System for chemically digesting low level radioactive, solid waste material
Cowan, Richard G.; Blasewitz, Albert G.
1982-01-01
An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.
Tsiliyannis, Christos Aristeides
2013-09-01
Hazardous waste incinerators (HWIs) differ substantially from thermal power facilities, since instead of maximizing energy production with the minimum amount of fuel, they aim at maximizing throughput. Variations in quantity or composition of received waste loads may significantly diminish HWI throughput (the decisive profit factor), from its nominal design value. A novel formulation of combustion balance is presented, based on linear operators, which isolates the wastefeed vector from the invariant combustion stoichiometry kernel. Explicit expressions for the throughput are obtained, in terms of incinerator temperature, fluegas heat recuperation ratio and design parameters, for an arbitrary number of wastes, based on fundamental principles (mass and enthalpy balances). The impact of waste variations, of recuperation ratio and of furnace temperature is explicitly determined. It is shown that in the presence of waste uncertainty, the throughput may be a decreasing or increasing function of incinerator temperature and recuperation ratio, depending on the sign of a dimensionless parameter related only to the uncertain wastes. The dimensionless parameter is proposed as a sharp a' priori waste 'fingerprint', determining the necessary increase or decrease of manipulated variables (recuperation ratio, excess air, auxiliary fuel feed rate, auxiliary air flow) in order to balance the HWI and maximize throughput under uncertainty in received wastes. A 10-step procedure is proposed for direct application subject to process capacity constraints. The results may be useful for efficient HWI operation and for preparing hazardous waste blends. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.
1983-02-01
Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prod'homme, A.; Drouvot, O.; Gregory, J.
In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) atmore » the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.
The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until themore » 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m 3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
New high-throughput measurement systems for radioactive wastes segregation and free release.
Suran, J; Kovar, P; Smoldasova, J; Solc, J; Skala, L; Arnold, D; Jerome, S; de Felice, P; Pedersen, B; Bogucarska, T; Tzika, F; van Ammel, R
2017-12-01
This paper addresses the measurement facilities for pre-selection of waste materials prior to measurement for repository acceptance or possible free release (segregation measurement system); and free release (free release measurement system), based on a single standardized concept characterized by unique, patented lead-free shielding. The key objective is to improve the throughput, accuracy, reliability, modularity and mobility of segregation and free-release measurement. This will result in a more reliable decision-making with regard to the safe release and disposal of radioactive wastes into the environment and, resulting in positive economic outcomes. The research was carried out within "Metrology for Decommissioning Nuclear Facilities" (MetroDecom) project. Copyright © 2017 Elsevier Ltd. All rights reserved.
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
Advanced High-Level Waste Glass Research and Development Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, David K.; Vienna, John D.; Schweiger, Michael J.
2015-07-01
The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less
Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas
Zhai, Jian; Wang, Zhu; Shi, Peng; Long, Chao
2017-01-01
To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB) (< 20 g m-3 h-1) was investigated when using different empty bed residence times (EBRT) (64, 55.4 and 34 s, respectively). In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB. PMID:28114416
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, D.; Edwards, T.
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a resultmore » of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over which a glass system (i.e., a projected sludge composition with a candidate frit) is predicted to be acceptable can be defined (i.e., the projected operating window) which will provide insight into the ability to meet future contractual WL obligations. In this study, future contractual WL obligations are assumed to be 40%, which is the goal after all flowsheet enhancements have been implemented to support DWPF operations. For a system to be considered acceptable, candidate frits must be identified that provide access to at least 40% WL while accounting for potential variation in the sludge resulting from differences in batch-to-batch transfers into the Sludge Receipt and Adjustment Tank (SRAT) and/or analytical uncertainties. In more general terms, this study will assess whether or not the current glass formulation strategy (based on the use of the Nominal and Variation Stage assessments) and current PCCS models will allow access to compositional regions required to targeted higher WLs for future operations. Some of the key questions to be considered in this study include: (1) If higher WLs are attainable with current process control models, are the models valid in these compositional regions? If the higher WL glass regions are outside current model development or validation ranges, is there existing data that could be used to demonstrate model applicability (or lack thereof)? If not, experimental data may be required to revise current models or serve as validation data with the existing models. (2) Are there compositional trends in frit space that are required by the PCCS models to obtain access to these higher WLs? If so, are there potential issues with the compositions of the associated frits (e.g., limitations on the B{sub 2}O{sub 3} and/or Li{sub 2}O concentrations) as they are compared to model development/validation ranges or to the term 'borosilicate' glass? If limitations on the frit compositional range are realized, what is the impact of these restrictions on other glass properties such as the ability to suppress nepheline formation or influence melt rate? The model based assessments being performed make the assumption that the process control models are applicable over the glass compositional regions being evaluated. Although the glass compositional region of interest is ultimately defined by the specific frit, sludge, and WL interval used, there is no prescreening of these compositional regions with respect to the model development or validation ranges which is consistent with current DWPF operations.« less
RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F.; Edwards, T.
2010-06-23
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less
Throughput Enhancement of Car Exhaust Fabrication Line by Applying MOST
NASA Astrophysics Data System (ADS)
Hanash, E. A. H.; Karim, A. N. M.; Tanjong Tuan, Saravanan; Mohiuddin, A. K. M.
2017-03-01
In the fiercely competitive world market of today, manufacturers are facing increasingly tougher challenges and are compelled to find ways for productivity enhancement wherever possible in the whole supply chain. Nevertheless there are many facets in business process which can be explored for possible improvement, an immediate focus goes for the involved processes to re-engineer the activities in different workstations for an efficient and balanced assembly or fabrication line. In this paper an industrial case on fabrication line of a car exhaust system is presented to illustrate the scope of improvement by applying the MOST (Maynard’s Operation Sequence Technique) in streamlining the activities followed by assembly line balancing (ALB). The whole process of conducting various tasks is investigated to find out the lapses or wastes, to search for better option and to set the standard times for the tasks. Then individual workstation time is worked out by summing up the standard times of the involved tasks or activities and the concept of ALB is attempted to balance the fabrication line. So by possible reduction or elimination of the identified wastes or lapses workstation times including the bottleneck station are lowered. As a result the throughput of car exhaust systems is enhanced. According to the current practice, the Takt time is set at 3 minutes. However, upon an analysis through use of the MOST, the bottleneck station time is found to be as low as 1.27 minutes. Thus an opportunity of meeting the current level of demand with significantly lower workforce (with 2 operators instead of 5) is revealed. Alternatively, if necessary, an increased workload can be assigned for the current level of workforce. Moreover, with proper distribution of activities among the workstations using the concept of ALB, the line efficiency is found to be improved. So the line balance loss in the current setup of production line is also possible to be largely reduced. Thus daily production of car exhaust, if modified with suggested changes with the current workforce, could be more than double compared to the current daily output. Hence, effectiveness of the MOST followed by ALB applications to expose and remove the operational wastes in the work flow is reiterated with enhanced throughput.
Improving bed turnover time with a bed management system.
Tortorella, Frank; Ukanowicz, Donna; Douglas-Ntagha, Pamela; Ray, Robert; Triller, Maureen
2013-01-01
Efficient patient throughput requires a high degree of coordination and communication. Opportunities abound to improve the patient experience by eliminating waste from the process and improving communication among the multiple disciplines involved in facilitating patient flow. In this article, we demonstrate how an interdisciplinary team at a large tertiary cancer center implemented an electronic bed management system to improve the bed turnover component of the patient throughput process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K. M.
The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been amore » limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.; Fox, K.; Farfan, E.
2009-12-08
The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (ChNPP) based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Burket, P.; Cozzi, A.
2014-08-01
The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene
2011-01-01
This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less
A Centrifugal Contactor Design to Facilitate Remote Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Jack. D. Law; Troy G. Garn
2011-03-01
Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. A three stage, 12.5 cm diameter rotor module has been constructed and ismore » being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take about 30 minutes, perhaps fast enough to support a contactor change without loss of process equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.
Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less
Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.
2017-03-16
Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less
ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Peeler, D.; Herman, C.
The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.« less
Experiments with the Kema cyclone incinerator for radioactive waste
NASA Astrophysics Data System (ADS)
Matteman, J. L.; Tigchelaar, P.
A cyclone incinerator for the treatment of solid waste at a nuclear power station was developed to reduce volume and weight of the final waste; reductions by factors of 7 and 80 respectively are possible (after solidification). For burnable waste the throughput is 23 kg/hr for 6 hr runs. About 7000 kg of nonradioactive waste were treated in total. The behavior of potentially dangerous radionuclides (Co, Cs, Mn and Sr) was studied by tracers. It appears that Co, Mn and Sr are concentrated in the resulting ashes, where 55% of the Cs is also found; the remaining Cs is unaccounted for. The ashes were solidified by mixing them with concrete in a 1:1 ratio. Due to the flexibility of the facility, start-up and turn-down periods are short. Since the process can be controlled automatically, the operation can be run by one employee, to load the waste and handle the ashes.
Waste-handling practices at red meat abattoirs in South Africa.
Roberts, Hester; de Jager, Linda; Blight, Geoffrey
2009-02-01
Abattoir waste disposal must be carefully managed because the wastes can be a source of food-borne diseases (Nemerow & Dasgupta Industrial and Hazardous Waste Treatment, p. 284, Van Nostrand Reinhold, New York, 1991; Bradshaw et al. The Treatment and Handling of Wastes, p. 183, The Royal Society, Chapman & Hall, London, 1992). Disposal of food that has been condemned because it is known to be diseased is of particular concern, and this paper looks at current disposal methods for such waste in the light of new scientific developments and waste-management strategies. Questionnaires were presented to management and workers at low- and high-throughput red meat abattoirs in the Free State Province, South Africa to determine current waste-handling procedures for condemned products. The waste-handling practices, almost without exception, did not fully comply with the requirements of the South African Red Meat Regulations of 2004, framed under the Meat Safety Act (Act 40 of 2000). The survey highlighted the need to improve current waste-handling strategies to prevent condemned products from re-entering the food chain and contributing to environmental pollution.
Metrics for comparing plasma mass filters
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-10-01
High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.
Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong
2010-06-01
A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.
Melter Throughput Enhancements for High-Iron HLW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Gan, Hoa; Joseph, Innocent
2012-12-26
This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Tillotson, R.D.; Todd, T.A.
2002-09-19
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen
2002-09-01
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H
2016-02-01
Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasan, Darsh T.
2007-10-09
The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less
An adaptive distributed data aggregation based on RCPC for wireless sensor networks
NASA Astrophysics Data System (ADS)
Hua, Guogang; Chen, Chang Wen
2006-05-01
One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks
Szałatkiewicz, Jakub
2016-01-01
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804
Szałatkiewicz, Jakub
2016-08-10
This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C; Michael Stone, M
2007-03-30
High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass andmore » liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.« less
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Does recyclable separation reduce the cost of municipal waste management in Japan?
Chifari, Rosaria; Lo Piano, Samuele; Matsumoto, Shigeru; Tasaki, Tomohiro
2017-02-01
Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Nash, C.; Poirier, M.
2011-01-12
In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less
Compact, closed-loop controlled waste incinerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadow, K.C.; Seeker, W.R.
1999-07-01
Technologies for solid and liquid waste destruction in compact incinerators are being developed in collaboration between industry, universities, and a Government laboratory. This paper reviews progress on one technology, namely active combustion control to achieve efficient and controlled afterburning of air-starved reaction products. This technology which uses synchronized waste gas injection into acoustically stabilized air vortices was transitioned to a simplified afterburner design and practical operational conditions. The full-scale, simplified afterburner, which achieved CO and NO{sub x} emissions of about 30 ppm with a residence time of less than 50 msec, was integrated with a commercially available marine incinerator tomore » increase throughput and reduce emissions. Closed-loop active control with diode laser sensors and novel control strategies was demonstrated on a sub-scale afterburner.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.; Crawford, C.; Cozzi, A.
The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.; Burket, P.; Cozzi, A.
2012-02-02
The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less
ZERO: probabilistic routing for deploy and forget Wireless Sensor Networks.
Vilajosana, Xavier; Llosa, Jordi; Pacho, Jose Carlos; Vilajosana, Ignasi; Juan, Angel A; Vicario, Jose Lopez; Morell, Antoni
2010-01-01
As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called "hot spot" problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this "hot spot" problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.
Determining national greenhouse gas emissions from waste-to-energy using the Balance Method.
Schwarzböck, Therese; Rechberger, Helmut; Cencic, Oliver; Fellner, Johann
2016-03-01
Different directives of the European Union require operators of waste-to-energy (WTE) plants to report the amount of electricity that is produced from biomass in the waste feed, as well as the amount of fossil CO2 emissions generated by the combustion of fossil waste materials. This paper describes the application of the Balance Method for determining the overall amount of fossil and thus climate relevant CO2 emissions from waste incineration in Austria. The results of 10 Austrian WTE plants (annual waste throughput of around 2,300 kt) demonstrate large seasonal variations in the specific fossil CO2 emissions of the plants as well as large differences between the facilities (annual means range from 32±2 to 51±3 kg CO(2,foss)/GJ heating value). An overall amount of around 924 kt/yr of fossil CO2 for all 10 WTE plants is determined. In comparison biogenic (climate neutral) CO2 emissions amount to 1,187 kt/yr, which corresponds to 56% of the total CO2 emissions from waste incineration. The total energy input via waste feed to the 10 facilities is about 22,500 TJ/yr, of which around 48% can be assigned to biogenic and thus renewable sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimation of marginal costs at existing waste treatment facilities.
Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F
2016-04-01
This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan
2015-06-02
The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.
Behavior-aware cache hierarchy optimization for low-power multi-core embedded systems
NASA Astrophysics Data System (ADS)
Zhao, Huatao; Luo, Xiao; Zhu, Chen; Watanabe, Takahiro; Zhu, Tianbo
2017-07-01
In modern embedded systems, the increasing number of cores requires efficient cache hierarchies to ensure data throughput, but such cache hierarchies are restricted by their tumid size and interference accesses which leads to both performance degradation and wasted energy. In this paper, we firstly propose a behavior-aware cache hierarchy (BACH) which can optimally allocate the multi-level cache resources to many cores and highly improved the efficiency of cache hierarchy, resulting in low energy consumption. The BACH takes full advantage of the explored application behaviors and runtime cache resource demands as the cache allocation bases, so that we can optimally configure the cache hierarchy to meet the runtime demand. The BACH was implemented on the GEM5 simulator. The experimental results show that energy consumption of a three-level cache hierarchy can be saved from 5.29% up to 27.94% compared with other key approaches while the performance of the multi-core system even has a slight improvement counting in hardware overhead.
FINAL REPORT SUMMARY OF DM 1200 OPERATION AT VSL VSL-06R6710-2 REV 0 9/7/06
DOE Office of Scientific and Technical Information (OSTI.GOV)
KRUGER AA; MATLACK KS; DIENER G
2011-12-29
The principal objective of this report was to summarize the testing experience on the DuraMelter 1200 (DMI200), which is the High Level Waste (HLW) Pilot Melter located at the Vitreous State Laboratory (VSL). Further objectives were to provide descriptions of the history of all modifications and maintenance, methods of operation, problems and unit failures, and melter emissions and performance while processing a variety of simulated HL W and low activity waste (LAW) feeds for the Hanford Waste Treatment and Immobilization Plant (WTP) and employing a variety of operating methods. All of these objectives were met. The River Protection Project -more » Hanford Waste Treatment and Immobilization Plant (RPP-WTP) Project has undertaken a 'tiered' approach to vitrification development testing involving computer-based glass formulation, glass property-composition models, crucible melts, and continuous melter tests of increasing, more realistic scales. Melter systems ranging from 0.02 to 1.2 m{sup 2} installed at the Vitreous State Laboratory (VSL) have been used for this purpose, which, in combination with the 3.3 m{sup 2} low activity waste (LAW) Pilot Melter at Duratek, Inc., span more than two orders of magnitude in melt surface area. In this way, less-costly small-scale tests can be used to define the most appropriate tests to be conducted at the larger scales in order to extract maximum benefit from the large-scale tests. For high level waste (HLW) vitrification development, a key component in this approach is the one-third scale DuraMelter 1200 (DM 1200), which is the HLW Pilot Melter that has been installed at VSL with an integrated prototypical off-gas treatment system. That system replaced the DM1000 system that was used for HLW throughput testing during Part B1. Both melters have similar melt surface areas (1.2 m{sup 2}) but the DM1200 is prototypical of the present RPP-WTP HLW melter design whereas the DM1000 was not. In particular, the DM1200 provides for testing on a vitrification system with the specific train of unit operations that has been selected for both HLW and LAW RPP-WTP off-gas treatment.« less
Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi
2018-01-01
Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5 Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Wang, C.; Gan, H.
2013-11-13
The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated meltersmore » with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.« less
Plasma Torch Development Activities at Archimedes
NASA Astrophysics Data System (ADS)
Davis Lee, W.; Agnew, Steve; Chamberlin, Fred; Hilsabeck, Terry; Meekins, Mike; Plaisted, Ryan; Putvinski, Sergei; Umstadter, Karl; Yung, Shui
2004-11-01
The Archimedes Demonstration Unit (ADU) is a large scale implementation (L ≃ 4.0 m, a ≃ 0.37 m) of the plasma mass filter. The filter concept uses perpendicular \\overrightarrowE and \\overrightarrowB fields to separate material by atomic mass at high throughputs, with applications to nuclear waste remediation. Fueling the filter plasma with molten waste is one of the fundamental challenges of the ADU program, and this has been achieved using an inductively coupled plasma torch. Experiments have been performed with molten NaOH, a primary constituent of the waste to be treated. The melt is pumped to the bottom of the torch and nebulized using a 20 kHz sonic source. The nebulized NaOH mist is then evaporated by the torch and injected into the central region of the ADU. Vapor jet characteristics and ionization rates have been measured. The experimental setup and data will be presented.
Microbial community structure and diversity in a municipal solid waste landfill.
Wang, Xiaolin; Cao, Aixin; Zhao, Guozhu; Zhou, Chuanbin; Xu, Rui
2017-08-01
Municipal solid waste (MSW) landfills are the most prevalent waste disposal method and constitute one of the largest sources of anthropogenic methane emissions in the world. Microbial activities in disposed waste play a crucial role in greenhouse gas emissions; however, only a few studies have examined metagenomic microbial profiles in landfills. Here, the MiSeq high-throughput sequencing method was applied for the first time to examine microbial diversity of the cover soil and stored waste located at different depths (0-150cm) in a typical MSW landfill in Yangzhou City, East China. The abundance of microorganisms in the cover soil (0-30cm) was the lowest among all samples, whereas that in stored waste decreased from the top to the middle layer (30-90cm) and then increased from the middle to the bottom layer (90-150cm). In total, 14 phyla and 18 genera were found in the landfill. A microbial diversity analysis showed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla, whereas Halanaerobium, Methylohalobius, Syntrophomonas, Fastidiosipila, and Spirochaeta were the dominant genera. Methylohalobius (methanotrophs) was more abundant in the cover layers of soil than in stored waste, whereas Syntrophomonas and Fastidiosipila, which affect methane production, were more abundant in the middle to bottom layers (90-150cm) in stored waste. A canonical correlation analysis showed that microbial diversity in the landfill was most strongly correlated with the conductivity, organic matter, and moisture content of the stored waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Marra, J.
2014-08-14
The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making itmore » difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values« less
High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia.
Florin, N H; Maddocks, A R; Wood, S; Harris, A T
2009-04-01
The high-temperature thermal destruction of poultry derived wastes (e.g., manure and bedding) for energy recovery is viable in Australia when considering resource availability and equivalent commercial-scale experience in the UK. In this work, we identified and examined the opportunities and risks associated with common thermal destruction techniques, including: volume of waste, costs, technological risks and environmental impacts. Typical poultry waste streams were characterised based on compositional analysis, thermodynamic equilibrium modelling and non-isothermal thermogravimetric analysis coupled with mass spectrometry (TG-MS). Poultry waste is highly variable but otherwise comparable with other biomass fuels. The major technical and operating challenges are associated with this variability in terms of: moisture content, presence of inorganic species and type of litter. This variability is subject to a range of parameters including: type and age of bird, and geographical and seasonal inconsistencies. There are environmental and health considerations associated with combustion and gasification due to the formation of: NO(X), SO(X), H(2)S and HCl gas. Mitigation of these emissions is achievable through correct plant design and operation, however, with significant economic penalty. Based on our analysis and literature data, we present cost estimates for generic poultry-waste-fired power plants with throughputs of 2 and 8 tonnes/h.
