Sample records for level-2 calorimeter trigger

  1. ATLAS level-1 calorimeter trigger: Run-2 performance and Phase-1 upgrades

    NASA Astrophysics Data System (ADS)

    Carlson, Ben; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    The Run-2 performance and Phase-1 upgrade are presented for the hardware-based level-1 calorimeter trigger (L1Calo) for the ATLAS Experiment. This trigger has a latency of about 2.2 microseconds to make a decision to help ATLAS select about 100 kHz of the most interesting collisions from the nominal LHC rate of 40 MHz. We summarize the upgrade after Run-1 (2009-2012) and discuss its performance in Run-2 (2015-current). We also outline the on-going Phase-1 upgrade for the next run (2021-2024) and its expected performance.

  2. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei; Atlas Collaboration

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  3. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milic, A.

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detectormore » itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)« less

  4. The ATLAS Level-1 Calorimeter Trigger: PreProcessor implementation and performance

    NASA Astrophysics Data System (ADS)

    Åsman, B.; Achenbach, R.; Allbrooke, B. M. M.; Anders, G.; Andrei, V.; Büscher, V.; Bansil, H. S.; Barnett, B. M.; Bauss, B.; Bendtz, K.; Bohm, C.; Bracinik, J.; Brawn, I. P.; Brock, R.; Buttinger, W.; Caputo, R.; Caughron, S.; Cerrito, L.; Charlton, D. G.; Childers, J. T.; Curtis, C. J.; Daniells, A. C.; Davis, A. O.; Davygora, Y.; Dorn, M.; Eckweiler, S.; Edmunds, D.; Edwards, J. P.; Eisenhandler, E.; Ellis, K.; Ermoline, Y.; Föhlisch, F.; Faulkner, P. J. W.; Fedorko, W.; Fleckner, J.; French, S. T.; Gee, C. N. P.; Gillman, A. R.; Goeringer, C.; Hülsing, T.; Hadley, D. R.; Hanke, P.; Hauser, R.; Heim, S.; Hellman, S.; Hickling, R. S.; Hidvégi, A.; Hillier, S. J.; Hofmann, J. I.; Hristova, I.; Ji, W.; Johansen, M.; Keller, M.; Khomich, A.; Kluge, E.-E.; Koll, J.; Laier, H.; Landon, M. P. J.; Lang, V. S.; Laurens, P.; Lepold, F.; Lilley, J. N.; Linnemann, J. T.; Müller, F.; Müller, T.; Mahboubi, K.; Martin, T. A.; Mass, A.; Meier, K.; Meyer, C.; Middleton, R. P.; Moa, T.; Moritz, S.; Morris, J. D.; Mudd, R. D.; Narayan, R.; zur Nedden, M.; Neusiedl, A.; Newman, P. R.; Nikiforov, A.; Ohm, C. C.; Perera, V. J. O.; Pfeiffer, U.; Plucinski, P.; Poddar, S.; Prieur, D. P. F.; Qian, W.; Rieck, P.; Rizvi, E.; Sankey, D. P. C.; Schäfer, U.; Scharf, V.; Schmitt, K.; Schröder, C.; Schultz-Coulon, H.-C.; Schumacher, C.; Schwienhorst, R.; Silverstein, S. B.; Simioni, E.; Snidero, G.; Staley, R. J.; Stamen, R.; Stock, P.; Stockton, M. C.; Tan, C. L. A.; Tapprogge, S.; Thomas, J. P.; Thompson, P. D.; Thomson, M.; True, P.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Weber, P.; Wessels, M.; Wiglesworth, C.; Williams, S. L.

    2012-12-01

    The PreProcessor system of the ATLAS Level-1 Calorimeter Trigger (L1Calo) receives about 7200 analogue signals from the electromagnetic and hadronic components of the calorimetric detector system. Lateral division results in cells which are pre-summed to so-called Trigger Towers of size 0.1 × 0.1 along azimuth (phi) and pseudorapidity (η). The received calorimeter signals represent deposits of transverse energy. The system consists of 124 individual PreProcessor modules that digitise the input signals for each LHC collision, and provide energy and timing information to the digital processors of the L1Calo system, which identify physics objects forming much of the basis for the full ATLAS first level trigger decision. This paper describes the architecture of the PreProcessor, its hardware realisation, functionality, and performance.

  5. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  6. Concepts and design of the CMS high granularity calorimeter Level-1 trigger

    NASA Astrophysics Data System (ADS)

    Sauvan, Jean-Baptiste; CMS Collaboration

    2017-11-01

    The CMS experiment has chosen a novel high granularity calorimeter for the forward region as part of its planned upgrade for the high luminosity LHC. The calorimeter will have a fine segmentation in both the transverse and longitudinal directions and will be the first such calorimeter specifically optimised for particle flow reconstruction to operate at a colliding beam experiment. The high granularity results in around six million readout channels in total and so presents a significant challenge in terms of data manipulation and processing for the trigger; the trigger data volumes will be an order of magnitude above those currently handled at CMS. In addition, the high luminosity will result in an average of 140 to 200 interactions per bunch crossing, giving a huge background rate in the forward region that needs to be efficiently reduced by the trigger algorithms. Efficient data reduction and reconstruction algorithms making use of the fine segmentation of the detector have been simulated and evaluated. They provide an increase of the trigger rates with the luminosity significantly smaller than would be expected with the current trigger system.

  7. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  8. The Argonne CDF Group

    Science.gov Websites

    calorimeter, Shower Max., Preshower, Crack Chambers (1979-present) Run II Upgrade: Front end electronics (QIE , Preshower electronics and DAQ Support for Level-2 electron and photon triggers (RECES and ISO) Deputy Head

  9. Study of muons near shower cores at sea level using the E594 neutrino detector

    NASA Technical Reports Server (NTRS)

    Goodman, J. A.; Gupta, S. C.; Freudenreich, H.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, D.; Burnstein, R.

    1985-01-01

    The E594 neutrino detector has been used to study the lateral distribution of muons of energy 3 GeV near shower cores. The detector consists of a 340 ton fine grain calorimeter with 400,000 cells of flash chamber and dimensions of 3.7 m x 20 m x 3.7 m (height). The average density in the calorimeter is 1.4 gm/sq cm, and the average Z is 21. The detector was triggered by four 0.6 sq m scintillators placed immediately on the top of the calorimeter. The trigger required at least two of these four counters. The accompanying extensive air showers (EAS) was sampled by 14 scintillation counters located up to 15 m from the calorimeter. Several off line cuts have been applied to the data. Demanding five particles in at least two of the trigger detectors, a total of 20 particles in all of them together, and an arrival angle for the shower 450 deg reduced the data sample to 11053 events. Of these in 4869 cases, a computer algorithm found at least three muons in the calorimeter.

  10. Design, status and perspective of the Mu2e crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzullo, G.; Atanov, N.; Baranov, V.

    The Mu2e experiment at Fermilab will search for the charged lepton flavor violating process of neutrino-lessmore » $$\\mu \\to e$$ coherent conversion in the field of an aluminum nucleus. Mu2e will reach a single event sensitivity of about $$2.5\\cdot 10^{-17}$$ that corresponds to four orders of magnitude improvements with respect to the current best limit. The detector system consists of a straw tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon Photomultipliers. The calorimeter was designed to be operable in a harsh environment where about 10 krad/year will be delivered in the hottest region and work in presence of 1 T magnetic field. The calorimeter role is to perform $$\\mu$$/e separation to suppress cosmic muons mimiking the signal, while providing a high level trigger and a seeding the track search in the tracker. Here, in this paper we present the calorimeter design and the latest R&D results.« less

  11. The ATLAS Level-1 Topological Trigger performance in Run 2

    NASA Astrophysics Data System (ADS)

    Riu, Imma; ATLAS Collaboration

    2017-10-01

    The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.

  12. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Solovyanov, Oleg

    2017-10-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ˜30 MeV to ˜2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. The calorimeter timing calibration and resolutions are studied with a sample of multijets events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. TileCal performance satisfies the design requirements and has provided an essential contribution to physics results in ATLAS. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC), delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Calorimeter will undergo a major replacement of its on- and off-detector electronics. All signals will be digitised and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision for the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade. Results of extensive laboratory tests and with beams of the three options will be presented, as well as the latest results on the development of the power distribution and the off-detector electronics.

  13. The CMS Level-1 Calorimeter Trigger for LHC Run II

    NASA Astrophysics Data System (ADS)

    Sinthuprasith, Tutanon

    2017-01-01

    The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.

  14. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  15. Progress status for the Mu2e calorimeter system

    DOE PAGES

    Pezzullo, Gianantonio; Budagov, J.; Carosi, R.; ...

    2015-02-13

    The Mu2e experiment at FNAL aims to measure the charged-lepton flavor violating neutrinoless conversion of a negative muon into an electron. The conversion results in a monochromatic electron with an energy slightly below the muon rest mass (104.97 MeV). The calorimeter should confirm that the candidates reconstructed by the extremely precise tracker system are indeed conversion electrons while performing a powerfulmore » $$\\mu/e$$ particle identification. Moreover, it should also provide a high level trigger for the experiment independently from the tracker system. The calorimeter should also be able to keep functionality in an environment where the background delivers a dose of ~ 10 krad/year in the hottest area and to work in the presence of 1 T axial magnetic field. These requirements translate in the design of a calorimeter with large acceptance, good energy resolution O(5%) and a reasonable position (time) resolution of ~<1 cm (<0.5ns). The baseline version of the calorimeter is composed by two disks of inner (outer) radius of 351 (660) mm filled by 1860 hexagonal $$BaF_2$$ crystals of 20 cm length. Each crystal is readout by two large area APD's. In this study, we summarize the experimental tests done so far as well as the simulation studies in the Mu2e environment.« less

  16. Upgrading the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, Fernando

    2013-11-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase 2 Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in the middle of 2014 during the first Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The Main Board will provide communication and control to the FEBs and the Daughter Board will transmit the digitized data to the off-detector electronics in the counting room, where the super Read-Out Driver (sROD) will perform processing tasks on them and will be the interface to the trigger levels 0, 1 and 2.

  17. Performance of the TGT liquid argon calorimeter and trigger system

    NASA Astrophysics Data System (ADS)

    Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M. Y.; Chekulaev, S. V.; Kiryunin, A. E.; Kurchaninov, L. L.; Levitsky, M. S.; Maksimov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.

    1996-02-01

    A novel concept of a liquid argon calorimeter, the "Thin Gap Turbine" (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a "circular data store" and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given.

  18. Trigger readout electronics upgrade for the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Dinkespiler, B.

    2017-09-01

    The upgrade of the Large Hadron Collider (LHC) scheduled for the 2019-2020 shut-down period, referred to as Phase-I upgrade, will increase the instantaneous luminosity to about three times the design value. Since the current ATLAS trigger system does not allow sufficient increase of the trigger rate, an improvement of the trigger system is required. The Liquid Argon (LAr) Calorimeter read-out will therefore be modified to deliver digital trigger signals with a higher spatial granularity in order to improve the identification efficiencies of electrons, photons, tau, jets and missing energy, at high background rejection rates at the Level-1 trigger. The new trigger signals will be arranged in 34000 so-called Super Cells which achieves 5-10 times better granularity than the trigger towers currently used and allows an improved background rejection. The readout of the trigger signals will process the signal of the Super Cells at every LHC bunch-crossing at 12-bit precision and a frequency of 40 MHz. The data will be transmitted to the Back End using a custom serializer and optical converter and 5.12 Gb/s optical links. In order to verify the full functionality of the future Liquid Argon trigger system, a demonstrator set-up has been installed on the ATLAS detector and is operated in parallel to the regular ATLAS data taking during the LHC Run-2 in 2015 and 2016. Noise level and linearity on the energy measurement have been verified to be within our requirements. In addition, we have collected data from 13 TeV proton collisions during the LHC 2015 and 2016 runs, and have observed real pulses from the detector through the demonstrator system. The talk will give an overview of the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeter readout and present the custom developed hardware including their role in real-time data processing and fast data transfer. This contribution will also report on the performance of the newly developed ASICs including their radiation tolerance and on the performance of the prototype boards in the demonstrator system based on various measurements with the 13 TeV collision data. Results of the high-speed link test with the prototypes of the final electronic boards will be also reported.

  19. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  20. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  1. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-08-20

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsicmore » constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over Φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.« less

  2. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  3. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  4. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    Straessner, Arno

    2018-04-16

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  5. Using MaxCompiler for the high level synthesis of trigger algorithms

    NASA Astrophysics Data System (ADS)

    Summers, S.; Rose, A.; Sanders, P.

    2017-02-01

    Firmware for FPGA trigger applications at the CMS experiment is conventionally written using hardware description languages such as Verilog and VHDL. MaxCompiler is an alternative, Java based, tool for developing FPGA applications which uses a higher level of abstraction from the hardware than a hardware description language. An implementation of the jet and energy sum algorithms for the CMS Level-1 calorimeter trigger has been written using MaxCompiler to benchmark against the VHDL implementation in terms of accuracy, latency, resource usage, and code size. A Kalman Filter track fitting algorithm has been developed using MaxCompiler for a proposed CMS Level-1 track trigger for the High-Luminosity LHC upgrade. The design achieves a low resource usage, and has a latency of 187.5 ns per iteration.

  6. Design, status and test of the Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Carosi, R.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Y. I.; Di Falco, S.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Piacentino, G. M.; Pezzullo, G.; Raffaelli, F.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2017-11-01

    The Mu2e experiment at Fermilab searches for the charged-lepton flavor violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. The dynamics of such a process is well modeled by a two-body decay, resulting in a monoenergetic electron with an energy slightly below the muon rest mass (104.967 MeV). The calorimeter of this experiment plays an important role to provide excellent particle identification capabilities and an online trigger filter while aiding the track reconstruction capabilities. The baseline calorimeter configuration consists of two disks each made with ˜ 700 undoped CsI crystals read out by two large area UV-extended Silicon Photomultipliers. These crystals match the requirements for stability of response, high resolution and radiation hardness. In this paper we present the final calorimeter design.

  7. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Strizenec, P.

    2014-09-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid Argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudorapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a parallel plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 88.5 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at a unprecedented center of mass energies between 7 TeV and 8 TeV. During all these stages, the calorimeter and its electronics have been operating with performances very close to the specification ones. After 2019, the instantaneous luminosity will reach 2-3 × 1034 cm-2s-1, well above the luminosity for which the calorimeter was designed. In order to preserve its triggering capabilities, the detector will be upgraded with a new fully digital trigger system with a refined granularity. In 2023, the instantaneous luminosity will ultimately reach 5-7 × 1034 cm-2s-1, requiring a complete replacement of the readout electronics. Moreover, with an increased particle flux, several phenomena (liquid argon boiling, space charge effects...) will affect the performance of the forward calorimeter (FCal). A replacement with a new FCal with smaller LAr gaps or a new calorimeter module are considered. The performance of these new calorimeters is being studied in highest intensity particle beams. This contribution covers all aspects of the first three years of operation. The excellent performance achieved is especially detailed in the context of the discovery of the Higgs boson announced in July 2012. The future plans to preserve this performance until the end of the LHC program are also presented.

  8. Gamma-telescopes Fermi/LAT and GAMMA-400 Trigger Systems Event Recognizing Methods Comparison

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Murchenko, A. E.; Chasovikov, E. N.; Arkhangelskiy, A. I.; Kheymits, M. D.

    Usually instruments for high-energy γ-quanta registration consists of converter (where γ-quanta produced pairs) and calorimeter for particles energy measurements surrounded by anticoincidence shield used to events identification (whether incident particle was charged or neutral). The influence of pair formation by γ-quanta in shield and the backsplash (moved in the opposite direction particles created due high energy γ-rays interact with calorimeter) should be taken into account. It leads to decrease both effective area and registration efficiency at E>10 GeV. In the presented article the event recognizing methods used in Fermi/LAT trigger system is considered in comparison with the ones applied in counting and triggers signals formation system of gamma-telescope GAMMA-400. The GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the new high-apogee space γ-observatory. The GAMMA-400 consist of converter-tracker based on silicon-strip coordinate detectors interleaved with tungsten foils, imaging calorimeter make of 2 layers of double (x, y) silicon strip coordinate detectors interleaved with planes of CsI(Tl) crystals and the electromagnetic calorimeter CC2 consists only of CsI(Tl) crystals. Several plastics detections systems used as anticoincidence shield, for particles energy and moving direction estimations. The main differences of GAMMA-400 constructions from Fermi/LAT one are using the time-of-flight system with base of 50 cm and double layer structure of plastic detectors provides more effective particles direction definition and backsplash rejection. Also two calorimeters in GAMMA-400 composed the total absorbtion spectrometer with total thickness ∼ 25 X0 or ∼1.2 λ0 for vertical incident particles registration and 54 X0 or 2.5 λ0 for laterally incident ones (where λ0 is nuclear interaction length). It provides energy resolution 1-2% for 10 GeV-3.0×103 GeV events while the Fermi/LAT energy resolution does not reach such a value because of its calorimeter thickness is only ∼10 X0 and energy of registered particles is defined by shower profile analysis. Less than 3% photons will be wrongly recognized as electrons or protons in double-layer ACtop taking into account both temporal and amplitude trigger marker analysis methods during onboard processing in the counting and triggers signals formation system of GAMMA-400. The proton rejection factor will be ∼10-5. The Fermi/LAT based on a 4 × 4 array of identical towers each contains a tracker, calorimeter and data acquisition module. Each tracker consists of 18 x-y silicon-strip layers. The calorimeter in each tower made of eight layers in a hodoscopic arrangement for measure the three-dimensional profiles of showers permits corrections for energy leakage and enhances the capability to discriminate hadronic cosmic rays. The each layer consists of 12 CsI(Tl) based bars. The segmented anticoincidence shield covers the array of towers. Unfortunately, several types of biases lead to systematic effects caused high values of relative systematic uncertainties of the exposure, the number of signal events, the induced fractional signal and so on. For example non confirmed announcement of ∼133 GeV line detection and lost sources in different Fermi catalogues (1FGL, 2FGL, 3FGL) - just well seen in 2FGL Cygnus X-3 (J2032.1+4049) does not appear in 3FGL. It allows to conclude sufficient biases in LAT characteristics obtained methods and event recognized algorithms. Now Fermi/LAT operates during ∼ 7 years but effective caveats methods continuously to be proposed. Respectively, continuation of measurements with use of other telescopes is necessary, and realization of GAMMA-400 will allow improving the results.

  9. The CMS High-Level Trigger and Trigger Menus

    NASA Astrophysics Data System (ADS)

    Avetisyan, Aram

    2008-04-01

    The CMS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The online event selection for the CMS experiment is carried out in two distinct stages. At Level-1 the trigger electronics reduces the 40 MHz collision rate to provide up to 100 kHz of interesting events, based on objects found using its calorimeter and muon subsystems. The High Level Trigger (HLT) that runs in the Filter Farm of the CMS experiment is a set of sophisticated software tools that run in a real-time environment to make a further selection and archive few hundred Hz of interesting events. The coherent tuning of the HLT algorithms to accommodate multiple physics channels is a key issue for CMS, one that literally defines the reach of the experiment's physics program. In this presentation we will discuss the strategies and trigger configuration developed for startup physics program of the CMS experiment, up to a luminosity of 10^31 s-1cm-2. Emphasis will be given to the full trigger menus, including physics and calibration triggers.

  10. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milic, A.

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the triggermore » primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above 20 MeV. For the digital components like the ADC, cross-sections for single event effects have been determined. This talk will present R and D results from tests of the radiation tolerant components, the fast data processing electronics and prototypes of the LTDB and LDPS boards. First experience from a Demonstrator setup will be reported, in which about 1/10 of the full Super Cell readout will be equipped with prototype versions of the LTDB and LDPS boards. The Demonstrator will be operated in parallel to the regular ATLAS trigger read-out during the upcoming LHC run. (authors)« less

  11. Design and status of the Mu2e electromagnetic calorimeter

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2015-10-02

    Here, the Mu2e experiment at Fermilab aims at measuring the neutrinoless conversion of a negative muon into an electron and reach a single event sensitivity of 2.5×10 –17 after three years of data taking. The monoenergetic electron produced in the final state, is detected by a high precision tracker and a crystal calorimeter, all embedded in a large superconducting solenoid (SD) surrounded by a cosmic ray veto system. The calorimeter is complementary to the tracker, allowing an independent trigger and powerful particle identification, while seeding the track reconstruction and contributing to remove background tracks mimicking the signal. In order tomore » match these requirements, the calorimeter should have an energy resolution of O(5)% and a time resolution better than 500 ps at 100 MeV. The baseline solution is a calorimeter composed of two disks of BaF 2 crystals read by UV extended, solar blind, Avalanche Photodiode (APDs), which are under development from a JPL, Caltech, RMD consortium. In this paper, the calorimeter design, the R&D; studies carried out so far and the status of engineering are described. A backup alternative setup consisting of a pure CsI crystal matrix read by UV extended Hamamatsu MPPC's is also presented.« less

  12. Tests with beam setup of the TileCal phase-II upgrade electronics

    NASA Astrophysics Data System (ADS)

    Reward Hlaluku, Dingane

    2017-09-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.

  13. The anticoincidence system of the PAMELA satellite experiment: Design of the data acquisition system and performance studies

    NASA Astrophysics Data System (ADS)

    Lunquist, Johan

    PAMELA is a satellite-borne cosmic ray experiment. Its primary scientific objective is to study the antiproton and positron components of the cosmic radiation. This will be done with unprecedented statistics over a wide energy range (~10MeV to ~100GeV). The PAMELA experiment consists of a permanent magnetic spectrometer, an electromagnetic calorimeter, a Time-of-Fight system, a neutron detector and a shower tail catcher. An anticoincidence (AC) system surrounds the spectrometer to detect particles which do not pass cleanly through the acceptance of the spectrometer. PAMELA will be mounted on a Russian Earth-observation satellite, and the launch is scheduled for 2006. The anticoincidence system for PAMELA has been developed by KTH, and consists of plastic scintillator detectors with photomultiplier tube read-out. Extensive testing has been performed during the development phase. Results are presented for environmental tests, tests with cosmic-rays and particle beams. The design of the digital part of the AC electronics has been realised on an FPGA (Field Programmable Gate Array) and a DSP (Digital Signal Processor). It records signals from the 16 AC photomultipliers and from various sensors for over-current and temperature. It also provides functionality for setting the photomultiplier discrimination thresholds, system testing, issuing alarms and communication with the PAMELA main data acquisition system. The design philosophy and functionality needs to be reliable and suitable for use in a space environment. To evaluate the performance of the AC detectors, a test utilizing cosmic-rays has been performed. The primary aim of the test was to calibrate the individual channels to gain knowledge of suitable discriminator levels for flight. A secondary aim was to estimate the AC detector efficiency. A lower limit of (99.89±0.04)% was obtained. An in-orbit simulation study was performed using protons to estimate trigger rates and investigate the AC system performance in a second level trigger. The average orbital trigger rate was estimated to be (8.4±0.6)Hz, consisting of (2.0±0.2)Hz good triggers and (6.4±0.5)Hz background. Inclusion of the AC system in the trigger condition to reduce background (for the purpose of data handling capacity) leads to losses of good triggers due to backscattering from the calorimeter (90% loss for 300GeV electrons and 25% for 100GeV protons). A method, using the calorimeter, for identifying backscattering events was investigated and found to reduce the loss of good events to below 1% (300GeV electrons) and 5% (100GeV protons), while maintaining a background reduction of 70%.

  14. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Moreno, Pablo; ATLAS Tile Calorimeter System

    2016-04-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of 9852 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase II) where the peak luminosity will increase 5× compared to the design luminosity (1034 cm-2s-1) at center of mass energy of 14 TeV. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10.24 Gbps optical links are used to read out all digitized data to the counting room while 4.8 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and de-randomizer memories. Field Programmable Gate Arrays are extensively used for the logic functions off- and on-detector. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS at the end of 2015.

  15. Operation and performance of the LHCb calorimeters

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.

    2018-03-01

    The LHCb calorimeters play a key role in the hardware trigger of the experiment. They also serve the measurement of radiative heavy flavor decays and the identification of electrons. Located at twelve meters from the interaction region, they are composed of a plane of scintillating tiles, a preshower detector, an electromagnetic and a hadronic sampling calorimeters using scintillators as active elements. In these proceedings, technical and operational aspects of these detectors are described. Emphasis is then put on calorimeter reconstruction and calibration. Finally, performance for benchmark physics modes are briefly reported.

  16. Construction and tests of a fine granularity lead-scintillating fibers calorimeter

    NASA Astrophysics Data System (ADS)

    Branchini, P.; Ceradini, F.; Corradi, G.; Di Micco, B.; Passeri, A.

    2009-04-01

    We report the construction and the tests of a small prototype of the lead-scintillating fiber calorimeter of the KLOE experiment, instrumented with multianode photomultipliers to obtain a 16 times finer readout granularity. The prototype is 15 cm wide, 15 radiation lengths deep and is made of 200 layers of fibers 50 cm long. On one side it is read out with an array of 3×5 multianode photomultipliers Hamamatsu type R8900-M16, each segmented with 4×4 anodes, the read out granularity being 240 pixels of 11 × 11 mm2 corresponding to about 64 scintillating fibers each. These are interfaced to the 6 × 6 mm2 pixeled photocathode with truncated pyramid light guides made of Bicron BC-800 plastic to partially transmit the UV light. Each photomultiplier provides also an OR of the 16 last dynodes that is used for trigger. The response of the individual anodes, their relative gain and cross-talk has been measured with the light (440 nm) of a laser illuminating only few fibers on the side opposite to the readout. We finally present the first results of the calorimeter response to cosmic rays in auto-trigger mode.

  17. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    NASA Astrophysics Data System (ADS)

    MATSUSHITA, Takashi; CMS Collaboration

    2017-10-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.

  18. Readout Electronics for BGO Calorimeter of DAMPE: Status during the First Half-year after Launching

    NASA Astrophysics Data System (ADS)

    Ma, Siyuan; Feng, Changqing; Zhang, Deliang; Wang, Qi

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientic satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objective of DAMPE mission is indirect searching for dark matter by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO (Bismuth Germanate Oxide) calorimeter, which is a critical sub-detector of DAMPE payload, was developed for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It is composed of 308 BGO crystal logs, with the size of 2.5cm*2.5cm*60cm for each log to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. Each PMT incorporates a three dynode pick off to achieve a large dynamic range, which results in 616 PMTs and 1848 signal channels. The main function of readout electronics system, which consists of 16 FEE(Front End Electronics) modules, is to precisely measure the charge of PMT signals and providing "hit" signals. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) to generate triggers for the payload. The calibration of the BGO calorimeter is composed of pedestal testing and electronic linear scale, which are executed frequently in the space after launching. The data of the testing is transmitted to ground station in the form of scientific data. The monitor status consists of temperature, current and status words of the FEE, which are measured and recorded every 16 seconds and packed in the engineering data, then transmitted to ground station. The status of the BGO calorimeter can be evaluated by the calibration and monitor status. The preliminary results of the status in the first six month after launching are introduced in this paper.

  19. The New APD Based Readout for the Crystal Barrel Calorimeter

    NASA Astrophysics Data System (ADS)

    Urban, M.; Honisch, Ch; Steinacher, M.; CBELSA/TAPS Collaboration

    2015-02-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds.

  20. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Lobanov, A.

    2018-02-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.

  1. The Mu2e undoped CsI crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2018-02-01

    The Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystals and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.

  2. Status of the Electromagnetic Calorimeter Trigger system at the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lee, I. S.; Unno, Y.; Cheon, B. G.

    2017-09-01

    The Belle II experiment at the SuperKEKB collider in Japan has been under the construction toward a physics run in 2018 with an ultimate target of 40 times higher instantaneous luminosity than the KEKB collider. The main physics motivation is to search for the New Physics from heavy quark/lepton flavor decays. In order to select an event of interest efficiently under much higher luminosity and beam background environment than the KEKB, we have upgraded the Electromagnetic Calorimeter (ECL) hardware trigger system. It would be realized by the improvement of ECL trigger logic based on two main triggers, the total energy and the number of clusters, with an FPGA-based flexible architecture and a high speed serial link for the data transfer. We report the current status of hardware, firmware, and software that has been achieved so far. The overall scheme of the system will be presented as well.

  3. The latency validation of the optical link for the ATLAS Liquid Argon Calorimeter Phase-I trigger upgrade

    NASA Astrophysics Data System (ADS)

    Deng, B.; Xiao, L.; Zhao, X.; Baker, E.; Gong, D.; Guo, D.; He, H.; Hou, S.; Liu, C.; Liu, T.; Sun, Q.; Thomas, J.; Wang, J.; Xiang, A. C.; Yang, D.; Ye, J.; Zhou, W.

    2018-05-01

    Two optical data link data transmission Application Specific Integrated Circuits (ASICs), the baseline and its backup, have been designed for the ATLAS Liquid Argon (LAr) Calorimeter Phase-I trigger upgrade. The latency of each ASIC and that of its corresponding receiver implemented in a back-end Field-Programmable Gate Array (FPGA) are critical specifications. In this paper, we present the latency measurements and simulation of two ASICs. The measurement results indicate that both ASICs achieve their design goals and meet the latency specifications. The consistency between the simulation and measurements validates the ASIC latency characterization.

  4. Design and Status of the Mu2e Crystal Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanov, N.; et al.

    2018-01-08

    The Mu2e experiment at Fermilab searches for the charged-lepton flavour violating (CLFV) conversion of a negative muon into an electron in the field of an aluminum nucleus, with a distinctive signature of a mono-energetic electron of energy slightly below the muon rest mass (104.967 MeV). The Mu2e goal is to improve by four orders of magnitude the search sensitivity with respect to the previous experiments. Any observation of a CLFV signal will be a clear indication of new physics. The Mu2e detector is composed of a tracker, an electro- magnetic calorimeter and an external veto for cosmic rays surrounding themore » solenoid. The calorimeter plays an important role in providing particle identification capabilities, a fast online trigger filter, a seed for track reconstruction while working in vacuum, in the presence of 1 T axial magnetic field and in an harsh radiation environment. The calorimeter requirements are to provide a large acceptance for 100 MeV electrons and reach at these energies: (a) a time resolution better than 0.5 ns; (b) an energy resolution < 10% and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each one made of 674 undoped CsI crystals read by two large area arrays of UV-extended SiPMs. We report here the construction and test of the Module-0 prototype. The Module-0 has been exposed to an electron beam in the energy range around 100 MeV at the Beam Test Facility in Frascati. Preliminary results of timing and energy resolution at normal incidence are shown. A discussion of the technical aspects of the calorimeter engineering is also reported in this paper.« less

  5. A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read out

    NASA Astrophysics Data System (ADS)

    Branchini, P.; Ceradini, F.; Corradi, G.; Di Micco, B.; Passeri, A.

    2009-12-01

    The construction and tests performed on a smal prototype of lead-scintillating fiber calorimeter instrumented with multianode photomultipliers are reported. The prototype is 15 cm wide, 15 radiation lenghts deep and is made of 200 layers of 50 cm long fibers. One side of the calorimeter has been instrumented with an array of 3 × 5 multianode R8900-M16 Hamamatsu photomultipliers, each segmented with a matrix of 4 × 4 anodes. The read-out granularity is 240 pixels 11 × 11 mm 2 reading about 64 fibers each. They are interfaced to the 6 × 6 mm 2 pixelled photocade with truncated pyramid light guides made of BC-800 plastic, UV transparent. Moreover each photomultiplier provides also the OR information of the last 12 dynodes. This information can be useful for trigger purposes. The response of the individual anodes, their relative gain and cross-talk has been measured with a 404 nm picosecond laser illuminating only a few fibers on the opposite side of the read-out. We also present first results of the calorimeter response to cosmic rays and electron beam data collected at BTF facility in Frascati.

  6. The Mu2e undoped CsI crystal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanov, N.; Baranov, V.; Budagov, J.

    We present the Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystalsmore » and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Lastly, although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.« less

  7. The Mu2e undoped CsI crystal calorimeter

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2018-02-22

    We present the Mu2e experiment at Fermilab will search for Charged Lepton Flavor Violating conversion of a muon to an electron in an atomic field. The Mu2e detector is composed of a tracker, an electromagnetic calorimeter and an external system, surrounding the solenoid, to veto cosmic rays. The calorimeter plays an important role to provide: a) excellent particle identification capabilities; b) a fast trigger filter; c) an easier tracker track reconstruction. Two disks, located downstream of the tracker, contain 674 pure CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs. The choice of the crystalsmore » and SiPMs has been finalized after a thorough test campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in Frascati. Lastly, although the readout electronics were not final, results show that the current design is able to meet the timing and energy resolution required by the Mu2e experiment.« less

  8. ATIC Flight Data Processing

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting in December, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. We have developed an Object Oriented data processing package based on ROOT. In this paper, we will describe the data processing scheme used in handling the accumulated 45 GB of flight data. We will also discuss trigger issues by comparing the measured energy-dependent trigger efficiency with its simulation and calibration issues by considering the time-dependence of housekeeping information, etc.

  9. The ATLAS tile calorimeter performance at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, R.

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection andmore » a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)« less

  10. Proceedings of the Eleventh International Conference on Calorimetry in Particle Physics

    NASA Astrophysics Data System (ADS)

    Cecchi, Claudia

    The Pamela silicon tungsten calorimeter / G. Zampa -- Design and development of a dense, fine grained silicon tungsten calorimeter with integrated electronics / D. Strom -- High resolution silicon detector for 1.2-3.1 eV (400-1000 nm) photons / D. Groom -- The KLEM high energy cosmic rays collector for the NUCLEON satellite mission / M. Merkin (contribution not received) -- The electromagnetic calorimeter of the Hera-b experiment / I. Matchikhilian -- The status of the ATLAS tile calorimeter / J. Mendes Saraiva -- Design and mass production of Scintillator Pad Detector (SPD) / Preshower (PS) detector for LHC-b experiment / E. Gushchin -- Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC / O. Grachov -- The CMS hadron calorimeter / D. Karmgard (contribution not received) -- Test beam study of the KOPIO Shashlyk calorimeter prototype / A. Poblaguev -- The Shashlik electro-magnetic calorimeter for the LHCb experiment / S. Barsuk -- Quality of mass produced lead-tungstate crystals / R. Zhu -- Status of the CMS electromagnetic calorimeter / J. Fay -- Scintillation detectors for radiation-hard electromagnetic calorimeters / H. Loehner -- Energy, timing and two-photon invariant mass resolution of a 256-channel PBWO[symbol] calorimeter / M. Ippolitov -- A high performance hybrid electromagnetic calorimeter at Jefferson Lab / A. Gasparian -- CsI(Tl) calorimetry on BESHI / T. Hu (contribution not received) -- The crystal ball and TAPS detectors at the MAMI electron beam facility / D. Watts -- Front-end electronics of the ATLAS tile calorimeter / R. Teuscher -- The ATLAS tilecal detector control system / A. Gomes -- Performance of the liquid argon final calibration board / C. de la Taille -- Overview of the LHCb calorimeter electronics / F. Machefert -- LHCb preshower photodetector and electronics / S. Monteil -- The CMS ECAL readout architecture and the clock and control system / K. Kloukinas -- Test of the CMS-ECAL trigger primitive generation / N. Regnault -- Optical data links for the CMS ECAL / J. Grahl (contribution not received) -- CMS ECAL off-detector electronics / R. Alemany Fernandez -- Performance of a low noise readout ASIC for the W-Si calorimeter physics prototype for the future linear collider / C. de la Taille -- Properties of a sampling calorimeter with warm-liquid ionization chambers / S. Plewnia -- Calorimetry and the DO experiment / R. Zitoun (contribution not received) -- Data quality monitoring for the DØ calorimeter / V. Shary -- Status of the construction of the ATLAS electromagnetic liquid argon calorimeter, overview of beam test performance studies / L. Serin -- Uniformity of response of ATLAS liquid argon EM calorimeter / O. Gaunter -- Status of the ATLAS liquid argon hadronic endcap calorimeter construction / M. Vincter -- Results from particle beam tests of the ATLAS liquid argon endcap calorimeters / M. Lefebvre -- First results of the DREAM project / R. Wigmans -- Electron and muon detection with a dual-readout (DREAM) calorimeter / N. Akchurin -- The neutron zero degree calorimeter for the ALICE experiment / M. Gallio -- The liquid xenon scintillation calorimeter of the MEG experiment: operation of a large prototype / G. Signorelli -- Detection of high energy particles using radio frequency signals / C. Hebert -- Hadronic shower simulation / J.-P. Wellisch -- E.M. and hadronic shower simulation with FLUKA / G. Battistoni -- Simulation of the LHCb electromagnetic calorimeter response with GEANT4 / P. Robbe -- Comparison of beam test results of the combined ATLAS liquid argon endcap calorimeters with GEANT3 and GEANT4 simulations / D. Salihagić -- GEANT4 hadronic physics validation with LHC test-beam data / C. Alexa -- The full simulation of the GLAST LAT high energy gamma ray telescope / F. Longo -- Response of the KLOE electromagnetic calorimeter to low-energy particles / T. Spadaro -- Calorimeter algorithms for DØ; / S. Trincaz-Duvoid -- Identification of low P[symbol] muon with the ATLAS tile calorimeter / G. Usai -- Electron and photon reconstruction with fully simulated events in the CMS experiment / G. Daskalakis -- Expected performance of Jet, [symbol] and [symbol] reconstruction in ATLAS / I. Vivarelli -- LHCb calorimeter from trigger to physics / O. Deschamps -- The calibration strategy of CMS electromagnetic calorimeter / P. Meridiani -- Energy and impact point reconstruction in the CMS ECAL (testbeam results from 2003) / I. B. van Vulpen -- The jet energy scale and resolution in the DO calorimeter / A. Kupco (contribution not received) -- Precision linearity studies of the ATLAS liquid argon EM calorimeter / G. Graziani -- Calibration of the ATLAS tile calorimeter / F. Sarri -- Performance of the CMS ECAL laser monitoring source in the test beam / A. Bornheim -- Energy reconstruction algorithms and their influence on the ATLAS tile calorimeter / E. Fullana -- Study of the biological effectiveness of ionizing radiations for a more realistic evaluation of the radiation quality in hadrontherapy / R. Cherubini (contribution not received) -- New dosimetry technologies for IMRT (Intensity Modulated Radio Therapy) / A. Piermattei -- Photon neutron radiotherapy / G. Giannini (contribution not received) -- Recent developments in molecular imaging / G. Zavattini (contribution not received) -- Performance goals and design considerations for a linear collider calorimeter / F. Sefkow -- Improving the jet reconstruction with the particle flow method; an introduction / J.-C. Brient -- Fine grained SiW ECAL for a linear collider detector / D. Strom (in the silicon session) -- Silicon-tungsten sampling electromagnetic calorimeter for the TeV electron-positron linear collider / J.-C. Brient -- LCCAL: a calorimeter prototype for future linear colliders / S. Miscetti -- Analog vs digital hadron calorimetry at a future electron-positron linear collider / S. Magill -- Toward a scintillator based heal and tail catcher for the LC calorimeter / M. Martin (contribution not received) -- Minical options, description in MC, calibration, plans for test beam prototype / G. Eigen (contribution not received) -- Photodetector options for a scintillator heal / E. Popova (contribution not received) -- Very low background scintillators in DAMA project: results and perspectives / R. Bernabei -- EDELWEISS Ge cryogenics detectors: main performance and physics results / X. Navick (contribution not received) -- Review of massive underground detectors / A. Rubbia -- Review of neutrino telescopes underwater and under ice / A. Capone (contribution not received) -- The fluorescence detector of the Pierre Auger Observatory / R. Caruso -- The EUSO mission for the observation of ultra high energy cosmic rays from space / A. Petrolini -- Performance of a 3D imaging electromagnetic calorimeter for the AMSO2 space experiment / C. Adloff -- Beam test calibration of the balloon borne imaging calorimeter for the CREAM experiment / P. Maestro.

