluvial sediments, and (b) enhanced larvae transport in the large saltwater intrusion that followed the El Niño event. Clearly, fish population dynamics and assemblage structure of the Patos Lagoon estuary can neither be interpreted nor predicted on a long-term basis without explicit consideration of El Niño Southern Oscillation patterns.

  20. Mean flow-storm track relationship and Rossby wave breaking in two types of El-Niño

    NASA Astrophysics Data System (ADS)

    Liu, Chengji; Ren, Xuejuan; Yang, Xiuqun

    2014-01-01

    The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) El-Niño. During EP El-Niño, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP El-Niño, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP El-Niño, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) occurs less frequently in EP El-Niño years, while cyclonic wave breaking (CWB) occurs more frequently in CP El-Niño years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP El-Niño. When AWB events occur less frequently over the North Pacific during EP El-Niño, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopole high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP El-Niño conditions, and over North America under EP El-Niño condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of El-Niño.

  1. Micro-focussed XAFS spectroscopy to study Ni-bearing precipitates in the metal of corroded Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Abolhassani, S.

    2010-03-01

    The present work concerns an investigation of the local atomic environment of Ni-containing secondary phase precipitates (SPP) present in the metal-part of Zircaloy-2 cladding tubes. An unirradiated Zircaloy-2 and two specimens irradiated in a commercial nuclear power plant are characterized using μ-focussed synchrotron radiation, and by x-ray absorption fine structure (XAFS) spectroscopy. The patterns of Ni K-edge XANES and EXAFS of SPP in unirradiated and irradiated cladding are found different. Considering the fact that Ni-bearing SPP in the unirradiated samples are mainly Zintl phase Zr2(Fe, Ni) type, a detailed EXAFS analysis of near-neighbor Ni atoms has been made. The result of a curve fit for the first two shells shows that about 2 Ni(Fe) and 8 Zr atoms are coordinated at 2.68 and 2.77 Å, respectively, around a central Ni atom in the SPP. XANES data analysis provides total electronic density of states at the Fermi level of unirradiated Zr2(Fe, Ni). At the Ni K-edge EXAFS spectra of irradiated SPP, however, only a single scattering peak is observed demonstrating the structural disorder introduced by the neutron irradiation. The coordination number of the Ni neighboring shells is reduced markedly due to the formation of point and extended defects in the damaged SPP lattice. Dissolution of Ni from the SPP is also evident from the data. The results of this study provide a further basis for the description of both crystallographic and electronic structures of intermetallic second-phase precipitates found in Zr-based alloys.

  2. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    PubMed

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5.

  3. A comprehensive study on photocatalytic activity of supported Ni/Pb sulfide and oxide systems onto natural zeolite nanoparticles.

    PubMed

    Babaahamdi-Milani, Majid; Nezamzadeh-Ejhieh, Alireza

    2016-11-15

    The Ni(II)-Pb(II) exchanged clinoptilolite nanoparticles (NCP) were transformed to corresponding oxides and sulfides via calcination and sulfiding processes, respectively. The obtained catalysts were characterized by XRD, FT-IR, TEM and DRS and used in photodegradation of p-nitrophenol (4-NP) aqueous solution under Hg-lamp irradiation. Results showed considerable increase in activity of the coupled semiconductors with respect to monocomponent one. In NiO-PbO-NCP system, conduction band (CB) of NiO is enough negative for easily migration of photogenerated electrons to CB-PbO level, while such phenomena take place from more negative CB-PbS level to CB-NiS level in NiS-PbS-NCP. These phenomena significantly prevented from electron-hole recombination which increased photocatalytic activity of the coupled semiconductors. Best photodegradation activities obtained by NiO1.3%-PbO14.7%-NCP and NiS2.1%-PbS10.0%-NCP, confirming semiconductors' mass-ratio dependence of the photocatalytic process. The supported coupled semiconductors showed blue shifts in band gap energies with respect to the bulk semiconductors which confirm formation of semiconductors nanoparticles inside the zeolite framework. The highest degradation percentage of 4-NP was obtained at: 0.5gL(-1) photocatalysts, 15mgL(-1) 4-NP at pH 7.5. PMID:27427895

  4. Beta decay of nuclides 56Fe, 62Ni, 64Ni and 68Ni in the crust of magnetars

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Kang, Xiao-Ping; Hao, Liang-Huan; Feng, Hao; Liu, Dong-Mei; Li, Chang-Wei; Zeng, Xiang-Ming

    2016-11-01

    By introducing the Dirac δ-function and Pauli exclusion principle in the presence of superstrong magnetic fields (SMFs), we investigate the influence of SMFs on beta decay and the change rates of electron fraction (CREF) of nuclides 56Fe, 62Ni, 64Ni and 68Ni in magnetars, which are powered by magnetic field energy. We find that the magnetic fields have a great influence on the beta decay rates, and the beta decay rates can decrease by more than six orders of magnitude in the presence of SMFs. The CREF also decreases by more than seven orders of magnitude in the presence of SMFs.

  5. Microstructure of Ni-Al powder and Ni-Al composite coatings prepared by twin-wire arc spraying

    NASA Astrophysics Data System (ADS)

    Wang, Ji-xiao; Wang, Gui-xian; Liu, Jing-shun; Zhang, Lun-yong; Wang, Wei; Li, Ze; Wang, Qi-xiang; Sun, Jian-fei

    2016-07-01

    Ni-Al powder and Ni-Al composite coatings were fabricated by twin-wire arc spraying (TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni-Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni3Al, Al2O3, and NiO. The Ni-Al phase and a small amount of Al2O3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni-Al composite coatings were characterized by SEM, EDS, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and NiAl in addition to a small amount of Al2O3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, NiAl, and Ni3Al in addition to a small amount of Al and Al2O3, and NiAl and Ni3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl3 precipitates and a Ni-Al-O amorphous phase formed in the matrix of the Ni solid solution in the original state.

  6. The cytotoxicity of NiO nanoparticle with borate capping.

    PubMed

    Liu, Zunjing; Wang, Yongjing; Pan, Danmei; Chen, Zhi; Pan, Xiaohong; Wang, Yonghao; Lin, Zhang

    2011-11-01

    The impact of surface capping on cytotoxicity of NiO nanoparticle was investigated with Escherichia coil (E.coli) in this work. The NiO nanoparticle and NiO nanoparticle capped by borate (denoted as NiO-borate) were synthesized by hydrothermal method. The average size of both nanoparticles is about 4.0 nm. The plate experiments demonstrated that NiO-borate nanoparticles show lower cytotoxicity than NiO nanopaticles. Further spectrophotometric analysis revealed that the concentration of both extracellular and intercellular Ni2+ in NiO-borate system were lower than that of uncapped one. Intracellular ICP-AES analysis also showed the concentration of Ni element was higher than Ni2+, suggesting the NiO nanoparticles might penetrate into the cellular interior. Comprehensive AFM, SEM and TEM observation illustrated both NiO-borate and NiO nanoparticles lead to the collapse of cellular body, the convex on the cell wall and the damage of cell wall ultimately. In summary, the surface capping with borate on NiO nanopaticles will suppress the release of the Ni2+ ions and impede the contact between the NiO nanoparticle and cell wall, which ultimately decreased the cytotoxicity of NiO nanoparticles.

  7. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  8. Ni 3+ adsorbate dynamics on a NiO(0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Karakasidis, Theodoros E.; Vamvakopoulos, E.

    2006-05-01

    We present results concerning the dynamical behavior of a Ni 3+ adsorbate on a NiO(0 0 1) surface obtained by molecular dynamics simulations. In a first place, we examined at low temperature the position of the Ni 3+ ion as an adatom on the surface and the corresponding modification of its local environment as reflected on the pair-wise radial distribution function. The calculation of the vibrational properties of the adatom by means of the phonon local density of states (LDOS) shows that there is an anisotropic behavior both in the two principal in-plane directions as well as in the direction normal to the surface in accordance with the structural results. We compare the phonon LDOS of the Ni 3+ adatom with the corresponding results for the Ni 2+ adatom and the Ni 2+ surface cations. Static energetic calculations are indicative that the exchange of the Ni 3+ ion with a surface Ni 2+ ion could be favorable. Such a behavior is confirmed by results observed at temperatures higher than 700 K where the Ni 3+ adsorbate is located on a substitutional position on the surface and not on adatom position. The exchange takes place through simple or double exchange mechanisms. The structural and dynamical behavior of the Ni 3+ ion at the substitution position was investigated in the temperature range 700-2000 K through the calculation of the pair distribution function, the relaxed interlayer relative position (RIRP), mean-square displacements (MSDs) and phonon LDOS. Results show that in comparison with the Ni 2+ surface ions the Ni 3+ ion at substitution position is more tightly bound especially in the direction normal to the surface as is indicated by the local structure and the contraction it presents as well as its phonon LDOS. As temperature increases the binding of the Ni 3+ ion becomes less important as reflected on the physical properties mentioned above.

  9. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect

    Mu, Nan

    2007-12-01

    temperatures (~970 C) in the very early stage of oxidation. It was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free γ'-Ni3Al increased the extent of external NiO formation due to non-protective HfO2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5 at.%.

  10. National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63

    SciTech Connect

    Carboneau, M.L.; Adams, J.P.

    1995-02-01

    This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

  11. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  12. Shape coexistence in and near 68Ni

    NASA Astrophysics Data System (ADS)

    Suchyta, Scott

    2015-10-01

    The nuclei in the vicinity of 68Ni have been the subject of considerable experimental and theoretical work focused on studying the evolution of nuclear structure. Situated at the Z = 28 proton shell closure and the fragile N = 40 subshell closure, 68Ni is an important nucleus to understand as a progression is made from stable to increasingly exotic nuclei. The nature and decay of the first excited state in 68Ni has been thoroughly investigated in recent years. The first excited state has a spin and parity of 0+, can be described by the excitation of neutrons across the N = 40 gap, and has been interpreted as a moderately oblate-deformed state that coexists with the spherical ground state. A second low-energy excited 0+ state is also known to exist in 68Ni. Based on comparisons with theoretical calculations, the second excited 0+ state has been proposed to be strongly prolate deformed and based primarily on the excitation of protons across the Z = 28 gap, leading to the inference that three different 0+ states with three distinct shapes coexist below 3 MeV in 68Ni. Additional studies suggest that shape coexistence is not unique to 68Ni in this neutron-rich region near Z = 28. For instance, in the neighboring even-even isotope 70Ni, theory predicts that a prolate-deformed minimum in the potential energy surface occurs at even lower energy than in 68Ni, and experimental evidence is consistent with the theoretical prediction. The results of recent experiments studying shape coexistence in the region, particularly investigations of 68,70Ni, will be presented and theoretical interpretations will be discussed.

  13. NiPt silicide agglomeration accompanied by stress relaxation in NiSi(010) ∥ Si(001) grains

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Pagès, Xavier; Vanormelingen, Koen; Smits, Martin; Granneman, Ernst; Fujisawa, Masahiko; Hattori, Nobuyoshi

    2015-04-01

    Pt-doped Ni (NiPt) silicide agglomeration in terms of NiSi crystal orientation, Pt segregation at the NiSi/Si interface, and residual stress is studied for the first time. In the annealing of Ni monosilicide (NiSi), the growth of NiSi grains whose NiSi b-axes are aligned normal to Si(001) [NiSi(010) ∥ Si(001)] with increasing Pt segregation at the NiSi/Si interface owing to a high annealing temperature was observed. The residual stress in NiSi(010) ∥ Si(001) grains also increases with increasing annealing temperature. Furthermore, the recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress continues through additional annealing after NiSi formation. After the annealing of NiSi(010) ∥ Si(001) grains with their strain at approximately 2%, the start of NiPt silicide agglomerates accompanied by stress relaxation was observed. This preferential recrystallization of NiSi(010) ∥ Si(001) grains with increasing residual stress is considered to enhance the NiPt silicide agglomeration.

  14. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  15. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

    PubMed Central

    Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  16. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles.

    PubMed

    Latvala, Siiri; Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80-100 wt% for metallic Ni) than in cell medium after 24h (ca. 1-3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20-40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  17. Diversity, Function and Evolution of Genes Coding for Putative Ni-Containing Superoxide Dismutases

    SciTech Connect

    Dupont,C.; Neupane, K.; Shearer, J.; Palenik, B.

    2008-01-01

    We examined the phylogenetic distribution, functionality and evolution of the sodN gene family, which has been shown to code for a unique Ni-containing isoform of superoxide dismutase (Ni-SOD) in Streptomyces. Many of the putative sodN sequences retrieved from public domain genomic and metagenomic databases are quite divergent from structurally and functionally characterized Ni-SOD. Structural bioinformatics studies verified that the divergent members of the sodN protein family code for similar three-dimensional structures and identified evolutionarily conserved amino acid residues. Structural and biochemical studies of the N-terminus 'Ni-hook' motif coded for by the putative sodN sequences confirmed both Ni (II) ligating and superoxide dismutase activity. Both environmental and organismal genomes expanded the previously noted phylogenetic distribution of sodN, and the sequences form four well-separated clusters, with multiple subclusters. The phylogenetic distribution of sodN suggests that the gene has been acquired via horizontal gene transfer by numerous organisms of diverse phylogenetic background, including both Eukaryotes and Prokaryotes. The presence of sodN correlates with the genomic absence of the gene coding for Fe-SOD, a structurally and evolutionarily distinct isoform of SOD. Given the low levels of Fe found in the marine environment from where many sequences were attained, we suggest that the replacement of Fe-SOD with Ni-SOD may be an evolutionary adaptation to reduce iron requirements.

  18. Alloying effects on mechanical and metallurgical properties of NiAl

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  19. Late time optical spectra from the /sup 56/Ni model for Type I supernovae

    SciTech Connect

    Axelrod, T.S.

    1980-07-01

    The hypothesis that the optical luminosity of Type I supernovae results from the radioactive decay of /sup 56/Ni synthesized and ejected by the explosion has been investigated by numerical simulation of the optical spectrum resulting from a homologously expanding shell composed initially of pure /sup 56/Ni core. This model, which neglects the effects of material external to the /sup 56/Ni core, is expected to provide a reasonable representation of the supernova at late times when the star is nearly transparent to optical photons. The numerical simulation determines the temperature, ionization state, and non-LTE level populations which result from energy deposition by the radioactive decay products of /sup 56/Ni and /sup 56/Co. The optical spectrum includes the effects of both allowed and forbidden lines. The optical spectra resulting from the simulation are found to be sensitive to the mass and ejection velocity of the /sup 56/Ni shell. A range of these parameters has been found which results in good agreement with the observed spectra of SN1972e over a considerable range of time. In particular, evidence for the expected decaying abundance of /sup 56/Co has been found in the spectra of SN1972e. These results are used to assess the validity of the /sup 56/Ni model and set limits on the mass and explosion mechanism of the Type I progenitor. The possibilities for improvement of the numerical model are discussed and future atomic data requirements defined.

  20. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.

    PubMed

    Juang, Ruey-Shin; Kao, Hsiang-Chien; Liu, Fong-Yi

    2006-01-16

    Ion exchange is widely used for the recovery and removal of metals from process and waste streams in chemical process industries. The Na-form of strong-acid Purolite NRW-100 resin was used to recover Ni(II) from a simulated electroplating waste solution containing NiSO4, NH4Cl, NaH2PO4, and citrate. A set of mass balance equations that take into account possible aqueous complexation reactions was used to establish the pH diagram of Ni(II) species in the presence of anionic ligand citrate or phosphate. Experiments were performed as a function of initial solution pH (0.5-6.0), initial concentration of Ni(II) (0.85-11.9 mol/m3), and temperature (15-45 degrees C). It was shown that the amount of Ni(II) exchanged leveled off when the equilibrium pH was higher than around 2.5. The exchange isotherms obtained at various equilibrium pH values were well fitted by the Langmuir equation. The enthalpy of Ni(II) exchange was also evaluated based on the Langmuir constant. Finally, the kinetics of the present ion exchange process was analyzed.

  1. EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCs

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

    2011-01-01

    Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

  2. EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCS

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

    2010-12-31

    Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

  3. Comparative internal friction and modulus evolutions in Ni-Ti and Ni-Ti-Cu shape memory alloys

    NASA Astrophysics Data System (ADS)

    Goubaa, K.; Masse, M.; Bouquet, G.

    1992-08-01

    Internal friction and modulus measurements are performed for the purpose of a comparative study between the structural evolutions occurring, under the effect of the temperature, in two kinds of shape memory alloys: Ni-Ti and Ni-Ti-Cu. Modulus evolutions giving information about the changes in the relative percentages of martensitic and B2 high temperature phases, are useful for the determination of “start” and “finish” transformation temperatures. Internal friction measurements, specially sensitive to structural changes occurring on atomic scale, allow the detection of atomic reorganizations preceding or following the transformation: the R-phase occurrence, on cooling or on heating, the reorientation of martensitic variants on heating. The comparison between the internal friction background levels of each alloy reveals the effect of structural instabilities, specific of Ni-Ti-Cu alloys, and which can be associated with the Cu content. Des mesures de frottement intérieur et de module ont été utilisées en vue de comparer les évolutions structurales intervenant, en fonction de la température, dans deux familles d'alliages à mémoire de forme: Ni-Ti et Ni-Ti-Cu. Les variations de module, sensibles aux proportions relatives des phases martensitique et B2 de haute température, s'avèrent très adaptées à la détermination précise des températures de début et de fin de transformation. Le frottement intérieur, quant à lui, donne des renseignements sur des réorganisations se produisant, à l'échelle atomique, avant ou après la transformation martensitique: apparition de la phase-R, réorientation de variantes de martensite, par exemple,. La comparaison des niveaux du fond de frottement intérieur, relatifs à chaque alliage, montre des différences qui peuvent être associées à des instabilités structurales spécifiques de la présence de cuivre dans les allianges Ni-Ti-Cu.

  4. Crystal Field Studies on MgGa2O4:Ni2+

    NASA Astrophysics Data System (ADS)

    Andreici, L.; Stanciu, M.; Avram, N. M.

    2010-08-01

    The energy levels scheme of octahedrally coordinated Ni2+ ion in single crystal, powder nano-single crystal, ceramics and glass-ceramics of MgGa2O4 host matrix, has been calculated in the exchange charge model of crystal field. The parameters of the crystal field acting on the Ni2+ ion are calculated from the crystal structure data, after optimization of the geometry of the system. The energy level schemes have been calculated by diagonalization of the crystal field Hamiltonian of this system. The obtained results were compared with experimental data; a good agreement were demonstrated, which confirm the validity of the model and used method.

  5. Accessing Ni(III)-Thiolate Versus Ni(II)-Thiyl Bonding in a Family of Ni–N2S2 Synthetic Models of NiSOD

    PubMed Central

    Broering, Ellen P.; Dillon, Stephanie; Gale, Eric M.; Steiner, Ramsey A.; Telser, Joshua; Brunold, Thomas C.; Harrop, Todd C.

    2015-01-01

    Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2• −) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni–S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR′)]−, providing a variable location (SR′ = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp2− = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR′ (2 and 3) afford oxidized species (2ox and 3ox) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-•SR based on ultraviolet–visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (Ni

  6. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  7. Phase stability and magnetism in NiPt and NiPd alloys

    NASA Astrophysics Data System (ADS)

    Paudyal, Durga; Mookerjee, Abhijit

    2004-08-01

    We show that the differences in stability of 3d-5d NiPt and 3d-4d NiPd alloys arise mainly due to relativistic corrections. The magnetic properties of disordered NiPd and NiPt alloys also differ due to these corrections, which lead to increase in the separation between the s-d bands of 5d elements in these alloys. For the magnetic case we also analyse the results in terms of splitting of majority and minority spin d band centres of the 3d elements. We further examine the effect of relativistic corrections to the pair energies and order-disorder transition temperatures in these alloys. The magnetic moments and Curie temperatures have also been studied along with the short range ordering/segregation effects in NiPt/NiPd alloys.

  8. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    NASA Astrophysics Data System (ADS)

    Zhou, M. H.; Fan, H. P.; Zhao, Z. S.; Wang, Y. G.; Bi, K.

    2015-04-01

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of αE,31 = 2.8 V ṡ cm-1 ṡ Oe-1 is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  9. Theoretical studies of Ni/sub 3/Al and NiAl with impurities

    SciTech Connect

    Chen, S.P.; Voter, A.F.; Boring, A.M.; Albers, R.C.; Hay, P.J.

    1988-01-01

    Intermetallic compound has been extensively studied because of their superior properties in strength, low creep rate, and high melting point. But most of the systems have room temperature ductility problems, like Ll/sub 2/ and B2 compounds. Both Ll/sub 2/ Ni/sub 3/Al and B2 NiAl exhibit intergranular fracture mode. Understanding grain boundaries in these materials is of particular importance since intergranular fracture limits the applicability of these otherwise promising material. In an effort trying to understand the fracture mechanism, we have used embedded atom potentials to study the properties of Ni/sub 3/Al and NiAl. We also consider the effect of boron, sulfur, and nickel segregation on the strength of grain boundaries in Ni/sub 3/Al and NiAl. 22 refs., 2 figs.

  10. A Thin Film of an Ni NiO Heterogeneous System for an Optical Recording Medium

    NASA Astrophysics Data System (ADS)

    Iida, Atsuko; Nishikawa, Reiji

    1994-07-01

    The authors have found a write once read many (WORM) type new optical recording medium of an Ni NiO heterogeneous system thin film. The structure of the recording medium is a single layer Ni NiO heterogeneous thin film on a transparent resin substrate. Irradiation of a converged laser diode beam causes a volume expansion of the film to form a swell. Information reading is done by using its reduction in reflectivity. The recordable composition region of this film is considered to be the transitive region from the metal to the oxide. The volume expansion is assumed to be induced by the oxidation of the Ni NiO heterogeneous thin film and the height of the swell is estimated. This value agrees well with the measured top height of the swell.

  11. NiCo-lead zirconium titanate-NiCo trilayered magnetoelectric composites prepared by electroless deposition

    SciTech Connect

    Zhou, M. H.; Wang, Y. G.; Bi, K.; Fan, H. P.; Zhao, Z. S.

    2015-04-15

    The NiCo layers with various Ni/Co atomic ratio have been successfully electroless deposited on PZT layers by varying the bath composition. As the cobalt atomic ratio in the deposited layer increases from 17.2 to 54.8 wt%, the magnetostrictive coefficient decreases. The magnetoelectric effect depends strongly on the magnetostrictive properties of magnetostrictive phase. The magnetoelectric coefficient of NiCo/PZT/NiCo trilayers increases with Ni/Co atomic ratio of the deposited NiCo layers increasing from 45:55 to 83:17. A maximum ME voltage coefficient of α{sub E,31} = 2.8 V ⋅ cm{sup −1} ⋅ Oe{sup −1} is obtained at a frequency of about 88 kHz, which makes these trilayers suitable for applications in actuators, transducers and sensors.

  12. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.

    PubMed

    Tai, Hulin; Xu, Liyang; Inoue, Seiya; Nishikawa, Koji; Higuchi, Yoshiki; Hirota, Shun

    2016-08-10

    The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme.

  13. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  14. Atomic Data and Spectral Line Intensities for Ni XV

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  15. Growth of nanotubular oxide layer on Ti-Ni alloys with different Ni contents

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Tsuchiya, Hiroaki; Fujimoto, Shinji

    2016-04-01

    Anodization of near-equiatomic Ti-Ni alloys was performed in an ethylene glycol based electrolyte under various conditions in order to investigate the effects of crystal structure and chemical composition of the Ti-Ni alloy on the morphology of the resulting oxide layers. X-ray diffraction patterns revealed that Ti-Ni substrates with Ni content lower than 50.0 at.% were in the martensitic phase, while substrates with Ni content higher than 50.0 at.% were in the austenitic phase. Oxide layers formed at 20 or 35 V for 5 min exhibited no distinct nanotubular structures; however, at 50 V, nanotubular oxide layers were formed. After anodization at 50 V for 20 min, the growth of an irregular-shaped porous layer underneath the nanotubular oxide layer was observed for Ti-Ni alloys with Ni content lower than 52.2 at.%, whereas the oxide layer consisted of only irregular-shaped porous structures for the Ti-52.5 at.% Ni alloy. Further anodization resulted in the formation of irregular-shaped porous oxide layers on all Ti-Ni alloys examined. Energy-dispersive X-ray analysis indicated that this morphological transition is related to Ni accumulation in the vicinity of the interface between the bottoms of the oxide layers and the surfaces of the substrate alloys. Therefore, nanotubular oxide layers cannot be grown, and instead irregular-shaped porous oxide layers are formed underneath the nanotubular layers. These results indicate that the morphology of anodic oxide layers formed on the near-equiatomic Ti-Ni alloys is not affected by their crystal structure, but by Ni content and anodization time.

  16. Optical absorption of Ni2+ and Ni3+ ions in gadolinium gallium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Vasileva, N. V.; Gerus, P. A.; Sokolov, V. O.; Plotnichenko, V. G.

    2012-12-01

    Single-crystal Ni-doped gadolinium gallium garnet films were grown for the first time from supercooled Bi2O3-B2O3-based melt solutions by liquid-phase epitaxy. Optical absorption bands due to Ni2+, Ni3+ and Bi3+ ions were observed in those films. Interpretation and tabulation of all absorption bands of nickel ions occupying octahedral and tetrahedral sites in the garnet lattice are presented.

  17. Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Weng, Wenjian; Cheng, Kui; Du, Piyi; Shen, Ge; Han, Gaorong

    2008-05-01

    A Cu/Ni/Sm-doped ceria (SDC) anode has been designed for direct utilization of dry methane in low-temperature anode-supported solid oxide fuel cells. The anode is prepared by the impregnation method, whereby a small amount of Cu is incorporated into the previously prepared Ni/SDC porous matrix. After reduction, Cu nanoparticles adhere to and are uniformly distributed on the surface of the Ni/SDC matrix. For the resulting Cu/Ni/SDC anode-supported cell, maximum power density of 317 mW cm-2 is achieved at 600 °C. The power density shows only ∼2% loss after 12-h operation. The results demonstrate that the Cu/Ni/SDC anode effectively suppresses carbon deposition by decreasing the Ni surface area available and the level of carbon monoxide disproportionation. This combination of effects results in very low-power density loss over the operating time.

  18. Significant reduction in NiO band gap upon formation of Lix Ni1-x O alloys: applications to solar energy conversion.

    PubMed

    Alidoust, Nima; Toroker, Maytal Caspary; Keith, John A; Carter, Emily A

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ∼ 1.5-2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO's large band gap (∼ 4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ∼ 2.0 eV when NiO is alloyed with Li2O. We show that Lix Ni1-x O alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO's desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  19. Long-term monitoring of airborne nickel (Ni) pollution in association with some potential source processes in the urban environment.

    PubMed

    Kim, Ki-Hyun; Shon, Zang-Ho; Mauulida, Puteri T; Song, Sang-Keun

    2014-09-01

    The environmental behavior and pollution status of nickel (Ni) were investigated in seven major cities in Korea over a 13-year time span (1998-2010). The mean concentrations of Ni measured during the whole study period fell within the range of 3.71 (Gwangju: GJ) to 12.6ngm(-3) (Incheon: IC). Although Ni values showed a good comparability in a relatively large spatial scale, its values in most cities (6 out of 7) were subject to moderate reductions over the study period. To assess the effect of major sources on the long-term distribution of Ni, the relationship between their concentrations and the potent source processes like non-road transportation sources (e.g., ship and aircraft emissions) were examined from some cities with port and airport facilities. The potential impact of long-range transport of Asian dust particles in controlling Ni levels was also evaluated. The overall results suggest that the Ni levels were subject to gradual reductions over the study period irrespective of changes in such localized non-road source activities. The pollution of Ni at all the study sites was maintained well below the international threshold (Directive 2004/107/EC) value of 20ngm(-3).

  20. Tiny Ni-NiO nanocrystals with exchange bias induced room temperature ferromagnetism

    NASA Astrophysics Data System (ADS)

    Chaghouri, Hanan Al; Tuna, F.; Santhosh, P. N.; Thomas, P. John

    2016-03-01

    Ni nanocrystals coated with a thin layer of NiO with a diameter of 5.0 nm show exchange bias induced ferromagnetism at room temperature. These particulates are freely dispersible in water and were obtained by annealing Ni nanoparticles coated with a thin amorphous layer of NiO. Particulates with diameters between 5.0 and 16.8 nm are studied. Detailed magnetic measurements reveal signs consistent with strong exchange bias including elevated blocking temperatures and tangible loop shifts. The structure of the particulates are characterized by high resolution transmission electron microscopy, energy dispersive x-ray analysis and x-ray diffraction.

  1. Impurity effects on the Ni/Ni{sub 3}Al interface cohesion

    SciTech Connect

    Liu, Y.; Chen, K.Y.; Lu, G.; Zhang, J.H.; Hu, Z.Q.

    1997-05-01

    The effects of B, C, N, O, H, P and S impurities on the Ni/Ni{sub 3}Al interface cohesion have been investigated by employing first-principles electronic structure calculations based on the discrete variational method. The binding energy, bond order, difference electron density, orbital occupations and density of states have been calculated to study the impurity-induced changes in the energetics and electronic structure. The impurities promote the Ni/Ni{sub 3}Al interface cohesion and prefer to occupy the interface interstitial sites in the order S < P < H < O < N < B < C. The impurity-nickel covalent-like bonds form mainly due to impurity-p/Ni-d hybridization (except H-s/Ni-p hybridization in the H case). Meanwhile, the Ni-Ni bonding becomes weaker because of charge depletion on Ni atoms and bond misorientation resulting from the more homogeneous electron redistribution. In the order B, C, N and O, the impurity-metal bond varies from being homopolar to being much more heteropolar with increasing ionicity percentage, which results in decreasing p-d hybridization effects.

  2. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  3. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  4. Magnetic properties of ordered NiPt

    NASA Astrophysics Data System (ADS)

    Brommer, P. E.; Franse, J. J. M.

    1988-04-01

    Thermal expansion, forced volume magnetostriction and high magnetic field data are presented on the ordered equiatomic NiPt compound. Values are derived for the magnetovolume parameter κC (≃3 × 10 -6kg2A-2m-4), and for the electronic and lattice Grüneisen parameters (Γ e ≊ 5.6; Γ latt ≊ 2.5) . Ordering effects on the magnetoelastic properties are studied for alloys containing 40-60 at % Ni.

  5. Distribution patterns of the metal pollutants Cd and Ni in soybean seeds

    NASA Astrophysics Data System (ADS)

    Malan, H. L.; Mesjasz-Przybylowicz, J.; Przybylowicz, W. J.; Farrant, J. M.; Linder, P. W.

    2012-02-01

    Soybean ( Glycine max) plants were grown to maturity in nutrient solution, amended with either Cd or Ni. The distribution of these metals in mature seeds was examined with micro-PIXE. The levels of Cd were too low for mapping and only average concentrations from selected regions could be obtained. Cd was localised mainly in the seed coat and cotyledons, with very little in the embryo axis. Levels of Ni were high enough to obtain the distribution maps. This metal was mainly concentrated in the axis, particularly in the apical meristem and cortex, and least in the cotyledons. Localisation of Ni within different tissues of the embryo was facilitated by mapping of Ca which is present in the cell walls of plants. This enabled the different plant tissues of the seed embryo to be identified. Micro-PIXE is a valuable tool for localising the distribution of metal pollutants in plant tissue.