Liu, Jun; Chen, Xi; Shu, Hao-Yue; Lin, Xue-Rui; Zhou, Qi-Xing; Bramryd, Torleif; Shu, Wen-Sheng; Huang, Li-Nan
2018-04-01
The release of toxic organic pollutants and heavy metals by primitive electronic waste (e-waste) processing to waterways has raised significant concerns, but little is known about their potential ecological effects on aquatic biota especially microorganisms. We characterized the microbial community composition and diversity in sediments sampled along two rivers consistently polluted by e-waste, and explored how community functions may respond to the complex combined pollution. High-throughput 16S rRNA gene sequencing showed that Proteobacteria (particularly Deltaproteobacteria) dominated the sediment microbial assemblages followed by Bacteroidetes, Acidobacteria, Chloroflexi and Firmicutes. PICRUSt metagenome inference provided an initial insight into the metabolic potentials of these e-waste affected communities, speculating that organic pollutants degradation in the sediment might be mainly performed by some of the dominant genera (such as Sulfuricurvum, Thiobacillus and Burkholderia) detected in situ. Statistical analyses revealed that toxic organic compounds contributed more to the observed variations in sediment microbial community structure and predicted functions (24.68% and 8.89%, respectively) than heavy metals (12.18% and 4.68%), and Benzo(a)pyrene, bioavailable lead and electrical conductivity were the key contributors. These results have shed light on the microbial assemblages in e-waste contaminated river sediments, indicating a potential influence of e-waste pollution on the microbial community structure and function in aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ciplak, Nesli; Barton, John R
2012-06-01
Healthcare waste consists of various types of waste materials generated at hospitals, medical research centres, clinics and laboratories. Although 75-90% of this waste is classified as 'domestic' in nature, 20-25% is deemed to be hazardous, which if not disposed of appropriately, poses a risk to healthcare workers, patients, the environment and even the whole community. As long as healthcare waste is mixed with municipal waste and not segregated prior to disposal, costs will increase substantially. In this study, healthcare waste increases along with the potential to decrease the amounts by implementing effective segregation at healthcare facilities are projected to 2040. Our long-term aim is to develop a system to support selection and planning of the future treatment capacity. Istanbul in Turkey was used as the case study area. In order to identify the factors affecting healthcare waste generation in Istanbul, observations were made and interviews conducted in Istanbul over a 3 month period. A system dynamics approach was adopted to build a healthcare waste management model using a software package, Vensim Ple Plus. Based on reported analysis, the non-hazardous municipal fraction co-disposed with healthcare waste is around 65%. Using the projected waste generation flows, reducing a municipal fraction to 30% has the potential to avoid some 8000 t year(-1) of healthcare waste by 2025 and almost 10 000 t year(-1) by 2035. Furthermore, if segregation practices ensured healthcare waste requiring incineration was also selectively managed, 77% of healthcare waste could be diverted to alternative treatment technologies. As the throughput capacity of the only existing healthcare waste treatment facility in Istanbul, Kemerburgaz Incinerator, has already been exceeded, it is evident that improved management could not only reduce overall flows and costs but also permit alternative and cheaper treatment systems (e.g. autoclaving) to be adopted for the healthcare waste.
NASA Astrophysics Data System (ADS)
Fang, Sheng-Po; Jao, PitFee; Senior, David E.; Kim, Kyoung-Tae; Yoon, Yong-Kyu
2017-12-01
High throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer.
The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD
NASA Astrophysics Data System (ADS)
Cox, M. A.; Reed, R.; Mellado, B.
2015-01-01
After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.
Composting of Explosives-Contaminated Soil Technology
1989-10-01
commercial or field-scale composting system for Type 2 wastes would require, in its early stages , experimental investigation in two broad areas...consists of the alfalfa, straw/ manure , and woodchips storage and/or handling. The alfalfa and straw/ manure are staged in the designated clean area of the...throughput of 300 yd3 per day. 0 No pad is necessary for all alfalfa and straw/ manure storage. These •aaterials will be staged on visqueen (plastic
Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.
Courtemanche, Jean; King, Samson; Bouck, David
2018-03-01
The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.
Chang, Yao-Jen; Chu, Chien-Wei; Lin, Min-Der
2012-05-01
Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. For sustainable MSWM strategies, the critical management factors to be considered include not only economic efficiency of MSW treatment but also life-cycle assessment of the environmental impact. This paper employed linear programming technique to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of a MSWM system, and investigated the correlations between the economical optimization and pollutant emissions. A case study based on real-world MSW operating parameters in Taichung City is also presented. The results showed that the costs, benefits, streams of MSW, and throughputs of incinerators and landfills will be affected if pollution emission reductions are implemented in the MSWM strategies. In addition, the quantity of particulate matter is the best pollutant indicator for the MSWM system performance of emission reduction. In particular this model will assist the decision maker in drawing up a friendly MSWM strategy for Taichung City in Taiwan. Recently, life-cycle assessments of municipal solid waste management (MSWM) strategies have been given more considerations. However, what seems to be lacking is the consideration of economic factors and environmental impacts simultaneously. This work analyzed real-world data to establish optimal MSWM strategies considering economic efficiency and the air pollutant emissions during the life cycle of the MSWM system. The results indicated that the consideration of environmental impacts will affect the costs, benefits, streams of MSW, and throughputs of incinerators and landfills. This work is relevant to public discussion and may establish useful guidelines for the MSWM policies.
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels.
Hernández-Prieto, Miguel A; Lin, Yuankui; Chen, Min
2017-02-09
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina , multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA , we detected a similar transcriptional pattern for psbJ and psbU , which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. Copyright © 2017 Hernandez-Prieto et al.
The Complex Transcriptional Response of Acaryochloris marina to Different Oxygen Levels
Hernández-Prieto, Miguel A.; Lin, Yuankui; Chen, Min
2016-01-01
Ancient oxygenic photosynthetic prokaryotes produced oxygen as a waste product, but existed for a long time under an oxygen-free (anoxic) atmosphere, before an oxic atmosphere emerged. The change in oxygen levels in the atmosphere influenced the chemistry and structure of many enzymes that contained prosthetic groups that were inactivated by oxygen. In the genome of Acaryochloris marina, multiple gene copies exist for proteins that are normally encoded by a single gene copy in other cyanobacteria. Using high throughput RNA sequencing to profile transcriptome responses from cells grown under microoxic and hyperoxic conditions, we detected 8446 transcripts out of the 8462 annotated genes in the Cyanobase database. Two-thirds of the 50 most abundant transcripts are key proteins in photosynthesis. Microoxic conditions negatively affected the levels of expression of genes encoding photosynthetic complexes, with the exception of some subunits. In addition to the known regulation of the multiple copies of psbA, we detected a similar transcriptional pattern for psbJ and psbU, which might play a key role in the altered components of photosystem II. Furthermore, regulation of genes encoding proteins important for reactive oxygen species-scavenging is discussed at genome level, including, for the first time, specific small RNAs having possible regulatory roles under varying oxygen levels. PMID:27974439
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, J; Miller, D; Stone, M
The Savannah River National Laboratory (SRNL) was tasked to provide an assessment of the downstream impacts to the Defense Waste Processing Facility (DWPF) of decisions regarding the implementation of Al-dissolution to support sludge mass reduction and processing. Based on future sludge batch compositional projections from the Liquid Waste Organization's (LWO) sludge batch plan, assessments have been made with respect to the ability to maintain comparable projected operating windows for sludges with and without Al-dissolution. As part of that previous assessment, candidate frits were identified to provide insight into melt rate for average sludge batches representing with and without Al-dissolution flowsheets.more » Initial melt rate studies using the melt rate furnace (MRF) were performed using five frits each for Cluster 2 and Cluster 4 compositions representing average without and with Al-dissolution. It was determined, however, that the REDOX endpoint (Fe{sup 2+}/{Sigma}Fe for the glass) for Clusters 2 and 4 resulted in an overly oxidized feed which negatively affected the initial melt rate tests. After the sludge was adjusted to a more reduced state, additional testing was performed with frits that contained both high and low concentrations of sodium and boron oxides. These frits were selected strictly based on the ability to ascertain compositional trends in melt rate and did not necessarily apply to any acceptability criteria for DWPF processing. The melt rate data are in general agreement with historical trends observed at SRNL and during processing of SB3 (Sludge Batch 3)and SB4 in DWPF. When MAR acceptability criteria were applied, Frit 510 was seen to have the highest melt rate at 0.67 in/hr for Cluster 2 (without Al-dissolution), which is compositionally similar to SB4. For Cluster 4 (with Al-dissolution), which is compositionally similar to SB3, Frit 418 had the highest melt rate at 0.63 in/hr. Based on this data, there appears to be a slight advantage of the Frit 510 based system without Al-dissolution relative to the Frit 418 based system with Al-dissolution. Though the without aluminum dissolution scenario suggests a slightly higher melt rate with frit 510, several points must be taken into consideration: (1) The MRF does not have the ability to assess liquid feeds and, thus, rheology impacts. Instead, the MRF is a 'static' test bed in which a mass of dried melter feed (SRAT product plus frit) is placed in an 'isothermal' furnace for a period of time to assess melt rate. These conditions, although historically effective in terms of identifying candidate frits for specific sludge batches and mapping out melt rate versus waste loading trends, do not allow for assessments of the potential impact of feed rheology on melt rate. That is, if the rheological properties of the slurried melter feed resulted in the mounding of the feed in the melter (i.e., the melter feed was thick and did not flow across the cold cap), melt rate and/or melter operations (i.e., surges) could be negatively impacted. This could affect one or both flowsheets. (2) Waste throughput factors were not determined for Frit 510 and Frit 418 over multiple waste loadings. In order to provide insight into the mission life versus canister count question, one needs to define the maximum waste throughput for both flowsheets. Due to funding limitations, the melt rate testing only evaluated melt rate at a fixed waste loading. (3) DWPF will be processing SB5 through their facility in mid-November 2008. Insight into the over arching questions of melt rate, waste throughput, and mission life can be obtained directly from the facility. It is recommended that processing of SB5 through the facility be monitored closely and that data be used as input into the decision making process on whether to implement Al-dissolution for future sludge batches.« less
Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao
2017-12-01
Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Charles J. Gatchell; R. Edward Thomas; Elizabeth S. Walker
1999-01-01
Using the ROMI-RIP simulator we examined the implications of preprocessing for gang-rip-first rough mills. Rip-first rough mills can improve yield and throughput by preprocessing 1 Common and 2A Common hardwood lumber. This can be achieved by using a chop saw to separate poorer quality board segments from better ones and remove waste areas with little or no yield. This...
Thermal Catalytic Syngas Cleanup for High-Efficiency Waste-to-Energy Converters
2015-12-01
characteristics for a full-scale WEC based on the collected experimental data. 20 RESULTS AND DISCUSSION Task 1 – Tar-Cracking Reactor...prepared to show the effect of reaching the target throughput rate of 50 lb/hr on conversion efficiency. In scaling up the experimental results , the...Midmoisture Full Moisture Fuel Feed Rate, kg/hr 22.3 22.3 22.3 Results Using the Experimental Recuperator Effectiveness Fuel Energy In, kWth 160 136 121
Maphutha, Selby; Moothi, Kapil; Meyyappan, M.; Iyuke, Sunny E.
2013-01-01
A carbon nanotube (CNT) integrated polymer composite membrane with a polyvinyl alcohol barrier layer has been prepared to separate oil from water for treatment of oil-containing waste water. The CNTs were synthesised using chemical vapour deposition, and a phase inversion method was employed for the blending of the CNTs in the polymer composite solution for casting of the membrane. Relative to the baseline polymer, an increase of 119% in the tensile strength, 77% in the Young's modulus and 258% in the toughness is seen for a concentration of 7.5% CNTs in the polymer composite. The permeate through the membrane shows oil concentrations below the acceptable 10 mg/L limit with an excellent throughput and oil rejection of over 95%. PMID:23518875
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-07-01
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-01-16
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.« less
Performance analysis of Aloha networks with power capture and near/far effect
NASA Astrophysics Data System (ADS)
McCartin, Joseph T.
1989-06-01
An analysis is presented for the throughput characteristics for several classes of Aloha packet networks. Specifically, the throughput for variable packet length Aloha utilizing multiple power levels to induce receiver capture is derived. The results are extended to an analysis of a selective-repeat ARQ Aloha network. Analytical results are presented which indicate a significant increase in throughput for a variable packet network implementing a random two power level capture scheme. Further research into the area of the near/far effect on Aloha networks is included. Improvements in throughput for mobile radio Aloha networks which are subject to the near/far effect are presented. Tactical Command, Control and Communications (C3) systems of the future will rely on Aloha ground mobile data networks. The incorporation of power capture and the near/far effect into future tactical networks will result in improved system analysis, design, and performance.
Key factors of eddy current separation for recovering aluminum from crushed e-waste.
Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming
2017-02-01
Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rout, S P; Payne, L; Walker, S; Scott, T; Heard, P; Eccles, H; Bond, G; Shah, P; Bills, P; Jackson, B R; Boxall, S A; Laws, A P; Charles, C; Williams, S J; Humphreys, P N
2018-03-13
14 C is an important consideration within safety assessments for proposed geological disposal facilities for radioactive wastes, since it is capable of re-entering the biosphere through the generation of 14 C bearing gases. The irradiation of graphite moderators in the UK gas-cooled nuclear power stations has led to the generation of a significant volume of 14 C-containing intermediate level wastes. Some of this 14 C is present as a carbonaceous deposit on channel wall surfaces. Within this study, the potential of biofilm growth upon irradiated and 13 C doped graphite at alkaline pH was investigated. Complex biofilms were established on both active and simulant samples. High throughput sequencing showed the biofilms to be dominated by Alcaligenes sp at pH 9.5 and Dietzia sp at pH 11.0. Surface characterisation revealed that the biofilms were limited to growth upon the graphite surface with no penetration of the deeper porosity. Biofilm formation resulted in the generation of a low porosity surface layer without the removal or modification of the surface deposits or the release of the associated 14 C/ 13 C. Our results indicated that biofilm formation upon irradiated graphite is likely to occur at the pH values studied, without any additional release of the associated 14 C.
High-level waste program progress report, April 1, 1980-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.
Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian
2018-05-01
This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.
40 CFR 227.30 - High-level radioactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30 Section 227.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the...
Solid Waste Management Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-26
The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.
Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo
2014-10-10
An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagwell, C.
This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared tomore » traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.« less
Di Maria, Francesco; Barratta, Martino
2015-09-01
The effects of anaerobic co-digestion of waste-mixed sludge with fruit and vegetable waste (FVW) on the methane generation of a mesophilic digester was investigated. Organic loading rates (OLR) were 1.46kgVS/m(3)day, 2.1kgVS/m(3)day and 2.8kgVS/m(3)day. Increase in the OLR due to FVW co-digestion caused modification of the internal environment of the digester, mainly in terms of N-NH4 (mg/L). Corresponding microbial populations were investigated by metagenomic high-throughput sequencing. Maximum specific bio-methane generation of 435 NLCH4 per kgVS feed was achieved for an OLR of 2.1kgVS/m(3)day, which corresponded to a biomethane generation per kgVS removed of about 1700 NLCH4. In these conditions the methanogenic pathway was dominated by aceticlastic Methanosaeta and hydrogenotrophic/aceticlastic Methanoscarcinae. Ammonia concentration in the digester resulted a key parameter for enhancing syntrophic acetate oxidation, enabling a balanced aceticlastic and hydrogenotrophic/aceticlastic methanogenic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
NASA Astrophysics Data System (ADS)
Han, R.; Zhang, L.; Fu, B.; Liu, H.
2014-12-01
Synthetic gases are usually generated from either cellulosic agricultural waste combustion or industrial release and could be subsequently transformed into acetate, ethanol, and/or butyrate by homoacetogenic bacteria, which commonly possess reductive acetyl-CoA synthesis pathway. Homoacetogen-based syngas fermentation technology provides an alternative solution to link greenhouse gas emission control and cellulosic solid waste treatment with biofuels production. The objective of our current project is to hunt for homoacetogens with capabilities of highly efficiently converting syngases to chemical solvents. In this study, we evaluated homoacetogens population dynamics during enrichments and pinpointed dominant homoacetogens representing diverse ecosystems enriched by different substrates. We enriched homoacetogens from four different samples including waste activate sludge, freshwater sediment, anaerobic methanogenic sludge, and cow manure using H2/CO2 (4:1) or formate as substrate for homoacetogen enrichment. Along with the formyltetrahydrofolate synthetase (FTHFS) gene (fhs gene)-specific real time qPCR assay and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis, 16S rRNA based 454 high-throughput pyrosequencing was applied to reveal the population dynamic and community structure during enrichment from different origins. Enrichment of homoacetogenic populations coincided with accumulations of short chain fatty acids such as acetate and butyrate. 454 high-throughput pyrosequencing revealed Firmicutes and Spirochaetes populations became dominant while the overall microbial diversity decreased after enrichment. The most abundant sequences among the four origins belonged to the following phyla: Firmicutes, Spirochaetes, Proteobacteria, and Bacteroidetes, accounting for 62.1%-99.1% of the total reads. The major putative homoacetogenic species enriched on H2/CO2 or formate belonged to Clostridium spp., Acetobacterium spp., Acetoanaerobium spp., Eubacterium spp., Sporomusa spp. This comprehensive molecular ecology study on homoacetogen enrichments provides molecular evidences for shaping homoacetogenic populations and targeting novel homoacetogenic species enriched from diverse ecosystems.
Accounting For Uncertainty in The Application Of High Throughput Datasets
The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
High-Throughput Printing Process for Flexible Electronics
NASA Astrophysics Data System (ADS)
Hyun, Woo Jin
Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.
Schwarz, Patric; Pannes, Klaus Dieter; Nathan, Michel; Reimer, Hans Jorg; Kleespies, Axel; Kuhn, Nicole; Rupp, Anne; Zügel, Nikolaus Peter
2011-10-01
The decision to optimize the processes in the operating tract was based on two factors: competition among clinics and a desire to optimize the use of available resources. The aim of the project was to improve operating room (OR) capacity utilization by reduction of change and throughput time per patient. The study was conducted at Centre Hospitalier Emil Mayrisch Clinic for specialized care (n = 618 beds) Luxembourg (South). A prospective analysis was performed before and after the implementation of optimized processes. Value stream analysis and design (value stream mapping, VSM) were used as tools. VSM depicts patient throughput and the corresponding information flows. Furthermore it is used to identify process waste (e.g. time, human resources, materials, etc.). For this purpose, change times per patient (extubation of patient 1 until intubation of patient 2) and throughput times (inward transfer until outward transfer) were measured. VSM, change and throughput times for 48 patient flows (VSM A(1), actual state = initial situation) served as the starting point. Interdisciplinary development of an optimized VSM (VSM-O) was evaluated. Prospective analysis of 42 patients (VSM-A(2)) without and 75 patients (VSM-O) with an optimized process in place were conducted. The prospective analysis resulted in a mean change time of (mean ± SEM) VSM-A(2) 1,507 ± 100 s versus VSM-O 933 ± 66 s (p < 0.001). The mean throughput time VSM-A(2) (mean ± SEM) was 151 min (±8) versus VSM-O 120 min (±10) (p < 0.05). This corresponds to a 23% decrease in waiting time per patient in total. Efficient OR capacity utilization and the optimized use of human resources allowed an additional 1820 interventions to be carried out per year without any increase in human resources. In addition, perioperative patient monitoring was increased up to 100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
Hanson, Andrea J; Guho, Nicholas M; Paszczynski, Andrzej J; Coats, Erik R
2016-09-01
Polyhydroxyalkanoates (PHAs) are bio-based, biodegradable polyesters that can be produced from organic-rich waste streams using mixed microbial cultures (MMCs). To maximize PHA production, MMCs are enriched for bacteria with a high polymer storage capacity through the application of aerobic dynamic feeding (ADF) in a sequencing batch reactor (SBR), which consequently induces a feast-famine metabolic response. Though the feast-famine response is generally understood empirically at a macro-level, the molecular level is less refined. The objective of this study was to investigate the microbial community composition and proteome profile of an enriched MMC cultivated on fermented dairy manure. The enriched MMC exhibited a feast-famine response and was capable of producing up to 40 % (wt. basis) PHA in a fed-batch reactor. High-throughput 16S rRNA gene sequencing revealed a microbial community dominated by Meganema, a known PHA-producing genus not often observed in high abundance in enrichment SBRs. The application of the proteomic methods two-dimensional electrophoresis and LC-MS/MS revealed PHA synthesis, energy generation, and protein synthesis prominently occurring during the feast phase, corroborating bulk solution variable observations and theoretical expectations. During the famine phase, nutrient transport, acyl-CoA metabolism, additional energy generation, and housekeeping functions were more pronounced, informing previously under-determined MMC functionality under famine conditions. During fed-batch PHA production, acetyl-CoA acetyltransferase and PHA granule-bound phasin proteins were in increased abundance relative to the SBR, supporting the higher PHA content observed. Collectively, the results provide unique microbial community structural and functional insight into feast-famine PHA production from waste feedstocks using MMCs.