  11. The HPS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon." Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  12. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  13. The HPS electromagnetic calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balossino, I.; Baltzell, N.; Battaglieri, M.

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  14. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  15. Compensatable muon collider calorimeter with manageable backgrounds

    DOEpatents

    Raja, Rajendran

    2015-02-17

    A method and system for reducing background noise in a particle collider, comprises identifying an interaction point among a plurality of particles within a particle collider associated with a detector element, defining a trigger start time for each of the pixels as the time taken for light to travel from the interaction point to the pixel and a trigger stop time as a selected time after the trigger start time, and collecting only detections that occur between the start trigger time and the stop trigger time in order to thereafter compensate the result from the particle collider to reduce unwanted background detection.

  16. CALET Data Processing and On-Orbit Detector Calibration

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoichi

    2016-07-01

    The CALET (CALorimetric Electron Telescope), launched to the International Space Station (ISS) in August 2015 and accumulating scientific data since October 2015, aims at long duration observations of high-energy cosmic rays onboard the ISS. The CALET detector features the very thick calorimeter of 30 radiation-length which consists of imaging and total absorption calorimeters (IMC and TASC respectively). It will directly measure the cosmic-ray electron spectrum in the energy range of 1 GeV-20 TeV with 2% energy resolution. In addition, the instrument has capabilities to measure the spectra of gamma-rays, protons and nuclei well into the TeV range. Precise pointing direction is determined with an attached Advanced Stellar Camera (ASC). To operate the CALET onboard ISS, the CALET Ground Support Equipment (CALET-GSE) and Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda Univ., respectively. Scientific operations of CALET are planned in the WCOC taking into account the orbital variations of geomagnetic rigidity cutoff. Scheduled command sequence is utilized to control CALET observation mode on orbit. A calibration data trigger mode, such as recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, and other dedicated trigger modes are scheduled around the ISS orbit while maintaining the maximum exposure to high-energy electrons. Scientific raw data called CALET Level 0 data are generated from raw telemetry packets in the CALET-GSE on an hourly basis by correcting time-order and by completing the data set using stored data taken during loss of real-time telemetry downlink. Level 0 data are processed to CALET Level 1 data in the WCOC by interpreting all the raw packets and building cosmic-ray event data as well as house keeping data. Level 1 data are then distributed to the collaboration for scientific data analysis. Level 1 data analysis is focused on the detector calibration which consists of timing, arrival direction, and energy of incoming cosmic-ray events. Timing calibration is performed using time-pair data generated from the timing of the pulse-per-second (PPS) signal obtained in the GPS receiver. Arrival direction is calculated from the reconstructed track using the ASC data. Alignment of fibers in the IMC and of the TASC with respect to the IMC need to be calibrated. Energy calibration is the most important calibration to measure the cosmic-ray spectra and is based on the energy deposit of minimum ionizing particles (MIP). By using a special trigger mode for penetrating particles, it is possible to calibrate the response of each detector element. Position and temperature dependence of the MIP signal are also measured and corrected in the calibration. By applying all the necessary calibrations, CALET Level 2 data for physics analysis are produced from the Level 1 data. In this contribution, we will review offline data processing and calibration of CALET flight data.

  17. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  18. Analysis of SOFCAL calibration data

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1993-01-01

    Ionization calorimeters determine the total energy of a particle by absorbing, within the mass of the calorimeter, the entire energy of the particle or a significant (and determinable) fraction of it. The JACEE group has used passive ionization calorimetery, which employs photographic emulsions as the detector medium, to measure the charge composition and energy spectrum of cosmic rays up to, and exceeding, 10(exp 14)eV. The SOFIC approach depends similarly on the use of three-dimensional nuclear-electromagnetic shower theory to relate the ionization deposits obtained during a shower to the energy of the particle causing the shower. Bundles of thousands of scintillating optical fibers are read out using image-intensified CCD's. Such an event may be triggered by a fast shower detector placed under the instrument or if only heavy particles are of interest, from a fast primary Cerention detector placed above the calorimeter. In the first study, fast Hammatsu photomultiplier tubes were purchased and tested for possible application for a triggering purpose. In the second study, some refinements have been made to the theoretical treatment of hadronic interactions in the central collision region. These will be helpful in improving the simulations necessary for observations of high energy cosmic ray nuclei with a SOFIC.

  19. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  20. HGCAL: a High-Granularity Calorimeter for the endcaps of CMS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Magnan, A.-M.

    2017-01-01

    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS experiment has decided to construct a High Granularity Calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both electromagnetic and hadronic compartments. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. The majority of the HGCAL will be based on robust and cost-effective hexagonal silicon sensors with simeq 1 cm2 or 0.5 cm2 hexagonal cell size, with the final five interaction lengths of the hadronic compartment being based on highly segmented plastic scintillator with on-scintillator SiPM readout. We present an overview of the HGCAL project, including the motivation, engineering design, readout/trigger concept and simulated performance.

  1. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    PubMed

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  2. Performance and advantages of a soft-core based parallel architecture for energy peak detection in the calorimeter Level 0 trigger for the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Barbanera, M.; Bizzarri, M.; Bonaiuto, V.; Ceccucci, A.; Checcucci, B.; De Simone, N.; Fantechi, R.; Federici, L.; Fucci, A.; Lupi, M.; Paoluzzi, G.; Papi, A.; Piccini, M.; Ryjov, V.; Salamon, A.; Salina, G.; Sargeni, F.; Venditti, S.

    2017-03-01

    The NA62 experiment at CERN SPS has started its data-taking. Its aim is to measure the branching ratio of the ultra-rare decay K+ → π+ν ν̅ . In this context, rejecting the background is a crucial topic. One of the main background to the measurement is represented by the K+ → π+π0 decay. In the 1-8.5 mrad decay region this background is rejected by the calorimetric trigger processor (Cal-L0). In this work we present the performance of a soft-core based parallel architecture built on FPGAs for the energy peak reconstruction as an alternative to an implementation completely founded on VHDL language.

  3. ATLAS jet trigger update for the LHC run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, A. T.

    The CERN Large Hadron Collider is the biggest and most powerful particle collider ever built. It produces up to 40 million proton-proton collisions per second at unprecedented energies to explore the fundamental laws and properties of Nature. The ATLAS experiment is one of the detectors that analyses and records these collisions. It generates dozens of GB/s of data that has to be reduced before it can be permanently stored, the event selection is made by the ATLAS trigger system, which reduces the data volume by a factor of 105. The trigger system has to be highly configurable in order tomore » adapt to changing running conditions and maximize the physics output whilst keeping the output rate under control. A particularly interesting pattern generated during collisions consists of a collimated spray of particles, known as a hadronic jet. To retain the interesting jets and efficiently reject the overwhelming background, optimal jet energy resolution is needed. Therefore the Jet trigger software requires CPU-intensive reconstruction algorithms. In order to reduce the resources needed for the reconstruction step, a partial detector readout scheme was developed, which effectively suppresses the low activity regions of the calorimeter. In this paper we describe the overall ATLAS trigger software, and the jet trigger in particular, along with the improvements made on the system. We then focus on detailed studies of the algorithm timing and the performance impact of the full and partial calorimeter readout schemes. We conclude with an outlook of the jet trigger plans for the next LHC data-taking period. (authors)« less

  4. Hadron calorimeter (PSD) with new photo-detectors (MPPC) in NA61 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Selyuzhenkov, I.; Svintsov, I.; Taranenko, A.

    2017-01-01

    The Projectile Spectator Detector (PSD) is a segmented hadron calorimeter used in NA61 experiment (CERN) to determine a collision centrality as well as an event plane orientation in nucleus-nucleus collisions. The main goal of the experiment includes studying the onset of de-confinement and searching for the critical point of strongly interacting matter. It is of crucial importance to have a precise characterization of the event class with the PSD for the analysis of event-by-event observables. The PSD has been already used for centrality selection on trigger level in measurements of Be+Be and Ar+Sc reactions at beam energies 13 - 158 AGeV and Pb+Pb reaction at beam energy 30 AGeV. In 2016, the central modules of PSD have been equipped with new Hamamatsu MPPC silicon photo-detectors in order to extend dynamic range for studying Pb+Pb reaction at the full energy range 13 - 158 AGeV. Results of the PSD response on proton and lead beams are presented.

  5. Front-end electronics for PWO-based PHOS calorimeter of ALICE

    NASA Astrophysics Data System (ADS)

    Muller, Hans; Budnikov, Dmitry; Ippolitov, Mikhail; Li, Qingxia; Manko, Vladislav; Pimenta, Rui; Rohrich, Dieter; Sibiryak, Iouri; Skaali, Bernhard; Vinogradov, Alexandre

    2006-11-01

    The electromagnetic Photon Spectrometer (PHOS) of ALICE consists of five modules with 56×64 PWO crystals, operated at -25 °C. Glued to each crystal are APD diodes which amplify a lightyield of 4.4 photoelectrons/MeV, followed by charge-sensitive pre-amplifiers with a charge conversion gain of ca. 1 V/pC. We describe our new 32-channel shaper/digitizer and readout electronics for gain-programmable photodiodes. These Front-End Electronics (FEE) cards are installed below the crystals in an isolated warm volume in geometrical correspondence to 2×16 crystal rows per card. With a total detector capacitance of 100 pF and a noise level of 3 MeV, the FEEs cover a 14 bit dynamic range from 5 MeV to 80 GeV. The low noise level is achieved by operating the APDs and preamplifiers at low temperature and by applying a relatively long shaping time of 1 μs. The offline timing resolution, obtained via a Gamma-2 fit is less than 2 ns. The second-order, dual-gain shapers produce semi-Gaussian output for 10 bit ADCs with embedded multi-event buffers. A Readout Control Unit (RCU) masters data readout with address-mapped access to the event-buffers and controls registers via a custom bus which interconnects up to 14 FEE cards. Programmable bias voltage controllers on the FEE cards allow for very precise gain adjustment of each individual APD. Being co-designed with the TRU trigger cards, each FEE card generates eight fast signal sums (2×2 crystals) as input to the TRU. FPGA-based algorithms generate level-0 and level-1 trigger decisions at 40 MHz and allow PHOS also to operate in self-triggered mode. Inside each PHOS module there are 112 FEE and 8 TRU cards which dissipate ca. 1 kW heat which is extracted via a water cooling system.

  6. ATIC Experiment: Preliminary Results from the Flight in 2002

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Cox, M.; Ellison, S. B.; Fazely, A. R.; Ganel, O.

    2003-01-01

    Abstract The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a Silicon matrix for charge measurement, a flared graphite target to induce nuclear interactions, scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter to measure the energy of incident particles. In this paper, we discuss the second flight, which lasted 20 days, starting on 12/29/02. Preliminary results from the on-going analysis of the data including the proton and helium spectra are reported.

  7. The direct determination of dose-to-water using a water calorimeter.

    PubMed

    Schulz, R J; Wuu, C S; Weinhous, M S

    1987-01-01

    A flexible, temperature-regulated, water calorimeter has been constructed which consists of three nested cylinders. The innermost "core" is a 10 X 10 cm right cylinder made of glass, the contents of which are isolated from the environment. It has two Teflon-washered glass valves for filling, and two thermistors are supported at the center by glass capillary tubes. Surrounding the core is a "jacket" that provides approximately 2 cm of air insulation between the core and the "shield." The shield surrounds the jacket with a 2.5-cm layer of temperature-regulated water flowing at 51/min. The core is filled with highly purified water the gas content of which is established prior to filling. Convection currents, which may be induced by dose gradients or thermistor power dissipation, are eliminated by operating the calorimeter at 4 degrees C. Depending upon the power level of the thermistors, 15-200 microW, and the insulation provided by the glass capillary tubing, the temperature of the thermistors is higher than that of the surrounding water. To minimize potential errors caused by differences between calibration curves obtained at finite power levels, the zero-power-level calibration curve obtained by extrapolation is employed. Also the calorimeter response is corrected for the change in power level, and therefore thermistor temperature, that follows the resistance change caused by irradiation. The response of the calorimeter to 4-MV x rays has been compared to that of an ionization chamber irradiated in an identical geometry.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter

    NASA Astrophysics Data System (ADS)

    Iida, Hitoshi; Kinoshita, Moto; Amemiya, Kuniaki

    2018-03-01

    This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.

  9. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    NASA Astrophysics Data System (ADS)

    Simard, Olivier; ATLAS Liquid Argon Calorimeter Group

    2015-02-01

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb-1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis.

  10. Advanced Thin Ionization Calorimeter (ATIC) Update

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.; hide

    2002-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.

  11. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  12. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-12-08

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  13. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. Themore » PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon Vertex detector (FVTX), the NCC will make PHENIX a large acceptance spectrometer, capable of detecting photons, electrons, muons, and hadrons. Our prime motivation is to provide precision measurements of direct photons, {pi}{sup 0}s and dielectrons in A+A, p(d)+A, and polarized p+p collisions. The upgrade will provide access to physics observables that are not currently accessible to PHENIX or that are now available only indirectly with very limited accuracy.« less

  14. The Mini-Calorimeter on-board AGILE: The first year in space

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.; Trois, A.

    2009-04-01

    AGILE, the Italian space mission dedicated to gamma-ray and hard-X astrophysics, was successfully launched on 23rd April 2007 and is currently fully operative. The Mini-Calorimeter (MCAL) on-board the AGILE satellite is a scintillation detector made of 20 kg of segmented CsI(Tl) scintillator with photodiode readout with a total geometrical area of 1400 cm2. MCAL can work both as a slave of the AGILE Silicon tracker and as an independent detector for gamma-ray bursts (GRB) detection in the 300 keV - 100 MeV energy range. Despite its limited thickness, due to weight constraints, MCAL has proven to successfully self-trigger GRBs at MeV energies providing photon-by-photon data with less than 2 μs time resolution and almost all-sky detection capabilities. The instrument design and characteristics, as well as the in-flight performance after one year of operation in space and the scientific results obtained so far are reviewed and discussed.

  15. Launch of the space experiment PAMELA

    NASA Astrophysics Data System (ADS)

    Casolino, M.; Picozza, P.; Altamura, F.; Basili, A.; De Simone, N.; Di Felice, V.; De Pascale, M. P.; Marcelli, L.; Minori, M.; Nagni, M.; Sparvoli, R.; Galper, A. M.; Mikhailov, V. V.; Runtso, M. F.; Voronov, S. A.; Yurkin, Y. T.; Zverev, V. G.; Castellini, G.; Adriani, O.; Bonechi, L.; Bongi, M.; Taddei, E.; Vannuccini, E.; Fedele, D.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Ambriola, M.; Cafagna, F.; De Marzo, C.; Barbarino, G. C.; Campana, D.; De Rosa, G.; Osteria, G.; Russo, S.; Bazilevskaja, G. A.; Kvashnin, A. N.; Maksumov, O.; Misin, S.; Stozhkov, Yu. I.; Bogomolov, E. A.; Krutkov, S. Yu.; Nikonov, N. N.; Bonvicini, V.; Boezio, M.; Lundquist, J.; Mocchiutti, E.; Vacchi, A.; Zampa, G.; Zampa, N.; Bongiorno, L.; Ricci, M.; Carlson, P.; Hofverberg, P.; Lund, J.; Orsi, S.; Pearce, M.; Menn, W.; Simon, M.

    2008-08-01

    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10 -8. The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June 15th, 2006 in a 350 × 600 km orbit with an inclination of 70°. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, time-of-flight, and rigidity information. Lepton/hadron identification is performed by a silicon-tungsten calorimeter and a neutron detector placed at the bottom of the device. An anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the calorimeter, the neutron detector, and a shower tail catcher are capable of an independent measure of the lepton component up to 2 TeV. In this work we describe the experiment, its scientific objectives, and the performance in the first months after launch.

  16. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGES

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; ...

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  17. Measurement of electrons from semileptonic heavy-flavor hadron decays in p p collisions at s = 2.76 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2015-01-07

    We measured the p T-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons at midrapidity in proton-proton collisions and at √s=2.76 TeV in the transverse momentum range 0.5T<12 GeV/c with the ALICE detector at the LHC. Our analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.

  18. The NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Krivda, M.; NA62 Collaboration

    2013-08-01

    The main aim of the NA62 experiment (NA62 Technical Design Report, [1]) is to study ultra-rare Kaon decays. In order to select rare events over the overwhelming background, central systems with high-performance, high bandwidth, flexibility and configurability are necessary, that minimize dead time while maximizing data collection reliability. The NA62 experiment consists of 12 sub-detector systems and several trigger and control systems, for a total channel count of less than 100,000. The GigaTracKer (GTK) has the largest number of channels (54,000), and the Liquid Krypton (LKr) calorimeter shares with it the largest raw data rate (19 GB/s). The NA62 trigger system works with 3 trigger levels. The first trigger level is based on a hardware central trigger unit, so-called L0 Trigger Processor (L0TP), and Local Trigger Units (LTU), which are all located in the experimental cavern. Other two trigger levels are based on software, and done with a computer farm located on surface. The L0TP receives information from triggering sub-detectors asynchronously via Ethernet; it processes the information, and then transmits a final trigger decision synchronously to each sub-detector through the Trigger and Timing Control (TTC) system. The interface between L0TP and the TTC system, which is used for trigger and clock distribution, is provided by the Local Trigger Unit board (LTU). The LTU can work in two modes: global and stand-alone. In the global mode, the LTU provides an interface between L0TP and TTC system. In the stand-alone mode, the LTU can fully emulate L0TP and so provides an independent way for each sub-detector for testing or calibration purposes. In addition to the emulation functionality, a further functionality is implemented that allows to synchronize the clock of the LTU with the L0TP and the TTC system. For testing and debugging purposes, a Snap Shot Memory (SSM) interface is implemented, that can work both in an input or an output mode. The trigger rates will be permanently monitored by reading counters at regular intervals. This paper describes the overall NA62 trigger system focusing on the setup for the dry and technical runs in 2012.

  19. Use of FPGA embedded processors for fast cluster reconstruction in the NA62 liquid krypton electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Badoni, D.; Bizzarri, M.; Bonaiuto, V.; Checcucci, B.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Papi, A.; Piccini, M.; Salamon, A.; Salina, G.; Santovetti, E.; Sargeni, F.; Venditti, S.

    2014-01-01

    The goal of the NA62 experiment at the CERN SPS is the measurement of the Branching Ratio of the very rare kaon decay K+→π+ ν bar nu with a 10% accuracy by collecting 100 events in two years of data taking. An efficient photon veto system is needed to reject the K+→π+ π0 background and a liquid krypton electromagnetic calorimeter will be used for this purpose in the 1-10 mrad angular region. The L0 trigger system for the calorimeter consists of a peak reconstruction algorithm implemented on FPGA by using a mixed parallel architecture based on soft core Altera NIOS II embedded processors together with custom VHDL modules. This solution allows an efficient and flexible reconstruction of the energy-deposition peak. The system will be totally composed of 36 TEL62 boards, 108 mezzanine cards and 215 high-performance FPGAs. We describe the design, current status and the results of the first performance tests.

  20. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    NASA Astrophysics Data System (ADS)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  1. The performance of the DELPHI hadron calorimeter at LEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajinenko, I.; Beloous, K.; Chudoba, J.

    1996-06-01

    The DELPHI Hadron Calorimeter was conceived more than ten years ago, as an instrument to measure the energy of hadrons and hadronic jets from e{sup +}e{sup {minus}} collisions at the CERN collider LEP. In addition it was expected to provide a certain degree of discrimination between pions and muons. The detector is a rather simple and relatively inexpensive device consisting of around 20,000 limited streamer plastic tubes, with inductive pad read-out, embedded in the iron yoke of the 1.2 T DELPHI magnet. Its depth is at minimum 6.6 nuclear interaction lengths. The electronics necessary for the pad readout was designedmore » to have an adequate performance for a reasonable cost. This detector has proved over six years of operation to have an entirely satisfactory performance and great reliability; for example less than 1% of the streamer tubes have failed and electronic problems remain at the per mil level. During the past two years an improvement program has been under way. It has been found possible to use the streamer tubes as strips, hence giving better granularity and particle tracking, by reading out the cathode of individual tubes. The constraints on this were considerable because of the inaccessibility of the detectors in the magnet yoke. However, a cheap and feasible solution has been found. The cathode readout leads to an improved energy resolution, better {mu} identification, a better {pi}/{mu} separation and to possibilities of neutral particle separation. The simultaneous anode read-out of several planes of the endcaps of the detector will provide a fast trigger in the forward/backward direction which is an important improvement for LEP200. On the barrel the system will provide a cosmic trigger which is very useful for calibration as counting rates at LEP200 will be very low.« less

  2. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Francis, K.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Göttlicher, P.; Günter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Calice Collaboration

    2011-10-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1×10-5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  3. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  4. JTAG-based remote configuration of FPGAs over optical fibers

    DOE PAGES

    Deng, B.; Xu, H.; Liu, C.; ...

    2015-01-28

    In this study, a remote FPGA-configuration method based on JTAG extension over optical fibers is presented. The method takes advantage of commercial components and ready-to-use software such as iMPACT and does not require any hardware or software development. The method combines the advantages of the slow remote JTAG configuration and the fast local flash memory configuration. The method has been verified successfully and used in the Demonstrator of Liquid-Argon Trigger Digitization Board (LTDB) for the ATLAS liquid argon calorimeter Phase-I trigger upgrade. All components on the FPGA side are verified to meet the radiation tolerance requirements.

  5. Timing and tracking for the Crystal Barrel detector

    NASA Astrophysics Data System (ADS)

    Beck, Reinhard; Brinkmann, Kai; Novotny, Rainer

    2017-01-01

    The aim of the project D.3 is the upgrade of several detector components used in the CBELSA/TAPS experiment at ELSA. The readout of the Crystal Barrel Calorimeter will be extended by a timing branch in order to gain trigger capability for the detector, which will allow to measure completely neutral final states in photoproduction reactions (see projects A.1 and C.5). Additionally, the readout of the inner crystals of the TAPS detector, which covers the forward opening of the Crystal Barrel Calorimeter, will be modified to be capable of high event rates due to the intensity upgrade of ELSA. Furthermore, a full-scale prototype Time Projection Chamber (TPC) has been built to be used as a new central tracker for the CBELSA/TAPS experiment at ELSA and the FOPI experiment at GSI.

  6. SPD very front end electronics

    NASA Astrophysics Data System (ADS)

    Luengo, S.; Gascón, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasís, X.

    2006-11-01

    The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for signal-tail subtraction. Finally, a LVDS serializer sends the information to the first level trigger system.

  7. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-10-23

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29more » $$+0.05\\atop{-0.04}$$) % in the barrel and (0.54$$+0.06\\atop{-0.04}$$)% in the endcaps. Lastly, the same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 ± 0.07 mm/μs at 88.5 K and 1 kV/mm.« less

  8. Barrel calorimeter of the CMD-3 detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% formore » photons with energy of 1 GeV.« less

  9. Antiproton Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greene, Senta Victoria

    The E814 collaboration has made a systematic study of antiproton production in collisions of ^ {28}Si ions at 14.6 GeV per nucleon with targets of Pb, Cu, and Al. This study was motivated by the expectation that antiprotons will be a useful probe of the system produced in relativistic heavy ion collisions. The large annihilation cross section for antiprotons makes the antiproton survival probability sensitive to the baryon density of the system in which they are created. It has also been suggested that a transition to the quark-gluon plasma phase may produce an enhancement of antibaryon production. The E814 spectrometer consists of three tracking chambers for momentum measurement, a scintillator hodoscope to measure charge and time of flight, and a sampling calorimeter. The spectrometer accepts all particles produced within a rectangular aperture centered on the beam axis, with delta theta_{x}=37.6mr and deltatheta_{y}=24.1mr. A trigger based on the flight time of particles through the spectrometer enhances the selection of events which produce negatively charged particles having a rapidity within 0.5 units of the center of mass rapidity. Measurements of the antiproton yield per interaction and the invariant cross section for production at zero degrees are presented and discussed. The time-of-flight trigger allows for an unbiased measurement of the probability to produce antiprotons as a function of the impact parameter of the collision. Several measures of collision centrality are used. The energy produced transverse to the beam direction is measured with the target calorimeter, an array of NaI crystals surrounding the target assembly with a pseudorapidity coverage of -0.5

  10. A flexible FPGA based QDC and TDC for the HADES and the CBM calorimeters

    NASA Astrophysics Data System (ADS)

    Rost, A.; Galatyuk, T.; Koenig, W.; Michel, J.; Pietraszko, J.; Skott, P.; Traxler, M.

    2017-02-01

    A Charge-to-Digital-Converter (QDC) and Time-to-Digital-Converter (TDC) based on a commercial FPGA (Field Programmable Gate Array) was developed to read out PMT signals of the planned HADES electromagnetic calorimeter (ECAL) at GSI Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt, Germany). The main idea is to convert the charge measurement of a detector signal into a time measurement, where the charge is encoded in the width of a digital pulse, while the arrival time information is encoded in the leading edge time of the pulse. The PaDiWa-AMPS prototype front-end board for the TRB3 (General Purpose Trigger and Readout Board—version 3) which implements this conversion method was developed and qualified. The already well established TRB3 platform provides the needed precise time measurements and serves as a data acquisition system. We present the read-out concept and the performance of the prototype boards in laboratory and also under beam conditions. First steps have been completed in order to adapt this concept to SiPM signals of the hadron calorimeter in the CBM experiment at the planned FAIR facility (Darmstadt).

  11. LN2-free Operation of the MEG Liquid Xenon Calorimeter by using a High-power Pulse Tube Cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruyama, T.; Kasami, K.; Nishiguchi, H.

    2006-04-27

    A high-power coaxial pulse tube cryocooler, originally developed in KEK and technology-transferred to Iwatani Industrial Gases Corp (IIGC), has been installed in a large liquid xenon calorimeter to evaluate liquid nitrogen-free (LN2-free) operation of the rare {mu}-particle decay experiment (MEG). Features of this pulse tube cryocooler include the cold-end heat exchanger, designed with sufficient surface area to ensure high-power cooling, and a cylindrical regenerator placed inside the pulse tube giving compact design and ease of fabrication. This production-level cryocooler provides a cooling power of {approx}200 W at 165 K, using a 6 kW Gifford-McMahon (GM)-type compressor. The paper describes themore » detailed configuration of the cryocooler, and the results of the continuous LN2-free operation of the large prototype liquid xenon calorimeter, which ran for more than 40 days without problems.« less

  12. The calorimeter of the Mu2e experiment at Fermilab

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2017-01-23

    Here, the Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: amore » straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10 -4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.« less

  13. Down to Earth Solar Energy Measurement

    ERIC Educational Resources Information Center

    Oppegard, Milo

    1975-01-01

    Describes the construction of a calorimeter to be used in an experiment which consists of measuring the rate at which ground level solar radiation raises the temperature of the metal in the calorimeter. (GS)

  14. The Energy Spectra of Proton and Helium Measured from the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Seo, E. S.; Adams, J. H.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to investigate the composition and energy spectra of cosmic rays at the highest energies currently accessible from direct measurements, the region up to 100 TeV. The instrument consists of a silicon matrix for charge measurement, a graphite target (0.75 nuclear interaction length) to induce hadronic fragmentation, 3 scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter (18 radiation lengths) to measure the energy of incident particles. ATIC had two successful Long Duration Balloon (LDB) flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We present the energy spectra of proton and helium extracted from the ATIC flights, over the energy range from 100 GeV to 100 TeV, and compare them with the results from other experiments at both the lower and higher energy ends.

  15. Measurements of underlying-event properties using neutral and charged particles in pp collisions at $$\\sqrt{s}=900$$ GeV and $$\\sqrt{s}=7$$ TeV with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-05-10

    We present first measurements of charged and neutral particle-flow correlations in pp collisions using the ATLAS calorimeters. Data were collected in 2009 and 2010 at centre-of-mass energies of 900 GeV and 7 TeV. Events were selected using a minimum-bias trigger which required a charged particle in scintillation counters on either side of the interaction point. Particle flows, sensitive to the underlying event, are measured using clusters of energy in the ATLAS calorimeters, taking advantage of their fine granularity. No Monte Carlo generator used in this analysis can accurately describe the measurements. The results are independent of those based on chargedmore » particles measured by the ATLAS tracking systems and can be used to constrain the parameters of Monte Carlo generators.« less

  16. Design of the Readout Electronics for the BGO Calorimeter of DAMPE Mission

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Zhang, Deliang; Zhang, Junbin; Gao, Shanshan; Yang, Di; Zhang, Yunlong; Zhang, Zhiyong; Liu, Shubin; An, Qi

    2015-12-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite being developed in China, aimed at cosmic ray study, gamma ray astronomy, and searching for the clue of dark matter particles in the near future. The BGO (Bismuth Germanate Oxide) Calorimeter, which consists of 616 PMTs (photomultiplier tubes) and 1848 dynode signals, is a crucial part of the DAMPE payload for measuring the energy of cosmic ray particles, distinguishing interesting particles from background, and providing trigger information. An electronics system, which consists of 16 FEE (Front End Electronics) modules with a total power consumption of about 26 W, has been developed. Its main functions are based on the low power, 32-channel VA160 and VATA160 ASICs (Application Specific Integrated Circuits) for precisely measuring the charge of PMT signals and providing“hit”signals as well. To assure the long-term reliability in harsh space environment, a series of critical issues such as the radiation hardness, thermal design, components and board level quality control, etc., are taken into consideration. Test result showed that the system level ENC (equivalent noise charge) for each channel is about 10 fC in RMS (root mean square), and the timing uncertainty of the hit signals is about 300 ns, both of which satisfy the physics requirements of the detector. Experiments with 60Co radioactive source proved that 20 krad(Si) TID (Total Ionizing Dose) level is achieved, while the heavy ion beam and laser beam tests indicated that its SEL (Single Event Latch-up) and SEU (Single Event Upset) performance in orbit will be acceptable by taking some hardness measures. All the readout modules successfully passed the board-level screening, the sub-system level and finally the satellite system level environmental tests, and behave well in the beam test at CERN (European Organisation for Nuclear Research).

  17. Calibration of the CMS hadron calorimeter in Run 2

    NASA Astrophysics Data System (ADS)

    Chadeeva, M.; Lychkovskaya, N.

    2018-03-01

    Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

  18. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting.

    PubMed

    Oshima, Taku; Ragusa, Marco; Graf, Séverine; Dupertuis, Yves Marc; Heidegger, Claudia-Paula; Pichard, Claude

    2017-12-01

    The international ICALIC initiative aims at developing a new indirect calorimeter according to the needs of the clinicians and researchers in the field of clinical nutrition and metabolism. The project initially focuses on validating the calorimeter for use in mechanically ventilated acutely ill adult patient. However, standard methods to validate the accuracy of calorimeters have not yet been established. This paper describes the procedures for the in-vitro tests to validate the accuracy of the new indirect calorimeter, and defines the ranges for the parameters to be evaluated in each test to optimize the validation for clinical and research calorimetry measurements. Two in-vitro tests have been defined to validate the accuracy of the gas analyzers and the overall function of the new calorimeter. 1) Gas composition analysis allows validating the accuracy of O 2 and CO 2 analyzers. Reference gas of known O 2 (or CO 2 ) concentration is diluted by pure nitrogen gas to achieve predefined O 2 (or CO 2 ) concentration, to be measured by the indirect calorimeter. O 2 and CO 2 concentrations to be tested were determined according to their expected ranges of concentrations during calorimetry measurements. 2) Gas exchange simulator analysis validates O 2 consumption (VO 2 ) and CO 2 production (VCO 2 ) measurements. CO 2 gas injection into artificial breath gas provided by the mechanical ventilator simulates VCO 2 . Resulting dilution of O 2 concentration in the expiratory air is analyzed by the calorimeter as VO 2 . CO 2 gas of identical concentration to the fraction of inspired O 2 (FiO 2 ) is used to simulate identical VO 2 and VCO 2 . Indirect calorimetry results from publications were analyzed to determine the VO 2 and VCO 2 values to be tested for the validation. O 2 concentration in respiratory air is highest at inspiration, and can decrease to 15% during expiration. CO 2 concentration can be as high as 5% in expired air. To validate analyzers for measurements of FiO 2 up to 70%, ranges of O 2 and CO 2 concentrations to be tested were defined as 15-70% and 0.5-5.0%, respectively. The mean VO 2 in 426 adult mechanically ventilated patients was 270 ml/min, with 2 standard deviation (SD) ranges of 150-391 ml/min. Thus, VO 2 and VCO 2 to be simulated for the validation were defined as 150, 250, and 400 ml/min. The procedures for the in-vitro tests of the new indirect calorimeter and the ranges for the parameters to be evaluated in each test have been defined to optimize the validation of accuracy for clinical and research indirect calorimetry measurements. The combined methods will be used to validate the accuracy of the new indirect calorimeter developed by the ICALIC initiative, and should become the standard method to validate the accuracy of any future indirect calorimeters. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  19. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    PubMed

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  20. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst

    PubMed Central

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-01-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules. PMID:28508046

  1. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb^{-1} of proton-proton collision data at √{s}=7 TeV from 2010 and 0.1 nb^{-1} of data at √{s}=8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezzullo, Gianantonio

    The Mu2e experiment will search for Charged Lepton Flavor Violation (CLFV) looking at the conversion of a muon into an electron in the field of an aluminum nucleus. Aboutmore » $$7\\cdot 10^{17}$$ muons, provided by a dedicated muon beam line in construction at the Fermi National Accelarator Laboratory (Fermilab), will be stopped in 3 years in the Aluminum target. The corresponding single event sensitivity will be $$2.5\\cdot 10^{-17}$$. The Standard Model of particle physics, even extendend to include the finite neutrino masses, predicts the ratio R μe between muon conversions and muon nuclear captures to be $$\\sim 10^{- 52}$$. Several extensions of the Standard Model predict R μe to be in the range of $$10^{-14} - 10^{-18}$$. % The current best experimental limit, set by the SINDRUM II experiment is $$7 \\cdot 10^{-13}$$ @ $$90\\%$$ CL. The Mu2e experiment plans to improve this experimental limit by four order of magnitude to test many of the possible extensions of the Standard Model. To reach this ambitious goal, the Mu2e experiment is expected to use an intense pulsed muon beam, and rely on a detector system composed of a straw tube tracker and a calorimeter made of pure CsI crystals. The calorimeter plays a central role in the Mu2e measurement, providing particle identification capabilities that are necessary for rejecting two of the most dangerous background sources that can mimic the μ⁻N → e⁻N conversion electron: cosmic muons and $$\\bar{p}$$ induced background. The calorimeter information allows also to improve the tracking performance. Thanks to a calorimeter-seeded track finder algorithm, it is possible to increase the track reconstruction efficiency, and make it more robust with respect to the occupancy level. Expected performances of the calorimeter have been studied in a beam test at the Beam Test Facility in Frascati (Rome, Italy). A reduced scale calorimeter prototype has been exposed to an electron beam, with energy varying from 80 to 140 MeV, for measuring the timing resolution and validate the Monte Carlo prediction. A timing resolution $$\\sigma_{\\rm t}<200$$ ps @ 100 MeV has been obtained. Combination of the background rejection performance, and the improvements in the track reconstruction, have then been used in the calculation of the expected Mu2e sensitivity.« less

  3. New Physics requirements and technological challenges to be confronted by calorimeters in particle physics

    NASA Astrophysics Data System (ADS)

    Cavallari, Francesca

    2015-09-01

    The seminar presents an introduction to calorimetry in particle physics. Initially the purpose of electromagnetic and hadronic calorimeters in particle physics is shown. Then the paper focusses on electromagnetic calorimeters and it describes the microscopic phenomena that drive the formation of electromagnetic showers. Homogeneous and sampling calorimeters are presented and the energy resolution of both is analyzed. A few examples of past and present electromagnetic calorimeters at particle colliders are presented, with particular attention to the ones employed in the Atlas and CMS experiments at the LHC, their design constraints, challenges and adopted choices. Both these calorimeters were designed to operate for a minimum of ten years at the LHC, with an instantaneous luminosity of 1· 1034/cm2/s and for an integrated luminosity of 500/fb. From 2023 a new program will start: the high luminosity LHC (HL-LHC), which is expected to provide an instantaneous luminosity of around 5· 1034/cm2/s and integrate a total luminosity of around 3000/fb in ten years of data taking. The evolution of the CMS and Atlas calorimeters is assessed and needed upgrades are presented.

  4. Construction and performance of the barrel electromagnetic calorimeter for the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Beattie, T. D.; Foda, A. M.; Henschel, C. L.; Katsaganis, S.; Krueger, S. T.; Lolos, G. J.; Papandreou, Z.; Plummer, E. L.; Semenova, I. A.; Semenov, A. Yu.; Barbosa, F.; Chudakov, E.; Dalton, M. M.; Lawrence, D.; Qiang, Y.; Sandoval, N.; Smith, E. S.; Stanislav, C.; Stevens, J. R.; Taylor, S.; Whitlatch, T.; Zihlmann, B.; Levine, W.; McGinley, W.; Meyer, C. A.; Staib, M. J.; Anassontzis, E.; Kourkoumelis, C.; Vasileiadis, G.; Voulgaris, G.; Brooks, W. K.; Hakobyan, H.; Kuleshov, S.; Rojas, R.; Romero, C.; Soto, O.; Toro, A.; Vega, I.; Shepherd, M. R.

    2018-07-01

    The barrel calorimeter is part of the new spectrometer installed in Hall D at Jefferson Lab for the GlueX experiment. The calorimeter was installed in 2013, commissioned in 2014 and has been operating routinely since early 2015. The detector configuration, associated Monte Carlo simulations, calibration and operational performance are described herein. The calorimeter records the time and energy deposited by charged and neutral particles created by a multi-GeV photon beam. It is constructed as a lead and scintillating-fiber calorimeter and read out with 3840 large-area silicon photomultiplier arrays. Particles impinge on the detector over a wide range of angles, from normal incidence at 90 degrees down to 11.5 degrees, which defines a geometry that is fairly unique among calorimeters. The response of the calorimeter has been measured during a running experiment and performs as expected for electromagnetic showers below 2.5 GeV. We characterize the performance of the BCAL using the energy resolution integrated over typical angular distributions for π0 and η production of σE / E = 5 . 2% /√{ E(GeV) } ⊕ 3 . 6% and a timing resolution of σ = 150 ps at 1 GeV.

  5. Development of a Broad High-Energy Gamma-Ray Telescope using Silicon Strip Detectors

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.