  6. Ni Uptake and Limitation in Marine Synechococcus Strains▿

    PubMed Central

    Dupont, Christopher L.; Barbeau, Katherine; Palenik, Brian

    2008-01-01

    Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3− and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni. PMID:17951444

  7. Effects of stratospheric variability on El Niño teleconnections

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Deser, C.; Sun, L.

    2015-12-01

    The effects of the tropical Pacific El Niño Southern Oscillation (ENSO) phenomenon are communicated to the rest of the globe via atmospheric teleconnections. Traditionally, ENSO teleconnections have been viewed as tropospheric phenomena, propagating to higher latitudes as Rossby waves. Recent studies, however, suggest an influence of the stratosphere on extra-tropical ENSO teleconnections. The stratosphere is highly variable: in the tropics, the primary mode of variability is the quasi-biennial oscillation (QBO), and in the extra-tropics sudden stratospheric warmings (SSWs) regularly perturb the mean state. Here, we conduct a 10-member ensemble of simulations with a stratosphere-resolving atmospheric general circulation model forced with the observed evolution of sea surface temperatures during 1952-2001 to examine the effects of the QBO and SSWs on the zonal-mean circulation and temperature response to El Niño, with a focus on the northern extra-tropics during winter. We find that SSWs have a larger impact than the QBO on the composite El Niño responses. During El Niño winters with SSWs, the polar stratosphere shows positive temperature anomalies that propagate downward to the surface where they are associated with increased sea-level pressure over the Arctic. During El Niño winters without SSWs, the stratosphere and upper troposphere show negative temperature anomalies but these do not reach the surface. The QBO modulates the El Niño teleconnection primarily in winters without SSWs: the negative temperature anomalies in the polar stratosphere and upper troposphere are twice as large during QBO West compared to QBO East years. In addition, El Niño winters that coincide with the QBO West phase show stronger positive sea-level pressure anomalies over the eastern Atlantic and Northern Europe than those in the QBO East phase. The results imply that the stratosphere imparts considerable variability to ENSO teleconnections.

  8. Oxygen-induced changes in electron-energy-loss spectra for Al, Be and Ni. [Al; Be; Ni

    SciTech Connect

    Madden, H.H.; Landers, R.; Kleiman, G.G. , 13081-970 Campinas, Sao Paulo, Brasil); Zehner, D.M. )

    1999-09-01

    Electron-energy-loss spectroscopy (EELS) data are presented to illustrate line shape changes that occur as a result of oxygen interaction with metal surfaces. The metals were aluminum, beryllium and nickel. Core-level EELS data were taken for excitations from Al(2p), Be(1s), Ni(3p/3s) and O(1s) levels to the conduction band (CB) density of states (DOS) of the materials. The primary beam energies for the spectra were 300, 450, 300, and 1135 eV, respectively. The data are presented in both the (as measured) first-derivative and the integral forms. The integral spectra were corrected for coherent background losses and analyzed for CB DOS information. These spectra were found to be in qualitative agreement with published experimental and theoretical studies of these materials. One peak in the spectra for Al oxide is analyzed for its correlation with excitonic screening of the Al(2p) core hole. Similar evidence for exciton formation is found in the Ni(3p) spectra for Ni oxide. Data are also presented showing oxygen-induced changes in the lower-loss-energy EELS curves that, in the pure metal, are dominated by plasmon-loss and interband-transition signals. Single-scattering loss profiles in the integral form of the data were calculated using a procedure of Tougaard and Chorkendorff [S. Tougaard and I. Chorkendorff, Phys. Rev. B. [bold 35], 6570 (1987)]. For all three oxides these profiles are dominated by a feature with a loss energy of around 20[endash]25 eV. Although this feature has been ascribed by other researchers as due to bulk plasmon losses in the oxide, an alternative explanation is that the feature is simply due to O(2s)-to-CB-level excitations. An even stronger feature is found at 7 eV loss energy for Ni oxide. Speculation is given as to its source. The line shapes in both the core-level and noncore-level spectra can also be used simply as [open quotes]fingerprints[close quotes] of the surface chemistry of the materials. Our data were taken using commercially

  9. A lucrative technique to reduce Ni toxicity in Raphanus sativus plant by phosphate amendment: Special reference to plant metabolism.

    PubMed

    Singh, Anita; Prasad, Sheo Mohan

    2015-09-01

    Nickel (Ni) contamination is one of the serious environmental problems. It creates hazard in soil environment and also in crop quality. In the present study, response of Raphanus sativus (radish) to Ni (50mgkg(-1) soil) under different concentrations (100, 200, 500 and 1000 DAPmgkg(-1) soil) of phosphate as soil amendment was investigated after 40 days of growth. Ni-treated plants without amendment showed reduction in their growth as a result of appreciable decrease in the photosynthetic activity. Under this treatment, Ni accumulation significantly enhanced lipid peroxidation and level of oxidants showing oxidative stress and it was also associated with decrease in the activities of antioxidative enzymes except super oxide dismutase (SOD). Application of phosphate in Ni contaminated soil resulted into significant improvement in plant growth. Under phosphate amendment, the status of oxidative biomarkers: SOR, TBARS and H2O2 were under control by the higher activity of antioxidants: APX, CAT, POD, GST and DHAR compared to Ni contaminated soil without amendment. Principal component analysis (PCA) was performed to show the significant changes in biochemical traits under control and phosphate amendment. The values of PS II transient kinetics: Phi-E0, Psi-0 and PIABS increased and values of energy fluxes: ABC/RC, Tro/RC, Eto/RC and Dio/RC decreased in plants grown in Ni contaminated soil under phosphate amendment as compared to without amendment. Among all doses of phosphate amendment soil amended at 500mg DAPkg(-)(1) soil the yield of plant was the highest and Ni accumulation was the lowest. As compared to plants grown in Ni treated soil without amendment the yield of plant at 500mg DAPkg(-1) soil showed about 70% increment and the reduction in Ni accumulation was 63% in shoot and 64% in root. Because of these beneficial effects this technique can be easily applied at metal contaminated agricultural fields to reduce food chain contamination and to improve food quality.

  10. The new structure type Gd3Ni7Al14.

    PubMed

    Pukas, Svitlana; Gladyshevskii, Roman

    2015-11-01

    The crystal structure of Gd3Ni7Al14 (trigadolinium heptanickel tetradecaaluminide) belongs to a family of two-layer structures and can be described as an assembly of interpenetrating centred straight prisms. For the Ni atoms, trigonal prisms (Al4Gd2 and Al6) are observed, the Al atoms are inside tetragonal (Ni2Al2Gd4, Ni2Al4Gd2, Al4Gd4, Ni4Al4 and Al8) and pentagonal (Ni4Al6 and Al10) prisms, while the Gd atoms are at the centres of pentagonal (Ni4Al6) and hexagonal (Ni4Al8) prisms. In each case, the true coordination polyhedron is a capped prism, also including atoms from the same layer. The structural features of Gd3Ni7Al14 are similar to those of the intermetallides PrNi2Al3 and ZrNiAl. In all these structures, Ni-centred trigonal prisms form infinite columns via common triangular faces. The columns share prism edges and form a three-dimensional framework with six-membered rings in the (001) plane in the case of the PrNi2Al3 and ZrNiAl types. In the case of Gd3Ni7Al14, six-membered rings are also observed, but only two-thirds of the rings are interconnected via prism edges. PMID:26524174

  11. The new structure type Gd3Ni7Al14.

    PubMed

    Pukas, Svitlana; Gladyshevskii, Roman

    2015-11-01

    The crystal structure of Gd3Ni7Al14 (trigadolinium heptanickel tetradecaaluminide) belongs to a family of two-layer structures and can be described as an assembly of interpenetrating centred straight prisms. For the Ni atoms, trigonal prisms (Al4Gd2 and Al6) are observed, the Al atoms are inside tetragonal (Ni2Al2Gd4, Ni2Al4Gd2, Al4Gd4, Ni4Al4 and Al8) and pentagonal (Ni4Al6 and Al10) prisms, while the Gd atoms are at the centres of pentagonal (Ni4Al6) and hexagonal (Ni4Al8) prisms. In each case, the true coordination polyhedron is a capped prism, also including atoms from the same layer. The structural features of Gd3Ni7Al14 are similar to those of the intermetallides PrNi2Al3 and ZrNiAl. In all these structures, Ni-centred trigonal prisms form infinite columns via common triangular faces. The columns share prism edges and form a three-dimensional framework with six-membered rings in the (001) plane in the case of the PrNi2Al3 and ZrNiAl types. In the case of Gd3Ni7Al14, six-membered rings are also observed, but only two-thirds of the rings are interconnected via prism edges.

  12. Imaging of electrical response of NiOx under controlled environment with sub-25-nm resolution

    DOE PAGESBeta

    Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; Muckley, Eric S.; Joshi, Pooran C.; Ivanov, Ilia N.

    2016-07-19

    The spatially resolved electrical response of rf-sputtered polycrystalline NiOx films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiOx decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surface potential andmore » resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiOx films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiOx film.« less

  13. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

  14. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGESBeta

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states atmore » the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  15. Electron-phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron-phonon (el-ph) coupling. The el-ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el-ph coupling. Thus, the el-ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10-20% in the alloys under consideration.

  16. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2013-10-15

    The use of metal tolerant plants for the phytostabilization of metal contaminated soil is an area of extensive research and development. In this study the effects of inoculation of Ni-resistant bacterial strains on phytostabilization potential of various plants, including Brassica juncea, Luffa cylindrica and Sorghum halepense, were studied. A Ni-resistant bacterial strain SR28C was isolated from a nickel rich serpentine soil and identified as Bacillus megaterium based on the morphological features, biochemical characteristics and partial 16S rDNA sequence analysis. The strain SR28C tolerated concentrations up to 1200 mg Ni L(-1) on a Luria-Bertani (LB) agar medium. Besides, it showed high degree of resistance to various metals (Cu, Zn, Cd, Pb and Cr) and antibiotics (ampicillin, tetracycline, streptomycin, chloramphenicol, penicillin and kanamycin) tested. In addition, the strain bound considerable amounts of Ni in their resting cells. Besides, the strain exhibited the plant growth promoting traits, such as solubilization of phosphate and production of indole-3-acetic acid (IAA) in modified Pikovskayas medium and LB medium, respectively in the absence and presence of Ni. Considering such potential, the effects of SR28C on the growth and Ni accumulation of B. juncea, L. cylindrica and S. halepense, were assessed with different concentrations of Ni in soil. Inoculation of SR28C stimulated the biomass of the test plants grown in both Ni contaminated and non-contaminated soils. Further, SR28C alleviated the detrimental effects of Ni by reducing its uptake and translocation to the plants. This study suggested that the PGPB inoculant due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of Ni could be exploited for phytostabilization of Ni contaminated site. PMID:23895909

  17. Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2013-10-15

    The use of metal tolerant plants for the phytostabilization of metal contaminated soil is an area of extensive research and development. In this study the effects of inoculation of Ni-resistant bacterial strains on phytostabilization potential of various plants, including Brassica juncea, Luffa cylindrica and Sorghum halepense, were studied. A Ni-resistant bacterial strain SR28C was isolated from a nickel rich serpentine soil and identified as Bacillus megaterium based on the morphological features, biochemical characteristics and partial 16S rDNA sequence analysis. The strain SR28C tolerated concentrations up to 1200 mg Ni L(-1) on a Luria-Bertani (LB) agar medium. Besides, it showed high degree of resistance to various metals (Cu, Zn, Cd, Pb and Cr) and antibiotics (ampicillin, tetracycline, streptomycin, chloramphenicol, penicillin and kanamycin) tested. In addition, the strain bound considerable amounts of Ni in their resting cells. Besides, the strain exhibited the plant growth promoting traits, such as solubilization of phosphate and production of indole-3-acetic acid (IAA) in modified Pikovskayas medium and LB medium, respectively in the absence and presence of Ni. Considering such potential, the effects of SR28C on the growth and Ni accumulation of B. juncea, L. cylindrica and S. halepense, were assessed with different concentrations of Ni in soil. Inoculation of SR28C stimulated the biomass of the test plants grown in both Ni contaminated and non-contaminated soils. Further, SR28C alleviated the detrimental effects of Ni by reducing its uptake and translocation to the plants. This study suggested that the PGPB inoculant due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of Ni could be exploited for phytostabilization of Ni contaminated site.

  18. Dissolution and Interfacial Reactions of (Cu,Ni)6Sn5 Intermetallic Compound in Molten Sn-Cu-Ni Solders

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Lai, Wei-han; Chen, Sinn-wen

    2014-01-01

    (Cu,Ni)6Sn5 is an important intermetallic compound (IMC) in lead-free Sn-Ag-Cu solder joints on Ni substrate. The formation, growth, and microstructural evolution of (Cu,Ni)6Sn5 are closely correlated with the concentrations of Cu and Ni in the solder. This study reports the interfacial behaviors of (Cu,Ni)6Sn5 IMC (Sn-31 at.%Cu-24 at.%Ni) with various Sn-Cu, Sn-Ni, and Sn-Cu-Ni solders at 250°C. The (Cu,Ni)6Sn5 substrate remained intact for Sn-0.7 wt.%Cu solder. When the Cu concentration was decreased to 0.3 wt.%, (Cu,Ni)6Sn5 significantly dissolved into the molten solder. Moreover, (Cu,Ni)6Sn5 dissolution and (Ni,Cu)3Sn4 formation occurred simultaneously for the Sn-0.1 wt.%Ni solder. In Sn-0.5 wt.%Cu-0.2 wt.%Ni solder, many tiny (Cu,Ni)6Sn5 particulates were formed and dispersed in the solder matrix, while in Sn-0.3 wt.%Cu-0.2 wt.%Ni a lot of (Ni,Cu)3Sn4 grains were produced. Based on the local equilibrium hypothesis, these results are further discussed based on the liquid-(Cu, Ni)6Sn5-(Ni,Cu)3Sn4 tie-triangle, and the liquid apex is suggested to be very close to Sn-0.4 wt.%Cu-0.2 wt.%Ni.

  19. Atomic Data and Spectral Line Intensities for NI XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database

  20. Walker Circulation, El Niño and La Niña

    NASA Astrophysics Data System (ADS)

    Halpern, D.

    2014-12-01

    Ocean surface wind vector is likely the critical variable to predict onset, maintenance and dissipation of El Niño and La Niña. Analyses of SeaWinds and ASCAT 10-m height (called "surface") vector winds in the Atlantic, Indian and Pacific Oceans from 1°S-1°N during March 2000 - June 2011 revealed the longitudinal distribution of the surface zonal wind component associated with the Walker Circulation. In the Pacific Ocean east of 140°E and west of 85°W, the mean wind direction was westward towards the maritime continent with maximum mean zonal wind speed (- 6.5 m s-1) at 150°W; east of 85°W the mean direction was toward the convection zone over South America. Four El Niños and five La Niñas occurred from March 2000 - June 2011. In the Pacific from 150°E to 160°W, the average El Niño (La Niña) westward wind speed was 2 m s-1 (1 m s-1) smaller (larger) than normal. In the west Pacific, the variation in westward wind speeds in El Niño and La Niña conditions relative to normal conditions would be expected to substantially uplift the thermocline during El Niño compared to La Niña, which is consistent with conventional wisdom. In the east Pacific from 130°W - 100°W, average El Niño westward wind speeds were less than normal and La Niña conditions by 0.5 m s-1 and 1 m s-1, respectively. The "central" Pacific nature of the El Niños may have influenced the smaller difference between El Niño and La Niña westward wind speeds in the east Pacific compared to the west Pacific. Analyses of longitudinal distributions of thermocline depths will be discussed. Surface zonal wind speeds in the Atlantic and Indian Oceans showed no evidence of El Niño and La Niña; surface meridional winds showed an apparent response in the Indian and Pacific Oceans but not in the Atlantic Ocean. At 700-m height, the MISR zonal wind component in the Atlantic, Indian and Pacific Oceans had similar features as those at the surface, except in the east Pacific where the westward

  1. Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction

    PubMed Central

    2014-01-01

    We are presenting our recent research results about the Ni-NiO nanoparticles on poly-(diallyldimethylammonium chloride)-modified graphene sheet (Ni-NiO/PDDA-G) nanocomposites prepared by the hydrothermal method at 90°C for 24 h. The Ni-NiO nanoparticles on PDDA-modified graphene sheets are measured by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) pattern for exploring the structural evidence to apply in the electrochemical catalysts. The size of Ni-NiO nanoparticles is around 5 nm based on TEM observations. The X-ray diffraction (XRD) results show the Ni in the (012), (110), (110), (200), and (220) crystalline orientations, respectively. Moreover, the crystalline peaks of NiO are found in (111) and (220). The thermal gravimetric analysis (TGA) result represents the loading content of the Ni metal which is about 34.82 wt%. The electron spectroscopy for chemical analysis/X-ray photoelectron spectroscopy (ESCA/XPS) reveals the Ni0 to NiII ratio in metal phase. The electrochemical studies with Ni-NiO/PDDA-G in 0.5 M aqueous H2SO4 were studied for oxygen reduction reaction (ORR). PMID:25246863

  2. Processing condition for the development of cube texture in Ni and Ni alloy tapes fabricated by powder metallurgy process

    NASA Astrophysics Data System (ADS)

    Ji, Bong Ki; Lee, Dong-Wook; Kim, Min-Woo; Jun, Byung-Hyuk; Park, Pyeong Yeal; Jung, Kyu-Dong; Kim, Chan-Joong

    2004-10-01

    Bi-axially textured Ni, Ni-W (1, 3 and 5 at.%) and Ni-Cu alloy tapes for YBCO coated conductors were fabricated by powder metallurgy process including powder compaction, cold isostatic pressing, cold rolling and recrystallization heat treatment. The rod-like Ni and Ni alloy compacts were sintered at 1100 °C for 6 h in 96% Ar-4% H 2 atmosphere. The sintered Ni and Ni-W rods were successfully cold-rolled into thin tapes of 80-100 μm thickness with 5% reduction at each path, but the Ni-Cu alloy rods with Cu content less than 20 at.% were made into tapes. The Ni and Ni alloy tapes were heat-treated at 800-1200 °C for the development of cube texture. The good (2 0 0) texture was obtained for both Ni and Ni-W alloy tapes, while it was obtained only for the Ni-Cu tapes with low Cu contents. The W and Cu addition to Ni improved the mechanical properties by solid solution hardening. Critical current density ( Jc) of YBCO film deposited on the CeO 2/YSZ/CeO 2(CYC)/Ni template was 0.25 MA/cm 2 at 77 K and self-field.

  3. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    NASA Astrophysics Data System (ADS)

    Romaka, V. V.; Romaka, L.; Horyn, A.; Rogl, P.; Stadnyk, Yu; Melnychenko, N.; Orlovskyy, M.; Krayovskyy, V.

    2016-07-01

    The phase equilibria in the Gd-Ni-Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd-Ni-Sb system results the formation of five ternary compounds at investigated temperature: Gd5Ni2Sb (Mo5SiB2-type), Gd5NiSb2 (Yb5Sb3-type), GdNiSb (MgAgAs-type), Gd3Ni6Sb5 (Y3Ni6Sb5-type), and GdNi0.72Sb2 (HfCuSi2-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu5Ni2Sb (Mo5SiB2-type), and Lu5Ni0.56Sb2.44 (Yb5Sb3-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies.

  4. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  5. Spontaneous formation of superconducting NiBi{sub 3} phase in Ni-Bi bilayer films

    SciTech Connect

    Siva, Vantari; Senapati, Kartik Prusty, Sudakshina; Sahoo, Pratap K.; Satpati, Biswarup

    2015-02-28

    We report the spontaneous formation of superconducting NiBi{sub 3} phase in thermally evaporated Ni-Bi bilayer films. High reaction-diffusion coefficient of Bi is believed to drive the formation of NiBi{sub 3} during the deposition of Bi on the Ni film. Cross sectional transmission electron microscopy and glancing incidence X-ray depth profiling confirmed the presence of NiBi{sub 3} throughout the top Bi layer. Superconducting transition at ∼3.9 K, close to the bulk value, was confirmed by transport and magnetization measurements. The bilayers were irradiated with varying fluence of 100 MeV Au ions to study the robustness of superconducting order in presence of large concentration of defects. Superconducting parameters of NiBi{sub 3}, such as transition temperature and upper critical field, remained unchanged upto an ion dose of 1 × 10{sup 14} ions/cm{sup 2}. The diffusive formation of NiBi{sub 3} in Ni opens the possibility of studying superconducting proximity effect at a truly clean superconductor-ferromagnet interface.

  6. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  7. Ba-filled Ni-Sb-Sn based skutterudites with anomalously high lattice thermal conductivity.

    PubMed

    Paschinger, W; Rogl, G; Grytsiv, A; Michor, H; Heinrich, P R; Müller, H; Puchegger, S; Klobes, B; Hermann, R P; Reinecker, M; Eisenmenger-Sitter, Ch; Broz, P; Bauer, E; Giester, G; Zehetbauer, M; Rogl, P F

    2016-07-01

    Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems. Phase equilibria in the Ni-Sn-Sb system at 450 °C were established by means of Electron Probe Microanalysis (EPMA) and X-ray Powder Diffraction (XPD). With rather small cages Ni4(Sb,Sn)12, the Ba-Ni-Sn-Sb skutterudite system is perfectly suited to study the influence of filler atoms on the phonon thermal conductivity. Single-phase samples with the composition Ni4Sb8.2Sn3.8, Ba0.42Ni4Sb8.2Sn3.8 and Ba0.92Ni4Sb6.7Sn5.3 were used to measure their physical properties, i.e. temperature dependent electrical resistivity, Seebeck coefficient and thermal conductivity. The resistivity data demonstrate a crossover from metallic to semiconducting behaviour. The corresponding gap width was extracted from the maxima in the Seebeck coefficient data as a function of temperature. Single crystal X-ray structure analyses at 100, 200 and 300 K revealed the thermal expansion coefficients as well as Einstein and Debye temperatures for Ba0.73Ni4Sb8.1Sn3.9 and Ba0.95Ni4Sb6.1Sn5.9. These data were in accordance with the Debye temperatures obtained from the specific heat (4.4 K < T < 140 K) and Mössbauer spectroscopy (10 K < T < 290 K). Rather small atom displacement parameters for the Ba filler atoms indicate a severe reduction in the "rattling behaviour" consistent with the high levels of lattice thermal conductivity. The elastic moduli, collected from Resonant Ultrasonic Spectroscopy ranged from 100 GPa for Ni4Sb8.2Sn3.8 to 116 GPa for Ba0.92Ni4Sb6.7Sn5.3. The thermal expansion coefficients were 11.8 × 10(-6) K(-1) for Ni4Sb8.2Sn3.8 and 13.8 × 10(-6) K(-1) for Ba0.92Ni4Sb6.7Sn5.3. The room temperature Vickers

  8. Comparison of the Pulmonary Oxidative Stress Caused by Intratracheal Instillation and Inhalation of NiO Nanoparticles when Equivalent Amounts of NiO Are Retained in the Lung.

    PubMed

    Horie, Masanori; Yoshiura, Yukiko; Izumi, Hiroto; Oyabu, Takako; Tomonaga, Taisuke; Okada, Takami; Lee, Byeong-Woo; Myojo, Toshihiko; Kubo, Masaru; Shimada, Manabu; Morimoto, Yasuo

    2016-01-01

    NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1), was induced by the administration of NiO nanoparticles at both the protein and gene expression level. Additionally, certain oxidative-stress markers in the lung, such as 8-iso-prostaglandin F2α, thioredoxin, and inducible nitric oxide synthase were increased. Furthermore, the concentration of myeloperoxidase (MPO) in the lung was also increased by the administration of NiO nanoparticles. When the amount of NiO in the lung is similar, the responses against pulmonary oxidative stress of intratracheal instillation and inhalation are also similar. However, the state of pulmonary oxidative stress in the early phase was different between intratracheal instillation and inhalation, even if the amount of NiO in the lung was similar. Inhalation causes milder oxidative stress than that caused by intratracheal instillation. On evaluation of the nanoparticle-induced pulmonary oxidative stress in the early phase, we should understand the different states of oxidative stress induced by intratracheal instillation and inhalation. PMID:26797643

  9. Innovative materials: the NiTi alloys in orthodontics.

    PubMed

    Airoldi, G; Riva, G

    1996-01-01

    Since ten years the NiTi alloys have gained an ever increasing place in orthodontic practice: that is due to their peculiar mechanical properties ascribed to a martensitic thermoelastic transformation which can be thermally or, in a proper temperature range, stress-induced. In the last case, when martensite is stress-induced at body temperature, the stress-strain behaviour is pseudoelastic with large deformations gained or recovered at constant stress, respectively in direct/reverse transformation: this behaviour exploited in orthodontics allowed to overcome the drawbacks intrinsic to the use of conventional alloys as stainless steel or Co-Mo alloys, where small displacements can be achieved at decreasing loads. From the phase state diagram of NiTi alloys it appears that at body temperature they are stable, but out of equilibrium: thermal treatments at intermediate temperatures can therefore modify the equilibrium state and as a consequence the transformation temperatures respect to body temperature. That allows to modify the recovery stress level according to the requirements of practice and thus disclosing new roads: the capability to foresee NiTi archwires pre-programmed in different sections, with a personalized scheme. Attention has not currently been paid to the modifications in the recovery stress induced by a temperature change inside the oral cavity. Recent results have shown that the thermal changes in the oral cavity induced by cold/hot liquid intake can considerably modify the stress level to which the dentition is exposed: though confined to the time extent connected with drinking, similar effects can be expected also for meals intake and should be taken into account for a correct procedure.

  10. Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects

    SciTech Connect

    Hazama, Hirofumi; Matsubara, Masato; Asahi, Ryoji; Takeuchi, Tsunehiro

    2011-09-15

    We have synthesized off-stoichiometric Ti-Ni-Sn half-Heusler thermoelectrics in order to investigate the relation between randomly distributed defects and thermoelectric properties. A small change in the composition of Ti-Ni-Sn causes a remarkable change in the thermal conductivity. An excess content of Ni realizes a low thermal conductivity of 2.93 W/mK at room temperature while keeping a high power factor. The low thermal conductivity originates in the defects generated by an excess content of Ni. To investigate the detailed defect structure, we have performed first-principles calculations and compared with x ray photoemission spectroscopy measurement. Based on these analyses, we conclude that the excess Ni atoms randomly occupy the vacant sites in the half-Heusler structure, which play as phonon scattering centers, resulting in significant improvement of the figure of merit without any substitutions of expensive heavy elements, such as Zr and Hf.

  11. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGESBeta

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; Weber, William J.

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic e ects are more profound in the higher energy cascades and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than inmore » Ni.« less

  12. Size effects in Ni/Ni(OH)2 nanomaterials for electrochemical capacitors.

    SciTech Connect

    Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Electrochemical capacitors based on redox-active metal oxides show great promise for many energy-storage applications. These materials store charge through both electric double-layer charging and faradaic reactions in the oxide. The dimensions of the oxide nanomaterials have a strong influence on the performance of such capacitors. Not just due to surface area effects, which influence the double-layer capacitance, but also through bulk electrical and ionic conductivities. Ni(OH)2 is a prime candidate for such applications, due to low cost and high theoretical capacity. We have examined the relationship between diameter and capacity for Ni/Ni(OH)2 nanorods. Specific capacitances of up to 511 F/g of Ni were recorded in 47 nm diameter Ni(OH)2 nanorods.

  13. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect

    Osuka, Hisao; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; Hirota, Shun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  14. Atmospheric Bridge in the recent connection between Atlantic and Pacific Niños

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fonseca, B.; Polo, I.; García-Serrano, J.; Losada, T.; Mohino, E.; Mechoso, R.; Kucharski, F.

    2009-04-01

    Recent studies have found how, since the late 60's, the summer Atlantic Niño is able to alter the dynamics of the central and eastern Pacific via anomalous Walker circulation, favouring the development of a Pacific La Niña during the next winter (Rodríguez-Fonseca et al., 2009). Here we investigate the evolution of the Atlantic El Niño and the way in which it alters the anomalous Walker circulation over the Pacific. In this way, the equatorial Atlantic warming is associated with a Gill-type atmospheric response to tropical heating anomalies, including two anticyclones straddling the equator at upper levels accompanied by local baroclinic structure with covergent inflow (divergent outflow) at lower-levels (upper-levels) surface wind convergence and divergence at lower and upper levels, respectively. An anomalous Walker circulation is established, with rising air and heavy rainfall in the eastern equatorial Atlantic, and sinking air and drier conditions in the central equatorial Pacific. The atmospheric bridge between the Atlantic and Pacific Niños, is studied using observations as well as with ensemble integrations with an atmospheric general circulation model coupled in the Indo-Pacific basin to an ocean model and forced in the Atlantic by the observed SSTs in the period 1949-2002.

  15. Evidence that NiNi acetyl-CoA synthase is active and that the CuNi enzyme is not.

    PubMed

    Seravalli, Javier; Xiao, Yuming; Gu, Weiwei; Cramer, Stephen P; Antholine, William E; Krymov, Vladimir; Gerfen, Gary J; Ragsdale, Stephen W

    2004-04-01

    The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood-Ljungdahl pathway of autotrophic CO(2) fixation. One structure of the Moorella thermoacetica enzyme revealed that the active site of ACS (the A-cluster) consists of a [4Fe-4S] cluster bridged to a binuclear CuNi center with Cu at the proximal metal site (M(p)) and Ni at the distal metal site (M(d)). In another structure of the same enzyme, Ni or Zn was present at M(p). On the basis of a positive correlation between ACS activity and Cu content, we had proposed that the Cu-containing enzyme is active [Seravalli, J., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 3689-3694]. Here we have reexamined this proposal. Enzyme preparations with a wider range of Ni (1.6-2.8) and Cu (0.2-1.1) stoichiometries per dimer were studied to reexamine the correlation, if any, between the Ni and Cu content and ACS activity. In addition, the effects of o-phenanthroline (which removes Ni but not Cu) and neocuproine (which removes Cu but not Ni) on ACS activity were determined. EXAFS results indicate that these chelators selectively remove M(p). Multifrequency EPR spectra (3-130 GHz) of the paramagnetic NiFeC state of the A-cluster were examined to investigate the electronic state of this proposed intermediate in the ACS reaction mechanism. The combined results strongly indicate that the CuNi enzyme is inactive, that the NiNi enzyme is active, and that the NiNi enzyme is responsible for the NiFeC EPR signal. The results also support an electronic structure of the NiFeC-eliciting species as a [4Fe-4S](2+) (net S = 0) cluster bridged to a Ni(1+) (S = (1)/(2)) at M(p) that is bridged to planar four-coordinate Ni(2+) (S = 0) at M(d), with the spin predominantly on the Ni(1+). Furthermore, these studies suggest that M(p) is inserted during cell growth. The apparent vulnerability of the proximal metal site in the A-cluster to substitution with different metals appears to underlie the

  16. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  17. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  18. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths.