Compatibility analysis of material and energy recovery in a regional solid waste management system.
Chang, Ying-Hsi; Chang, Ni-Bin
2003-01-01
The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2000-09-26
This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.
Chirality sensing with stereodynamic biphenolate zinc complexes.
Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian
2015-10-01
Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.
This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.
Adaptive Packet Combining Scheme in Three State Channel Model
NASA Astrophysics Data System (ADS)
Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak
2018-01-01
The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.
2009-09-01
onset and averaged across all excited units tested (mean ± SE). 7 SUPPLEMENTAL EXPERIMENTAL PROCEDURES Virus design and production...to baseline level 355 ± 505 ms later. The level of post -light firing did not vary with repeated light exposure (p > 0.7, paired t- test comparing...High-Throughput Screening of Therapeutic Neural Stimulation Targets: Toward Principles of Preventing and Treating Post - Traumatic Stress Disorder
Laboratory-scale integrated ARP filter test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, M.; Burket, P.
2016-03-01
The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less
Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S. H.; DiPrete, D. P.
2016-12-12
This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dosemore » associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Charles A.; Hamm, L. Larry; Smith, Frank G.
2014-12-19
The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Duemore » to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig ® 639 a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste stream without dilution and to minimize the volume of the final wasteform. This work examined the impact of high ionic strength, high density, and high viscosity if higher concentration LAW feed solution is used. Perrhenate (ReO 4 -) has been shown to be a good nonradioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin, and the performance bias is well established. Equilibrium contact testing with 7.8 M [Na +] average simulant concentrations indicated that the SuperLig ® 639 resin average perrhenate distribution coefficient was 368 mL/g at a 100:1 phase ratio. Although this indicates good performance at high ionic strength, an equilibrium test cannot examine the impact of liquid viscosity, which impacts the diffusivity of ions and therefore the loading kinetics. To get an understanding of the effect of diffusivity, modeling was performed, which will be followed up with column tests in the future.« less
Thirty-year solid waste generation forecast for facilities at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less
78 FR 1155 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 [NRC-2011-0012] RIN 3150-AI92 Low-Level Waste... correcting a document appearing in the Federal Register on December 7, 2012 entitled, ``Low-Level Waste... and Submitting Comments, ``Regulatory Analysis for Proposed Revisions to Low-Level Waste Disposal...
Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
WILLIS, W.L.
This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
... DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition...-Level Waste and Facilities Disposition Final Environmental Impact Statement. This document corrects an... Record of Decision: Idaho High-Level Waste and Facilities [[Page 1616
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-06-30
The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less
Liquid and Gaseous Waste Operations Department annual operating report CY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, J.J.; Scott, C.B.
1997-03-01
This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.
Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples...
We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compare...
Human ATAD5 is an excellent biomarker for identifying genotoxic compounds because ATADS protein levels increase post-transcriptionally following exposure to a variety of DNA damaging agents. Here we report a novel quantitative high-throughput ATAD5-Iuciferase assay that can moni...
76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...
Screening the Hanford tanks for trapped gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.
1995-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less
Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells
Leister, Kristin P; Huang, Ruili; Goodwin, Bonnie L; Chen, Andrew; Austin, Christopher P; Xia, Menghang
2011-01-01
Tumor Necrosis Factor-α (TNF-α), a secreted cytokine, plays an important role in inflammatory diseases and immune disorders, and is a potential target for drug development. The traditional assays for detecting TNF-α, enzyme linked immunosorbent assay (ELISA) and radioimmunoassay, are not suitable for the large size compound screens. Both assays suffer from a complicated protocol, multiple plate wash steps and/or excessive radioactive waste. A simple and quick measurement of TNF-α production in a cell based assay is needed for high throughput screening to identify the lead compounds from the compound library. We have developed and optimized two homogeneous TNF-α assays using the HTRF (homogeneous time resolved fluorescence) and AlphaLISA assay formats. We have validated the HTRF based TNF-α assay in a 1536-well plate format by screening a library of 1280 pharmacologically active compounds. The active compounds identified from the screen were confirmed in the AlphaLISA TNF-α assay using a bead-based technology. These compounds were also confirmed in a traditional ELISA assay. From this study, several beta adrenergic agonists have been identified as TNF-α inhibitors. We also identified several novel inhibitors of TNF-α, such as BTO-1, CCG-2046, ellipticine, and PD 169316. The results demonstrated that both homogeneous TNF-α assays are robust and suitable for high throughput screening. PMID:21643507
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false First level sampling-waste from..., DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS Sampling Non-Liquid, Non-Metal PCB Bulk Product Waste for... Waste Destined for Off-Site Disposal, in Accordance With § 761.61 § 761.347 First level sampling—waste...
Value-added care: a paradigm shift in patient care delivery.
Upenieks, Valda V; Akhavan, Jaleh; Kotlerman, Jenny
2008-01-01
Spiraling costs in health care have placed hospitals in a constant state of transition. As a result, nursing practice is now influenced by numerous factors and has remained in a continuous state of flux. Multiple changes within the last 2 decades in nurse/patient ratio and blend of front-line nurses are examples of this transition. To reframe the nursing practice into an economic equation that captures the cost, quality, and service, a paradigm shift in thinking is needed in order to assess work redesign. Nursing productivity must be evaluated in terms of value-added care, a vision that goes beyond direct care activities and includes team collaboration, physician rounding, increased RN-to-aide communication, and patient centeredness; all of which are crucial to the nurse's role and the patient's well-being. The science of appropriating staffing depends on assessment and implementation of systematic changes best illustrated through a "systems theory" framework. A throughput transformation is required to create process changes with input elements (number of front-line nurses) in order to increase time spent in value-added care and to decrease waste activities with an improvement in efficiency, quality, and service. The purpose of this pilot study was two-fold: (a) to gain an understanding of how much time RNs spent in value-added care, and (b) whether increasing the combined level of RNs and unlicensed assistive personnel increased the amount of time spent in value-added care compared to time spent in necessary tasks and waste.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
40 CFR 266.220 - What does a storage and treatment conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...
A comparison of high-throughput techniques for assaying circadian rhythms in plants.
Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony
2015-01-01
Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-06-01
The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)
Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Troy G. Garn; Jack D. Law
2009-09-01
Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This reportmore » includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.« less
Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev.
Parizeau, Kate; von Massow, Mike; Martin, Ralph
2015-01-01
It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Stochastic Human Exposure and Dose Simulation Model – High-Throughput (SHEDS-HT) is a U.S. Environmental Protection Agency research tool for predicting screening-level (low-tier) exposures to chemicals in consumer products. This course will present an overview of this m...
High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...
77 FR 72997 - Low-Level Waste Disposal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...
Wouters, Inge M.; Douwes, Jeroen; Doekes, Gert; Thorne, Peter S.; Brunekreef, Bert; Heederik, Dick J. J.
2000-01-01
As part of environmental management policies in Europe, separate collection of organic household waste and nonorganic household waste has become increasingly common. As waste is often stored indoors, this policy might increase microbial exposure in the home environment. In this study we evaluated the association between indoor storage of organic waste and levels of microbial agents in house dust. The levels of bacterial endotoxins, mold β(1→3)-glucans, and fungal extracullar polysaccharides (EPS) of Aspergillus and Penicillium species were determined in house dust extracts as markers of microbial exposure. House dust samples were collected in 99 homes in The Netherlands selected on the basis of whether separated organic waste was present in the house. In homes in which separated organic waste was stored indoors for 1 week or more the levels of endotoxin, EPS, and glucan were 3.2-, 7.6-, and 4.6-fold higher, respectively (all P < 0.05), on both living room and kitchen floors than the levels in homes in which only nonorganic residual waste was stored indoors. Increased levels of endotoxin and EPS were observed, 2.6- and 2.1-fold (P < 0.1), respectively, when separated organic waste was stored indoors for 1 week or less, whereas storage of nonseparated waste indoors had no effect on microbial agent levels (P > 0.2). The presence of textile floor covering was another major determinant of microbial levels (P < 0.05). Our results indicate that increased microbial contaminant levels in homes are associated with indoor storage of separated organic waste. These increased levels might increase the risk of bioaerosol-related respiratory symptoms in susceptible people. PMID:10653727
Reference commercial high-level waste glass and canister definition
NASA Astrophysics Data System (ADS)
Slate, S. C.; Ross, W. A.; Partain, W. L.
1981-09-01
Technical data and performance characteristics of a high level waste glass and canister intended for use in the design of a complete waste encapsulation package suitable for disposal in a geologic repository are presented. The borosilicate glass contained in the stainless steel canister represents the probable type of high level waste product that is produced in a commercial nuclear-fuel reprocessing plant. Development history is summarized for high level liquid waste compositions, waste glass composition and characteristics, and canister design. The decay histories of the fission products and actinides (plus daughters) calculated by the ORIGEN-II code are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.
2014-01-07
The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processedmore » into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Lawrence R.
2012-07-01
In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regionalmore » and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)« less
YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Michael02 Smith, M
2006-12-28
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followedmore » by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit. Beads were produced from the DWPF process frit by fire polishing. The frit was allowed to free fall through a flame, then quenched with a water spray. Approximately 90% of the frit was converted to beads by this process, as shown in Figure 1. Borosilicate beads of various diameters were also procured for initial testing.« less
Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.
2013-01-01
The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.1... fuel (SNF) and high-level radioactive waste (HLW) as provided in section 302 of the Nuclear Waste... title to, transport, and dispose of spent nuclear fuel and/or high-level radioactive waste delivered to...
NASA Astrophysics Data System (ADS)
Winney, Peter E.
1989-07-01
A standard 660MW turbo-alternator, operated by the CEGB, runs at an energy conversion efficiency of about 38%. In addition to the 660MW electrical power, 600MW of waste thermal power is generated which has to be dissipated via water cooled heat exchangers. A typical 2000MW station has a requirement of about 1.3 billion gallons of cooling water per day. This is more than the daily throughput of most of our rivers and so inland stations are equipped with cooling towers to dump heat from the coolant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parizeau, Kate, E-mail: kate.parizeau@uoguelph.ca; Massow, Mike von; Martin, Ralph
Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, andmore » source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.« less
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, D. B.; Singh, D.; Strain, R. V.
1998-02-17
The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...) Certification that the radioactive waste for which emergency access is requested is low-level radioactive waste...
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
40 CFR 60.50c - Applicability and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... later than December 1, 2008; or (2) For which modification is commenced after March 16, 1998 but no... during periods when only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste... when only pathological waste, low-level radioactivewaste and/or chemotherapeutic waste is burned. (c...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor... be designed to store spent fuel and/or solid reactor-related GTCC waste. (1) Reactor-related GTCC...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor-related GTCC waste in an MRS must include the design criteria for the proposed storage installation. These...
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
2015-01-01
Layer-by-layer (LbL) assembly is a powerful tool with increasing real world applications in energy, biomaterials, active surfaces, and membranes; however, the current state of the art requires individual sample construction using large quantities of material. Here we describe a technique using capillary flow within a microfluidic device to drive high-throughput assembly of LbL film libraries. This capillary flow layer-by-layer (CF-LbL) method significantly reduces material waste, improves quality control, and expands the potential applications of LbL into new research spaces. The method can be operated as a simple lab benchtop apparatus or combined with liquid-handling robotics to extend the library size. Here we describe and demonstrate the technique and establish its ability to recreate and expand on the known literature for film growth and morphology. We use the same platform to assay biological properties such as cell adhesion and proliferation and ultimately provide an example of the use of this approach to identify LbL films for surface-based DNA transfection of commonly used cell types. PMID:24836460
ONDRAF/NIRAS and high-level radioactive waste management in Belgium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decamps, F.
1993-12-31
The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less
Dai, Y; Yan, Z; Jia, L; Zhang, S; Gao, L; Wei, X; Mei, Z; Liu, X
2016-07-01
To reveal the microbial communities from Qinghai-Tibetan Plateau wetland soils that have the potential to be used in the utilization of cellulosic and chitinous biomass at low temperatures (≤25°C). Soil samples collected from six wetlands on Qinghai-Tibetan Plateau were supplemented with or without cellulose and chitin flakes, and anaerobically incubated at 25 and 15°C; high-throughput 16S rRNA gene sequencing was used to access the composition and localization (in the slurry and on the surface) of enriched microbial communities; a hypothetical model was constructed to demonstrate the functional roles of involved microbes mainly at genus level. Overall, microbial communities from Qinghai-Tibetan Plateau wetlands showed significant potential to convert both cellulose and chitin to methane at low temperatures; Clostridium III, Clostridium XIVa, Paludibacter, Parcubacteria, Saccharofermentans, Pelotomaculum, Methanosaeta, Methanobrevibacter, Methanoregula, Methanospirillum and Methanosarcina participated in methanogenic degradation of both cellulose and chitin through the roles of hydrolytic, saccharolytic and secondary fermenters and methanogens respectively. Acetotrophic methanogens were mainly enriched in the slurries, while hydrogenotrophic methanogens could be both in the slurries and on the surface. The composition and localization of microbial communities that could effectively convert cellulose and chitin to methane at low temperatures have been revealed by high-throughput 16S rRNA gene sequencing methods, and reviewing the literatures on the microbial pure culture helped to elucidate functional roles of significantly enriched microbes. This study will contribute to the understanding of carbon and nitrogen cycling of cellulose and chitin in cold-area wetlands and provide fundamental information to obtain microbial resources for the utilization of biomass wastes at low temperatures. © 2016 The Society for Applied Microbiology.
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
10 CFR 72.8 - Denial of licensing by Agreement States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the storage of spent fuel and reactor-related GTCC waste in an ISFSI or the storage of spent fuel, high-level radioactive waste, and reactor-related GTCC waste in an MRS. [66 FR 51839, Oct. 11, 2001] ...
78 FR 53793 - Request To Amend a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to... (Class A total of 5,500 ``Foreign Suppliers.'' No IW022/04 radioactive tons of low- other changes to the existing 11005700 waste). level waste). license which authorizes the import of low-level waste for...
ERIC Educational Resources Information Center
Hayden, Howard C.
1995-01-01
Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…
ERIC Educational Resources Information Center
Blaylock, B. G.
1978-01-01
Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)
SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHILLIPS, S.J.
2004-02-03
A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less
Advancements in zebrafish applications for 21st century toxicology.
Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L
2016-05-01
The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.
Advancements in zebrafish applications for 21st century toxicology
Garcia, Gloria R.; Noyes, Pamela D.; Tanguay, Robert L.
2016-01-01
The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. PMID:27016469
Role of psychrotrophic bacteria in organic domestic waste composting in cold regions of China.
Hou, Ning; Wen, Luming; Cao, Huiming; Liu, Keran; An, Xuejiao; Li, Dapeng; Wang, Hailan; Du, Xiaopeng; Li, Chunyan
2017-07-01
To study the influence of psychrotrophic bacteria on organic domestic waste (ODW) composting in cold regions, twelve new efficient psychrotrophic composting strains were isolated. Together with the published representative composting strains, a phylogenetic tree was constructed showing that although the strains belong to the same phylum, the genera were markedly different. The twelve strains were inoculated into the ODW in the composting reactor at 13°C. After treatment, the indices of temperature, moisture content, pH, electrical conductivity, C/N, ammonium nitrogen, and nitrate nitrogen indicated that the compost had reached maturity. The thermophilic phase was reached at 17d, and composting was completed at 42d, a markedly shorter composting time than that in previous studies. High-throughput sequencing indicated that the inoculative strains became the dominant community during the mesophilic phase and that they enhanced the stability of the microbial community structure. Thus, psychrotrophic bacteria played a key role in low-temperature composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xiaojun; Pan, Songqing; Zhang, Zhaoji; Lin, Xiangyu; Zhang, Yuzhen; Chen, Shaohua
2017-01-01
To determine the suitable feeding ratio for fed-batch aerobic composting, four fermenters were operated by adding 0%, 5%, 10% or 15% of food waste every day. The results showed that the 5% and 10% treatments were able to maintain continuous thermophilic conditions, while the 15% treatment performed badly in regard to composting temperature, which was probably due to the negative effects of excessive moisture on microbial activity. As composting proceeded, both the 5% and the 10% treatments reached maturity and achieved weight losses of approximately 65%. High-throughput sequencing results indicated that Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the dominant phyla of the community structure. The communities sampled at the thermophilic phases had high similarity and relatively low diversity, while species diversity increased in the maturity phase. This study was devoted to optimizing the fed-batch composting process and assessing bacterial communities, both of which were supplied as a reference for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You
2018-01-01
This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Public concerns and behaviours towards solid waste management in Italy.
Sessa, Alessandra; Di Giuseppe, Gabriella; Marinelli, Paolo; Angelillo, Italo F
2010-12-01
A self-administered questionnaire investigated knowledge, perceptions of the risks to health associated with solid waste management, and practices about waste management in a random sample of 1181 adults in Italy. Perceived risk of developing cancer due to solid waste burning was significantly higher in females, younger, with an educational level lower than university and who believed that improper waste management is linked to cancer. Respondents who had visited a physician at least once in the last year for fear of contracting a disease due to the non-correct waste management had an educational level lower than university, have modified dietary habits for fear of contracting disease due to improper waste management, believe that improper waste management is linked to allergies, perceive a higher risk of contracting infectious disease due to improper waste management and have participated in education/information activities on waste management. Those who more frequently perform with regularity differentiate household waste collection had a university educational level, perceived a higher risk of developing cancer due to solid waste burning, had received information about waste collection and did not need information about waste management. Educational programmes are needed to modify public concern about adverse health effects of domestic waste.
Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing
Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2016-01-01
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039
Vaccari, Mentore; Tudor, Terry; Perteghella, Andrea
2018-01-01
Given rising spend on the provision of healthcare services, the sustainable management of waste from healthcare facilities is increasingly becoming a focus as a means of reducing public health risks and financial costs. Using data on per capita healthcare spend at the national level, as well as a case study of a hospital in Italy, this study examined the relationship between trends in waste generation and the associated costs of managing the waste. At the national level, healthcare spend as a percentage of gross domestic product positively correlated with waste arisings. At the site level, waste generation and type were linked to department type and clinical performance, with the top three highest generating departments of hazardous healthcare waste being anaesthetics (5.96 kg day -1 bed -1 ), paediatric and intensive care (3.37 kg day -1 bed -1 ) and gastroenterology-digestive endoscopy (3.09 kg day -1 bed -1 ). Annual overall waste management costs were $US5,079,191, or approximately $US2.36 kg -1 , with the management of the hazardous fraction of the waste being highest at $US3,707,939. In Italy, reduction in both waste arisings and the associated costs could be realised through various means, including improved waste segregation, and linking the TARI tax to waste generation.
DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Radulesscu; J.S. Tang
The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less
LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W
2007-11-30
This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less
Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling.
Wang, Hongmei; Han, Mei; Yang, Suwen; Chen, Yanqing; Liu, Qian; Ke, Shen
2011-01-01
Primitive electronic waste (e-waste) recycling has become a growing environmental concern, and toxic heavy metals released from e-waste activities may continue to threaten the health of local people. To study the impact of heavy metals in people around e-waste sites, 349 people from e-waste recycling sites (exposure group) and 118 people from a green plantation (control group) were surveyed, and their urinary levels of lead (UPb), cadmium (UCd), manganese (UMn), copper (UCu), and Zinc (UZn) were assayed. Questionnaire surveys for risk factors were also performed and analyzed by using the Pearson correlation analysis. Results indicated that the levels of urinary Cd in both occupational dismantling people {GM(GSD) 0.72(0.71) ug/L} and non-occupational dismantling people {GM(GSD) 0.50(0.79) ug/L} were higher than the control group {GM(GSD) 0.27(0.85) ug/L}. Further analyses of correlations between urinary heavy metal levels and exposure factors in the exposed group revealed positive relationship between the duration of dismantling and the level of UPb (p < 0.05). Meanwhile, rice sources from local village have a positive correlation with the level of UPb and UCd (p < 0.01). Other factors, however, may also have influences on heavy metal burden, and not all urinary heavy metal levels can be contributed to e-waste dismantling exposure levels. Primitive e-waste recycling activities may contribute to the changes of urinary heavy metal levels and increase the health risk for those chronically working on e-waste dismantling. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lessons from high-throughput protein crystallization screening: 10 years of practical experience
JR, Luft; EH, Snell; GT, DeTitta
2011-01-01
Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073
77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-10-04
The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less
High Throughput Transcriptomics @ USEPA (Toxicology ...