    1998-01-01

    The research effort has led to the development and demonstration of technology to enable the design and construction of a next-generation high-energy gamma-ray telescope that operates in the pair-production regime (E greater than 10 MeV). In particular, the technology approach developed is based on silicon-strip detector technology. A complete instrument concept based on this technology for the pair-conversion tracker and the use of CsI(T1) crystals for the calorimeter is now the baseline instrument concept for the Gamma-ray Large Area Space Telescope (GLAST) mission. GLAST is NASA's proposed high-energy gamma-ray mission designed to operate in the energy range from 10 MeV to approximately 300 GeV. GLAST, with nearly 100 times the sensitivity of EGRET, operates through pair conversion of gamma-rays and measurement of the direction and energy of the resulting e (+) - e (-) shower. The baseline design, developed with support from NASA includes a charged particle anticoincidence shield, a tracker/converter made of thin sheets of high-Z material interspersed with Si strip detectors, a CsI calorimeter and a programmable data trigger and acquisition system. The telescope is assembled as an array of modules or towers. Each tower contains elements of the tracker, calorimeter, and anticoincidence system. As originally proposed, the telescope design had 49 modules. In the more optimized design that emerged at the end of the grant period the individual modules are larger and the total number in the GLAST array is 25. Also the calorimeter design was advanced substantially to the point that it has a self-contained imaging capability, albeit much cruder than the tracker.

  6. Search for decays of stopped long-lived particles produced in proton–proton collisions at $$\\sqrt{s}= 8\\,\\text {TeV} $$

    DOE PAGES

    Khachatryan, Vardan

    2015-04-11

    A search has been performed for long-lived particles that could have come to rest within the CMS detector, using the time intervals between LHC beam crossings. The existence of such particles could be deduced from observation of their decays via energy deposits in the CMS calorimeter appearing at times that are well separated from any proton–proton collisions. Using a data set corresponding to an integrated luminosity of 18.6 fb -1 of 8 TeV proton–proton collisions, and a search interval corresponding to 281 h of trigger livetime, 10 events are observed, with a background prediction of 13.2 +3.6 -2.5 events.more » Limits are presented at 95 % confidence level on gluino and top squark production, for over 13 orders of magnitude in the mean proper lifetime of the stopped particle. Assuming a cloud model of R-hadron interactions, a gluino with mass ≤1000 GeV and a top squark with mass ≤525 GeV are excluded, for lifetimes between 1 µs and 1000 s. Finally, these results are the most stringent constraints on stopped particles to date.« less

  7. Large-area hexagonal silicon detectors for the CMS High Granularity Calorimeter

    NASA Astrophysics Data System (ADS)

    Pree, E.

    2018-02-01

    During the so-called Phase-2 Upgrade, the CMS experiment at CERN will undergo significant improvements to cope with the 10-fold luminosity increase of the High Luminosity LHC (HL-LHC) era. Especially the forward calorimetry will suffer from very high radiation levels and intensified pileup in the detectors. For this reason, the CMS collaboration is designing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (CE-E) and hadronic (CE-H) compartments. The CE-E and a large fraction of CE-H will consist of a sandwich structure with silicon as active detector material. This paper presents an overview of the ongoing sensor development for the HGCAL and highlights important design features and measurement techniques. The design and layout of an 8-inch silicon sensor prototype is shown. The hexagonal sensors consist of 235 pads, each with an area of about 1 cm2. Furthermore, Synopsys TCAD simulations regarding the high voltage stability of the sensors for different geometric parameters are performed. Finally, two different IV characterisation methods are compared on the same sensor.

  8. Design, construction and commissioning of the Digital Hadron Calorimeter—DHCAL

    NASA Astrophysics Data System (ADS)

    Adams, C.; Bambaugh, A.; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Dal Monte, L.; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J. R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-07-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 × 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  9. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS.

  10. Homemade Equipment for the Teaching of Electrochemistry at Advanced Level: Part III.

    ERIC Educational Resources Information Center

    Chan, K. M.

    1985-01-01

    Describes: (1) thermometric titrations; (2) EM-5 equipment (consisting of a thermal sensor, calorimeter, and input-buffered amplifier); (3) acid-base titrations; (4) precipitation titrations; and (5) redox titrations. Detailed procedures are included. (JN)

  11. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.

    PubMed

    Spears, Karen E; Kim, Hyunsook; Behall, Kay M; Conway, Joan M

    2009-05-01

    To compare standardized prediction equations to a hand-held indirect calorimeter in estimating resting energy and total energy requirements in overweight women. Resting energy expenditure (REE) was measured by hand-held indirect calorimeter and calculated by prediction equations Harris-Benedict, Mifflin-St Jeor, World Health Organization/Food and Agriculture Organization/United Nations University (WHO), and Dietary Reference Intakes (DRI). Physical activity level, assessed by questionnaire, was used to estimate total energy expenditure (TEE). Subjects (n=39) were female nonsmokers older than 25 years of age with body mass index more than 25. Repeated measures analysis of variance, Bland-Altman plot, and fitted regression line of difference. A difference within +/-10% of two methods indicated agreement. Significant proportional bias was present between hand-held indirect calorimeter and prediction equations for REE and TEE (P<0.01); prediction equations overestimated at lower values and underestimated at higher values. Mean differences (+/-standard error) for REE and TEE between hand-held indirect calorimeter and Harris-Benedict were -5.98+/-46.7 kcal/day (P=0.90) and 21.40+/-75.7 kcal/day (P=0.78); between hand-held indirect calorimeter and Mifflin-St Jeor were 69.93+/-46.7 kcal/day (P=0.14) and 116.44+/-75.9 kcal/day (P=0.13); between hand-held indirect calorimeter and WHO were -22.03+/-48.4 kcal/day (P=0.65) and -15.8+/-77.9 kcal/day (P=0.84); and between hand-held indirect calorimeter and DRI were 39.65+/-47.4 kcal/day (P=0.41) and 56.36+/-85.5 kcal/day (P=0.51). Less than 50% of predictive equation values were within +/-10% of hand-held indirect calorimeter values, indicating poor agreement. A significant discrepancy between predicted and measured energy expenditure was observed. Further evaluation of hand-held indirect calorimeter research screening is needed.

  12. Simulation of secondary emission calorimeter for future colliders

    NASA Astrophysics Data System (ADS)

    Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.

    2018-03-01

    We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

  13. Simulation of π 0-γ separation study for proposed CMS forward electromagnetic calorimeter

    DOE PAGES

    Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda; ...

    2016-11-11

    The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 10 34 cm -2 s -1) running due to extensive radiation (hadron flux 10 13 neutrons cm, -2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π 0 s from true photons, since finalmore » states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π 0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.« less

  14. Simulation of π 0-γ separation study for proposed CMS forward electromagnetic calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Ashim; Jain, Shilpi; Banerjee, Sunanda

    The Forward Electromagnetic Calorimeter of the CMS detector is going to be upgraded in the high luminosity running as the energy of the present Electromagnetic Calorimeter (PbWO4) will degrade in the high luminosity (luminosity 10 34 cm -2 s -1) running due to extensive radiation (hadron flux 10 13 neutrons cm, -2). Shashlik Electromagnetic Calorimeter which consists of alternate layers of 1.5 mm LYSO(Ce) crystal plates and 2.5 mm Tungsten absorbers, was a proposal for high luminosity running. One of the performance points for any electromagnetic calorimeter is the ability to separate π 0 s from true photons, since finalmore » states with photons are a clean and one of the most important final states in proton-proton collisions at the LHC. As a result, the objective of this project is to study the possibility of π 0 and γ separation in the Shashlik detector using Multivariate Analysis (MVA) technique.« less

  15. ATLAS Tile calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  16. Construction and performance of the barrel electromagnetic calorimeter for the Gluex experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beattie, T. D.; Foda, A. M.; Henschel, C. L.

    Tmore » he barrel calorimeter is part of the new spectrometer installed in Hall D at Jefferson Lab for the GlueX experiment. he calorimeter was installed in 2013, commissioned in 2014 and has been operating routinely since early 2015. he detector configuration, associated Monte Carlo simulations, calibration and operational performance are described in this paper. he calorimeter records the time and energy deposited by charged and neutral particles created by a multi-GeV photon beam. It is constructed as a lead and scintillating-fiber calorimeter and read out with 3840 large-area silicon photomultiplier arrays. Particles impinge on the detector over a wide range of angles, from normal incidence at 90 degrees down to 11.5 degrees, which defines a geometry that is fairly unique among calorimeters. he response of the calorimeter has been measured during a running experiment and performs as expected for electromagnetic showers below 2.5 GeV. Finally, we characterize the performance of the BCAL using the energy resolution integrated over typical angular distributions for π 0 and η production of σ E / E = 5 . 2 % / E ( GeV ) ⊕ 3 . 6 % and a timing resolution of σ = 150 ps at 1 GeV.« less

  17. Construction and performance of the barrel electromagnetic calorimeter for the Gluex experiment

    DOE PAGES

    Beattie, T. D.; Foda, A. M.; Henschel, C. L.; ...

    2018-04-11

    Tmore » he barrel calorimeter is part of the new spectrometer installed in Hall D at Jefferson Lab for the GlueX experiment. he calorimeter was installed in 2013, commissioned in 2014 and has been operating routinely since early 2015. he detector configuration, associated Monte Carlo simulations, calibration and operational performance are described in this paper. he calorimeter records the time and energy deposited by charged and neutral particles created by a multi-GeV photon beam. It is constructed as a lead and scintillating-fiber calorimeter and read out with 3840 large-area silicon photomultiplier arrays. Particles impinge on the detector over a wide range of angles, from normal incidence at 90 degrees down to 11.5 degrees, which defines a geometry that is fairly unique among calorimeters. he response of the calorimeter has been measured during a running experiment and performs as expected for electromagnetic showers below 2.5 GeV. Finally, we characterize the performance of the BCAL using the energy resolution integrated over typical angular distributions for π 0 and η production of σ E / E = 5 . 2 % / E ( GeV ) ⊕ 3 . 6 % and a timing resolution of σ = 150 ps at 1 GeV.« less

  18. Study on Radiation Condition in DAMPE Orbit by Analyzing the Engineering Data of BGO Calorimeter

    NASA Astrophysics Data System (ADS)

    Feng, Changqing; Liu, Shubin; Zhang, Yunlong; Ma, Siyuan

    2016-07-01

    The DAMPE (DArk Matter Particle Explorer) is a scientific satellite which was successfully launched into a 500 Km sun-synchronous orbit, on December 17th, 2015, from the Jiuquan Satellite Launch Center of China. The major scientific objectives of the DAMPE mission are primary cosmic ray, gamma ray astronomy and dark matter particles, by observing high energy primary cosmic rays, especially positrons/electrons and gamma rays with an energy range from 5 GeV to 10 TeV. The BGO calorimeter is a critical sub-detector of DAMPE payload, for measuring the energy of cosmic particles, distinguishing positrons/electrons and gamma rays from hadron background, and providing trigger information. It utilizes 308 BGO (Bismuth Germanate Oxide) crystal logs with the size of 2.5cm*2.5cm*60cm for each log, to form a total absorption electromagnetic calorimeter. All the BGO logs are stacked in 14 layers, with each layer consisting of 22 BGO crystal logs and each log is viewed by two Hamamatsu R5610A PMTs (photomultiplier tubes), from both sides respectively. In order to achieve a large dynamic range, each PMT base incorporates a three dynode (2, 5, 8) pick off, which results in 616 PMTs and 1848 signal channels. The readout electronics system, which consists of 16 FEE (Front End Electronics) modules, was developed. Its main functions are based on the Flash-based FPGA (Field Programmable Gate Array) chip and low power, 32-channel VA160 and VATA160 ASICs (Application Specific Integrated Circuits) for precisely measuring the charge of PMT signals and providing "hit" signals as well. The hit signals are sent to the trigger module of PDPU (Payload Data Process Unit) and the hit rates of each layer is real-timely recorded by counters and packed into the engineering data, which directly reflect the flux of particles which fly into or pass through the detectors. In order to mitigate the SEU (Single Event Upset) effect in radioactive space environment, certain protecting methods, such as TMR (Triple Modular Redundancy) and CRC (Cyclic Redundancy Check) for some critical registers in FPGA logic was adopted. To mitigate the SEL (Single Event Latch-up) effect for the ASICs chips, a protecting solution by monitoring the current of VA160/VATA160 chips are applied. All the SEU and SEL events are recorded by counters and transmitted to ground station in the form of engineering data. The information of hit rates, and the SEU and SEL counters in the engineering data can be used to evaluate the radiation condition and its variations in DAMPE orbit. The preliminary results are introduced in this paper, which is based on the engineering data in the first six months after launching.

  19. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on themore » proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.« less

  20. High-sensitivity microfluidic calorimeters for biological and chemical applications.

    PubMed

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L

    2009-09-08

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.

  1. Production of {π ^0} and η mesons up to high transverse momentum in pp collisions at 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Aggarwal, M. M.; Rinella, G. Aglieri; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Molina, R. Alfaro; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altsybeev, I.; Prado, C. Alves Garcia; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Awes, T.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Martinez, H. Bello; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Villar, E. Calvo; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A. R.; Sanchez, C. Ceballos; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Balbastre, G. Conesa; Valle, Z. Conesa del; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Maldonado, I. Cortés; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Corchero, M. A. Diaz; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Gimenez, D. Domenicis; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Téllez, A. Fernández; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Coral, D. M. Goméz; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Corral, G. Herrera; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Bustamante, R. T. Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Meethaleveedu, G. Koyithatta; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Fernandes, C. Lagana; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Monzón, I. León; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Torres, E. López; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Cervantes, I. Maldonado; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; García, G. Martínez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Pérez, J. Mercado; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Khan, M. Mohisin; Montes, E.; De Godoy, D. A. Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; da Luz, H. Natal; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; De Oliveira, R. A. Negrao; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Da Silva, A. C. Oliveira; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Velasquez, A. Ortiz; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Da Costa, H. Pereira; Peresunko, D.; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; oskoń, M. Pł; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Cahuantzi, M. Rodríguez; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Montero, A. J. Rubio; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Muñoz, G. Tejeda; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vázquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Limón, S. Vergara; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Tello, A. Villatoro; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.

    2017-05-01

    The invariant differential cross sections for inclusive π 0 and η mesons at midrapidity were measured in pp collisions at √{s}=2.76 TeV for transverse momenta 0.4

  2. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1 Figure 1 to Part 1633—Test Assembly, Shown in Furniture Calorimeter (Configuration A) ER15MR06.000 ...

  3. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1 Figure 1 to Part 1633—Test Assembly, Shown in Furniture Calorimeter (Configuration A) ER15MR06.000 ...

  4. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1 Figure 1 to Part 1633—Test Assembly, Shown in Furniture Calorimeter (Configuration A) ER15MR06.000 ...

  5. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1 Figure 1 to Part 1633—Test Assembly, Shown in Furniture Calorimeter (Configuration A) ER15MR06.000 ...

  6. Neutron Resonance Spin Determination Using Multi-Segmented Detector DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baramsai, B.; Mitchell, G. E.; Chyzh, A.

    2011-06-01

    A sensitive method to determine the spin of neutron resonances is introduced based on the statistical pattern recognition technique. The new method was used to assign the spins of s-wave resonances in {sup 155}Gd. The experimental neutron capture data for these nuclei were measured with the DANCE (Detector for Advanced Neutron Capture Experiment) calorimeter at the Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture {gamma}-rays. Using this information, the spins of the neutron capture resonances were determined. With these new spin assignments, level spacings are determined separately for s-wave resonances with J{supmore » {pi}} = 1{sup -} and 2{sup -}.« less

  7. Upgrade fo the CMS Hadron Outer Calorimeter with SIPMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jacob; Freeman, James; Los, Sergey

    2011-09-14

    The CMS Hadron Outer Calorimeter (HO) is undergoing an upgrade to replace the existing photodetectors (HPDs) with SIPMs. The chosen device is the Hamamatsu 3 x 3mm 50 {mu}m pitch MPPC. The system has been developed to be a 'drop-in' replacement of the HPDs. A complete control system of bias voltage generation, leakage current monitoring, temperature monitoring, and temperature control using solid state Peltier coolers has been developed and tested. 108 channels of the system have been installed into CMS and operated for more than 2 years. The complete system of about 2200 channels is in production and will bemore » installed in the next LHC long shutdown scheduled for 2013. The CMS central calorimeter consists of a detector inside the solenoidal magnet, HB, and a component outside the magnet, the Outer Hadron Calorimeter, HO [1]. The HO is installed inside the magnet flux return yoke and provides for typically 3{lambda} of additional absorber to the calorimetric measurement. The outer calorimeter is composed of one or more layers of scintillator with wavelength shifting fiber readout into photodetectors. Figure 1 (a) shows the schematic layout of the calorimeters in CMS and shows the location of the HO scintillator layers. The front end electronics are placed inside the CMS detector, close to the scintillators. Figure 1(b) shows a photograph of the scintillators. Note the four wavelength shifting fibers per tile. The tile size creates a projective tower with the HB. Currently the photodetector used is the HPD but for performance and operational reasons it is desired to upgrade these with SIPMs. The CMS HCAL group has developed a drop-in replacement for the HPD using SIPMs. SIPMs are very suitable for this application because of several factors: The radiation levels are modest with a lifetime expected fluence of less than 5*10{sup 11} neutrons (E > 100 KeV) per cm{sup 2}. The energy flux into HO is small, the rate of larger energy depositions is low, and the required dynamic range is modest. The HO is in the return magnetic field of up to 2KG and the photodetector needs to operate in that environment. Finally, the available physical volume for the photodetectors is small.« less

  8. The H1 detector at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R. D.; Arnault, C.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Banas, E.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Basti, F.; Baynham, D. E.; Baze, J.-M.; Beck, G. A.; Beck, H. P.; Bederede, D.; Behrend, H.-J.; Beigbeder, C.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernard, R.; Bernardi, G.; Bernet, R.; Bernier, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biasci, J.-C.; Biddulph, P.; Bidoli, V.; Binder, E.; Binko, P.; Bizot, J.-C.; Blobel, V.; Blouzon, F.; Blume, H.; Borras, K.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braunschweig, W.; Breton, D.; Brettel, H.; Brisson, V.; Bruncko, D.; Brune, C.; Buchner, U.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burmeister, P.; Busata, A.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Chase, R.; Clarke, D.; Clegg, A. B.; Colombo, M.; Commichau, V.; Connolly, J. F.; Cornett, U.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Coutures, Ch.; Coville, A.; Cozzika, G.; Cragg, D. A.; Criegee, L.; Cronström, H. I.; Cunliffe, N. H.; Cvach, J.; Cyz, A.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Darvill, D.; Dau, W. D.; David, J.; David, M.; Day, R. J.; Deffur, E.; Delcourt, B.; Del Buono, L.; Descamps, F.; Devel, M.; Dewulf, J. P.; De Roeck, A.; Dingus, P.; Djidi, K.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Dretzler, U.; Duboc, J.; Ducorps, A.; Düllmann, D.; Dünger, O.; Duhm, H.; Dulny, B.; Dupont, F.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Edwards, B. W. H.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Epifantsev, A.; Erdmann, M.; Erdmann, W.; Ernst, G.; Evrard, E.; Falley, G.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Z. Y.; Fensome, I. F.; Fent, J.; Ferencei, J.; Ferrarotto, F.; Finke, K.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fröchtenicht, W.; Fuhrmann, P.; Gabathuler, E.; Gabathuler, K.; Gadow, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gažo, E.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Geske, K.; Giesgen, I.; Gillespie, D.; Glasgow, W.; Godfrey, L.; Godlewski, J.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Gosset, L.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Gregory, C.; Greif, H.; Grewe, M.; Grindhammer, G.; Gruber, A.; Gruber, C.; Günther, S.; Haack, J.; Haguenauer, M.; Haidt, D.; Hajduk, L.; Hammer, D.; Hamon, O.; Hampel, M.; Handschuh, D.; Hangarter, K.; Hanlon, E. M.; Hapke, M.; Harder, U.; Harjes, J.; Hartz, P.; Hatton, P. E.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, C. R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hill, D. L.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Hopes, R. B.; Horisberger, R.; Hrisoho, A.; Huber, J.; Huet, Ph.; Hufnagel, H.; Huot, N.; Huppert, J.-F.; Ibbotson, M.; Imbault, D.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffré, M.; Jansen, T.; Jean, P.; Jeanjean, J.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jovanovic, P.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kantel, G.; Karstensen, S.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kemmerling, G.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Kobler, T.; Koch, J.; Köhler, T.; Köhne, J.; Kolander, M.; Kolanoski, H.; Kole, F.; Koll, J.; Kolya, S. D.; Koppitz, B.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krivan, F.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubantsev, M.; Kubenka, J. P.; Külper, T.; Küsel, H.-J.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Laforge, B.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J.-F.; Laptin, L.; Laskus, H.; Lebedev, A.; Lemler, M.; Lenhardt, U.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Liss, B.; Loch, P.; Lodge, A. B.; Lohmander, H.; Lopez, G. C.; Lottin, J.-P.; Lubimov, V.; Ludwig, K.; Lüers, D.; Lugetski, N.; Lundberg, B.; Maeshima, K.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, F.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masbender, V.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meissner, J.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Mills, J. L.; Milone, V.; Möck, J.; Monnier, E.; Montés, B.; Moreau, F.; Moreels, J.; Morgan, B.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Nayman, P.; Nepeipivo, A.; Newman, P.; Newman-Coburn, D.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Novák, T.; Nováková, H.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Olszowska, J.; Orenstein, S.; Ould-Saada, F.; Pailler, P.; Palanque, S.; Panaro, E.; Panitch, A.; Parey, J.-Y.; Pascaud, C.; Patel, G. D.; Patoux, A.; Paulot, C.; Pein, U.; Peppel, E.; Perez, E.; Perrodo, P.; Perus, A.; Peters, S.; Pharabod, J.-P.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pieuchot, A.; Pimpl, W.; Pitzl, D.; Porrovecchio, A.; Prell, S.; Prosi, R.; Quehl, H.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reboux, A.; Reimer, P.; Reinmuth, G.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riege, H.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Röpnack, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Royon, C.; Rudge, A.; Rüter, K.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rusinov, V.; Rybicki, K.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitski, M.; Schacht, P.; Schiek, S.; Schirm, N.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schmitz, W.; Schmücker, H.; Schröder, V.; Schütt, J.; Schuhmann, E.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sefkow, F.; Sell, R.; Seman, M.; Semenov, A.; Shatalov, P.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Sirous, A.; Skillicorn, I. O.; Škvařil, P.; Smirnov, P.; Smith, J. R.; Smolik, L.; Sole, D.; Soloviev, Y.; Špalek, J.; Spitzer, H.; von Staa, R.; Staeck, J.; Staroba, P.; Šťastný, J.; Steenbock, M.; Štefan, P.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Strowbridge, A.; Struczinski, W.; Sutton, J. P.; Szkutnik, Z.; Tappern, G.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Tchudakov, V.; Thiebaux, C.; Thiele, K.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Tribanek, W.; Tröger, K.; Truöl, P.; Turiot, M.; Turnau, J.; Tutas, J.; Urban, L.; Urban, M.; Usik, A.; Valkár, Š.; Valkárová, A.; Vallée, C.; Van Beek, G.; Vanderkelen, M.; Van Lancker, L.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Weissbach, P.; Wellisch, H. P.; West, L.; White, D.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wünsch, E.; Wulff, N.; Wyborn, B. E.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Závada, P.; Zeitnitz, C.; Zhang, Z.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1997-02-01

    General aspects of the H1 detector at the electron-proton storage ring HERA as well as technical descriptions of the magnet, luminosity system, trigger, slow-control, data acquisition and off-line data handling are given. The three major components of the detector, the tracking, calorimeter and muon detectors, will be described in a forthcoming article. The present paper describes the detector that was used from 1992 to the end of 1994. After this a major upgrade of some components was undertaken. Some performance figures from luminosity runs at HERA during 1993 and 1994 are given.

  9. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    Straessner, Arno

    2018-04-27

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  10. The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    DOE PAGES

    Abdallah, J.; Alexa, C.; Coutinho, Y. Amaral; ...

    2016-10-12

    This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC . First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % formore » the end-caps. Lastly, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.« less

  11. The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdallah, J.; Alexa, C.; Coutinho, Y. Amaral

    This article describes the Laser calibration system of the ATLAS hadronic Tile Calorimeter that has been used during the run 1 of the LHC . First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % formore » the end-caps. Lastly, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.« less

  12. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    NASA Astrophysics Data System (ADS)

    Bingham, C. E.

    1991-12-01

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/sq cm). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6/sq cm) exit aperture, corresponding to a flux of about 2 kW/sq cm. This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/sq cm) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty.

  13. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-01-13

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb –1 of proton–proton collision data at √s = 7 TeV from 2010 and 0.1 nb –1 of data at √s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimetermore » region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.« less

  14. Atmospheric Neutrinos in Soudan 2

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Soudan 2 Collaboration

    2001-08-01

    Neutrino interactions recorded in a 5.1 fiducial kiloton-year exposure of the Soudan-2 iron tracking calorimeter are analyzed for effects of neutrino oscillations. Using contained single track and single shower events, we update our measurement of the atmospheric / ratio-of-ratios and find . Assuming this anomalously low R-value is the result of flavor disappearance viat o oscillation, we select samples of charged current events which offer good resolution, event-by-event, for Ä reconstruction. Oscillation-weighted Monte Carlo events are fitted to these data events using a ¾ function summed over bins of log´Ä µ. The region allowed in the (× Ò¾ ¾ , ¡Ñ¾) plane at 90% CL is obtained using the Feldman-Cousins procedure: 1 DETECTOR; DATA EXPOSURE The Soudan-2 experiment will soon (July 2001) be completing the taking of data using its fine-grained iron tracking calorimeter of total mass 963 tons. This detector images nonrelativistic as well as relativistic charged particles produced in atmospheric neutrino reactions. It has operated underground at a depth of 2100 meters-water-equivalent on level 27 of the Soudan Mine State Park in northern Minnesota. The calorimeter's modular design enabled data-taking to commence in April 1989 when the detector was one quarter of its full size; assembly of the detector was completed during 1993. Data-taking continued with 85% live time, even though dynamite blasting has been underway nearby for the MINOS cavern excavation since Summer 1999. The total data exposure will be 5.8fiducial kiloton-years (kTy). Results presented here are based upon a 5.1 kTy exposure. The tracking calorimeter operates as a slow-drift (0.6 cm/ s) time projection chamber. Its tracking elements are meterlong plastic drift tubes which are placed into the corruga-

  15. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  16. (WA80 collaboration, Muenster, W. Germany, April 17--21, 1989): Foreign trip report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, G.R.

    1989-05-11

    The traveler attended a WA80 collaboration meeting held at the University of Muenster, FRG. The status of various experimental analyses was reviewed and discussed, as was the status of various papers in preparation. Plans for a joint NA35-WA80 proposal to use the lead beams to be available at the SPS in 1993 were advanced in a meeting which included several WA80 persons plus Reinhard Stock of NA35 and Rudolf Bock of GSI. Plans for a prototype of a high-resolution photon calorimeter were made. ORNL is asked to prepare much of this for a test run in December 1989. Further plansmore » for the 1990 and 1991 extended beam times at CERN with /sup 32/S were made. ORNL is asked to participate in a large upgrade of the present trigger and to collaborate with Muenster in a large upgrade and expansion of the present photon calorimeter. Other items include a rearrangement of the experimental area (GSI), new multiplicity counters (Lund-LBL), and a new data-acquisition system (GSI-Muenster).« less

  17. Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at sqrt[S(NN)] =2.76 TeV with the ATLAS detector at the LHC.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Ackers, M; Adams, D L; Addy, T N; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Akesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albrand, S; Aleksa, M; Aleksandrov, I N; Aleppo, M; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, J; Alviggi, M G; Amako, K; Amaral, P; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Anulli, F; Aoun, S; Bella, L Aperio; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arms, K E; Armstrong, S R; Arnaez, O; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Silva, J; Asfandiyarov, R; Ask, S; Asman, B; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Aubert, B; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Bachy, G; Backes, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, S; Pedrosa, F Baltasar Dos Santos; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barashkou, A; Galtieri, A Barbaro; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, D; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Battistoni, G; Bauer, F; Bawa, H S; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C; Begel, M; Harpaz, S Behar; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, G; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Benchouk, C; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Bertinelli, F; Bertolucci, F; Besana, M I; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocci, A; Bock, R; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boonekamp, M; Boorman, G; Booth, C N; Booth, P; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Botterill, D; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozhko, N I; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Brambilla, E; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Bright-Thomas, P G; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchanan, N J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Buira-Clark, D; Buis, E J; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byatt, T; Urbán, S Cabrera; Caccia, M; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camard, A; Camarri, P; Cambiaghi, M; Cameron, D; Cammin, J; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carpentieri, C; Montoya, G D Carrillo; Montero, S Carron; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Hernandez, A M Castaneda; Castaneda-Miranda, E; Gimenez, V Castillo; Castro, N F; Cataldi, G; Cataneo, F; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavallari, A; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cazzato, A; Ceradini, F; Cerna, C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, L; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; El Moursli, R Cherkaoui; Tcherniatine, V; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Ciubancan, M; Clark, A; Clark, P J; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clifft, R W; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coe, P; Cogan, J G; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Comune, G; Muiño, P Conde; Coniavitis, E; Conidi, M C; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Correard, S; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Torres, R Coura; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Almenar, C Cuenca; Donszelmann, T Cuhadar; Cuneo, S; Curatolo, M; Curtis, C J; Cwetanski, P; Czirr, H; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Mello, A Da Rocha Gesualdi; Da Silva, P V M; Da Via, C; Dabrowski, W; Dahlhoff, A; Dai, T; Dallapiccola, C; Dallison, S J; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dankers, R; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Daum, C; Dauvergne, J P; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawe, E; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Lotto, B; De Mora, L; De Nooij, L; Branco, M De Oliveira; De Pedis, D; de Saintignon, P; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dean, S; Debbe, R; Dedes, G; Dedovich, D V; Degenhardt, J; Dehchar, M; Deile, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delpierre, P; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Dennis, C; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietl, H; Dietrich, J; Dietzsch, T A; Diglio, S; Yagci, K Dindar; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Wemans, A Do Valle; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dosil, M; Dotti, A; Dova, M T; Dowell, J D; Doxiadis, A D; Doyle, A T; Drasal, Z; Drees, J; Dressnandt, N; Drevermann, H; Driouichi, C; Dris, M; Drohan, J G; Dubbert, J; Dubbs, T; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Dunford, M; Yildiz, H Duran; Duxfield, R; Dwuznik, M; Dydak, F; Dzahini, D; Düren, M; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Efthymiopoulos, I; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Curull, X Espinal; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fasching, D; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferguson, D; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fischer, P; Fisher, M J; Fisher, S M; Flammer, J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Castillo, L R Flores; Flowerdew, M J; Föhlisch, F; Fokitis, M; Martin, T Fonseca; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gapienko, V A; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; Navarro, J E García; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Garvey, J; Gatti, C; Gaudio, G; Gaumer, O; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gieraltowski, G F; Gilbert, L M; Gilchriese, M; Gildemeister, O; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Golovnia, S N; Gomes, A; Fajardo, L S Gomez; Gonçalo, R; Gonella, L; Gong, C; Gonidec, A; Gonzalez, S; de la Hoz, S González; Silva, M L Gonzalez; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gorokhov, S A; Gorski, B T; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gouanère, M; Eschrich, I Gough; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grabski, V; Grafström, P; Grah, C; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenfield, D; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Gris, P L Y; Grishkevich, Y V; Grivaz, J-F; Grognuz, J; Groh, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Gruwe, M; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guindon, S; Guler, H; Gunther, J; Guo, B; Guo, J; Gupta, A; Gusakov, Y; Gushchin, V N; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, C J; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harper, D; Harrington, R D; Harris, O M; Harrison, K; Hart, J C; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Hatch, M; Hauff, D; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawes, B M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayden, D; Hayward, H S; Haywood, S J; Hazen, E; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heldmann, M; Heller, M; Hellman, S; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Henry-Couannier, F; Hensel, C; Henss, T; Jiménez, Y Hernández; Herrberg, R; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hill, N; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmes, A; Holmgren, S O; Holy, T; Holzbauer, J L; Homer, R J; Homma, Y; Horazdovsky, T; Horn, C; Horner, S; Horton, K; Hostachy, J-Y; Hott, T; Hou, S; Houlden, M A; Hoummada, A; Howarth, J; Howell, D F; Hristova, I; Hrivnac, J; Hruska, I; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Hughes-Jones, R E; Huhtinen, M; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Ichimiya, R; Iconomidou-Fayard, L; Idarraga, J; Idzik, M; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Imbault, D; Imhaeuser, M; Imori, M; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Ionescu, G; Quiles, A Irles; Ishii, K; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D K; Jankowski, E; Jansen, E; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jeremie, A; Jež, P; Jézéquel, S; Ji, H; Ji, W; Jiang, Y; Belenguer, M Jimenez; Jin, G; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, L G; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joo, K K; Joram, C; Jorge, P M; Joseph, J; Ju, X; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagoz, M; Karnevskiy, M; Karr, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenney, C J; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Ketterer, C; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiver, A M; Kiyamura, H; Kladiva, E; Klaiber-Lodewigs, J; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knobloch, J; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Koenig, S; König, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kokott, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kollefrath, M; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kootz, A; Koperny, S; Kopikov, S V; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasel, O; Krasny, M W; Krasznahorkay, A; Kraus, J; Kreisel, A; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kruth, A; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kundu, N; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuze, M; Kuzhir, P; Kvasnicka, O; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Landsman, H; Lane, J L; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lapin, V V; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Lau, W; Laurelli, P; Lavorato, A; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Leger, A; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Miotto, G Lehmann; Lehto, M; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lesser, J; Lester, C G; Cheong, A Leung Fook; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Lewandowska, M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Lifshitz, R; Lilley, J N; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lombardo, V P; Long, R E; Lopes, L; Mateos, D Lopez; Losada, M; Loscutoff, P; Losterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, J; Lu, L; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lungwitz, M; Lupi, A; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maassen, M; Goia, J A Macana; Maccarrone, G; Macchiolo, A; Maček, B; Miguens, J Machado; Macina, D; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Martins, P J Magalhaes; Magnoni, L; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Manz, A; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchesotti, M; Marchiori, G; Marcisovsky, M; Marin, A; Marino, C P; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti-Garcia, S; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, Ph; Martin, T A; Dit Latour, B Martin; Martinez, M; Outschoorn, V Martinez; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Mass, M; Massa, I; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maugain, J M; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzoni, E; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; McGlone, H; Mchedlidze, G; McLaren, R A; Mclaughlan, T; McMahon, S J; McMahon, T R; McMahon, T J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meinhardt, J; Meirose, B; Melachrinos, C; Garcia, B R Mellado; Navas, L Mendoza; Meng, Z; Mengarelli, A; Menke, S; Menot, C; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meuser, S; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Miele, P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikulec, B; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Verge, L Miralles; Misiejuk, A; Mitra, A; Mitrevski, J; Mitrofanov, G Y; Mitsou, V A; Mitsui, S; Miyagawa, P S; Miyazaki, K; Mjörnmark, J U; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moisseev, A M; Moles-Valls, R; Molina-Perez, J; Moneta, L; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Herrera, C Mora; Moraes, A; Morais, A; Morange, N; Morel, J; Morello, G; Moreno, D; Llácer, M Moreno; Morettini, P; Morii, M; Morin, J; Morita, Y; Morley, A K; Mornacchi, G; Morone, M-C; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muijs, A; Muir, A; Munwes, Y; Murakami, K; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakahama, Y; Nakamura, K; Nakano, I; Nanava, G; Napier, A; Nash, M; Nasteva, I; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nektarijevic, S; Nelson, A; Nelson, S; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Nesterov, S Y; Neubauer, M S; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicquevert, B; Niedercorn, F; Nielsen, J; Niinikoski, T; Nikiforov, A; Nikolaenko, V; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Francisco, O Norniella; Norton, P R; Novakova, J; Nozaki, M; Nožička, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nyman, T; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohska, T K; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Okuyama, T; Olcese, M; Olchevski, A G; Oliveira, M; Damazio, D Oliveira; Garcia, E Oliver; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Orellana, F; Oren, Y; Orestano, D; Orlov, I; Barrera, C Oropeza; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ouchrif, M; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Øye, O K; Ozcan, V E; Ozturk, N; Pages, A Pacheco; Aranda, C Padilla; Paganis, E; Paige, F; Pajchel, K; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Paoloni, A; Papadopoulou, Th D; Paramonov, A; Park, S J; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Morales, M I Pedraza; Peleganchuk, S V; Peng, H; Pengo, R; Penson, A; Penwell, J; Perantoni, M; Perez, K; Cavalcanti, T Perez; Codina, E Perez; García-Estañ, M T Pérez; Reale, V Perez; Peric, I; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Peters, O; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, A W; Phillips, P W; Piacquadio, G; Piccaro, E; Piccinini, M; Pickford, A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Pleskach, A V; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Poghosyan, T; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Bueso, X Portell; Porter, R; Posch, C; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Pribyl, L; Price, D; Price, L E; Price, M J; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Qian, Z; Qin, Z; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rajagopalan, S; Rajek, S; Rammensee, M; Rammes, M; Ramstedt, M; Randrianarivony, K; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reichold, A; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renaud, A; Renkel, P; Rensch, B; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robinson, M; Robson, A; de Lima, J G Rocha; Roda, C; Dos Santos, D Roda; Rodier, S; Rodriguez, D; Garcia, Y Rodriguez; Roe, A; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Maltrana, D Romero; Roos, L; Ros, E; Rosati, S; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rossi, L; Rotaru, M; Roth, I; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rulikowska-Zarebska, E; Rumiantsev, V; Rumyantsev, L; Runge, K; Runolfsson, O; Rurikova, Z; Rusakovich, N A; Rust, D R; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Ryder, N C; Rzaeva, S; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Ferrando, B M Salvachua; Salvatore, D; Salvatore, F; Salzburger, A; Sampsonidis, D; Samset, B H; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandhu, P; Sandoval, T; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sansoni, A; Rios, C Santamarina; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savinov, V; Savva, P; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scallon, O; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmidt, E; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schöning, A; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schuh, S; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimizu, S; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Short, D; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skovpen, K; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloan, T J; Sloper, J; Smakhtin, V; Smirnov, S Yu; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldevila, U; Camillocci, E Solfaroli; Solodkov, A A; Solovyanov, O V; Sondericker, J; Soni, N; Sopko, V; Sopko, B; Sorbi, M; Sosebee, M; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spila, F; Spiriti, E; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G A; Stockmanns, T; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Soh, D A; Su, D; Subramania, S; Sugaya, Y; Sugimoto, T; Suhr, C; Suita, K; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, Y; Sviridov, Yu M; Swedish, S; Sykora, I; Sykora, T; Szeless, B; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanaka, Y; Tani, K; Tannoury, N; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Taylor, C; Taylor, F E; Taylor, G; Taylor, G N; Taylor, W; Castanheira, M Teixeira Dias; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Therhaag, J; Theveneaux-Pelzer, T; Thioye, M; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomson, E; Thomson, M; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Viegas, F J Tique Aires; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokunaga, K; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonazzo, A; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Traynor, D; Trefzger, T; Treis, J; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tuggle, J M; Turala, M; Turecek, D; Cakir, I Turk; Turlay, E; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Typaldos, D; Tyrvainen, H; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valderanis, C; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Gallego, E Valladolid; Vallecorsa, S; Ferrer, J A Valls; van der Graaf, H; van der Kraaij, E; van der Poel, E; van der Ster, D; Van Eijk, B; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Rodriguez, F Varela; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Ventura, S; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Viel, S; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Viret, S; Virzi, J; Vitale, A; Vitells, O; Vivarelli, I; Vaque, F Vives; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vovenko, A S; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Anh, T Vu; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wakabayashi, J; Walbersloh, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Wang, C; Wang, H; Wang, J; Wang, J; Wang, J C; Wang, S M; Warburton, A; Ward, C P; Warsinsky, M; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, J; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wrona, B; Wu, S L; Wu, X; Wulf, E; Wunstorf, R; Wynne, B M; Xaplanteris, L; Xella, S; Xie, S; Xie, Y; Xu, C; Xu, D; Xu, G; Yabsley, B; Yamada, M; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Y; Yang, Z; Yanush, S; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zaets, V G; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zalite, Yo K; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zdrazil, M; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, A V; Zenin, O; Zeniš, T; Zenonos, Z; Zenz, S; Zerwas, D; Della Porta, G Zevi; Zhan, Z; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zolnierowski, Y; Zsenei, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2010-12-17

    By using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally segmented electromagnetic and hadronic calorimeters. The transverse energies of dijets in opposite hemispheres are observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

  18. Jet reconstruction and performance using particle flow with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; Corga, K. De Vasconcelos; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Kosseifi, R. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Pastor, O. Estrada; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kravchenko, A.; Kremer, J. A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Newman, P. R.; Ng, T. Y.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciandra, A.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sopczak, A.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Maira, N. Viaux; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Nedden, M. zur; Zwalinski, L.