    PubMed

    Susano, M; Proenca, M P; Moraes, S; Sousa, C T; Araújo, J P

    2016-08-19

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments' length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties. PMID:27378738

  19. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths

    NASA Astrophysics Data System (ADS)

    Susano, M.; Proenca, M. P.; Moraes, S.; Sousa, C. T.; Araújo, J. P.

    2016-08-01

    The fabrication of segmented Ni/Cu nanowires (NWs), with tunable structural and magnetic properties, is reported. A potentiostatic electrodeposition method with a single electrolytic bath has been used to fabricate multisegmented Ni/Cu NWs inside a highly hexagonally ordered anodic nanoporous alumina membrane, with diameters of 50 nm and Ni segment lengths (L Ni) tuned from 10 nm up to 140 nm. The x-ray diffraction results evidenced a strong dependence of the Ni NWs crystallographic face-centered-cubic (fcc) texture along the [220] direction on the aspect ratio of the NWs. The magnetic behavior of the multisegmented Ni/Cu NW arrays, as a function of the magnetic field and temperature, is also studied and correlated with their structural and morphological properties. Micromagnetic simulations, together with the experimental results, showed a dominant antiferromagnetic coupling between Ni segments along the wire length for small low aspect-ratio magnetic segments. When increasing the Ni segments’ length, the magnetic interactions between these along the wire became stronger, favouring a ferromagnetic coupling. The Curie temperature of the NWs was also found to strongly depend on the Ni magnetic segment length. Particularly the Curie temperature was found to be reduced 75 K for the 20 nm Ni segments, following the finite-size scaling relation with ξ 0 = 8.1 Å and γ = 0.48. These results emphasize the advantages of using a template assisted method to electrodeposit multilayer NWs, as it allows an easy tailor of the respective morphological, chemical, structural and magnetic properties.

  20. Transport properties and metal-insulator transition in oxygen deficient LaNiO3: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2016-09-01

    Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3-x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3-x compounds.

  1. Studies on the Performance of Li(Ni,Co)O2 Solid Solutions as Cathodes for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Kalyani, P.; Kalaiselvi, N.; Renganathan, N. G.; Raghavan, M.

    2002-12-01

    Solid solutions of composition Li-Ni-Co-O are attractive as high voltage and high capacity cathode materials for 4V lithium batteries. The problems associated with LiNiO2 like stringent synthesis conditions and cation mixing has created a necessity to search for other cathode materials with disparate composition and electrochemical features. In this context, compounds containing a mixture of Ni and Co are expected to alleviate these problems and to circumvent the traditional trade-off between the limited cycleability of LiNiO2 and high cost of LiCoO2. In this paper, a simple solution combustion route for the synthesis of various levels of Co substituted cathodes, viz., LiNi1-xCoxO2 (x = 0.0 to 1.0) is presented. Physical properties of the synthesized products were investigated in the light of diffraction (XRD) and spectroscopic (FTIR) analyses. The enhanced electrochemical performance of LiNi1-xCoxO2, due to the so-called synergetic effect resulting from the substitution of Ni3+ with Co3+ is discussed in detail.

  2. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  3. Effects of the 1997–1998 El Niño Episode on Community Rates of Diarrhea

    PubMed Central

    Bennett, Adam; Epstein, Leonardo D.; Gilman, Robert H.; Cama, Vitaliano; Bern, Caryn; Cabrera, Lilia; Lescano, Andres G.; Patz, Jonathan; Carcamo, Cesar; Sterling, Charles R.

    2012-01-01

    Objectives. To improve our understanding of climate variability and diarrheal disease at the community level and inform predictions for future climate change scenarios, we examined whether the El Niño climate pattern is associated with increased rates of diarrhea among Peruvian children. Methods. We analyzed daily surveillance data for 367 children aged 0 to 12 years from 2 cohorts in a peri-urban shantytown in Lima, Peru, 1995 through 1998. We stratified diarrheal incidence by 6-month age categories, season, and El Niño, and modeled between-subject heterogeneity with random effects Poisson models. Results. Spring diarrheal incidence increased by 55% during El Niño compared with before El Niño. This increase was most acute among children older than 60 months, for whom the risk of a diarrheal episode during the El Niño spring was nearly 100% greater (relative risk = 1.96; 95% confidence interval = 1.24, 3.09). Conclusions. El Niño–associated climate variability affects community rates of diarrhea, particularly during the cooler seasons and among older children. Public health officials should develop preventive strategies for future El Niño episodes to mitigate the increased risk of diarrheal disease in vulnerable communities. PMID:22594750

  4. Transport properties and metal–insulator transition in oxygen deficient LaNiO3: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2016-09-01

    Density functional theory with appropriate functional has been employed to investigate the metal to insulator transition in oxygen deficient LaNiO3–x (x = 0.0, 0.25, 0.5, 1.0) compounds. While the metallic nature of LaNiO3 is characterized by the low temperature Fermi liquid behavior of resistivity and a finite density of states at the Fermi level, the density of states and the transport properties clearly identify LaNiO2.75 as a semiconductor, and LaNiO2.5 as an insulator, which is followed by another insulator to semiconductor transition with further increase of x to ‘1’ in LaNiO2. This oxygen vacancy controlled metal to insulator transition is explained on the basis of non-adiabatic polaronic transport. From the covalency metric calculation of the chemical bonding and the Bader charge transfer analysis, this metal to insulator transition is attributed to the enhanced covalent part in the chemical bonding and reduced charge transfer from Ni to O atoms in LaNiO3–x compounds.

  5. A Comparative Study of Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 Tube Actuators

    NASA Astrophysics Data System (ADS)

    Owusu-Danquah, J. S.; Saleeb, A. F.; Dhakal, B.; Padula, S. A.

    2015-04-01

    A shape memory alloy (SMA) actuator typically has to operate for a large number of thermomechanical cycles due to its application requirements. Therefore, it is necessary to understand the cyclic behavioral response of the SMA actuation material and the devices into which they are incorporated under extended cycling conditions. The present work is focused on the nature of the cyclic, evolutionary behavior of two widely used SMA actuator material systems: (1) a commercially available Ni49.9Ti50.1, and (2) a developmental high-temperature Ni50.3Ti29.7Hf20 alloy. Using a recently developed general SMA modeling framework that utilizes multiple inelastic mechanisms, differences and similarities between the two classes of materials are studied, accounting for extended number of thermal cycles under a constant applied tensile/compressive force and under constant applied torque loading. From the detailed results of the simulations, there were significant qualitative differences in the evolution of deformation responses for the two different materials. In particular, the Ni49.9Ti50.1 tube showed significant evolution of the deformation response, whereas the Ni50.3Ti29.7Hf20 tube stabilized quickly. Moreover, there were significant differences in the tension-compression-shear asymmetry properties in the two materials. More specifically, the Ni50.3Ti29.7Hf20 tube exhibited much higher asymmetry effects, especially at low stress levels, compared to the Ni49.9Ti50.1. For both SMA tubes, the evolution of the deformation response under thermal cycling typically exhibited regions of initial transients, and subsequent evolution.

  6. Modeling, Simulation, Additive Manufacturing, and Experimental Evaluation of Solid and Porous NiTi

    NASA Astrophysics Data System (ADS)

    Taheri Andani, Mohsen

    In recent years, shape memory alloys (SMAs) have entered a wide range of engineering applications in fields such as aerospace and medical applications. Nickel-titanium (NiTi) is the most commonly used SMAs due to its excellent functional characteristics (shape memory effect and superelasticity behavior). These properties are based on a solid-solid phase transformation between martensite and austenite. Beside these two characteristics, low stiffness, biocompatibility and corrosion properties of NiTi make it an attractive candidate for biomedical applications (e.g., bone plates, bone screws, and vascular stents). It is well know that manufacturing and processing of NiTi is very challenging. The functional properties of NiTi are significantly affected by the impurity level and due to the high titanium content, NiTi are highly reactive. Therefore, high temperature processed parts through methods such as melting and casting which result in increased impurity levels have inadequate structural and functional properties. Furthermore, high ductility and elasticity of NiTi, adhesion, work hardening and spring back effects make machining quite challenging. These unfavorable effects for machining cause significant tool wear along with decreasing the quality of work piece. Recently, additive manufacturing (AM) has gained significant attention for manufacturing NiTi. Since AM can create a part directly from CAD data, it is predicted that AM can overcome most of the manufacturing difficulties. This technique provides the possibility of fabricating highly complex parts, which cannot be processed by any other methods. Curved holes, designed porosity, and lattice like structures are some examples of mentioned complex parts. This work investigates manufacturing superelastic NiTi by selective laser melting (SLM) technique (using PXM by Phenix/3D Systems). An extended experimental study is conducted on the effect of subsequent heat treatments with different aging conditions on phase

  7. Preparation and electrical properties of Ca-doped La(2)NiO(4+δ) cathode materials for IT-SOFC.

    PubMed

    Shen, Yongna; Zhao, Hailei; Liu, Xiaotong; Xu, Nansheng

    2010-12-01

    Ca-doped La(2)NiO(4+δ) is synthesized via the nitrate-citrate route. The effects of Ca substitution for La on the sinterability, lattice structure and electrical properties of La(2)NiO(4+δ) are investigated. Ca-doping is unfavorable for the densification process of La(2-x)Ca(x)NiO(4+δ) materials. The introduction of Ca leads to the elongation of the La-O(2) bond length, which provides more space for the migration of oxygen ion in La(2)O(2) rock salt layers. The substitution of Ca increases remarkably the electronic conductivity of La(2-x)Ca(x)NiO(4+δ). With increasing Ca-doping level, both the excess oxygen concentration and the activation energy of oxygen ion migration decrease, resulting in an optimization where a highest ionic conductivity is presented. Ca-doping is charge compensated by the oxidation of Ni(2+) to Ni(3+) and the desorption of excess oxygen. The substitution of Ca enhances the structural stability of La(2)NiO(4+δ) material at high temperatures and renders the material a good thermal cycleability. La(1.7)Ca(0.3)NiO(4+δ) exhibits an excellent chemical compatibility with CGO electrolyte. La(2-x)Ca(x)NiO(4+δ) is a promising cathode alternative for solid oxide fuel cells. PMID:20967398

  8. Corrosion performance of bi-layer Ni/Cr2C3-NiCr HVAF thermal spray coating

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.; Björklund, S.

    2016-04-01

    The corrosion behavior of three HVAF thermal spray coating systems (A: single-layer Ni, B: single-layer Cr2C3-NiCr coatings, and C: bi-layer Ni/Cr2C3-NiCr coating) was comparatively studied using immersion, salt spray, and electrochemical tests. Polarization and EIS results showed that the corrosion behavior of Cr2C3-NiCr coatings in 3.5 wt.% NaCl solution was significantly improved by adding the intermediate layer of Ni. It was illustrated that the polarization resistance of the bi-layer Ni/Cr2C3-NiCr and single-layer Cr2C3-NiCr coatings were around 194 and 38 kΩ cm2, respectively. Microstructure analysis revealed that the bond coating successfully prevented the corrosion propagation toward the coating.

  9. Recycling of used Ni-MH rechargeable batteries

    SciTech Connect

    Yoshida, T.; Ono, H.; Shirai, R.

    1995-12-31

    The Ni-MH (nickel metal hydride) rechargeable battery was developed several years ago. Its higher electrochemical capacity and greater safety compared with the Ni-Cd rechargeable battery have resulted in very rapid increase in its production. The Ni-MH rechargeable battery consists of Ni, Co and rare earth metals, so that recycling is important to recover these valuable mineral resources. In this study, a basic recycling process for used Ni-MH rechargeable batteries has been developed, in which the Ni, Co and rare earth elements are recovered through a combination of mechanical processing and hydrometallurgical processing.

  10. Surface electronic structure of polar NiO thin film grown on Ag(111)

    NASA Astrophysics Data System (ADS)

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-01

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  11. Surface electronic structure of polar NiO thin film grown on Ag(111)

    SciTech Connect

    Das, Jayanta; Menon, Krishnakumar S. R.

    2015-06-24

    The growth and structure of NiO thin films on top of Ag(111) substrate were studied where the formation of faceted surface was confirmed by Low Energy Electron Diffraction. The electronic structure of polar NiO(111) surface has been probed using photoemission techniques. The core energy levels and the valence band electronic structure were excited by x-ray and ultraviolet photons respectively. The modifications in physical structure and valence band electronic structure of the film under vacuum annealing have also been enlightened.

  12. Phase instability in ZrO{sub 2}{endash}NiAl functionally graded materials

    SciTech Connect

    He, Y.; Subramanian, V.; Lannutti, J.J.

    1997-10-01

    Sedimentation in organic solvents was followed by hot-pressing to produce 2 mole{percent} yttria stabilized zirconia-NiAl functionally graded materials (FGM{close_quote}s). These FGM{close_quote}s were better able to accommodate high levels of residual stress than alumina-NiAl FGM{close_quote}s; this is possibly due to enhanced tetragonal phase retention. However, we found that the zirconia layer in these FGM{close_quote}s subsequently experiences room temperature transformation of t-ZrO{sub 2} to m-ZrO{sub 2}. {copyright} {ital 1997 Materials Research Society.}

  13. Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni

    SciTech Connect

    Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.

    2010-08-03

    We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.

  14. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    NASA Astrophysics Data System (ADS)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  15. Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO

    NASA Astrophysics Data System (ADS)

    Luo, Yuxiang; Zhao, Diyang; Zhao, Yonggang; Chiang, Fu-Kuo; Chen, Pengcheng; Guo, Minghua; Luo, Nannan; Jiang, Xingli; Miao, Peixian; Sun, Ying; Chen, Aitian; Lin, Zhu; Li, Jianqi; Duan, Wenhui; Cai, Jianwang; Wang, Yayu

    2014-12-01

    Resistive switching effect in conductor/insulator/conductor thin-film stacks is promising for resistance random access memory with high-density, fast speed, low power dissipation and high endurance, as well as novel computer logic architectures. NiO is a model system for the resistive switching effect and the formation/rupture of Ni nanofilaments is considered to be essential. However, it is not clear how the nanofilaments evolve in the switching process. Moreover, since Ni nanofilaments should be ferromagnetic, it provides an opportunity to explore the electromagnetic coupling in this system. Here, we report a direct observation of Ni nanofilaments and their specific evolution process for the first time by a combination of various measurements and theoretical calculations. We found that multi-nanofilaments are involved in the low resistance state and the nanofilaments become thin and rupture separately in the RESET process with subsequent increase of the rupture gaps. Theoretical calculations reveal the role of oxygen vacancy amount in the evolution of Ni nanofilaments. We also demonstrate electromagnetic coupling in this system, which opens a new avenue for multifunctional devices.Resistive switching effect in conductor/insulator/conductor thin-film stacks is promising for resistance random access memory with high-density, fast speed, low power dissipation and high endurance, as well as novel computer logic architectures. NiO is a model system for the resistive switching effect and the formation/rupture of Ni nanofilaments is considered to be essential. However, it is not clear how the nanofilaments evolve in the switching process. Moreover, since Ni nanofilaments should be ferromagnetic, it provides an opportunity to explore the electromagnetic coupling in this system. Here, we report a direct observation of Ni nanofilaments and their specific evolution process for the first time by a combination of various measurements and theoretical calculations. We found

  16. Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Li, Jiangtian; Zhao, Wei; Huang, Fuqiang; Manivannan, Ayyakkannu; Wu, Nianqiang

    2011-12-01

    Vertically aligned Ni(OH)2 and NiO single-crystalline nanoplatelet arrays were directly grown on the fluorine-doped tin oxide (FTO) substrate by a simple hydrothermal method. The effects of the hydrothermal parameters on the morphology and crystal structure of the nanoarray film were investigated. Controlling the ammonia and persulfate concentrations was the key to controlling the morphology of the nanoarray film. The experimental results showed that the single-crystalline NiO nanoplatelet array was a promising candidate for the supercapacitor electrode. It exhibited a high specific capacitance, prompt charge/discharge rate, and good stability of cycling performance. It is believed that the vertically oriented aligned single-crystalline NiO nanoplatelet array is beneficial to the charge transfer in the electrode and to the ion transport in the solution during redox reaction.Vertically aligned Ni(OH)2 and NiO single-crystalline nanoplatelet arrays were directly grown on the fluorine-doped tin oxide (FTO) substrate by a simple hydrothermal method. The effects of the hydrothermal parameters on the morphology and crystal structure of the nanoarray film were investigated. Controlling the ammonia and persulfate concentrations was the key to controlling the morphology of the nanoarray film. The experimental results showed that the single-crystalline NiO nanoplatelet array was a promising candidate for the supercapacitor electrode. It exhibited a high specific capacitance, prompt charge/discharge rate, and good stability of cycling performance. It is believed that the vertically oriented aligned single-crystalline NiO nanoplatelet array is beneficial to the charge transfer in the electrode and to the ion transport in the solution during redox reaction. Electronic supplementary information (ESI) available: XRD patterns of Ni(OH)2 and NiO powders; SEM and TEM images of Ni(OH)2 and NiO nanoplatelet arrays; and electrochemical performances for NiO nanoarrays and powders. See

  17. Optimization of the Ni(P) Thickness for an Ultrathin Ni(P)-Based Surface Finish in Soldering Applications

    NASA Astrophysics Data System (ADS)

    Ho, C. E.; Wang, S. J.; Fan, C. W.; Wu, W. H.

    2014-01-01

    The effects of the Ni(P) thickness δ Ni(P) on the interfacial reaction between an Sn-3Ag-0.5Cu solder and an Au/Pd(P)/Ni(P)/Cu pad (thickness: 0.05/0.05/0.1-0.3/20 μm) and the resulting mechanical properties were investigated using scanning electron microscopy equipped with an electron backscatter diffraction system, a focused ion beam system, electron probe microanalysis, and high-speed ball shear (HSBS) testing. Regardless of δ Ni(P), all of the Au/Pd(P)/Ni(P) surface finishes examined were completely exhausted in one reflow, exposing the Cu pad underneath the solder. Cu6Sn5 dissolved with various Ni contents, termed (Cu,Ni)6Sn5, was the dominant intermetallic compound (IMC) species at the solder/Cu interface. Additionally, Ni2SnP and Ni3P IMCs might form with the (Cu,Ni)6Sn5 in the thick Ni(P) case, i.e., δ Ni(P) = 0.3 μm, and the two IMCs (Ni2SnP and Ni3P) were gradually eliminated from the interface after multiple reflows. A mass balance analysis indicated that the growth of the Ni-containing IMCs, rather than the dissolution of the metallization pad, played a key role in the Ni(P) exhaustion. The HSBS test results indicated that the mechanical strength of the solder joints was also δ Ni(P) dependent. The combined results of the interfacial reaction and the mechanical evaluation provided the optimal δ Ni(P) value for soldering applications.

  18. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  19. Statistics of Interatomic Ni-Ni Bonds in Ni-BASED Ternary Solid Solutions with Non-Magnetic Elements and Their Magnetic Behavior

    NASA Astrophysics Data System (ADS)

    Cosma, I.; Culea, E.; Fechete, R.; NicoarǍ, S.

    The drop of ferromagnetic moment in the ternary solid solutions Ni1-x-yCuxDy, (D = Zn, Si, Au, Al) is analyzed in terms of the statistical model of the environment-dependent moments. This probabilistic model shows that the disappearing of one Ni atom ferromagnetic moment can be assigned to the replacement of at least four Ni-Ni bindings, out of twelve, in pure nickel. This paper aims at discussing all these features that, from the point of view of macroscopic equilibrium states, are related to the distribution of local bonds, provided by the peripheral electrons of the substitute atoms dissolved in the Ni matrix.

  20. NiPt/Rh(111): A stable surface alloy with enhanced magnetic moments

    NASA Astrophysics Data System (ADS)

    Imam, Mighfar; Marathe, Madhura; Narasimhan, Shobhana

    2009-04-01

    We have performed ab initio density functional theory calculations to investigate the miscibility and magnetic properties of pseudomorphically grown monolayers of Ni xPt 1- x surface alloys on a Rh(111) substrate. We find that the formation of this alloy is energetically favored over phase-segregated forms, and its magnetic moment is also enhanced. A significant contribution to this enhanced magnetic moment is found to come from the induced moments on the otherwise non-magnetic elements Pt and Rh. A low concentration of Ni gives rise to a high magnetic moment per Ni atom. We find that a low effective coordination and a high non-spin-polarized density of states at the Fermi level are responsible for these enhanced moments.

  1. Calculated electric dipole moment of NiH X2Delta

    NASA Technical Reports Server (NTRS)

    Walch, S.; Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1985-01-01

    A calculated dipole moment of 2.39 D at R sub e = 2.79 a sub 0 is reported, obtained from complete active space SCF/configuration interaction calculations plus one natural orbital iteration. The calculation is in good agreement with the experimental value of 2.4 + or - 0.1 D measured for the lowest vibrational level. In agreement with Gray et al. (1985), it is found that the dipole moment is strongly correlated with the 3d electron population; the good agreement with experiment thus provides verification of the mixed state model of NiH. It is concluded that the electric dipole moment of NiH is a sensitive test of the quality of the NiH wave function.

  2. Dirac R-matrix calculations of photoionization cross-sections of Ni XIII

    NASA Astrophysics Data System (ADS)

    Sardar, S.; Bilal, M.; Bari, M. A.; Nazir, R. T.; Hannan, A.; Salahuddin, M.; Nasim, M. H.

    2016-05-01

    In this paper, we report total photoionization cross-sections of Ni XIII in the ground state (3P2) and four excited states (3P1,0, 1D2, 1S0) for the first time over the photon energy range 380-480 eV. The target wavefunctions are constructed with fully relativistic atomic structure GRASP code. Our calculated energy levels and oscillator strengths of core ion Ni XIV agree well with available experimental and theoretical results. The ionization threshold value of ground state of Ni XIII is found to be more closer to the experimental ionization energy and improved over the previous calculations. The photoionization cross-sections are calculated using the fully relativistic DARC code with an appropriate energy step of 0.01 eV to delineate the resonance structures. The calculated ionization cross-sections are important for the modelling of features of photoionized plasmas and for stellar opacities.

  3. One Nucleon Transfer Reactions Around {sup 68}Ni at REX-ISOLDE

    SciTech Connect

    Patronis, N.; Raabe, R.; Bree, N.; Huyse, M.; Stefanescu, I.; Walle, J. van de; Duppen, P. van; Bildstein, V.; Gernhaeuser, R.; Kroell, Th.; Kruecken, R.; Mahgoub, M.; Maierbeck, P.

    2008-05-12

    The newly built position sensitive Si detectors array of nearly 4{pi} angular coverage which is going to be installed at the REX-ISOLDE facility at CERN is briefly presented. This setup will be combined with the Miniball detectors array, constituting a unique tool for the study of one-nucleon transfer reactions. The experimental study of d({sup 66}Ni,p){sup 67}Ni reaction will be proposed, as a starting point for a series of experiments aiming to the study of the single particle character of the levels of the odd mass neutron reach unstable Ni isotopes. In this contribution, the feasibility and sensitivity of the experiment is presented.

  4. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  5. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  6. Morphology transition of deformation-induced lenticular martensite in Fe-Ni-C alloys

    SciTech Connect

    Zhang, X.M.; Li, D.F.; Xing, Z.S. . Inst. of Metal Research); Gautier, E.; Zhang, J.S.; Simon, A. . Lab. de Science et Genie des Materiaux Metalliques)

    1993-06-01

    The morphology and habit planes of deformation-induced lenticular martensite were investigated by optical and transmission electron microscopy in Fe-30Ni and Fe-30Ni-0.11C alloys. Transitions in morphology were observed with progressive deformation levels going from lenticular to butterfly martensite for the Fe-30Ni-0.11C alloy. The habit planes changed from (225)[sub f] or (259)[sub f] for the thermal lenticular martensite to (111)[sub f] for the strain-induced martensite. The morphology and crystallography of the small butterfly martensites was also investigated. A change in the orientation relationships from K-S to N-W relations was also observed. These changes were attributed to the contribution of mobile dislocations which modified the shear mode form twinning to slip, and to a plastic accommodation of transformation strains.

  7. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  8. Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy.

    PubMed

    Becknell, Nigel; Kang, Yijin; Chen, Chen; Resasco, Joaquin; Kornienko, Nikolay; Guo, Jinghua; Markovic, Nenad M; Somorjai, Gabor A; Stamenkovic, Vojislav R; Yang, Peidong

    2015-12-23

    Understanding the atomic structure of a catalyst is crucial to exposing the source of its performance characteristics. It is highly unlikely that a catalyst remains the same under reaction conditions when compared to as-synthesized. Hence, the ideal experiment to study the catalyst structure should be performed in situ. Here, we use X-ray absorption spectroscopy (XAS) as an in situ technique to study Pt3Ni nanoframe particles which have been proven to be an excellent electrocatalyst for the oxygen reduction reaction (ORR). The surface characteristics of the nanoframes were probed through electrochemical hydrogen underpotential deposition and carbon monoxide electrooxidation, which showed that nanoframe surfaces with different structure exhibit varying levels of binding strength to adsorbate molecules. It is well-known that Pt-skin formation on Pt-Ni catalysts will enhance ORR activity by weakening the binding energy between the surface and adsorbates. Ex situ and in situ XAS results reveal that nanoframes which bind adsorbates more strongly have a rougher Pt surface caused by insufficient segregation of Pt to the surface and consequent Ni dissolution. In contrast, nanoframes which exhibit extremely high ORR activity simultaneously demonstrate more significant segregation of Pt over Ni-rich subsurface layers, allowing better formation of the critical Pt-skin. This work demonstrates that the high ORR activity of the Pt3Ni hollow nanoframes depends on successful formation of the Pt-skin surface structure.

  9. Structural, Dielectric, and Optical Properties of Ni-Doped Barium Cadmium Tantalate Ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Hongxue; Liu, Shaojun; Zenou, Victor Y.; Beach, Cameron; Newman, Nathan

    2006-12-01

    We report the effect of Ni-doping on the structural, dielectric and optical properties of Ba(Cd1/3Ta2/3)O3 (BCT) ceramics. Rietveld analysis of the X-ray diffraction (XRD) data indicates that the BCT structure is similar to other Ba(B'1/3B''2/3)O3 perovskites, although the Ta-O-Cd is distorted to an angle of ˜173°; very close to our earlier theoretical prediction of 172°. The XRD analysis also indicates that Ni doping significantly enhances the extent of Cd-Ta ordering in BCT. The temperature coefficient of resonant frequency decreases with Ni concentration up to 2 wt %. While the loss tangent of BCT is reduced at small levels of Ni doping (up to 0.5 wt %), it increases abruptly at higher concentrations. We found a correlation between the loss tangent of Ni-doped BCT samples and the intensity of a continuous absorption background in the optical spectra. This optical activity results from the presence of optically active point defects and is suggestive that these defects play an important role in the microwave loss in BCT ceramics.

  10. Ni-doped TiO2 nanotubes for wide-range hydrogen sensing

    PubMed Central

    2014-01-01

    Doping of titania nanotubes is one of the efficient way to obtain improved physical and chemical properties. Through electrochemical anodization and annealing treatment, Ni-doped TiO2 nanotube arrays were fabricated and their hydrogen sensing performance was investigated. The nanotube sensor demonstrated a good sensitivity for wide-range detection of both dilute and high-concentration hydrogen atmospheres ranging from 50 ppm to 2% H2. A temperature-dependent sensing from 25°C to 200°C was also found. Based on the experimental measurements and first-principles calculations, the electronic structure and hydrogen sensing properties of the Ni-doped TiO2 with an anatase structure were also investigated. It reveals that Ni substitution of the Ti sites could induce significant inversion of the conductivity type and effective reduction of the bandgap of anatase oxide. The calculations also reveal that the resistance change for Ni-doped anatase TiO2 with/without hydrogen absorption was closely related to the bandgap especially the Ni-induced impurity level. PMID:24624981

  11. Atomic Data and Spectral Line Intensities for Ni XI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2010-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  12. First-principles studies of Ni-Ta intermetallic compounds

    SciTech Connect

    Zhou Yi; Wen Bin; Ma Yunqing; Melnik, Roderick; Liu Xingjun

    2012-03-15

    The structural properties, heats of formation, elastic properties, and electronic structures of Ni-Ta intermetallic compounds are investigated in detail based on density functional theory. Our results indicate that all Ni-Ta intermetallic compounds calculated here are mechanically stable except for P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2}. Furthermore, we found that Pmmn-Ni{sub 3}Ta is the ground state stable phase of Ni{sub 3}Ta polymorphs. The polycrystalline elastic modulus has been deduced by using the Voigt-Reuss-Hill approximation. All Ni-Ta intermetallic compounds in our study, except for NiTa, are ductile materials by corresponding G/K values and poisson's ratio. The calculated heats of formation demonstrated that Ni{sub 2}Ta are thermodynamically unstable. Our results also indicated that all Ni-Ta intermetallic compounds analyzed here are conductors. The density of state demonstrated the structure stability increases with the Ta concentration. - Graphical abstract: Mechanical properties and formation heats of Ni-Ta intermetallic compounds are discussed in detail in this paper. Highlights: Black-Right-Pointing-Pointer Ni-Ta intermetallic compounds are investigated by first principle calculations. Black-Right-Pointing-Pointer P21/m-Ni{sub 3}Ta and hc-NiTa{sub 2} are mechanically unstable phases. Black-Right-Pointing-Pointer Pmmn-Ni{sub 3}Ta is ground stable phase of Ni{sub 3}Ta polymorphs. Black-Right-Pointing-Pointer All Ni-Ta intermetallic compounds are conducting materials.

  13. Magnetic quantum diesel engine in Ni2

    NASA Astrophysics Data System (ADS)

    Dong, C. D.; Lefkidis, G.; Hübner, W.

    2013-12-01

    Quantum Diesel cycles are numerically realized using the electronic states of a Ni2 dimer. The quantum nature and the complexity of the electronic structure of the Ni2 dimer result in new features in the evolution of the pressure as well as in the heat-work transformation. The multitude of internal degrees of freedom in the isobaric process in molecules can result in crossing of the two adiabatic processes in the P-V diagram. The interplay of heat and work, originating from thermal nonequilibrium effects, can lead to a thermal efficiency of up to 100%. The spin moment of the Ni2 can be decreased by the isobaric process. To link the molecular heat capacity to easily accessible experimental quantities, we also calculate the Kerr effect and the magnetic susceptibility at different temperatures and magnetic fields.

  14. Nonequilibrium microstructures for Ag-Ni nanowires.

    PubMed

    Rai, Rajesh K; Srivastava, Chandan

    2015-04-01

    This work illustrates that a variety of nanowire microstructures can be obtained either by controlling the nanowire formation kinetics or by suitable thermal processing of as-deposited nanowires with nonequilibrium metastable microstructure. In the present work, 200-nm diameter Ag-Ni nanowires with similar compositions, but with significantly different microstructures, were electrodeposited. A 15 mA deposition current produced nanowires in which Ag-rich crystalline nanoparticles were embedded in a Ni-rich amorphous matrix. A 3 mA deposition current produced nanowires in which an Ag-rich crystalline phase formed a backbone-like configuration in the axial region of the nanowire, whereas the peripheral region contained Ni-rich nanocrystalline and amorphous phases. Isothermal annealing of the nanowires illustrated a phase evolution pathway that was extremely sensitive to the initial nanowire microstructure.