The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, W.O.
Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Detection of free liquid in containers of solidified radioactive waste
Greenhalgh, Wilbur O.
1985-01-01
A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.
Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2012-01-01
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233
High efficient waste-to-energy in Amsterdam: getting ready for the next steps.
Murer, Martin J; Spliethoff, Hartmut; de Waal, Chantal M W; Wilpshaar, Saskia; Berkhout, Bart; van Berlo, Marcel A J; Gohlke, Oliver; Martin, Johannes J E
2011-10-01
Waste-to-energy (WtE) plants are traditionally designed for clean and economical disposal of waste. Design for output on the other hand was the guideline when projecting the HRC (HoogRendement Centrale) block of Afval Energie Bedrijf Amsterdam. Since commissioning of the plant in 2007, operation has continuously improved. In December 2010, the block's running average subsidy efficiency for one year exceeded 30% for the first time. The plant can increase its efficiency even further by raising the steam temperature to 480°C. In addition, the plant throughput can be increased by 10% to reduce the total cost of ownership. In order to take these steps, good preparation is required in areas such as change in heat transfer in the boiler and the resulting higher temperature upstream of the super heaters. A solution was found in the form of combining measured data with a computational fluid dynamics (CFD) model. Suction and acoustic pyrometers are used to obtain a clear picture of the temperature distribution in the first boiler pass. With the help of the CFD model, the change in heat transfer and vertical temperature distribution was predicted. For the increased load, the temperature is increased by 100°C; this implies a higher heat transfer in the first and second boiler passes. Even though the new block was designed beyond state-of-the art in waste-to-energy technology, margins remain for pushing energy efficiency and economy even further.
Fischer, John N.
1986-01-01
In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes
Boatner, L.A.; Sales, B.C.
1984-04-11
Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste
Process for treating waste water having low concentrations of metallic contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B; Millings, Margaret R; Nichols, Ralph L
A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method. PMID:22619632
Flohr, Letícia; de Castilhos Júnior, Armando Borges; Matias, William Gerson
2012-01-01
Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE(50,48 h) = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE(50,30 min) = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.
SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
BARCOT, R.A.
This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less
New Jersey State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.« less
Mississippi State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.« less
North Carolina State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.« less
Wyoming State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.« less
Kansas State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas.« less
Puerto Rico State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.« less
Ohio State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.« less
Massachusetts State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-12
The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.« less
Texas State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.« less
Vermont State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less
Huhe; Jiang, Chao; Wu, Yanpei; Cheng, Yunxiang
2017-12-01
During composting, the composition of microbial communities is subject to constant change owing to interactions with fluctuating physicochemical parameters. This study explored the changes in bacterial and fungal communities during cattle farm waste composting and aimed to identify and prioritize the contributing physicochemical factors. Microbial community compositions were determined by high-throughput sequencing. While the predominant phyla in the bacterial and fungal communities were largely consistent during the composting, differences in relative abundances were observed. Bacterial and fungal community diversity and relative abundance varied significantly, and inversely, over time. Relationships between physicochemical factors and microbial community compositions were evaluated by redundancy analysis. The variation in bacterial community composition was significantly related to water-soluble organic carbon (WSOC), and pile temperature and moisture (p < .05), while the largest portions of variation in fungal community composition were explained by pile temperature, WSOC, and C/N (p < .05). These findings indicated that those parameters are the most likely ones to influence, or be influenced by the bacterial and fungal communities. Variation partitioning analyses indicated that WSOC and pile temperature had predominant effects on bacterial and fungal community composition, respectively. Our findings will be useful for improving the quality of cattle farm waste composts. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou
2016-06-01
The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.J. Tranter; R.D. Tillotson; T.A. Todd
2005-04-01
Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less
Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo
2017-11-21
Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.
Analysis of Container Yard Capacity In North TPK Using ARIMA Method
NASA Astrophysics Data System (ADS)
Sirajuddin; Cut Gebrina Hisbach, M.; Ekawati, Ratna; Ade Irman, SM
2018-03-01
North container terminal known as North TPK is container terminal located in Indonesia Port Corporation area serving domestic container loading and unloading. It has 1006 ground slots with a total capacity of 5,544 TEUs and the maximum throughput of containers is 539,616 TEUs / year. Container throughput in the North TPK is increasing year by year. In 2011-2012, the North TPK container throughput is 165,080 TEUs / year and in 2015-2016 has reached 213,147 TEUs / year. To avoid congestion, and prevent possible losses in the future, this paper will analyze the flow of containers and the level of Yard Occupation Ratio in the North TPK at Tanjung Priok Port. The method used is the Autoregressive Integrated Moving Average (ARIMA) Model. ARIMA is a model that completely ignores independent variables in making forecasting. ARIMA results show that in 2016-2017 the total throughput of containers reached 234,006 TEUs / year with field effectiveness of 43.4% and in 2017-2018 the total throughput of containers reached 249,417 TEUs / year with field effectiveness 46.2%.
MOEX: Solvent extraction approach for recycling enriched 98Mo/ 100Mo material
Tkac, Peter; Brown, M. Alex; Momen, Abdul; ...
2017-03-20
Several promising pathways exist for the production of 99Mo/ 99mTc using enriched 98Mo or 100Mo. Use of Mo targets require a major change in current generator technology, and the necessity for an efficient recycle pathway to recover valuable enriched Mo material. High recovery yields, purity, suitable chemical form and particle size are required. Results on the development of the MOEX– molybdenum solvent extraction – approach to recycle enriched Mo material are presented. Furthermore, the advantages of the MOEX process are very high decontamination factors from potassium and other elements, high throughput, easy scalability, automation, and minimal waste generation.
NASA Astrophysics Data System (ADS)
Kunstadt, Peter; Eng, P.; Steeves, Colyn; Beaulieu, Daniel; Eng, P.
1993-07-01
The number of products being radiation processed worldwide is constantly increasing and today includes such diverse items as medical disposables, fruits and vegetables, spices, meats, seafoods and waste products. This range of products to be processed has resulted in a wide range of irradiator designs and capital and operating cost requirements. This paper discusses the economics of low dose food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operating costs and annual throughputs. It is intended to provide the reader with a general knowledge of how unit processing costs are derived.
MOEX: Solvent extraction approach for recycling enriched 98Mo/ 100Mo material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Brown, M. Alex; Momen, Abdul
Several promising pathways exist for the production of 99Mo/ 99mTc using enriched 98Mo or 100Mo. Use of Mo targets require a major change in current generator technology, and the necessity for an efficient recycle pathway to recover valuable enriched Mo material. High recovery yields, purity, suitable chemical form and particle size are required. Results on the development of the MOEX– molybdenum solvent extraction – approach to recycle enriched Mo material are presented. Furthermore, the advantages of the MOEX process are very high decontamination factors from potassium and other elements, high throughput, easy scalability, automation, and minimal waste generation.
10 CFR 1800.10 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...
10 CFR 1800.10 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...
Geohydrologic aspects for siting and design of low-level radioactive-waste disposal
Bedinger, M.S.
1989-01-01
The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE ...
30. FLOOR PLANS OF WASTE CALCINATION FACILITY. SHOWS LEVELS ABOVE GRADE AND AT LEVEL OF OPERATING CORRIDOR. INEEL DRAWING NUMBER 200-0633-00-287-106351. FLUOR NUMBER 5775-CPP-633-A-1. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Code of Federal Regulations, 2010 CFR
2010-01-01
... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...
Airborne bacteria and fungi associated with waste-handling work.
Park, Donguk; Ryu, Seunghun; Kim, Shinbum; Byun, Hyaejeong; Yoon, Chungsik; Lee, Kyeongmin
2013-01-01
Municipal workers handling household waste are potentially exposed to a variety of toxic and pathogenic substances, in particular airborne bacteria, gram-negative bacteria (GNB), and fungi. However, relatively little is known about the conditions under which exposure is facilitated. This study assessed levels of airborne bacteria, GNB, and fungi, and examined these in relation to the type of waste-handling activity (collection, transfer, transport, and sorting at the waste preprocessing plant), as well as a variety of other environmental and occupational factors. Airborne microorganisms were sampled using an Andersen single-stage sampler equipped with agar plates containing the appropriate nutritional medium and then cultured to determine airborne levels. Samples were taken during collection, transfer, transport, and sorting of household waste. Multiple regression analysis was used to identify environmental and occupational factors that significantly affect airborne microorganism levels during waste-handling activities. The "type of waste-handling activity" was the only factor that significantly affected airborne levels of bacteria and GNB, accounting for 38% (P = 0.029) and 50% (P = 0.0002) of the variation observed in bacteria and GNB levels, respectively. In terms of fungi, the type of waste-handling activity (R2 = 0.76) and whether collection had also occurred on the day prior to sampling (P < 0.0001, R2 = 0.78) explained most of the observed variation. Given that the type of waste-handling activity was significantly correlated with levels of bacteria, GNB, and fungi, we suggest that various engineering, administrative, and regulatory measures should be considered to reduce the occupational exposure to airborne microorganisms in the waste-handling industry.
A multi-echelon supply chain model for municipal solid waste management system.
Zhang, Yimei; Huang, Guo He; He, Li
2014-02-01
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well. Copyright © 2013 Elsevier Ltd. All rights reserved.
A multi-echelon supply chain model for municipal solid waste management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yimei, E-mail: yimei.zhang1@gmail.com; Huang, Guo He; He, Li
2014-02-15
In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions ofmore » the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlack, K. S.; Abramowitz, H.; Miller, I. S.
About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less
Presentation of the 2007 Richard S. Hodes, M.D. Honor Lecture Award
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, L.
Perma-Fix Environmental Services, Inc. Chief Operating Officer Larry McNamara is the 2007 recipient of the distinguished Richard S. Hodes, M.D. Honor Lecture Award from the Southeast Compact Commission for Low-Level Radioactive Waste Management. This award recognizes Mr. McNamara's innovation in the commercialization of mixed waste treatment processes for the nuclear industry, and the significant role that these innovations have played solving low-level radioactive waste (LLRW) management problems in the United States with specific emphasis on low-level mixed wastes. Low-level mixed wastes (LLMW) have historically been the most difficult wastes to treat because of the specialized equipment, permits and experience neededmore » to deal with a large variety of hazardous constituents. Prior to innovations in the mixed waste treatment industry championed by Mr. McNamara, wastes were stored at generator sites around the country in regulated storage areas, at great cost, and in many cases for decades. In this paper, Mr. McNamara shares lessons he has learned over the past seven years in developing and implementing innovative waste management solutions that have helped solve one of the nation's biggest challenges. He also describes the future challenges facing the industry. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... means any person who has title to spent nuclear fuel or high-level radioactive waste. Purchaser means... (42 U.S.C. 2133, 2134) or who has title to spent nuclear fuel or high level radioactive waste and who...
10 CFR 62.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (42 U.S.C. 2021) to any non-Federal or regional low-level radioactive waste (LLW) disposal facility or... regional or non-Federal low-level radioactive waste disposal facilities and who submit a request to the... LOW-LEVEL WASTE DISPOSAL FACILITIES General Provisions § 62.1 Purpose and scope. (a) The regulations...
Process for solidifying high-level nuclear waste
Ross, Wayne A.
1978-01-01
The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass
Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...
2016-09-05
Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less
Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.
Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less
75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...
Murase, Noriaki; Murayama, Takehiko; Nishikizawa, Shigeo; Sato, Yuriko
2017-10-01
Many cities in Indonesia are under pressure to reduce solid waste and dispose of it properly. In response to this pressure, the Japan International Cooperation Agency and the Indonesian Government have implemented a solid waste separation and collection project to reduce solid waste in the target area (810 households) of Balikpapan City. We used a cluster randomised controlled trial method to measure the impact of awareness-raising activities that were introduced by the project on residents' organic solid waste separation behaviour. The level of properly separated organic solid waste increased by 6.0% in areas that conducted awareness-raising activities. Meanwhile, the level decreased by 3.6% in areas that did not conduct similar activities. Therefore, in relative comparison, awareness-raising increased the level by 9.6%. A comparison among small communities in the target area confirmed that awareness-raising activities had a significant impact on organic solid waste separation. High frequencies of monitoring at waste stations and door-to-door visits by community members had a positive impact on organic solid waste separation. A correlation between the proximity of environmental volunteers' houses to waste stations and a high level of separation was also confirmed. The awareness-raising activities introduced by the project led to a significant increase in the separation of organic solid waste.
Role of APOE Isoforms in the Pathogenesis of TBI induced Alzheimer’s Disease
2016-10-01
deletion, APOE targeted replacement, complex breeding, CCI model optimization, mRNA library generation, high throughput massive parallel sequencing...demonstrate that the lack of Abca1 increases amyloid plaques and decreased APOE protein levels in AD-model mice. In this proposal we will test the hypothesis...injury, inflammatory reaction, transcriptome, high throughput massive parallel sequencing, mRNA-seq., behavioral testing, memory impairment, recovery 3
ERIC Educational Resources Information Center
Hagström, Linus; Scheja, Max
2014-01-01
The aim of this article is to contribute to the discussion on how examinations can be designed to enhance students' learning and increase throughput in terms of the number of students who sit, and pass, the course examination. The context of the study is a basic level political science course on power analysis, which initially suffered from low…
The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...
Final report on cermet high-level waste forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.
1981-08-01
Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures.
Estimating Residual Solids Volume In Underground Storage Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.
2014-01-08
The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less
Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.
Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B
2010-01-01
Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.
NASA Astrophysics Data System (ADS)
Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.
2017-11-01
Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy
Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian
2016-01-01
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925
Hutchison, M L; Walters, L D; Avery, S M; Munro, F; Moore, A
2005-03-01
Survey results describing the levels and prevalences of zoonotic agents in 1,549 livestock waste samples were analyzed for significance with livestock husbandry and farm waste management practices. Statistical analyses of survey data showed that livestock groups containing calves of <3 months of age, piglets, or lambs had higher prevalences and levels of Campylobacter spp. and Escherichia coli O157 in their wastes. Younger calves that were still receiving milk, however, had significantly lower levels and prevalence of E. coli O157. Furthermore, when wastes contained any form of bedding, they had lowered prevalences and levels of both pathogenic Listeria spp. and Campylobacter spp. Livestock wastes generated by stock consuming a diet composed principally of grass were less likely to harbor E. coli O157 or Salmonella spp. Stocking density did not appear to influence either the levels or prevalences of bacterial pathogens. Significant seasonal differences in prevalences were detected in cattle wastes; Listeria spp. were more likely to be isolated in March to June, and E. coli O157 was more likely to be found in May and June. Factors such as livestock diet and age also had significant influence on the levels and prevalences of some zoonotic agents in livestock wastes. A number of the correlations identified could be used as the basis of a best-practice disposal document for farmers, thereby lowering the microbiological risks associated with applying manures of contaminated livestock to land.
Improved Throughput with Cooperating Futuristic Airspace Management Components
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2013-01-01
An experiment was conducted to integrate airspace management tools that would typically be confined to either the en route or the terminal airspace to explore the potential benefits of their communication to improve arrival capacity. A NAS-wide simulation was configured with a new concept component that used the information to reconfigure the terminal airspace to the capacity benefit of the airport. Reconfiguration included a dynamically expanding and contracting TRACON area and a varying number of active arrival runways, both automatically selected to accommodate predicted volume of traffic. ATL and DFW were selected for the study. Results showed significant throughput increase for scenarios that are considered to be over-capacity for current day airport configurations. During periods of sustained demand for ATL 2018, throughput increased by 26 operations per hour (30%) and average delay was reduced from 18 minutes to 8 minutes per flight when using the dynamic TRACON. Similar results were obtained for DFW with 2018 traffic levels and for ATL with 2006 traffic levels, but with lower benefits due to lower demand.
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system.
Shieh, Wann-Yun; Huang, Ju-Chin
2012-09-01
For most elderly, unpredictable falling incidents may occur at the corner of stairs or a long corridor due to body frailty. If we delay to rescue a falling elder who is likely fainting, more serious consequent injury may occur. Traditional secure or video surveillance systems need caregivers to monitor a centralized screen continuously, or need an elder to wear sensors to detect falling incidents, which explicitly waste much human power or cause inconvenience for elders. In this paper, we propose an automatic falling-detection algorithm and implement this algorithm in a multi-camera video surveillance system. The algorithm uses each camera to fetch the images from the regions required to be monitored. It then uses a falling-pattern recognition algorithm to determine if a falling incident has occurred. If yes, system will send short messages to someone needs to be noticed. The algorithm has been implemented in a DSP-based hardware acceleration board for functionality proof. Simulation results show that the accuracy of falling detection can achieve at least 90% and the throughput of a four-camera surveillance system can be improved by about 2.1 times. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste and Reactor-Related... receive, transfer, package and possess power reactor spent fuel, high-level waste, and other radioactive..., package, and possess power reactor spent fuel and high-level radioactive waste, and other associated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
75 FR 70707 - Detroit Edison Company; Environmental Assessment and Finding of No Significant Impact
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... extend the time period that can elapse during shipments of low-level radioactive waste before the... extend the time period for the licensee to receive acknowledgment that the low-level radioactive waste...-level radioactive waste are not acknowledged by the intended recipient within 20 days after transfer to...
Solidification of Savannah River plant high level waste
NASA Astrophysics Data System (ADS)
Maher, R.; Shafranek, L. F.; Kelley, J. A.; Zeyfang, R. W.
1981-11-01
Authorization for construction of the Defense Waste Processing Facility (DWPF) is expected in FY-83. The optimum time for stage 2 authorization is about three years later. Detailed design and construction will require approximately five years for stage 1, with stage 2 construction completed about two to three years later. Production of canisters of waste glass would begin in 1988, and the existing backlog of high level waste sludge stored at SRP would be worked off by about the year 2000. Stage 2 operation could begin in 1990. The technology and engineering are ready for construction and eventual operation of the DWPF for immobilizing high level radioactive waste at Savannah River Plant (SRP). Proceeding with this project will provide the public, and the leadership of this country, with a crucial demonstration that a major quanitity of existing high level nuclear wastes can be safely and permanently immobilized.
NASA Astrophysics Data System (ADS)
Eigenbrot, Arthur D.; Bershady, Matthew A.; Wood, Corey M.
2012-09-01
We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 μm core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 μm (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly adopted micro-bending model for FRD is a poor descriptor of the observed phenomenon.
Pathways for Disposal of Commercially-Generated Tritiated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Nancy V.
From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less
Fate of pathogens present in livestock wastes spread onto fescue plots.
Hutchison, Mike L; Walters, Lisa D; Moore, Tony; Thomas, D John I; Avery, Sheryl M
2005-02-01
Fecal wastes from a variety of farmed livestock were inoculated with livestock isolates of Escherichia coli O157, Listeria monocytogenes, Salmonella, Campylobacter jejuni, and Cryptosporidium parvum oocysts at levels representative of the levels found in naturally contaminated wastes. The wastes were subsequently spread onto a grass pasture, and the decline of each of the zoonotic agents was monitored over time. There were no significant differences among the decimal reduction times for the bacterial pathogens. The mean bacterial decimal reduction time was 1.94 days. A range of times between 8 and 31 days for a 1-log reduction in C. parvum levels was obtained, demonstrating that the protozoans were significantly more hardy than the bacteria. Oocyst recovery was more efficient from wastes with lower dry matter contents. The levels of most of the zoonotic agents had declined to below detectable levels by 64 days. However, for some waste types, 128 days was required for the complete decline of L. monocytogenes levels. We were unable to find significant differences between the rates of pathogen decline in liquid (slurry) and solid (farmyard manure) wastes, although concerns have been raised that increased slurry generation as a consequence of more intensive farming practices could lead to increased survival of zoonotic agents in the environment.
'Away' is a place: The impact of electronic waste recycling on blood lead levels in Ghana.