    2017-07-01

    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb^{-1} of ATLAS data from 8 TeV proton-proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

  19. Gram-scale cryogenic calorimeters for rare-event searches

    NASA Astrophysics Data System (ADS)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-07-01

    The energy threshold of a cryogenic calorimeter can be lowered by reducing its size. This is of importance since the resulting increase in signal rate enables new approaches in rare-event searches, including the detection of MeV mass dark matter and coherent scattering of reactor or solar neutrinos. A scaling law for energy threshold vs detector size is given. We analyze the possibility of lowering the threshold of a gram-scale cryogenic calorimeter to the few eV regime. A prototype 0.5 g Al2 O3 device achieved an energy threshold of Eth=(19.7 ±0.9 ) eV , the lowest value reported for a macroscopic calorimeter.

  20. Data Analysis for the Scintillating Optical Fiber Calorimeter (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    1997-01-01

    The scintillating optical fiber calorimeter is a hybrid instrument with both active and passive components for measuring the proton and helium cosmic ray spectra from 0.2 to IO TeV kinetic energy. A thin emulsion/x-ray film chamber is situated between a cerenkov counter and an imaging calorimeter. Scintillating optical fibers sample the electromagnetic showers that develop in the calorimeter and identify the trajectory of cosmic rays that interact in SOFCAL. The emulsion/x-ray film data provide an in flight calibration for SOFCAL. The data reduction techniques used will be discussed and interim results of the analysis from a 20 hour balloon flight will be presented.

  1. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  2. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. Here, to evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clockmore » distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well.« less

  3. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    DOE PAGES

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; ...

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. Here, to evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clockmore » distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well.« less

  4. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. Supported by the U. S. Department of Energy (DE-SC001270)

  5. Upper Limit for $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abadias, Juan Bofill

    1984-01-01

    Limits on the mass squared difference of neutrino mass eigenstatesmore » $$\\delta2 = m^2_1 - m^2_2$$, have been determined in a fine grained calorimeter exposed to the dichromatic beam at Fermilab. The fine grained calorimeter is located at a distance of 1.3 Km from the neutrino source making it suitable for oscillations studies. The interaction of a $$\

  6. Method and system for improved resolution of a compensated calorimeter detector

    DOEpatents

    Dawson, John W.

    1991-01-01

    An improved method and system for a depleted uranium calorimeter detector used in high energy physics experiments. In a depleted uranium calorimeter detector, the energy of a particle entering the calorimeter detector is determined and the output response of the calorimeter detector is compensated so that the ratio of the integrated response of the calorimeter detector from a lepton to the integrated response of the calorimeter detector from a hadron of the same energy as the lepton is approximately equal to 1. In the present invention, the energy of a particle entering the calorimeter detector is determined as a function of time and the hadron content of the response of the calorimeter detector is inferred based upon the time structure of the energy pulse measured by the calorimeter detector. The energy measurement can be corrected based on the inference of the hadron content whereby the resolution of the calorimeter can be improved.

  7. Jet reconstruction and performance using particle flow with the ATLAS Detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Ferraz, V Araujo; Arce, A T H; Ardell, R E; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bahrasemani, H; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beermann, T A; Begalli, M; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Benoit, M; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernardi, G; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bittrich, C; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Briglin, D L; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Bret, M Cano; Cantero, J; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Celebi, E; Ceradini, F; Alberich, L Cerda; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, W S; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chiu, Y H; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chu, M C; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Creager, R A; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cukierman, A R; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Daubney, T; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; Corga, K De Vasconcelos; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delporte, C; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducourthial, A; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dumitriu, A E; Duncan, A K; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Kosseifi, R El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Pastor, O Estrada; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Freund, B; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gee, C N P; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Gama, R Goncalves; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, C; Gray, H M; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Grummer, A; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Guzik, M P; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havener, L B; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heidegger, K K; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Held, A; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Herwig, T C; Hesketh, G G; Hessey, N P; Hetherly, J W; Higashino, S; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirschbuehl, D; Hiti, B; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jejelava, J; Jelinskas, A; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kar, D; Karakostas, K; Karastathis, N; Kareem, M J; Karentzos, E; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kay, E F; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khodinov, A; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; Kirchmeier, D; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klingl, T; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kourlitis, E; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Krauss, D; Kravchenko, A; Kremer, J A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kulinich, Y P; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Lapertosa, A; Laplace, S; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, G R; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, H; Liu, H; Liu, J K K; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Lo, C Y; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A; Mateos, D Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lu, Y J; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchese, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Martensson, M U F; Marti-Garcia, S; Martin, C B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McNamara, P C; McPherson, R A; Meehan, S; Megy, T J; Mehlhase, S; Mehta, A; Meideck, T; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, M E; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Newman, P R; Ng, T Y; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nishu, N; Nisius, R; Nobe, T; Noguchi, Y; Nomachi, M; Nomidis, I; Nomura, M A; Nooney, T; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'connor, K; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paganini, M; Paige, F; Pais, P; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Panagoulias, I; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasner, J M; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Podberezko, P; Poettgen, R; Poggi, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Ponomarenko, D; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Poulard, G; Poveda, J; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proklova, N; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puri, A; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Rawling, J H; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rettie, S; Reynolds, E; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, C O; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schildgen, L K; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciandra, A; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Shen, Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shlomi, J; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Haddad, E Sideras; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smiesko, J; Smirnov, N; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sopczak, A; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spieker, T M; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teixeira-Dias, P; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Treado, C J; Trefzger, T; Tresoldi, F; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsang, K W; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Cakir, I Turk; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valéry, L; Valkar, S; Vallier, A; Ferrer, J A Valls; Van Den Wollenberg, W; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varni, C; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Maira, N Viaux; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vishwakarma, A; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wagner-Kuhr, J; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, Q; Wang, R; Wang, S M; Wang, T; Wang, W; Wang, W; Wang, Z; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, A F; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xia, L; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yigitbasi, E; Yildirim, E; Yorita, K; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zacharis, G; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Y; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zou, R; Nedden, M Zur; Zwalinski, L

    2017-01-01

    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb[Formula: see text] of ATLAS data from 8 TeV proton-proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

  8. Jet reconstruction and performance using particle flow with the ATLAS Detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-07-13

    This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb –1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. In conclusion, the performance of particle flowmore » jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.« less

  9. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of √s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K s and Λ particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scalemore » uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2–5 % for central isolated hadrons and 1–3 % for the final calorimeter jet energy scale.« less

  10. Comparison of Heat Flux Gages for High Enthalpy Flows - NASA Ames and IRS

    NASA Technical Reports Server (NTRS)

    Loehle, Stefan; Nawaz, Anuscheh; Herdrich, Georg; Fasoulas, Stefanos; Martinez, Edward; Raiche, George

    2016-01-01

    This article is a companion to a paper on heat flux measurements as initiated under a Space Act Agreement in 2011. The current focus of this collaboration between the Institute of Space Systems (IRS) of the University of Stuttgart and NASA Ames Research Center is the comparison and refinement of diagnostic measurements. A first experimental campaign to test different heat flux gages in the NASA Interaction Heating Facility (IHF) and the Plasmawindkanaele (PWK) at IRS was established. This paper focuses on the results of the measurements conducted at IRS. The tested gages included a at face and hemispherical probe head, a 4" hemispherical slug calorimeter, a null-point calorimeter from Ames and a null-point calorimeter developed for this purpose at IRS. The Ames null-point calorimeter was unfortunately defective upon arrival. The measured heat fluxes agree fairly well with each other. The reason for discrepancies can be attributed to signal-to-noise levels and the probe geometry.

  11. Detailed measurements of shower properties in a high granularity digital electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2018-03-01

    The MAPS (Monolithic Active Pixel Sensors) prototype of the proposed ALICE Forward Calorimeter (FoCal) is the highest granularity electromagnetic calorimeter, with 39 million pixels with a size of 30 × 30 μm2. Particle showers can be studied with unprecedented detail with this prototype. Electromagnetic showers at energies between 2 GeV and 244 GeV have been studied and compared with GEANT4 simulations. Simulation models can be tested in more detail than ever before and the differences observed between FoCal data and GEANT4 simulations illustrate that improvements in electromagnetic models are still possible.

  12. Search for Stopped Gluinos during Beam-off Periods at CMS

    NASA Astrophysics Data System (ADS)

    Rossato, Kenneth

    2010-02-01

    Several models of new physics, including split supersymmetry, predict the existence of a heavy particle which is long-lived on timescales of the bunch spacing of the LHC. Such particles may be slowed through dE/dx losses and stop in the volume of the CMS detector before ultimately decaying. We describe a search strategy that employs a special jet trigger to look for energy depositions in the hadronic calorimeter during time periods without pp collisions. We examine the potential for discovery and exclusion of gluinos in split supersymmetry in early running of the LHC. )

  13. СЦИНТИЛЛЯЦИОННЫЕ ДЕТЕКТОРЫ УСТАНОВКИ CDF П В ЭКСПЕРИМЕНТАХ ПО ФИЗИКЕ ТЯЖЁЛЫХ КВАРКОВ НА ТЭВА ТРОНЕ (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chokheli, Davit

    2007-01-01

    The author presents the following: 1) Development and creation from scratch of scintillation detectors system for CDF II muon trigger using more than 1140 scintillation counters different type and size; development of the contol and monitoring software/hardware systems; 2) Development and creation of updgraded preshower CPR II for electromagnet calorimeter CDF II with better segmentation by pseydorapidity (10 times more against previous version) to be able collect the data with increased Tevatron luminosity; 3) Aging study for scintillation counters used at CDF II and its long-term efficiency estimation; and 4) Research of the possibility to use the proposed new muon trigger atmore » $$1.0 \\leq \\mu \\leq 1.25$$ region by pseudorapidity by creation of additional layers of muon scintillation detectors.« less

  14. Production of $${\\pi ^0}$$ and $$\\eta $$ mesons up to high transverse momentum in pp collisions at 2.76 TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Aggarwal, M. M.; ...

    2017-05-22

    The invariant differential cross sections for inclusive π 0 and η mesons at midrapidity were measured in pp collisions at √s=2.76 TeV for transverse momenta 0.4 < p T < 40 GeV/c and 0.6 < p T < 20 GeV/c, respectively, using the ALICE detector. This large range in p T was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). Particularly, a new single-cluster, shower-shape based method was developed for the identification of high-p T neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/c, the measured crossmore » sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the π 0 , and between 30–50% for the η meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10–30%, except at p T < 1 GeV/c. The new data can therefore be used to further improve the theoretical description of π 0 and η meson production.« less

  15. Photon Tagger Timing Calibration for the Rad Phi Experiment

    NASA Astrophysics Data System (ADS)

    Russell, Mammei; Smith, Elton

    2000-10-01

    Vector mesons provide a rich laboratory for the study of fundamental physics and radiative decays probe the very nature of the internal structure of these mesons, which possess the same quantum numbers of photons. Experiment E94-016, which collected data this past summer in Hall B of the Thomas Jefferson National Accelerator Facility (JLab), has measured the the branching ratios for rare radiative decays of the phi meson, i.e. φarrow f_0(975)γ arrow π^0π^0γ, φ arrow a_0(980)γ arrow π0 η γ, and φ arrow η'γ. A lead glass calorimeter, in concert with several detectors, measured these decays. A tagged beam of bremsstrahlung photons was directed upon a solid Beryllium target. A three-level trigger was then employed to preferentially select radiative decays of the φ meson. We calibrated timing of each detector by referencing individual detectors to one another. Tight timing will enhance signal relative to background.

  16. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  17. A Calorimeter Design for Rapidly Estimating the Level of Foodborne Microorganisms

    DTIC Science & Technology

    1975-12-01

    of control, could produce a severe public health crisis and impair troop efficiency. Rapid microbiological quality measuring techniques are urgently...would more effectively use the volume of the calorimeter sample chamber. Then we could increase the volume, make it easy to add the growth medium and...from this paper are also represented in Table III. His results were criticized by Forest & Walker (1962P who claimed that the effect observed was due

  18. Hadronic vector boson decay and the art of calorimeter calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobban, Olga Barbara

    2002-12-01

    Presented here are several studies involving the energy measurement of particles using calorimeters. The first study involves the effects of radiation damage on the response of a prototype calorimeter for the Compact Muon Solenoid experiment. We found that the effects of radiation damage on the calorimeter·s response arc dose dependent and that most of the damage will occur in the first year of running at the Large Hadron Collider. Another study involved the assessment of the Energy Flow Method an algorithm which combines the information from the calorimeter system is combined with that from the tracking system in an attmpt to improve the energy resolution for jet measurements. Using the Energy Flow method an improvement ofmore » $$\\sim30\\%$$ is found but this impovement decreases at high energies when the hadronic calorimeter resolution dominates the quality of the jet energy measurements. Finally, we developed a new method to calibrate a longitudinally segnmented calorimeter. This method eliminates problems with the traditional method used for the calorimeters at the Collider Detector at Fermilab. We applied this new method in the search for hadrunic decays of the $W$ and $Z$ bosons in a sample of dijet data taken during Tevatron Run IC. A signal of 9873±3950(sys) ±1130 events was found when the new calibration method was used. This corresponds to a cross section $$\\sigma(p\\bar{p} \\to W,Z) \\cdot B(W,Z \\to jets) = 35.6 \\pm 14.2 ({\\rm sys}) \\pm 4.1 (\\rm{stat})$$ nb.« less

  19. Performance of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  20. Enhancing the ATIC Charge Resolution

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) experiment measures the energy spectra of elements, from H to Fe, in the energy region from about 100 GeV to tens of TeV. The ATIC instrument was flown twice in long-duration balloon flights around the South Pole; the ATIC-1 test flight during Dec. 2000 - Jan. 2001 and the ATIC-2 science flight during Dec. 2002 - Jan. 2003. Analyses of both datasets have, to date, relied upon the highly segmented Silicon Matrix (SiM) detector to separate the incident cosmic ray from the calorimeter backscatter and to identify the charge. This method has worked well, enabling ATIC to separate protons from helium and to resolve all the major species up through iron. This charge resolution can be significantly improved by restricting the analysis to particle trajectories that pass through two SiM pixels at the cost of using only a fraction of the potential instrument geometry. However, immediately below the SiM is the two layer SI hodoscope (x, y) consisting of Bicron BC-408 plastic scintillator 2 cm wide, 1 cm thick, 88.2 cm long strips viewed by Hamamatsu R5611 photomultiplier tubes on each end of each strip. The primary purpose of the ATIC hodoscopes is to provide a fast trigger, and each hodoscope includes two crossed layers of strips (42 per layer in the case of Sl) providing supplemental particle trajectory information. The hodoscope readout electronics were designed to provide reasonable charge resolution over the dynamic range from protons through iron. This presentation discusses the S 1 hodoscope energy deposit calibrations, examines the charge resolution possible with this detector and investigates combining the S1 and SiM charge measurements to improve the overall ATIC charge resolution while minimizing degradation of the instrument geometry.

  1. Physics with calorimeters

    NASA Astrophysics Data System (ADS)

    Pretzl, Klaus

    2009-04-01

    Calorimeters played an essential role in the discoveries of new physics, for example neutral currents (Gargamelle), quark and gluon jets (SPEAR, UA2, UA1 and PETRA), W and Z bosons (UA1, UA2), top quark (CDF, D0) and neutrino oscillations (SUPER-KAMIOKANDE, SNO). A large variety of different calorimeters have been developed covering an energy range between several and 1020 eV. This article tries to demonstrate on a few selected examples, such as the early jet searches in hadron-hadron collisions, direct dark matter searches, neutrino-less double beta decay and direct neutrino mass measurements, how the development of these devices has allowed to explore new frontiers in physics.

  2. Digital Hadron Calorimetry

    NASA Astrophysics Data System (ADS)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  3. Test of the statistical model in {sup 96}Mo with the BaF{sub 2}{gamma} calorimeter DANCE array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheets, S. A.; Mitchell, G. E.; Agvaanluvsan, U.

    2009-02-15

    The {gamma}-ray cascades following the {sup 95}Mo(n,{gamma}){sup 96}Mo reaction were studied with the {gamma} calorimeter DANCE (Detector for Advanced Neutron Capture Experiments) consisting of 160 BaF{sub 2} scintillation detectors at the Los Alamos Neutron Science Center. The {gamma}-ray energy spectra for different multiplicities were measured for s- and p-wave resonances below 2 keV. The shapes of these spectra were found to be in very good agreement with simulations using the DICEBOX statistical model code. The relevant model parameters used for the level density and photon strength functions were identical with those that provided the best fit of the data frommore » a recent measurement of the thermal {sup 95}Mo(n,{gamma}){sup 96}Mo reaction with the two-step-cascade method. The reported results strongly suggest that the extreme statistical model works very well in the mass region near A=100.« less

  4. CDF trigger interface board 'FRED'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, M.; Dell' Orso, M.; Giannetti, P.

    1985-08-01

    We describe FASTBUS boards which interface sixteen different trigger interrupts to the Collider Detector Facility (CDF) data acquisition system. The boards are known to CDF by the acronym 'FRED'. The data acquisition scheme for CDF allows for up to 16 different parts of the detector, called 'Partitions', to run independently. Four partitions are reserved for physics runs and sophisticated calibration and debugging: they use the common Level 1 and Level 2 trigger logic and have access to information from all the components of the CDF detector. These four partitions are called ''CDF Partitions''. The remaining twelve partitions have no accessmore » to the common trigger logic and provide their own Level 1 and Level 2 signals: they are called ''Autonomous Partitions''. Fred collects and interprets signals from independent parts of the CDF trigger system and delivers Level 1 and Level 2 responses to the Trigger Supervisors (FASTBUS masters which control the data acquisition process in each partition).« less

  5. Monte Carlo simulation of HERD calorimeter

    NASA Astrophysics Data System (ADS)

    Xu, M.; Chen, G. M.; Dong, Y. W.; Lu, J. G.; Quan, Z.; Wang, L.; Wang, Z. G.; Wu, B. B.; Zhang, S. N.

    2014-07-01

    The High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station is planned for operation starting around 2020 for about 10 years. It is designed as a next generation space facility focused on indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. The calorimeter plays an essential role in the main scientific objectives of HERD. A 3-D cubic calorimeter filled with high granularity crystals as active material is a very promising choice for the calorimeter. HERD is mainly composed of a 3-D calorimeter (CALO) surrounded by silicon trackers (TK) from all five sides except the bottom. CALO is made of 9261 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. Here the simulation results of the performance of CALO with GEANT4 and FLUKA are presented: 1) the total absorption CALO and its absorption depth for precise energy measurements (energy resolution: 1% for electrons and gammarays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV); 2) its granularity for particle identification (electron/proton separation power better than 10-5); 3) the homogenous geometry for detecting particles arriving from every unblocked direction for large effective geometrical factor (<3 m2sr for electron and diffuse gammarays, >2 m2sr for cosmic ray nuclei); 4) expected observational results such as gamma-ray line spectrum from dark matter annihilation and spectrum measurement of various cosmic ray chemical components.

  6. Perfomance of a compensating lead-scintillator hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.

    1987-12-01

    We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.

  7. Muon g-2 Calorimeter Prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a lowmore » energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.« less

  8. Production of [Formula: see text] and [Formula: see text] mesons up to high transverse momentum in pp collisions at 2.76 TeV.

    PubMed

    Acharya, S; Adamová, D; Aggarwal, M M; Rinella, G Aglieri; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, N; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Molina, R Alfaro; Alici, A; Alkin, A; Alme, J; Alt, T; Altsybeev, I; Prado, C Alves Garcia; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Awes, T; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Camejo, A Batista; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Martinez, H Bello; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Villar, E Calvo; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castellanos, J Castillo; Castro, A J; Casula, E A R; Sanchez, C Ceballos; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Barroso, V Chibante; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Balbastre, G Conesa; Valle, Z Conesa Del; Connors, M E; Contreras, J G; Cormier, T M; Morales, Y Corrales; Maldonado, I Cortés; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Corchero, M A Diaz; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Gimenez, D Domenicis; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Téllez, A Fernández; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Girard, M Fusco; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Ducati, M B Gay; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Coral, D M Goméz; Ramirez, A Gomez; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Corral, G Herrera; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Bustamante, R T Jimenez; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Uysal, A Karasu; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D; Kim, D W; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Meethaleveedu, G Koyithatta; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Fernandes, C Lagana; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; Monzón, I León; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; Torres, E López; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Cervantes, I Maldonado; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; García, G Martínez; Pedreira, M Martinez; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Pérez, J Mercado; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Khan, M Mohisin; Montes, E; De Godoy, D A Moreira; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; da Luz, H Natal; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; De Oliveira, R A Negrao; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Da Silva, A C Oliveira; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Velasquez, A Ortiz; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Da Costa, H Pereira; Peresunko, D; Lezama, E Perez; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Oskoń, M Pł; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Cahuantzi, M Rodríguez; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Montero, A J Rubio; Rueda, O V; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Muñoz, G Tejeda; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vyvre, P Vande; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Doce, O Vázquez; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Limón, S Vergara; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Baillie, O Villalobos; Tello, A Villatoro; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-01-01

    The invariant differential cross sections for inclusive [Formula: see text] and [Formula: see text] mesons at midrapidity were measured in pp collisions at [Formula: see text] TeV for transverse momenta [Formula: see text] GeV/ c and [Formula: see text] GeV/ c , respectively, using the ALICE detector. This large range in [Formula: see text] was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a new single-cluster, shower-shape based method was developed for the identification of high-[Formula: see text] neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/[Formula: see text], the measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the [Formula: see text], and between 30-50% for the [Formula: see text] meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at [Formula: see text] GeV/[Formula: see text]. The new data can therefore be used to further improve the theoretical description of [Formula: see text] and [Formula: see text] meson production.

  9. Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-03-09

    Here, detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J/ψ particles. Data collected in 2010 at √s = 7 TeV are used, corresponding to an integrated luminosity of almost 40 pb -1. The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.

  10. Research on calorimeter for high-power microwave measurements.

    PubMed

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  11. Status and New Results for the sPHENIX Calorimeter Systems

    DOE PAGES

    Woody, C.

    2017-11-27

    Here, the PHENIX Experiment at RHIC is planning a major upgrade that involves building an entirely new spectrometer, sPHENIX, that is based around the former BaBar solenoid magnet which will enable a comprehensive study of jets and heavy quarkonia in relativistic heavy ion collisions. It will include two new calorimeter systems, one electromagnetic and one hadronic, that will cover an acceptance of ±1.1 units in pseudorapidity and 2π in azimuth. The hadronic calorimeter will be a steel plate scintillating tile design that is read out with wavelength shifting fibers and silicon photomultipliers. It will be divided into two sections: onemore » (the Inner HCAL) will be situated inside the magnet and the other (the Outer HCAL) will be outside the magnet. The electromagnetic calorimeter will be a SPACAL design consisting of a tungsten powder epoxy matrix absorber with embedded scintillating fibers which are also read out with silicon photomultipliers. The design of sPHENIX and its calorimeter systems has made considerable progress over the past several years and is described in this paper. Prototypes of all three calorimeters were built and tested in the test beam at Fermilab in April of 2016, and the first preliminary results from this test, along with a comparison to Monte Carlo simulations, are also discussed.« less

  12. Status and New Results for the sPHENIX Calorimeter Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, C.

    Here, the PHENIX Experiment at RHIC is planning a major upgrade that involves building an entirely new spectrometer, sPHENIX, that is based around the former BaBar solenoid magnet which will enable a comprehensive study of jets and heavy quarkonia in relativistic heavy ion collisions. It will include two new calorimeter systems, one electromagnetic and one hadronic, that will cover an acceptance of ±1.1 units in pseudorapidity and 2π in azimuth. The hadronic calorimeter will be a steel plate scintillating tile design that is read out with wavelength shifting fibers and silicon photomultipliers. It will be divided into two sections: onemore » (the Inner HCAL) will be situated inside the magnet and the other (the Outer HCAL) will be outside the magnet. The electromagnetic calorimeter will be a SPACAL design consisting of a tungsten powder epoxy matrix absorber with embedded scintillating fibers which are also read out with silicon photomultipliers. The design of sPHENIX and its calorimeter systems has made considerable progress over the past several years and is described in this paper. Prototypes of all three calorimeters were built and tested in the test beam at Fermilab in April of 2016, and the first preliminary results from this test, along with a comparison to Monte Carlo simulations, are also discussed.« less

  13. The calorimeter system of the new muon g-2 experiment at Fermilab

    DOE PAGES

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; ...

    2015-12-02

    The electromagnetic calorimeter for the new muon ( g–2) experiment at Fermilab will consist of arrays of PbF 2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  14. Onboard calibration circuit for the DAMPE BGO calorimeter front-end electronics

    NASA Astrophysics Data System (ADS)

    Zhang, De-Liang; Feng, Chang-Qing; Zhang, Jun-Bin; Wang, Qi; Ma, Si-Yuan; Shen, Zhong-Tao; Jiang, Di; Gao, Shan-Shan; Zhang, Yun-Long; Guo, Jian-Hua; Liu, Shu-Bin; An, Qi

    2016-05-01

    DAMPE (DArk Matter Particle Explorer) is a scientific satellite which is mainly aimed at indirectly searching for dark matter in space. One critical sub-detector of the DAMPE payload is the BGO (bismuth germanium oxide) calorimeter, which contains 1848 PMT (photomultiplier tube) dynodes and 16 FEE (Front-End Electronics) boards. VA160 and VATA160, two 32-channel low power ASICs (Application Specific Integrated Circuits), are adopted as the key components on the FEEs to perform charge measurement for the PMT signals. In order to monitor the parameter drift which may be caused by temperature variation, aging, or other environmental factors, an onboard calibration circuit is designed for the VA160 and VATA160 ASICs. It is mainly composed of a 12-bit DAC (Digital to Analog Converter), an operational amplifier and an analog switch. Test results showed that a dynamic range of 0-30 pC with a precision of 5 fC (Root Meam Square, RMS) was achieved, which covers the VA160’s input range. It can be used to compensate for the temperature drift and test the trigger function of the FEEs. The calibration circuit has been implemented for the front-end electronics of the BGO Calorimeter and verified by all the environmental tests for both Qualification Model and Flight Model of DAMPE. The DAMPE satellite was launched at the end of 2015 and the calibration circuit will operate periodically in space. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202-4), and National Basic Research Program (973 Program) of China (2010CB833002) and National Natural Science Foundation of China (11273070)

  15. The physics of the knee in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Kampert, K.-H.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Blümer, H.; Bollmann, E.; Bozdog, H.

    Recent results from the KASCADE extensive air shower experiment are presented. After briefly reviewing the status of the experiment we report on tests of hadronic interaction models and emphasize the progress being made in understanding the properties and origin of the knee at Eknee ˜= 4 · 1015 eV. Analysing the muonand hadron trigger rates in the KASCADE calorimeter as well as the global properties of high energy hadrons in the shower core leads us to conclude that QGSJET still provides the best overall description of EAS data, being superior to DPMJET II-5 and NEXUS 2, for example. Performing high statistics CORSIKA simulations and applying sophisticated unfolding techniques to the electron and muon shower size distributions, we are able to successfully deconvolute the all-particle energy spectrum into energy spectra of 4 individual primary mass groups (p, He, C, Fe). Each of these preliminary energy distributions exhibits a knee like structure with a change of their knee positions suggesting a constant rigidity of R ˜= 2-3 PV.

  16. Spectra of double-cumulative photons in the central rapidity region at high transverse momenta

    NASA Astrophysics Data System (ADS)

    Alekseev, I. G.; Golubev, A. A.; Goryachev, V. S.; Dzubenko, G. B.; Dolgolenko, A. G.; Zhigareva, N. M.; Kiselev, S. M.; Mikhaylov, K. R.; Morozova, E. A.; Polozov, P. A.; Prokudin, M. S.; Romanov, D. V.; Svirida, D. N.; Stavinsky, A. V.; Stolin, V. L.; Sharkov, G. B.

    2015-11-01

    The spectra of photons produced in the interaction between carbon ions of kinetic energy 2.0 and 3.2 GeV per nucleon and beryllium nuclei were measured at the FLINT facility by means of electromagnetic calorimeters that is deployed at the accelerator of the Institute for Theoretical and Experimental Physics (ITEP, Moscow). The spectra in question were measured in the central rapidity region (at angles between 35° and 73° in the laboratory frame) at photon energies of 1 to 3 GeV by using a cumulative-photon trigger. An analysis of the data obtained in this way reveals that the interaction of multinucleon fluctuation in the projectile nucleus with a multinucleon fluctuation in the target nucleus is a dominant process that leads to photon production in the measured region of angles and momenta. As a development of the generally accepted terminology, an interaction of this type may be called a double cumulative interaction.

  17. A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases

    NASA Technical Reports Server (NTRS)

    Evans, Albert; Hibbard, Robert R

    1954-01-01

    A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.

  18. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.A.; et al.

    The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter (EMCal) prototype is composed of scintillating fibers embedded in a mixture of tungsten powder and epoxy. The hadronic calorimeter (HCal) prototype is composed of tilted steel plates alternating with plastic scintillator. Results of the test beam reveal the energy resolution for electrons in the EMCal ismore » $$2.8\\%\\oplus~15.5\\%/\\sqrt{E}$$ and the energy resolution for hadrons in the combined EMCal plus HCal system is $$13.5\\%\\oplus 64.9\\%/\\sqrt{E}$$. These results demonstrate that the performance of the proposed calorimeter system is consistent with \\geant simulations and satisfies the sPHENIX specifications.« less

  19. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  20. 40 CFR 98.254 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bomb Calorimeter (Precision Method) (incorporated by reference, see § 98.7). (2) ASTM D240-02 (Reapproved 2007) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter... Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98...

  1. 40 CFR 98.254 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bomb Calorimeter (Precision Method) (incorporated by reference, see § 98.7). (2) ASTM D240-02 (Reapproved 2007) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter... Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98...

  2. 40 CFR 98.254 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bomb Calorimeter (Precision Method) (incorporated by reference, see § 98.7). (2) ASTM D240-02 (Reapproved 2007) Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter... Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants (incorporated by reference, see § 98...

  3. The High Energy Particle Detector on Board of the China Seismo-Electromagnetic Satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta; Palma, Francesco; Panico, Beatrice; Sotgiu, Alessandro; Vitale, Vincenzo

    2016-08-01

    The study of the Van Allen belts temporal stability is among the main objectives of the China Seismo- Electromagnetic Satellite (CSES) space mission, as well as the study of other electromagnetic disturbances with possible seismic origin. In parallel to this, the CSES mission will address issues of heliospheric and magnetospheric physics, by measuring the cosmic radiation around the Earth.The CSES satellite, developed by a Chinese-Italian collaboration, will be launched in the first half of 2017 and inserted into a circular Sun-synchronous orbit with 98° inclination and 500 km altitude. The expected lifetime is 5 years. CSES hosts several instruments on board: 2 magnetometers, an electric field detector, a plasma analyser, a Langmuir probe and a High-Energy Particle Detector (HEPD). The HEPD detector, responsibility of the Italian side of the CSES collaboration, will measure electrons (3 - 100 MeV) and protons (30 - 300 MeV) along CSES orbit. It consists of a segmented layer of plastic scintillators for the trigger and a calorimeter constituted by a tower of plastic scintillator counters and a LYSO plane. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger. Topic of this talk is the technical description of the HEPD and its main characteristics.

  4. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    NASA Astrophysics Data System (ADS)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  5. Extraction of the photon beam asymmetry Sigma in pi 0 photoproduction off the proton using the CBELSA/TAPS experiment

    NASA Astrophysics Data System (ADS)

    Sparks, Nathan Andrew

    The CBELSA/TAPS experiment at the electron accelerator ELSA, in Bonn, Germany, was used in order to study the photoproduction of neutral pions off the proton with a linearly polarized photon beam; Neutral pions were reconstructed through their dominant decay mode into two photons. The photons were detected in a barrel/forward electromagnetic calorimeter system which covered 99% of the 4pi solid angle. The Crystal Barrel CsI(Tl) calorimeter detected photons at polar angles from 30° to 168°, while TAPS, a BaF2 spectrometer, covered forward polar angles from 5.8° to 30° and served as a fast trigger; Both calorimeters had complete azimuthal angular coverage. Coherent bremsstrahlung of electrons in a diamond radiator was used to produce a linearly polarized beam of photons with a coherent peak at 1305 or 1610 MeV. The analysis of these two datasets allowed for the measurement of the photon beam asymmetry in the beam photon energy range of 920 to 1680 MeV. For the first time, these results cover the very forward polar angles of the neutral pion. The measurements are compared to the SAID, MAID, and BnGa models and to previous measurements. These new measurements of the photon beam asymmetry contribute to the ongoing experimentally-driven exploration of the N and Delta resonances. The study of strange baryons provides a link between the strong interaction physics of the excited nucleons and the heavy flavor baryons. The upcoming GlueX experiment at Jefferson Lab is expected to provide an opportunity to examine strange baryons in much greater detail than ever before. GEANT-based Monte Carlo simulations of Cascade baryons at the GlueX experiment were conducted in order to better understand the capabilities of this experiment. A proposal, "An initial study of mesons and baryons containing strange quarks with GlueX", was submitted to the 40th Jefferson Lab Program Advisory Committee (PAC), in part, supported by these Cascade baryon simulations. 200 days of additional beam time were approved, with the proposal receiving an A scientific rating.

  6. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Treesearch

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  7. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzatu, Adrian

    2011-08-01

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has not yet been observed experimentally. If it exists, it explains the spontaneous electroweak symmetry breaking and the origin of mass for gauge bosons and fermions. We test the validity of the SM by performing a search for the associated production of a Higgs boson and a W boson in the channel where the Higgs boson decays to a bottom-antibottom quark pair and the W boson decays to a charged lepton and a neutrino (the WH channel). We study a dataset of proton-antiproton collisions atmore » a centre-of-mass energy √s = 1.96 TeV provided by the Tevatron accelerator, corresponding to an integrated luminosity of 5.7 fb -1, and recorded using the Collider Detector at Fermilab (CDF).We select events consistent with the signature of exactly one charged lepton (electron or muon), missing transverse energy due to the undetected neutrino (MET) and two collimated streams of particles (jets), at least one of which is required to be identified as originating from a bottom quark. We improve the discrimination of Higgs signal from backgrounds through the use of an artificial neural network. Using a Bayesian statistical inference approach, we set for each hypothetical Higgs boson mass in the range 100-150 GeV/c 2 with 5 GeV/c 2 increments a 95% credibility level (CL) upper limit on the ratio between the Higgs production cross section times branching fraction and the SM prediction. Our main original contributions are the addition of a novel charged lepton reconstruction algorithm with looser requirements (ISOTRK) with respect the electron or muon tight criteria (TIGHT), as well as the introduction of a novel trigger-combination method that allows to maximize the event yield while avoiding trigger correlations and that is used for the ISOTRK category. The ISOTRK candidate is a high-transverse-momentum good-quality track isolated from other activity in the tracking system and not required to match a calorimeter cluster, as for a tight electron candidate, or an energy deposit in the muon detector, as for a tight muon candidate. The ISOTRK category recovers real charged leptons that otherwise would be lost in the non-instrumented regions of the detector. This allows the reconstruction of more W boson candidates, which in turn increases the number of reconstructed WH signal candidate events, and therefore improves the sensitivity of the WH search. For the TIGHT charged lepton categories, we employ charged-lepton-dedicated triggers to improve the rate of WH signal acceptance during data taking. Since there is no ISOTRK-dedicated trigger at CDF, for the ISOTRK charged lepton category we employ three MET-plus-jets-based triggers. For each trigger we first identify the jet selection where the trigger efficiency is flat with respect to jet information (transverse energy and direction of motion in the transverse plane for the two jets in the event) and then we parametrize the trigger efficiency as a function of trigger MET. On an event-by-event basis, for each trigger we compute a trigger efficiency as a function of trigger parametrization, trigger MET, jet information, trigger prescale and information about whether the trigger is defined or not. For the ISOTRK category we combine the three triggers using a novel method, which allows the combination of any number of triggers in order to maximize the event yield while avoiding trigger correlations. On an event-by-event basis, only the trigger with the largest efficiency is used. By avoiding a logical 'OR' between triggers, the loss in the yield of events accepted by the trigger combination is compensated by a smaller and easier-to-compute corresponding systematic uncertainty. The addition of the ISOTRK charged lepton category to the TIGHT category produces an increase of 33% in the WH signal yield and a decrease of 15.5% to 19.0% in the median expected 95% CL cross-section upper limits across the entire studied Higgs mass interval. The improvement in analysis sensitivity is smaller than the improvement in signal yield because the ISOTRK category has a smaller signal over background ratio than the TIGHT category, due to the looser ISOTRK reconstruction criteria. The observed (median expected) 95% CL SM Higgs upper limits on cross section times branching ratio vary between 2.39 x SM (2.73 x SM) for a Higgs mass of 100 GeV/c 2 to 31.1 x SM (31.2 x SM) for a Higgs mass of 150 GeV/c 2, while the value for a 115 GeV/c 2 Higgs boson is that of 5.08 x SM (3.79 x SM). The novel trigger combination method is already in use by several CDF analyses. It is applicable to any analysis that uses triggers based on MET and jets, such as supersymmetry searches at the ATLAS and CMS experiments at the Large Hadron Collider. In its most general form, the method can be used by any analysis that combines any number of different triggers.« less

  8. Research on calorimeter for high-power microwave measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Hu; Ning, Hui; Yang, Wensen

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations andmore » a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.« less

  9. Photon - electron identification in the PHENIX Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Edouard, Kistenev; Gabor, David; Sebastian, White; Craig, Woody; Alexander, Bazilevsky; Vladimir, Kochetkov; Valeriy, Onuchin

    1998-10-01

    The results on the electron/hadron descrimination based upon analysis of the data collected from PHENIX electromagnetic calorimeter are presented. Two configurations are considered: (a) stand alone calorimeter; (b) calorimeter assisted by tracking devices to provide an independent estimates for particle momenta.