  15. Kinetic properties and characteristics of electron-positron annihilation in NiMn and NiTi

    NASA Astrophysics Data System (ADS)

    Kal'Chikhin, V. V.; Kul'Kova, S. E.

    1992-10-01

    On the basis of the electron energy structure calculated by the self-consistent method of linear MT orbitals (the LMTO method), the kinetic properties of NiMn and NiTi are calculated from first principles. Satisfactory agreement with experimental data on the phonon electrical resistance and thermoemf is obtained for NiTi. For NiMn, the agreement of ρph(T) with experiment is only qualitative; the reasons for the quantitative discrepancy are discussed. Quasi-free position states and the contribution of various electron states in NiMn and NiTi are calculated by the LMTO method.

  16. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  17. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Xiaodong; Tian, Lihong; Chen, Xiaobo

    2015-12-01

    Novel crystalline/amorphous core/shell Ni/NiO nanosheets have shown a high electrocatalytic activity in hydrogen evolution reaction (HER). In 1 M KOH, they display an HER current of 5 mA cm-2 at an overpotential of 110 mV with a good stability. It is proposed that their excellent HER performance is achieved through the synergistic effect between the Ni core and the amorphous NiO shell, where the Ni core can reduce the resistance and the amorphous NiO shell can accelerate both Volmer and Heyrovsky processes to drive HER at low overpotentials.

  18. Microstructure evolution of electroless Ni P and Ni Cu P deposits on Cu in the presence of additives

    NASA Astrophysics Data System (ADS)

    Lin, Kwang-Lung; Chang, Yu-Lan; Huang, Chiao-Chan; Li, Fang-I.; Hsu, Jen-Che

    2001-09-01

    The microstructures of electroless Ni-P and Ni-Cu-P deposits were investigated in the presence of thiourea and saccharin with AFM. The phosphorus contents and crystallinity of the deposits were investigated. Saccharin was found to refine the nodular structure of the Ni-Cu-P deposit, while not affecting the P% of the Ni-P and Ni-Cu-P deposits. On the other hand, thiourea was found to affect the P% and surface roughness of the Ni-P deposit. Thiourea does not exhibit nodular refining effect on the deposit.

  19. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors.

  20. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting.

    PubMed

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng-Chang; Wang, Di-Yan; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-10-01

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2 O3 -blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2 O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2 O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm(-2) at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells. PMID:26307213

  1. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGESBeta

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng -Chang; Wang, Di -Yan; Yang, Jiang; et al

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  2. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  3. The Influence of El Niño and La Niña on Winter Climate Conditions at 138 Ski Resorts in Western North America

    NASA Astrophysics Data System (ADS)

    Pidwirny, M. J.; Mei Turney, A.

    2014-12-01

    This research examines the effect El Niño and La Niña have on the climate conditions of 138 ski resorts in western North America. Using ClimateWNA, monthly values for snowfall and degree days < 0°C (a measure of winter season coldness) were generated for the mid-slope elevation of the resorts for the primary ski season months of December, January, February, and March. From this data, composite values were computed by summing the four months analyzed for each of the two variables, with the December value coming from the previous year. Regression analysis was used to see if a relationship exists between the two climate variables and a summed composite of the monthly Southern Oscillation Index (SOI) for the same four months. Correlation coefficients were determined by regressing the observations for the time period 1935 to 2012. The correlation coefficients were then mapped using ARCGIS to display possible spatial patterns across the study area. Different map symbols were used to identify whether the correlation coefficient was positive or negative, and whether it fell within four levels of statistical significance: P ≥ 0.01, P < 0.01, P < 0.001, and P < 0.0001. Correlation coefficients with probability values equal to P ≥ 0.01 were considered not significant on the map. For the variable degree days < 0°C, resorts located in British Columbia, Alberta, Washington, and coastal south Oregon generally had warmer than usual winters during El Niño events and colder winters when SOI values suggested the occurrence of La Niña. A single resort, Ski Apache in New Mexico showed the opposite trend. Snowfall was found to be higher during La Niña events and lower with El Niño events for a number of resorts above 42° N latitude. Further, the strength of these correlations generally decreased with distance from the coast. Resorts in New Mexico and Arizona generally had more snowfall with El Niño and less snowfall with La Niña.

  4. Amplification of El Niño by cloud longwave coupling to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Raedel, Gaby; Mauritsen, Thorsten; Stevens, Bjorn; Dommenget, Dietmar; Matei, Daniela; Bellomo, Katinka; Clement, Amy

    2016-04-01

    The El Niño/Southern Oscillation(ENSO) is the dominant mode of inter-annual variability, with major impacts on social and ecological systems through its influence on extreme weather, droughts and floods. The ability to forecast El Niño, as well as anticipate how it may change with warming, requires an understanding of the underlying physical mechanisms that drive it. Among these, the role of atmospheric processes remains poorly understood. Here we present numerical experiments with an Earth system model, with and without coupling of cloud radiative effects to the circulation, suggesting that clouds enhance ENSO variability by a factor of two or more. Clouds induce heating in the mid and upper troposphere associated with enhanced high-level cloudiness over the El Niño region, and low-level clouds cool the lower troposphere in the surrounding regions. Together, these effects enhance the coupling of the atmospheric circulation to El Niño surface temperature anomalies, and thus strengthen the positive Bjerknes feedback mechanism between west Pacific zonal wind stress and sea surface temperature gradients. Behaviour consistent with the proposed mechanisms robustly represented in other global climate models and in satellite observations. The mechanism suggests that the response of ENSO amplitude to climate change will in part be determined by a balance between increasing cloud long wave feedback and a possible reduction in the area covered by upper-level clouds.

  5. Amplification of El Niño by cloud longwave coupling to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Rädel, Gaby; Mauritsen, Thorsten; Stevens, Bjorn; Dommenget, Dietmar; Matei, Daniela; Bellomo, Katinka; Clement, Amy

    2016-02-01

    The El Niño/Southern Oscillation (ENSO) is the dominant mode of inter-annual variability, with major impacts on social and ecological systems through its influence on extreme weather, droughts and floods. The ability to forecast El Niño, as well as anticipate how it may change with warming, requires an understanding of the underlying physical mechanisms that drive it. Among these, the role of atmospheric processes remains poorly understood. Here we present numerical experiments with an Earth system model, with and without coupling of cloud radiative effects to the circulation, suggesting that clouds enhance ENSO variability by a factor of two or more. Clouds induce heating in the mid and upper troposphere associated with enhanced high-level cloudiness over the El Niño region, and low-level clouds cool the lower troposphere in the surrounding regions. Together, these effects enhance the coupling of the atmospheric circulation to El Niño surface temperature anomalies, and thus strengthen the positive Bjerknes feedback mechanism between west Pacific zonal wind stress and sea surface temperature gradients. Behaviour consistent with the proposed mechanism is robustly represented in other global climate models and in satellite observations. The mechanism suggests that the response of ENSO amplitude to climate change will in part be determined by a balance between increasing cloud longwave feedback and a possible reduction in the area covered by upper-level clouds.

  6. Fracture Toughness and Slow Crack Growth Behavior of Ni-YSZ and YSZ as a Function of Porosity and Temperature.

    SciTech Connect

    Radovic, Miladin; Lara-Curzio, Edgar; Nelson, George

    2006-01-01

    In this paper we report on the fracture toughness of YSZ and Ni-YSZ and slow-crack growth behavior of Ni-YSZ at 20C and 800C. Results are presented for tests carried out in air for YSZ and in a gas mixture of 4%H2 and 96%Ar for Ni-YSZ containing various levels of porosity. The double-torsion test method was utilized to determine the fracture toughness from the peak load obtained during fast loading test specimens that had been precracked, while crack velocity versus stress intensity curves were obtained in the double torsion using hte load relaxation method. It was found that fracture toughness of these materials decreases with temperature and int he case of Ni-YSZ it also decreases with increasing porosity. The effect of temperature and microstructure, which was characterized by Scanning Electron Microscopy, on the fracture behavior of these materials, is discussed.

  7. Electronic and magnetic properties of Cr-Mn-Ni-Al compound with LiMgPdSb-type structure

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Wang, X. T.; Guo, R. K.; Lin, T. T.; Liu, G. D.

    2016-10-01

    We investigate the electronic and magnetic properties of Cr-Mn-Ni-Al compound with a LiMgPdSn-type structure in three different atomic arrangement configurations (AAC) by using the first-principles calculations. It was found that Cr-Mn-Ni-Al compound with type I AAC exhibits a spin-gapless semiconductive characteristic. The type II AAC is the most stable one and exhibits an especial band structure where the Fermi level slightly crosses the top of the valence bands in spin-up channel and the bottom of conductive bands in spin-down channel, which leads to the electronic transport with the spin-resolved carrier type. The Cr-Mn-Ni-Al compound shows an ordinary metallic behavior in type III AAC. The three nonequivalent atomic arrangement configurations of Cr-Mn-Ni-Al are all in ferromagnetic ground state under their equilibrium lattice parameters.

  8. Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong; Qiu, Z. Q.

    2009-03-08

    Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.

  9. Electron-diffraction structure refinement of Ni4Ti3 precipitates in Ni52Ti48.

    PubMed

    Tirry, Wim; Schryvers, Dominique; Jorissen, Kevin; Lamoen, Dirk

    2006-12-01

    The atomic coordinates of the crystal structure of nanoscale Ni4Ti3 precipitates in Ni-rich NiTi is refined by means of a least-squares method based on intensity measures of electron-diffraction patterns. The optimization is performed in combination with density functional theory calculations and has yielded an R\\bar 3 symmetry with slightly different atomic positions when compared with the existing structure. The new unit cell offers a better understanding of the lattice deformation from the B2 matrix. PMID:17108648

  10. Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3−δ} (Me = Fe, Mn)

    SciTech Connect

    Niwa, Eiki; Maeda, Hiroki; Uematsu, Chie; Hashimoto, Takuya

    2015-10-15

    Graphical abstract: Compositional dependence of (a) electrical conductivity and (b) E{sub a} for hopping conduction of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn). - Highlights: • Electrical conduction mechanism of LaNi{sub x}Me{sub 1−x}O{sub 3} (Me = Fe, Mn) was investigated. • Hopping conduction model could be applied for conductivity of both specimens. • The difference of E{sub a} due to that of energy level of Fe and Mn was observed. • Hole concentration estimated by iodimetry increases with increasing Ni content. - Abstract: Electrical conduction mechanism of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} expected as Sr-free new cathode material for solid oxide fuel cells was analyzed. Electrical conduction behaviors of both specimens could be well fitted by small polaron hopping conduction model. The electrical conductivity of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} increased with increasing Ni content, showing agreement with decrease of activation energy for hopping conduction. The decrease of electrical conductivity and increase of activation energy of LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} were observed with increasing Ni content for 0.0 ≤ x ≤ 0.4. Further Ni substitution increased electrical conductivity and decreased activation energy for 0.4 ≤ x ≤ 0.6. It was revealed using iodometry that the difference of hole carrier density between LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1−x}O{sub 3+δ} was small. It was suspected that the origin of the difference of electrical conduction behavior of LaNi{sub x}Fe{sub 1−x}O{sub 3−δ} and LaNi{sub x}Mn{sub 1-x}O{sub 3+δ} was difference of energy level of e{sub g} band composed of Fe 3d or Mn 3d orbitals and their overlapping quantity with O 2p and Ni 3d band.

  11. Perpendicularly magnetized spin filtering Cu/Ni multilayers

    SciTech Connect

    Shirahata, Yasuhiro; Wada, Eiji; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-01-20

    Spin filtering at perpendicular magnetized Cu/Ni multilayer/GaAs(001) interfaces is demonstrated at remanence using optical spin orientation method. [Cu(9 nm)/Ni(t{sub Ni} nm)]{sub n} multilayers are found to show a crossover from the in-plane to out-of-plane magnetic anisotropy at the Cu/Ni bilayer repetition n = 4 and the Ni layer thickness t{sub Ni} = 3. For a perpendicularly magnetized Cu/Ni multilayer/n-GaAs(001) interface, circular polarization dependent photocurrent shows a clear hysteretic behavior under optical spin orientation conditions as a function of magnetic field out-of-plane while the bias dependence exhibits a substantial peak at a forward bias, verifying that Cu/Ni multilayers work as an efficient spin filter in the remanent state.

  12. Properties of Ni/Nb magnetic/superconducting multilayers

    SciTech Connect

    Mattson, J.E.; Osgood III, R.M.; Potter, C.D.; Sowers, C.H.; Bader, S.D.

    1997-05-01

    We examine structural, magnetic, and superconducting properties of magnetic/superconducting Ni/Nb multilayers. The Ni(Nb) films are textured {l_brace}111{r_brace}({l_brace}110{r_brace}) and have smooth interfaces. The average moment of the Ni atoms in the structure drops by 80{percent} from that of bulk Ni for 19 {Angstrom} thick Ni layers in proximity to 140 {Angstrom} thick Nb layers, and goes to zero for smaller Ni thicknesses. The Nb layer is not superconducting for thicknesses {lt}100 {Angstrom} in the presence of a 19 {Angstrom} thick ferromagnetic Ni layer. The behavior of the superconducting critical temperature as a function of the superconducting layer thickness was fitted and an interfacial scattering parameter and scattering time for the paramagnetic Ni regime determined.

  13. NiCl2-down-regulated antioxidant enzyme mRNA expression causes oxidative damage in the broiler(')s kidney.

    PubMed

    Guo, Hongrui; Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Deng, Jie; Yin, Shuang; Li, Jian; Tang, Kun

    2014-12-01

    The kidney serves as a major organ of nickel (Ni) excretion and is a target organ for acute Ni toxicity due to Ni accumulation. There are no studies on the Ni or Ni compound-regulated antioxidant enzyme mRNA expression in animals and human beings at present. This study was conducted to investigate the pathway of nickel chloride (NiCl2)-caused renal oxidative damage by the methods of biochemistry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Two hundred and eighty one-day-old broilers were randomly divided into four groups and fed on a control diet and three experimental diets supplemented with 300, 600, and 900 mg/kg of NiCl2 for 42 days. Dietary NiCl2 elevated the malondialdehyde (MDA), nitric oxide (NO), 8-hydroxy-2'-deoxyguanosine (8-OHdG) contents, and reduced the ability to inhibit hydroxy radical in the NiCl2-treated groups. Also, the renal inducible nitric oxide synthase (iNOS) activity and mRNA expression levels were increased. The total antioxidant (T-AOC) and activities of antioxidant enzymes including copper zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glutathione-s-transferase (GST) were decreased, and the glutathione (GSH) contents as well were decreased in the kidney. Concurrently, the renal CuZn-SOD, Mn-SOD, CAT, GSH-Px, GST, and GR mRNA expression levels were decreased. The above-mentioned results showed that dietary NiCl2 in excess of 300 mg/kg caused renal oxidative damage by reducing mRNA expression levels and activities of antioxidant enzymes, and then enhancing free radicals generation, lipid peroxidation, and DNA oxidation. PMID:25253428

  14. Effect of Synthetic Levers on Nickel Phosphide Nanoparticle Formation: Ni5P4 and NiP2.

    PubMed

    Li, Da; Senevirathne, Keerthi; Aquilina, Lance; Brock, Stephanie L

    2015-08-17

    Due to their unique catalytic, electronic, and redox processes, Ni5P4 and NiP2 nanoparticles are of interest for a wide-range of applications from the hydrogen evolution reaction to energy storage (batteries); yet synthetic approaches to these materials are limited. In the present work, a phase-control strategy enabling the arrested-precipitation synthesis of nanoparticles of Ni5P4 and NiP2 as phase-pure samples using different Ni organometallic precursors and trioctylphosphine (TOP) is described. The composition and purity of the product can be tuned by changing key synthetic levers, including the Ni precursor, the oleylamine (OAm) coordinating solvent and TOP concentrations, temperature, time, and the presence or absence of a moderate temperature soak step to facilitate formation of Ni and/or Ni-P amorphous nanoparticle intermediates. Notably, the 230 °C intermediate step favors the ultimate formation of Ni2P and hinders further phosphidation to form Ni5P4 or NiP2 as phase-pure products. In the absence of this step, increasing the P/Ni ratio (13-20), reaction temperature (350-385 °C), and time (10-48 h) favors more P-rich phases, and these parameters can be adjusted to generate either Ni5P4 or NiP2. The phase of the obtained particles can also be tuned between pure Ni2P to Ni5P4 and NiP2 by simply decreasing the OAm/TOP ratio and/or changing the nickel precursor (nickel(II)acetylacetonate, nickel(II)acetate tetrahydrate, or bis(cyclooctadiene)nickel(0)). However, at high concentrations of OAm, the product formed is the same regardless of Ni precursor, suggesting the formation of a uniform Ni intermediate (an Ni-oleylamine complex) under these conditions that is responsible for product distribution. Intriguingly, under the extreme phosphidation conditions required to favor Ni5P4 and NiP2 over Ni2P (large excess of TOP), the 20-30 nm crystallites assemble into supraparticles with diameters of 100-500 nm. These factors are discussed in light of a comprehensive

  15. Melting in the Fe-Ni system

    NASA Astrophysics Data System (ADS)

    Lord, O. T.; Walter, M. J.; Vocadlo, L.; Wood, I. G.; Dobson, D. P.

    2012-12-01

    The melting temperature of the Fe-rich core alloy at the inner core boundary (ICB) condition of 330 GPa is a key geophysical parameter because it represents an anchor point on the geotherm. An accurate knowledge of the melting curves of candidate alloys is therefore highly desirable. In spite of this, there is still considerable uncertainty in the melting point even of pure Fe at these conditions; estimates range from as low as 4850K based on one laser heated diamond anvil cell (LHDAC) study [1] to as high as 6900K based on recent quantum Monte Carlo calculations [2]. In reality we expect that the bulk core alloy may contain 5-10 wt% Ni (based on cosmochemical and meteoritic arguments) and up to 10 wt% of an as yet undetermined mix of light elements (with Si, S, C and O being the most likely candidates). While some recent studies have looked at the effects of light elements on the melting curve of Fe [e.g.: 3,4] with some of these studies including a small amount of Ni in their starting material, to date there has been no systematic study of melting temperatures in the Fe-Ni system. To address this issue, we have embarked upon just such a study. Using the LHDAC we have determined the melting curve of the pure Ni end-member to 180 GPa, and that of pure Fe to 50 GPa, using perturbations in the power vs. temperature function as the melting criterion [5]. Ar or NaCl were employed as pressure media while temperature was measured using standard spectroradiometric techniques [6]. In the case of Ni, perturbations were observed for both the sample and the Ar medium, allowing us to determine the melting curve of Ar and Ni simultaneously. Our results thus far for Ni and Ar agree closely with all of the available data, while extending the melting curves by a factor of two in pressure. In the case of Fe, our current dataset is also in good agreement with previous studies [2,7]. The agreement of all three melting curves with the literature data as well as other materials

  16. Photoactivation of the Ni-SIr state to the Ni-SIa state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SIr state and as-isolated enzyme revisited.

    PubMed

    Tai, Hulin; Xu, Liyang; Inoue, Seiya; Nishikawa, Koji; Higuchi, Yoshiki; Hirota, Shun

    2016-08-10

    The Ni-SIr state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F was photoactivated to its Ni-SIa state by Ar(+) laser irradiation at 514.5 nm, whereas the Ni-SL state was light induced from a newly identified state, which was less active than any other identified state and existed in the "as-isolated" enzyme. PMID:27456760

  17. Benchtop Delivery of Ni(cod)2 using Paraffin Capsules.

    PubMed

    Dander, Jacob E; Weires, Nicholas A; Garg, Neil K

    2016-08-01

    A facile method that allows for Ni(cod)2 to be used on the benchtop is reported. The procedure involves the preparation of paraffin-Ni(cod)2 capsules, which are stable to air and moisture. It is demonstrated that these readily available capsules can be used to promote a range of Ni(cod)2-catalyzed transformations. These studies are expected to promote the further use of Ni(cod)2 in organic synthesis.

  18. Triglyceride level

    MedlinePlus

    ... may also cause swelling of your pancreas (called pancreatitis). The triglyceride level is usually included in a ... lower triglyceride levels may be used to prevent pancreatitis for levels above 500 mg/dL Low triglyceride ...

  19. Spatio-temporal effects of El Niño events on rainfall and maize yield in Kenya

    NASA Astrophysics Data System (ADS)

    Amissah-Arthur, Abigail; Jagtap, Shrikant; Rosenzweig, Cynthia

    2002-12-01

    The ability to predict rainfall variability a season in advance could have a major impact on the fragile Kenyan economy. The ability to benefit from climate prediction arises from the intersection of human vulnerability, climate predictability, and decision capacity. Africa may be a prime potential benefactor of seasonal climate forecasting. With this in mind, the link between El Niño-related variability in rainfall at annual and seasonal scales and national-level maize yield in Kenya was explored. The spatial and seasonal variations in El Niño influence on rainfall are highly inconclusive in Kenya except for some highland high rainfall sites and seasons. Significant event-to-event variability was observed, however, during the October-January (OJ) crop growing season during El Niño events. Increases in the OJ seasonal rainfall during El Niño events were reflected in the annual rainfall. While the mean change in rainfall between El Niño and neutral was positive during OJ season and annually, however, the change was negative during the March-June (MJ) season. El Niño effects were greater on rainfall in the second growing season (OJ) for the 1982-83 and 1997-98 El Niño compared with the 1986-87, 1987-88, 1991-92 events. Sites on the highland ecoregion recorded a significant increase in rainfall during El Niño events compared with neutral years. However, the 1987-88 El Niño had a significant effect on the MJ growing season rainfall with consequent positive influence on national maize yield. Furthermore, super El Niños may give rise to larger rainfall responses than normal El Niños at some sites; the magnitude varies from site to site and the effect is not obvious at some sites. The results lead to the conclusion that all El Niños are not equal in terms of their regional manifestation. All this clearly indicates the need to address critical user needs of climate information in order to produce information that is useful.

  20. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  1. Playing hide and seek with El Niño

    NASA Astrophysics Data System (ADS)

    McPhaden, M. J.

    2015-09-01

    A much-anticipated 'monster' El Niño failed to materialize in 2014, whereas an unforeseen strong El Niño is developing in 2015. El Niño continues to surprise us, despite decades of research into its causes. Natural variations most probably account for recent events, but climate change may also have played a role.

  2. NiAg catalysts prepared by reduction of Ni2+ ions in aqueous hydrazine II. Support effect.

    PubMed

    Bettahar, M M; Wojcieszak, R; Monteverdi, S

    2009-04-15

    A series of bimetallic NiAg (Ni + Ag = 1% wt) catalysts supported on amorphous silica was synthesized via chemical reduction using hydrazine as the reducing agent at 353 K. Catalysts were prepared via impregnation or precipitation technique. It was found that the reduction of the Ni(2+) ions occurred only in the presence of silver, otherwise a stable blue [Ni(N(2)H(4))(3)](2+) complex was formed. Comparisons with similar NiAg catalysts supported on crystallized silica as prepared in our previous work indicated that the Ni(2+) ions weakly interacted with acidic crystallized silica on which they were readily reduced. For both supports, the combination of silver and nickel gave rise to a synergistic effect due to the existence of NiAg groupings. The surface and catalytic properties of the metal particles formed depended on the Ni:Ag ratio, method of preparation, and acidity of the support.

  3. Controlled reverse pulse electrosynthesized spike-piece-structured Ni/Ni(OH)2 interlayer nanoplates for electrochemical pseudocapacitor applications.

    PubMed

    Pavul Raj, R; Mohan, S; Jha, Shailendra K

    2016-01-31

    An ultrathin Ni/Ni(OH)2 hybrid electrode has been synthesized using a controlled reverse pulse modulated electrochemical approach and demonstrated as an advanced pseudocapacitor material having a remarkable specific capacitance and excellent cycling performance.

  4. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  5. The evolution of phase transformation in Ni/Ni3Al laminated composite under high temperature treatments

    NASA Astrophysics Data System (ADS)

    Shmorgun, V.; Gurevich, L.; Bogdanov, A.; Trunov, M.

    2016-02-01

    In this study the impact of isothermal annealing on the phase transformation rate in laminated Ni/Ni2Al3 composite was investigated. The method of nickel-aluminide coatings of the required chemical composition fabrication was proposed.

  6. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model. PMID:23809618

  7. Spin-glass transition in Ni carbide single crystal nanoparticles with Ni3C - type structure

    NASA Astrophysics Data System (ADS)

    Fujieda, S.; Kuboniwa, T.; Shinoda, K.; Suzuki, S.; Echigoya, J.

    2016-05-01

    Hexagonal shaped nanoparticles about 60 nm in size were successfully synthesized in tetraethylene glycol solution containing polyvinylpyrrolidone. By the analysis of the electron diffraction pattern, these were identified as a single crystal of Ni carbide with Ni3C - type structure. Their magnetization curve at 5 K was not completely saturated under a magnetic field of 5 T. The thermomagnetization curves after zero-field cooling and after field cooling exhibited the magnetic cooling effect at low temperatures. Furthermore, the 2nd order nonlinear term of AC magnetic susceptibility exhibited a negative divergence at about 17 K. It is concluded that Ni carbide single crystal nanoparticles with the Ni3C - type structure exhibit spin-glass transition at low temperatures.

  8. Accurate interatomic potentials for Ni, Al and Ni/sub 3/Al

    SciTech Connect

    Voter, A.F.; Chen, Shao Ping

    1986-01-01

    To obtain meaningful results from atomistic simulations of materials, the interatomic potentials must be capable of reproducing the thermodynamic properties of the system of interest. Pairwise potentials have known deficiencies that make them unsuitable for quantitative investigations of defective regions such as crack tips and free surfaces. Daw and Baskes (Phys. Rev. B 29, 6443 (1984)) have shown that including a local ''volume'' term for each atom gives the necessary many-body character without the severe computational dependence of explicit n-body potential terms. Using a similar approach, we have fit an interatomic potential to the Ni/sub 3/Al alloy system. This potential can treat diatomic Ni/sub 2/, diatomic Al/sub 2/, fcc Ni, fcc Al and L1/sub 2/ Ni/sub 3/Al on an equal footing. Details of the fitting procedure are presented, along with the calculation of some properties not included in the fit.

  9. Angle-resolved spectroscopy study of Ni-based superconductor SrNi2As2

    NASA Astrophysics Data System (ADS)

    Zeng, L.-K.; Richard, P.; van Roekeghem, A.; Yin, J.-X.; Wu, S.-F.; Chen, Z. G.; Wang, N. L.; Biermann, S.; Qian, T.; Ding, H.

    2016-07-01

    We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi2As2 . Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experimental electronic band structure of SrNi2As2 is in good agreement with first-principles calculations after a slight renormalization (by a factor 1.1), confirming the picture of Hund's exchange-dominated electronic correlations decreasing with increasing filling of the 3 d shell in the Fe-, Co-, and Ni-based compounds. These findings emphasize the importance of Hund's coupling and 3 d -orbital filling as key tuning parameters of electronic correlations in transition-metal pnictides.

  10. Tracer diffusion of /sup 60/Co and /sup 63/Ni in amorphous NiZr alloy

    SciTech Connect

    Hoshino, K.; Averback, R.S.; Hahn, H.; Rothman, S.J.

    1987-01-01

    Tracer diffusion of /sup 60/Co and /sup 63/Ni in equiatomic amorphous NiZr alloy in the temperature range between 486 and 641/sup 0/K can be described by: D/sub Co/sup */ = 3.7 x 10/sup -7/ exp(-(135 +- 14) kJ mole/sup -1//RT) m/sup 2//sec and D/sub Ni//sup */ = 1.7 x 10/sup -7/ exp(-(140 +- 9) kJ mole/sup -1//RT) m/sup 2//sec. The values of D/sub Ni//sup */ are in reasonable agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion. 27 refs., 2 tabs.

  11. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol-1 L s-1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  12. Synthetic Ni3S2/Ni hybrid architectures as potential contrast agents in MRI

    NASA Astrophysics Data System (ADS)

    Ma, J.; Chen, K.

    2016-04-01

    Traditional magnetic resonance imaging (MRI) contrast agents mainly include superparamagnetic (SPM) iron oxide nanoparticle as T 2 contrast agent for liver and paramagnetic Gd (III)-chelate as T 1 contrast agent for all organs. In this work, weak ferromagnetic kale-like and SPM cabbage-like Ni3S2@Ni hybrid architectures were synthesized and evaluated as potential T 1 MRI contrast agents. Their relatively small r 2/r 1 ratios of 2.59 and 2.38, and high r 1 values of 11.27 and 4.89 mmol‑1 L s‑1 (for the kale-like and cabbage-like Ni3S2@Ni, respectively) will shed some light on the development of new-type MRI contrast agents.

  13. Coastal vulnerability across the Pacific dominated by El Niño-Southern Oscillation

    USGS Publications Warehouse

    Barnard, Patrick L.; Short, Andrew D.; Harley, Mitchell D.; Splinter, Kristen D.; Vitousek, Sean; Turner, Ian L.; Allan, Jonathan; Banno, Masayuki; Bryan, Karin R.; Doria, André; Hansen, Jeff E.; Kato, Shigeru; Kuriyama, Yoshiaki; Randall-Goodwin, Evan; Ruggiero, Peter; Walker, Ian J.; Heathfield, Derek K.

    2015-01-01

    To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

  14. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Barnard, Patrick L.; Short, Andrew D.; Harley, Mitchell D.; Splinter, Kristen D.; Vitousek, Sean; Turner, Ian L.; Allan, Jonathan; Banno, Masayuki; Bryan, Karin R.; Doria, André; Hansen, Jeff E.; Kato, Shigeru; Kuriyama, Yoshiaki; Randall-Goodwin, Evan; Ruggiero, Peter; Walker, Ian J.; Heathfield, Derek K.

    2015-10-01

    To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

  15. Magnetic Irreversibility in VO2/Ni Bilayers

    NASA Astrophysics Data System (ADS)

    de La Venta, Jose; Lauzier, Josh; Sutton, Logan

    The temperature dependence of the coercivity and magnetization of VO2/Ni bilayers was studied. VO2 exhibits a well-known Structural Phase Transition (SPT) at 330-340 K, from a low temperature monoclinic (M) to a high temperature rutile (R) structure. The SPT of VO2 induces an inverse magnetoelastic effect that strongly modifies the coercivity and magnetization of the Ni films. In addition, the growth conditions allow tuning of the magnetic properties. Ni films deposited on top of VO2 (M) show an irreversible change in the coercivity after the first cycle through the high temperature phase, with a corresponding change in the surface morphology of VO2. On the other hand, the Ni films grown on top of VO2 (R) do not show this irreversibility. These results indicate that properties of magnetic films are strongly affected by the strain induced by materials that undergo SPT and that it is possible to control the magnetic properties by tuning the growth conditions.