Amankwaa, Ebenezer Forkuo; Adovor Tsikudo, Kwame A; Bowman, Jay A
2017-12-01
E-waste recycling remains a major source of livelihood for many urban poor in developing countries, but this economic activity is fraught with significant environmental health risk. Yet, human exposure to the toxic elements associated with e-waste activities remains understudied and not evidently understood. This study investigates the impact of informal e-waste processing on the blood lead levels (BLLs) of e-waste workers and non-e-waste workers (mainly females working in activities that serve the Agbogbloshie e-waste site), and relates their lead exposure to socio-demographic and occupational characteristics. A total of 128 blood samples were analysed for lead levels. Surprisingly, the mean BLL (3.54μg/dL) of non-e-waste workers was slightly higher than that of e-waste workers (3.49μg/dL), although higher BLLs ranges were found among e-waste workers (0.50-18.80μg/dL) than non-e-waste workers (0.30-8.20μg/dL). Workers who engaged in e-waste burning tended to have the highest BLLs. In general, the BLLs are within the ABLES/US CDC reference level of 5μg/dL, although 12.3% of the workers have elevated BLLs, i.e. BLL ≥5μg/dL. The study concludes that the impact of e-waste recycling is not limited to workers alone. Traders and residents within the Agbogbloshie enclave are equally at risk through a range of environmental vectors. This calls for increased public awareness about the effects of human exposure to lead and other toxic elements from e-waste recycling. A key contribution is that government and stakeholder projects for safe e-waste infrastructure should disaggregate the e-waste value chain, recognize differential risk and resist one-size-fits-all strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.36 Waste... radioactive wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of this part...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33 Waste... wastes mixed with these wastes are prohibited from land disposal. (b) The requirements of paragraph (a... levels of subpart D of this part, the waste is prohibited from land disposal, and all requirements of...
Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero
2016-08-03
Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules.
Eum, Juneyong; Kwak, Jina; Kim, Hee Joung; Ki, Seoyoung; Lee, Kooyeon; Raslan, Ahmed A.; Park, Ok Kyu; Chowdhury, Md Ashraf Uddin; Her, Song; Kee, Yun; Kwon, Seung-Hae; Hwang, Byung Joon
2016-01-01
Environmental contamination by trinitrotoluene is of global concern due to its widespread use in military ordnance and commercial explosives. Despite known long-term persistence in groundwater and soil, the toxicological profile of trinitrotoluene and other explosive wastes have not been systematically measured using in vivo biological assays. Zebrafish embryos are ideal model vertebrates for high-throughput toxicity screening and live in vivo imaging due to their small size and transparency during embryogenesis. Here, we used Single Plane Illumination Microscopy (SPIM)/light sheet microscopy to assess the developmental toxicity of explosive-contaminated water in zebrafish embryos and report 2,4,6-trinitrotoluene-associated developmental abnormalities, including defects in heart formation and circulation, in 3D. Levels of apoptotic cell death were higher in the actively developing tissues of trinitrotoluene-treated embryos than controls. Live 3D imaging of heart tube development at cellular resolution by light-sheet microscopy revealed trinitrotoluene-associated cardiac toxicity, including hypoplastic heart chamber formation and cardiac looping defects, while the real time PCR (polymerase chain reaction) quantitatively measured the molecular changes in the heart and blood development supporting the developmental defects at the molecular level. Identification of cellular toxicity in zebrafish using the state-of-the-art 3D imaging system could form the basis of a sensitive biosensor for environmental contaminants and be further valued by combining it with molecular analysis. PMID:27869673
NASA Astrophysics Data System (ADS)
Mughal, A.; Newman, H.
2017-10-01
We review and demonstrate the design of efficient data transfer nodes (DTNs), from the perspective of the highest throughput over both local and wide area networks, as well as the highest performance per unit cost. A careful system-level design is required for the hardware, firmware, OS and software components. Furthermore, additional tuning of these components, and the identification and elimination of any remaining bottlenecks is needed once the system is assembled and commissioned, in order to obtain optimal performance. For high throughput data transfers, specialized software is used to overcome the traditional limits in performance caused by the OS, file system, file structures used, etc. Concretely, we will discuss and present the latest results using Fast Data Transfer (FDT), developed by Caltech. We present and discuss the design choices for three generations of Caltech DTNs. Their transfer capabilities range from 40 Gbps to 400 Gbps. Disk throughput is still the biggest challenge in the current generation of available hardware. However, new NVME drives combined with RDMA and a new NVME network fabric are expected to improve the overall data-transfer throughput and simultaneously reduce the CPU load on the end nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swazo, S.
The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven John
The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data packagemore » to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.« less
Townend, William K; Cheeseman, Christopher R
2005-10-01
This paper presents guidelines that can be used by managers of healthcare facilities to evaluate and assess the quality of resources and waste management at their facilities and enabling the principles of sustainable development to be addressed. The guidelines include the following key aspects which need to be considered when completing an assessment. They are: (a) general management; (b) social issues; (c) health and safety; (d) energy and water use; (e) purchasing and supply; (f) waste management (responsibility, segregation, storage and packaging); (g) waste transport; (h) recycling and re-use; (i) waste treatment; and (j) final disposal. They identify actions required to achieve a higher level of performance which can readily be applied to any healthcare facility, irrespective of the local level of social, economic and environmental development. The guidelines are presented, and the characteristics of facilities associated with sustainable (level 4) and unsustainable (level 0) healthcare resource and wastes management are outlined. They have been used to assess a major London hospital, and this highlighted a number of deficiencies in current practice, including a lack of control over purchasing and supply, and very low rates of segregation of municipal solid waste from hazardous healthcare waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic... Completion of NMSS and Commission supervisory review; issuance of construction authorization; NWPA 3-year...
Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation
Goff, Sarah L.; Kleppel, Reva; Lindenauer, Peter K.; Rothberg, Michael B.
2015-01-01
Objectives To elicit sources of waste as viewed by hospital workers Design Qualitative study using photo-elicitation, an ethnographic technique for prompting in-depth discussion Setting U.S. academic tertiary care hospital Participants Physicians, nurses, pharmacists, administrative support personnel, administrators and respiratory therapists Methods A purposive sample of personnel at an academic tertiary care hospital was invited to take up to 10 photos of waste. Participants discussed their selections using photos as prompts during in-depth interviews. Transcripts were analyzed in an iterative process using grounded theory; open and axial coding was performed, followed by selective and thematic coding to develop major themes and sub-themes. Results Twenty-one participants (9 women, average number of years in field=19.3) took 159 photos. Major themes included types of waste and recommendations to reduce waste. Types of waste comprised four major categories: Time, Materials, Energy and Talent. Participants emphasized time wastage (50% of photos) over other types of waste such as excess utilization (2.5%). Energy and Talent were novel categories of waste. Recommendations to reduce waste included interventions at the micro-level (e.g. individual/ward), meso-level (e.g. institution) and macro-level (e.g., payor/public policy). Conclusions The waste hospital workers identified differed from previously described waste both in the types of waste described and the emphasis placed on wasted time. The findings of this study represent a possible need for education of hospital workers about known types of waste, an opportunity to assess the impact of novel types of waste described and an opportunity to intervene to reduce the waste identified. PMID:23748192
Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation.
Goff, Sarah L; Kleppel, Reva; Lindenauer, Peter K; Rothberg, Michael B
2013-10-01
To elicit sources of waste as viewed by hospital workers. Qualitative study using photo-elicitation, an ethnographic technique for prompting in-depth discussion. U.S. academic tertiary care hospital. Physicians, nurses, pharmacists, administrative support personnel, administrators and respiratory therapists. A purposive sample of personnel at an academic tertiary care hospital was invited to take up to 10 photos of waste. Participants discussed their selections using photos as prompts during in-depth interviews. Transcripts were analysed in an iterative process using grounded theory; open and axial coding was performed, followed by selective and thematic coding to develop major themes and subthemes. Twenty-one participants (nine women, average number of years in field=19.3) took 159 photos. Major themes included types of waste and recommendations to reduce waste. Types of waste comprised four major categories: Time, Materials, Energy and Talent. Participants emphasised time wastage (50% of photos) over other types of waste such as excess utilisation (2.5%). Energy and Talent were novel categories of waste. Recommendations to reduce waste included interventions at the micro-level (eg, individual/ward), meso-level (eg, institution) and macro-level (eg, payor/public policy). The waste hospital workers identified differed from previously described waste both in the types of waste described and the emphasis placed on wasted time. The findings of this study represent a possible need for education of hospital workers about known types of waste, an opportunity to assess the impact of novel types of waste described and an opportunity to intervene to reduce the waste identified.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
Maine State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.« less
West Valley demonstration project: Alternative processes for solidifying the high-level wastes
NASA Astrophysics Data System (ADS)
Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.
1981-10-01
Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.
IONSIV(R) IE-911 Performance in Savannah River Site Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, D.D.
2001-06-04
This report describes cesium sorption from high-level radioactive waste solutions onto IONSIV(R) IE-911 at ambient temperature. Researchers characterized six radioactive waste samples from five high-level waste tanks in the Savannah River Site tank farm, diluted the wastes to 5.6 M Na+, and made equilibrium and kinetic measurements of cesium sorption. The equilibrium measurements were compared to ZAM (Zheng, Anthony, and Martin) model predictions. The kinetic measurements were compared to simulant solutions whose column performance has been measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulse, R.A.
1991-08-01
Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the totalmore » GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.« less
NASA Astrophysics Data System (ADS)
Lagus, Todd P.; Edd, Jon F.
2013-03-01
Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.
Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G
2012-06-05
Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.
Zhang, Zheng-Zhe; Cheng, Ya-Fei; Bai, Yu-Hui; Xu, Lian-Zeng-Ji; Xu, Jia-Jia; Shi, Zhi-Jian; Zhang, Qian-Qian; Jin, Ren-Cun
2018-02-01
Magnetic nanoparticles (NPs) have been widely applied in environmental remediation, biomass immobilization and wastewater treatment, but their potential impact on anaerobic ammonium oxidation (anammox) biomass remains unknown. In this study, the short-term and long-term impacts of maghemite NPs (MHNPs) on the flocculent sludge wasted from a high-rate anammox reactor were investigated. Batch assays showed that the presence of MHNPs up to 200 mg L -1 did not affect anammox activity, reactive oxygen species production, or cell membrane integrity. Moreover, long-term addition of 1-200 mg L -1 MHNPs had no adverse effects on reactor performance. Notably, the specific anammox activity, the abundance of hydrazine synthase structural genes and the content of extracellular polymeric substance were increased with elevated MHNP concentrations. Meanwhile, the community structure was shifted to higher abundance of Candidatus Kuenenia indicated by high-throughput sequencing. Therefore, MHNPs could be applied to enhance anammox flocculent sludge due to their favorable biocompatibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun
2016-11-01
In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Junya; Lv, Chen; Tong, Juan; Liu, Jianwei; Liu, Jibao; Yu, Dawei; Wang, Yawei; Chen, Meixue; Wei, Yuansong
2016-01-01
The effects of microwave pretreatment (MW) on co-digestion of food waste (FW) and sewage sludge (SS) have never been investigated. In this study, a series of mesophilic biochemical methane potential (BMP) tests were conducted to determine the optimized ratio of FW and SS based on MW, and the evolution of bacterial and archaeal community was investigated through high-throughput sequencing method. Results showed that the optimized ratio was 3:2 for co-digestion of FW and SS based on MW, and the methane production was 316.24 and 338.44mLCH4/gVSadded for MW-FW and MW-SS, respectively. The MW-SS was superior for methane production compared to MW-FW, in which accumulation of propionic acid led to the inhibition of methanogenesis. Proteiniborus and Parabacteroides were responsible for proteins and polysaccharides degradation for all, respectively, while Bacteroides only dominated in co-digestion. Methanosphaera dominated in MW-FW at the active methane production phase, while it was Methanosarcina in MW-SS and mono-SS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power generation by thermally assisted electroluminescence: like optical cooling, but different
NASA Astrophysics Data System (ADS)
Buckner, Benjamin D.; Heeg, Bauke
2008-02-01
Thermally assisted electro-luminescence may provide a means to convert heat into electricity. In this process, radiation from a hot light-emitting diode (LED) is converted to electricity by a photovoltaic (PV) cell, which is termed thermophotonics. Novel analytical solutions to the equations governing such a system show that this system combines physical characteristics of thermophotovoltaics (TPV) and the inverse process of laser cooling. The flexibility of having both adjustable bias and load parameters may allow an optimized power generation system based on this concept to exceed the power throughput and efficiency of TPV systems. Such devices could function as efficient solar thermal, waste heat, and fuel-based generators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less
Improvement of Leaching Resistance of Low-level Waste Form in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.Y.; Lee, B.C.; Kim, C.L.
2006-07-01
Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less
Chalak, Ali; Abou-Daher, Chaza; Chaaban, Jad; Abiad, Mohamad G
2016-02-01
Food is generally wasted all along the supply chain, with an estimated loss of 35percent generated at the consumer level. Consequently, household food waste constitutes a sizable proportion of the total waste generated throughout the food supply chain. Yet such wastes vary drastically between developed and developing countries. Using data collected from 44 countries with various income levels, this paper investigates the impact of legislation and economic incentives on household food waste generation. The obtained results indicate that well-defined regulations, policies and strategies are more effective than fiscal measures in mitigating household food waste generation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Teixeira, Leonel Silva; Vieira, Heulla Pereira; Windmöller, Cláudia Carvalhinho; Nascentes, Clésia Cristina
2014-02-01
A fast and accurate method based on ultrasound-assisted extraction in a cup-horn sonoreactor was developed to determine the total content of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn in organic fertilizers by fast sequential flame atomic absorption spectrometry (FS FAAS). Multivariate optimization was used to establish the optimal conditions for the extraction procedure. An aliquot containing approximately 120 mg of the sample was added to a 500 µL volume of an acid mixture (HNO3/HCl/HF, 5:3:3, v/v/v). After a few minutes, 500 µL of deionized water was added and eight samples were simultaneously sonicated for 10 min at 50% amplitude, allowing a sample throughput of 32 extractions per hour. The performance of the method was evaluated with a certified reference material of sewage sludge (CRM 029). The precision, expressed as the relative standard deviation, ranged from 0.58% to 5.6%. The recoveries of analytes were found to 100%, 109%, 96%, 92%, 101%, 104% and 102% for Cd, Cr, Cu, Mn, Ni, Pb and Zn, respectively. The linearity, limit of detection and limit of quantification were calculated and the values obtained were adequate for the quality control of organic fertilizers. The method was applied to the analysis of several commercial organic fertilizers and organic wastes used as fertilizers, and the results were compared with those obtained using the microwave digestion procedure. A good agreement was found between the results obtained by microwave and ultrasound procedures with recoveries ranging from 80.4% to 117%. Two organic waste samples were not in accordance with the Brazilian legislation regarding the acceptable levels of contaminants. © 2013 Published by Elsevier B.V.
Quantification of food waste in public catering services - A case study from a Swedish municipality.
Eriksson, Mattias; Persson Osowski, Christine; Malefors, Christopher; Björkman, Jesper; Eriksson, Emelie
2017-03-01
Food waste is a major problem that must be reduced in order to achieve a sustainable food supply chain. Since food waste valorisation measures, like energy recovery, have limited possibilities to fully recover the resources invested in food production, there is a need to prevent food waste. Prevention is most important at the end of the value chain, where the largest number of sub-processes have already taken place and occur in vain if the food is not used for its intended purpose, i.e. consumption. Catering facilities and households are at the very end of the food supply chain, and in Sweden the public catering sector serves a large number of meals through municipal organisations, including schools, preschools and elderly care homes. Since the first step in waste reduction is to establish a baseline measurement in order to identify problems, this study sought to quantify food waste in schools, preschools and elderly care homes in one municipality in Sweden. The quantification was conducted during three months, spread out over three semesters, and was performed in all 30 public kitchen units in the municipality of Sala. The kitchen staff used kitchen scales to quantify the mass of wasted and served food divided into serving waste (with sub-categories), plate waste and other food waste. The food waste level was quantified as 75g of food waste per portion served, or 23% of the mass of food served. However, there was great variation between kitchens, with the waste level ranging from 33g waste per portion served (13%) to 131g waste per portion served (34%). Wasted food consisted of 64% serving waste, 33% plate waste and 3% other food waste. Preschools had a lower waste level than schools, possibly due to preschool carers eating together with the children. Kitchens that received warm food prepared in another kitchen (satellite kitchens) had a 42% higher waste level than kitchens preparing all food themselves (production units), possibly due to the latter having higher flexibility in cooking the right amount of food and being able to chill and save surplus food. The large variation between kitchens indicates that they have different causes of food waste, but also different opportunities to reduce it. Detailed waste quantification for each kitchen can therefore be the first step in the process of waste reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.
1986-11-01
This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts. (TEM)
Quantifying household waste of fresh fruit and vegetables in the EU.
De Laurentiis, Valeria; Corrado, Sara; Sala, Serenella
2018-04-11
According to national studies conducted in EU countries, fresh fruit and vegetables contribute to almost 50% of the food waste generated by households. This study presents an estimation of this waste flow, differentiating between unavoidable and avoidable waste. The calculation of these two flows serves different purposes. The first (21.1 kg per person per year) provides a measure of the amount of household waste intrinsically linked to the consumption of fresh fruit and vegetables, and which would still be generated even in a zero-avoidable waste future scenario. The second (14.2 kg per person per year) is a quantity that could be reduced/minimised by applying targeted prevention strategies. The unavoidable waste was assessed at product level, by considering the inedible fraction and the purchased amounts of the fifty-one most consumed fruits and vegetables in Europe. The avoidable waste was estimated at commodity group level, based on the results of national studies conducted in six EU member states. Significant differences in the amounts of avoidable and unavoidable waste generated were found across countries, due to different levels of wasteful behaviours (linked to cultural and economic factors) and different consumption patterns (influencing the amount of unavoidable waste generated). The results of this study have implications for policies both on the prevention and the management of household food waste. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Tatàno, Fabio; Caramiello, Cristina; Paolini, Tonino; Tripolone, Luca
2017-03-01
Because restaurants (as a division of the hospitality sector) contribute to the generation of commercial and institutional waste, thus representing both a challenge and an opportunity, the objective of the present study was to deepen the knowledge of restaurant waste in terms of the qualitative and quantitative characteristics of waste generation and the performance achievable by the implementation of a separate collection scheme. In this study, the generated waste was characterized and the implemented separate collection was evaluated at a relevant case study restaurant in a coastal tourist area of Central Italy (Marche Region, Adriatic Sea side). The qualitative (compositional) characterization of the generated total restaurant waste showed considerable incidences of, in decreasing order, food (28.2%), glass (22.6%), paper/cardboard (19.1%), and plastic (17.1%). The quantitative (parametric) characterization of the generated restaurant waste determined the unit generation values of total waste and individual fractions based on the traditional employee and area parameters and the peculiar meal parameter. In particular, the obtained representative values per meal were: 0.72kgmeal -1 for total waste, and ranging, for individual fractions, from 0.20 (for food) to 0.008kgmeal -1 (for textile). Based on the critical evaluation of some of the resulting unit waste generation values, possible influences of restaurant practices, conditions, or characteristics were pointed out. In particular, food waste generation per meal can likely be limited by: promoting and using local, fresh, and quality food; standardizing and limiting daily menu items; basing food recipes on consolidated cooking knowledge and experience; and limiting plate sizes. The evaluation of the monthly variation of the monitored separate collection, ranging from an higher level of 52.7% to a lower level of 41.4%, indicated the following: a reduction in the separate collection level can be expected at times of high working pressure or the closing of a seasonal business (typical for restaurants in tourist areas); and the monthly variation of the separate collection level is inversely correlated with that of the unit generation of total waste per meal. The interception rates of the different restaurant waste fractions collected separately presented a ranking order (i.e., 96.0% for glass, 67.7% for paper/cardboard, 34.4% for food, 20.6% for metal, and 17.9% for plastic) similar to the order of efficiencies achievable at both small and large urban levels. Finally, the original concept of the customer equivalent person (P ce ) was introduced and behaviorally evaluated at the case study restaurant, providing the values of 0.42 and 0.39kgP ce -1 day -1 for the food waste generation and the landfilling of biodegradable waste by the customer equivalent person, respectively. These values were compared, respectively, with the food waste generation per person at the household level and the landfilling of biodegradable waste per inhabitant at the territorial level. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Kaili; Zhou, Aijuan; Zhang, Jiaguang; Liu, Zhihong; Wang, Guoying; Liu, Wenzong; Wang, Aijie; Yue, Xiuping
2017-02-01
Most studies on the production of volatile fatty acids (VFAs) from waste activated sludge (WAS) digestion have focused on operating conditions, pretreatments and characteristic adjustments. Conditioning by extra carbon sources (ECS), normally added in a solid form, has been reported to be an efficient approach. However, this has caused considerable waste of monomeric sugars in the hydrolysate. In this study, the effects of two added forms (pretreated straw (S) and hydrolyzed liquid (L)) of cornstover (CS) on WAS acidification were investigated. To obtain different cellulosic compositions of CS, low-thermal or autoclaved assisted alkaline (TA or AA) pretreatments were conducted. The results showed that AA-L test achieved the highest VFAs value (653 mg COD/g VSS), followed by AA-S (613 mg COD/g VSS). These values were 12% and 28% higher, respectively, than that obtained in the TA-L and TA-S tests. Meanwhile, higher percentages of acetic acid were observed after AA pretreatment (~62% versus ~53% in TA). The added forms of CS played an important role in structuring the innate microbial community in the WAS, as shown by high-throughput sequencing and canonical correspondence analysis. The findings obtained in this work may provide a scientific basis for the potential implementation of co-digesting WAS with ECS simultaneously obtaining energy and high value-added products.