  10. Construction of the DHCAL

    NASA Astrophysics Data System (ADS)

    Francis, Kurt; CALICE Collaboration

    Particle Flow Algorithms (PFAs) have been proposed as a method of improving the jet energy resolution of future colliding beam detectors. PFAs require calorimeters with high granularity to enable three-dimensional imaging of events. The Calorimeter for the Linear Collider Collaboration (CALICE) is developing and testing prototypes of such highly segmented calorimeters. In this context, a large prototype of a Digital Hadron Calorimeter (DHCAL) was developed and constructed by a group led by Argonne National Laboratory. The DHCAL consists of 52 layers, instrumented with Resistive Plate Chambers (RPCs) and interleaved with steel absorber plates. The RPCs are read out by 1 x 1 cm2 pads with a 1-bit resolution (digital readout). The DHCAL prototype has approximately 480,000 readout channels. This talk reports on the design, construction and commissioning of the DHCAL. The DHCAL was installed at the Fermilab Test Beam Facility in fall 2010 and data was collected through the summer 2011.

  11. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Alexey; De Geronimo, GianLuigi; Vernon, Emerson

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm 2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. Themore » 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.« less

  12. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2018-08-01

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  13. Ultra-fast hadronic calorimetry

    DOE PAGES

    Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...

    2018-05-08

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  14. Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipton, R.

    2013-01-01

    Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less

  15. Search for Long-Lived Neutral Particles in Final States with Delayed Photon and Missing Transverse Energy from Proton-Proton Collisions Using the CMS detector

    NASA Astrophysics Data System (ADS)

    Tambe Ebai, Norbert

    We perform a search for long-lived neutral particles in final state with delayed photons and large missing transverse energy produced in LHC proton-proton collisions at center-of-mass energy, √s = 8 TeV. Capitalizing on the excellent timing resolution of the CMS Electromagnetic Calorimeter the search uses photon time measurements made by the Electromagnetic Calorimeter as the main search quantity. We found a single event consistent with our background expectations from the Standard Model and set a model-independent upper limit of 4.37 on number of signal events. We also interpret our results in the context of the SPS8 benchmark GMSB model and show that neutralinos with mean lifetime, tau PSneutralinoOne ≤ 45 ns, and mass, mPSneutralinoOne ≤ 300 GeV/c2, or effective Supersymmetry breaking energy scale, Lambda ≤ 220TeV, are ruled out of existence at 95% CLS confidence level. The exclusion limit on the product of the production cross-section and branching ratio of the neutralino to photon and gravitino decay channel, sigma(PSneutralinoOne → gamma + G˜) x BR, for different lifetimes and masses is derived. Our results confirm for the first time that the CMS Electromagnetic Calorimeter provides good sensitivity to search for long-lived neutral particles with lifetimes up to 40 ns and masses up to 300 GeV/c2 using only timing measurements.

  16. The new ATLAS Fast Calorimeter Simulation

    NASA Astrophysics Data System (ADS)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  17. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    NASA Astrophysics Data System (ADS)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  18. Precision Timing Calorimeter for High Energy Physics

    DOE PAGES

    Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; ...

    2016-04-01

    Here, we present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We also demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. Timing calorimetry is described as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider.

  19. Accuracy of a Portable Indirect Calorimeter for Measuring Resting Energy Expenditure in Individuals With Cancer.

    PubMed

    Purcell, Sarah A; Elliott, Sarah A; Ryan, Aoife M; Sawyer, Michael B; Prado, Carla M

    2018-06-05

    Determining optimal caloric intake for an individual with cancer is complicated by metabolic changes that occur, namely, alterations in resting energy expenditure (REE). There is currently no validated clinically available equation or tool to measure energy expenditure in these patients. Patients with newly diagnosed solid tumors underwent REE assessments using the FitMate GS portable indirect calorimeter and reference VMax metabolic cart; both used canopy hoods. REE was also estimated from the Harris-Benedict, Mifflin St. Jeor, and Henry equations for comparison. Data were analyzed using paired samples t-test and the Bland-Altman approach to assess group-level and individual-level agreement compared with the metabolic cart. A total 26 patients (19 males; body mass index: 27.8 ± 5.5 kg/m 2 ; age: 62 ± 10 years) participated in the study. Biases for the FitMate GS and both equations were low (ranging from -44 to -92 kcal or -2.3% to -5.1%), indicating good group-level accuracy. The FitMate GS had low bias, but the widest limits of agreement (-28.0% to 21.2%) compared with the 3 equations (Harris-Benedict: -15.8% to 11.2%; Mifflin St. Jeor: -17.1% to 6.9%; Henry: -15.4% to 11.5%). These differences were not due to volume of oxygen, BMI category, or sex. FitMate GS performed well on a group level, but its accuracy was poor on an individual level. Further research should develop better equations and validate tools to measure energy expenditure for accurate dietary recommendations for patients at nutrition risk. © 2018 American Society for Parenteral and Enteral Nutrition.

  20. The Electromagnetic Calorimeter of the future PANDA Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  1. Data Acquisition Software for Experiments at the MAMI-C Tagged Photon Facility

    NASA Astrophysics Data System (ADS)

    Oussena, Baya; Annand, John

    2013-10-01

    Tagged-photon experiments at Mainz use the electron beam of the MAMI (Mainzer MIcrotron) accelerator, in combination with the Glasgow Tagged Photon Spectrometer. The AcquDAQ DAQ system is implemented in the C + + language and makes use of CERN ROOT software libraries and tools. Electronic hardware is characterized in C + + classes, based on a general purpose class TDAQmodule and implementation in an object-oriented framework makes the system very flexible. The DAQ system provides slow control and event-by-event readout of the Photon Tagger, the Crystal Ball 4-pi electromagnetic calorimeter, central MWPC tracker and plastic-scintillator, particle-ID systems and the TAPS forward-angle calorimeter. A variety of front-end controllers running Linux are supported, reading data from VMEbus, FASTBUS and CAMAC systems. More specialist hardware, based on optical communication systems and developed for the COMPASS experiment at CERN, is also supported. AcquDAQ also provides an interface to configure and control the Mainz programmable trigger system, which uses FPGA-based hardware developed at GSI. Currently the DAQ system runs at data rates of up to 3MB/s and, with upgrades to both hardware and software later this year, we anticipate a doubling of that rate. This work was supported in part by the U.S. DOE Grant No. DE-FG02-99ER41110.

  2. Passive Nosetip Technology (PANT) Program. Volume X. Summary of Experimental and Analytical Results

    DTIC Science & Technology

    1975-01-01

    Scallop Calorimeter Data with Sandgrain Type Calorimeter Data 3-22 4-1 Geometry for 1.5-Inch Nose Radius Camphor Model 4-3 4-2 Shape Profile History for... camphor model tested at Re. - 5.104/ft and t - 5 in the NOL hypersonic wind Tunnel Number S. (a) Run 007, Sting 2 -Graphite (b) PANT Run 204 - Camphor ...Laminar region (a) Run 006, Sting 2 -Graphite (b) PANT Run 216 - Camphor low temperature ablator Figure 2-2. Comparison of Transitional Shapes The

  3. Noise dependence with pile-up in the ATLAS Tile Calorimeter. Pile-up noise studies in the ATLAS TileCal calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araque, J.P.

    The Tile Calorimeter, TileCal, is the central hadronic calorimeter of the ATLAS experiment, positioned between the electromagnetic calorimeter and the muon chambers. It comprises alternating layers of steel (as absorber material) and plastic (as active material), known as tiles. Between 2009 and 2012, the LHC has performed better than expected producing proton-proton collisions at a very high rate. These conditions are really challenging when dealing with the energy measurements in the calorimeter since not only the energy from an interesting event will be measured but a component coming from other collisions, which are difficult to distinguish from the interesting one,more » will also be present. This component is referred to as pile-up noise. Studies carried out to better understand how pile-up affects calorimeter noise under different circumstances are described. (author)« less

  4. CsI Calorimeter for a Compton-Pair Telescope

    NASA Astrophysics Data System (ADS)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk-reduction prototype telescope, Proto-ComPair. We will: 1. Purchase CsI(Tl) crystals, Silicon Photomultipliers (SiPMs), and components for the analog and digital readout of the SiPMs; 2. Assemble and test Crystal Detector Elements (CDEs) from crystals, SiPMs and optical wrap; 3. Assemble and test analog and digital front-end and readout control boards; 4. Fabricate the mechanical structure that supports and contains the CDEs and electronics boards; and 5. Assemble and test the CsI calorimeter, and integrate it with the remainder of the Proto-ComPair subsystems. The PI team for this proposal conceived, designed, developed, assembled, tested, and currently operates the LAT calorimeter and is uniquely qualified to leverage the experience gained from that effort for ComPair.

  5. Model for calorimetric measurements in an open quantum system

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay

    2018-05-01

    We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.

  6. Fast and accurate enzyme activity measurements using a chip-based microfluidic calorimeter.

    PubMed

    van Schie, Morten M C H; Ebrahimi, Kourosh Honarmand; Hagen, Wilfred R; Hagedoorn, Peter-Leon

    2018-03-01

    Recent developments in microfluidic and nanofluidic technologies have resulted in development of new chip-based microfluidic calorimeters with potential use in different fields. One application would be the accurate high-throughput measurement of enzyme activity. Calorimetry is a generic way to measure activity of enzymes, but unlike conventional calorimeters, chip-based calorimeters can be easily automated and implemented in high-throughput screening platforms. However, application of chip-based microfluidic calorimeters to measure enzyme activity has been limited due to problems associated with miniaturization such as incomplete mixing and a decrease in volumetric heat generated. To address these problems we introduced a calibration method and devised a convenient protocol for using a chip-based microfluidic calorimeter. Using the new calibration method, the progress curve of alkaline phosphatase, which has product inhibition for phosphate, measured by the calorimeter was the same as that recorded by UV-visible spectroscopy. Our results may enable use of current chip-based microfluidic calorimeters in a simple manner as a tool for high-throughput screening of enzyme activity with potential applications in drug discovery and enzyme engineering. Copyright © 2017. Published by Elsevier Inc.

  7. Numerical and Experimental Thermal Responses of Single-cell and Differential Calorimeters: from Out-of-Pile Calibration to Irradiation Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Carette, M.

    2015-07-01

    The nuclear radiation energy deposition rate (usually expressed in W.g{sup -1}) is a key parameter for the thermal design of experiments, on materials and nuclear fuel, carried out in experimental channels of irradiation reactors such as the French OSIRIS reactor in Saclay or inside the Polish MARIA reactor. In particular the quantification of the nuclear heating allows to predicting the heat and thermal conditions induced in the irradiation devices or/and structural materials. Various sensors are used to quantify this parameter, in particular radiometric calorimeters also called in-pile calorimeters. Two main kinds of in-pile calorimeter exist with in particular specific designs:more » single-cell calorimeter and differential calorimeter. The present work focuses on these two calorimeter kinds from their out-of-pile calibration step (transient and steady experiments respectively) to comparison between numerical and experimental results obtained from two irradiation campaigns (MARIA reactor and OSIRIS reactor respectively). The main aim of this paper is to propose a steady numerical approach to estimate the single-cell calorimeter response under irradiation conditions. (authors)« less

  8. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  9. Micro-fabricated DC comparison calorimeter for RF power measurement.

    PubMed

    Neji, Bilel; Xu, Jing; Titus, Albert H; Meltzer, Joel

    2014-10-27

    Diode detection and bolometric detection have been widely used to measure radio frequency (RF) power. However, flow calorimeters, in particular micro-fabricated flow calorimeters, have been mostly unexplored as power meters. This paper presents the design, micro-fabrication and characterization of a flow calorimeter. This novel device is capable of measuring power from 100 μW to 200 mW. It has a 50-Ohm load that is heated by the RF source, and the heat is transferred to fluid in a microchannel. The temperature change in the fluid is measured by a thermistor that is connected in one leg of a Wheatstone bridge. The output voltage change of the bridge corresponds to the RF power applied to the load. The microfabricated device measures 25.4 mm × 50.8 mm, excluding the power supplies, microcontroller and fluid pump. Experiments demonstrate that the micro-fabricated sensor has a sensitivity up to 22 × 10⁻³ V/W. The typical resolution of this micro-calorimeter is on the order of 50 μW, and the best resolution is around 10 μW. The effective efficiency is 99.9% from 0−1 GHz and more than 97.5% at frequencies up to 4 GHz. The measured reflection coefficient of the 50-Ohm load and coplanar wave guide is less than −25 dB from 0−2 GHz and less than −16 dB at 2−4 GHz.

  10. NREL Battery Calorimeters Win R&D 100 Award | News | NREL

    Science.gov Websites

    -lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is 3 » NREL Battery Calorimeters Win R&D 100 Award NREL Battery Calorimeters Win R&D 100 Award August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy

  11. CALORIC: A readout chip for high granularity calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Royer, L.; Bonnard, J.; Manen, S.

    2011-07-01

    A very-front-end electronics has been developed to fulfil requirements for the next generation of electromagnetic calorimeters. The compactness of this kind of detector and its large number of channels (up to several millions) impose a drastic limitation of the power consumption and a high level of integration. The electronic channel proposed is first of all composed of a low-noise Charge Sensitive Amplifier (CSA) able to amplify the charge delivered by a silicon diode up to 10 pC. Next, a two-gain shaping, based on a Gated Integration (G.I.), is implemented to cover the 15 bits dynamic range required: a high gainmore » shaper processes signals from 4 fC (charge corresponding to the MIP) up to 1 pC, and a low gain filter handles charges up to 10 pC. The G.I. performs also the analog memorization of the signal until it is digitalized. Hence, the analog-to-digital conversion is carried out through a low-power 12-bit cyclic ADC. If the signal overloads the high-gain channel dynamic range, a comparator selects the low-gain channel instead. Moreover, an auto-trigger channel has been implemented in order to select and store a valid event over the noise. The timing sequence of the channel is managed by a digital IP. It controls the G.I. switches, generates all needed clocks, drives the ADC and delivers the final result over 12 bits. The whole readout channel is power controlled, which permits to reduce the consumption according to the duty cycle of the beam collider. Simulations have been performed with Spectre simulator on the prototype chip designed with the 0.35 {mu}m CMOS technology from Austriamicrosystems. Results show a non-linearity better than 0.1% for the high-gain channel, and a non-linearity limited to 1% for the low-gain channel. The Equivalent Noise Charge referred to the input of the channel is evaluated to 0.4 fC complying with the MIP/10 limit. With the timing sequence of the International Linear Collider, which presents a duty cycle of 1%, the power consumption of the complete channel is limited to 43 {mu}W thanks to the power pulsing. The total area of the channel is 1.2 mm{sup 2} with an analog memory depth of 16. (authors)« less

  12. Last Improvements of the CALMOS Calorimeter Dedicated to Thermal Neutron Flux and Nuclear Heating Measurements inside the OSIRIS Reactor

    NASA Astrophysics Data System (ADS)

    Carcreff, H.; Salmon, L.; Lepeltier, V.; Guyot, J. M.; Bouard, E.

    2018-01-01

    Nuclear heating inside an MTR reactor needs to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. To improve the nuclear heating knowledge, an innovative calorimetric system CALMOS has been studied, manufactured and tested for the 70MWth OSIRIS reactor operated by CEA. This device is based on a mobile calorimetric probe which can be inserted in any in-core experimental location and can be moved axially from the bottom of the core to 1000 mm above the core mid-plane. Obtained results and advantages brought by the first CALMOS-1 equipment have been already presented. However, some difficulties appeared with this first version. A thermal limitation in cells did not allow to monitor nuclear heating up to the 70 MW nominal power, and some significant discrepancies were observed at high heating rates between results deduced from the calibration and those obtained by the "zero method". Taking this feedback into account, the new CALMOS-2 calorimeter has been designed both for extending the heating range up to 13W.g-1 and for improving the "zero method" measurement thanks to the implementation of a 4-wires technique. In addition, the new calorimeter has been designed as a real operational measurement system, well suited to characterize and to follow the radiation field evolution throughout the reactor cycle. To meet this requirement, a programmable system associated with a specific software allows automatic complete cell mobility in the core, the data acquisition and the measurements processing. This paper presents the analysis of results collected during the 2015 comprehensive measurement campaign. The 4-wires technique was tested up to around a 4 W.g-1 heating level and allowed to quantify discrepancies between "zero" and calibration methods. Thermal neutron flux and nuclear heating measurements from CALMOS-1 and CALMOS-2 are compared. Thermal neutron flux distributions, obtained with the Self-Power Neutron Detector suited to the CALMOS-2 calorimetric probe, are compared with those obtained with current devices. This campaign allowed to highlight advantages brought by the human machine interface automation, which deeply refined the profiles definition. Finally, the decay of the reactor residual power after shutdown could be performed after shutdown, demonstrating the ability of such type of calorimeter to follow the heating level whatever the thermohydraulic conditions, forced or natural convection regimes.

  13. Hybrid microwave/conventionally heated calorimeter

    NASA Astrophysics Data System (ADS)

    Binner, Jon G. P.; Price, Duncan M.; Reading, Mike; Vaidhyanathan, Bala

    2005-06-01

    The design and construction of a calorimeter in which the specimen may be heated by microwave radiation and/or hot air is described. The apparatus was used to examine the effect of microwave radiation on the melting of benzil (89°C) and the solid-state phase transition of silver iodide (147°C). Reproducibility of transition temperature determinations were within ±1°C. No changes were observed for benzil but silver iodide exhibited an apparent reduction in transition temperature to around 120°C in the presence of microwaves, which increased with the level of microwave irradiation.

  14. Electronics for a highly segmented electromagnetic calorimeter prototype

    NASA Astrophysics Data System (ADS)

    Fehlker, D.; Alme, J.; van den Brink, A.; de Haas, A. P.; Nooren, G.-J.; Reicher, M.; Röhrich, D.; Rossewij, M.; Ullaland, K.; Yang, S.

    2013-03-01

    A prototype of a highly segmented electromagnetic calorimeter has been developed. The detector tower is made of 24 layers of PHASE2/MIMOSA23 silicon sensors sandwiched between tungsten plates, with 4 sensors per layer, a total of 96 MIMOSA sensors, resulting in 39 MPixels for the complete prototype detector tower. The paper focuses on the electronics of this calorimeter prototype. Two detector readout and control systems are used, each containing two Spartan 6 and one Virtex 6 FPGA, running embedded Linux, each system serving 12 detector layers. In 550 ms a total of 4 Gbytes of data is read from the detector, stored in memory on the electronics and then shipped to the DAQ system via Gigabit ethernet.

  15. Resistive Plate Chambers for imaging calorimetry — The DHCAL

    NASA Astrophysics Data System (ADS)

    Repond, J.

    2014-09-01

    The DHCAL — the Digital Hadron Calorimeter — is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Flow Algorithms (PFAs) to the reconstruction of hadronic jet energies in a colliding beam environment. The readout of the chambers is segmented into 1 × 1 cm2 pads, each read out with a 1-bit (single threshold) resolution. The prototype with approximately 500,000 readout channels underwent extensive testing in both the Fermilab and CERN test beams. This talk presents preliminary findings from the analysis of data collected at the test beams.

  16. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  17. Online track detection in triggerless mode for INO

    NASA Astrophysics Data System (ADS)

    Jain, A.; Padmini, S.; Joseph, A. N.; Mahesh, P.; Preetha, N.; Behere, A.; Sikder, S. S.; Majumder, G.; Behera, S. P.

    2018-03-01

    The India based Neutrino Observatory (INO) is a proposed particle physics research project to study the atmospheric neutrinos. INO-Iron Calorimeter (ICAL) will consist of 28,800 detectors having 3.6 million electronic channels expected to activate with 100 Hz single rate, producing data at a rate of 3 GBps. Data collected contains a few real hits generated by muon tracks and the remaining noise-induced spurious hits. Estimated reduction factor after filtering out data of interest from generated data is of the order of 103. This makes trigger generation critical for efficient data collection and storage. Trigger is generated by detecting coincidence across multiple channels satisfying trigger criteria, within a small window of 200 ns in the trigger region. As the probability of neutrino interaction is very low, track detection algorithm has to be efficient and fast enough to process 5 × 106 events-candidates/s without introducing significant dead time, so that not even a single neutrino event is missed out. A hardware based trigger system is presently proposed for on-line track detection considering stringent timing requirements. Though the trigger system can be designed with scalability, a lot of hardware devices and interconnections make it a complex and expensive solution with limited flexibility. A software based track detection approach working on the hit information offers an elegant solution with possibility of varying trigger criteria for selecting various potentially interesting physics events. An event selection approach for an alternative triggerless readout scheme has been developed. The algorithm is mathematically simple, robust and parallelizable. It has been validated by detecting simulated muon events for energies of the range of 1 GeV-10 GeV with 100% efficiency at a processing rate of 60 μs/event on a 16 core machine. The algorithm and result of a proof-of-concept for its faster implementation over multiple cores is presented. The paper also discusses about harnessing the computing capabilities of multi-core computing farm, thereby optimizing number of nodes required for the proposed system.

  18. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  19. Monte Carlo Simulation of Massive Absorbers for Cryogenic Calorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, D.; Asai, M.; Brink, P.L.

    There is a growing interest in cryogenic calorimeters with macroscopic absorbers for applications such as dark matter direct detection and rare event search experiments. The physics of energy transport in calorimeters with absorber masses exceeding several grams is made complex by the anisotropic nature of the absorber crystals as well as the changing mean free paths as phonons decay to progressively lower energies. We present a Monte Carlo model capable of simulating anisotropic phonon transport in cryogenic crystals. We have initiated the validation process and discuss the level of agreement between our simulation and experimental results reported in the literature,more » focusing on heat pulse propagation in germanium. The simulation framework is implemented using Geant4, a toolkit originally developed for high-energy physics Monte Carlo simulations. Geant4 has also been used for nuclear and accelerator physics, and applications in medical and space sciences. We believe that our current work may open up new avenues for applications in material science and condensed matter physics.« less

  20. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  1. A calorimeter for determining radiation and convection in small-scale combustions

    Treesearch

    R.J. McCarter; A. Broido

    1966-01-01

    A "bench-top" calorimeter was constructed to determine the radiation-convection partition of energy released in the burning of fuel. Samples of 1 to 2 g, no larger than 4 cm in horizontal dimension, and with flame height less than 15 cm, can be accommodated. The apparatus functions by (1) absorbing radiant energy from the burning fuel in an insulated thin...

  2. Production summary for extended barrel module fabrication at Argonne for the ATLAS tile calorimeter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guarino, V.; Hill, N.; Petereit, E.

    The Tile Calorimeter is one of the main hadronic calorimeters to be used in the ATLAS experiment at CERN [1,2]. It is a steel/scintillator sampling calorimeter which is built by stacking 64 segments in azimuth and 3 separate cylinders to provide a total structure whose length is approximately 12m and whose diameter is a little over 8.4m. It has a total weight of about 2630 metric tons. Important features of this calorimeter are: A minimum gap (1.5mm) between modules in azimuth; Pockets in the structure to hold the scintillator tiles; Recessed channels at the edges of the module into whichmore » the readout fibers will sit; and Holes in the structure through which a radioactive source will pass. The mechanical structure for one of the 3 calorimeter sections, the Extended Barrel (EBA) was constructed at Argonne. A schematic of the calorimeter sampling structure and the layout of one of the 64 segments, termed a module, are shown in figure 1. Each module comprises mechanically of a precision machined, structural girder to which 10 submodules are bolted. One of these submodules, the ITC, has a customized shape to accommodate services for other detector elements. Each submodule weighs 850Kg and the assembled mechanical structure of the module weighs approximately 9000Kg (a fully instrumented Extended Barrel modules weighs {approx}9600Kg). A crucial issue for the tile calorimeter assembly is the minimization of the un-instrumented gap between modules when they are stacked on top of each other during final assembly. The design goal was originally 1mm gap which was eventually relaxed to 1.5mm following a careful evaluation of all tolerances in the construction and assembly process as shown in figure 2 [3]. Submodules for this assembly were produced at 4 locations [4] using tooling and procedures which were largely identical [5]. An important issue was the height of each submodule on the stacking fixture on which they were fabricated as this defines the length along the girder for installation, with a design gap between submodules on the girder of 0.3mm. During production we relaxed this tolerance to +0.3, -1.5mm. The height summary for submodules used at Argonne is shown in Appendix I. About 10 submodules fell outside the positive height envelope (due to the raw plate thickness being out of specification) and we constructed some custom short submodules to allow their use in module assembly. The structural girders were produced commercially following the Quality Control plan agreed to with the Tile Calorimeter collaboration and shipped to Argonne. The crucial tolerances on the girder are the key into which submodules are placed as well as the flatness of the key surface which are used in aligning submodules such that the azimuthal surface lies wholly an envelope of +0.75mm from nominal [6]. Another important characteristic of the girder are clearance holes through which the wavelength shift fibers pass to couple the light to photomultipliers located inside the girder, as described in [2]. Since these fiber bundles must be located to high precision, rather than position the holes in the steel to this precision, tooling was developed by which the precision pieces are glued into the girder [7]. This is shown in figure 3. More details on the pieces used to accomplish this interface to the readout electronics are discussed in [2].« less

  3. INTEGRAL Observations of GW170104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, V.; Ferrigno, C.; Bozzo, E.

    2017-09-10

    We used data from the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) to set upper limits on the γ -ray and hard X-ray prompt emission associated with the gravitational-wave event GW170104, discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo collaboration. The unique omnidirectional viewing capability of the instruments on board INTEGRAL allowed us to examine the full 90% confidence level localization region of the LIGO trigger. Depending on the particular spectral model assumed and the specific position within this region, the upper limits inferred from the INTEGRAL observations range from F {sub γ} = 1.9 × 10{sup −7} erg cm{supmore » −2} to F {sub γ} = 10{sup −6} erg cm{sup −2} (75 keV–2 MeV energy range). This translates into a ratio between the prompt energy released in γ -rays along the direction to the observer and the gravitational-wave energy of E {sub γ} / E {sub GW} < 2.6 × 10{sup −5}. Using the INTEGRAL results, we cannot confirm the γ -ray proposed counterpart to GW170104 by the Astro—Rivelatore Gamma a Immagini Leggero (AGILE) team with the mini-Calorimeter (MCAL) instrument. The reported flux of the AGILE/MCAL event, E2, is not compatible with the INTEGRAL upper limits within most of the 90% LIGO localization region. There is only a relatively limited portion of the sky where the sensitivity of the INTEGRAL instruments was not optimal and the lowest-allowed fluence estimated for E2 would still be compatible with the INTEGRAL results. This region was also observed independently by Fermi /Gamma-ray Burst Monitor and AstroSAT, from which, as far as we are aware, there are no reports of any significant detection of a prompt high-energy event.« less

  4. High-Energy 3D Calorimeter for Use in Gamma-Ray Astronomy Based on Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.

    2017-01-01

    We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.

  5. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  6. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE PAGES

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...

    2017-12-19

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  7. Micro Calorimeter for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  8. Assessment of Space Power Related Measurement Requirements of the Strategic Defense Initiative

    DTIC Science & Technology

    1989-04-01

    calibration techniques are available and estimated uncertainties vary between 5 and 10%. At low rf power levels (~ 10mW ), NIST maintains standard calibration... bands single or dual six-port automatic network analyzers [24] are used as transfer systems with detectors calibrated using the NIST micro calorimeter...Probable designs for the multimegawatt space reactor program indicate the need to measure neutron fluxes up to 1016 neutrons/cm2- s (1019 neutrons

  9. The CMS electron and photon trigger for the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Dezoort, Gage; Xia, Fan

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.

  10. SHMS Hodoscopes and Time of Flight System

    NASA Astrophysics Data System (ADS)

    Craycraft, Kayla; Malace, Simona

    2017-09-01

    As part of the Thomas Jefferson National Accelerator Facility's (Jefferson Lab) upgrade from 6 GeV to 12 GeV, a new magnetic focusing spectrometer, the Super High Momentum Spectrometer (SHMS), was installed in experimental Hall C. The detector stack consists of horizontal drift chambers for tracking, gas Cerenkov and Aerogel detectors and a lead glass calorimeter for particle identification. A hodoscope system consisting of three planes of scintillator detectors (constructed by James Madison University) and one plane of quartz bars (built by North Carolina A&T State University) is used for triggering and time of flight measurements. This presentation consists of discussion of the installation, calibration, and characterization of the detectors used in this Time of Flight system. James Madison University, North Carolina A&T State University.

  11. Testing a prototype BGO calorimeter with 100-800 MeV positron beams

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Fujimura, H.; Grigoriev, D. N.; Hashimoto, R.; Kaida, S.; Kitazawa, R.; Kuznetsov, G. N.; Nakamura, A.; Shimizu, H.; Suzuki, K.; Takahashi, S.; Tsuchikawa, Y.; Vasiliev, Ya. V.; Yamazaki, H.

    2016-11-01

    An electromagnetic calorimeter, BGOegg, composed of 1320 BGO crystals, has been constructed at the Research Center for Electron Photon Science, Tohoku University to study the structure of hadrons in detail using photo-induced reactions. The design of the new electromagnetic calorimeter and the basic characteristics of the manufactured BGO crystals are described. A performance test has been conducted for the prototype, which consists of 25 crystals arranged in a 5×5 matrix, using positron beams at energies ranging from 100 to 800 MeV. The obtained energy resolution is (σE / E) 2 =(0.63 %) 2 +(1.15 % ± 0.04 %) 2 /(E / GeV) +(0.42 % ± 0.03 %) 2 /(E / GeV) 2 at room temperature. The energy resolution corresponds to 1.38 % ± 0.05 % for 1-GeV positrons. The position resolution is found to be σr / mm =(3.07 ± 0.03)(E / GeV) - 0.202 ± 0.008 which corresponds to an angular resolution of approximately 1 ° for 1-GeV positrons.

  12. Current status of tritium calorimetry at TLK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.

    2015-03-15

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdatedmore » interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)« less

  13. An Imaging Calorimeter for Access-Concept Study

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.; Adams, James H.; Binns, R. W.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; hide

    2001-01-01

    A mission concept study to define the "Advanced Cosmic-ray Composition Experiment for Space Station (ACCESS)" was sponsored by the National Aeronautics and Space Administration (NASA). The ACCESS instrument complement contains a transition radiation detector and an ionization calorimeter to measure tile spectrum of protons, helium, and heavier nuclei up to approximately 10(exp 15) eV to search for the limit of S/N shock wave acceleration, or evidence for other explanations of the spectra. Several calorimeter configurations have been studied, including the "baseline" totally active bismuth germanate instrument and sampling calorimeters utilizing various detectors. The Imaging Calorimeter for ACCESS (ICA) concept comprises a carbon target and a calorimeter using a high atomic number absorber sampled approximately each radiation length (rl) by thin scintillating fiber (SCIFI) detectors. The main features and options of the ICA instrument configuration are described in this paper. Since direct calibration is not possible over most of the energy range, the best approach must be decided from simulations of calorimeter performance extrapolated from CERN calibrations at 0.375 TeV. This paper presents results from the ICA simulations study.

  14. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  15. PGAS in-memory data processing for the Processing Unit of the Upgraded Electronics of the Tile Calorimeter of the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Ohene-Kwofie, Daniel; Otoo, Ekow

    2015-10-01

    The ATLAS detector, operated at the Large Hadron Collider (LHC) records proton-proton collisions at CERN every 50ns resulting in a sustained data flow up to PB/s. The upgraded Tile Calorimeter of the ATLAS experiment will sustain about 5PB/s of digital throughput. These massive data rates require extremely fast data capture and processing. Although there has been a steady increase in the processing speed of CPU/GPGPU assembled for high performance computing, the rate of data input and output, even under parallel I/O, has not kept up with the general increase in computing speeds. The problem then is whether one can implement an I/O subsystem infrastructure capable of meeting the computational speeds of the advanced computing systems at the petascale and exascale level. We propose a system architecture that leverages the Partitioned Global Address Space (PGAS) model of computing to maintain an in-memory data-store for the Processing Unit (PU) of the upgraded electronics of the Tile Calorimeter which is proposed to be used as a high throughput general purpose co-processor to the sROD of the upgraded Tile Calorimeter. The physical memory of the PUs are aggregated into a large global logical address space using RDMA- capable interconnects such as PCI- Express to enhance data processing throughput.

  16. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Bailey, M; Shipley, D; Al-Sulaiti, L; Cirrone, P; Romano, F; Kacperek, A; Bertrand, D; Vynckier, S

    2012-06-01

    The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q 0 . To decrease this uncertainty, a quantification of kQ,Q 0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q 0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program of the Wallon Government. © 2012 American Association of Physicists in Medicine.

  17. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The paper will concern these two kinds of calorimetric sensors. It will focus in particular on studies on their out-of-pile calibrations. Firstly, the characteristics of the sensor designs will be detailed (such as geometry, dimension, material sample, assembly, instrumentation). Then the out-of-pile calibration methods will be described. Furthermore numerical results obtained thanks to 2D axisymmetrical thermal simulations (Finite Element Method, CAST3M) and experimental results will be presented for each sensor. A comparison of the two different thermal sensor behaviours will be realized. To conclude a discussion of the advantages and the drawbacks of each sensor will be performed especially regarding measurement methods. (authors)« less

  18. The performance of the jet trigger for the ATLAS detector during 2011 data taking

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-10-01

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton-proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon-nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.

  19. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  20. Processing of the Liquid Xenon calorimeter's signals for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Yudin, Yu V.

    2014-09-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.

  1. Comparison of hadron shower data in the PAMELA experiment with Geant 4 simulations

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Dunaeva, O. A.; Bogomolov, Yu V.; Lukyanov, A. D.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.

    2017-01-01

    The sampling imaging electromagnetic calorimeter of ≈ 16.3 radiation lengths and ≈ 0.6 nuclear interaction length designed and constructed by the PAMELA collaboration as a part of the large magnetic spectrometer PAMELA. Calorimeter consists of 44 single-sided silicon sensor planes interleaved with 22 plates of tungsten absorber (thickness of each tungsten layer 0.26 cm). Silicon planes are composed of a 3 × 3 matrix of silicon detectors, each segmented into 32 read-out strips with a pitch of 2.4 mm. The orientation of the strips of two consecutive layers is orthogonal and therefore provides two-dimensional spatial information. Due to the high granularity, the development of hadronic showers can be study with a good precision. In this work a Monte Carlo simulations (based on Geant4) performed using different available models, and including detector and physical effects, compared with the experimental data obtained on the near Earth orbit. Response of the PAMELA calorimeter to hadronic showers investigated including total energy release in calorimeter and transverse shower profile characteristics.

  2. Ultra-Fast Hadronic Calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less

  3. Development of a scintillating optical fiber ionization calorimeter

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.

    1990-10-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  4. Theory and Development of Position-Sensitive Quantum Calorimeters. Degree awarded by Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali; White, Nicholas E. (Technical Monitor)

    2001-01-01

    Quantum calorimeters are being developed as imaging spectrometers for future X-ray astrophysics observatories. Much of the science to be done by these instruments could benefit greatly from larger focal-plane coverage of the detector (without increasing pixel size). An order of magnitude more area will greatly increase the science throughput of these future instruments. One of the main deterrents to achieving this goal is the complexity of the readout schemes involved. We have devised a way to increase the number of pixels from the current baseline designs by an order of magnitude without increasing the number of channels required for readout. The instrument is a high energy resolution, distributed-readout imaging spectrometer called a Position-Sensitive Transition-Edge Sensor (POST). A POST is a quantum calorimeter consisting of two Transition-Edge Sensors (TESS) on the ends of a long absorber capable of one-dimensional imaging spectroscopy. Comparing rise time and energy information from the two TESS, the position of the event in the POST is determined. The energy of the event is inferred from the sum of the two pulses. We have developed a generalized theoretical formalism for distributed-readout calorimeters and apply it to our devices. We derive the noise theory and calculate the theoretical energy resolution of a POST. Our calculations show that a 7-pixel POST with 6 keV saturation energy can achieve 2.3 eV resolution, making this a competitive design for future quantum calorimeter instruments. For this thesis we fabricated 7- and 15-pixel POSTS using Mo/Au TESs and gold absorbers, and moved from concept drawings on scraps of napkins to a 32 eV energy resolution at 1.5 keV, 7-pixel POST calorimeter.

  5. Development of a scintillating optical fiber ionization calorimeter

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.

    1990-01-01

    A design study of a scintillation fiber (SF) calorimeter for a cosmic ray observation is made. An evaluation of various fibers and design configuration was made. The proposed design has a dimension of 1 m (W) x 1 m (L) x 16 cm (H) contains 1000 fibers at each of 40 x- or 40 y-layers interleaved with 1mm thick leadplates. Two or four CCD Particle Track Imaging Systems are connected to a bundle of SF edges at x- and y-ends. The overall weight of a calorimeter is 1,200 kg including read-out systems and supporting boards. The designed calorimeter can measure cosmic ray nuclei and gamma-rays with position, angles and energy information suitable for detailed spectrum analysis. The system is particularly beneficial at very high energies where the flux is extremely low and it requires a very long exposure over many years in space. Emulsion chambers have an advantage for cosmic ray measurements if the exposure is limited to several months in space. In fact, the most important energy region for the current cosmic ray studies is at around 1,000 TeV where a drastic change of elemental composition is indicated by various indirect observations. A detector whose size is in the order of 1 m(sup 2) requires several years of exposure in space accumulate sufficient statistics near 1,000 TeV. Emulsions will be strongly contaminated by background radiation for such a long duration flight, while SF calorimeter is totally immune from this concern. This is particularly important for long-duration experiments. The SF calorimeter also allows time-tagging of individual events, extending the experimental capability in various ways.

  6. The CMS Level-1 trigger for LHC Run II

    NASA Astrophysics Data System (ADS)

    Tapper, A.

    2018-02-01

    During LHC Run II the centre-of-mass energy of pp collisions has increased from 8 TeV up to 13 TeV and the instantaneous luminosity has progressed towards 2 × 1034 cm-2s-1. In order to guarantee a successful and ambitious physics programme under these conditions, the CMS trigger system has been upgraded. The upgraded CMS Level-1 trigger is designed to improve performance at high luminosity and large number of simultaneous inelastic collisions per crossing. The trigger design, implementation and commissioning are summarised, and performance results are described.