  16. Surface segregation in Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-12-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith [Phys. Rev. B 45, 493 (1992)] is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  17. Magnetism and superconductivity in MxFe1+yTe1-zSez (M = Cr, Mn, Co, Ni, Cu, and Zn) single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Yang, Z. R.; Li, L.; Zhang, C. J.; Pi, L.; Tan, S.; Zhang, Y. H.

    2011-04-01

    High-quality single crystals with nominal composition M0.05Fe0.95Te0.8Se0.2 (M = Cr, Mn, Co, Ni, Cu, and Zn) have been grown, through which the doping effect on magnetism and superconductivity is studied. Elementary analysis reveals that Cu, Co, and Ni, with smaller ionic radii for valence state 2+, can substitute effectively for Fe with doping levels near 5%. In contrast, the solid solution of Cr, Mn, and Zn in the host system is low. Magnetic and electronic investigations show that the substitution of Co, Ni, or Cu for Fe leads to the formation of spin-glass state and suppression of superconductivity. The superconductivity is partly suppressed by Co doping, while completely destroyed by Ni and Cu doping. Compared with Cu- and Ni-doped samples, the Co-doped sample has the smallest lattice constant, indicating that the superconductivity might be also modulated by the changes of microstructure.

  18. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications

    NASA Astrophysics Data System (ADS)

    Zhao, Chao

    2015-02-01

    An effective molecular-level mixing approach was used to prepare reduced graphene oxide (rGO)/Ni powders, which were directly consolidated into rGO/Ni composites by spark plasma sintering. The rGO/Ni composites were found to exhibit a homogeneous dispersion of rGO and a strong interfacial bonding between the rGO and the Ni matrix. The enhanced interfacial bonding was attributed to the oxygen-mediated bonding generated from the interactions between the residue functional groups of rGO and the Ni atoms. Tensile test revealed that 1.5 wt% rGO/Ni composites demonstrated a 95.2 % increase in tensile strength and a 327.6 % increase in yield strength, while simultaneously retained a 12.1 % of elongation. This study thus proposed an effective way to fabricate rGO/Ni composites with enhanced tensile properties.

  19. The isothermal section of Gd-Ni-Si system at 1070 K

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Manfrinetti, P.; Pani, M.; Provino, A.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-03-01

    The Gd-Ni-Si system has been investigated at 1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: GdNi10Si2, GdNi8Si3, GdNi5Si3, GdNi7Si6, GdNi6Si6, GdNi4Si, GdNi2Si2, GdNiSi3, Gd3Ni6Si2, GdNiSi, GdNiSi2, GdNi0.4Si1.6, Gd2Ni2.35Si0.65, Gd3NiSi2, Gd3NiSi3 and Gd6Ni1.67Si3, has been confirmed. Moreover, five new phases have been identified in this system. The crystal structure for four of them has been determined: Gd2Ni16-12.8Si1-4.2 (Th2Zn17-type), GdNi6.6Si6 (GdNi7Si6-type), Gd3Ni8Si (Y3Co8Si-type) and Gd3Ni11.5Si4.2(Gd3Ru4Ga12-type). The compound with composition ~Gd2Ni4Si3 still remains with unknown structure. Quasi-binary phases, solid solutions, were detected at 1070 K to be formed by the binaries GdNi5, GdNi3, GdNi2, GdNi, GdSi2 and GdSi1.67; while no appreciable solubility was observed for the other binary compounds of the Gd-Ni-Si system. Magnetic properties of the GdNi6Si6, GdNi6.6Si6 and Gd3Ni11.5Si4.2 compounds have also been investigated and are here reported.

  20. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

    PubMed

    Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge; Reier, Tobias; Dresp, Sören; Paul, Benjamin; Krähnert, Ralph; Dau, Holger; Strasser, Peter

    2016-05-01

    Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites.

  1. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    SciTech Connect

    Warren, O.L.

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1{times}1) and (1{times}2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  2. Density functional theory study on Ni-doped MgnNi (n = 1-7) clusters

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Feng; Zhang, Yan; Qi, Kai-Tian; Li, Bing; Zhu, Zheng-He; Sheng, Yong

    2010-03-01

    The possible geometrical and the electronic structures of small MgnNi (n = 1-7) clusters are optimised by the density functional theory with a LANL2DZ basis set. The binding energy, the energy gap, the electron affinity, the dissociation energy and the second difference in energy are calculated and discussed. The properties of MgnNi clusters are also discussed when the number of Mg atom increases.

  3. Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation.

    PubMed

    Evmenenko, Guennadi; Fister, Timothy T; Buchholz, D Bruce; Li, Qianqian; Chen, Kan-Sheng; Wu, Jinsong; Dravid, Vinayak P; Hersam, Mark C; Fenter, Paul; Bedzyk, Michael J

    2016-08-10

    Oxide conversion reactions in lithium ion batteries are challenged by substantial irreversibility associated with significant volume change during the phase separation of an oxide into lithia and metal species (e.g., NiO + 2Li(+) + 2e(-) → Ni + Li2O). We demonstrate that the confinement of nanometer-scale NiO layers within a Ni/NiO multilayer electrode can direct lithium transport and reactivity, leading to coherent expansion of the multilayer. The morphological changes accompanying lithiation were tracked in real-time by in-operando X-ray reflectivity (XRR) and ex-situ cross-sectional transmission electron microscopy on well-defined periodic Ni/NiO multilayers grown by pulsed-laser deposition. Comparison of pristine and lithiated structures reveals that the nm-thick nickel layers help initiate the conversion process at the interface and then provide an architecture that confines the lithiation to the individual oxide layers. XRR data reveal that the lithiation process starts at the top and progressed through the electrode stack, layer by layer resulting in a purely vertical expansion. Longer term cycling showed significant reversible capacity (∼800 mA h g(-1) after ∼100 cycles), which we attribute to a combination of the intrinsic bulk lithiation capacity of the NiO and additional interfacial lithiation capacity. These observations provide new insight into the role of metal/metal oxide interfaces in controlling lithium ion conversion reactions by defining the relationships between morphological changes and film architecture during reaction. PMID:27419860

  4. Ni-Al2O3 and Ni-Al composite high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Sorrell, Melford; Kelly, Kevin W.; Ma, Evan

    1998-09-01

    High-aspect-ratio microstructures (HARMs) have a variety of potential applications in heat transfer, fluid mechanics, catalysts and other microelectromechanical systems (MEMS). The aim of this work is to demonstrate the feasibility to fabricate high performance particulate metal-matrix composite and intermetallic micromechanical structures using the LIGA process. Well-defined functionally graded Ni-Al2O3 and Ni-Al high-aspect-ratio microposts were electroformed into lithographically patterned PMMA holes from a nickel sulfamate bath containing submicron alumina and a diluted Watts bath containing microsized aluminum particles, respectively. SEM image analysis showed that the volume fraction of the alumina reached up to around 30% in the Ni-Al2O3 deposit. The Vickers microhardness of these composites is in the range of 418 through 545, which is higher than those of nickel microstructures from a similar particle-free bath and other Ni-based electrodeposits. In the work on Ni-Al electroplating, a newly developed diluted Watts bath was used to codeposit micron-sized aluminum particles. The intermetallic compound Ni3Al was formed by the reaction of nickel matrices and aluminum particles through subsequent annealing at 630 degrees Celsius. WDS and XRD analyses confirmed that the annealed coating is a two-phase (Ni-Ni3Al) composite. The maximum aluminum volume fraction reached 19% at a cathode current density of 12 mA cm-2, and the Vickers microhardness of the as-deposited coatings is in the range 392 - 515 depending on the amount of aluminum incorporated.

  5. Characteristics of Reactive Ni3Sn4 Formation and Growth in Ni-Sn Interlayer Systems

    NASA Astrophysics Data System (ADS)

    Lis, Adrian; Kenel, Christoph; Leinenbach, Christian

    2016-06-01

    The near-isothermal growth and formation of Ni3Sn4 intermetallic compounds (IMC) in Ni-Sn interlayer systems was studied in the solid state at 473 K (200 °C) and under solid-liquid conditions at 523 and 573 K (250 °C and 300 °C) from an initial state of a few seconds. Scalloped solid-state IMC formation was mainly driven by grain boundary diffusion of Ni through the IMC layer combined with the grain coarsening of the IMC layer. Under solid-liquid conditions, the formation of faceted and needle-shaped Ni3Sn4 grains as well as an atypical IMC growth behavior with similar parabolic growth constants for 523 K and 573 K (250 °C and 300 °C) was observed within the first 180 seconds of the holding time, and IMC growth occurred as an isothermal solidification from the Ni-saturated Sn melt. Due to the progressive densification of the IMC layer and the diffusion-controlled growth, the kinetics slowed down by approximately one order of magnitude after 180 seconds of annealing. The final stage was characterized by the formation of IMC islands ahead of the interfacial Ni3Sn4 layer. Needle-like IMC growth was effectively suppressed under combined solid-state and solid-liquid conditions. Textured Ni3Sn4 IMC formation at the Ni-Sn interface was approved with pole figure measurements. The activation energy Q for solid-liquid IMC formation was calculated as 43.3 kJ/mol, and processing maps for IMC growth and Sn consumption were derived as functions of temperature and time, respectively.

  6. Hard X-ray photoelectron spectroscopy of Li{sub x}Ni{sub 1−x}O epitaxial thin films with a high lithium content

    SciTech Connect

    Kumara, L. S. R. Yang, Anli; Sakata, Osami; Yamauchi, Ryosuke; Matsuda, Akifumi; Yoshimoto, Mamoru; Taguchi, Munetaka

    2014-07-28

    The core-level and valence-band electronic structures of Li{sub x}Ni{sub 1−x}O epitaxial thin films with x = 0, 0.27, and 0.48 were studied by hard X-ray photoelectron spectroscopy. A double peak structure, consisting of a main peak and a shoulder peak, and a satellite structure were observed in the Ni 2p{sub 3/2} core-level spectra. The intensity ratio of the shoulder to main peak in this double peak structure increased with increasing lithium content in Li{sub x}Ni{sub 1−x}O. This lithium doping dependence of the Ni 2p{sub 3/2} core-level spectra was investigated using an extended cluster model, which included the Zhang–Rice (ZR) doublet bound states arising from a competition between O 2p – Ni 3d hybridization and the Ni on-site Coulomb interaction. The results indicated that the change in the intensity ratio in the main peak is because of a reduction in the ZR doublet bound states from lithium substitutions. This strongly suggests that holes compensating Li doping in Li{sub x}Ni{sub 1−x}O are of primarily ZR character.

  7. Screening of the antidepressant-like effect of the traditional Chinese medicinal formula Si-Ni-San and their possible mechanism of action in mice

    PubMed Central

    Yi, Li-Tao; Li, Jing; Liu, Bin-Bin; Li, Cheng-Fu

    2013-01-01

    Background: The traditional Chinese medicine formula Si-Ni-San has well therapeutic applications in improvement of mental diseases including depression. However, the neuropharmacological and neuroendocrine mechanisms of the formula on antidepressant-like action have not been reported. Objective: Herein, we explored the antidepressant-like effect and its mechanism of Si-Ni-San. Materials and Methods: Acute effect of Si-Ni-San on the immobility time was assessed in the mouse forced swim test (FST) and tail suspension test (TST). Moreover, we investigated the neurochemical, neuroendocrine, and neurotrophin systems involved in the antidepressant-like effect of this formula. Results: Si-Ni-San significantly decreased the immobility time after acute treatment in the mouse TST (1300 mg/kg) but not in the FST compared with the control group. In addition, pretreatment of mice with PCPA or AMPT prevented the anti-immobility effect of Si-Ni-San (1300 mg/kg) in the TST. Moreover, acute Si-Ni-San (1300 mg/kg) decreased serum corticosterone levels, elevated serotonin (5-HT), norepinephrine (NE), and dopamine (DA) levels without affecting brain-derived neurotrophic factor (BDNF) levels in the whole brain exposed to TST. Conclusion: The acute antidepressant-like action of Si-Ni-San is mediated by the monoaminergic and neuroendocrine systems although underlying mechanism still remains to be further elucidated, and this formula should be further investigated as an alternative therapeutic approach for the treatment of depression. PMID:23598923

  8. Multidrug resistance protein gene expression in Trichoplusia ni caterpillars.

    PubMed

    Simmons, Jason; D'Souza, Olivia; Rheault, Mark; Donly, Cam

    2013-02-01

    Many insect species exhibit pesticide-resistant phenotypes. One of the mechanisms capable of contributing to resistance is the overexpression of multidrug resistance (MDR) transporter proteins. Here we describe the cloning of three genes encoding MDR proteins from Trichoplusia ni: trnMDR1, trnMDR2 and trnMDR3. Real-time quantitative PCR (qPCR) detected trnMDR mRNA in the whole nervous system, midgut and Malpighian tubules of final instar T. ni caterpillars. To test whether these genes are upregulated in response to chemical challenge in this insect, qPCR was used to compare trnMDR mRNA levels in unchallenged insects with those of insects fed the synthetic pyrethroid, deltamethrin. Only limited increases were detected in a single gene, trnMDR2, which is the most weakly expressed of the three MDR genes, suggesting that increased multidrug resistance of this type is not a significant part of the response to deltamethrin exposure.

  9. Single-particle and collective excitations in 62Ni

    NASA Astrophysics Data System (ADS)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Gellanki, J.; Ragnarsson, I.; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; David, H. M.; Deacon, A. N.; DiGiovine, B.; Gade, A.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.

    2016-09-01

    Background: Level sequences of rotational character have been observed in several nuclei in the A =60 mass region. The importance of the deformation-driving π f7 /2 and ν g9 /2 orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Method: The 26Mg(48Ca,2 α 4 n γ )62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A ) and charge (Z ) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A =60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f7 /2 protons and g9 /2 neutrons, driving the nucleus to sizable prolate deformation.

  10. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  11. Chiral Three-Dimensional Microporous Nickel Aspartate with Extended Ni-O-Ni Bonding

    SciTech Connect

    Anokhina,E.; Go, Y.; Lee, Y.; Vogt, T.; Jacobson, A.

    2006-01-01

    In the course of our investigation aimed at the preparation of homochiral coordination polymers using readily available in optically pure form ligands and building blocks of condensed metal polyhedra, we recently reported a one-dimensional nickel aspartate compound [Ni{sub 2}O(L-Asp)(H{sub 2}O){sub 2}]{center_dot}4H{sub 2}O (1) based on helical chains with extended Ni-O-Ni bonding. Here we report a new nickel aspartate [Ni{sub 2.5}(OH)(L-Asp){sub 2}]{center_dot}6.55H{sub 2}O (2) with a three-dimensional Ni-O-Ni connectivity that forms at a higher pH and is based on the same helices as in 1 which are connected by additional nickel octahedra to generate a chiral open framework with one-dimensional channels with minimum van der Waals dimensions of 8 x 5 Angstroms. The crystal structure of 2 was determined by synchrotron single-crystal X-ray diffraction on a 10 x 10 x 240 {micro}m crystal.

  12. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  13. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  14. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  15. Probing antiferromagnetism in NiMn/Ni/(Co)/Cu3Au(001) single-crystalline epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Yaqoob Khan, M.; Wu, Chii-Bin; Erkovan, Mustafa; Kuch, Wolfgang

    2013-01-01

    Antiferromagnetism of equi-atomic single-crystalline NiMn thin film alloys grown on Ni/Cu3Au(001) is probed by means of magneto-optical Kerr effect (MOKE). Thickness-dependent coercivity (HC) enhancement of polar MOKE measurements in NiMn/Ni/Cu3Au(001) shows that ˜7 atomic monolayers (MLs) NiMn order antiferromagnetically at room temperature. It is found that NiMn can couple to out-of-plane (OoP) as well as in-plane (IP) magnetized Ni films, the latter stabilized by Co under-layer deposition. The antiferromagnetic (AFM) ordering temperature (TAFM) of NiMn coupled to OoP Ni is found to be much higher (up to 110 K difference) than in the IP case, for similar interfacial conditions. This is attributed to a magnetic proximity effect in which the ferromagnetic (FM) layer substantially influences TAFM of the adjacent AFM layer, and can be explained by either (i) a higher interfacial coupling strength and/or (ii) a thermally more stable NiMn spin structure when coupled to Ni magnetized in OoP direction than in IP. An exchange-bias effect could only be observed for the thickest NiMn film studied (35.7 ML); the exchange-bias field is higher in the OoP exchange-coupled system than in the IP one, possibly due to the same reason/s.

  16. Probing antiferromagnetism in NiMn/Ni/(Co)/Cu3Au(001) single-crystalline epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Yaqoob Khan, M.; Wu, Chii-Bin; Kuch, Wolfgang

    2012-02-01

    Antiferromagnetism of equi-atomic single-crystalline NiMn thin film alloys grown on Ni/Cu3Au(001) is probed by means of magneto-optical Kerr effect (MOKE). Thickness-dependent coercivity enhancement of NiMn/Ni/Cu3Au(001) showed that 7 atomic monolayers (ML) NiMn order antiferromagnetically at room temperature. It is found that NiMn can couple to out-of-plane (OoP) as well as in-plane (IP) magnetized Ni, the latter stabilized by Co under-layer deposition. The antiferromagnetic (AFM) ordering temperature (TAFM) of NiMn coupled to OoP Ni is found to be much higher (up to 110 K) than in the IP case, for otherwise identical interfacial conditions. This is attributed to the `magnetic proximity effect' in which the ferromagnetic (FM) layer substantially influences the TAFM of the adjacent AFM layer and can be explained by either (i) a higher interfacial coupling strength or/and (ii) more thermally stable NiMn distorted spin structure when coupled to Ni magnetized in OoP direction than in IP. An exchange-bias effect could only be observed for the thickest NiMn film studied (35.7 ML); the exchange-bias field is higher in the OoP exchange-coupled system than in the IP one due to the same reason/s.

  17. Controlled synthesis of Ni/CuOx/Ni nanowires by electrochemical deposition with self-compliance bipolar resistive switching

    PubMed Central

    Park, Kyuhyun; Lee, Jang-Sik

    2016-01-01

    We demonstrate synthesis of Ni/CuOx/Ni nanowires (NWs) by electrochemical deposition on anodized aluminum oxide (AAO) membranes. AAO with pore diameter of ~70 nm and pore length of ~50 μm was used as the template for synthesis of NWs. After deposition of Au as the seed layer, NWs with a structure of Ni/CuOx/Ni were grown with a length of ~12 μm. The lengths of 1st Ni, CuOx, and 2nd Ni were ~4.5 μm, ~3 μm, and ~4.5 μm, respectively. The Ni/CuOx/Ni device exhibits bipolar resistive switching behavior with self-compliance characteristics. Due to the spatial restriction of the current path in NW the Ni/CuOx/Ni NW devices are thought to exhibit self-compliance behaviour. Ni/CuOx/Ni NWs showed bipolar resistive changes possibly due to conducting filaments that are induced by oxygen vacancies. The reliability of the devices was confirmed by data retention measurement. The NW-based resistive switching memory has applications in highly scalable memory devices and neuromorphic devices. PMID:26975330

  18. Studies on the Sliding Wear Performance of Plasma Spray Ni-20Cr and Ni3Al Coatings

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Singh, Harpreet; Singh, Balraj; Singh, Bhupinder

    2010-01-01

    Two metallic powders namely Ni-20Cr and Ni3Al were coated on AISI 309 SS steel by shrouded plasma spray process. The wear behavior of the bare, Ni-20Cr and Ni3Al-coated AISI 309 SS steel was investigated according to ASTM Standard G99-03 on a Pin-on-Disc Wear Test Rig. The wear tests were carried out at normal loads of 30 and 50 N with a sliding velocity of 1 m/s. Cumulative wear rate and coefficient of friction (μ) were calculated for all the cases. The worn-out surfaces were then examined by scanning electron microscopy analysis. Both the as-sprayed coatings exhibited typical splat morphology. The XRD analysis indicated the formation of Ni phase for the Ni-20Cr coating and Ni3Al phase for the Ni3Al coating. It has been concluded that the plasma-sprayed Ni-20Cr and Ni3Al coatings can be useful to reduce the wear rate of AISI 309 SS steel. The coatings were found to be adherent to the substrate steel during the wear tests. The plasma-sprayed Ni3Al coating has been recommended as a better choice to reduce the wear of AISI 309 SS steel, in comparison with the Ni-20Cr coating.

  19. Constitution of the Sr-Ni-O system

    SciTech Connect

    Zinkevich, M. . E-mail: zinkevich@mf.mpg.de

    2005-09-15

    The constitution of the Sr-Ni-O system was studied experimentally for the first time. Samples were prepared either from SrCO{sub 3} and NiO or from Sr(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}.6H{sub 2}O and characterized by high-temperature X-ray powder diffraction, scanning electron microscopy, thermogravimetric and differential thermal analyses. In the SrO-NiO quasibinary system an eutectic reaction: liquid-bar SrO+NiO was found to occur at 1396+/-5{sup o}C, while the homogeneity range of terminal solid solutions is negligible. Thermodynamic calculations using the regular solution model for the liquid and rocksalt-type phases were employed to predict liquidus and solidus curves. Three ternary compounds, SrNiO{sub 2.5}, Sr{sub 5}Ni{sub 4}O{sub 11}, and Sr{sub 9}Ni{sub 7}O{sub 21} were observed in the samples prepared from nitrate solutions, but only Sr{sub 9}Ni{sub 7}O{sub 21} was proved to be thermodynamically stable in air up to 1030+/-6{sup o}C. When heating in air, SrNiO{sub 2.5} and Sr{sub 5}Ni{sub 4}O{sub 11} were found to transform irreversibly into a mixture of Sr{sub 9}Ni{sub 7}O{sub 21} and NiO. Isothermal section of the SrO-NiO-O subsystem, which represents phase equilibria at 950-1030{sup o}C as well as an isobaric section of the Sr-Ni-O system in air were constructed.

  20. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    PubMed

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of <1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of <1, 1 to <3 and 3 to <6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  1. Spatially resolved resistance of NiO nanostructures under humid environment

    SciTech Connect

    Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F; Muckley, Eric S; Joshi, Pooran C; Ivanov, Ilia N

    2016-01-01

    The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5 G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.

  2. Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Haq, Bakhtiar Ul; Ahmed, Rashid; Abdellatif, Galila; Shaari, Amiruddin; Butt, Faheem K.; Kanoun, Mohammed Benali; Goumri-Said, Souraya

    2016-02-01

    The low magnetic moment (MM) in diluted magnetic semiconductors (DMS) at low impurity doping levels has triggered considerable research into condensed magnetic semiconductors (CMS).This work reports an ab-initio investigation of the electronic structures and magnetic properties of ZnO in a zinc-blende (ZB) structure doped with nickel ions. Ni-doped ZnO-based DMS and CMS exhibit a dominance of ferromagnetic coupling over antiferromagnetic. A robust increase in the magnetization has been observed as a function of Ni impurity levels. This material favors short-range magnetic interactions at the ground state, suggesting that the observed ferromagnetism is defined by the double exchange mechanism. The spin-polarized density of states (DOS) of Ni-doped ZnO characterizes it as half-metallic with a considerable energy gap for up-spin components and as metallic for-down spins. Half-metallic Ni:ZnO based magnetic semiconductors with high magnetization are expected to have potential applications in spintronics.

  3. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  4. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  5. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated.

  6. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    PubMed

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively.

  7. Revealing the effects of the El Niño-southern oscillation on tropical cyclone intensity over the western north pacific from a model sensitivity study

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Jiang, Jing; Lu, Youyu; Huang, Anning

    2013-07-01

    Five sets of model sensitivity experiments are conducted to investigate the influence of tropical cyclone (TC) genesis location and atmospheric circulation on interannual variability of TC intensity in the western North Pacific (WNP). In each experiment, bogus TCs are placed at different initial locations, and simulations are conducted with identical initial and boundary conditions. In the first three experiments, the specified atmospheric and SST conditions represent the mean conditions of El Niño, La Niña, and neutral years. The other two experiments are conducted with the specified atmospheric conditions of El Niño and La Niña years but with SSTs exchanged. The model results suggest that TCs generated in the southeastern WNP incurred more favorable environmental conditions for development than TCs generated elsewhere. The different TC intensities between El Niño and La Niña years are caused by difference in TC genesis location and low-level vorticity (VOR). VOR plays a significant role in the intensities of TCs with the same genesis locations between El Niño and La Niña years.

  8. Structural, electronic structure, and band alignment properties at epitaxial NiO/Al2O3 heterojunction evaluated from synchrotron based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Singh, S. D.; Nand, Mangla; Das, Arijeet; Ajimsha, R. S.; Upadhyay, Anuj; Kamparath, Rajiv; Shukla, D. K.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K.; Jha, S. N.; Phase, D. M.; Ganguli, Tapas

    2016-04-01

    The valence band offset value of 2.3 ± 0.2 eV at epitaxial NiO/Al2O3 heterojunction is determined from photoelectron spectroscopy experiments. Pulsed laser deposited thin film of NiO on Al2O3 substrate is epitaxially grown along [111] direction with two domain structures, which are in-plane rotated by 60° with respect to each other. Observation of Pendellosung oscillations around Bragg peak confirms high interfacial and crystalline quality of NiO layer deposited on Al2O3 substrate. Surface related feature in Ni 2p3/2 core level spectra along with oxygen K-edge soft X-ray absorption spectroscopy results indicates that the initial growth of NiO on Al2O3 substrate is in the form of islands, which merge to form NiO layer for the larger coverage. The value of conduction band offset is also evaluated from the measured values of band gaps of NiO and Al2O3 layers. A type-I band alignment at NiO and Al2O3 heterojunction is also obtained. The determined values of band offsets can be useful in heterojunction based light emitting devices.

  9. Layer-Resolved Magnetic Moments in Ni/Pt Multilayers

    NASA Astrophysics Data System (ADS)

    Wilhelm, F.; Poulopoulos, P.; Ceballos, G.; Wende, H.; Baberschke, K.; Srivastava, P.; Benea, D.; Ebert, H.; Angelakeris, M.; Flevaris, N. K.; Niarchos, D.; Rogalev, A.; Brookes, N. B.

    2000-07-01

    The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically ``dead'' Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.

  10. Detection of Ni 2 lambda 7378 in six Seyfert galaxies

    SciTech Connect

    Halpern, J.P.; Oke, J.B.

    1985-01-01

    A line due to Ni 2 7378 in the Seyfert galaxies NGC 1068, 2110, 3227, 4151, 5506, and Arp 102 B was detected. The average Ni abundance is about 2 times solar, which is 5 times less than in the filaments of the Crab Nebula. This argues for nucleosynthetic processing in the latter. The Ni 2 line is spatially revolved in NGC 1068, and shows at least a factor of 4 enhancement in the Ni abundance away from the nucleus. The off-nuclear abundance of Ni in NGC 1068 approaches that of the Crab, which strongly suggests that type supernovae enriched the off-nuclear gas clouds.

  11. Creep in Directionally Solidified NiAl-Mo Eutectics

    SciTech Connect

    Dudova, Marie; Kucharova, Kveta; Bartak, Tomas; Bei, Hongbin; George, Easo P; Somsen, Ch.; Dlouhy, A.

    2011-01-01

    A directionally solidified NiAl-Mo eutectic and an NiAl intermetallic, having respective nominal compositions Ni-45.5Al-9Mo and Ni-45.2Al (at.%), were loaded in compression at 1073 and 1173 K. Formidable strengthening by regularly distributed Mo fibres (average diameter 600 nm, volume fraction 14%) was observed. The fibres can support compression stresses transferred from the plastically deforming matrix up to a critical stress of the order of 2.5 GPa, at which point they yield. Microstructural evidence is provided for the dislocation-mediated stress transfer from the NiAl to the Mo phase.

  12. In Situ XAS of Ni-W Hydrocracking Catalysts

    SciTech Connect

    Yang, N.; Mickelson, G. E.; Greenlay, N.; Bare, Simon R.; Kelly, S. D.

    2007-02-02

    Ni-W based catalysts are very attractive in hydrotreating of heavy oil due to their high hydrogenation activity. In the present research, two catalyst samples, prepared by different methods, that exhibit significant differences in activity were sulfided in situ, and the local structure of the Ni and W were studied using X-ray absorption spectroscopy (XAS). The Ni XANES spectra were analyzed using a linear component fitting, and the EXAFS spectra of the WS2 platelets in the sulfided catalysts were modeled. The Ni and W are fully sulfided in the higher activity sample, and there are both unsulfided Ni ({approx}25%) and W (<10%) in the lower activity sample.

  13. The Influence of C and Si on the Flow Behavior of NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Alloys based on the intermetallic compound NiAl are considered potential replacements for Ni and Co-based superalloys in high temperature structural applications due to their excellent oxidation resistance, low densities, high thermal conductivities, and increased melting points. Unfortunately, NiAl exhibits low tensile ductility at room temperature and low strengths at elevated temperatures which have combined to hinder its development. Recent efforts, have revealed that NiAl in the presence of sufficient solute levels, is subject to the phenomenon of strain aging which manifests itself as: sharp yield points, abnormally low strain rate sensitivities (SRS), plateaus or peaks in yield stress and work hardening rate as a function of temperature, flow stress transients upon an upward change in strain rate, reduced tensile elongations at elevated temperatures, and serrated stress-strain curves. Though recent efforts via either alloying or the removal of interstitial impurities, have resulted in consistent room-temperature tensile elongations exceeding 5% and the elimination of serrated flow, the effects of particular substitutional and interstitial elements and the mechanisms by which they might enhance or hinder the mechanical properties remain unknown. Consequently, the purpose of the present paper is to provide a preliminary assessment of the influence of common substitutional and interstitial impurities on the deformation behavior of NiAl. To accomplish this goal a series of NiAl single crystal alloys containing various interstitial solutes were prepared and their mechanical properties were evaluated between 77 and 1100 K. Because Si is a common impurity in conventional purity single crystals grown by the Bridgman method, Si concentrations were also varied in order to determine the influence of this element.

  14. Thin absorber EUV photomask based on mixed Ni and TaN material

    NASA Astrophysics Data System (ADS)

    Hay, Derrick; Bagge, Patrick; Khaw, Ian; Sun, Lei; Wood, Obert; Chen, Yulu; Kim, Ryoung-han; Qi, Zhengqing John; Shi, Zhimin

    2016-05-01

    Lithographic patterning at the 7 and 5 nm nodes will likely require EUV (λ=13.5 nm) lithography for many of the critical levels. All optical elements in an EUV scanner are reflective which requires the EUV photomask to be illuminated at an angle to its normal. Current scanners have an incidence of 6 degree, but future designs will be <6 degrees for high-NA systems. Non-telecentricity has been shown to cause H-V bias due to shadowing, pattern shift through focus, and image contrast lost due to apodization by the reflective mask coating. A thinner EUV absorber can dramatically reduce these issues. Ni offers better EUV absorption than Ta-based materials, which hold promise as a thinner absorber candidate. Unfortunately, the challenge of etching Ni has prevented its adoption into manufacturing. We propose a new absorber material that infuses Ni nanoparticles into the TaN host medium, allowing for the use of established Ta etching chemistry. A thinner is absorber is created due to the enhanced absorption properties of the Ni-Ta nano-composite material. Finite integral method and effective medium theory-based transfer matrix method have been independently developed to analyze the performance of the nano-composite absorption layer. We show that inserting 15% volume fraction Ni nanoparticles into 40-nm of TaN absorber material can reduce the reflection below 2% over the EUV range. Numerical simulations confirm that the reduced reflectivity is due to the increased absorption of Ni, while scattering only contributes to approximately 0.2% of the reduction in reflectivity.