Dong, Jun; Ding, Linjie; Wang, Xu; Chi, Zifang; Lei, Jiansen
2015-03-01
Anaerobic methane oxidation (AMO) is considered to be an important sink of CH4 in habitats as marine sediments. But, few studies focused on AMO in landfills which may be an important sink of CH4 derived from waste fermentation. To show evidence of AMO and to uncover function anaerobic methanotroph (ANME) community in landfill, different age waste samples were collected in Jinqianpu landfill located in north China. Through high-throughput sequencing, Methanomicrobiales and Methanosarcinales archaea associated with ANME and reverse methanogenic archaea of Methanosarcina and Methanobacterium were detected. Sulfate-reducing bacteria (SRB) (Desulfobulbus and Desulfococcus) which could couple with ANME-conducting AMO were also found. But, the community structure of ANME had no significant difference with depths. From the results of investigation, we can come to a conclusion that sulfate-dependent anaerobic methane oxidation (SR-DAMO) would be the dominant AMO process in the landfill, while iron-dependent anaerobic methane oxidation (M/IR-DAMO) process was weak though concentration of ferric iron was large in the landfill. Denitrification-dependent anaerobic methane oxidation (NR-DAMO) was negative because of lack of nitrate and relevant function microorganisms in the landfill. Results also indicate that CH4 mitigation would have higher potential by increasing electron acceptor contents and promoting the growth of relevant function microorganisms.
Cement waste-form development for ion-exchange resins at the Rocky Flats Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.; Ames, R.L.
1997-03-01
This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventorymore » at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.« less
Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.
2010-01-01
Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022
40 CFR 266.305 - What does the transportation and disposal conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.20 - Waste specific prohibitions-Dyes and/or pigments production wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land... contaminated with radioactive wastes mixed with this waste are prohibited from land disposal. (b) The... applicable subpart D levels, the waste is prohibited from land disposal, and all requirements of part 268 are...
40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.35 Waste... contaminated with these radioactive mixed wastes, are prohibited from land disposal. (b) The requirements of... Universal Treatment Standard levels of § 268.48, the waste is prohibited from land disposal, and all...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyacke, M.
1993-08-01
This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less
Marra, James C.; Kim, Dong -Sang
2014-12-18
A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JCHM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these ''troublesome'' waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Thus, recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approaches to mitigate the impacts of crystallization so that increases in waste loading can be realized.more » Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating. The Hanford site AZ-101 tank waste composition represents a waste group that is waste loading limited primarily due to high concentrations of Fe 2O 3 (with higher Al 2O 3). Systematic glass formulation development utilizing slightly higher process temperatures and higher tolerance to spinel crystals demonstrated that an increase in waste loading of more than 20% could be achieved for this waste composition, and by extension higher loadings for wastes in the same group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.
2013-02-24
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job; Bryan, Samuel
2013-07-01
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less
Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in themore » DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.« less
Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
Kermisch, Celine
2016-12-01
The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.
Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste
Boatner, Lynn A.; Sales, Brian C.
1989-01-01
Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... owns or generates spent nuclear fuel or high-level radioactive waste, of domestic origin, generated in... part will commit DOE to accept title to, transport, and dispose of such spent fuel and waste. In...
10 CFR 62.11 - Filing and distribution of a determination request.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste disposal facilities, to the Compact Commissions with operating regional low-level radioactive waste disposal facilities, and to the Governors of the States in the Compact Commissions with... ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
75 FR 29786 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... plans for managing spent nuclear fuel and high-level radioactive waste. Pursuant to its authority under... of Energy (DOE) plans for managing spent nuclear fuel (SNF) and high-level radioactive waste (HLW... the packaging and movement of the waste, how the recent decision to terminate the Yucca Mountain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.
Food waste behaviour at the household level: A conceptual framework.
Abdelradi, Fadi
2018-01-01
One-third of the world produced food is wasted according to FAO (2011). The aim of this paper is to have an in-depth analysis of consumers' behaviours regarding food waste in Egypt. A conceptual framework is developed that brings many factors considered in the recent literature in one model to be tested using structural equation modeling. Results indicate that the incorporated factors were found statistically significant. Additionally, the individual's perception about food waste was related with food quantities wasted at the household level. The findings suggest considering these factors when developing new policies and campaigns for food waste reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR.... D Appendix D to Part 2—Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...
An industry perspective on commercial radioactive waste disposal conditions and trends.
Romano, Stephen A
2006-11-01
The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
Shimada, Tsutomu; Kelly, Joan; LaMarr, William A; van Vlies, Naomi; Yasuda, Eriko; Mason, Robert W.; Mackenzie, William; Kubaski, Francyne; Giugliani, Roberto; Chinen, Yasutsugu; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E.; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji
2014-01-01
Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4–5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within ten seconds (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity in an HS assay, indicating that HT-MS/MS may be feasible for diagnosis, monitoring, and newborn screening of MPS. PMID:25092413
Technology Readiness Assessment of a Large DOE Waste Processing Facility
2007-09-12
Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters
Contamination by trace elements at e-waste recycling sites in Bangalore, India.
Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke
2009-06-01
The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Boosalis, Michael S; Sangerman, Jose I; White, Gary L; Wolf, Roman F; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H; Li, Biaoru; Pace, Betty S; Nouraie, Mehdi; Faller, Douglas V; Perrine, Susan P
2015-01-01
High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.
77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
10 CFR 72.6 - License required; types of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General... the receipt, handling, storage, and transfer of reactor-related GTCC are specific licenses. Any... hereby issued to receive title to and own spent fuel, high-level radioactive waste, or reactor-related...
Environmental Sciences Division annual progress report for period ending September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, S.I.; Reichle, D.E.
1982-04-01
Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.
ERIC Educational Resources Information Center
Hoffman, Darleane C.; Choppin, Gregory R.
1986-01-01
Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)
RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHRADER, T.A.; KNERR, R.
2005-01-31
In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less
NASA Astrophysics Data System (ADS)
Crock, Christopher A.
Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.
Zheng, Jing; Luo, Xiao-Jun; Yuan, Jian-Gang; He, Luo-Yiyi; Zhou, Yi-Hui; Luo, Yong; Chen, She-Jun; Mai, Bi-Xian; Yang, Zhong-Yi
2011-11-01
Heavy metals were measured in hair from occupationally and nonoccupationally exposed populations in an e-waste recycling area and from residents from a control rural town. The levels of five heavy metals were in the following order of Zn > Pb, Cu > Cd > Ni, with the highest levels found in the occupationally exposed workers. The levels of Cd, Pb, and Cu were significantly higher in residents from the e-waste recycling area than in the control area. Elevated Cd, Pb, and Cu contents along with significant positive correlations between them in hair from the e-waste recycling area indicated that these metals were likely to have originated from the e-waste recycling activities. The similarity in heavy metal pattern between children and occupationally exposed workers indicated that children are particularly vulnerable to heavy metal pollution caused by e-waste recycling activities. The increased Cu exposure might be a benefit for the insufficient intake of Cu in the studied area. However, the elevated hair Cd and Pb levels implied that the residents in the e-waste area might be at high risk of toxic metal, especially for children and occupationally exposed workers.
High throughput protein production screening
Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA
2009-09-08
Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.
Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells
Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.
2014-01-01
The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840
Da Silva, Laeticia; Collino, Sebastiano; Cominetti, Ornella; Martin, Francois-Pierre; Montoliu, Ivan; Moreno, Sergio Oller; Corthesy, John; Kaput, Jim; Kussmann, Martin; Monteiro, Jacqueline Pontes; Guiraud, Seu Ping
2016-09-01
There is increasing interest in the profiling and quantitation of methionine pathway metabolites for health management research. Currently, several analytical approaches are required to cover metabolites and co-factors. We report the development and the validation of a method for the simultaneous detection and quantitation of 13 metabolites in red blood cells. The method, validated in a cohort of healthy human volunteers, shows a high level of accuracy and reproducibility. This high-throughput protocol provides a robust coverage of central metabolites and co-factors in one single analysis and in a high-throughput fashion. In large-scale clinical settings, the use of such an approach will significantly advance the field of nutritional research in health and disease.
NASA Technical Reports Server (NTRS)
1982-01-01
The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.
(Low-level waste disposal facility siting and site characterization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezga, L.J.; Ketelle, R.H.; Pin, F.G.
A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less
78 FR 41116 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... Agreement State regulations. All generators, collectors, and processors of low-level waste intended for... which facilitates tracking the identity of the waste generator. That tracking becomes more complicated... waste shipped from a waste processor may contain waste from several different generators. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
Compatibility Grab Sampling and Analysis Plan for FY 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
SASAKI, L.M.
1999-12-29
This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorries, Alison M
2010-11-09
Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less
Characterization of urban solid waste in Chihuahua, Mexico.
Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc
2008-12-01
The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.E.
1996-09-01
This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Schedule for the Proceeding on Consideration of Construction Authorization for a High-Level Waste Geologic Repository. D Appendix D to Part 2 Energy NUCLEAR... for a High-Level Waste Geologic Repository. Day Regulation (10 CFR) Action 0 2.101(f)(8), 2.105(a)(5...
Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi
2014-04-01
Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.
Pyramiding tumuli waste disposal site and method of construction thereof
Golden, Martin P.
1989-01-01
An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.
Zheng, Jing; He, Chun-Tao; Chen, She-Jun; Yan, Xiao; Guo, Mi-Na; Wang, Mei-Huan; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian
2017-05-01
Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T 4 and T 3 ) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improvement of emergency department patient flow using lean thinking.
Sánchez, Miquel; Suárez, Montse; Asenjo, María; Bragulat, Ernest
2018-05-01
To apply lean thinking in triage acuity level-3 patients in order to improve emergency department (ED) throughtput and waiting time. A prospective interventional study. An ED of a tertiary care hospital. Triage acuity level-3 patients. To apply lean techniques such as value stream mapping, workplace organization, reduction of wastes and standardization by the frontline staff. Two periods were compared: (i) pre-lean: April-September, 2015; and (ii) post-lean: April-September, 2016. Variables included: median process time (time from beginning of nurse preparation to the end of nurse finalization after doctor disposition) of both discharged and transferred to observation patients; median length of stay; median waiting time; left without being seen, 72-h revisit and mortality rates, and daily number of visits. There was no additional staff or bed after lean implementation. Despite an increment in the daily number of visits (+8.3%, P < 0.001), significant reductions in process time of discharged (182 vs 160 min, P < 0.001) and transferred to observation (186 vs 176 min, P < 0.001) patients, in length of stay (389 vs 329 min, P < 0.001), and in waiting time (71 vs 48 min, P < 0.001) were achieved after lean implementation. No significant differences were registered in left without being seen rate (5.23% vs 4.95%), 72-h revisit rate (3.41% vs 3.93%), and mortality rate (0.23% vs 0.15%). Lean thinking is a methodology that can improve triage acuity level-3 patient flow in the ED, resulting in better throughput along with reduced waiting time.
Improved low-level radioactive waste management practices for hospitals and research institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1983-07-01
This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the moremore » detailed analysis.« less
NASA Astrophysics Data System (ADS)
Suparmini; Junadi, Purnawan
2018-03-01
Waste Bank is a program that the government uses as one of the efforts to tackle the increasingly growing garbage day. The Waste Bank in Depok City serves as a collection of non-organic waste that still has economic value. This study attempts to examine the factors that make Depok City Waste Bank play its role today and its relationship with the community involved in the activities of the Waste Bank. Through qualitative approach with a case study, the authors make observations on the object and conduct in-depth interviews with some informants. This study found four factors that make a Waste Bank continues to play a role, namely the presence of leaders who are reliable (leadership), good management (management), incentive (incentive) and the involvement of partners (partnership). While the characteristics of community-based on the level of education, income levels also affect the community participation in receiving the Waste Bank as a form of waste management in the city of Depok.
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...
75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... licensee anticipates using rail to ship radioactive waste. From the licensee's experience with radioactive..., section III.E, to investigate and file a report to the NRC if shipments of low-level radioactive waste are... exemption would extend the time period that can elapse during shipments of low-level radioactive waste...
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...
10 CFR 62.12 - Contents of a request for emergency access: General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...
Behavior of radioactive iodine and technetium in the spray calcination of high-level waste
NASA Astrophysics Data System (ADS)
Knox, C. A.; Farnsworth, R. K.
1981-08-01
The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.
Journey to the Nevada Test Site Radioactive Waste Management Complex
None
2018-01-16
Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
Srivastava, Sudhakar; Bhainsa, K C
2016-02-01
The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin
2014-05-16
Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.
Nile Red Detection of Bacterial Hydrocarbons and Ketones in a High-Throughput Format
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinzon, NM; Aukema, KG; Gralnick, JA
A method for use in high-throughput screening of bacteria for the production of long-chain hydrocarbons and ketones by monitoring fluorescent light emission in the presence of Nile red is described. Nile red has previously been used to screen for polyhydroxybutyrate (PHB) and fatty acid esters, but this is the first report of screening for recombinant bacteria making hydrocarbons or ketones. The microtiter plate assay was evaluated using wild-type and recombinant strains of Shewanella oneidensis and Escherichia coli expressing the enzyme OleA, previously shown to initiate hydrocarbon biosynthesis. The strains expressing exogenous Stenotrophomonas maltophilia oleA, with increased levels of ketone productionmore » as determined by gas chromatography-mass spectrometry, were distinguished with Nile red fluorescence. Confocal microscopy images of S. oneidensis oleA-expressing strains stained with Nile red were consistent with a membrane localization of the ketones. This differed from Nile red staining of bacterial PHB or algal lipid droplets that showed intracellular inclusion bodies. These results demonstrated the applicability of Nile red in a high-throughput technique for the detection of bacterial hydrocarbons and ketones. IMPORTANCE In recent years, there has been renewed interest in advanced biofuel sources such as bacterial hydrocarbon production. Previous studies used solvent extraction of bacterial cultures followed by gas chromatography-mass spectrometry (GC-MS) to detect and quantify ketones and hydrocarbons (Beller HR, Goh EB, Keasling JD, Appl. Environ. Microbiol. 76: 1212-1223, 2010; Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP, Appl. Environ. Microbiol. 76: 3850-3862, 2010). While these analyses are powerful and accurate, their labor-intensive nature makes them intractable to high-throughput screening; therefore, methods for rapid identification of bacterial strains that are overproducing hydrocarbons are needed. The use of high-throughput evaluation of bacterial and algal hydrophobic molecule production via Nile red fluorescence from lipids and esters was extended in this study to include hydrocarbons and ketones. This work demonstrated accurate, high-throughput detection of high-level bacterial long-chain ketone and hydrocarbon production by screening for increased fluorescence of the hydrophobic dye Nile red.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2014 CFR
2014-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Nuclear waste management. Semiannual progress report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T.D.; Powell, J.A.
1983-06-01
This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.
Possibilities of municipal solid waste incinerator fly ash utilisation.
Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon
2015-08-01
Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.
Liu, Ling; Wang, Shuqi; Guo, Xiaoping; Zhao, Tingning; Zhang, Bolin
2018-03-01
A comprehensive characterization of the bacterial diversity associated to thermophilic stages of green waste composting was achieved. In this study, eight different treatments (T1-T8) and three replicated lab-scale green waste composting were carried out to compare the effect of the cellulase (i.e. 0, 2%), microbial inoculum (i.e. 0, 2 and 4%) and particle size (i.e. 2 and 5 mm) on bacterial community structure. Physicochemical properties and bacterial communities of T1-T8 composts were observed, and the bacterial structure and diversity were examined by high-throughput sequencing via a MiSeq platform. The results showed that the most abundant phyla among the treatments were the Firmicutes, Chloroflexi and Proteobacteria. The shannon index and non-metric multidimensional scaling (NMDS) showed higher bacterial abundance and diversity at the metaphase of composting. Comparing with 5-mm treatments, particle size of 2-mm had a richer diversity of bacterial communities. The addition of cellulase and a microbial inoculum could promote the fermentation temperature, reduce the compost pH and C/N ratio and result in higher GI index. The humic substance (HS) and humic acid (HA) contents for 2-mm particle size treatments were higher than those of 5-mm treatments. Canonical correspondence analysis suggested that differences in bacterial abundance and diversity significantly correlated with HA, E 4 /E 6 and temperature, and the relationship between bacterial diversity and environmental parameters was affected by composting stages. Based on these results, the application of cellulase to promote green waste composting was feasible, and particle size was identified as a potential control of composting physicochemical properties and bacterial diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Janssen, Anke M; Nijenhuis-de Vries, Mariska A; Boer, Eric P J; Kremer, Stefanie
2017-09-01
In Europe, it is estimated that more than 50% of total food waste - of which most is avoidable - is generated at household level. Little attention has been paid to the impact on food waste generation of consuming food products that differ in their method of food preservation. This exploratory study surveyed product-specific possible impacts of different methods of food preservation on food waste generation in Dutch households. To this end, a food waste index was calculated to enable relative comparisons of the amounts of food waste from the same type of foods with different preservation methods on an annual basis. The results show that, for the majority of frozen food equivalents, smaller amounts were wasted compared to their fresh or ambient equivalents. The waste index (WI) proposed in the current paper confirms the hypothesis that it may be possible to reduce the amount of food waste at household level by encouraging Dutch consumers to use (certain) foods more frequently in a frozen form (instead of fresh or ambient). However, before this approach can be scaled to population level, a more detailed understanding of the underlying behavioural causes with regard to food provisioning and handling and possible interactions is required. Copyright © 2017. Published by Elsevier Ltd.
Basic repository environmental assessment design basis, Lavender Canyon site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less
National profile on commercially generated low-level radioactive mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Mrochek, J.E.; Jolley, R.L.
1992-12-01
This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate themore » mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.« less
Greater-than-Class C low-level waste characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piscitella, R.R.
1991-12-31
In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less
Zettwoch, Douglas D.
2002-01-01
The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.
In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less
Development and validation of a building design waste reduction model.
Llatas, C; Osmani, M
2016-10-01
Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spitzer, James D; Hupert, Nathaniel; Duckart, Jonathan; Xiong, Wei
2007-01-01
Community-based mass prophylaxis is a core public health operational competency, but staffing needs may overwhelm the local trained health workforce. Just-in-time (JIT) training of emergency staff and computer modeling of workforce requirements represent two complementary approaches to address this logistical problem. Multnomah County, Oregon, conducted a high-throughput point of dispensing (POD) exercise to test JIT training and computer modeling to validate POD staffing estimates. The POD had 84% non-health-care worker staff and processed 500 patients per hour. Post-exercise modeling replicated observed staff utilization levels and queue formation, including development and amelioration of a large medical evaluation queue caused by lengthy processing times and understaffing in the first half-hour of the exercise. The exercise confirmed the feasibility of using JIT training for high-throughput antibiotic dispensing clinics staffed largely by nonmedical professionals. Patient processing times varied over the course of the exercise, with important implications for both staff reallocation and future POD modeling efforts. Overall underutilization of staff revealed the opportunity for greater efficiencies and even higher future throughputs.
Achieving High Throughput for Data Transfer over ATM Networks
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.; Townsend, Jeffrey N.
1996-01-01
File-transfer rates for ftp are often reported to be relatively slow, compared to the raw bandwidth available in emerging gigabit networks. While a major bottleneck is disk I/O, protocol issues impact performance as well. Ftp was developed and optimized for use over the TCP/IP protocol stack of the Internet. However, TCP has been shown to run inefficiently over ATM. In an effort to maximize network throughput, data-transfer protocols can be developed to run over UDP or directly over IP, rather than over TCP. If error-free transmission is required, techniques for achieving reliable transmission can be included as part of the transfer protocol. However, selected image-processing applications can tolerate a low level of errors in images that are transmitted over a network. In this paper we report on experimental work to develop a high-throughput protocol for unreliable data transfer over ATM networks. We attempt to maximize throughput by keeping the communications pipe full, but still keep packet loss under five percent. We use the Bay Area Gigabit Network Testbed as our experimental platform.
Handheld Fluorescence Microscopy based Flow Analyzer.
Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva
2016-03-01
Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.
Puig-Ventosa, Ignasi; Sastre Sanz, Sergio
2017-11-01
Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less
Towards Sustainable Ambon Bay: Evaluation of Solid Waste Management in Ambon City
NASA Astrophysics Data System (ADS)
Maryati, S.; Miharja, M.; Iscahyono, A. F.; Arsallia, S.; Humaira, AN S.