  7. Search for narrow and broad dijet resonances in proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV and constraints on dark matter mediators and other new particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Searches for resonances decaying into pairs of jets are performed using proton-proton collision data collected atmore » $$\\sqrt{s} =$$ 13 TeV corresponding to an integrated luminosity of up to 36 fb$$^{-1}$$. A low-mass search, for resonances with masses between 0.6 and 1.6 TeV, is performed based on events with dijets reconstructed at the trigger level from calorimeter information. A high-mass search, for resonances with masses above 1.6 TeV, is performed using dijets reconstructed offline with a particle-flow algorithm. The dijet mass spectrum is well described by a smooth parameterization and no evidence for the production of new particles is observed. Upper limits at 95% confidence level are reported on the production cross section for narrow resonances with masses above 0.6 TeV. In the context of specific models, the limits exclude string resonances with masses below 7.7 TeV, scalar diquarks below 7.2 TeV, axigluons and colorons below 6.1 TeV, excited quarks below 6.0 TeV, color-octet scalars below 3.4 TeV, W' bosons below 3.3 TeV, Z' bosons below 2.7 TeV, Randall-Sundrum gravitons below 1.8 TeV and in the range 1.9 to 2.5 TeV, and dark matter mediators below 2.6 TeV. The limits on both vector and axial-vector mediators, in a simplified model of interactions between quarks and dark matter particles, are presented as functions of dark matter particle mass and coupling to quarks. Searches are also presented for broad resonances, including for the first time spin-1 resonances with intrinsic widths as large as 30% of the resonance mass. The broad resonance search improves and extends the exclusions of a dark matter mediator to larger values of its mass and coupling to quarks.« less

  8. Design and performance of an electromagnetic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Zaborowska, A.

    2018-03-01

    The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

  9. Precision closed bomb calorimeter for testing flame and gas producing initiators

    NASA Technical Reports Server (NTRS)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  10. Project SQUID. Bulletin of the Instrumentation Panel. Number 2

    DTIC Science & Technology

    1948-05-01

    protecting tubes to be used In gas turbines* -15- It is convenient to make the pressure seal at the cool end of the protecting tube with an...illustrates the effect of a slight misalignment of the turbine wheel. Since the leakage between the nozzle and the openings in the wheel varied...calorimeter proper, whier it traverses a labyrinth surrounding a constantan heater, and leaves the calorimeter through a throttle valve. The

  11. High energy ion collisions. Final technical report, December 14, 1995--March 17, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacak, B.V.

    1997-12-31

    This grant supported one year of work on Relativistic Heavy Ion Collisions at the University of New Mexico. The Principal Investigator, an Adjunct Associate Professor at UNM, recruited a student (Mikhail Kopytine), sent him to CERN for several months to participate in the final data taking period of the NA44 experiment at CERN, then initiated analysis of the data collected during the run. A Hewlett-Packard workstation was purchased and Mr. Kopytine performed calibration, software development, and data analysis using it. A collaboration between Los Alamos National Laboratory and other faculty members at the University of New Mexico was begun, withmore » the goal of working closely together on the PHENIX experiment for RHIC. At this time, a close collaboration continues, centered around the Muon tracking detectors for PHENIX. Station 1 of the tracking system is under construction at UNM, while stations 2 and 3 are the responsibility of LANL. The following accomplishments were made: (1) Participation in final data taking period of NA44; (2) Work on commissioning of aerogel Cerenkov trigger and performed offline analysis to demonstrate its performance; (3) Calibration of the uranium calorimeter in NA44 in preparation for Data Summary Tape production; (4) An optimized DST production for tapes with single pion, kaon, and proton triggers for Pb+Pb collisions was performed; (5) Analysis of pion and kaon distributions and production cross sections from Pb+Pb collisions; and (6) Participation in MVD development meetings and contributed to planning of the analysis software for MVD.« less

  12. The performance of the jet trigger for the ATLAS detector during 2011 data taking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by themore » trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.« less

  13. The performance of the jet trigger for the ATLAS detector during 2011 data taking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Eventsmore » are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.« less

  14. The performance of the jet trigger for the ATLAS detector during 2011 data taking

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-09-27

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by themore » trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.« less

  15. The performance of the jet trigger for the ATLAS detector during 2011 data taking.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; Abolins, M; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kentaro, K; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Mansoulie, B; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton-proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon-nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.

  16. Measurement of the hadronic background in the identification of muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuchs, Reinhard

    1982-10-01

    A 2 /times/ 2 m/sup 2/-sized prototype of the muon detector for the UA1 experiment at the pp storage ring of the European Nuclear Research Center CERN was tested in a negative pion beam with 10 GeV/c momentum. The muon detector consists of drift tubes with an optimized, simple electric field configuration. The spatial resolution of the drift tubes lies between 0.2 and 0.3 mm for perpendicular particle incidence, and decreases up to 1 mm for an incidence angle of 60/degree/. Non-linearities in the location-time relation are explainable from the shape of the electric field. The hadronic punch-through was studiedmore » in connection with the calorimeters of the UA1 experiment. This punch-through forms a strong source of background in muon identification. In the momentum range from 2 GeV/c to 10 GeV/c and an equivalent calorimeter thickness of 102 cm of iron the probability for hadronic punch-through W/sub h/ is described. W/sub h/ is taken with respect to an incident pion. By inserting additional calorimeters, each equivalent to 24.3 cm of iron, the punch-through is reduced by a factor of 1/3. Only at high particle momenta above 5 GeV/c does the information from the calorimeters make punch-through suppression possible. At lower momenta in the range of 2 to 3 GeV/c an angle cut for the tracks in the muon detector as reconstructed in two projections is very effective. This suppresses the punch-through by a factor of 20 to 50, without losing more than 5% of the muons with a momentum greater than 10 GeV/c. 36 refs., 46 figs., 5 tabs.« less

  17. Simulation of Energy Response of the ATIC Calorimeter

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.; hide

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/ decreases from 50% for protons to about 15% for iron. These values were obtained for the spectral index gamma=1.6

  18. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  19. Nuclear heating measurements by in-pile calorimetry: prospective works for a microsensor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynard-Carette, C.; Carette, M.; Aguir, K.

    Since 2009 works have been performed in the framework of joint research programs between CEA and Aix-Marseille University. The main aim of these programs is to design and develop in-pile instrumentations, advanced calibration procedure and accurate measurement methods in particular for the new Material Testing Reactor (MTR) under construction in the South of France: Jules Horowitz Reactor (JHR). One major sensor is a specific radiometric calorimeter, which was studied out-of-pile from a thermal point of view and in-pile during irradiation campaigns. This sensor type is dedicated to measurements of nuclear heating (energy deposition rate per mass unit induced by interactionsmore » between nuclear rays and matter) inside experimental channels of MTRs. This kind of in-pile calorimeter corresponds to heat flux calorimeter exchanging with the external cooling fluid. This thermal running mode allows the establishment of steady thermal conditions inside the sensor to carry out online continuous measurements inside the reactor (core or reflector). Two main types of calorimeters exist. The first type consists of a single cell calorimeter. It is divided into a sample of material to be tested and a jacket instrumented with two thermocouples or a single thermocouple (Gamma Thermometer). The second, called a differential calorimeter, is composed of two superposed twin cells (a measurement cell containing a sample of material, and a reference cell to remove the heating of the cell body) instrumented with four thermocouples and two electrical heaters. Contrary to a single-cell calorimeter, a differential calorimeter allows the compensation of the parasite nuclear heating of the sensor body or jacket. Moreover, it possesses interesting advantages: thanks to the heaters embedded in the cells, three different measurement methods can be applied during irradiations to quantify nuclear heating. The first one is based on the use of out-of-pile calibration curves obtained by generating a heat source by the Joule Effect inside each calorimetric cell. The second one is a zero method consisting in cancelling the difference in cell responses with an additional energy into the reference cell. The last measurement method is based on current additions in the two calorimetric cells. However, one drawback of the existing differential calorimeter is the size of the sensor: a great length equal to 220 mm and a diameter equal to 18 mm. This current size leads to measurement limitations. This paper will begin with a presentation of these measurement limitations from a bibliographic state. Each limitation will be detailed and in particular in the case of a high nuclear heating level expected, for instance, inside the JHR's core at its highest nominal power. The second part of the paper will develop the scientific skills of each partner in heat sciences, micro technology and nuclear physics necessary to design a new calorimetric micro-system: the advantages of studied microelements such as micro-thermocouples, micro- fluxmeters and micro-heaters will be presented. The last part will discuss preliminary designs. (authors)« less

  20. Description of a Sensitive Seebeck Calorimeter Used for Cold Fusion Studies

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    A sensitive and stable Seebeck calorimeter is described and used to determine the heat of formation of PdD. This determination can be used to show that such calorimeters are sufficiently accurate to measure the LENR effect and give support to the claims.

  1. Comparison of Measured and Simulated Albedo Signals in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    Albedo, radiation backscattered from an interaction and from the subsequent shower development, provides a 'background' for calorimeter experiments. In ATIC (Advanced Thin Ionization Calorimeter), a balloon borne instrument to measure cosmic ray composition and energy spectra for elements from hydrogen to iron from 30 GeV to near 100 TeV, a fully active BGO calorimeter follows a carbon interaction target and scintillator holdoscopes. The first detector is a silicon matrix constructed of 4480 individual silicon pixels, each 2 cm x 1.5 cm, that provide a measurement of the charge of the primary particle in the presence of albedo. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). A comparison of albedo signals in the silicon matri:x in ATIC-1 experiment with simulations performed using the GEANT 3.21 code and the QGSM event generator for nucleus-nucleus interactions is presented.

  2. The CMS experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer, H.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Glaser, P.; Hartl, C.; Hoermann, N.; Hrubec, J.; Hänsel, S.; Jeitler, M.; Kastner, K.; Krammer, M.; Magrans de Abril, I.; Markytan, M.; Mikulec, I.; Neuherz, B.; Nöbauer, T.; Oberegger, M.; Padrta, M.; Pernicka, M.; Porth, P.; Rohringer, H.; Schmid, S.; Schreiner, T.; Stark, R.; Steininger, H.; Strauss, J.; Taurok, A.; Uhl, D.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Petrov, V.; Prosolovich, V.; Chekhovsky, V.; Dvornikov, O.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Marfin, I.; Mossolov, V.; Shumeiko, N.; Solin, A.; Stefanovitch, R.; Suarez Gonzalez, J.; Tikhonov, A.; Fedorov, A.; Korzhik, M.; Missevitch, O.; Zuyeuski, R.; Beaumont, W.; Cardaci, M.; DeLanghe, E.; DeWolf, E. A.; Delmeire, E.; Ochesanu, S.; Tasevsky, M.; Van Mechelen, P.; D'Hondt, J.; DeWeirdt, S.; Devroede, O.; Goorens, R.; Hannaert, S.; Heyninck, J.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Yu, C.; Bouhali, O.; Charaf, O.; Clerbaux, B.; DeHarenne, P.; DeLentdecker, G.; Dewulf, J. P.; Elgammal, S.; Gindroz, R.; Hammad, G. H.; Mahmoud, T.; Neukermans, L.; Pins, M.; Pins, R.; Rugovac, S.; Stefanescu, J.; Sundararajan, V.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Tytgat, M.; Assouak, S.; Bonnet, J. L.; Bruno, G.; Caudron, J.; DeCallatay, B.; DeFavereau DeJeneret, J.; DeVisscher, S.; Demin, P.; Favart, D.; Felix, C.; Florins, B.; Forton, E.; Giammanco, A.; Grégoire, G.; Jonckman, M.; Kcira, D.; Keutgen, T.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Schul, N.; Van der Aa, O.; Beliy, N.; Daubie, E.; Herquet, P.; Alves, G.; Pol, M. E.; Souza, M. H. G.; Vaz, M.; DeJesus Damiao, D.; Oguri, V.; Santoro, A.; Sznajder, A.; DeMoraes Gregores, E.; Iope, R. L.; Novaes, S. F.; Tomei, T.; Anguelov, T.; Antchev, G.; Atanasov, I.; Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Cheshkov, C.; Dimitrov, A.; Dyulendarova, M.; Glushkov, I.; Kozhuharov, V.; Litov, L.; Makariev, M.; Marinova, E.; Markov, S.; Mateev, M.; Nasteva, I.; Pavlov, B.; Petev, P.; Petkov, P.; Spassov, V.; Toteva, Z.; Velev, V.; Verguilov, V.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Jiang, C. H.; Liu, B.; Shen, X. Y.; Sun, H. S.; Tao, J.; Wang, J.; Yang, M.; Zhang, Z.; Zhao, W. R.; Zhuang, H. L.; Ban, Y.; Cai, J.; Ge, Y. C.; Liu, S.; Liu, H. T.; Liu, L.; Qian, S. J.; Wang, Q.; Xue, Z. H.; Yang, Z. C.; Ye, Y. L.; Ying, J.; Li, P. J.; Liao, J.; Xue, Z. L.; Yan, D. S.; Yuan, H.; Carrillo Montoya, C. A.; Sanabria, J. C.; Godinovic, N.; Puljak, I.; Soric, I.; Antunovic, Z.; Dzelalija, M.; Marasovic, K.; Brigljevic, V.; Kadija, K.; Morovic, S.; Fereos, R.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.; Hektor, A.; Kadastik, M.; Kannike, K.; Lippmaa, E.; Müntel, M.; Raidal, M.; Rebane, L.; Aarnio, P. A.; Anttila, E.; Banzuzi, K.; Bulteau, P.; Czellar, S.; Eiden, N.; Eklund, C.; Engstrom, P.; Heikkinen, A.; Honkanen, A.; Härkönen, J.; Karimäki, V.; Katajisto, H. M.; Kinnunen, R.; Klem, J.; Kortesmaa, J.; Kotamäki, M.; Kuronen, A.; Lampén, T.; Lassila-Perini, K.; Lefébure, V.; Lehti, S.; Lindén, T.; Luukka, P. R.; Michal, S.; Moura Brigido, F.; Mäenpää, T.; Nyman, T.; Nystén, J.; Pietarinen, E.; Skog, K.; Tammi, K.; Tuominen, E.; Tuominiemi, J.; Ungaro, D.; Vanhala, T. P.; Wendland, L.; Williams, C.; Iskanius, M.; Korpela, A.; Polese, G.; Tuuva, T.; Bassompierre, G.; Bazan, A.; David, P. Y.; Ditta, J.; Drobychev, G.; Fouque, N.; Guillaud, J. P.; Hermel, V.; Karneyeu, A.; LeFlour, T.; Lieunard, S.; Maire, M.; Mendiburu, P.; Nedelec, P.; Peigneux, J. P.; Schneegans, M.; Sillou, D.; Vialle, J. P.; Anfreville, M.; Bard, J. P.; Besson, P.; Bougamont, E.; Boyer, M.; Bredy, P.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Jeanney, C.; Kircher, F.; Lemaire, M. C.; Lemoigne, Y.; Levesy, B.; Locci, E.; Lottin, J. P.; Mandjavidze, I.; Mur, M.; Pansart, J. P.; Payn, A.; Rander, J.; Reymond, J. M.; Rolquin, J.; Rondeaux, F.; Rosowsky, A.; Rousse, J. Y. A.; Sun, Z. H.; Tartas, J.; Van Lysebetten, A.; Venault, P.; Verrecchia, P.; Anduze, M.; Badier, J.; Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busata, A.; Busson, P.; Cerutti, M.; Chamont, D.; Charlot, C.; Collard, C.; Debraine, A.; Decotigny, D.; Dobrzynski, L.; Ferreira, O.; Geerebaert, Y.; Gilly, J.; Gregory, C.; Guevara Riveros, L.; Haguenauer, M.; Karar, A.; Koblitz, B.; Lecouturier, D.; Mathieu, A.; Milleret, G.; Miné, P.; Paganini, P.; Poilleux, P.; Pukhaeva, N.; Regnault, N.; Romanteau, T.; Semeniouk, I.; Sirois, Y.; Thiebaux, C.; Vanel, J. C.; Zabi, A.; Agram, J. L.; Albert, A.; Anckenmann, L.; Andrea, J.; Anstotz, F.; Bergdolt, A. M.; Berst, J. D.; Blaes, R.; Bloch, D.; Brom, J. M.; Cailleret, J.; Charles, F.; Christophel, E.; Claus, G.; Coffin, J.; Colledani, C.; Croix, J.; Dangelser, E.; Dick, N.; Didierjean, F.; Drouhin, F.; Dulinski, W.; Ernenwein, J. P.; Fang, R.; Fontaine, J. C.; Gaudiot, G.; Geist, W.; Gelé, D.; Goeltzenlichter, T.; Goerlach, U.; Graehling, P.; Gross, L.; Hu, C. Guo; Helleboid, J. M.; Henkes, T.; Hoffer, M.; Hoffmann, C.; Hosselet, J.; Houchu, L.; Hu, Y.; Huss, D.; Illinger, C.; Jeanneau, F.; Juillot, P.; Kachelhoffer, T.; Kapp, M. R.; Kettunen, H.; Lakehal Ayat, L.; LeBihan, A. C.; Lounis, A.; Maazouzi, C.; Mack, V.; Majewski, P.; Mangeol, D.; Michel, J.; Moreau, S.; Olivetto, C.; Pallarès, A.; Patois, Y.; Pralavorio, P.; Racca, C.; Riahi, Y.; Ripp-Baudot, I.; Schmitt, P.; Schunck, J. P.; Schuster, G.; Schwaller, B.; Sigward, M. H.; Sohler, J. L.; Speck, J.; Strub, R.; Todorov, T.; Turchetta, R.; Van Hove, P.; Vintache, D.; Zghiche, A.; Ageron, M.; Augustin, J. E.; Baty, C.; Baulieu, G.; Bedjidian, M.; Blaha, J.; Bonnevaux, A.; Boudoul, G.; Brunet, P.; Chabanat, E.; Chabert, E. C.; Chierici, R.; Chorowicz, V.; Combaret, C.; Contardo, D.; Della Negra, R.; Depasse, P.; Drapier, O.; Dupanloup, M.; Dupasquier, T.; El Mamouni, H.; Estre, N.; Fay, J.; Gascon, S.; Giraud, N.; Girerd, C.; Guillot, G.; Haroutunian, R.; Ille, B.; Lethuillier, M.; Lumb, N.; Martin, C.; Mathez, H.; Maurelli, G.; Muanza, S.; Pangaud, P.; Perries, S.; Ravat, O.; Schibler, E.; Schirra, F.; Smadja, G.; Tissot, S.; Trocme, B.; Vanzetto, S.; Walder, J. P.; Bagaturia, Y.; Mjavia, D.; Mzhavia, A.; Tsamalaidze, Z.; Roinishvili, V.; Adolphi, R.; Anagnostou, G.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Karpinski, W.; Khomich, A.; Klein, K.; Kukulies, C.; Lübelsmeyer, K.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Adamczyk, F.; Adolf, A.; Altenhöfer, G.; Bechstein, S.; Bethke, S.; Biallass, P.; Biebel, O.; Bontenackels, M.; Bosseler, K.; Böhm, A.; Erdmann, M.; Faissner, H.; Fehr, B.; Fesefeldt, H.; Fetchenhauer, G.; Frangenheim, J.; Frohn, J. H.; Grooten, J.; Hebbeker, T.; Hermann, S.; Hermens, E.; Hilgers, G.; Hoepfner, K.; Hof, C.; Jacobi, E.; Kappler, S.; Kirsch, M.; Kreuzer, P.; Kupper, R.; Lampe, H. R.; Lanske, D.; Mameghani, R.; Meyer, A.; Meyer, S.; Moers, T.; Müller, E.; Pahlke, R.; Philipps, B.; Rein, D.; Reithler, H.; Reuter, W.; Rütten, P.; Schulz, S.; Schwarthoff, H.; Sobek, W.; Sowa, M.; Stapelberg, T.; Szczesny, H.; Teykal, H.; Teyssier, D.; Tomme, H.; Tomme, W.; Tonutti, M.; Tsigenov, O.; Tutas, J.; Vandenhirtz, J.; Wagner, H.; Wegner, M.; Zeidler, C.; Beissel, F.; Davids, M.; Duda, M.; Flügge, G.; Giffels, M.; Hermanns, T.; Heydhausen, D.; Kalinin, S.; Kasselmann, S.; Kaussen, G.; Kress, T.; Linn, A.; Nowack, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Behrens, U.; Borras, K.; Flossdorf, A.; Hatton, D.; Hegner, B.; Kasemann, M.; Mankel, R.; Meyer, A.; Mnich, J.; Rosemann, C.; Youngman, C.; Zeuner, W. D.; Bechtel, F.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R. H.; Holm, U.; Klanner, R.; Pein, U.; Schirm, N.; Schleper, P.; Steinbrück, G.; Van Staa, R.; Wolf, R.; Atz, B.; Barvich, T.; Blüm, P.; Boegelspacher, F.; Bol, H.; Chen, Z. Y.; Chowdhury, S.; DeBoer, W.; Dehm, P.; Dirkes, G.; Fahrer, M.; Felzmann, U.; Frey, M.; Furgeri, A.; Gregoriev, E.; Hartmann, F.; Hauler, F.; Heier, S.; Kärcher, K.; Ledermann, B.; Mueller, S.; Müller, Th; Neuberger, D.; Piasecki, C.; Quast, G.; Rabbertz, K.; Sabellek, A.; Scheurer, A.; Schilling, F. P.; Simonis, H. J.; Skiba, A.; Steck, P.; Theel, A.; Thümmel, W. H.; Trunov, A.; Vest, A.; Weiler, T.; Weiser, C.; Weseler, S.; Zhukov, V.; Barone, M.; Daskalakis, G.; Dimitriou, N.; Fanourakis, G.; Filippidis, C.; Geralis, T.; Kalfas, C.; Karafasoulis, K.; Koimas, A.; Kyriakis, A.; Kyriazopoulou, S.; Loukas, D.; Markou, A.; Markou, C.; Mastroyiannopoulos, N.; Mavrommatis, C.; Mousa, J.; Papadakis, I.; Petrakou, E.; Siotis, I.; Theofilatos, K.; Tzamarias, S.; Vayaki, A.; Vermisoglou, G.; Zachariadou, A.; Gouskos, L.; Karapostoli, G.; Katsas, P.; Panagiotou, A.; Papadimitropoulos, C.; Aslanoglou, X.; Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Kovesarki, P.; Laszlo, A.; Odor, G.; Patay, G.; Sikler, F.; Veres, G.; Vesztergombi, G.; Zalan, P.; Fenyvesi, A.; Imrek, J.; Molnar, J.; Novak, D.; Palinkas, J.; Szekely, G.; Beni, N.; Kapusi, A.; Marian, G.; Radics, B.; Raics, P.; Szabo, Z.; Szillasi, Z.; Trocsanyi, Z. L.; Zilizi, G.; Bawa, H. S.; Beri, S. B.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J. M.; Kumar, A.; Singh, B.; Singh, J. B.; Arora, S.; Bhattacharya, S.; Chatterji, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jha, M.; Ranjan, K.; Shivpuri, R. K.; Srivastava, A. K.; Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Nayak, A.; Patil, M. R.; Sharma, S.; Sudhakar, K.; Acharya, B. S.; Banerjee, Sudeshna; Bheesette, S.; Dugad, S.; Kalmani, S. D.; Lakkireddi, V. R.; Mondal, N. K.; Panyam, N.; Verma, P.; Arfaei, H.; Hashemi, M.; Najafabadi, M. Mohammadi; Moshaii, A.; Paktinat Mehdiabadi, S.; Felcini, M.; Grunewald, M.; Abadjiev, K.; Abbrescia, M.; Barbone, L.; Cariola, P.; Chiumarulo, F.; Clemente, A.; Colaleo, A.; Creanza, D.; DeFilippis, N.; DePalma, M.; DeRobertis, G.; Donvito, G.; Ferorelli, R.; Fiore, L.; Franco, M.; Giordano, D.; Guida, R.; Iaselli, G.; Lacalamita, N.; Loddo, F.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; Mennea, M. S.; My, S.; Natali, S.; Nuzzo, S.; Papagni, G.; Pinto, C.; Pompili, A.; Pugliese, G.; Ranieri, A.; Romano, F.; Roselli, G.; Sala, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Bacchi, W.; Battilana, C.; Benvenuti, A. C.; Boldini, M.; Bonacorsi, D.; Braibant-Giacomelli, S.; Cafaro, V. D.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Ciocca, C.; Codispoti, G.; Cuffiani, M.; D'Antone, I.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Finelli, S.; Giacomelli, P.; Giordano, V.; Giunta, M.; Grandi, C.; Guerzoni, M.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Paolucci, A.; Pellegrini, G.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Torromeo, G.; Travaglini, R.; Veronese, G. P.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Gatto Rotondo, G.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Salemi, G.; Sutera, C.; Tricomi, A.; Tuve, C.; Bellucci, L.; Brianzi, M.; Broccolo, G.; Catacchini, E.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Maletta, F.; Manolescu, F.; Marchettini, C.; Masetti, L.; Mersi, S.; Meschini, M.; Minelli, C.; Paoletti, S.; Parrini, G.; Scarlini, E.; Sguazzoni, G.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M.; Colonna, D.; Daniello, L.; Fabbri, F.; Felli, F.; Giardoni, M.; La Monaca, A.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Paris, C.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Pucci, C.; Russo, A.; Saviano, G.; Fabbricatore, P.; Farinon, S.; Greco, M.; Musenich, R.; Badoer, S.; Berti, L.; Biasotto, M.; Fantinel, S.; Frizziero, E.; Gastaldi, U.; Gulmini, M.; Lelli, F.; Maron, G.; Squizzato, S.; Toniolo, N.; Traldi, S.; Banfi, S.; Bertoni, R.; Bonesini, M.; Carbone, L.; Cerati, G. B.; Chignoli, F.; D'Angelo, P.; DeMin, A.; Dini, P.; Farina, F. M.; Ferri, F.; Govoni, P.; Magni, S.; Malberti, M.; Malvezzi, S.; Mazza, R.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Rovere, M.; Sala, L.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.; Boiano, A.; Cassese, F.; Cassese, C.; Cimmino, A.; D'Aquino, B.; Lista, L.; Lomidze, D.; Noli, P.; Paolucci, P.; Passeggio, G.; Piccolo, D.; Roscilli, L.; Sciacca, C.; Vanzanella, A.; Azzi, P.; Bacchetta, N.; Barcellan, L.; Bellato, M.; Benettoni, M.; Bisello, D.; Borsato, E.; Candelori, A.; Carlin, R.; Castellani, L.; Checchia, P.; Ciano, L.; Colombo, A.; Conti, E.; Da Rold, M.; Dal Corso, F.; DeGiorgi, M.; DeMattia, M.; Dorigo, T.; Dosselli, U.; Fanin, C.; Galet, G.; Gasparini, F.; Gasparini, U.; Giraldo, A.; Giubilato, P.; Gonella, F.; Gresele, A.; Griggio, A.; Guaita, P.; Kaminskiy, A.; Karaevskii, S.; Khomenkov, V.; Kostylev, D.; Lacaprara, S.; Lazzizzera, I.; Lippi, I.; Loreti, M.; Margoni, M.; Martinelli, R.; Mattiazzo, S.; Mazzucato, M.; Meneguzzo, A. T.; Modenese, L.; Montecassiano, F.; Neviani, A.; Nigro, M.; Paccagnella, A.; Pantano, D.; Parenti, A.; Passaseo, M.; Pedrotta, R.; Pegoraro, M.; Rampazzo, G.; Reznikov, S.; Ronchese, P.; Sancho Daponte, A.; Sartori, P.; Stavitskiy, I.; Tessaro, M.; Torassa, E.; Triossi, A.; Vanini, S.; Ventura, S.; Ventura, L.; Verlato, M.; Zago, M.; Zatti, F.; Zotto, P.; Zumerle, G.; Baesso, P.; Belli, G.; Berzano, U.; Bricola, S.; Grelli, A.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vicini, A.; Vitulo, P.; Viviani, C.; Aisa, D.; Aisa, S.; Ambroglini, F.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Bizzaglia, S.; Brunetti, M. T.; Caponeri, B.; Checcucci, B.; Covarelli, R.; Dinu, N.; Fanò, L.; Farnesini, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Moscatelli, F.; Passeri, D.; Piluso, A.; Placidi, P.; Postolache, V.; Santinelli, R.; Santocchia, A.; Servoli, L.; Spiga, D.; Azzurri, P.; Bagliesi, G.; Balestri, G.; Basti, A.; Bellazzini, R.; Benucci, L.; Bernardini, J.; Berretta, L.; Bianucci, S.; Boccali, T.; Bocci, A.; Borrello, L.; Bosi, F.; Bracci, F.; Brez, A.; Calzolari, F.; Castaldi, R.; Cazzola, U.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Fiori, F.; Foà, L.; Gaggelli, A.; Gennai, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Latronico, L.; Ligabue, F.; Linari, S.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Massa, M.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Petrucciani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Segneri, G.; Sentenac, D.; Serban, A. T.; Slav, A.; Spagnolo, P.; Spandre, G.; Tenchini, R.; Tolaini, S.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Baccaro, S.; Barone, L.; Bartoloni, A.; Borgia, B.; Capradossi, G.; Cavallari, F.; Cecilia, A.; D'Angelo, D.; Dafinei, I.; DelRe, D.; Di Marco, E.; Diemoz, M.; Ferrara, G.; Gargiulo, C.; Guerra, S.; Iannone, M.; Longo, E.; Montecchi, M.; Nuccetelli, M.; Organtini, G.; Palma, A.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Safai Tehrani, F.; Zullo, A.; Alampi, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Benotto, F.; Biino, C.; Bolognesi, S.; Borgia, M. A.; Botta, C.; Brasolin, A.; Cartiglia, N.; Castello, R.; Cerminara, G.; Cirio, R.; Cordero, M.; Costa, M.; Dattola, D.; Daudo, F.; Dellacasa, G.; Demaria, N.; Dughera, G.; Dumitrache, F.; Farano, R.; Ferrero, G.; Filoni, E.; Kostyleva, G.; Larsen, H. E.; Mariotti, C.; Marone, M.; Maselli, S.; Menichetti, E.; Mereu, P.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Nervo, M.; Obertino, M. M.; Panero, R.; Parussa, A.; Pastrone, N.; Peroni, C.; Petrillo, G.; Romero, A.; Ruspa, M.; Sacchi, R.; Scalise, M.; Solano, A.; Staiano, A.; Trapani, P. P.; Trocino, D.; Vaniev, V.; Vilela Pereira, A.; Zampieri, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Kavka, C.; Penzo, A.; Kim, Y. E.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. C.; Kong, D. J.; Ro, S. R.; Son, D. C.; Park, S. Y.; Kim, Y. J.; Kim, J. Y.; Lim, I. T.; Pac, M. Y.; Lee, S. J.; Jung, S. Y.; Rhee, J. T.; Ahn, S. H.; Hong, B. S.; Jeng, Y. K.; Kang, M. H.; Kim, H. C.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Lim, J. K.; Moon, D. H.; Park, I. C.; Park, S. K.; Ryu, M. S.; Sim, K.-S.; Son, K. J.; Hong, S. J.; Choi, Y. I.; Castilla Valdez, H.; Sanchez Hernandez, A.; Carrillo Moreno, S.; Morelos Pineda, A.; Aerts, A.; Van der Stok, P.; Weffers, H.; Allfrey, P.; Gray, R. N. C.; Hashimoto, M.; Krofcheck, D.; Bell, A. J.; Bernardino Rodrigues, N.; Butler, P. H.; Churchwell, S.; Knegjens, R.; Whitehead, S.; Williams, J. C.; Aftab, Z.; Ahmad, U.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Asghar, S.; Dad, G.; Hafeez, M.; Hoorani, H. R.; Hussain, I.; Hussain, N.; Iftikhar, M.; Khan, M. S.; Mehmood, K.; Osman, A.; Shahzad, H.; Zafar, A. R.; Ali, A.; Bashir, A.; Jan, A. M.; Kamal, A.; Khan, F.; Saeed, M.; Tanwir, S.; Zafar, M. A.; Blocki, J.; Cyz, A.; Gladysz-Dziadus, E.; Mikocki, S.; Rybczynski, M.; Turnau, J.; Wlodarczyk, Z.; Zychowski, P.; Bunkowski, K.; Cwiok, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Kudla, I. M.; Pietrusinski, M.; Pozniak, K.; Zabolotny, W.; Zych, P.; Gokieli, R.; Goscilo, L.; Górski, M.; Nawrocki, K.; Traczyk, P.; Wrochna, G.; Zalewski, P.; Pozniak, K. T.; Romaniuk, R.; Zabolotny, W. M.; Alemany-Fernandez, R.; Almeida, C.; Almeida, N.; Araujo Vila Verde, A. S.; Barata Monteiro, T.; Bluj, M.; Da Mota Silva, S.; Tinoco Mendes, A. David; Freitas Ferreira, M.; Gallinaro, M.; Husejko, M.; Jain, A.; Kazana, M.; Musella, P.; Nobrega, R.; Rasteiro Da Silva, J.; Ribeiro, P. Q.; Santos, M.; Silva, P.; Silva, S.; Teixeira, I.; Teixeira, J. P.; Varela, J.; Varner, G.; Vaz Cardoso, N.; Altsybeev, I.; Babich, K.; Belkov, A.; Belotelov, I.; Bunin, P.; Chesnevskaya, S.; Elsha, V.; Ershov, Y.; Filozova, I.; Finger, M.; Finger, M., Jr.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gramenitski, I.; Kalagin, V.; Kamenev, A.; Karjavin, V.; Khabarov, S.; Khabarov, V.; Kiryushin, Y.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Kurenkov, A.; Lanev, A.; Lysiakov, V.; Malakhov, A.; Melnitchenko, I.; Mitsyn, V. V.; Moisenz, K.; Moisenz, P.; Movchan, S.; Nikonov, E.; Oleynik, D.; Palichik, V.; Perelygin, V.; Petrosyan, A.; Rogalev, E.; Samsonov, V.; Savina, M.; Semenov, R.; Sergeev, S.; Shmatov, S.; Shulha, S.; Smirnov, V.; Smolin, D.; Tcheremoukhine, A.; Teryaev, O.; Tikhonenko, E.; Urkinbaev, A.; Vasil'ev, S.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.; Zarubin, P.; Zubarev, E.; Bondar, N.; Gavrikov, Y.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kozlov, V.; Lebedev, V.; Makarenkov, G.; Moroz, F.; Neustroev, P.; Obrant, G.; Orishchin, E.; Petrunin, A.; Shcheglov, Y.; Shchetkovskiy, A.; Sknar, V.; Skorobogatov, V.; Smirnov, I.; Sulimov, V.; Tarakanov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Chmelev, D.; Druzhkin, D.; Ivanov, A.; Kudinov, V.; Logatchev, O.; Onishchenko, S.; Orlov, A.; Sakharov, V.; Smetannikov, V.; Tikhomirov, A.; Zavodthikov, S.; Andreev, Yu; Anisimov, A.; Duk, V.; Gninenko, S.; Golubev, N.; Gorbunov, D.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Pastsyak, A.; Postoev, V. E.; Sadovski, A.; Skassyrskaia, A.; Solovey, Alexander; Solovey, Anatoly; Soloviev, D.; Toropin, A.; Troitsky, S.; Alekhin, A.; Baldov, A.; Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Karpishin, V.; Kiselevich, I.; Kolosov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stepanov, N.; Stolin, V.; Vlasov, E.; Zaytsev, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Eyyubova, G.; Gribushin, A.; Ilyin, V.; Klyukhin, V.; Kodolova, O.; Kruglov, N. A.; Kryukov, A.; Lokhtin, I.; Malinina, L.; Mikhaylin, V.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Shamardin, L.; Sherstnev, A.; Snigirev, A.; Teplov, K.; Vardanyan, I.; Fomenko, A. M.; Konovalova, N.; Kozlov, V.; Lebedev, A. I.; Lvova, N.; Rusakov, S. V.; Terkulov, A.; Abramov, V.; Akimenko, S.; Artamonov, A.; Ashimova, A.; Azhgirey, I.; Bitioukov, S.; Chikilev, O.; Datsko, K.; Filine, A.; Godizov, A.; Goncharov, P.; Grishin, V.; Inyakin, A.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Krinitsyn, A.; Levine, A.; Lobov, I.; Lukanin, V.; Mel'nik, Y.; Molchanov, V.; Petrov, V.; Petukhov, V.; Pikalov, V.; Ryazanov, A.; Ryutin, R.; Shelikhov, V.; Skvortsov, V.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Talov, V.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.; Lukyanov, V.; Mamaeva, G.; Prilutskaya, Z.; Rumyantsev, I.; Sokha, S.; Tataurschikov, S.; Vasilyev, I.; Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Puzovic, J.; Smiljkovic, N.; Aguayo Navarrete, E.; Aguilar-Benitez, M.; Ahijado Munoz, J.; Alarcon Vega, J. M.; Alberdi, J.; Alcaraz Maestre, J.; Aldaya Martin, M.; Arce, P.; Barcala, J. M.; Berdugo, J.; Blanco Ramos, C. L.; Burgos Lazaro, C.; Caballero Bejar, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Chercoles Catalán, J. J.; Colino, N.; Daniel, M.; DeLa Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Ferrando, A.; Fouz, M. C.; Francia Ferrero, D.; Garcia Romero, J.; Garcia-Abia, P.; Gonzalez Lopez, O.; Hernandez, J. M.; Josa, M. I.; Marin, J.; Merino, G.; Molinero, A.; Navarrete, J. J.; Oller, J. C.; Puerta Pelayo, J.; Puras Sanchez, J. C.; Ramirez, J.; Romero, L.; Villanueva Munoz, C.; Willmott, C.; Yuste, C.; Albajar, C.; de Trocóniz, J. F.; Jimenez, I.; Macias, R.; Teixeira, R. F.; Cuevas, J.; Fernández Menéndez, J.; Gonzalez Caballero, I.; Lopez-Garcia, J.; Naves Sordo, H.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Cano Fernandez, D.; Diaz Merino, I.; Duarte Campderros, J.; Fernandez, M.; Fernandez Menendez, J.; Figueroa, C.; Garcia Moral, L. A.; Gomez, G.; Gomez Casademunt, F.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Garcia, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Orviz Fernandez, P.; Patino Revuelta, A.; Rodrigo, T.; Rodriguez Gonzalez, D.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Barbero, M.; Goldin, D.; Henrich, B.; Tauscher, L.; Vlachos, S.; Wadhwa, M.; Abbaneo, D.; Abbas, S. M.; Ahmed, I.; Akhtar, S.; Akhtar, M. I.; Albert, E.; Alidra, M.; Ashby, S.; Aspell, P.; Auffray, E.; Baillon, P.; Ball, A.; Bally, S. L.; Bangert, N.; Barillère, R.; Barney, D.; Beauceron, S.; Beaudette, F.; Benelli, G.; Benetta, R.; Benichou, J. L.; Bialas, W.; Bjorkebo, A.; Blechschmidt, D.; Bloch, C.; Bloch, P.; Bonacini, S.; Bos, J.; Bosteels, M.; Boyer, V.; Branson, A.; Breuker, H.; Bruneliere, R.; Buchmuller, O.; Campi, D.; Camporesi, T.; Caner, A.; Cano, E.; Carrone, E.; Cattai, A.; Chatelain, J. P.; Chauvey, M.; Christiansen, T.; Ciganek, M.; Cittolin, S.; Cogan, J.; Conde Garcia, A.; Cornet, H.; Corrin, E.; Corvo, M.; Cucciarelli, S.; Curé, B.; D'Enterria, D.; DeRoeck, A.; de Visser, T.; Delaere, C.; Delattre, M.; Deldicque, C.; Delikaris, D.; Deyrail, D.; Di Vincenzo, S.; Domeniconi, A.; Dos Santos, S.; Duthion, G.; Edera, L. M.; Elliott-Peisert, A.; Eppard, M.; Fanzago, F.; Favre, M.; Foeth, H.; Folch, R.; Frank, N.; Fratianni, S.; Freire, M. A.; Frey, A.; Fucci, A.; Funk, W.; Gaddi, A.; Gagliardi, F.; Gastal, M.; Gateau, M.; Gayde, J. C.; Gerwig, H.; Ghezzi, A.; Gigi, D.; Gill, K.; Giolo-Nicollerat, A. S.; Girod, J. P.; Glege, F.; Glessing, W.; Gomez-Reino Garrido, R.; Goudard, R.; Grabit, R.; Grillet, J. P.; Gutierrez Llamas, P.; Gutierrez Mlot, E.; Gutleber, J.; Hall-wilton, R.; Hammarstrom, R.; Hansen, M.; Harvey, J.; Hervé, A.; Hill, J.; Hoffmann, H. F.; Holzner, A.; Honma, A.; Hufnagel, D.; Huhtinen, M.; Ilie, S. D.; Innocente, V.; Jank, W.; Janot, P.; Jarron, P.; Jeanrenaud, M.; Jouvel, P.; Kerkach, R.; Kloukinas, K.; Kottelat, L. J.; Labbé, J. C.; Lacroix, D.; Lagrue, X.; Lasseur, C.; Laure, E.; Laurens, J. F.; Lazeyras, P.; LeGoff, J. M.; Lebeau, M.; Lecoq, P.; Lemeilleur, F.; Lenzi, M.; Leonardo, N.; Leonidopoulos, C.; Letheren, M.; Liendl, M.; Limia-Conde, F.; Linssen, L.; Ljuslin, C.; Lofstedt, B.; Loos, R.; Lopez Perez, J. A.; Lourenco, C.; Lyonnet, A.; Machard, A.; Mackenzie, R.; Magini, N.; Maire, G.; Malgeri, L.; Malina, R.; Mannelli, M.; Marchioro, A.; Martin, J.; Meijers, F.; Meridiani, P.; Meschi, E.; Meyer, T.; Meynet Cordonnier, A.; Michaud, J. F.; Mirabito, L.; Moser, R.; Mossiere, F.; Muffat-Joly, J.; Mulders, M.; Mulon, J.; Murer, E.; Mättig, P.; Oh, A.; Onnela, A.; Oriunno, M.; Orsini, L.; Osborne, J. A.; Paillard, C.; Pal, I.; Papotti, G.; Passardi, G.; Patino-Revuelta, A.; Patras, V.; Perea Solano, B.; Perez, E.; Perinic, G.; Pernot, J. F.; Petagna, P.; Petiot, P.; Petit, P.; Petrilli, A.; Pfeiffer, A.; Piccut, C.; Pimiä, M.; Pintus, R.; Pioppi, M.; Placci, A.; Pollet, L.; Postema, H.; Price, M. J.; Principe, R.; Racz, A.; Radermacher, E.; Ranieri, R.; Raymond, G.; Rebecchi, P.; Rehn, J.; Reynaud, S.; Rezvani Naraghi, H.; Ricci, D.; Ridel, M.; Risoldi, M.; Rodrigues Simoes Moreira, P.; Rohlev, A.; Roiron, G.; Rolandi, G.; Rumerio, P.; Runolfsson, O.; Ryjov, V.; Sakulin, H.; Samyn, D.; Santos Amaral, L. C.; Sauce, H.; Sbrissa, E.; Scharff-Hansen, P.; Schieferdecker, P.; Schlatter, W. D.; Schmitt, B.; Schmuecker, H. G.; Schröder, M.; Schwick, C.; Schäfer, C.; Segoni, I.; Sempere Roldán, P.; Sgobba, S.; Sharma, A.; Siegrist, P.; Sigaud, C.; Sinanis, N.; Sobrier, T.; Sphicas, P.; Spiropulu, M.; Stefanini, G.; Strandlie, A.; Szoncsó, F.; Taylor, B. G.; Teller, O.; Thea, A.; Tournefier, E.; Treille, D.; Tropea, P.; Troska, J.; Tsesmelis, E.; Tsirou, A.; Valls, J.; Van Vulpen, I.; Vander Donckt, M.; Vasey, F.; Vazquez Acosta, M.; Veillet, L.; Vichoudis, P.; Waurick, G.; Wellisch, J. P.; Wertelaers, P.; Wilhelmsson, M.; Willers, I. M.; Winkler, M.; Zanetti, M.; Bertl, W.; Deiters, K.; Dick, P.; Erdmann, W.; Feichtinger, D.; Gabathuler, K.; Hochman, Z.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; König, S.; Poerschke, P.; Renker, D.; Rohe, T.; Sakhelashvili, T.; Starodumov, A.; Aleksandrov, V.; Behner, F.; Beniozef, I.; Betev, B.; Blau, B.; Brett, A. M.; Caminada, L.; Chen, Z.; Chivarov, N.; Da Silva Di Calafiori, D.; Dambach, S.; Davatz, G.; Delachenal, V.; Della Marina, R.; Dimov, H.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dröge, M.; Eggel, C.; Ehlers, J.; Eichler, R.; Elmiger, M.; Faber, G.; Freudenreich, K.; Fuchs, J. F.; Georgiev, G. M.; Grab, C.; Haller, C.; Herrmann, J.; Hilgers, M.; Hintz, W.; Hofer, Hans; Hofer, Heinz; Horisberger, U.; Horvath, I.; Hristov, A.; Humbertclaude, C.; Iliev, B.; Kastli, W.; Kruse, A.; Kuipers, J.; Langenegger, U.; Lecomte, P.; Lejeune, E.; Leshev, G.; Lesmond, C.; List, B.; Luckey, P. D.; Lustermann, W.; Maillefaud, J. D.; Marchica, C.; Maurisset, A.; Meier, B.; Milenovic, P.; Milesi, M.; Moortgat, F.; Nanov, I.; Nardulli, A.; Nessi-Tedaldi, F.; Panev, B.; Pape, L.; Pauss, F.; Petrov, E.; Petrov, G.; Peynekov, M. M.; Pitzl, D.; Punz, T.; Riboni, P.; Riedlberger, J.; Rizzi, A.; Ronga, F. J.; Roykov, P. A.; Röser, U.; Schinzel, D.; Schöning, A.; Sourkov, A.; Stanishev, K.; Stoenchev, S.; Stöckli, F.; Suter, H.; Trüb, P.; Udriot, S.; Uzunova, D. G.; Veltchev, I.; Viertel, G.; von Gunten, H. P.; Waldmeier-Wicki, S.; Weber, R.; Weber, M.; Weng, J.; Wensveen, M.; Wittgenstein, F.; Zagoursky, K.; Alagoz, E.; Amsler, C.; Chiochia, V.; Hoermann, C.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Tsirigkas, D.; Wilke, L.; Blyth, S.; Chang, Y. H.; Chen, E. A.; Go, A.; Hung, C. C.; Kuo, C. M.; Li, S. W.; Lin, W.; Chang, P.; Chao, Y.; Chen, K. F.; Gao, Z.; Hou, G. W. S.; Hsiung, Y. B.; Lei, Y. J.; Lin, S. W.; Lu, R. S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Velikzhanin, Y.; Wang, C. C.; Wang, M.-Z.; Aydin, S.; Azman, A.; Bakirci, M. N.; Basegmez, S.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis Topaksu, A.; Kisoglu, H.; Kurt, P.; Ozdemir, K.; Ozdes Koca, N.; Ozkurt, H.; Ozturk, S.; Polatöz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Önengüt, G.; Gamsizkan, H.; Sekmen, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Grinev, B.; Lyubynskiy, V.; Senchyshyn, V.; Levchuk, L.; Lukyanenko, S.; Soroka, D.; Sorokin, P.; Zub, S.; Anjum, A.; Baker, N.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D.; Solomonides, A.; Brooke, J. J.; Croft, R.; Cussans, D.; Evans, D.; Frazier, R.; Grant, N.; Hansen, M.; Head, R. D.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Lynch, C.; Mackay, C. K.; Metson, S.; Nash, S. J.; Newbold, D. M.; Presland, A. D.; Probert, M. G.; Reid, E. C.; Smith, V. J.; Tapper, R. J.; Walton, R.; Bateman, E.; Bell, K. W.; Brown, R. M.; Camanzi, B.; Church, I. T.; Cockerill, D. J. A.; Cole, J. E.; Connolly, J. F.; Coughlan, J. A.; Flower, P. S.; Ford, P.; Francis, V. B.; French, M. J.; Galagedera, S. B.; Gannon, W.; Gay, A. P. R.; Geddes, N. I.; Greenhalgh, R. J. S.; Halsall, R. N. J.; Haynes, W. J.; Hill, J. A.; Jacob, F. R.; Jeffreys, P. W.; Jones, L. L.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Maddox, A. J.; Morrissey, Q. R.; Murray, P.; Patrick, G. N.; Pattison, C. A. X.; Pearson, M. R.; Quinton, S. P. H.; Rogers, G. J.; Salisbury, J. G.; Shah, A. A.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Stephenson, R.; Taghavi, S.; Tomalin, I. R.; Torbet, M. J.; Williams, J. H.; Womersley, W. J.; Worm, S. D.; Xing, F.; Apollonio, M.; Arteche, F.; Bainbridge, R.; Barber, G.; Barrillon, P.; Batten, J.; Beuselinck, R.; Brambilla Hall, P. M.; Britton, D.; Cameron, W.; Clark, D. E.; Clark, I. W.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Dewhirst, G.; Dris, S.; Foudas, C.; Fulcher, J.; Futyan, D.; Graham, D. J.; Greder, S.; Greenwood, S.; Hall, G.; Hassard, J. F.; Hays, J.; Iles, G.; Kasey, V.; Khaleeq, M.; Leaver, J.; Lewis, P.; MacEvoy, B. C.; Maroney, O.; McLeod, E. M.; Miller, D. G.; Nash, J.; Nikitenko, A.; Noah Messomo, E.; Noy, M.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Price, D. R.; Qu, X.; Raymond, D. M.; Rose, A.; Rutherford, S.; Ryan, M. J.; Sciacca, F.; Seez, C.; Sharp, P.; Sidiropoulos, G.; Stettler, M.; Stoye, M.; Striebig, J.; Takahashi, M.; Tallini, H.; Tapper, A.; Timlin, C.; Toudup, L.; Virdee, T.; Wakefield, S.; Walsham, P.; Wardrope, D.; Wingham, M.; Zhang, Y.; Zorba, O.; Da Via, C.; Goitom, I.; Hobson, P. R.; Imrie, D. C.; Reid, I.; Selby, C.; Sharif, O.; Teodorescu, L.; Watts, S. J.; Yaselli, I.; Hazen, E.; Heering, A.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Rohlf, J.; Sulak, L.; Varela Rodriguez, F.; Wu, S. X.; Avetisyan, A.; Bose, T.; Christofek, L.; Cutts, D.; Esen, S.; Hooper, R.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.; Breedon, R.; Case, M.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Fisyak, Y.; Friis, E.; Grim, G.; Holbrook, B.; Ko, W.; Kopecky, A.; Lander, R.; Lin, F. C.; Lister, A.; Maruyama, S.; Pellett, D.; Rowe, J.; Searle, M.; Smith, J.; Soha, A.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Bonushkin, Y.; Chandramouly, S.; Cline, D.; Cousins, R.; Erhan, S.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Lisowski, B.; Matthey, C.; Mohr, B.; Mumford, J.; Otwinowski, S.; Pischalnikov, Y.; Rakness, G.; Schlein, P.; Shi, Y.; Tannenbaum, B.; Tucker, J.; Valuev, V.; Wallny, R.; Wang, H. G.; Yang, X.; Zheng, Y.; Andreeva, J.; Babb, J.; Campana, S.; Chrisman, D.; Clare, R.; Ellison, J.; Fortin, D.; Gary, J. W.; Gorn, W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Layter, J. G.; Liu, F.; Liu, H.; Luthra, A.; Pasztor, G.; Rick, H.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sytnik, V.; Tran, P.; Villa, S.; Wilken, R.; Wimpenny, S.; Zer-Zion, D.; Branson, J. G.; Coarasa Perez, J. A.; Dusinberre, E.; Kelley, R.; Lebourgeois, M.; Letts, J.; Lipeles, E.; Mangano, B.; Martin, T.; Mojaver, M.; Muelmenstaedt, J.; Norman, M.; Paar, H. P.; Petrucci, A.; Pi, H.; Pieri, M.; Rana, A.; Sani, M.; Sharma, V.; Simon, S.; White, A.; Würthwein, F.; Yagil, A.; Affolder, A.; Allen, A.; Campagnari, C.; D'Alfonso, M.; Dierlamm, A.; Garberson, J.; Hale, D.; Incandela, J.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Kyre, S.; Lamb, J.; Lowette, S.; Nikolic, M.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Shah, Y. S.; Stuart, D.; Swain, S.; Vlimant, J. R.; White, D.; Witherell, M.; Bornheim, A.; Bunn, J.; Chen, J.; Denis, G.; Galvez, P.; Gataullin, M.; Legrand, I.; Litvine, V.; Ma, Y.; Mao, R.; Nae, D.; Narsky, I.; Newman, H. B.; Orimoto, T.; Rogan, C.; Shevchenko, S.; Steenberg, C.; Su, X.; Thomas, M.; Timciuc, V.; van Lingen, F.; Veverka, J.; Voicu, B. R.; Weinstein, A.; Wilkinson, R.; Xia, Y.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Bunce, M.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Givens, K.; Heyburn, B.; Johnson, D.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Das, S.; Duboscq, J. E.; Gibbons, L. K.; Heltsley, B.; Jones, C. D.; Kuznetsov, V.; Patterson, J. R.; Riley, D.; Ryd, A.; Stroiney, S.; Sun, W.; Thom, J.; Vaughan, J.; Wittich, P.; Beetz, C. P.; Cirino, G.; Podrasky, V.; Sanzeni, C.; Winn, D.; Abdullin, S.; Afaq, M. A.; Albrow, M.; Amundson, J.; Apollinari, G.; Atac, M.; Badgett, W.; Bakken, J. A.; Baldin, B.; Banicz, K.; Bauerdick, L. A. T.; Baumbaugh, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Boubekeur, A.; Bowden, M.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chevenier, G.; Chlebana, F.; Churin, I.; Cihangir, S.; Dagenhart, W.; Demarteau, M.; Dykstra, D.; Eartly, D. P.; Elias, J. E.; Elvira, V. D.; Evans, D.; Fisk, I.; Freeman, J.; Gaines, I.; Gartung, P.; Geurts, F. J. M.; Giacchetti, L.; Glenzinski, D. A.; Gottschalk, E.; Grassi, T.; Green, D.; Grimm, C.; Guo, Y.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hesselroth, T.; Holm, S.; Holzman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kossiakov, S.; Kousouris, K.; Kowalkowski, J.; Kramer, T.; Kwan, S.; Lei, C. M.; Leininger, M.; Los, S.; Lueking, L.; Lukhanin, G.; Lusin, S.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Moccia, S.; Mokhov, N.; Mrenna, S.; Murray, S. J.; Newman-Holmes, C.; Noeding, C.; O'Dell, V.; Paterno, M.; Petravick, D.; Pordes, R.; Prokofyev, O.; Ratnikova, N.; Ronzhin, A.; Sekhri, V.; Sexton-Kennedy, E.; Sfiligoi, I.; Shaw, T. M.; Skup, E.; Smith, R. P.; Spalding, W. J.; Spiegel, L.; Stavrianakou, M.; Stiehr, G.; Stone, A. L.; Suzuki, I.; Tan, P.; Tanenbaum, W.; Temple, L. E.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Wands, R.; Wenzel, H.; Whitmore, J.; Wicklund, E.; Wu, W. M.; Wu, Y.; Yarba, J.; Yarba, V.; Yumiceva, F.; Yun, J. C.; Zimmerman, T.; Acosta, D.; Avery, P.; Barashko, V.; Bartalini, P.; Bourilkov, D.; Cavanaugh, R.; Dolinsky, S.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gorn, L.; Holmes, D.; Kim, B. J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Levchenko, P.; Madorsky, A.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Prescott, C.; Ramond, L.; Ramond, P.; Schmitt, M.; Scurlock, B.; Stasko, J.; Stoeck, H.; Wang, D.; Yelton, J.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Atramentov, O.; Bertoldi, M.; Dharmaratna, W. G. D.; Gershtein, Y.; Gleyzer, S. V.; Hagopian, S.; Hagopian, V.; Jenkins, C. J.; Johnson, K. F.; Prosper, H.; Simek, D.; Thomaston, J.; Baarmand, M.; Baksay, L.; Guragain, S.; Hohlmann, M.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Barannikova, O.; Bazterra, V. E.; Betts, R. R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Hollis, R.; Iordanova, A.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Ayan, A. S.; Briggs, R.; Cankocak, K.; Clarida, W.; Cooper, A.; Debbins, P.; Duru, F.; Fountain, M.; McCliment, E.; Merlo, J. P.; Mestvirishvili, A.; Miller, M. J.; Moeller, A.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Perera, L.; Schmidt, I.; Wang, S.; Yetkin, T.; Anderson, E. W.; Chakir, H.; Hauptman, J. M.; Lamsa, J.; Barnett, B. A.; Blumenfeld, B.; Chien, C. Y.; Giurgiu, G.; Gritsan, A.; Kim, D. W.; Lae, C. K.; Maksimovic, P.; Swartz, M.; Tran, N.; Baringer, P.; Bean, A.; Chen, J.; Coppage, D.; Grachov, O.; Murray, M.; Radicci, V.; Wood, J. S.; Zhukova, V.; Bandurin, D.; Bolton, T.; Kaadze, K.; Kahl, W. E.; Maravin, Y.; Onoprienko, D.; Sidwell, R.; Wan, Z.; Dahmes, B.; Gronberg, J.; Hollar, J.; Lange, D.; Wright, D.; Wuest, C. R.; Baden, D.; Bard, R.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kunori, S.; Lockner, E.; Ratnikov, F.; Santanastasio, F.; Skuja, A.; Toole, T.; Wang, L.; Wetstein, M.; Alver, B.; Ballintijn, M.; Bauer, G.; Busza, W.; Gomez Ceballos, G.; Hahn, K. A.; Harris, P.; Klute, M.; Kravchenko, I.; Li, W.; Loizides, C.; Ma, T.; Nahn, S.; Paus, C.; Pavlon, S.; Piedra Gomez, J.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G.; Sumorok, K.; Vaurynovich, S.; Wenger, E. A.; Wyslouch, B.; Bailleux, D.; Cooper, S.; Cushman, P.; DeBenedetti, A.; Dolgopolov, A.; Dudero, P. R.; Egeland, R.; Franzoni, G.; Gilbert, W. J.; Gong, D.; Grahl, J.; Haupt, J.; Klapoetke, K.; Kronkvist, I.; Kubota, Y.; Mans, J.; Rusack, R.; Sengupta, S.; Sherwood, B.; Singovsky, A.; Vikas, P.; Zhang, J.; Booke, M.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Sonnek, P.; Summers, D.; Watkins, S.; Bloom, K.; Bockelman, B.; Claes, D. R.; Dominguez, A.; Eads, M.; Furukawa, M.; Keller, J.; Kelly, T.; Lundstedt, C.; Malik, S.; Snow, G. R.; Swanson, D.; Ecklund, K. M.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M.; Alverson, G.; Barberis, E.; Boeriu, O.; Eulisse, G.; McCauley, T.; Musienko, Y.; Muzaffar, S.; Osborne, I.; Reucroft, S.; Swain, J.; Taylor, L.; Tuura, L.; Gobbi, B.; Kubantsev, M.; Kubik, A.; Ofierzynski, R. A.; Schmitt, M.; Spencer, E.; Stoynev, S.; Szleper, M.; Velasco, M.; Won, S.; Andert, K.; Baumbaugh, B.; Beiersdorf, B. A.; Castle, L.; Chorny, J.; Goussiou, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolberg, T.; Marchant, J.; Marinelli, N.; McKenna, M.; Ruchti, R.; Vigneault, M.; Wayne, M.; Wiand, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Gu, J.; Killewald, P.; Ling, T. Y.; Rush, C. J.; Sehgal, V.; Williams, G.; Adam, N.; Chidzik, S.; Denes, P.; Elmer, P.; Garmash, A.; Gerbaudo, D.; Halyo, V.; Jones, J.; Marlow, D.; Olsen, J.; Piroué, P.; Stickland, D.; Tully, C.; Werner, J. S.; Wildish, T.; Wynhoff, S.; Xie, Z.; Huang, X. T.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Apresyan, A.; Arndt, K.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Bujak, A.; Everett, A.; Fahling, M.; Garfinkel, A. F.; Gutay, L.; Ippolito, N.; Kozhevnikov, Y.; Laasanen, A. T.; Liu, C.; Maroussov, V.; Medved, S.; Merkel, P.; Miller, D. H.; Miyamoto, J.; Neumeister, N.; Pompos, A.; Roy, A.; Sedov, A.; Shipsey, I.; Cuplov, V.; Parashar, N.; Bargassa, P.; Lee, S. J.; Liu, J. H.; Maronde, D.; Matveev, M.; Nussbaum, T.; Padley, B. P.; Roberts, J.; Tumanov, A.; Bodek, A.; Budd, H.; Cammin, J.; Chung, Y. S.; DeBarbaro, P.; Demina, R.; Ginther, G.; Gotra, Y.; Korjenevski, S.; Miner, D. C.; Sakumoto, W.; Slattery, P.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Bartz, E.; Chuang, S. H.; Doroshenko, J.; Halkiadakis, E.; Jacques, P. F.; Khits, D.; Lath, A.; Macpherson, A.; Plano, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Watts, T. L.; Cerizza, G.; Hollingsworth, M.; Lazoflores, J.; Ragghianti, G.; Spanier, S.; York, A.; Aurisano, A.; Golyash, A.; Kamon, T.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Berntzon, L.; Carrell, K. W.; Gumus, K.; Jeong, C.; Kim, H.; Lee, S. W.; McGonagill, B. G.; Roh, Y.; Sill, A.; Spezziga, M.; Thomas, R.; Volobouev, I.; Washington, E.; Wigmans, R.; Yazgan, E.; Bapty, T.; Engh, D.; Florez, C.; Johns, W.; Keskinpala, T.; Luiggi Lopez, E.; Neema, S.; Nordstrom, S.; Pathak, S.; Sheldon, P.; Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Humphrey, M.; Imlay, R.; Ledovskoy, A.; Phillips, D., II; Powell, H.; Ronquest, M.; Yohay, R.; Anderson, M.; Baek, Y. W.; Bellinger, J. N.; Bradley, D.; Cannarsa, P.; Carlsmith, D.; Crotty, I.; Dasu, S.; Feyzi, F.; Gorski, T.; Gray, L.; Grogg, K. S.; Grothe, M.; Jaworski, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Magrans de Abril, M.; Mohapatra, A.; Ott, G.; Smith, W. H.; Weinberg, M.; Wenman, D.; Atoian, G. S.; Dhawan, S.; Issakov, V.; Neal, H.; Poblaguev, A.; Zeller, M. E.; Abdullaeva, G.; Avezov, A.; Fazylov, M. I.; Gasanov, E. M.; Khugaev, A.; Koblik, Y. N.; Nishonov, M.; Olimov, K.; Umaraliev, A.; Yuldashev, B. S.