  15. Host suitability of Phaseolus lunata for Trichoplusia ni (lepidoptera: noctuidae) in controlled carbon dioxide atmospheres

    SciTech Connect

    Osbrink, W.L.A.; Trumble, J.T.; Wagner, R.E.

    1987-06-01

    Elevated atmospheric carbon dioxide (CO/sub 2/) levels of 1000 parts per million (ppm) significantly increased consumption of foliage by Trichoplusia ni (Huebner) and significantly enhanced growth of Phaseolus lunata L. when compared with ambient levels of 340 ppm. Mean pupal weight was less under treatments with elevated atmospheric CO/sub 2/ under a high fertilization regime, but larval survival and percent nitrogen content of pupae were not affected by level of CO/sub 2/ treatments at high, medium, or low fertilizer rates. Regardless of CO/sub 2/ concentration, larval survival and pupal weight were reduced in absence of fertilizer. Nitrogen and protein consumption increased with fertilization rate. Because percent leaf area of plants consumed by T. ni larvae was not affected by CO/sub 2/ concentration, this study suggests that increased plant growth resulting from elevated atmospheric CO/sub 2/ may benefit the plant proportionately more than the insect.

  16. Improving the Ni I atomic model for solar and stellar atmospheric models

    SciTech Connect

    Vieytes, M. C.; Fontenla, J. M. E-mail: johnf@digidyna.com

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  17. The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches

    USGS Publications Warehouse

    Barnard, Patrick L.; Allan, Jonathan; Hansen, Jeff E.; Kaminsky, George M.; Ruggiero, Peter; Doria, André

    2011-01-01

    High-resolution beach morphology data collected along much of the U.S. West Coast are synthesized to evaluate the coastal impacts of the 2009–10 El Niño. Coastal change observations were collected as part of five beach monitoring programs that span between 5 and 13 years in duration. In California, regional wave and water level data show that the environmental forcing during the 2009–10 winter was similar to the last significant El Niño of 1997–98, producing the largest seasonal shoreline retreat and/or most landward shoreline position since monitoring began. In contrast, the 2009–10 El Niño did not produce anomalously high mean winter-wave energy in the Pacific Northwest (Oregon and Washington), although the highest 5% of the winter wave-energy measurements were comparable to 1997–98 and two significant non-El Niño winters. The increase in extreme waves in the 2009–10 winter was coupled with elevated water levels and a more southerly wave approach than the long-term mean, resulting in greater shoreline retreat than during 1997–98, including anomalously high shoreline retreat immediately north of jetties, tidal inlets, and rocky headlands. The morphodynamic response observed throughout the U.S. West Coast during the 2009–10 El Niño is principally linked to the El Niño Modoki phenomena, where the warm sea surface temperature (SST) anomaly is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Niño), featuring a more temporally persistent SST anomaly that results in longer periods of elevated wave energy but lower coastal water levels.

  18. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  19. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  20. Electronic fine structure in the nickel carbide superconductor Th2NiC2

    NASA Astrophysics Data System (ADS)

    Quan, Y.; Pickett, W. E.

    2013-07-01

    The recently reported nickel carbide superconductor body centered tetragonal I4/mmm Th2NiC2 with Tc=8.5 K increasing to 11.2 K upon alloying Th with Sc is found to have very fine structure in its electronic spectrum, according to density functional based first-principles calculations. The filled Ni 3d band complex is hybridized with C 2p and Th character to and through the Fermi level (EF), and a sharply structured density of states arises only when spin-orbit coupling is included, which splits a zone-center degeneracy, leaving a very flat band edge lying at the Fermi level. The flat part of the band corresponds to an effective mass mz*→∞ with large and negative mx*=my*. Although the region over which the effective mass characterization applies is less than 1% of the zone volume, it supplies on the order of half the states at (or just above) the Fermi level. The observed increase of Tc by hole doping is accounted for if the reference as-synthesized sample is minutely hole doped, which decreases the Fermi level density of states and will provide some stabilization. In this scenario, electron doping will increase the Fermi level density of states and the superconducting critical temperature. Vibrational properties are presented, and enough coupling to the C-Ni-C stretch mode at 70 meV is obtained to imply that superconductivity is electron-phonon mediated.

  1. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance

    NASA Astrophysics Data System (ADS)

    Dawson, J. A.; Guo, Y.; Robertson, J.

    2015-09-01

    Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at the operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.

  2. Energetics of intrinsic defects in NiO and the consequences for its resistive random access memory performance

    SciTech Connect

    Dawson, J. A. Guo, Y.; Robertson, J.

    2015-09-21

    Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at the operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.

  3. Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods.

    PubMed

    Dong, Geng; Ryde, Ulf

    2016-06-01

    The [NiFe] hydrogenases catalyse the reversible conversion of H2 to protons and electrons. The active site consists of a Fe ion with one carbon monoxide, two cyanide, and two cysteine (Cys) ligands. The latter two bridge to a Ni ion, which has two additional terminal Cys ligands. It has been suggested that one of the Cys residues is protonated during the reaction mechanism. We have used combined quantum mechanical and molecular mechanics (QM/MM) geometry optimisations, large QM calculations with 817 atoms, and QM/MM free energy simulations, using the TPSS and B3LYP methods with basis sets extrapolated to the quadruple zeta level to determine which of the four Cys residues is more favourable to protonate for four putative states in the reaction mechanism, Ni-SIa, Ni-R, Ni-C, and Ni-L. The calculations show that for all states, the terminal Cys-546 residue is most easily protonated by 14-51 kJ/mol, owing to a more favourable hydrogen-bond pattern around this residue in the protein. PMID:26940957

  4. Disorder dependence of the magnetic moment of the half-metallic ferromagnet NiMnSb from first principles

    SciTech Connect

    Orgassa, D.; Fujiwara, H.; Schulthess, T. C.; Butler, W. H.

    2000-05-01

    Using half-metallic ferromagnets in spin-dependent devices, like spin valves and ferromagnetic tunnel junctions, is expected to increase the device performance. However, using the half-metallic ferromagnet NiMnSb in such devices led to much less than ideal results. One of the possible sources for this behavior is atomic disorder. First-principles calculations of the influence of atomic disorder on the electronic structure of NiMnSb underline the sensitivity of half-metallic properties in NiMnSb to atomic disorder. In this article, we report on the disorder dependence of the total magnetic moment calculated by applying the layer Korringa-Kohn-Rostoker method in conjunction with the coherent potential approximation. We consider the following types of disorder: (1) intermixing of Ni and Mn, (2) partial occupancy of a normally vacant lattice site by Ni and Mn, and (3) partial occupancy of this site by Mn and Sb. In all cases the composition is kept stoichiometric. All three types of disorder decrease the moment monotonically with increasing disorder levels. For the experimentally seen disorder of 5% Mn and 5% Sb on the normally vacant lattice site, the total moment is decreased by 4.1%. The results suggest that precise measurement of the saturation magnetization of NiMnSb thin films can give information on the disorder. (c) 2000 American Institute of Physics.

  5. Experimental valence-band study of Ti(NiCu) alloys with different compositions and crystal structures

    NASA Astrophysics Data System (ADS)

    Senkovskiy, B. V.; Usachev, D. Yu.; Fedorov, A. V.; Shelyakov, A. V.; Adamchuk, V. K.

    2012-08-01

    The density of valence-band electronic states of Ti(NiCu) alloys with different crystal structures and elemental compositions has been studied by X-ray photoelectron spectroscopy. It has been established that the change in the crystal state initiated by a martensitic transformation or a transition from the amorphous state to the crystal state does not affect the valence-band electronic state density distribution of the Ti50Ni50 and Ti50Ni25Cu25 alloys. It has been shown that a change in the elemental composition leads to a noticeable redistribution of the electronic density in alloys of the Ti50Ni50 - x Cu x system ( x = 0, 10, 15, 25, 30, 38, 50 at. %). As the copper concentration in the Ti(NiCu) alloys increases, the contribution of the Ni d states in the vicinity of the Fermi level decreases, with the d band of nickel shifting toward higher binding energies, and that of copper, toward lower binding energies.

  6. State of Supported Nanoparticle Ni during Catalysis in Aqueous Media

    SciTech Connect

    Chase, Zizwe; Vjunov, Aleksei; Fulton, John; Camaioni, Donald; Balasubramanian, Mahalingam; Lercher, Johannes

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was studied during aqueous-phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy. On sulfonated carbon and HZSM-5 supports, NiO and Ni(OH)(2) were readily reduced to Ni-0 under reaction conditions (approximate to 35bar H-2 in aqueous phenol solutions containing up to 0.5wt.% phosphoric acid at 473K). In contrast, Ni supported on SiO2 was not stable in a fully reduced Ni-0 state. Water enables the formation of Ni-II phyllosilicate, which is more stable, that is, difficult to reduce, than either -Ni(OH)(2) or NiO. Leaching of Ni from the supports was not observed over a broad range of reaction conditions. Ni-0 particles on HZSM-5 were stable even in presence of 15wt.% acetic acid at 473K and 35bar H-2.

  7. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    PubMed

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  8. 1200 to 1400 K slow strain rate compressive behavior of small grain size NiAl/Ni2AlTi alloys and NiAl/Ni2AlTi-TiB2 composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Kumar, K. S.

    1989-01-01

    In order to impart ductility into NiAl-Ni2AlTi alloys, small grain size single (Ni-45Al-5Ti) and two (Ni-40Al-10Ti) phase intermetallics are fabricated by a process which yields fine microstructures in NiAl. The results of a study of elevated temperature compressive properties of two small grain size NiAl-Ni2AlTi alloys are then described. In addition, the behavior of the Ti-modified nickel aluminides with 20 vol pct TiB2 particles of approximately 1 micron in diameter is also investigated, since these compositions have the potential for being the matrix material in high temperature particulate-strengthened composites.

  9. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  10. Electronic structure of the members of the electron transfer series [NiL](z) (z = 3+, 2+, 1+, 0) and [NiL(X)](n) (X = Cl, CO, P(OCH(3))(3)) species containing a tetradentate, redox-noninnocent, Schiff base macrocyclic ligand L: an experimental and density functional theoretical study.

    PubMed

    Ghosh, Meenakshi; Weyhermüller, Thomas; Wieghardt, Karl

    2010-02-28

    The electronic structure of the four members of the electron transfer series [NiL](z) (z = 3+, 2+, 1+, 0) have been established experimentally (EPR spectroscopy and X-ray crystallography) and by density functional theoretical (DFT) calculations using the B3LYP functional in conjunction with a conductor-like screening model (COSMO) for acetonitrile solvent effects. L represents a generic designation of the tetradentate macrocycle 2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]-heptadeca-1(17),2,11,13,15-pentane where the true oxidation level is not specified; (L(Ox))(0) represents its neutral form, (L )(1-) is the one-electron reduced pi radical anion, and (L(Red))(2-) is the singlet (or triplet) diradical dianion of this ligand. It is shown that the above series consists of square planar [Ni(III)(L(Ox))](3+) (S = 1/2), [Ni(II)(L(Ox))](2+) (S = 0), [Ni(II)(L )](1+) (S = 1/2), [Ni(II)(L(Red))](0) (S = 0). The structure of [Ni(II)(L(Red))](0) has been determined by X-ray crystallography. The electrochemistry of [Ni(II)(L(Ox))](PF(6))(2) in the presence of hard chloride anions shows the presence of trans-[Ni(III)(L(Ox))Cl(2)](+), the EPR spectrum of which has been recorded and calculated, and of trans-[Ni(II)(L(Ox))Cl(2)](0) (S = 1). Upon further reduction the coordinated Cl(-) ligands dissociate and [Ni(II)(L )](1+) and [Ni(II)(L(Red))](0) are successively generated. Similarly, in the presence of good pi-acceptor ligands such as CO or P(OCH(3))(3) the following five-coordinate, square base pyramidal species are found to be stable: [Ni(I)(L(Ox))(X)](1+) (S = 1/2), [Ni(I)(L )(X)](0) (S = 0, 1) (X = CO, P(OCH(3))(3)). As shown by EPR spectroscopy in the work of J. Lewis and M. Schröder, J. Chem. Soc., Dalton Trans., 1982, 1085, the monocations consist of a central nickel(i) ion (d(9), S(Ni) = 1/2). These spectra have been faithfully reproduced by the calculations. The neutral complexes [Ni(I)(L )(X)](0) are singlet or triplet diradicals comprising a central nickel

  11. Structural models of the bimetallic subunit at the A-cluster of acetyl coenzyme a synthase/CO dehydrogenase: binuclear sulfur-bridged Ni-Cu and Ni-Ni complexes and their reactions with CO.

    PubMed

    Harrop, Todd C; Olmstead, Marilyn M; Mascharak, Pradip K

    2004-11-17

    The Ni(II)-dicarboxamido-dithiolato complexes (Et4N)2[Ni(NpPepS)] (1) and (Et4N)2[Ni(PhPepS)] (2) were used as Nid metallosynthons in the construction of higher nuclearity dinuclear Ni-Cu and Ni-Ni species to model the bimetallic Mp-Nid site of the A-cluster of acetyl coenzyme A synthase/CO dehydrogenase (ACS/CODH). Reaction of 1 with [Cu(neo)Cl] and [Ni(terpy)Cl2] in MeCN affords the dinuclear complexes (Et4N)[Cu(neo)Ni(NpPepS)] (3) and [Ni(terpy)Ni(NpPepS)] (4), respectively. Reaction of 2 with [Ni(dppe)Cl2] in MeCN yields [Ni(dppe)Ni(PhPepS)] (6). The Ni-Cu complex 3 exhibits no redox chemistry at the Nid site and no reaction with CO. In contrast, the Nip sites in 4 and 6 are readily reduced (characterized by their Ni(I) EPR spectra) and bind CO, exhibiting nuco bands at 2044 and 1997 cm-1, respectively, indicating terminal CO binding. The present Ni-Ni systems replicate the structural and chemical properties of the A-cluster site in ACS/CODH and support the presence of Ni at Mp in the catalytically active enzyme.

  12. The Effect of Metal Composition on Fe-Ni Partition Behavior between Olivine and FeNi-Metal, FeNi-Carbide, FeNi-Sulfide at Elevated Pressure

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2005-01-01

    Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.

  13. Fe-Ni composition dependence of magnetic anisotropy in artificially fabricated L1 0-ordered FeNi films.

    PubMed

    Kojima, Takayuki; Ogiwara, Misako; Mizuguchi, Masaki; Kotsugi, Masato; Koganezawa, Tomoyuki; Ohtsuki, Takumi; Tashiro, Taka-Yuki; Takanashi, Koki

    2014-02-12

    We prepared L10-ordered FeNi alloy films by alternate deposition of Fe and Ni monatomic layers, and investigated their magnetic anisotropy. We employed a non-ferromagnetic Au-Cu-Ni buffer layer with a flat surface and good lattice matching to L10-FeNi. An L10-FeNi film grown on Au6Cu51Ni43 showed a large uniaxial magnetic anisotropy energy (Ku = 7.0 × 10(6) erg cm(-)3). Ku monotonically increased with the long-range order parameter (S) of the L10 phase. We investigated the Fe-Ni composition dependence by alternating the deposition of Fe 1 − x and Ni 1 + x monatomic layers (− 0.4 < x < 0.4). Saturation magnetization (Ms) and Ku showed maxima (Ms = 1470 emu cm(-3), Ku = 9.3 × 10(6) erg cm(-3)) for Fe60Ni40 (x = -0.2) while S showed a maximum at the stoichiometric composition (x = 0). The change in the ratio of lattice parameters (c/a) was small for all compositions. We found that enrichment of Fe is very effective to enhance Ku. The large Ms and Ku of Fe60Ni40 indicate that Fe-rich L10-FeNi is promising as a rare-earth-free permanent magnet. PMID:24469082

  14. Ni/YSZ and Ni-CeO 2/YSZ anodes prepared by impregnation for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Qiao, Jinshuo; Sun, Kening; Zhang, Naiqing; Sun, Bing; Kong, Jiangrong; Zhou, Derui

    In this paper, Ni/YSZ and Ni-CeO 2/YSZ anodes for a solid oxide fuel cell (SOFC) were prepared by tape casting and vacuum impregnation. By this method, the Ni content in the anode could be reduced compared to the traditional tape casting method. It was found that adding CeO 2 into the Ni/YSZ anode by a Ni(NO 3) 2 and Ce(NO 3) 3 mixed impregnation could further enhance cell performance. This was investigated in H 2 at 1073 K. XRD patterns indicated that CeO 2 and Ni were separate phases, and the CeO 2 addition could enhance the Ni dispersion on the YSZ framework surface which was observed by SEM images. It was shown that adding CeO 2 into the Ni anodes could decrease the cell polarization resistance. The maximum power density for cells with 25 wt.% Ni, 5 wt.% CeO 2-25 wt.% Ni/YSZ, or 10 wt.% CeO 2-25 wt.% Ni/YSZ anode was 230 mW cm -2, 420 mW cm -2 and 530 mW cm -2, respectively, in H 2 at 1073 K. The OCV for these cells was 1.05-1.09 V, indicating that a dense electrolyte film was obtained by co-firing porous YSZ layer and dense YSZ layer.

  15. Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery

    NASA Astrophysics Data System (ADS)

    Shi, F.; Xie, D.; Zhong, Y.; Wang, D. H.; Xia, X. H.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2016-10-01

    To meet the requirements for high-rate battery with desirable performance, a self-supported Ni2P@Ni sponge electrode is synthesized via simple steps, in which the Ni sponge substrate is synthesized by a one-pot hydrothermal method and the Ni2P nanosheets grown on the novel substrate are converted from Ni(OH)2 via a phosphorization reaction. This hybrid composite combines the 3D porous structure of Ni sponge and high capacity of Ni2P nanosheets, which exhibits lightweight, flexible and highly-conductive properties, resulting in an excellent specific capacity of 430.3 mAh g-1 at a current density of 1 A g-1 and remaining as high as 77.0% capacity even at 40 A g-1. More importantly, the Ni2P@Ni sponge//C cell exhibits the maximum energy density of 182.1 W h kg-1 at a power density of 205 W kg-1 along with superior capacity retention of 85.2% after 3000 cycles. It is suggested that the Ni2P nanosheet@ Ni sponge composite is a promising electrode material for high-rate batteries.

  16. High-frequency permeability of electroplated CoNiFe and CoNiFe-C alloys

    NASA Astrophysics Data System (ADS)

    Rhen, Fernando M. F.; McCloskey, Paul; O'Donnell, Terence; Roy, Saibal

    We have investigated CoNiFe and CoNiFe-C electrodeposited by pulse reverse plating (PRP) and direct current (DC) techniques. CoNiFe(PRP) films with composition Co 59.4Fe 27.7Ni 12.8 show coercivity of 95 A m -1 (1.2 Oe) and magnetization saturation flux ( μ0Ms) of 1.8 T. Resistivity of CoNiFe (PRP) is about 24 μΩ cm and permeability remains almost constant μr' ˜475 up to 30 MHz with a quality factor ( Q) larger than 10. Additionally, the permeability spectra analysis shows that CoNiFe exhibits a classical eddy current loss at zero bias field and ferromagnetic resonance (FMR) when biased with 0.05 T. Furthermore, a crossover between eddy current and FMR loss is observed for CoNiFe-PRP when baised with 0.05 T. DC and PRP plated CoNiFe-C, which have resistivity and permeability of 85, 38 μΩ cm, μr'=165 and 35 with Q>10 up to 320 MHz, respectively, showed only ferromagnetic resonance losses. The ferromagnetic resonance peaks in CoNiFe and CoNiFe-C are broad and resembles a Gaussian distribution of FMR frequencies. The incorporation of C to CoNiFe reduces eddy current loss, but also reduces the FMR frequency.

  17. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  18. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGESBeta

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  19. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    SciTech Connect

    Liu, Bin; Yuan, Fenglin; Jin, Ke; Zhang, Yanwen; Weber, William J.

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atoms and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.

  20. Fe-Ni composition dependence of magnetic anisotropy in artificially fabricated L1 0-ordered FeNi films.

    PubMed

    Kojima, Takayuki; Ogiwara, Misako; Mizuguchi, Masaki; Kotsugi, Masato; Koganezawa, Tomoyuki; Ohtsuki, Takumi; Tashiro, Taka-Yuki; Takanashi, Koki

    2014-02-12

    We prepared L10-ordered FeNi alloy films by alternate deposition of Fe and Ni monatomic layers, and investigated their magnetic anisotropy. We employed a non-ferromagnetic Au-Cu-Ni buffer layer with a flat surface and good lattice matching to L10-FeNi. An L10-FeNi film grown on Au6Cu51Ni43 showed a large uniaxial magnetic anisotropy energy (Ku = 7.0 × 10(6) erg cm(-)3). Ku monotonically increased with the long-range order parameter (S) of the L10 phase. We investigated the Fe-Ni composition dependence by alternating the deposition of Fe 1 − x and Ni 1 + x monatomic layers (− 0.4 < x < 0.4). Saturation magnetization (Ms) and Ku showed maxima (Ms = 1470 emu cm(-3), Ku = 9.3 × 10(6) erg cm(-3)) for Fe60Ni40 (x = -0.2) while S showed a maximum at the stoichiometric composition (x = 0). The change in the ratio of lattice parameters (c/a) was small for all compositions. We found that enrichment of Fe is very effective to enhance Ku. The large Ms and Ku of Fe60Ni40 indicate that Fe-rich L10-FeNi is promising as a rare-earth-free permanent magnet.

  1. On the configurations of the Atlantic Niño phenomenon under negative AMO phases

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Rodríguez de Fonseca, Belen; Polo, Irene; Losada, Teresa; Lazar, Alban

    2016-04-01

    An air-sea coupled mode of inter-annual variability akin to ENSO emerges in the tropical Atlantic basin, named as Atlantic Niño. The teleconnections of the Atlantic Niño phenomenon have changed during recent decades, coinciding with an alteration of its spatial configuration. Previous studies have suggested that the background state could favour particular atmospheric forcings and could also contribute to generate different variability modes. Here, we demonstrate that two different Atlantic Niño patterns coexist in the tropical Atlantic basin during certain decades, coinciding with a negative phase of the Atlantic Multidecadal Oscillation (AMO). The leading mode, Basin-Wide (BW) Atlantic Niño, is characterized by positive SST anomalies covering the entire tropical Atlantic and the second mode, Dipolar (D) Atlantic Niño, presents an equatorial warming flanked by negative SST anomalies in north and south Tropical Atlantic. These modes are driven by different wind patterns, controlled by the Subtropical High Pressure Systems. The BW-Atlantic Niño is preceded by a weakening of both Azores and Sta Helena High, which induces a general reduction of the tropical trades and anomalous wind convergence in the equatorial band. On the other hand, the D-Atlantic Niño is associated with a strengthening of Azores High and a weakening of Sta Helena High, given rise to a meridional Sea Level Pressure (SLP) gradient that intensifies the subtropical trades and generate anomalous trans-equatorial winds along the equatorial band. Both modes seem to be forced by an ENSO-like signal emanating from the Pacific, but with different atmospheric response over the Atlantic. It could be attributed to the changes in the mean state during negative AMO phases. For these decades, shallower thermocline conditions, together with an increase of the oceanic variability (SST and thermocline) in the tropical Atlantic could contribute to the generation of both Atlantic Niño modes. Furthermore, a

  2. Observations of El Niño impacts using in situ GLOBE protocols and satellite data

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Destaerke, D.

    2015-12-01

    The El Niño phenomenon is a periodic ocean condition that occurs every two to ten years in the central and east-central equatorial Pacific Ocean. It alters the normal patterns of ocean circulation, surface temperature, and evaporation, causing noticeable and often severe changes in weather conditions in many areas of the world. El Niño is the warm phase of the El Niño Southern Oscillation (ENSO), and usually reaches its peak between December and February time period. El Niño and its worldwide consequences are studied by the school network of the GLOBE Program (www.globe.gov) which brings together students, teachers, and scientists in support of student research and validation of international Earth science research projects. Since the start of the GLOBE Program over 20 years ago, GLOBE classrooms utilize carefully developed daily, weekly, or seasonally protocols such as maximum, minimum and current temperatures, rainfall, soil moisture, and others, to measure changes in the environment. The data collected by the students is entered in an online GLOBE database. In addition to the student-contributed data, automated stations also collect and send measurements to the GLOBE database.Students compare their data with global data acquired by satellites to help validate the satellite data. With a potentially historic-level El Niño event thought to be on the horizon--possibly one of the strongest in 50 years—we will propose an emphasis on measurements from GLOBE schools that will support studies and satellite observations of El Niño. We plan to provide the schools with additional satellite data sets such as ocean temperature measurements from Advanced Very High Resolution Radiometer (AVHRR), sea surface elevation measurements from Jason-2 and 3 (after it launches), and others to be identified. We wish to address and support the following educational objectives: - Demonstrate how El Niño affects local precipitation and temperature across the globe, - Link teachers

  3. Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A.; Hwang, Chanyong; Qiu, Z.

    2010-06-09

    Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.

  4. Microstructure and mechanical properties of sputter deposited Ni/Ni3Al multilayer films at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Feng, Kai; Li, Zhuguo; Lu, Fenggui; Huang, Jian; Wu, Yixiong

    2016-08-01

    Nano-structured Ni/Ni3Al multilayer was prepared by magnetron sputtering, with individual layer thicknesses h varying from 10 to 160 nm. The microstructure and hardness of Ni/Ni3Al multilayer were investigated by X-ray diffraction, transmission electron microscopy and nanoindentation. The results show that the hardness increases with decreasing h for as-deposited and 500 °C annealed multilayers. When annealed at 700 °C, the hardness approach a peak value at h = 40 nm with followed by softening at smaller h. The influence of individual layer thickness, grain size as well as formation of ordered Ni3Al on strengthening mechanisms of Ni/Ni3Al multilayers at elevated temperature are discussed.

  5. Update: NI Scope and Standards of Practice, Competencies, and Certification.

    PubMed

    Bickford, Carol J

    2016-01-01

    The new 2015 ANA Nursing Informatics: Scope and Standards of Practice, Second Edition, includes a slightly revised definition of nursing informatics, totally revised scope of practice statement, and updated standards and accompanying competencies. The competencies are now leveled for informatics nurses and informatics nurse specialists. This professional resource informs practice, education, research, administration, and the certification process. The presenters will provide details about the development of the latest NI scope and standards of practice and the contemporary ANCC certification process to stimulate group discussion and promote development of a personal action plan to integrate such content into nursing and informatics practice. The target audience includes all registered nurses, informatics nurses, informatics nurse specialists, faculty, and administrators. PMID:27332327

  6. Magnetic excitations in single crystal PrNiSn

    NASA Astrophysics Data System (ADS)

    Beirne, E. D.; McEwen, K. A.; Habicht, K.; Fort, D.

    Inelastic neutron scattering results from a single crystal of the rare earth intermetallic PrNiSn are presented. Crystalline electric field excitations are found at 0.5, 2.4 and around 3.5 meV. The lower modes show little dispersion over q, but the 3.5 meV splits into two excitations, most clearly seen along the c* direction. Fitting the modes with gaussian functions allows us to show the pronounced dispersion to be of the form E(q)=E0+J1cos(qπ) for the upper mode, and E(q)=E0+J1cos(qπ)+J2cos(2qπ) for the lower mode. This suggests a longer range interaction for the lower mode. The lowest excitation at 0.5 meV confirms predictions made from previous measurements on polycrystalline samples that indicate a low lying CEF level.

  7. Anisotropy energy for the ordered Ni3Al crystal

    NASA Astrophysics Data System (ADS)

    Matsuzawa, K.; Ukai, T.; Ohtsuka, S.; Mori, N.

    1985-04-01

    The approximate d bands for the ordered Ni3Al crystal are formulated by Deegan's prescription and Slater and Koster's formulas in the tight binding approximation. The electronic energies of this crystal with the spin direction parallel to [100] and 110] directions are calculated by using Gilat and Raubenheimer's method. Then, the anisotropy constant K1 is estimated, which is in agreement with the experimental result. The temperature dependence of K1 is also discussed. It is found that the temperature variation of the Fermi level for these two states is appreciably different with each other by analyzing the experimental result, and this can be explained by the d-band structure of this crystal.

  8. Diffracted Fringes of Compound Nucleus Levels

    NASA Astrophysics Data System (ADS)

    Ideno, Kazumi

    2016-06-01

    We investigate a relation between the energies of nuclear excited levels and its periodic phases for nuclei with A = 14 - 244 in the energy region up to several tens MeV. These levels include neutron and proton resonances, excited levels below neutron and proton separation energies and also vibrational and rotational bands in unstable nuclei. Here we use level periods less than 50 keV. We found that series of parabolic fringes appear in the plots of level energies vs. its periodic phases in various excitation modes. Distinguished fringes can be observed for neutron and proton resonances in nuclei with neutron or proton magic numbers: 37Cl, 59Ni, 61Ni and 62Ni. For neutron and proton resonances in a wide mass range of nuclei, parabolic fringes with the same periods and scales can be observed at the same incident energies. Each fringe is separated by a phase difference of 1/n, where n is an integer. We interpret the parabolic fringes as a result of interference effects based on time; a quantized phase difference of 1/n can be connected to a discrete time delay of wave pulsations. These fringe spectra were compared between different nuclear excitation modes.

  9. Ni{sub 3}Al technology transfer

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; Santella, M.L.

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, and wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.

  10. Ni{sub 3}Al technology transfer

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Alexander, D.J.

    1995-05-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for (1)high-strength castable composition for turbochargers, furnace furniture, and hot-die applications; (2) castability (fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) hot fabricability of cast ingots. All of the issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes work completed to address some of these issues during the fourth quarter of FY 1994.

  11. Projecting future sea level

    USGS Publications Warehouse

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  12. CO adsorption on the Ni2Pb/Ni(1 1 1) surface alloy: A DFT study

    NASA Astrophysics Data System (ADS)

    Kośmider, K.; Kucharczyk, R.; Jurczyszyn, L.

    2013-02-01

    Structural and electronic properties of the Pb/Ni(1 1 1) overlayer and the Ni2Pb/Ni(1 1 1) surface alloy have been investigated within a DFT-PBE approach in order to determine its reactivity towards adsorption of CO molecules. This work has been motivated by a photoemission study of CO adsorption on Pb/Ni(1 1 1) surface phases [V. Matolín et al., Phys. Rev. B 74 (2006) 075416] indicating that Pb adatoms inhibit CO adsorption in a purely geometrical way by site blocking at Ni(1 1 1), whereas surface alloying has a poisoning effect of the Ni-CO bond weakening. In general, our DFT computations confirm experimental findings for the Pb/Ni(1 1 1) overlayer, as the very high activation barrier of about 2 eV due to the presence of Pb adatoms makes the CO chemisorption virtually impossible. For the Ni2Pb/Ni(1 1 1) surface alloy, we show that CO can bind to Ni atoms in the on-top position, and this process occurs to be exothermic with the energy gain of 0.35 eV per CO molecule. Dramatic reduction of the computed adsorption energy with respect to the pure Ni(1 1 1) substrate is in apparent agreement with experiment. However, it follows from our simulations that the CO adsorption process is accompanied by a substantial rearrangement of Ni atoms within the Ni2Pb surface alloy layer. Taking into account the associated deformation energy in the overall energetic balance yields nearly the same interaction energy between the CO molecules and the Ni atoms for the alloyed and the pure Ni(1 1 1) substrate, so the Ni-CO bond appears not to be weakened. The experimentally observed suppression of CO adsorption upon the alloy formation can be explained by a notable increase of the activation barrier for CO chemisorption from about 0.1 eV for the pure Ni(1 1 1) to roughly 0.5 eV for the Ni2Pb/Ni(1 1 1) surface alloy, affecting the corresponding reaction rate.