2017-07-01
Ambon Bay is a strategic area in the context of regional economic development, however it also faced environmental problems due to economic development and the growth of population. One of the environmental problems in the Ambon Bay is the growing solid waste which in turn lowers the quality of the water. The purpose of this study is to evaluate solid waste management in the Ambon City and propose recommendation in order to reduce solid waste in the Ambon Bay. The analytical method used is descriptive analysis by comparing a number of criteria based on the concept of solid waste management in coastal region with the current conditions of solid waste management in Ambon City. Criteria for waste management are divided into generation, storage, collection, transport, transfer and disposal. From the results of analysis, it can be concluded that the components of solid waste management at transport, transfer, and disposal level are generally still adequate, but solid waste management at source, storage and collection level have to be improved.
Long-term high-level waste technology. Composite report
NASA Astrophysics Data System (ADS)
Cornman, W. R.
1981-12-01
Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.
Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L.; Fobil, Julius
2016-01-01
Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie’s environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n=58) at Agbogbloshie, as well as females (n=11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 ug/L median) and lead (6.4 ug/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 ug/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. PMID:27580259
Srigboh, Roland Kofi; Basu, Niladri; Stephens, Judith; Asampong, Emmanuel; Perkins, Marie; Neitzel, Richard L; Fobil, Julius
2016-12-01
Electronic waste (e-waste) recycling is growing worldwide and raising a number of environmental health concerns. One of the largest e-waste sites is Agbogbloshie (Ghana). While several toxic elements have been reported in Agbogbloshie's environment, there is limited knowledge of human exposures there. The objectives of this study were to characterize exposures to several essential (copper, iron, manganese, selenium, zinc) and toxic (arsenic, cadmium, cobalt, chromium, mercury, nickel, lead) elements in the urine and blood of male workers (n = 58) at Agbogbloshie, as well as females (n = 11) working in activities that serve the site, and to relate these exposures to sociodemographic and occupational characteristics. The median number of years worked at the site was 5, and the average worker indicated being active in 6.8 tasks (of 9 key e-waste job categories). Additionally, we categorized four main e-waste activities (in brackets % of population self-reported main activity): dealing (22.4%), sorting (24.1%), dismantling (50%), and burning (3.4%) e-waste materials. Many blood and urinary elements (including essential ones) were within biomonitoring reference ranges. However, blood cadmium (1.2 μg/L median) and lead (6.4 μg/dl; 67% above U.S. CDC/NIOSH reference level), and urinary arsenic (38.3 μg/L; 39% above U.S. ATSDR value) levels were elevated compared to background populations elsewhere. Workers who burned e-waste tended to have the highest biomarker levels. The findings of this study contribute to a growing body of work at Agbogbloshie (and elsewhere) to document that individuals working within e-waste sites are exposed to a number of toxic elements, some at potentially concerning levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zeng, Zhijun; Huo, Xia; Zhang, Yu; Xiao, Zhehong; Zhang, Yuling; Xu, Xijin
2018-05-12
Environmental lead exposure leads to various deleterious effects on multiple organs and systems, including the hematopoietic system. To explore the effects of lead exposure on platelet indices in preschool children from an informal, lead-contaminated electronic waste (e-waste) recycling area, we collected venous blood samples from 466 preschool children (331 from an e-waste area (Guiyu) and 135 from a non-e-waste area (Haojiang)). Child blood lead levels (BLLs) were determined by graphite furnace atomic absorption spectrophotometry, while platelet indices were quantified using a Sysmex XT-1800i hematology analyzer. Higher blood lead levels are observed in e-waste lead-exposed preschool children. Significant relationships between high blood lead levels (exceeding current health limits) and elevated platelet count (PLT), plateletcrit (PCT), mean platelet volume (MPV), and platelet large cell ratio (P-LCR) were also uncovered. Furthermore, the median PLT and PCT levels of children from the exposed group both exceeded the respective recommended maximum reference range value, whereas the reference group did not. Location of child residence in Guiyu and BLLs were both risk factors related to platelet indices. These results suggest that high blood lead exposure from e-waste recycling may increase the risk of an amplified coagulation process through the activation of platelets in preschool children.
Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung
2016-04-01
The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchesne, A.M.
1997-12-31
Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupauer, R.M.; Thurmond, S.M.
This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupauer, R.M.; Thurmond, S.M.
This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.
Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.
2016-06-17
The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.
Sommer, Edward J.; Rich, John T.
2001-01-01
A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).
NASA Astrophysics Data System (ADS)
Huang, J. C.; Wright, W. V.
1982-04-01
The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, Wing K.; Pegg, Ian L.; Brandys, Marek
One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less
40 CFR 266.350 - What records must you keep at your facility and for how long?
Code of Federal Regulations, 2014 CFR
2014-07-01
... after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or NRC... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
A high-throughput microRNA expression profiling system.
Guo, Yanwen; Mastriano, Stephen; Lu, Jun
2014-01-01
As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.
High-Level Waste System Process Interface Description
DOE Office of Scientific and Technical Information (OSTI.GOV)
d'Entremont, P.D.
1999-01-14
The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
Midwest Interstate Low-Level Radioactive Waste Commission annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less
Pioneering Techniques to Determine Wastewater and Urban Runoff Loads in Karst Spring Systems
NASA Astrophysics Data System (ADS)
Hasenmueller, E. A.; Criss, R. E.
2010-12-01
Comparison of urban and rural springs quantifies the magnitude and sources of water quality degradation in east-central Missouri. Urban springs consistently display a suite of impairment characteristics including increases in: (1) specific conductance; (2) coliform bacteria; (3) total suspended solids (TSS); (4) nutrient concentrations including N, P, and S species; (5) B concentration; (6) heavy metal concentrations such as Cd, Cr, and Pb; and (7) temperature variability. Several dozen springs, representing a range in magnitude and recharge area land use, were sampled in and around St. Louis, MO. In addition, effluent from the Duckett Creek Treatment Plant was sampled to ascertain the chemistry of municipal waste waters in the area. Sodium perborate is a primary ingredient in bleaching agents for detergents, and therefore B is found in very high concentrations in waste waters (> 240 ppb) compared to background levels (< 20 ppb) in carbonate-hosted springs. Consequently, B provides an excellent, conservative tracer of sewage contributions to groundwater systems, and this study has shown that several urban springs comprise > 25% waste water. High B concentrations correlate well with increased nutrient contents and high E. coli and total coliform levels, which also suggest large sewage contributions to the shallow groundwater. Elevated specific conductance in these springs is primarily due to road salt contamination of these Ca-Mg-bicarbonate waters. In marked contrast to natural springs, Na and Cl can even be the dominant ions in urban springs, so they are useful indicators of urban runoff. High concentrations of Na and Cl ions persist well into late summer, confirming stable isotope models for the ~ 1 year residence time of these shallow groundwaters. Further, specific conductance, temperature, and TSS are highly variable in urban springs because of amplified throughput of storm water runoff; in fact, many detention basins directly feed into cave systems. Dissolved oxygen (DO) and pH are useful indicators of the nature of subsurface groundwater environments. In particular, springs with no known cave passage typically have low DO and pH (< 60% saturation and < 7.7, respectively), as is common in goundwaters that do not communicate with the atmosphere. However, springs draining open cave systems have higher DO and pH (60 - 90% saturation and > 7.7, respectively) due to the equilibration of DO with the overlying cave atmosphere and the degassing of carbon dioxide. This pair of parameters might provide a novel means to detect undiscovered caves.
Wittsiepe, Jürgen; Feldt, Torsten; Till, Holger; Burchard, Gerd; Wilhelm, Michael; Fobil, Julius N
2017-01-01
Informal-level electronic waste (e-waste)-processing activities are performed at hotspots in developing countries such as India, China, and Ghana. These activities increase the ambient burden of heavy metals and contribute to the toxic exposure of the general population. However, few data exist on the internal exposure of populations involved in these informal activities and in close contact with fumes from the direct combustion of electronic waste products in these countries. Therefore, in a cross-sectional study design, we analyzed blood, urine, and hair samples from 75 e-waste workers residing in and/or working on a large e-waste recycling site in Agbogbloshie, Accra, Ghana, and compared the results against those of 40 individuals living in a suburb of Accra without direct exposure to e-waste recycling activities. A comparative analysis using the Mann-Whitney U test showed significantly higher median concentrations of blood lead (88.5 vs. 41.0 μg/l, p < 0.001), cadmium (0.12 vs. 0.10 μg/g crea , p = 0.023), chromium (0.34 vs. 0.23 μg/g crea , p < 0.001), and nickel (3.18 vs. 2.03 μg/g crea , p < 0.001) in the urine of e-waste workers than those of controls. There was no difference in blood cadmium concentrations between the groups (0.51 vs. 0.57 μg/l, p = 0.215) or in urine mercury levels (0.18 vs. 0.18 μg/g crea , p = 0.820). Hair mercury levels were higher in the controls than in the e-waste workers (0.43 vs. 0.72, p < 0.001). We compared our data with those from European populations, specifically using the German reference values, and found that the internal concentrations of the participants exceeded the German reference values in 59.3 vs. 3.1% (e-waste workers vs. controls) for blood lead, 56.9 vs. 52.5% for urine nickel, 22.2 vs. 20.0% for urine chromium, and 17.8 vs. 62.2% for hair mercury. In particular, the high blood lead levels of up to several hundred micrograms per liter are a cause for concern because many of the workers in Agbogbloshie are children or adolescents who are in developmental stages and are at a particular risk for negative health effects. We conclude that exposure to some of the heavy metals tended to be a citywide phenomenon, but populations directly exposed to e-waste recycling are experiencing higher exposure levels and have concentration levels much higher than those of the general population and much higher than those found in European populations. To achieve environmental sustainability and to minimize the impact of e-waste-processing activities in developing countries, national authorities must formalize the rapidly growing informal-level e-waste management sector in these countries by deploying cleaner and easy-to-operate e-waste processing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan
Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well asmore » dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ΣPBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ΣPBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ΣPBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of Σ{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Frank
Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less
Kavlock, Robert; Dix, David
2010-02-01
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly available through the Aggregated Computational Toxicology Resource (ACToR), the Distributed Structure-Searchable Toxicity (DSSTox) Database Network, and other U.S. EPA websites. While initially focused on improving the hazard identification process, the CTRP is placing increasing emphasis on using high-throughput bioactivity profiling data in systems modeling to support quantitative risk assessments, and in developing complementary higher throughput exposure models. This integrated approach will enable analysis of life-stage susceptibility, and understanding of the exposures, pathways, and key events by which chemicals exert their toxicity in developing systems (e.g., endocrine-related pathways). The CTRP will be a critical component in next-generation risk assessments utilizing quantitative high-throughput data and providing a much higher capacity for assessing chemical toxicity than is currently available.
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
Public acceptance for centralized storage and repositories of low-level waste session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, H.R.
1995-12-31
Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less
Landfill mining: Development of a cost simulation model.
Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland
2016-04-01
Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. © The Author(s) 2016.
IAOseq: inferring abundance of overlapping genes using RNA-seq data.
Sun, Hong; Yang, Shuang; Tun, Liangliang; Li, Yixue
2015-01-01
Overlapping transcription constitutes a common mechanism for regulating gene expression. A major limitation of the overlapping transcription assays is the lack of high throughput expression data. We developed a new tool (IAOseq) that is based on reads distributions along the transcribed regions to identify the expression levels of overlapping genes from standard RNA-seq data. Compared with five commonly used quantification methods, IAOseq showed better performance in the estimation accuracy of overlapping transcription levels. For the same strand overlapping transcription, currently existing high-throughput methods are rarely available to distinguish which strand was present in the original mRNA template. The IAOseq results showed that the commonly used methods gave an average of 1.6 fold overestimation of the expression levels of same strand overlapping genes. This work provides a useful tool for mining overlapping transcription levels from standard RNA-seq libraries. IAOseq could be used to help us understand the complex regulatory mechanism mediated by overlapping transcripts. IAOseq is freely available at http://lifecenter.sgst.cn/main/en/IAO_seq.jsp.
Wang, Hongmei; Zhang, Yuan; Liu, Qian; Wang, Feifei; Nie, Jing; Qian, Yan
2010-09-01
Brominated flame retardants (BFRs) released from e-waste related activities may affect the health of local people. Assessing the impact of e-waste exposure during recycling and dismantling activities on local people's thyroid hormone levels is an area of ongoing research. During November and December 2008, the process of e-waste recycling and dismantling was investigated, and 236 occupation-exposed people and 89 non-occupation-exposed people approximate to the e-waste recycling sites were surveyed; their thyroid hormone levels (THs), thyrotropins (TSH) and BFRs levels in serum were assayed. Multiple regression models were constructed to analyze the changes of serum THs and TSH in the people living in the exposure area (exposure group) and the people in the control group. Covariates known to be or likely to be associated with THs, TSH and BFRs levels were analyzed. Lower level of Triiodothyronine (T(3)) in both occupation-exposed and non-occupation-exposed group were observed (p<0.01), when compared with the control group, and the same trend was obtained for free triiodothyronine (fT(3)) and free thyroxine (fT4) (p<0.01). However, no significant difference in thyroxine (T(4)) was found between the two groups. The level of TSH in the e-waste recycling occupational-exposed group ranged from 0.00 to 5.00microIU/ml with a mean of 1.26microIU/ml, whereas the level of TSH in the control group was from 0.03 to 5.54microIU/ml with a mean of 1.57microIU/ml. This study revealed that people having worked on e-waste recycling and dismantling had significantly lower TSH compared with the control group (p<0.01). Moreover, the level of BDE-205 is positively associated with the level of T4, as confirmed by the linear regression model (unstandardized regression coefficient, beta=0.25, rho=0.001) and a weaker positive relation was also found between the levels of BDE-126 and T4. Meanwhile, a weak negative relation was found between the levels of PBB 103 and T3, and between the levels of fT3 and fT4. These results suggest that exposure to BFRs released from primitive e-waste handling may contribute to the changes of THs and TSH levels. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.
Alterman, Julia F; Coles, Andrew H; Hall, Lauren M; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile
2017-08-20
Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo . We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.
Code of Federal Regulations, 2010 CFR
2010-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
Code of Federal Regulations, 2011 CFR
2011-01-01
... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...
National low-level waste management program radionuclide report series, Volume 14: Americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberg, M.R.; Garcia, R.S.
1995-09-01
This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
Canister arrangement for storing radioactive waste
Lorenzo, D.K.; Van Cleve, J.E. Jr.
1980-04-23
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
Let's Waste Less Waste, Level 4. Teacher Guide. Operation Waste Watch.
ERIC Educational Resources Information Center
Virginia State Dept. of Waste Management, Richmond. Div. of Litter & Recycling.
Operation Waste Watch is a series of seven sequential learning units which addresses the subject of litter control and solid waste management. Each unit may be used in a variety of ways, depending on the needs and schedules of individual schools, and may be incorporated into various social studies, science, language arts, health, mathematics, and…
Canister arrangement for storing radioactive waste
Lorenzo, Donald K.; Van Cleve, Jr., John E.
1982-01-01
The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.
40 CFR 266.350 - What records must you keep at your facility and for how long?
Code of Federal Regulations, 2010 CFR
2010-07-01
... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...
40 CFR 266.350 - What records must you keep at your facility and for how long?
Code of Federal Regulations, 2011 CFR
2011-07-01
... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...
40 CFR 761.347 - First level sampling-waste from existing piles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Purposes of Characterization for PCB Disposal in Accordance With § 761.62, and Sampling PCB Remediation... a cone; that is, having a circular base with PCB bulk product waste or PCB remediation waste... one pile. If the PCB bulk product waste or PCB remediation waste consists of more than one pile or...
Boosalis, Michael S.; Sangerman, Jose I.; White, Gary L.; Wolf, Roman F.; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H.; Li, Biaoru; Pace, Betty S.; Nouraie, Mehdi; Faller, Douglas V.; Perrine, Susan P.
2015-01-01
High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies. PMID:26713848
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.
Sugiyama, Daisuke; Hattori, Takatoshi
2013-01-01
In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047
Zorpas, Antonis A; Lasaridi, Katia
2013-05-01
The Waste Framework Directive (WFD-2008/98/EC) has set clear waste prevention procedures, including reporting, reviewing, monitoring and evaluating. Based on the WFD, the European Commission and will offer support to Member States on how to develop waste prevention programmes through guidelines and information sharing on best practices. Monitoring and evaluating waste prevention activities are critical, as they constitute the main tools to enable policy makers, at the national and local level, to build their strategic plans and ensure that waste prevention initiatives are effective and deliver behaviour change. However, how one can measure something that is not there, remains an important and unresolved research question. The paper reviews and attempts to evaluate the methods that are being used for measuring waste prevention and the impact of relevant implemented activities at the household level, as the available data is still limited. Copyright © 2012 Elsevier Ltd. All rights reserved.
Trial coring in LLRW trenches at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donders, R.E.; Killey, R.W.D.; Franklin, K.J.
1996-12-31
As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information gathering technique. Information available from trench coring includes: (1) trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; (2) soil moisture content and facility drainage performance; (3) borehole gamma logs that indicate radiation levels in the region of the borehole; (4) biochemical conditionsmore » in the waste regions, vadose zone, and groundwater; (5) site specific information relevant to contaminant migration modelling or remedial actions; (6) information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases.« less
Glass Property Data and Models for Estimating High-Level Waste Glass Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang
2009-10-05
This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less
Bjorklund, William J.
1977-01-01
High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.
Department of Energy's first waste determinations under section 3116: how did the process work?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picha Jr, K.G.; Kaltreider, R.; Suttora, L.
2007-07-01
Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Code of Federal Regulations, 2010 CFR
2010-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.1 Purpose. The... receive, transfer, and possess power reactor spent fuel, power reactor-related Greater than Class C (GTCC... reactor spent fuel, high-level radioactive waste, power reactor-related GTCC waste, and other radioactive...
Department of Energy Technology Readiness Assessments - Process Guide and Training Plan
2008-09-12
Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives
This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).
Code of Federal Regulations, 2012 CFR
2012-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent... proposed ISFSI or MRS must be evaluated with respect to the potential impact on the environment of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Joseph V.; Freedman, Vicky L.
2016-09-28
Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less
Biological intrusion of low-level-waste trench covers
NASA Astrophysics Data System (ADS)
Hakonson, T. E.; Gladney, E. S.
The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-09-01
Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less
Flow Cytometry: Impact on Early Drug Discovery.
Edwards, Bruce S; Sklar, Larry A
2015-07-01
Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens of thousands of cells per second and more than five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, "sip-and-spit" sampling technology has restricted it to low-sample-throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens of thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multiparameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage, and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry, and parallel sample processing promise dramatically expanded single-cell profiling capabilities to bolster systems-level approaches to drug discovery. © 2015 Society for Laboratory Automation and Screening.
Flow Cytometry: Impact On Early Drug Discovery
Edwards, Bruce S.; Sklar, Larry A.
2015-01-01
Summary Modern flow cytometers can make optical measurements of 10 or more parameters per cell at tens-of-thousands of cells per second and over five orders of magnitude dynamic range. Although flow cytometry is used in most drug discovery stages, “sip-and-spit” sampling technology has restricted it to low sample throughput applications. The advent of HyperCyt sampling technology has recently made possible primary screening applications in which tens-of-thousands of compounds are analyzed per day. Target-multiplexing methodologies in combination with extended multi-parameter analyses enable profiling of lead candidates early in the discovery process, when the greatest numbers of candidates are available for evaluation. The ability to sample small volumes with negligible waste reduces reagent costs, compound usage and consumption of cells. Improved compound library formatting strategies can further extend primary screening opportunities when samples are scarce. Dozens of targets have been screened in 384- and 1536-well assay formats, predominantly in academic screening lab settings. In concert with commercial platform evolution and trending drug discovery strategies, HyperCyt-based systems are now finding their way into mainstream screening labs. Recent advances in flow-based imaging, mass spectrometry and parallel sample processing promise dramatically expanded single cell profiling capabilities to bolster systems level approaches to drug discovery. PMID:25805180
Food waste and the food-energy-water nexus: A review of food waste management alternatives.
Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James
2018-04-01
Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my; Hannan, M.A., E-mail: hannan@eng.ukm.my; Basri, Hassan
Highlights: • Solid waste bin level detection using Dynamic Time Warping (DTW). • Gabor wavelet filter is used to extract the solid waste image features. • Multi-Layer Perceptron classifier network is used for bin image classification. • The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensormore » intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickford, D.F.; Congdon, J.W.; Oblath, S.B.