    2008-08-01

    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2 s-1 (1027 cm-2 s-1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

  3. Observation and Simulations of the Backsplash Effects in High-Energy Gamma-Ray Telescopes Containing a Massive Calorimeter

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander A.; Ormes, Jonathan F.; Hartman, Robert C.; Johnson, Thomas E.; Mitchell, John W.; Thompson, David J.

    1999-01-01

    Beam test and simulation results are presented for a study of the backsplash effects produced in a high-energy gamma-ray detector containing a massive calorimeter. An empirical formula is developed to estimate the probability (per unit area) of backsplash for different calorimeter materials and thicknesses, different incident particle energies, and at different distances from the calorimeter. The results obtained are applied to the design of Anti-Coincidence Detector (ACD) for the Large Area Telescope (LAT) on the Gamma-ray Large Area Space Telescope (GLAST).

  4. Evaluation of a bulk calorimeter and heat balance for determination of supersonic combustor efficiency

    NASA Technical Reports Server (NTRS)

    Mcclinton, C. R.; Anderson, G. Y.

    1980-01-01

    Results are presented from the shakedown and evaluation test of a bulk calorimeter. The calorimeter is designed to quench the combustion at the exit of a direct-connect, hydrogen fueled, scramjet combustor model, and to provide the measurements necessary to perform an analysis of combustion efficiency. Results indicate that the calorimeter quenches reaction, that reasonable response times are obtained, and that the calculated combustion efficiency is repeatable within + or -3 percent and varies in a regular way with combustor model parameters such as injected fuel equivalence ratio.

  5. Design studies on the 4π γ-ray calorimeter for the ETF experiment at HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Yue, Ke; Xu, Hu-Shan; Sun, Zhi-Yu; Su, Guang-Hui; Wang, Jian-Song; Zheng, Chuan; Li, Song-Lin; Hu, Zheng-Guo; Chen, Rou-Fu; Xiao, Zhi-Gang; Hu, Qiang; Zhang, Xue-Ying; Yu, Yu-Hong; Chen, Jun-Ling

    2011-01-01

    A high detection efficiency calorimeter which is used to detect γ-rays with energies from 1 MeV up to 10 MeV as well as light charged particles has been proposed. Design of the geometry, results of the crystal tests and Monte Carlo simulations are presented in this paper. The simulation results confirm that the calorimeter can obtain high detection efficiency and good energy resolution with the current designed geometry. And the calorimeter is competent for the future External Target Facility (ETF) experiments.

  6. Development of sampling calorimeter with segmented lead glass absorber

    NASA Astrophysics Data System (ADS)

    Terada, R.; Takeshita, T.; Itoh, H.; Kanzaki, I.

    2018-02-01

    Sampling calorimeter is indispensable for physics measurement at collider experiment with PFA. Uncertainty of deposit energy at absorber layer degrades energy resolution. This problem will be solved by using lead glass as absorber, which is clear and heavy. High energy particles produce Cherenkov lights whose light yield corresponds to the track length in the lead glass. This information from the absorber will improve the energy resolution of the calorimeter. Performance of this calorimeter prototype tested for electrons at ELPH beam at Tohoku University has been described. We discuss the problems and its capabilities.

  7. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolko, I. E.; Prokudin, M. S.

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The resultsmore » of the simulation are in good agreement with data.« less

  8. HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    NASA Astrophysics Data System (ADS)

    Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W.-S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K.-B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Teng, P. K.; Turko, B.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.

    2005-04-01

    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10-4. Intense charged secondary beams were produced by 800 GeV/ c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking.

  9. Athena X-IFU event reconstruction software: SIRENA

    NASA Astrophysics Data System (ADS)

    Ceballos, Maria Teresa; Cobo, Beatriz; Peille, Philippe; Wilms, Joern; Brand, Thorsten; Dauser, Thomas; Bandler, Simon; Smith, Stephen

    2015-09-01

    This contribution describes the status and technical details of the SIRENA package, the software currently in development to perform the on board event energy reconstruction for the Athena calorimeter X-IFU. This on board processing will be done in the X-IFU DRE unit and it will consist in an initial triggering of event pulses followed by an analysis (with the SIRENA package) to determine the energy content of such events.The current algorithm used by SIRENA is the optimal filtering technique (also used by ASTRO-H processor) although some other algorithms are also being tested.Here we present these studies and some preliminary results about the energy resolution of the instrument based on simulations done with the SIXTE simulator (http://www.sternwarte.uni-erlangen.de/research/sixte/) in which SIRENA is integrated.

  10. Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA

    NASA Astrophysics Data System (ADS)

    Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.

    1999-08-01

    The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.

  11. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  12. Kinetic calorimetry in the study of the mechanism of low-temperature chemical reactions

    NASA Astrophysics Data System (ADS)

    Barkalov, I. M.; Kiryukhin, D. P.

    Chemical reactions are always followed by a change in the reacting system enthalpy, hence, calorimetry as a method of enthalpy and heat capacity measuring is a universal and, sometimes, even the only possible way of studying chemical reaction kinetics. Throughout its long history, the calorimeter, having preserved the positions of the main method of thermodynamic studies, has conquered a new field of application: that of kinetic study of chemical reactions. The advantages and disadvantages of the kinetic calorimeter are now obvious. First, the advantages are: (1) the possibility of measuring the rate of a chemical reaction without any special requirements being imposed on the reaction medium (solid, viscous, multicomponent systems); (2) the high efficiency: a large volume of kinetic information in one experiment and a non-destructive character of changes; (3) the possibility of measuring directly in the field of ionizing radiation (γ-radiation, accelerated electrons) and light; and (4) recording of the chemical conversion directly at the time of its occurrence. The disadvantages of this method are: (1) the high inertia of standard calorimeter systems (τC⋍102-103S), which restricts the possibilities of studying fast processes; and (2) the complexity of the correct organization of the calorimeter experiment when the parameters of the process are changed (overheating in the sample, conversion of the process to explosive and auto wave regimens). One of the oldest and most universal methods of studying the mechanism of chemical reactions, calorimetry, is now passing through a period of turbulent development due to the advances in electronics and computerization. The wide variety of types of calorimeter set-ups and the large assortment of measurement schemes in the currently described methods complicate the experimental selection of the necessary instrument rather than facilitate it. The basic principles of the method, the types of calorimeters, and the measuring schemes are described [1-5]. However, despite the high working characteristics of modern calorimeters (Perkin-Elmer, Du Pont, LKB, etc.), all of them have one principal disadvantage: a cell with a sample is placed in them at room temperature. In cryochemical investigation, when the sample has metastable formations, the loading is made `from nitrogen to nitrogen', i.e. the sample prepared at 77 K should be loaded into a calorimeter at 77 K. Besides, the existing installations do not allow measurements at the temperatures <110K. For this reason, the Laboratory of Cryochemistry and Radiation Chemistry at the Institute of Chemical Physics in Chernogolovka has created original calorimetric techniques which allow: (1) the carrying out phase analysis and the determination of the main thermodynamic characteristic of individual substances and complicated systems in the temperature range 5 300 K. Sample loading can be conducted at 77 K that allows us to study the systems containing: tetrafiuoroethylene, hexafluoropropylene, ethylene, carbon monoxide, nitrogen, methane, hydrogen, oxygen, ozone, formaldehyde and many other gaseous substances; (2) the study of the dynamics of chemical reactions and to measure the main kinetic parameters of the processes-the elementary rate constants and the activation energies. The experiment can be conducted both under direct action of radiation and UV light and in the post-effect mode [5,6].

  13. Structure design and enviromental test of BGO calorimeter for satellite DAMPE

    NASA Astrophysics Data System (ADS)

    Hu, Yiming; Feng, Changqing; Zhang, Yunlong; Chen, Dengyi; Chang, Jin

    2016-07-01

    The Dark Matter Particle Explorer, DAMPE, is a new designed satellite developed for the new Innovation 2020 program of Chinese Academy of Sciences. As the most important payload of China's first scientific satellite for detecting dark matter, the primary purposes of BGO calorimeter is to measure the energy of incident high energy electrons and gamma rays (5GeV-10TeV) and to identify hadron and electronics. BGO calorimeter also provides an important background discriminator by measuring the energy deposition due to the particle shower that produced by the e^{±}, γ and imaging their shower development profile. Structure design of BGO calorimeter is described in this paper. The new designed BGO calorimeter consists of 308 BGO crystals coupled with photomultiplier tubes on its two ends. The envelop size of the BGO calorimeter is 907.5mm×907.5mm×494.5mm,and the weight of which is 1051.4Kg. The most important purpose of mechanical design is how to package so heavy crystals into a detector as required arrangement and to make sure reliability and safety. This paper describes the results of vibration tests using the Flight Module of the BGO Calorimeter for the DAMPE satellite. During the vibration tests, no degradation of the mechanical assembly was observed. After random or sinusoidal vibrations, there was no significant changes of the frequency signatures observed during the modal surveys. The comparison of results of cosmic ray tests before and after the vibration shows no change in the performance of the BGO calorimeter.

  14. Twin solution calorimeter determines heats of formation of alloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.

    1968-01-01

    Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.

  15. Cone Calorimeter Analysis of FRT Intumescent and Untreated Foam Core Particleboards

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2012-01-01

    The effectiveness of treatments of the surface layer of novel foam core particleboards were evaluated by means of Cone calorimeter tests. Foam core particleboards with variations of surface layer treatment, adhesives and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  16. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  17. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  18. Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA

    NASA Technical Reports Server (NTRS)

    Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n

  19. SU-E-T-408: Determination of KQ,Q0-Factors From Water and Graphite Calorimetry in a 60 MeV Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossomme, S; Renaud, J; Sarfehnia, A

    2014-06-01

    Purpose: To reduce the uncertainty of the beam quality correction factor k Q,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates k Q,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficientmore » is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental k Q,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. k Q,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine k Q,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher uncertainty, but is, at present, considerably easier to operate.« less

  20. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-15

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., onmore » the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.« less

  1. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    PubMed

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P <0.01), and had better synchronization (L2: 2.33, 2.33; L3: 3.33, 3.33, P <0.01). In the high airway resistance condition with PEEP 4 cmH(2)O, V60 had less number of auto-triggering than other ventilators ( P <0.01), while in the high airway resistance condition with PEEP 8 cmH(2)O, Stellar150 had less number of miss-triggering than other ventilators (1, 0.67, 0, P <0.01). Flexo had a shorter trigger delay time than other ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P <0.01]. Stellar150 had the shortest trigger delay time in high airway resistance condition with PEEP 4 cmH(2)O and high leak level L3[(262.8±0.8) ms , P <0.01]. V60 had a good performance on trigger delay time in high elastance resistance condition with PEEP 4 and 8 cmH(2)O, and also was most stable in increasing leak levels. Conclusion: In high airway resistance and high elastance resistance conditions with different PEEP levels and leak levels, V60, Stellar150, Flexo and BellaVista ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.

  2. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  3. High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.

    2010-01-01

    X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray calorimeter spectrometer, coupled with higher spectral resolution dispersive spectrometers to resolve line blends, has enabled many science investigations, to date mostly in our x-ray laboratory astrophysics program. These include measurements of absolute cross sections for Land K shell emission from Fe and Ni, charge exchange measurements in many astrophysically abundant elements, lifetime measurements, line ratios, and wavelength measurements. In addition, we have performed many additional measurements in nuclear physics, and in support of diagnostics for laser fusion, for example. In this presentation we will give a detailed overview of x-ray calorimeter instruments in general and in our EBIT laboratory astrophysics program in particular. We will also discuss the science yield of our measurements at EBIT over the last decade) prospects for future science enabled by the current generation of spectrometers and that will be expanded in the near future by the next generation of spectrometers starting in 2611.

  4. The ATIC Experiment : Performance of the Scintillator Hodoscope and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from McMurdo, Antarctica, 28/12/00 to 13/01/01, recording over 360 hours of data. The design goal for ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, operation, and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  5. The ATIC Experiment: Performance of the Scintillator Hodoscopes and the BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, Joachim; Adams, J. H.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had its first flight from Mcmurdo, Antarctica 28/12/2000 to 13/01/2001, local time, recording over 360 hours of data. The design goal of ATIC was to measure the Cosmic Ray composition and energy spectra from approximately 50 GeV to near 100 TeV utilizing a Si-matrix detector, a scintillator hodoscope, carbon targets and a calorimeter consisting of a stack of BGO scintillator crystals. The design, the operations and in-flight performance of the scintillator hodoscope and the BGO calorimeter are described.

  6. ATLAS Tile Calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  7. Cone calorimeter evaluation of wood products

    Treesearch

    Robert H. White; Mark A. Dietenberger

    2004-01-01

    The Forest Products Laboratory uses the cone calorimeter for the initial evaluation of the flammability of untreated and fire retardant treated wood products. The results of various studies are reviewed using a model presented at the 12th Annual BBC Conference on Flame Retardancy. The model uses data from the cone calorimeter to provide measures of fire growth...

  8. Cone calorimeter tests of wood composites

    Treesearch

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  9. Neutral meson production and correlation with charged hadrons in pp and Pb-Pb collisions with the ALICE experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Vauthier, Astrid; Alice Collaboration

    2017-11-01

    Among the probes used to investigate the properties of the Quark-Gluon Plasma, the measurement of the energy loss of high-energy partons can be used to put constraints on energy-loss models and to ultimately access medium characteristics, such as the energy density or the temperature. The study of two-particle correlations allows us to obtain very different constraints compared to the nuclear modification factor. In particular, the correlation of charged hadrons with high energy π0 or direct photons is believed to give a measurement of the parton energy loss and insights into the medium-induced modification of the fragmentation process. High energy neutral pions are reconstructed using the ALICE electromagnetic calorimeters EMCal and PHOS, and the charged particles are detected by the main tracking detectors ITS and TPC. In these proceedings, the measurement of neutral mesons at √{ s} = 2.76TeV in pp collisions are presented, as well as the measurements of azimuthal π0-hadron correlations in pp and Pb-Pb collisions at √{ s} = 2.76TeV, and the extracted per-trigger yield modification factor (IAA). Comparisons with theoretical model calculations are also added.

  10. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  11. The Heavy Photon Search beamline and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltzell, N.; Egiyan, H.; Ehrhart, M.

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+e- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO 4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed justmore » 10 cm downstream of the target with the sensor edges only 500 μm above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking.« less

  12. The Heavy Photon Search beamline and its performance

    DOE PAGES

    Baltzell, N.; Egiyan, H.; Ehrhart, M.; ...

    2017-07-01

    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the emore » $^+$e$^-$ decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO$$_4$$ electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 $$\\mu$$m above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This study describes the beam line and its performance during that data taking.« less

  13. Radioactive source calibration test of the CMS Hadron Endcap Calorimeter test wedge with Phase I upgrade electronics

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Kveton, A.; Tomsa, J.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Patil, M.; Sarkar, T.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Sekmen, S.; Rumerio, P.; Adiguzel, A.; Bakirci, N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dölek, F.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Işik, C.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Koseyan, O. K.; Ozcelik, O.; Ozkorucuklu, S.; Tekten, S.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Flacher, H.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Buccilli, A.; Cooper, S. I.; Henderson, C.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Yu, D. R.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Nguyen, T.; Spiropulu, M.; Winn, D.; Abdullin, S.; Apresyan, A.; Apyan, A.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Calderon, J. D.; Eno, S. C.; Feng, Y. B.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Yang, Z. S.; Yao, Y.; Brandt, S.; D'Alfonso, M.; Hu, M.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Medvedeva, T.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Amouzegar, M.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.