  13. NiTiCu Shape Memory Alloy Characterization Through Microhardness Tests

    NASA Astrophysics Data System (ADS)

    Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2014-07-01

    NiTiCu alloys are one of the most investigated shape memory alloys (SMAs) because of their better performance as SMA actuators in a variety of industrial and engineering applications. However, NiTiCu alloys are strongly influenced by thermomechanical cycling (TMC), which causes degradation depending on the stress and strain level applied. Since heat treatment (HT) and TMC are essential for NiTiCu alloys, understanding how hardness evolves at different levels of TMC and different HT temperatures is a useful tool for characterizing the material. The aim of this paper is to investigate the relationship between hardness and different HT temperatures and different TMCs. All the microhardness tests were done below martensite finish temperature (Mf) because the apparent material hardness measured below Mf fairly reflects the relative strengthening of SMAs without involving martensitic transformation artifacts. Resistivity and break tensile tests were carried out as a first step in order to understand the effect of different HT temperatures. Microstructure was also examined to provide a basis for a mechanistic understanding of the effect of different HT temperatures. Next, the degradation of mechanical properties (functional fatigue) at different levels of TMC was evaluated to assess their relationship to the evolution of hardness. Finally, an attempt was made to establish a link between the increase in hardness and different HT temperatures with different levels of TMC.

  14. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH. PMID:12423047

  15. Porous Alumina Template by Selective Dissolution of Ni from Sintered Al2O3-Ni Composite

    NASA Astrophysics Data System (ADS)

    Jain, M.; Moon, A. P.; Mondal, K.

    2015-07-01

    In the present study, porous alumina template was fabricated by selective dissolution of Ni from the pressureless sintered Al2O3-Ni. Alumina and Ni powders of 99.9% purity were subjected to ball milling (200 rpm, 1 h, 10:1 ball-to-powder weight ratio) in order to get homogeneous mechanical mixture. The milled powder was compacted using hydraulic press under the uniaxial pressure of 400 MPa for 1 min, and the pressureless sintering was carried out in reducing atmosphere (H2) at 1400 °C. Ni was then selectively and completely dissolved from the 1-mm-thick sintered disk of diameter 16 mm in 1 M HCl + 3 wt.% FeCl3 solution to get the porous template of alumina. The porous alumina template was found to have sufficient compressive strength. BET, x-ray diffraction, optical microscopy, and scanning electron microscopy studies along with energy dispersive spectroscopy were performed to study microstructural evolutions, bonding characteristics, and distributions of Ni before and after the dissolution of the sintered composite.

  16. Superparamagnetic behavior in ultrathin CoNi layers of electrodeposited CoNi/Cu multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Tang, X.-T.; Wang, G.-C.; Shima, M.

    2006-06-01

    We present evidence that in a very thin regime the magnetic layers become discrete islands and superparamagnetic in multilayered CoNi(1-17 nm)/Cu(4.2 nm) nanowires grown by pulsed electrodeposition using a hole pattern of anodized alumina templates. Magnetic hysteresis loops measured at room temperature using a vibrating sample magnetometer show that superparamagnetism appears at t(CoNi)<1.7 nm, due to a volumetric reduction of the CoNi layers that may result in discontinuity of the layer or formation of islands. The magnetic hysteresis loops for the superparamagnetic nanowires can be represented by the Langevin function. The temperature dependence of coercivity data obtained for the superparamagnetic nanowires using a superconducting quantum interference device indicates that the magnetization reversal can be consistently explained by the Stoner-Walfarth model for coherent rotation. The volumetric reduction accounted for the observed superparamagnetism is probably due to an electrochemical exchange reaction between CoNi and Cu species at the interface during each Cu deposition cycle. The exchange reaction may cause partial dissolution of the CoNi layers at the interface which is eventually stabilized by cementation with Cu. The effects of the nucleation and growth process on the formation of superparamagnetic islands are also discussed.

  17. Growth and characterization of epitaxial NiMnSb/ZnTe/NiMnSb magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Gerhard, F.; Naydenova, T.; Baussenwein, M.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2016-02-01

    The half-metal ferromagnet NiMnSb, with its high spin polarization, low magnetic damping and tunable magnetic anisotropy, is a promising material for applications in spin torque devices. We develop the epitaxial growth of NiMnSb/ZnTe/NiMnSb heterostructures, aiming towards the realization of an all-NiMnSb based magnetic tunneling junction (MTJ). Layers are grown in situ by Molecular Beam Epitaxy (MBE) and Atomic Layer Epitaxy (ALE) methods. By tuning Mn content, the magnetic anisotropy of each of the two NiMnSb layers is adjusted in order to achieve mutually orthogonal uniaxial anisotropies. SQUID measurements of the magnetization along orthogonal crystal directions [110] and [ 1 1 bar 0] confirm that the two layers have mutually orthogonal anisotropy. High Resolution X-Ray Diffraction measurements and simulations confirm the nominal layer stack and demonstrate the high crystalline quality of the individual layers. Such layer stacks provide a potential basis for TMR-based spin-torque devices such as spin-torque oscillators.

  18. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  19. Transport and Magnetic Properties of Nd2Ni2Pb and NdNiPb

    NASA Astrophysics Data System (ADS)

    Goruganti, V.; Li, Yang; Ross, Joseph H., Jr.; Rathnayaka, K. D. D.; Öner, Y.

    2006-03-01

    We report magnetic, transport and thermodynamic measurements for Nd2Ni2Pb and NdNiPb, members of recently-discovered R-Ni-Pb families of intermetallics. In Nd2Ni2Pb a λ-type specific heat jump was observed at 19 K corresponding to an antiferromagnetic transition. Magnetization measurements show this phase to have a canted structure, with a metamagnetic transition in H = 3 T at low temperatures. We have further explored the metamagnetic transition using field dependent specific heat, concluding that the metamagnetic phase is a fully aligned phase. The single antiferromagnetic phase stands in contrast to the more complex magnetic structures observed in the heavy-rare-earth members of this family. Nd is the lightest RE forming this type strucure. At high temperatures the magnetization obeys a Curie law and the magnetic moment agrees with the free ion moment of Nd. Resistivity measurements showed metallic behavior with a kink at 19 K. We performed similar measurements on NdNiPb and observed an antiferromagnetic transition at 4 K. Specific heat indicated rather different critical behavior, with magnetic fluctuations extending well above the transition. This work was supported by the Robert A. Welch Foundation (grant A-1526), the National Science Foundation (DMR-0103455), and by the Texas A&M University Telecommunications and Informatics Task Force.

  20. Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2.

    PubMed

    Horie, Masanori; Fukui, Hiroko; Endoh, Shigehisa; Maru, Junko; Miyauchi, Arisa; Shichiri, Mototada; Fujita, Katsuhide; Niki, Etsuo; Hagihara, Yoshihisa; Yoshida, Yasukazu; Morimoto, Yasuo; Iwahashi, Hitoshi

    2012-06-01

    The aim of the present study is to understand the association between metal ion release from nickel oxide (NiO) nanoparticles and induction of oxidative stress in the lung. NiO nanoparticles have cytotoxic activity through nickel ion release and subsequent oxidative stress. However, the interaction of oxidative stress and nickel ion release in vivo is still unclear. In the present study, we examined the effect of metal ion release on oxidative stress induced by NiO nanoparticles. Additionally, nano and fine TiO(2) particles as insoluble particles were also examined. Rat lung was exposed to NiO and TiO(2) nanoparticles by intratracheal instillation. The NiO nanoparticles released Ni(2+) in dispersion. Bronchoalveolar lavage fluid (BALF) was collected at 1, 24, 72 h and 1 week after instillation. The lactate dehydrogenase (LDH) and HO-1 levels were elevated at 24 and 72 h after instillation in the animals exposed to the NiO nanoparticles. On the other hand, total hydroxyoctadecadienoic acid (tHODE), which is an oxidative product of linoleic acid, as well as SP-D and α-tochopherol levels were increased at 72 h and 1 week after instillation. Fine NiO particles, and nano and fine TiO(2) particles did not show lung injury or oxidative stress from 1 h to 1 week after instillation. These results suggest that Ni(2+) release is involved in the induction of oxidative stress by NiO nanoparticles in the lung. Ni(2+) release from NiO nanoparticles is an important factor inoxidative stress-related toxicity, not only in vitro but also in vivo.

  1. EuNiGe₃, an anisotropic antiferromagnet.

    PubMed

    Maurya, A; Bonville, P; Thamizhavel, A; Dhar, S K

    2014-05-28

    Single crystals of EuNiGe3, crystallizing in the non-centrosymmetric BaNiSn3-type structure, were grown using In flux, enabling us to explore the anisotropic magnetic properties, which was not possible with previously reported polycrystalline samples. The EuNiGe3 single crystalline sample is found to order antiferromagnetically at 13.2 K, as revealed from the magnetic susceptibility, heat capacity and electrical resistivity data. The low temperature magnetization M (H) is distinctly different for the field parallel to the ab-plane and c-axis; the ab-plane magnetization varies almost linearly with the field before the occurrence of an induced ferromagnetic (FM) phase (spin-flip) at 6.2 Tesla. On the other hand M (H) along the c-axis is accompanied by two metamagnetic transitions followed by a spin-flip at 4.1 T. A model including anisotropic exchange and dipole-dipole interactions reproduces the main features of magnetization plots but falls short of full representation. (H,T) phase diagrams have been constructed for the field applied along the principal directions. From the (151)Eu Mössbauer spectra, we determine that the 13.2 K transition leads to an incommensurate antiferromagnetic (AFM) intermediate phase followed by a transition near 10.5 K to a commensurate AFM configuration. PMID:24787717

  2. El Niño Returns

    NASA Astrophysics Data System (ADS)

    El Niño, a climatic disturbance that shifts much of the world's weather pattern every 2-7 years, has returned and is probably near the midpoint of its expected 18-month life cycle, according to an announcement by the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOAA). This El Niño appears to be much milder than its predecessor 4 years ago, from April 1982 to July 1983. That event, the worst in more than 100 years, caused floods and droughts that led to more than 1000 deaths and $2 billion to $8 billion in economic losses.The phenomenon comes about when equatorial winds that normally blow the Pacific Ocean's surface waters from east to west weaken or reverse themselves. The warm surface waters then flow from west to east. Results include a decrease in rainfall in the Philippines, Indonesia, Australia, New Guinea, and Southern Africa; increased rainfall in the South American coast, the southeastern United States, and eastern Africa; and milder than normal weather in the U.S. Pacific Northwest, western Canada, and Alaska. The current El Niño was successfully predicted by at least three different scientific models, according to The New York Times, although the event began somewhat later than expected.

  3. Laser ablation of Al-Ni alloys and multilayers

    NASA Astrophysics Data System (ADS)

    Roth, Johannes; Trebin, Hans-Rainer; Kiselev, Alexander; Rapp, Dennis-Michael

    2016-05-01

    Laser ablation of Al-Ni alloys and multilayers has been studied by molecular dynamics simulations. The method was combined with a two-temperature model to describe the interaction between the laser beam, the electrons, and the atoms. As a first step, electronic parameters for the alloys had to be found and the model developed originally for pure metals had to be generalized to multilayers. The modifications were verified by computing melting depths and ablation thresholds for pure Al and Ni. Here known data could be reproduced. The improved model was applied to the alloys Al_3Ni, AlNi and AlNi_3. While melting depths and ablation thresholds for AlNi behave unspectacular, sharp drops at high fluences are observed for Al_3Ni and AlNi_3. In both cases, the reason is a change in ablation mechanism from phase explosion to vaporization. Furthermore, a phase transition occurs in Al_3Ni. Finally, Al layers of various thicknesses on a Ni substrate have been simulated. Above threshold, 8 nm Al films are ablated as a whole while 24 nm Al films are only partially removed. Below threshold, alloying with a mixture gradient has been observed in the thin layer system.

  4. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  5. Future extreme sea level seesaws in the tropical Pacific

    PubMed Central

    Widlansky, Matthew J.; Timmermann, Axel; Cai, Wenju

    2015-01-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño–Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño–related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  6. Future extreme sea level seesaws in the tropical Pacific.

    PubMed

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise. PMID:26601272

  7. Future extreme sea level seesaws in the tropical Pacific.

    PubMed

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  8. Future Extreme Sea Level Variability in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Widlansky, M. J.; Timmermann, A.; Stuecker, M. F.; McGregor, S.; Cai, W.; Chikamoto, Y.

    2014-12-01

    During strong El Niño events, sea level drops around tropical western Pacific islands by up to 20-30 cm. Such extreme events (referred to in Samoa as 'taimasa') expose shallow reefs, thereby damaging associated coastal ecosystems and contributing to the formation of 'flat topped coral heads' often referred to as microatolls. We show that during the termination of strong El Niño events, a southward movement of weak trade winds prolongs extreme low sea levels in the southwestern Pacific. Whereas future sea levels are projected to gradually rise, recent modeling evidence suggests that the frequency of strong El Niño events (which alter local trade winds and sea level) is very likely to increase with greenhouse warming. Such changes could exacerbate El Niño-related sea level drops, especially in the tropical southwestern Pacific. Using present-generation coupled climate models forced with increasing greenhouse-gas concentrations, we assess how the interplay between global mean sea level rise, on one hand, and more frequent interannual sea level drops, on the other, will affect future coastal sea levels in the tropical Pacific.

  9. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  10. Electrodeposited Nanolaminated CoNiFe Cores for Ultracompact DC-DC Power Conversion

    SciTech Connect

    Kim, J; Kim, M; Herrault, F; Park, JY; Allen, MG

    2015-09-01

    Laminated metallic alloy cores (i.e., alternating layers of thin film metallic alloy and insulating material) of appropriate lamination thickness enable suppression of eddy current losses at high frequencies. Magnetic cores comprised of many such laminations yield substantial overall magnetic volume, thereby enabling high-power operation. Previously, we reported nanolaminated permalloy (Ni-80 Fe-20) cores based on a sequential electrodeposition technique, demonstrating negligible eddy current losses at peak flux densities up to 0.5 T and operating at megahertz frequencies. This paper demonstrates improved performance of nanolaminated cores comprising tens to hundreds of layers of 300-500-nm-thick CoNiFe films that exhibit superior magnetic properties (e.g., higher saturation flux density and lower coercivity) than permalloy. Nanolaminated CoNiFe cores can be operated up to a peak flux density of 0.9 T, demonstrating improved power handling capacity and exhibiting 30% reduced volumetric core loss, attributed to lowered hysteresis losses compared to the nanolaminated permalloy core of the same geometry. Operating these cores in a buck dc-dc power converter at a switching frequency of 1 MHz, the nanolaminated CoNiFe cores achieved a conversion efficiency exceeding 90% at output power levels up to 7 W, compared to an achieved permalloy core conversion efficiency below 86% at 6 W.

  11. Physical properties and electronic structure of La3Co and La3Ni intermetallic superconductors

    NASA Astrophysics Data System (ADS)

    Strychalska, J.; Roman, M.; Sobczak, Z.; Wiendlocha, B.; Winiarski, M. J.; Ronning, F.; Klimczuk, T.

    2016-09-01

    La3Co and La3Ni are reported superconductors with transition temperatures of 4.5 and 6 K, respectively. Here, we reinvestigate the physical properties of these two intermetallic compounds with magnetic susceptibility χ, specific heat Cp and electrical resistivity ρ measurements down to 1.9 K. Although bulk superconductivity is confirmed in La3Co, as observed previously, only a trace of it is found in La3Ni, indicating that the superconductivity in La3Ni originates from an impurity phase. Superconducting state parameters for La3Co, including lower and upper critical fields and the superconducting gap, are estimated. Results of the theoretical calculations of the electronic structure for both materials are also presented, and comparison of the Fermi level location in La3Co versus La3Ni explains its larger superconducting Tc. A major discrepancy between band structure calculations and the experimentally measured Sommerfeld coefficient is found. The measured electronic density of states is about 2.5 times larger than the theoretical value for La3Co. This effect cannot be explained by the electron-phonon interaction alone. Renormalization of γ, as well as an ∼T2 behavior of the resistivity, suggests the presence of spin fluctuations in both systems.

  12. Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals.

    PubMed

    Kubicka, Kamila; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kosiba, Piotr; Kempers, Alexander J

    2015-01-01

    Pteridium aquilinum is a ubiquitous species considered to be one of the plants most resistant to metals. This fern meets the demands for a good bioindicator to improve environmental control. Therefore, it was of interest to survey the accumulation of Cr and Ni in the rhizome and fronds of this species collected in Lower Silesia (SW Poland) of serpentinite rich in Cr and Ni and granite poor in these metals. Additionally, concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were measured in granite and serpentinite parent rocks, soils, and in P. aquilinum (rhizome and fronds). The experiment was carried out with rhizomes of ferns from both types of soils placed in pots supplemented with 50, 100, and 250 mg kg(-1) of Cr or Ni or both elements together. At a concentration of 250 mg kg(-1) of Cr, Ni, or Cr + Ni, fronds (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied together. In the same concentration of 250 mg kg(-1) of Cr, Ni, or Cr + Ni, rhizomes (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied separately. The explanation of metal differences in the joint accumulation of Cr and Ni on the rhizome or frond level needs further investigation. The lack of difference in Cr and Ni concentration in the rhizome and fronds between experimental P. aquilinum collected from granite and serpentinite soils may probably indicate that the phenotypic plasticity of this species is very important in the adaptation to extreme environments. PMID:25087499

  13. Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals.

    PubMed

    Kubicka, Kamila; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kosiba, Piotr; Kempers, Alexander J

    2015-01-01

    Pteridium aquilinum is a ubiquitous species considered to be one of the plants most resistant to metals. This fern meets the demands for a good bioindicator to improve environmental control. Therefore, it was of interest to survey the accumulation of Cr and Ni in the rhizome and fronds of this species collected in Lower Silesia (SW Poland) of serpentinite rich in Cr and Ni and granite poor in these metals. Additionally, concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were measured in granite and serpentinite parent rocks, soils, and in P. aquilinum (rhizome and fronds). The experiment was carried out with rhizomes of ferns from both types of soils placed in pots supplemented with 50, 100, and 250 mg kg(-1) of Cr or Ni or both elements together. At a concentration of 250 mg kg(-1) of Cr, Ni, or Cr + Ni, fronds (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied together. In the same concentration of 250 mg kg(-1) of Cr, Ni, or Cr + Ni, rhizomes (from granite or serpentinite origin) contained significantly higher Cr and Ni concentrations when both metals were supplied separately. The explanation of metal differences in the joint accumulation of Cr and Ni on the rhizome or frond level needs further investigation. The lack of difference in Cr and Ni concentration in the rhizome and fronds between experimental P. aquilinum collected from granite and serpentinite soils may probably indicate that the phenotypic plasticity of this species is very important in the adaptation to extreme environments.

  14. First-principles computation of structural, elastic and magnetic properties of Ni2FeGa across the martensitic transformation.

    PubMed

    Sahariah, Munima B; Ghosh, Subhradip; Singh, Chabungbam S; Gowtham, S; Pandey, Ravindra

    2013-01-16

    The structural stabilities, elastic, electronic and magnetic properties of the Heusler-type shape memory alloy Ni(2)FeGa are calculated using density functional theory. The volume conserving tetragonal distortion of the austenite Ni(2)FeGa find an energy minimum at c/a = 1.33. Metastable behaviour of the high temperature cubic austenite phase is predicted due to elastic softening in the [110] direction. Calculations of the total and partial magnetic moments show a dominant contribution from Fe atoms of the alloy. The calculated density of states shows a depression in the minority spin channel of the cubic Ni(2)FeGa just above the Fermi level which gets partially filled up in the tetragonal phase. In contrast to Ni(2)MnGa, the transition metal spin-down states show partial hybridization in Ni(2)FeGa and there is a relatively high electron density of states near the Fermi level in both phases.

  15. Toxic effect of NiCl2 on development of the bursa of Fabricius in broiler chickens.

    PubMed

    Yin, Shuang; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Guo, Hongrui

    2016-01-01

    This study was conducted with objective of evaluating the toxic effects of nickel chloride (NiCl2) on development of bursa of Fabricius in broilers fed on diets supplemented with 0, 300, 600 and 900 mg/kg of NiCl2 for 42 days by using the methods of experimental pathology, flow cytometry (FCM), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that dietary NiCl2 in 300 mg/kg and over induced toxic suppression in the bursal development, which was characterized by decreasing lymphocytes histopathologically and relative weight, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index, and increasing percentages of apoptotic cells. Concurrently, the mRNA expression levels of bax, cytochrome c (cyt c), apoptotic peptidase activating factor 1 (Apaf-1), caspase-3, caspase-6, caspase-7 and caspase-9 were increased and the bcl-2 mRNA expression levels were decreased. The toxic suppression of bursal development finally impaired humoral immunity duo to the reduction of B lymphocyte population and B lymphocyte activity in the broiler chicken. This study provides new evidences for further studying the effect mechanism of Ni and Ni compoundson B-cell or bursa of Fabricius. PMID:26683707

  16. Toxic effect of NiCl2 on development of the bursa of Fabricius in broiler chickens

    PubMed Central

    Yin, Shuang; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Guo, Hongrui

    2016-01-01

    This study was conducted with objective of evaluating the toxic effects of nickel chloride (NiCl2) on development of bursa of Fabricius in broilers fed on diets supplemented with 0, 300, 600 and 900 mg/kg of NiCl2 for 42 days by using the methods of experimental pathology, flow cytometry (FCM), and quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that dietary NiCl2 in 300 mg/kg and over induced toxic suppression in the bursal development, which was characterized by decreasing lymphocytes histopathologically and relative weight, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index, and increasing percentages of apoptotic cells. Concurrently, the mRNA expression levels of bax, cytochrome c (cyt c), apoptotic peptidase activating factor 1 (Apaf-1), caspase-3, caspase-6, caspase-7 and caspase-9 were increased and the bcl-2 mRNA expression levels were decreased. The toxic suppression of bursal development finally impaired humoral immunity duo to the reduction of B lymphocyte population and B lymphocyte activity in the broiler chicken. This study provides new evidences for further studying the effect mechanism of Ni and Ni compoundson B-cell or bursa of Fabricius. PMID:26683707

  17. Influence of interband transitions on electron-phonon coupling measurements in Ni films

    SciTech Connect

    Patrick E. Hopkins, J. Michael Klopf, Pamela M. Norris

    2007-03-01

    The reduction in size and the increase in speed of opto- and magnetoelectronic devices is making the probability of nonequilibrium electron-phonon phenomena greater, leading to increased thermal resistance in these devices. The measurement of electron-phonon coupling in materials in these devices is becoming increasingly important for accurate thermal management. Here femtosecond thermoreflectance is used to measure the electron-phonon coupling factor in thin Ni films of varying thickness grown on Si and glass substrates. The thermoreflectance response is measured at 1.3 and 1.55 eV, yielding drastically different responses due to the Fermi-level transition at 1.3 eV in Ni. The influence of this transition on the thermoreflectance response results in a measurement of the electron-phonon coupling factor that is twice as high as that recorded in previous measurements that were unaffected by the Fermi-level transition.

  18. Influence of interband transitions on electron-phonon coupling measurements in Ni films.

    PubMed

    Hopkins, Patrick E; Klopf, J Michael; Norris, Pamela M

    2007-04-10

    The reduction in size and the increase in speed of opto- and magnetoelectronic devices is making the probability of nonequilibrium electron-phonon phenomena greater, leading to increased thermal resistance in these devices. The measurement of electron-phonon coupling in materials in these devices is becoming increasingly important for accurate thermal management. Here femtosecond thermoreflectance is used to measure the electron-phonon coupling factor in thin Ni films of varying thickness grown on Si and glass substrates. The thermoreflectance response is measured at 1.3 and 1.55 eV, yielding drastically different responses due to the Fermi-level transition at 1.3 eV in Ni. The influence of this transition on the thermoreflectance response results in a measurement of the electron-phonon coupling factor that is twice as high as that recorded in previous measurements that were unaffected by the Fermi-level transition.

  19. Measurement of the Nickel/Nickel Oxide Transition in Ni-Cr-Fe Alloys and Updated Data and Correlations to Quantify the Effect of Aqueous Hydrogen on Primary Water SCC

    SciTech Connect

    Steven A. Attanasio; David S. Morton

    2003-06-16

    Alloys 600 and X-750 have been shown to exhibit a maximum in primary water stress corrosion cracking (PWSCC) susceptibility, when testing is conducted over a range of aqueous hydrogen (H{sub 2}) levels. Contact electric resistance (CER) and corrosion coupon testing using nickel specimens has shown that the maximum in SCC susceptibility occurs in proximity to the nickel-nickel oxide (Ni/NiO) phase transition. The measured location of the Ni/NiO transition has been shown to vary with temperature, from 25 scc/kg H{sub 2} at 360 C to 4 scc/kg H{sub 2} at 288 C. New CER measurements show that the Ni/NiO transition is located at 2 scc/kg H{sub 2} at 260 C. An updated correlation of the phase transition is provided. The present work also reports CER testing conducted using an Alloy 600 specimen at 316 C. A large change in resistance occurred between 5 and 10 scc/kg H{sub 2}, similar to the results obtained at 316 C using a nickel specimen. This result adds confidence in applying the Ni/NiO transition measurements to Ni-Cr-Fe alloys. The understanding of the importance of the Ni/NiO transition to PWSCC has been used previously to quantify H{sub 2} effects on SCC growth rate (SCCGR). Specifically, the difference in the electrochemical potential (EcP) of the specimen or component from the Ni/NiO transition (i.e., EcP{sub Ni/NiO}-EcP) has been used as a correlating parameter. In the present work, these SCCGR-H{sub 2} correlations, which were based on SCCGR data obtained at relatively high test temperatures (338 and 360 C), are evaluated via SCCGR tests at a reduced temperature (316 C). The 316 C data are in good agreement with the predictions, implying that the SCCGR-H{sub 2} correlations extrapolate well to reduced temperatures. The SCCGR-H{sub 2} correlations have been revised to reflect the updated Ni/NiO phase transition correlation. New data are presented for EN82H weld metal (also known as Alloy 82) at 338 C. Similar to other nickel alloys, SCC of EN82H is a function of

  20. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys

    DOE PAGESBeta

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.; Lei, Hechang; Li, Lijun; Cekic, B.; Koteski, V.; Petrovic, C.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor Vzz=1.6 1021Vm-2 matches well with the results of Mössbauer spectroscopymore » and indicates that the Fe atoms occupy Ni sites.« less

  1. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  2. Hydrothermal Ni Prospectivity Analysis of Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Porwal, A.; McCuaig, T. C.; Maier, W.

    2009-04-01

    Tasmania contains the largest hydrothermal Ni deposit in Australia: Avebury (118,000 Ni metal tonnes). This Devonian deposit was discovered in 1998 in the Dundas geological region, and consists of a system of hydrothermal Ni ore bodies. They are hosted by an intensely altered and serpentinized Cambrian ultramafic suite in close proximity to major structural features. The mineralization is considered to be the result of hydrothermal scavenging and remobilization of the original nickel content of mafic/ultramafic rocks in the area, and subsequent re-deposition in favourable structural traps. This is based on the low sulphur, low Cu and Platinum element content of the mineralization. The mineralization is spatially (at the edge) and temporally related to a large granitic intrusion, the Heemskirk Granite, which is considered to be the source of the hydrothermal fluids as well as the necessary thermal gradients for the circulation of the fluids. Tasmania is largely covered by the Jurassic Ferrar continental flood basalt province in the East and constrains a number of early Cambrian ultramafic-mafic complexes in the West. The Ferrar large igneous province (LIP) extends over to Antarctica and is temporally and genetically related to the Karoo igneous province in southern Africa that comprises tholeiitic lava flows, sills, and dyke swarms. The Ferrar and Karoo igneous provinces were associated with the same thermal anomaly that was responsible for the break up of eastern Gondwana at ca 180 Ma. Despite of timeframe differences between the Avebury Ni deposits and the Ferrar LIP emplacement, similar geological settings to the Avebury could be duplicated along the Ferrar LIP. The presence of mafic/ultramafic rocks in favourable lithological packages and/or structural traps along the margins of the province indicate that this LIP could represent a possible exploration target for Ni hydrothermal deposits. Based on this background, a prospectivity analysis for hydrothermal Ni

  3. High temperature oxidation and corrosion behaviour of Ni/Ni-Co-Al composite coatings

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Balaraju, J. N.; Ravisankar, B.; Anandan, C.; William Grips, V. K.

    2012-12-01

    In the present study, Ni/Ni-Co-Al composite coatings were developed by a potentially simple, scalable, non-vacuum technique namely electrodeposition. These coatings were characterized for their microhardness, oxidation and hot corrosion behaviour. An increase in Co content in the matrix from 8 wt% to 70 wt% led to an increase in the Al particle incorporation from 12 wt% to 21 wt%. A change in the surface morphology of the coatings with variation in Co content was seen. The oxidation behaviour of the coatings was studied at temperatures in the range of 400 °C to 1000 °C. The influence of vacuum treatment on the high temperature behaviour of the coatings was also investigated. The intermetallic aluminide phase formation was observed in the temperature range of 600-800 °C and a homogenized structure was seen at 1000 °C. The oxidation rate in terms of weight gain was marginally lower for vacuum pretreated Nisbnd Al coating annealed at 1000 °C. A significant increase in the oxidation rate was exhibited by Ni-70Co-Al coating beyond 800 °C showing its poor oxidation behaviour. The characterization studies revealed the formation of stable alumina in the case of Nisbnd Al while, metastable alumina was observed in Ni-Co-Al coatings. The hot corrosion studies showed that Co rich Ni-Co-Al exhibited better resistance compared to Ni rich coatings. An optimum cobalt content of 30 wt% was desirable for high temperature oxidation and corrosion resistance.