1987-01-01
At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
Hospital economics of the hospitalist.
Gregory, Douglas; Baigelman, Walter; Wilson, Ira B
2003-06-01
To determine the economic impact on the hospital of a hospitalist program and to develop insights into the relative economic importance of variables such as reductions in mean length of stay and cost, improvements in throughput (patients discharged per unit time), payer methods of reimbursement, and the cost of the hospitalist program. The primary data source was Tufts-New England Medical Center in Boston. Patient demographics, utilization, cost, and revenue data were obtained from the hospital's cost accounting system and medical records. The hospitalist admitted and managed all patients during a six-week period on the general medical unit of Tufts-New England Medical Center. Reimbursement, cost, length of stay, and throughput outcomes during this period were contrasted with patients admitted to the unit in the same period in the prior year, in the preceding period, and in the following period. The hospitalist group compared with the control group demonstrated: length of stay reduced to 2.19 days from 3.45 days (p<.001); total hospital costs per admission reduced to 1,775 dollars from 2,332 dollars (p<.001); costs per day increased to 811 dollars from 679 dollars (p<.001); no differences for readmission within 30 days of discharge to extended care facilities. The hospital's expected incremental profitability with the hospitalist was -1.44 dollars per admission excluding incremental throughput effects, and it was most sensitive to changes in the ratio of per diem to case rate reimbursement. Incremental throughput with the hospitalist was estimated at 266 patients annually with an associated incremental profitability of 1.3 million dollars. Hospital interventions designed to reduce length of stay, such as the hospitalist, should be evaluated in terms of cost, throughput, and reimbursement effects. Excluding throughput effects, the hospitalist program was not economically viable due to the influence of per diem reimbursement. Throughput improvements occasioned by the hospitalist program with high baseline occupancy levels are substantial and tend to favor a hospitalist program.
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
Determinants of consumer food waste behaviour: Two routes to food waste.
Stancu, Violeta; Haugaard, Pernille; Lähteenmäki, Liisa
2016-01-01
Approximately one quarter of the food supplied for human consumption is wasted across the food supply chain. In the high income countries, the food waste generated at the household level represents about half of the total food waste, making this level one of the biggest contributors to food waste. Yet, there is still little evidence regarding the determinants of consumers' food waste behaviour. The present study examines the effect of psycho-social factors, food-related routines, household perceived capabilities and socio-demographic characteristics on self-reported food waste. Survey data gathered among 1062 Danish respondents measured consumers' intentions not to waste food, planning, shopping and reuse of leftovers routines, perceived capability to deal with household food-related activities, injunctive and moral norms, attitudes towards food waste, and perceived behavioural control. Results show that perceived behavioural control and routines related to shopping and reuse of leftovers are the main drivers of food waste, while planning routines contribute indirectly. In turn, the routines are related to consumers' perceived capabilities to deal with household related activities. With regard to intentional processes, injunctive norms and attitudes towards food waste have an impact while moral norms and perceived behavioural control make no significant contribution. Implications of the study for initiatives aimed at changing consumers' food waste behaviour are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Management in the system of waste utilization of production and consumption
NASA Astrophysics Data System (ADS)
Azimov, U. I.; Gilmanshin, I. R.; Krainova, D. R.; Galeev, I. A.
2017-09-01
The main problems of waste management in accordance with the legislation are considered in the article. The economic benefits of separate waste collection are listed. The necessity of transition to a new level of waste management in the Republic of Tatarstan is determined.
Final closure of a low level waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potier, J.M.
1995-12-31
The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less
Yucca Mountain, Nevada - A proposed geologic repository for high-level radioactive waste
Levich, R.A.; Stuckless, J.S.
2006-01-01
Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation. ?? 2007 Geological Society of America. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-12-01
This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)
High-Throughput RT-PCR for small-molecule screening assays
Bittker, Joshua A.
2012-01-01
Quantitative measurement of the levels of mRNA expression using real-time reverse transcription polymerase chain reaction (RT-PCR) has long been used for analyzing expression differences in tissue or cell lines of interest. This method has been used somewhat less frequently to measure the changes in gene expression due to perturbagens such as small molecules or siRNA. The availability of new instrumentation for liquid handling and real-time PCR analysis as well as the commercial availability of start-to-finish kits for RT-PCR has enabled the use of this method for high-throughput small-molecule screening on a scale comparable to traditional high-throughput screening (HTS) assays. This protocol focuses on the special considerations necessary for using quantitative RT-PCR as a primary small-molecule screening assay, including the different methods available for mRNA isolation and analysis. PMID:23487248
High-speed zero-copy data transfer for DAQ applications
NASA Astrophysics Data System (ADS)
Pisani, Flavio; Cámpora Pérez, Daniel Hugo; Neufeld, Niko
2015-05-01
The LHCb Data Acquisition (DAQ) will be upgraded in 2020 to a trigger-free readout. In order to achieve this goal we will need to connect around 500 nodes with a total network capacity of 32 Tb/s. To get such an high network capacity we are testing zero-copy technology in order to maximize the theoretical link throughput without adding excessive CPU and memory bandwidth overhead, leaving free resources for data processing resulting in less power, space and money used for the same result. We develop a modular test application which can be used with different transport layers. For the zero-copy implementation we choose the OFED IBVerbs API because it can provide low level access and high throughput. We present throughput and CPU usage measurements of 40 GbE solutions using Remote Direct Memory Access (RDMA), for several network configurations to test the scalability of the system.
Kizaki, Seiichiro; Chandran, Anandhakumar; Sugiyama, Hiroshi
2016-03-02
Tet (ten-eleven translocation) family proteins have the ability to oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC). However, the oxidation reaction of Tet is not understood completely. Evaluation of genomic-level epigenetic changes by Tet protein requires unbiased identification of the highly selective oxidation sites. In this study, we used high-throughput sequencing to investigate the sequence specificity of mC oxidation by Tet1. A 6.6×10(4) -member mC-containing random DNA-sequence library was constructed. The library was subjected to Tet-reactive pulldown followed by high-throughput sequencing. Analysis of the obtained sequence data identified the Tet1-reactive sequences. We identified mCpG as a highly reactive sequence of Tet1 protein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Information-based management mode based on value network analysis for livestock enterprises
NASA Astrophysics Data System (ADS)
Liu, Haoqi; Lee, Changhoon; Han, Mingming; Su, Zhongbin; Padigala, Varshinee Anu; Shen, Weizheng
2018-01-01
With the development of computer and IT technologies, enterprise management has gradually become information-based management. Moreover, due to poor technical competence and non-uniform management, most breeding enterprises show a lack of organisation in data collection and management. In addition, low levels of efficiency result in increasing production costs. This paper adopts 'struts2' in order to construct an information-based management system for standardised and normalised management within the process of production in beef cattle breeding enterprises. We present a radio-frequency identification system by studying multiple-tag anti-collision via a dynamic grouping ALOHA algorithm. This algorithm is based on the existing ALOHA algorithm and uses an improved packet dynamic of this algorithm, which is characterised by a high-throughput rate. This new algorithm can reach a throughput 42% higher than that of the general ALOHA algorithm. With a change in the number of tags, the system throughput is relatively stable.
Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P.; Ross, R. Paul; Fitzgerald, Gerald F.
2012-01-01
Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods. PMID:22685131
Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D
2012-08-01
Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods.
Ching, Travers; Zhu, Xun; Garmire, Lana X
2018-04-01
Artificial neural networks (ANN) are computing architectures with many interconnections of simple neural-inspired computing elements, and have been applied to biomedical fields such as imaging analysis and diagnosis. We have developed a new ANN framework called Cox-nnet to predict patient prognosis from high throughput transcriptomics data. In 10 TCGA RNA-Seq data sets, Cox-nnet achieves the same or better predictive accuracy compared to other methods, including Cox-proportional hazards regression (with LASSO, ridge, and mimimax concave penalty), Random Forests Survival and CoxBoost. Cox-nnet also reveals richer biological information, at both the pathway and gene levels. The outputs from the hidden layer node provide an alternative approach for survival-sensitive dimension reduction. In summary, we have developed a new method for accurate and efficient prognosis prediction on high throughput data, with functional biological insights. The source code is freely available at https://github.com/lanagarmire/cox-nnet.
Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.
2016-01-01
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161
Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J
2016-04-07
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieth, Donald L.; Voegele, Michael D.
2013-07-01
Congress has had a dual role with regard to high level radioactive waste, being involved in both its creation and its disposal. A significant amount of time has passed between the creation of the nation's first high level radioactive waste and the present day. The pace of addressing its remediation has been highly irregular. Congress has had to consider the technical, regulatory, and political issues and all have had specific difficulties. It is a true odyssey framed by an imperative and accountability, by a sense of urgency, by an ability or inability to finish the job and by consequences. Congressmore » had set a politically acceptable course by 1982. However, President Obama intervened in the process after he took office in January 2009. Through the efforts of his Administration, by the end of 2012, the US government has no program to dispose of high level radioactive waste and no reasonable prospect of a repository for high level radioactive waste. It is not obvious how the US government program will be reestablished or who will assume responsibility for leadership. The ultimate criteria for judging the consequences are 1) the outcome of the ongoing NRC's Nuclear Waste Confidence Rulemaking and 2) the concomitant permissibility of nuclear energy supplying electricity from operating reactors in the US. (authors)« less
Surgical waste audit of 5 total knee arthroplasties
Stall, Nathan M.; Kagoma, Yoan K.; Bondy, Jennifer N.; Naudie, Douglas
2013-01-01
Background Operating rooms (ORs) are estimated to generate up to one-third of hospital waste. At the London Health Sciences Centre, prosthetics and implants represent 17% of the institution’s ecological footprint. To investigate waste production associated with total knee arthroplasties (TKAs), we performed a surgical waste audit to gauge the environmental impact of this procedure and generate strategies to improve waste management. Methods We conducted a waste audit of 5 primary TKAs performed by a single surgeon in February 2010. Waste was categorized into 6 streams: regular solid waste, recyclable plastics, biohazard waste, laundered linens, sharps and blue sterile wrap. Volume and weight of each stream was quantified. We used Canadian Joint Replacement Registry data (2008–2009) to estimate annual weight and volume totals of waste from all TKAs performed in Canada. Results The average surgical waste (excluding laundered linens) per TKA was 13.3 kg, of which 8.6 kg (64.5%) was normal solid waste, 2.5 kg (19.2%) was biohazard waste, 1.6 kg (12.1%) was blue sterile wrap, 0.3 kg (2.2%) was recyclables and 0.3 kg (2.2%) was sharps. Plastic wrappers, disposable surgical linens and personal protective equipment contributed considerably to total waste. We estimated that landfill waste from all 47 429 TKAs performed in Canada in 2008–2009 was 407 889 kg by weight and 15 272 m3 by volume. Conclusion Total knee arthroplasties produce substantial amounts of surgical waste. Environmentally friendly surgical products and waste management strategies may allow ORs to reduce the negative impacts of waste production without compromising patient care. Level of evidence Level IV, case series. PMID:23351497
Li, Yan; Xu, Xijin; Wu, Kusheng; Chen, Gangjian; Liu, Junxiao; Chen, Songjian; Gu, Chengwu; Zhang, Bao; Zheng, Liangkai; Zheng, Minghao; Huo, Xia
2008-10-01
Guiyu is the major electronic waste (e-waste) recycling town in China. The primary purpose of this study was to measure the lead levels in neonates and examine the correlation between lead levels and neurobehavioral development. One hundred full-term neonates from Guiyu and fifty-two neonates from neighboring towns (control group) in the late summer of 2006 were selected for study. The lead levels in the umbilical cord blood (CBPb) and lead levels in meconium (MPb) of neonates were determined with atomic absorption spectrophotometry. The neonatal behavioral neurological assessment (NBNA) was conducted on all neonates. A questionnaire related to the exposure to lead of pregnant women was used as a survey of the neonates' mothers. Compared with the control group, neonates in Guiyu had significantly higher levels of lead (P < 0.01), and the mean CBPb and MPb were 113.28 microg L(-1) and 2.50 microg g(-1), respectively. The relatively high lead levels in the neonates of the Guiyu group were found to correlate with their maternal occupation in relation to e-waste recycling. Neonates with high levels of lead load have lower NBNA scores (P < 0.01). There was a statistically significant difference in NBNA scores between the Guiyu group and the control group by t test (P < 0.05). No correlation was found between CBPb and NBNA scores; however, a negative correlation was found between MPb and NBNA scores (P < 0.01). There is a correlation between relatively high lead levels in the umbilical cord blood and meconium in neonates and the local e-waste recycling activities related to lead contamination. This study suggests that environmental lead contamination due to e-waste recycling have an impact on neurobehavioral development of neonates in Guiyu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, J.L.
1993-09-01
Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less
78 FR 53793 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... total of 5,500 ``Ultimate Foreign XW012/04 radioactive tons of low- Consignee(s).'' No other 11005699 waste). level waste). changes to the existing license which authorizes the export of non-conforming...
Source Separation and Composting of Organic Municipal Solid Waste.
ERIC Educational Resources Information Center
Gould, Mark; And Others
1992-01-01
Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, Lien-Mow; Kilpatrick, Lester L.
1984-01-01
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, L.M.; Kilpatrick, L.L.
1982-05-19
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
40 CFR 60.1175 - What information must I include in the plant-specific operating manual?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit. (e) Procedures for maintaining a proper level of combustion air supply. (f... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... municipal waste combustion units. (c) Procedures for receiving, handling, and feeding municipal solid waste...
Building Staff Competencies and Selecting Communications Methods for Waste Management Programs.
ERIC Educational Resources Information Center
Richardson, John G.
The Waste Management Institute provided in-service training to interested County Extension agents in North Carolina to enable them to provide leadership in developing and delivering a comprehensive county-level waste management program. Training included technical, economic, environmental, social, and legal aspects of waste management presented in…
Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey
2011-09-30
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less
The impact measure of solid waste management on health: the hazard index.
Musmeci, Loredana; Bellino, Mirella; Cicero, Maria Rita; Falleni, Fabrizio; Piccardi, Augusta; Trinca, Stefania
2010-01-01
The risk associated with waste exposure depends on the level of emissions arising from waste disposal and from the effects of these emissions on human health (dose-response). In 2007 an epidemiological study was conducted in two Italian provinces of the Campania Region, namely Naples and Caserta, with the aim of assessing the health effects deriving from exposure to waste. In these studies, the important aspect is the population exposure assessment, in relation to the different types of waste disposal. The Regional Agency for Environmental Protection (ARPA Campania) has identified and characterized the various authorized/unauthorized dumping sites in the provinces of Naples and Caserta. Most of the waste disposal used are illegal and invisible (sunken or buried); thus, the toxic substances therein contained are unknown and difficult to identify. In order to locate the possible areas exposed to a higher waste-related health risk, a synthetical "hazard index" (at the municipality level) was designed. By means of GIS, the number of waste impact areas was identified for each of the 196 municipalities in the two provinces; then, Census data (ISTAT 2001) was used to estimate the proportion of the population living in the impact areas. The synthetical hazard index at municipality level accounts for three elements: a) the intrinsic characterization of the waste disposal, determining the way in which the pollutant is released; b) the impact area of the dumping site (within 1 km radius), same areas are influenced by more than one site; c) the density of the population living in the "impact area" surrounding the waste disposal site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-09-01
The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24more » figures, 60 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
Novel method for the high-throughput processing of slides for the comet assay
Karbaschi, Mahsa; Cooke, Marcus S.
2014-01-01
Single cell gel electrophoresis (the comet assay), continues to gain popularity as a means of assessing DNA damage. However, the assay's low sample throughput and laborious sample workup procedure are limiting factors to its application. “Scoring”, or individually determining DNA damage levels in 50 cells per treatment, is time-consuming, but with the advent of high-throughput scoring, the limitation is now the ability to process significant numbers of comet slides. We have developed a novel method by which multiple slides may be manipulated, and undergo electrophoresis, in batches of 25 rather than individually and, importantly, retains the use of standard microscope comet slides, which are the assay convention. This decreases assay time by 60%, and benefits from an electrophoresis tank with a substantially smaller footprint, and more uniform orientation of gels during electrophoresis. Our high-throughput variant of the comet assay greatly increases the number of samples analysed, decreases assay time, number of individual slide manipulations, reagent requirements and risk of damage to slides. The compact nature of the electrophoresis tank is of particular benefit to laboratories where bench space is at a premium. This novel approach is a significant advance on the current comet assay procedure. PMID:25425241
Novel method for the high-throughput processing of slides for the comet assay.
Karbaschi, Mahsa; Cooke, Marcus S
2014-11-26
Single cell gel electrophoresis (the comet assay), continues to gain popularity as a means of assessing DNA damage. However, the assay's low sample throughput and laborious sample workup procedure are limiting factors to its application. "Scoring", or individually determining DNA damage levels in 50 cells per treatment, is time-consuming, but with the advent of high-throughput scoring, the limitation is now the ability to process significant numbers of comet slides. We have developed a novel method by which multiple slides may be manipulated, and undergo electrophoresis, in batches of 25 rather than individually and, importantly, retains the use of standard microscope comet slides, which are the assay convention. This decreases assay time by 60%, and benefits from an electrophoresis tank with a substantially smaller footprint, and more uniform orientation of gels during electrophoresis. Our high-throughput variant of the comet assay greatly increases the number of samples analysed, decreases assay time, number of individual slide manipulations, reagent requirements and risk of damage to slides. The compact nature of the electrophoresis tank is of particular benefit to laboratories where bench space is at a premium. This novel approach is a significant advance on the current comet assay procedure.
High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.
Chiaraviglio, Lucius; Kirby, James E
2015-12-01
Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila
Chiaraviglio, Lucius
2015-01-01
Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509
High-level waste borosilicate glass: A compendium of corrosion characteristics. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunnane, J.C.; Bates, J.K.; Bradley, C.R.
The objective of this document is to summarize scientific information pertinent to evaluating the extent to which high-level waste borosilicate glass corrosion and the associated radionuclide release processes are understood for the range of environmental conditions to which waste glass may be exposed in service. Alteration processes occurring within the bulk of the glass (e.g., devitrification and radiation-induced changes) are discussed insofar as they affect glass corrosion.This document is organized into three volumes. Volumes I and II represent a tiered set of information intended for somewhat different audiences. Volume I is intended to provide an overview of waste glass corrosion,more » and Volume 11 is intended to provide additional experimental details on experimental factors that influence waste glass corrosion. Volume III contains a bibliography of glass corrosion studies, including studies that are not cited in Volumes I and II. Volume I is intended for managers, decision makers, and modelers, the combined set of Volumes I, II, and III is intended for scientists and engineers working in the field of high-level waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardal, M.A.; Darwen, N.J.
2008-07-01
Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. John, C.M.
1977-04-01
An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.
Small-Scale Waste-to-Energy Technology for Contingency Bases
2012-05-24
Expedient, No Waste Sorting Technology Readiness Level High Fuel Demand Water Required Steam Infrastructure Required Air Emissions Gasification ...Full gasification system • Costs $26K • GM Industrial Engine (GM 4 Cylinder, 3.00 L) • MeccAlte Generator Head • Imbert type downdraft reactor...Solid waste volume reduction − Response to waste streams biomass , refuse-derived fuel, shredded waste − Operation and maintenance requirements
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
Radioactive waste management and practice in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.; Rahman, M.M.
1993-12-31
A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less
Management of healthcare waste: developments in Southeast Asia in the twenty-first century.
Kühling, Jan-Gerd; Pieper, Ute
2012-09-01
In many Southeast Asian countries, significant challenges persist with regard to the proper management and disposal of healthcare waste. The amount of healthcare waste in these countries is continuously increasing as a result of the expansion of healthcare systems and services. In the past, healthcare waste, if it was treated at all, was mainly incinerated. In the last decade more comprehensive waste management systems were developed for Southeast Asian countries and implementation started. This also included the establishment of alternative healthcare waste treatment systems. The developments in the lower-middle-income countries are of special interest, as major investments are planned. Based upon sample projects, a short overview of the current development trends in the healthcare waste sector in Laos, Indonesia and Vietnam is provided. The projects presented include: (i) Lao Peoples Democratic Republic (development of the national environmental health training system to support the introduction of environmental health standards and improvement of healthcare waste treatment in seven main hospitals by introducing steam-based treatment technologies); (ii) Indonesia (development of a provincial-level healthcare waste-management strategy for Province Nanggroe Aceh Darussalam (NAD) and introduction of an advanced waste treatment system in a tertiary level hospital in Makassar); and (iii) Vietnam (development of a healthcare waste strategy for five provinces in Vietnam and a World Bank-financed project on healthcare waste in Vietnam).