  4. Dealloying NiCo and NiCoCu Alloy Thin Films Using Linear Sweep Voltammetry

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    When electrodeposited into thin films, metals have well-known electrochemical potentials at which they will be removed from the film. These potential differences can be utilized to re-oxidize only certain metals in an alloy, altering the film's structure and composition. Here we discuss NiCo and NiCoCu thin films' response to linear sweep voltammetry (LSV) as a means of electrochemical dealloying. For each of four different metal ratios, films were dealloyed to various potentials in order to gain insight into the evolution of the film over the course of the LSV. Capacitance, topography, and composition were examined for each sample before and after linear sweep voltammetry was performed. For NiCo films with high percentages of Ni, dealloying resulted in almost no change in composition, but did result in an increased capacitance, with greater increases occurring at higher LSV potentials. Dealloying also resulted in the appearance of large (100-1000 nm) pores on the surface of the film. For NiCoCu films with high percentages of Ni, Cu was almost completely removed from the film at LSV potentials greater than 500 mV. The LSV first removed larger copper-rich dendrites from the film's surface before creating numerous nano-pores, resulting in a net increase in area. This work is supported by an Award to Hope College from the HHMI Undergraduate Science Education Program, the Hope College Department of Physics Frissel Research Fund, and the National Science Foundation under Grants RUI-DMR-1104725 and MRI-CHE-0959282.

  5. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Ping; Zhang, Ke; Ma, Fengcang; Liu, Xinkuan; Chen, Xiaohong; He, Daihua

    2014-08-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized.

  6. Martensitic transformation of FeNi nanofilm induced by interfacial stress generated in FeNi/V nanomultilayered structure

    PubMed Central

    2014-01-01

    FeNi/V nanomultilayered films with different V layer thicknesses were synthesized by magnetron sputtering. By adjusting the thickness of the V layer, different interfacial compressive stress were imposed on FeNi layers and the effect of interfacial stress on martensitic transformation of the FeNi film was investigated. Without insertion of V layers, the FeNi film exhibits a face-centered cubic (fcc) structure. With the thickness of V inserted layers up to 1.5 nm, under the coherent growth structure in FeNi/V nanomultilayered films, FeNi layers bear interfacial compressive stress due to the larger lattice parameter relative to V, which induces the martensitic transformation of the FeNi film. As the V layer thickness increases to 2.0 nm, V layers cannot keep the coherent growth structure with FeNi layers, leading to the disappearance of interfacial compressive stress and termination of the martensitic transformation in the FeNi film. The interfacial compressive stress-induced martensitic transformation of the FeNi nanofilm is verified through experiment. The method of imposing and modulating the interfacial stress through the epitaxial growth structure in the nanomultilayered films should be noticed and utilized. PMID:25232296

  7. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni. PMID:21186070

  8. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode.

    PubMed

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-07-13

    We propose a 'weaving' evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based 'microflowers' which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO 'microflower' is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g(-1), and an energy density of 15.9 Wh kg(-1) at a current density of 0.5 A g(-1). This research not only contributes to understanding the formation mechanism of such 'microflower' structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability.

  9. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-07-01

    We propose a ‘weaving’ evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based ‘microflowers’ which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO ‘microflower’ is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g-1, and an energy density of 15.9 Wh kg-1 at a current density of 0.5 A g-1. This research not only contributes to understanding the formation mechanism of such ‘microflower’ structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability.

  10. Ni adsorption and Ni-Al LDH precipitation in a sandy aquifer: an experimental and mechanistic modeling study.

    PubMed

    Regelink, Inge C; Temminghoff, Erwin J M

    2011-03-01

    Mining activities and industries have created nickel (Ni) contaminations in many parts of the world. The objective of this study is to increase our understanding of Ni adsorption and Nickel-Aluminium Layered Double Hydroxide (Ni-Al LDH) precipitation to reduce Ni mobility in a sandy soil aquifer. At pH ≥ 7.2 both adsorption and Ni-Al LDH precipitation occurred. In batch experiments with the sandy soil up to 70% of oxalate-extractable Al was taken up in LDH formation during 56 days. In a long term column experiment 99% of influent Ni was retained at pH 7.5 due to Ni adsorption (≈ 34%) and Ni-Al LDH precipitation (≈ 66%) based on mechanistic reactive transport modeling. The subsequent leaching at pH 6.5 could be largely attributed to desorption. Our results show that even in sandy aquifers with relatively low Al content, Ni-Al LDH precipitation is a promising mechanism to immobilize Ni.

  11. Changes in the adsorbate dipole layer with changing d-filling of the metal (II) (Co, Ni, Cu) phthalocyanines on Au(111).

    PubMed

    Xiao, Jie; Dowben, Peter A

    2009-02-01

    In combined photoemission and inverse photoemission spectroscopy studies, we observe changes in the metal phthalocyanine molecular orbital offsets with respect to the conducting gold substrate Fermi level, with the changing d-electron filling of the metal (II) (Co, Ni, Cu) phthalocyanines. The implication is that the interfacial dipole layer depends upon the choice of metal (Co, Ni, Cu) centers within the metal (II) phthalocyanines adsorbed on Au(111).

  12. Novel gold nanocluster electrochemiluminescence immunosensors based on nanoporous NiGd-Ni2O3-Gd2O3 alloys.

    PubMed

    Lv, Xiaohui; Ma, Hongmin; Wu, Dan; Yan, Tao; Ji, Lei; Liu, Yixin; Pang, Xuehui; Du, Bin; Wei, Qin

    2016-01-15

    Herein, three-dimensional nanoporous NiGd alloy (NP-NiGd) was prepared by selectively dealloy Al from NiGdAl alloy in mild alkaline solution, then Ni2O3 and Gd2O3 grew further on the surface of NP-NiGd to obtain the NP-NiGd-Ni2O3-Gd2O3. On this basis, NP-NiGd-Ni2O3-Gd2O3 was further functionalized with gold nanoparticles (NP-NiGd-Ni2O3-Gd2O3@Au) and acted as sensor platform to fabricate a novel electrochemiluminescence (ECL) immunosensor. Bovine serum albumin protected gold nanoclusters (AuNCs@BSA) were prepared and acted as illuminant. AuNCs@BSA modified graphene oxide (GO/AuNCs@BSA) were used as labels of second antibody. In order to characterize the performance of the ECL immunosensor, carcino embryonie antigen (CEA) was used as the model to complete the experiments. Due to the good performances of NP-NiGd-Ni2O3-Gd2O3@Au (high surface area, excellent electron conductivity) and AuNCs@BSA (low toxicity, biocompatibility, easy preparation and good water solubility), the ECL immunosensor exhibited a wide range from 10(-4) to 5ng/mL with a detection limit of 0.03pg/mL (S/N=3). The immunosensor with excellent stability, acceptable repeatability and selectivity provided a promising method to detect CEA in human serum sample sensitively. PMID:26318782

  13. Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni25Mn75/Ni trilayers on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Shokr, Y. A.; Erkovan, M.; Wu, C.-B.; Zhang, B.; Sandig, O.; Kuch, W.

    2015-05-01

    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni25Mn75 layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni25Mn75/16 ML Ni on Cu3Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer.

  14. Field measurements and interpretation of TMI-2 instrumentation: NI-AMP-2

    SciTech Connect

    Jones, J E; Smith, J T; Mathis, M V

    1982-04-01

    Based on the limited measurements and the attempts to activate the high voltage power supply, the Source Range Monitor which includes NI-AMP-2 is not operating. Since there appears to be an excessive load on the high voltage, it appears that either the detector or cable is defective. However, TDR measurements did not indicate a significant problem with the cable using low level test signals.

  15. Computer Simulations of Martensitic Transformations in FeNi and NiAl alloys

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Kadau, Kai; Entel, Peter

    1998-03-01

    We have studied the martensitic transformation in FeNi and NiAl alloys by molecular dynamics simulations. The simulations have been done with the help of embedded-atom method potentials which made it possible for us to run simulations with up to 250000 atoms. Our results show the formation of a microstructure during the structural phase transition which possesses a characteristic length-scale leading to significant finite-size effects. Moreover we present phonon spectra and free energy curves obtained from the molecular dynamics simulations of smaller systems.

  16. Concerto catalysis--harmonising [NiFe]hydrogenase and NiRu model catalysts.

    PubMed

    Ichikawa, Koji; Nonaka, Kyoshiro; Matsumoto, Takahiro; Kure, Bunsho; Yoon, Ki-Seok; Higuchi, Yoshiki; Yagi, Tatsuhiko; Ogo, Seiji

    2010-03-28

    This communication reports the successful merging of the chemical properties of a natural [NiFe]hydrogenase (Desulfovibrio vulgaris Miyazaki F) and our previously reported [NiRu] hydrogenase-mimic. The catalytic activity of both the natural enzyme and the mimic is almost identical, with the exception of working pH ranges, and this allows us to use them simultaneously in the same reaction flask. In such a manner, isotope exchange between D(2) and H(2)O could be conducted over an extended pH range (about 2-10) in one pot under mild conditions at ambient temperature and pressure.

  17. The transformation behaviour of bulk nanostructured NiTi alloys

    NASA Astrophysics Data System (ADS)

    Neves, F.; Braz Fernandes, F. M.; Martins, I.; Correia, J. B.; Oliveira, M.; Gaffet, E.; Wang, T.-Y.; Lattemann, M.; Suffner, J.; Hahn, H.

    2009-11-01

    The phase transformation behaviour of bulk nanostructured NiTi shape memory alloys, produced by an innovative approach called MARES (mechanically activated reactive extrusion synthesis), was investigated using in situ x-ray diffraction and differential scanning calorimetry measurements. For the experimental conditions used, a suitable adjustment of the NiTi matrix composition was achieved after ageing at 500 °C for 7 h. The aged materials showed a homogeneous dispersion of Ni4Ti3 precipitates embedded in a B2-NiTi matrix. Under this condition the B2-NiTi matrix has undergone a \\mathrm {B2 \\leftrightarrow R \\leftrightarrow B19'} two-stage phase transformation. This was attributed to the complex microstructural evolution during MARES processing, i.e. formation of large-scale and small-scale heterogeneities. Transmission electron microscopy investigations of the solution-treated materials showed the existence of equiaxed nanocrystals in the nanocrystalline NiTi matrix.

  18. Study of surfactant mediated growth of Ni/V superlattices

    SciTech Connect

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-14

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  19. Atomistic Modeling of Pd Site Preference in NiTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    An analysis of the site subsitution behavior of Pd in NiTi was performed using the BFS method for alloys. Through a combination of Monte Carlo simulations and detailed atom-by-atom energetic analyses of various computational cells, representing compositions of NiTi with up to 10 at% Pd, a detailed understanding of site occupancy of Pd in NiTi was revealed. Pd subsituted at the expense of Ni in a NiTi alloy will prefer the Ni-sites. Pd subsituted at the expense of Ti shows a very weak preference for Ti-sites that diminishes as the amount of Pd in the alloy increases and as the temperature increases.

  20. Elemental Mapping of NiTi with EFTEM

    SciTech Connect

    Wittig, J. E.; Bentley, James; Evans, Neal D; Somsen, Ch.; Eggeler, G.

    2005-01-01

    Martensitic transformations in Ni-rich NiTi shape memory alloys take place as multistage transformations. In Ni-rich alloys with an austenitic B2 matrix, coherent Ni{sub 4}Ti{sub 3} precipitates form from thermo-mechanical processing and affect the sequence of the martensitic transformation. Any composition inhomogenieties that develop during the evolution of the Ni{sub 4}Ti{sub 3} precipitates will have a large influence on the multistage martensitic transformations, since the martensite start temperature, M{sub s}, is strongly dependent on the Ni concentration of the matrix. Since concentration differences on the order of 0.5 at% are sufficient to influence the transformation, providing sufficiently accurate concentration profiles for meaningful structure-property correlations is a challenging experiment. This investigation employs elemental mapping by energy-filtered transmission electron microscopy (EFTEM) to attempt to measure the concentration profiles at these precipitate-matrix interfaces.

  1. Crystallization Behaviour of Amorphous Al-Ni-Nd Alloy

    SciTech Connect

    Goegebakan, Musa; Guendes, Alaaddin

    2007-04-23

    In this study, crystallization behaviour of rapidly solidified Al85Ni5Nd10 alloy has been investigated by differential scanning calorimetry (DSC). Continuous heating DSC trace of amorphous Al85Ni5Nd10 alloy consisted of three exothermic peaks. This indicated that; crystallization of amorphous Al85Ni5Nd10 alloy during continous heating takes places in three stages. Before the first exothermic peak, a glass transition temperature was observed.

  2. Structural and Magnetic Properties of Ni Rich Amorphous Boride Nanoparticles

    SciTech Connect

    Singh, Vidyadhar; Banerjee, Progna; Srinivas, V.; Babu, N. H.

    2011-06-30

    The Ni rich amorphous boride nanoparticles can be prepared very easily by the solid-solid reaction of the NiCl{sub 2} and NaBH{sub 4} powders at room temperature. XRD, DTA-TG, FESEM, TEM, and selected-area electron diffraction characterize the resultant nanoparticles. The results show that the resultant is mainly composed of the amorphous Ni-B alloy nanoparticles with an average diameter of 15-25 nm.

  3. Enhanced Noble Gas Adsorption in Ag@MOF-74Ni

    SciTech Connect

    Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.

    2014-01-14

    Various amounts of Ag nanoparticles were successfully deposited in porous MOF-74Ni (or Ni/DOBDC) with an auto-reduction method. An optimized silver-loaded MOF-74Ni was shown to have an improved Xe adsorption capacity (15% more) at STP compared to the MOF without silver nanoparticles. The silver-loaded sample also has a higher Xe/Kr selectivity. These results are explained by the stronger interactions between polarizable Xe molecules and the well-dispersed Ag nanoparticles.

  4. Euhedral metallic-Fe-Ni grains in extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    Metallic Fe-Ni is rare in terrestrial rocks, being largely restricted to serpentinized peridotites and volcanic rocks that assimilated carbonaceous material. In contrast, metallic Fe-Ni is nearly ubiquitous among extraterrestrial samples (i.e., meteorites, lunar rocks, and interplanetary dust particles). Anhedral grains are common. For example, in eucrites and lunar basalts, most of the metallic Fe-Ni occurs interstitially between silicate grains and thus tends to have irregular morphologies. In many porphyritic chondrules, metallic Fe-Ni and troilite form rounded blebs in the mesostasis because their precursors were immiscible droplets. In metamorphosed ordinary chondrites, metallic Fe-Ni and troilite form coarse anhedral grains. Some of the metallic Fe-Ni and troilite grains has also been mobilized and injected into fractures in adjacent silicate grains where local shock-reheating temperatures reached the Fe-FeS eutectic (988 C). In interplanetary dust particles metallic Fe-Ni most commonly occurs along with sulfide as spheroids and fragments. Euhedral metallic Fe-Ni grains are extremely rare. Several conditions must be met before such grains can form: (1) grain growth must occur at free surfaces, restricting euhedral metallic Fe-Ni grains to systems that are igneous or undergoing vapor-deposition; (2) the metal (+/-) sulfide assemblage must have an appropriate bulk composition so that taenite is the liquidus phase in igneous systems or the stable condensate phase in vapor-deposition systems; and (3) metallic Fe-Ni grains must remain underformed during subsequent compaction, thermal metamorphism, and shock. Because of these restrictions, the occurrence of euhedral metallic Fe-Ni grains in an object can potentially provide important petrogenetic information. Despite its rarity, euhedral metallic Fe-Ni occurs in a wide variety of extraterrestrial materials. Some of these materials formed in the solar nebula; others formed on parent body surfaces by meteoroid

  5. Protective Effects of Gallic Acid Against NiSO4-Induced Toxicity Through Down-Regulation of the Ras/ERK Signaling Pathway in Beas-2B Cells

    PubMed Central

    An, Xuejun; Zhou, Aijia; Yang, Yue; Wang, Yue; Xin, Rui; Tian, Chao; Wu, Yonghui

    2016-01-01

    Background This study aimed to explore the preventive effects of gallic acid (GA) on the toxicity induced by NiSO4 in Beas-2B cells. Material/Methods Beas-2B cell viability was measured by MTT assay. The degree of oxidative stress was detected by measuring the levels of reactive oxygen species (ROS) and lipid peroxide (LPO). The rate of apoptosis was measured by flow cytometry. Ras/ERK-related protein levels were analyzed by Western blot analysis, which including Ras, ERK, c-Myc, PARP, and PARP cleavage. Results MTT assay showed that NiSO4 induced cytotoxicity, while GA had a protective role against toxicity. Additionally, GA could reduce the apoptotic cell number and the level of ROS in Beas-2B cells induced by NiSO4. Western blot analysis demonstrated that NiSO4 could up-regulate the related protein in the Ras/ERK signaling pathway. Furthermore, we observed that GA could alleviate the toxicity of NiSO4 through regulating protein changes in the Ras/ERK signaling pathway. Conclusions Preventive effects of GA on NiSO4-induced cytotoxicity in Beas-2B cells may be through the Ras/ERK signaling pathways. PMID:27676106

  6. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2016-06-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the

  7. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2016-11-01

    The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce2Ni15.8Si1.2 (Th2Ni17-type), Ce2Ni15-14Si2-3 (Th2Zn17-type), CeNi8.6Si2.4 (BaCd11-type), CeNi8.8Si4.2 (LaCo9Si4-type), CeNi6Si6 (CeNi6Si6-type), CeNi5Si1-0.3 (TbCu7-type), CeNi4Si (YNi4Si-type), CeNi2Si2 (CeGa2Al2-type), Ce2Ni3Si5 (U2Co3Si5-type), Ce3Ni6Si2 (Ce3Ni6Si2-type), Ce3Ni4Si4 (U3Ni4Si4-type), CeNiSi2 (CeNiSi2-type), CeNi1.3Si0.7 (unknown type structure), Ce6Ni7Si4 (Pr6Ni7Si4-type), CeNiSi (LaPtSi-type), CeNi0.8-0.3Si1.2-1.7 (AlB2-type), Ce2Ni2Si (unknown type structure), Ce4.5Ni3.5Si2 (unknown type structure), Ce15Ni7Si10 (Pr15Ni7Si10-type), Ce5Ni1.85Si3 (Ce5Ni1.85Si3-type), Ce6Ni1.4Si3.4 (Ce6Ni1.67Si3-type), Ce7Ni2Si5 (Ce7Ni2Si5-type) and Ce3NiSi3 (Y3NiSi3-type) has been confirmed in this section. Moreover, the type structure has been determined for Ce2Ni2Si (Mo2NiB2-type Ce2Ni2.5Si0.5) and Ce4.5Ni3.5Si2 (W3CoB3-type Ce3Ni3-2.7Si1-1.3) and new ternary phases Ce2Ni6.25Si0.75 (Gd2Co7-type), CeNi7-7.6Si6-5.4 (GdNi7Si6-type) and Ce27Ni42Si31 (unknown type structure) have been identified in this system. Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi5, CeNi3 and CeSi2; while no appreciable solubility was observed for the other binary compounds of the Ce-Ni-Si system. As a prolongation of Rare Earth-Ni-Si system's isostructural rows, LaNi7Si6 and YNi6.6Si6.1 (GdNi7Si6-type), ScNi6Si6 (YCo6Ge6-type), NdNi6Si6 (YNi6Si6-type), {Tb, Ho}2Ni15Si2 (Th2Zn17-type), Nd2Ni2.3Si0.7 and Sm2Ni2.2Si0.8 (Mo2NiB2-type), Nd3Ni2.55Si1.45 (W3CoB3-type) and {Tb, Dy}7Ni50Si19 (Y7Ni49Si20-type) compounds were synthesized and investigated. Magnetic properties of the CeNi6Si6, CeNi7Si6, CeNi8.8Si4.2, Ce6Ni7Si4, CeNi5Si, Ce2Ni2.5Si0.5, Nd2Ni2.3Si0.7 and Dy7Ni50Si19 compounds have also been investigated and are presented here.

  8. Comparison of three Ni-Hard I alloys

    SciTech Connect

    Dogan, Omer N.; Hawk, Jeffrey A.; Rice, J.

    2004-09-01

    This report documents the results of an investigation which was undertaken to reveal the similarities and differences in the mechanical properties and microstructural characteristics of three Ni-Hard I alloys. One alloy (B1) is ASTM A532 class IA Ni-Hard containing 4.2 wt. pct. Ni. The second alloy (B2) is similar to B1 but higher in Cr, Si, and Mo. The third alloy (T1) also falls in the same ASTM specification, but it contains 3.3 wt. pct. Ni. The alloys were evaluated in both as-cast and stress-relieved conditions except for B2, which was evaluated in the stress-relieved condition only. While the matrix of the high Ni alloys is composed of austenite and martensite in both conditions, the matrix of the low Ni alloy consists of a considerable amount of bainite, in addition to the martensite and the retained austenite in as cast condition, and primarily bainite, with some retained austenite, in the stress relieved condition. It was found that the stress relieving treatment does not change the tensile strength of the high Ni alloy. Both the as cast and stress relieved high Ni alloys had a tensile strength of about 350 MPa. On the other hand, the tensile strength of the low Ni alloy increased from 340 MPa to 452 MPa with the stress relieving treatment. There was no significant difference in the wear resistance of these alloys in both as-cast and stressrelieved conditions.

  9. The role of boron in ductilizing Ni3Al

    NASA Technical Reports Server (NTRS)

    Vedula, K.; Shabel, B. S.; Khadkikar, P. S.

    1987-01-01

    Ductilization of Ni3Al at room temperature by microalloying with boron has been primarily attributed to the increased grain boundary cohesion in the presence of boron. However, another aspect of the role played by boron in ductilizing Ni3Al is revealed when the Hall-Petch relationships for Ni3Al and B-doped Ni3Al are compared. A shallower slope for the B-doped Ni3Al compared to that for Ni3Al indicates a reduced resistance to slip propagation across grain boundaries, and therefore reduced stress concentration at boundaries, in the presence of boron. This comparison of Hall-Petch relationships was carried out by generating data for powder processed B-doped Ni3Al at various grain sizes and by compiling data for Ni3Al from the literature. In addition, the room temperature fracture of B-doped Ni3Al has been shown to initiate along certain grain boundaries. The fracture eventually occurs by transgranular ductile tearing.

  10. Ni-WC/C nanocluster catalysts for urea electrooxidation

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Mingtao; Huang, Zhiyu; Li, Yingming; Qi, Suitao; Yi, Chunhai; Yang, Bolun

    2014-10-01

    A nanocluster Ni-WC/C electrocatalyst is prepared through a sequential impregnation method and is used for the urea electrooxidation in alkaline conditions. The micro-morphology, lattice parameter, composition and surface states of Ni-WC/C particles are determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and X-ray photoelectron spectrometry (XPS) analysis. The electrooxidation activity and stability of the Ni-WC/C catalyst are also investigated by cyclic voltammograms and chronoamperograms. Characterization results indicate that the Ni nanoclusters are uniformly distributed on the WC/C framework, and the Ni-WC/C catalyst shows high electrocatalytic activity and stability for urea electrooxidation. The maximum current density at the Ni-WC/C electrode is almost 700 mA cm-2 mg-1 which is one order of magnitude higher than that at the Ni/C electrode, and the steady current density at the Ni-WC/C electrode is also markedly improved. Furthermore, the ESA values and XPS spectra indicate that the enhanced performance of the Ni-WC/C catalyst could be attributed to the structure effect and electron effect between nickel and tungsten carbide.

  11. Interfacial Reactions in Sn/Ni- xW Couples

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Chiu, Chao-Wei; Chen, Chih-Ming; Lai, Mei-Ting; Dai, Jia-Ying

    2015-03-01

    Solid/solid and liquid/solid reaction couple techniques were applied to investigate the interfacial reactions in the Sn/Ni- xW systems ( x = 0 wt.%, 1.0 wt.%, 5.0 wt.%, and 7.5 wt.%) at 160°C to 300°C for various reaction times. The results indicate that only the Ni3Sn4 phase was formed in the Sn/Ni-1 wt.%W couple. The Ni3Sn4 phase and ternary Ni37-42Sn48W10-15 phase (T1) were formed at the Sn/Ni-5 wt.%W interface. After 400 h of aging at 210°C, the Ni26-31Sn59W10-15 phase (T2) with a discontinuous layered structure was formed in the Ni3Sn4 layer. The results in the Sn/Ni-7.5 wt.%W couple were similar to those in the Sn/Ni-5W couple. A multilayer structure, T1/Ni3Sn4/T2/Ni3Sn4, was formed after 100 h of aging at 210°C. When the reaction temperature was increased to 225°C, a new ternary phase composed of Ni5-15Sn50W35-45 (T3) was formed. T1, T2, and T3 phases were likely to be metastable phases with an amorphous structure composed of nanocrystal grains. The liquid/solid-state interfacial reactions in the Sn/Ni- xW couples are different from those in the solid-state reactions. The T1 phase was formed between the Ni3Sn4 phase and Ni- xW alloys when the W content was greater than 5 wt.%. According to the transmission electron microscopy analysis results the T1, T2, and T3 phases were likely to be metastable phases with an amorphous structure composed of nanocrystal grains.

  12. Spin states and electronic conduction in Ni oxides

    NASA Astrophysics Data System (ADS)

    Dionne, Gerald F.

    1990-05-01

    Magnetic and electronic properties of the mixed-valence semiconductor LixNi2+1-2xNi3+xO are reinterpreted in terms of low-spin states for both Ni ions. Anomalous decreases in hopping electron activation energies are discussed on the basis of (i) breakdown in antiferromagnetic ordering through spin canting of the Ni sublattices through exchange isolation caused by diamagnetic Li1+ ions that group with the low-spin Ni3+ (S= (1)/(2) ) to form polarons, and (ii) enhanced disruption of magnetic superexchange that results from a combination of Li1+ dilutants and S=0 states of surrounding Ni2+ ions induced at low temperatures by static Jahn-Teller tetragonal distortions of the oxygen octahedra around the Ni3+ polarons. Reported magnetic ordering and conduction anomalies in La2-xSrxNiO4 are then compared to the behavior of Cu in LixCu1-xO, and in the high-Tc superconducting La2-xSrxCuO4 system. Spontaneous conduction through molecular-orbital states involving zero-spin Ni and Cu ions is discussed, together with the role of S=0 polarons in other oxide superconductors.

  13. An Exploration of Catalytic Chemistry on Au/Ni(111)

    SciTech Connect

    Sylvia T. Ceyer

    2011-12-09

    This project explored the catalytic oxidation chemistry that can be effected on a Au/Ni(111) surface alloy. A Au/Ni(111) surface alloy is a Ni(111) surface on which less than 60% of the Ni atoms are replaced at random positions by Au atoms. The alloy is produced by vapor deposition of a small amount of Au onto Ni single crystals. The Au atoms do not result in an epitaxial Au overlayer or in the condensation of the Au into droplets. Instead, Au atoms displace and then replace Ni atoms on a Ni(111) surface, even though Au is immiscible in bulk Ni. The two dimensional structure of the clean Ni surface is preserved. This alloy is found to stabilize an adsorbed peroxo-like O2 species that is shown to be the critical reactant in the low temperature catalytic oxidation of CO and that is suspected to be the critical reactant in other oxidation reactions. This investigation revealed a new, practically important catalyst for CO oxidation that has since been patented.

  14. Mechanisms of Formation and Transformation of Ni-Fe Hydroxycarbonates

    SciTech Connect

    Refait, Ph.; Jeannin, M.; Reffass, M.; Drissi, S.H.; Abdelmoula, M.; Genin, J.-M.R.

    2005-04-26

    The mechanisms of the transformation of (Ni,Fe)(OH)2 precipitates in carbonated aqueous solutions were studied. The reactions were monitored by measuring the redox potential of the aqueous suspension, and end products were studied by Moessbauer spectroscopy, X-ray diffraction and Raman spectroscopy. The oxidation processes were compared to those occurring without Ni, that is when the initial hydroxide is Fe(OH)2. Schematically, the oxidation of Fe(OH)2 involves two intermediate compounds, the carbonated GR of formula Fe{sup II}{sub 4}Fe{sup III}{sub 2}(OH){sub 12}CO{sub 3} {center_dot} 2H{sub 2}O, and ferrihydrite, before to lead finally to goethite {alpha}-FeOOH. It proved possible to prepare Ni(II)-Fe(III) hydroxycarbonates with ratios Fe/Ni from 1/6 to 1/3. When the Fe/Ni ratio is larger than 1/3, a two stage oxidation process takes place. The first stage leads to a Ni(II)-Fe(II)-Fe(III) hydroxycarbonate. The second stage corresponds to the oxidation of the Fe(II) remaining inside the hydroxycarbonate and leads to a mixture of Ni(II)-Fe(III) hydroxycarbonate with ferrihydrite. The main effect of Ni is then to stop the reaction at an intermediate stage, as Ni(II) is not oxidised by O2, leaving unchanged the main features of the mechanisms of transformation.

  15. High-performance Ni3Al synthesized from composite powders

    NASA Astrophysics Data System (ADS)

    Chiou, Wen-Chih; Hu, Chen-Ti

    1994-05-01

    Specimens of Ni3Al + B of high density (>99.3 Pct RD) and relatively large dimension have been synthesized from composite powders through processes of replacing plating and electroless Ni-B plating on Al powder, sintering, and thermal-mechanical treatment. The uniformly coated Ni layer over fine Al or Ni core particles constituting these coating/core composite powders has advantages such as better resistance to oxidation relative to pure Al powder, a greater green density as a compacted powder than prealloyed powder, the possibility of atomically added B to the material by careful choice of a suitable plating solution, and avoidance of the expensive powder metallurgy (PM) equipment such as a hot isostatic press (HIP), hot press (HP), etc. The final Ni3Al + B product is made from Ni-B-Al and Ni-B-Ni mixed composite powders by means of traditional PM processes such as compacting, sintering, rolling, and annealing, and therefore, the dimensions of the product are not constrained by the capacity of an HIP or HP. The properties of Ni3Al composite powder metallurgy (CPM) specimens tested at room temperature have been obtained, and comparison with previous reports is conducted. A tensile elongation of about 16 Pct at room temperature was attained.

  16. Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing

    NASA Astrophysics Data System (ADS)

    Ok, Young-Woo; Seong, Tae-Yeon; Choi, Chel-Jong; Tu, K. N.

    2006-01-01

    We report on the formation of Ni-disilicide (NiSi2) nanorods using Ni and Si implantation combined with a laser annealing process. We found that NiSi2 nanorods are formed when the as-implanted Si samples are laser annealed at the energy density of 700mJ /cm2. Based on the Fowler-Nordheim theory, field emission behavior of the NiSi2 nanorod samples has been characterized. The turn-on field and a field enhancement factor were measured to be 7.6V /μm and about 630, respectively. A possible mechanism is given to describe how the NiSi2 nanorods embedded in crystallized Si are formed during the laser annealing.

  17. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  18. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  19. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  20. NiO/LaNiO3 film electrode with binder-free for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Du, Guo; Zhu, Jiliang; Zeng, Zifan; Zhu, Xiaohong

    2016-10-01

    NiO/LaNiO3 (NiO/LNO) film electrode was prepared by spin-coating technique on Pt/Ti/SiO2/Si(100) substrates. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS) and cyclic charge-discharge measurements were employed to evaluate the electrochemical performance of the electrode. The effect of LNO layer on the performance of the NiO/LNO electrode was also investigated. The NiO/LNO electrode with appropriate LNO content possesses high specific capacitance (2030 F/g at 0.5 A/g) and good cyclability (specific capacitance retention of 83% after 1000 cycles). The present study suggests that NiO/LNO film is a promising electrode material for supercapacitor.