    2017-12-01

    The Phase I upgrade of the CMS Hadron Endcap Calorimeters consists of new photodetectors (Silicon Photomultipliers in place of Hybrid Photo-Diodes) and front-end electronics. The upgrade will eliminate the noise and the calibration drift of the Hybrid Photo-Diodes and enable the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade also includes increased longitudinal segmentation of the calorimeter readout, which allows pile-up mitigation and recalibration due to depth-dependent radiation damage. As a realistic operational test, the responses of the Hadron Endcap Calorimeter wedges were calibrated with a 60Co radioactive source with upgrade electronics. The test successfully established the procedure for future source calibrations of the Hadron Endcap Calorimeters. Here we describe the instrumentation details and the operational experiences related to the sourcing test.

  14. Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure

    PubMed Central

    Lester, Jonathan; Migotsky, Sean; Goh, Jorming; Higgins, Lisa; Borriello, Gaetano

    2011-01-01

    The ability to relate physical activity to health depends on accurate measurement. Yet, none of the available methods are fully satisfactory due to several factors. This study examined the accuracy of a multi-sensor board (MSB) that infers activity types (sitting, standing, walking, stair climbing, and running) and estimates energy expenditure in 57 adults (32 females) 39.2 ± 13.5 years. In the laboratory, subjects walked and ran on a treadmill over a select range of speeds and grades for 3 min each (six stages in random order) while connected to a stationary calorimeter, preceded and followed by brief sitting and standing. On a different day, subjects completed scripted activities in the field connected to a portable calorimeter. The MSB was attached to a strap at the right hip. Subjects repeated one condition (randomly selected) on the third day. Accuracy of inferred activities compared with recorded activities (correctly identified activities/total activities × 100) was 97 and 84% in the laboratory and field, respectively. Absolute accuracy of energy expenditure [100 – absolute value (kilocalories MSB – kilocalories calorimeter/kilocalories calorimeter) × 100] was 89 and 76% in the laboratory and field, the later being different (P < 0.05) from the calorimeter. Test–retest reliability for energy expenditure was significant in both settings (P < 0.0001; r = 0.97). In general, the MSB provides accurate measures of activity type in laboratory and field settings and energy expenditure during treadmill walking and running although the device underestimates energy expenditure in the field. PMID:21249383

  15. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    NASA Astrophysics Data System (ADS)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  16. Environmental test of the BGO calorimeter for DArk Matter Particle Explorer

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Ming; Chang, Jin; Chen, Deng-Yi; Guo, Jian-Hua; Zhang, Yun-Long; Feng, Chang-Qing

    2016-11-01

    DArk Matter Particle Explorer (DAMPE) is the first Chinese astronomical satellite, successfully launched on Dec. 17 2015. As the most important payload of DAMPE, the BGO calorimeter contains 308 bismuth germanate crystals, with 616 photomultiplier tubes, one coupled to each end of every crystal. Environmental tests have been carried out to explore the environmental adaptability of the flight model of the BGO calorimeter. In this work we report the results of the vibration tests. During the vibration tests, no visible damage occurred in the mechanical assembly. After random or sinusoidal vibrations, the change of the first order natural frequency of BGO calorimeter during the modal surveys is less than 5%. The shift ratio of Most Probable Value of MIPs changes in cosmic-ray tests are shown, the mean value of which is about -4%. The comparison of results of cosmic-ray tests before and after the vibration shows no significant change in the performance of the BGO calorimeter. All these results suggest that the calorimeter and its structure have passed through the environment tests successfully. Supported by National Natural Science Foundation of China (11203090, 11003051, 11273070) and Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA04040202)

  17. On to what extent stresses resulting from the earth's surface trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2009-12-01

    The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasi, A.; Basti, A.; Bedeschi, F.

    We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be providedmore » by the laser and the stability of the calibration system components.« less

  19. Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater

    NASA Astrophysics Data System (ADS)

    Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun

    2010-06-01

    For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.

  20. Quasi-adiabatic calorimeter for direct electrocaloric measurements

    NASA Astrophysics Data System (ADS)

    Sanlialp, Mehmet; Shvartsman, Vladimir V.; Faye, Romain; Karabasov, Maksim O.; Molin, Christian; Gebhardt, Sylvia; Defay, Emmanuel; Lupascu, Doru C.

    2018-03-01

    The electrocaloric effect (ECE) in ferroelectric materials is a promising candidate for small, effective, low cost, and environmentally friendly solid state cooling applications. Instead of the commonly used indirect estimates based on Maxwell's relations, direct measurements of the ECE are required to obtain reliable values. In this work, we report on a custom-made quasi-adiabatic calorimeter for direct ECE measurements. The ECE is measured for two promising lead-free materials: Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 bulk ceramics. Adiabatic temperature changes of ΔTEC = 0.5 K at 355 K and ΔTEC = 0.3 K at 314 K were achieved under the application of an electric field of 2 kV/mm for the Ba(Zr0.12Ti0.88)O3 and Ba(Zr0.2Ti0.8)O3 samples, respectively. The quasi-adiabatic ECE measurements reliably match other direct EC measurements using a differential scanning calorimeter or an infrared camera. The data are compared to indirect EC estimations based on Maxwell's relations and show that the indirect measurements typically underestimate the effect to a certain degree.

  1. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Sawada, Makoto; Tsujimoto, Masahiro; Angellini, Lorella; Boyce, Kevin R.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Koyama, Shu; Leutenegger, Maurice A.; Loewenstein, Michael; McCammon, Dan; Mitsuda, Kazuhisa; Nakashima, Shinya; Porter, Frederick S.; Seta, Hiromi; Takei, Yoh; Tashiro, Makoto S.; Terada, Yukikatsu; Yamada, Shinya; Yamasaki, Noriko Y.

    2018-03-01

    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 × 10-2 counts s-1 cm-2. This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.

  2. Monte-Carlo Simulations of the Nuclear Energy Deposition Inside the CARMEN-1P Differential Calorimeter Irradiated into OSIRIS Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Reynard-Carette, C.; Carette, M.

    The nuclear heating measurements in Material Testing Reactors (MTRs) are crucial for the study of nuclear materials and fuels under irradiation. The reference measurements of this nuclear heating are especially performed by a differential calorimeter including a graphite sample material. These measurements are then used for other experimental conditions in order to predict the nuclear heating and thermal conditions induced in the irradiation devices. Nuclear heating is a great deal of interest at the moment as the measurement of such heating is an important issue for MTRs reactors. This need is especially generated by the new Jules Horowitz Reactor (JHR),more » under construction at CEA/Cadarache 'French Alternative Energies and Atomic Energy Commission'. This new reactor, that will be operational in late 2019, is a new facility for the nuclear research on materials and fuels. Indeed the expected nuclear heating rate is about 20 W/g for nominal capacity of 100 MW. The present Monte Carlo calculation works belong to the IN-CORE (Instrumentation for Nuclear radiation and Calorimetry On line in Reactor): a joint research program between the CEA and Aix- Marseille University in 2009. One scientific aim of this program is to design and develop a multi-sensors device, called CARMEN, dedicated to the measurements of main physical parameters simultaneously encountered inside JHR's experimental channels (core and reflector) such as neutron fluxes, photon fluxes, temperature, and nuclear heating. A first prototype was already developed. This prototype includes two mock-ups dedicated respectively to neutronic measurements (CARMEN-1N) and to photonic measurements (CARMEN-1P) with in particular a specific differential calorimeter. Two irradiation campaigns were performed successfully in the periphery of OSIRIS reactor (a MTR located at Saclay, France) in 2012 for nuclear heating levels up to 2 W/g. First Monte Carlo calculations reduced to the graphite sample of the calorimeter were carried out. A preliminary analysis shows that the numerical results overestimate the measurements by about 20 %. A new approach has been developed in order to estimate the nuclear heating by two methods (energy deposition or KERMA) by considering the whole complete geometry of the sensor. This new approach will contribute to the interpretation of the irradiation campaign and will be useful to improve the out-of-pile calibration procedure of the sensor and its thermal response during irradiations. The aim of this paper is to present simulations made by using MCNP5 Monte-Carlo transport code (using ENDF/B-VI nuclear data library) for the nuclear heating inside the different parts of the calorimeter (head, rod and base). Calculations into two steps will be realized. We will use as an input source in the model new spectra (neutrons, prompt-photons and delayed-photons) calculated with the Monte Carlo code TRIPOLI-4{sup R} inside different experimental channels (water) located into the OSIRIS periphery and used during the CARMEN-1P irradiation campaign. We will consider Neutrons- Photons-Electrons and Photons-Electrons modes. We will begin by a brief description of the differential-calorimeter device geometry. Then the MCNP5 model used for the calculations of nuclear heating inside the calorimeter elements will be introduced. The energy deposition due to the prompt-gamma, delayed-gamma and neutrons, the neutron-activation of the device will be considered. The different components of the nuclear heating inside the different parts of the calorimeter will be detailed. Moreover, a comparison between KERMA and nuclear energy deposition estimations will be given. Finally, a comparison between this total nuclear heating Calculation and Experiment in graphite sample will be determined. (authors)« less

  3. Same sign dimuon search for heavy majorana mass neutrinos at the CMS experiment at CERN and design studies of a quartz plate calorimeter prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarida, Warren James

    2012-12-01

    This paper consists of two studies: the results of a search for heavy Majorana neutrinos (N) using an event signature defined by two like-sign charged muons and two jets, and the results from studies of a prototype quartz plate calorimeter. The data in the Majorana search correspond to an integrated luminosity of 5.0 fbmore » $$^{−1}$$ of pp collisions at a centre-of-mass energy of 7 TeV collected with the CMS detector at the Large Hadron Collider. No excess of events are observed beyond the expected standard model background and therefore upper limits are set on the square of the mixing element, $$|V_{\\mu N} |$$as a function of Majorana neutrino mass. These are the first direct upper limits on the heavy Majorana-neutrino mixing for m$$_N$$ > 90 GeV . The second part of this thesis is the results of performance tests of a 20-layer quartz plate calorimeter prototype. The calorimeter prototype was tested at the CERN H2 area in hadronic and electromagnetic configurations, at various en ergies of pion and electron beams. The beam test and simulation results of this prototype are reported.« less

  4. Мюонный комплекс и преконвертор электромагнитного калориметра установки CDF II в экспериментах по физике тяжелых кварков на Тэватроне (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artikov, Akram Muzafarovich

    The object of this investigation is to understand processes with c,b,t-quarks, muon system and trigger preshower of the electromagnetic calorimeter, plastic scintillation detectors of the CDFII setup.

  5. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    The XVth International Conference on Calorimetry in High Energy Physics, CALOR2012, was held in Santa Fe, New Mexico from 4-8 June 2012. The series of conferences on calorimetry started in 1990 at Fermilab, and they have been the premier event for calorimeter aficionados, a trend that CALOR2012 upheld. This year, several presentations focused on the status of the major calorimeter systems, especially at the LHC. Discussions on new and developing techniques in calorimetry took a full day. Excellent updates on uses of calorimeters or about ideas that are deeply rooted in particle physics calorimetry in astrophysics and neutrino physics were followed by talks on algorithms and special triggers that rely on calorimeters. Finally, discussions of promising current developments and ongoing R&D work for future calorimeters capped the conference. The field of calorimetry is alive and well, as evidenced by the more than 100 attendees and the excellent quality of over 80 presentations. You will find the written contributions in this volume. The presentations can be found at calor2012.ttu.edu. The first day of the conference was dedicated to the LHC. In two invited talks, Guillaume Unal (CERN) and Tommaso Tabarelli de Fatis (Universita' & INFN Milano Bicocca) discussed the critical role electromagnetic calorimeters play in the hunt for the Standard Model Higgs boson in ATLAS and CMS, respectively. The enhanced sensitivity for light Higgs in the two-gamma decay channel renders electromagnetic calorimeters indispensible. Much of the higher mass region was already excluded for the SM Higgs by the time of this conference, and after less than a month, on 4 July, CERN announced the discovery of a new boson at 125 GeV, a particle that seems consistent with the Higgs particle so far. Once again, without the electromagnetic calorimeters, this would not have been possible. Professor Geoffrey West from the Santa Fe Institute gave the keynote address. His talk, 'Universal Scaling Laws from Cells to Cities - a Physicist's Search for Quantitative, Unified Theories of Biological and Social Structure and Dynamics,' inspired many interesting questions from the audience both after the talk and throughout the week during informal conversations. Calorimetry is extremely diverse: many different techniques may be employed in building the detector and also in extracting information from it. The topics of the Calorimeter Techniques sessions included high-rate liquid argon calorimeters, SiPM sensors, highly granular digital calorimeters, new crystals, and beam test and simulation results. In these pages, you will find exciting and sometimes contradicting points of view expressed, for example about fully sampling hadronic calorimeters. A rare astronomical event, the Venus transit, coincided with the second day of the conference. The participants enjoyed viewing Venus' trail across the sun with a solar telescope (H-alpha line at 656 nm). In Santa Fe, the interior ingress was at 16:23:04 and reached center at 19:27:04. The last transit occurred in 2004, and the next one will happen in 2117. In 1627, Johannes Kepler published data about the planetary orbits that predicted that Venus would pass directly between earth and the sun in 1631. Unfortunately Kepler died in 1630 and apparently nobody recorded the 1631 transit. The first recorded observation of a transit was in 1638, which Kepler had not predicted. Later, Jeremiah Horracks, an English astronomer, realized Kepler had made an error in his calculations. It was not until the Venus transit observations of 1769 that scientists measured the distance from the earth to the sun to be 95 million miles (actually 93 million miles or 149.7 million kilometers) based on the 1716 triangulation suggestion from Edmund Halley (of comet fame). It's interesting to remember that before the 18th century, one of the most vexing scientific puzzles, not unlike today's Higgs boson quest, was 'How far away is the Sun?' Although natural media such as Mediterranean water (ANTARES), Arctic ice (ARA, ARIANNA, ANITA, and others) or Utah air (TA) would hardly be choice absorbers in accelerator-based experiments, they are nevertheless successfully exploited in searches for new phenomena, as discussed by the members of these collaborations in several talks. Philippe Bruel (LLR, Ecole Polytechnique) gave an overview of the gamma-ray sky above 20 MeV using the Fermi Gamma-ray Space Telescope and the role of the hodoscopic array of CsI(Tl) calorimeter in an invited talk. In a second invited presentation, Sylvie Rosier-Lees (LAPP-Annecy) described the ECAL design (Pb/scintillating fiber sandwich) of the Alpha Magnetic Spectrometer (AMS-02) that has been operating in the International Space Station since May 2011 and has collected over 15 billion events. The environs of Santa Fe have long been considered sacred by the first nation Americans and have been a source of inspiration for generations of artists, writers, and scientists. Robert Oppenheimer's love of this area played no small role in establishing what is now the nearby Los Alamos National Laboratory during the Second World War. On the third conference day, some participants visited the lab after an awe-inspiring trip to the Bandelier National Monument, where beautiful canyons and mesas show evidence of a human presence for over 11,000 years. Petroglyphs, dwellings carved into the soft rock cliffs, and standing masonry walls in the park mark the early days of a culture that still persists in surrounding communities. We are grateful to the International Advisory Committee for allowing us the opportunity to hold this Conference in these enchanted lands. In addition to making advances in calorimeter design, hardware, and front-end electronics, we in particle physics increasingly find ourselves inventing new algorithms to reconstruct physics objects that use the detector information to its maximum capacity. Several presentations provided details of the reconstruction and trigger of jets, missing transverse energy, electrons, photons, and taus. Pile-up, anomalous signals, and noise mitigation techniques were also discussed in the conference. On the last day, several future R&D initiatives were presented: highly granular CALICE with different technology options and plans for the dual-readout DREAM projects were the main topics. Although these approaches are quite different conceptually, future experiments will certainly benefit from their innovations. Concluding remarks by the chair of the organizing committee, Nural Akchurin (TTU), summarized the highlights of the conference and invited proposals to host the CALOR2014 conference in Europe, as the conference venue rotates between the Americas, Europe, and Asia every two years. We strived hard to keep the cost of this conference as low as possible without sacrificing the scientific mission. I am delighted to report that we were able to provide support for six junior colleagues to participate in this conference. I am also grateful to the institutions, industrial partners, and agencies that provided the support that made a lot possible: Texas Tech University, the University of New Mexico, Los Alamos National Laboratory, the US Department of Energy, CAEN, and the Wiener Plein & Baus, Corp. I also would like to thank the session conveners who organized sessions and reviewed the papers. The members of the local organizing committee were instrumental to the success of this conference: their experience and attention to detail were invaluable. Most of all, I extend my appreciation to the conference participants and to all my other colleagues who continue to enrich the field of calorimetry through their hard work and creativity. The future is bright. Nural Akchurin Chair of the Organizing Committee International Advisory Committee: Mikhail Danilov, ITEP Moscow Marcella Diemoz, INFN Roma I Antonio Ereditato, Univ. of Bern Franco L. Fabbri, INFN Frascati Tomio Kobayashi, ICEPP Tokyo Michele Livan, Pavia Univ. & INFN Pasquale Lubrano, INFN Perugia Steve Magill, ANL Amelia Maio, LIPP Lisbon Horst Oberlack, MPI Munich Adam Para, FNAL Klaus Pretzl, Univ. of Bern Yifang Wang, IHEP Beijing Richard Wigmans, TTU Ren-Yuan Zhu, Caltech Local Organizing Committee: Nural Akchurin, TTU Debra Boyce, TTU (Secretary) Xiadong Jiang, LANL Jon Kapustinsky, LANL Sung-Won Lee, TTU Sally Seidel, UNM Igor Volobouev, TTU Session Conveners: LHC I-III: David Barney (CERN) Ana Henriques (CERN) Sally Seidel (UNM) Calorimetry Techniques I-II: Francesca Tedaldi (ETH-Zurich) Tao Hu (IHEP-Beijing) Calorimetry Techniques III-IV: Craig Woody (BNL) Tohru Takeshita (Shinshu) Astrophysics and Neutrinos: Don Groom (LBNL) Steve Magill (ANL) Operating Calorimeters: Jordan Damgov (TTU) Gabriella Gaudio (INFN-Pavia) Frank Chlebana (FNAL) Algorithms and Simulations: Artur Apresyan (Caltech) Igor Volobouev (TTU) Front-end and Trigger: Chris Tully (Princeton) Kejun Zhu (IHEP-Beijing) Future Calorimetry: Michele Livan (Pavia Univ.) Frank Simon (MPI) Vishnu Zutshi (NICADD) List of Participants: ABOUZEID, Hass University of Toronto AKCHURIN, Nural Texas Tech University ANDEEN, Timothy Columbia University ANDERSON, Jake Fermilab APRESYAN, Artur California Institute of Technology AUFFRAY, Etiennette CERN BARILLARI, Teresa Max-Planck-Inst. fuer Physik BARNEY, David CERN BESSON, Dave University of Kansas BOYCE, Debra Texas Tech University BRUEL, Philippe LLR, Ecole Polytechnique, CNRS/IN2P3 BUCHANAN, Norm Colorado State University CARLOGANU, Cristina LPC Clermont Ferrand / IN2P3 / CNRS CHEFDEVILLE, Maximilien CNRS/IN2P3/LAPP CHLEBANA, Frank Fermilab CLARK, Jonathan Texas Tech University CONDE MUINO, Patricia LIP-Lisboa COWDEN, Christopher Texas Tech University DA SILVA, Cesar Luiz Los Alamos National Lab DAMGOV, Jordan Texas Tech University DAVYGORA, Yuriy University of Heidelberg DEMERS, Sarah Yale University EIGEN, Gerald University of Bergen EUSEBI, Ricardo Texas A&M University FERRI, Federico CEA/Saclay Irfu/SPP FRANCAVILLA, Paolo IFAE Barcelona GATAULLIN, Marat California Institute of Technology GATTO, Corrado INFN-Napoli GAUDIO, Gabriella INFN-Pavia GERMANI, Stefano INFN-Perugia Goldenzweig, Pablo University of Rochester GRAF, Norman SLAC National Accelerator Laboratory GROOM, Don Lawrence Berkeley Lab GUARDINCERRI, Elena Los Alamos National Laboratory HAUPTMAN, John Iowa State University HENRIQUES, Ana CERN HUANG, Jin Los Alamos National Laboratory HU, Tao IHEP-Beijing, CAS JIANG, Xiaodong Los Alamos National Laboratory JUI, Charles University of Utah KAPUSTINSKY, Jon Los Alamos National Laboratory KIBILKO, Mark SE Technical Sales, Inc. KIRSCHENMANN, Henning University of Hamburg KISTENEV, Edouard Brookhaven National Laboratory KLIMEK, Pawel Stockholm Universitet KROEGER, Robert University of Mississippi LECOQ, Paul CERN LEE, Sehwook Texas Tech University LEE, Sung-Won Texas Tech University LIVAN, Michele Pavia University LUTZ, Benjamin DESY MAGILL, Stephen Argonne National Laboratory MATHIS, Mark College of William and Mary MATTHEWS, John University of Utah MENKE, Sven Max-Planck-Institut fuer Physik MOULSON, Matthew INFN-Frascati NAGEL, Martin Max-Planck-Institut fuer Physik NAKAMURA, Isamu KEK NEMECEK, Stanislav FZU AVCR Praha NESSI-TEDALDI, Francesca ETH Zurich NOVOTNY, Rainer 2nd Physics Institute, University Giessen OREGLIA, Mark University of Chicago PERLOFF, Alexx Texas A&M University PETYT, David Rutherford Appleton Laboratory RAHMAT, Rahmat University of Mississippi RAMILLI, Marco Hamburg Universitaet ROSIER LEES, Sylvie LAPP- IN2P3-CNRS RUTHERFOORD, John University of Arizona SAKUMA, Tai Texas A&M University SANTIAGO CERQUEIRA, Augusto Federal University of Juiz de Fora SARRA, Ivano INFN-Frascati SEIDEL, Sally University of New Mexico SEIFERT, Frank TU Dresden, Germany SHAMIM, Mansoora University of Oregon SIMON, Frank Max-Planck-Institute for Physics STAFFAN, Paul Wiener Plein and Baus, Corp Dr. STAROVOITOV, Pavel DESY TABARELLI DE FATIS, Tommaso Universita' & INFN Milano-Bicocca TADEVOSYAN, Vardan AANL TAKESHITA, Tohru Shinshu University TALAGA, Richard Argonne National Laboratory TAPAN, Ilhan Uludag University TERWORT, Mark DESY TSAI, Oleg UCLA TULLY, Christopher Princeton University UNAL, Guillaume CERN VICHOU, Eirini University of Illinois at Urbana-Champaign VILASIS-CARDONA, Xavier La Salle - Universitat Ramon Llull VOLOBOUEV, Igor Texas Tech University VOLPI, Matteo The University of Melbourne WANG, Zhigang IHEP-Beijing, CAS WENZEL, Hans Fermilab WHITE, Andy University of Texas at Arlington WIGMANS, Richard Texas Tech University WINN, David Fairfield University WOODY, Craig Brookhaven National Lab YANG, Fan California Institute of Technology ZABI, Alexandre LLR-Ecole Polytechnique ZHANG, Liyuan California Institute of Technoogy ZHAO, Zhiwen University of Virginia ZHU, Kejun IHEP-Beijing, CAS ZHU, Ren-Yuan California Institute of Technology ZUTSHI, Vishnu Northern Illinois University

  6. Imaging Calorimeter: What Have We Learned So Far

    NASA Astrophysics Data System (ADS)

    Xia, Lei

    Particle Flow Algorithms (PFAs) have been applied to existing detectors to improve the measurement of hadronic jets in colliding beam experiments. For future experiments, such as a TeV lepton collider, detector concepts optimized for the application of PFAs are being developed. These concepts require so-called imaging calorimeters, with unprecedented granularity. We will review the various recent developments of such highly granular calorimeters.

  7. Current status and performance of the BESIII electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Fang, Jian; Wang, Zhigang

    2012-12-01

    The design and construction of the BESIII electromagnetic calorimeter is introduced briefly. Radiation dose of CsI(Tl) crystals is monitored and history graph of integral dose of crystals is showed. LED-fiber system is used for monitoring the EMC light output, and large decrease of light output of several crystals is discussed. BESIII electromagnetic calorimeter works very well and its performance reach the design value.

  8. Technical instrumentation R&D for ILD SiW ECAL large scale device

    NASA Astrophysics Data System (ADS)

    Balagura, V.

    2018-03-01

    Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We describe the R&D program of the large scale detector element with up to 12 000 readout channels for the International Large Detector (ILD) at the future e+e‑ ILC collider. The program is focused on the readout front-end electronics embedded inside the calorimeter. The first part with 2 000 channels and two small silicon sensors has already been constructed, the full prototype is planned for the beginning of 2018.

  9. The status of the micro-calorimeter at Shanghai EBIT

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Xiao, J.; Yao, K.; Yang, Y.; Lu, D.; Fu, Y. Q.; Tu, B. S.; Hutton, R.; Zou, Y. M.

    2017-10-01

    We present an overview of recent work on the micro-calorimeter at the Shanghai EBIT laboratory. The micro-calorimeter was established under a collaboration between the Shanghai EBIT laboratory and the Smithsonian Astrophysical Observatory. The first micro-calorimeter spectra of Ar XVII/XVIII from the Shanghai EBIT have recently been obtained. In our case, amplitude drift correction had to be made in order to get decent spectral resolution. The resolution at 3 keV is about 20 eV. The reason why the resolution is not as good as during offline tests (13 eV) is thought to be due vibrations from the Shanghai EBIT, to which it is directly connected via a stainless steel tube.

  10. Design and performance of a vacuum-bottle solid-state calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-11-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimetermore » easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented.« less

  11. Agile Mcal, the Mini-Calorimeter

    NASA Astrophysics Data System (ADS)

    Bastia, Paolo; Poulsen, Jens Michael; Monzani, Franco; Radaelli, Paolo; Marchesi, Paolo; Labanti, Claudio; Marisaldi, Martino; Fuschino, Fabio; Bulgarelli, Andrea

    2006-04-01

    AGILE is a scientific mission dedicated to gamma-ray astrophysics in space, and the mini-calorimeter MCAL is one of four detector systems on the satellite. The MCAL instrument is sensitive in the energy range: 300 keV - 100 MeV. It has two main functions: one autonomous mode for detection of impulsive cosmic events and the other as “a slave” supporting the energy measurements of the pair-conversion tracker. The AGILE Small Mission is funded by the Italian Space Agency (ASI), and the INAF-IASF section at Bologna has the scientific responsibility for MCAL. LABEN develops the MCAL instrument with its detectors and electronics. This paper gives an overview of the detectors on AGILE, and then it gives details on the design of MCAL, and finally we report on the tests at instrument level.

  12. Construction and response of a highly granular scintillator-based electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Repond, J.; Xia, L.; Eigen, G.; Price, T.; Watson, N. K.; Winter, A.; Thomson, M. A.; Cârloganu, C.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Gadow, K.; Göttlicher, P.; Hartbrich, O.; Kotera, K.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Reinecke, M.; Sefkow, F.; Sudo, Y.; Tran, H. L.; Kaplan, A.; Schultz-Coulon, H.-Ch.; Bilki, B.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sekiya, I.; Suehara, T.; Yamashiro, H.; Yoshioka, T.; Alamillo, E. Calvo; Fouz, M. C.; Marin, J.; Navarrete, J.; Pelayo, J. Puerta; Verdugo, A.; Chadeeva, M.; Danilov, M.; Gabriel, M.; Goecke, P.; Graf, C.; Israeli, Y.; Kolk, N. Van Der; Simon, F.; Szalay, M.; Windel, H.; Bilokin, S.; Bonis, J.; Pöschl, R.; Thiebault, A.; Richard, F.; Zerwas, D.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Cvach, J.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Polak, I.; Smolik, J.; Vrba, V.; Zalesak, J.; Zuklin, J.; Choi, W.; Kotera, K.; Nishiyama, M.; Sakuma, T.; Takeshita, T.; Tozuka, S.; Tsubokawa, T.; Uozumi, S.; Jeans, D.; Ootani, W.; Liu, L.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Ikuno, T.; Sudo, Y.; Takahashi, Y.; Götze, M.; Calice Collaboration

    2018-04-01

    A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future linear collider experiments. A prototype of 21.5 X0 depth and 180 × 180mm2 transverse dimensions was constructed, consisting of 2160 individually read out 10 × 45 × 3mm3 scintillator strips. This prototype was tested using electrons of 2-32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be (12 . 5 ± 0 . 1(stat.) ± 0 . 4(syst.)) % /√{ E [ GeV ] } ⊕(1.2 ± 0.1 (stat.)-0.7+0.6 (syst.)) %, where the uncertainties correspond to statistical and systematic sources, respectively.

  13. Software for Processing Flight and Simulated Data of the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Panov, A. D.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; hide

    2002-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. A C++-class library for building different programs for processing flight and simulated data of the ATIC balloon experiment is described. This library is compatible with the ROOT-system and includes classes and methods for solving a number of problems as the following: Reading data files in different formats (raw-data format, ROOT-format, ASCII-format, different formats for simulated data); Transferring all these formats to the only inner format of the library; Reconstruction of trajectories of primary particles with BGO calorimeter only. The Monte-Carlo simulations with GEANT code were used to obtain the basic tables for computing error corridors and chi(sup 2)-values for the trajectories. Obtaining error corridors for searching for signal of primary particle in the Si-matrix; Searching for hit of primary particle in the Si-matrix with using of error corridor and other criteria (chi(sup 2)-values, agreement between signals in Si-matrix and in the upper layer of scintillator and others); Determination of charge of primary particle; Determination of energy deposit in BGO calorimeter.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanov, N.; et al.

    The Mu2e experiment at Fermilab will search for the coherentmore » $$\\mu \\to e$$ conversion on aluminum atoms. The detector system consists of a straw tube tracker and a crystal calorimeter. A pre-production of 150 Silicon Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed quality assur- ance has been carried out on each SiPM for the determination of its own operation voltage, gain, dark current and PDE. The measurement of the mean-time-to-failure for a small random sample of the pro-production group has been also completed as well as the determination of the dark current increase as a function of the ioninizing and non-ioninizing dose.« less

  15. The PHENIX PbSc calorimeter and its performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, G.; Goto, Y.; Kistenev, E.

    1997-11-01

    The authors have recently completed the production of the 15552 channel PbSc Electromagnetic calorimeter for the PHENIX experiment at RHIC. The design features a single 4 tower module which is repeated throughout and which was produced with a number of QC steps designed to achieve consistent, large light yield in all channels. They present results on uniformity of the calorimeter, accuracy of a cosmic muon based precalibration scheme and test beam performance.

  16. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-01

    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  17. Imaging hadron calorimetry for future Lepton Colliders

    NASA Astrophysics Data System (ADS)

    Repond, José

    2013-12-01

    To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.

  18. The ATLAS Tile Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriques, A.

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions.more » In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)« less

  19. Secondary Emission Calorimeter Sensor Development

    NASA Astrophysics Data System (ADS)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is estimated to be <15 ns. With fine mesh sampling only (no thick absorbers) the resolution is ~25 MeV at 1 GeV.

  20. The CMS High Granularity Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  1. Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples

    NASA Astrophysics Data System (ADS)

    Lopeandía, A. F.; Cerdó, L. l.; Clavaguera-Mora, M. T.; Arana, Leonel R.; Jensen, K. F.; Muñoz, F. J.; Rodríguez-Viejo, J.

    2005-06-01

    We have designed and developed a sensitive scanning calorimeter for use with microgram or submicrogram, thin film, or powder samples. Semiconductor processing techniques are used to fabricate membrane based microreactors with a small heat capacity of the addenda, 120nJ/K at room temperature. At heating rates below 10K/s the heat released or absorbed by the sample during a given transformation is compensated through a resistive Pt heater by a digital controller so that the calorimeter works as a power compensated device. Its use and dynamic sensitivity is demonstrated by analyzing the melting behavior of thin films of indium and high density polyethylene. Melting enthalpies in the range of 40-250μJ for sample masses on the order of 1.5μg have been measured with accuracy better than 5% at heating rates ˜0.2K/s. The signal-to-noise ratio, limited by the electronic setup, is 200nW.

  2. Overview of Hall D Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chudakov, Eugene A.

    Hall D is a new experimental hall at Jefferson Lab, designed for experiments with a photon beam. The primary motivation for Hall D is the GlueX experiment [1,2], dedicated to meson spectroscopy. The Hall D complex consists of: An electron beam line used to extract the 5.5-pass electrons from the accelerator into the Tagger Hall. The designed beam energy is E e = 12 GeV;The Tagger Hall, where the electron beam passes through a thin radiator (~0.01% R.L.) and is deflected into the beam dump. The electrons that lost >30% of their energy in the radiator are detected with scintillatormore » hodoscopes providing a ~0.1% energy resolution for the tagged photons. Aligned diamond radiators allow to produce linearly polarized photons via the Coherent Bremsstrahlung. The beam dump is limited to 60 kW (5 µA at 12 GeV); The Collimator Cave contains a collimator for the photon beam and dipole magnets downstream in order to remove charged particles. The 3.4 mm diameter collimator, located about 75 m downstream of the radiator, selects the central cone of the photon beam increasing its average linear polarization, up to ~40%in the coherent peak at 9 GeV; Hall D contains several elements of the photon beam line, and themain spectrometer. A Pair Spectrometer consists of a thin converter, a dipole magnet, and a two-arm detector used to measure the energy spectrum of the photon beam. The main spectrometer is based on a 2-T superconducting solenoid, 4 m long and 1.85 m bore diameter. The liquid hydrogen target is located in the front part the solenoid. The charged tracks are detected with a set of drift chambers; photons are detected with two electromagnetic calorimeters. There are also scintillator hodoscopes for triggering and time-of-flight measurements. The spectrometer is nearly hermetic in an angular range of 1° < θ < 120 •. The momentum resolution is σ p /p ~ 1 ₋ ₋3% depending on the polar angle θ. The energy resolution of the electromagnetic calorimeters is about 7% at 1 GeV.« less

  3. Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA

    NASA Astrophysics Data System (ADS)

    Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-02-01

    ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.

  4. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  5. Components Qualification for a Possible use in the Mu2e Calorimeter Waveform Digitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Falco, S.; Donati, S.; Morescalchi, L.

    2017-03-30

    The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both housed in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All themore » selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.« less

  6. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  7. Accelerator Test of an Imaging Calorimeter

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.; Adams, James H., Jr.; Binns, R. W.; Derrickson, J. H.; Fountain, W. F.; Howell, L. W.; Gregory, J. C.; Hink, P. L.; Israel, M. H.; Kippen, R. M.; hide

    2001-01-01

    The Imaging Calorimeter for ACCESS (ICA) utilizes a thin sampling calorimeter concept for direct measurements of high-energy cosmic rays. The ICA design uses arrays of small scintillating fibers to measure the energy and trajectory of the produced cascades. A test instrument has been developed to study the performance of this concept at accelerator energies and for comparison with simulations. Two test exposures have been completed using a CERN test beam. Some results from the accelerator tests are presented.

  8. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  9. Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab

    DOE PAGES

    Friend, M.; Parno, D.; Benmokhtar, F.; ...

    2012-06-01

    The photon arm of the Compton polarimeter in Hall A of Jefferson Lab has been upgraded to allow for electron beam polarization measurements with better than 1% accuracy. The data acquisition system (DAQ) now includes an integrating mode, which eliminates several systematic uncertainties inherent in the original counting-DAQ setup. The photon calorimeter has been replaced with a Ce-doped Gd 2SiO 5 crystal, which has a bright output and fast response, and works well for measurements using the new integrating method at electron beam energies from 1 to 6 GeV.

  10. Testing hadronic interaction models using a highly granular silicon-tungsten calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Cârloganu, C.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E. J.; van Doren, B.; Wilson, G. W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de La Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.; Calice Collaboration

    2015-09-01

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 350,000 selected π- events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. A reasonable overall description of the data is observed; the Monte Carlo predictions are within 20% of the data, and for many observables much closer. The largest quantitative discrepancies are found in the longitudinal and transverse distributions of reconstructed energy.

  11. Space qualification tests of the PAMELA instrument

    NASA Astrophysics Data System (ADS)

    Sparvoli, R.; Basili, A.; Bencardino, R.; Casolino, M.; de Pascale, M. P.; Furano, G.; Menicucci, A.; Minori, M.; Morselli, A.; Picozza, P.; Wischnewski, R.; Bakaldin, A.; Galper, A. M.; Koldashov, S. V.; Korotkov, M. G.; Mikhailov, V. V.; Voronov, S. A.; Yurkin, Y.; Adriani, O.; Bonechi, L.; Bongi, M.; Papini, P.; Ricciarini, S. B.; Spillantini, P.; Straulino, S.; Taccetti, F.; Vannuccini, E.; Castellini, G.; Boezio, M.; Bonvicini, M.; Mocchiutti, E.; Schiavon, P.; Vacchi, A.; Zampa, G.; Zampa, N.; Carlson, P.; Lund, J.; Lundquist, J.; Orsi, S.; Pearce, M.; Barbarino, G. C.; Campana, D.; Osteria, G.; Rossi, G.; Russo, S.; Boscherini, M.; Menn, W.; Simon, M.; Bongiorno, L.; Ricci, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Mirizzi, N.; Romita, M.; Spinelli, P.; Bogomolov, E.; Krutkov, S.; Vasiljev, G.; Bazilevskaja, G. A.; Kvashnin, A. N.; Logachev, V. I.; Makhmutov, V. S.; Maksumov, O. S.; Stozhkov, Yu. I.; Mitchell, J. W.; Streitmatter, R. E.; Stochaj, S. J.

    PAMELA is a satellite-borne experiment which will measure the antiparticle component of cosmic rays over an extended energy range and with unprecedented accuracy. The apparatus consists of a permanent magnetic spectrometer equipped with a double-sided silicon microstrip tracking system and surrounded by a scintillator anticoincidence system. A silicon tungsten imaging calorimeter, complemented by a scintillator shower tail catcher, and a transition radiation detector perform the particle identification task. Fast scintillators are used for Time-of-Flight measurements and to provide the primary trigger. A neutron detector is finally provided to extend the range of particle measurements to the TeV region. PAMELA will fly on-board of the Resurs-DK1 satellite, which will be put into a semi-polar orbit in 2005 by a Soyuz rocket. We give a brief review of the scientific issues of the mission and report about the status of the experiment few months before the launch.

  12. The effect of using bomb calorimeter in improving science process skills of physics students

    NASA Astrophysics Data System (ADS)

    Edie, S. S.; Masturi; Safitri, H. N.; Alighiri, D.; Susilawati; Sari, L. M. E. K.; Marwoto, P.; Iswari, R. S.

    2018-03-01

    The bomb calorimeter is laboratory equipment which serves to calculate the value of combustion heat or heat capacity of a sample in excess oxygen combustion. This study aims to determine the effect of using bomb calorimeter on science process skill of physics students. Influences include the effectiveness of using the equipment and knowing the improvement of students’ science process skills before and after using tools. The sample used simple random sampling with one group pretest-posttest research design. The instrument that used is written test that adjusts with science process skills aspect. Analysis of the effectiveness of bomb calorimeter showed useful result 87.88%, while the study of science skill improvement showed n-gain value 0.64 that is the medium category.

  13. Effect of tubing condensate on non-invasive positive pressure ventilators tested under simulated clinical conditions.

    PubMed

    Hart, Diana Elizabeth; Forman, Mark; Veale, Andrew G

    2011-09-01

    Water condensate in the humidifier tubing can affect bi-level ventilation by narrowing tube diameter and increasing airflow resistance. We investigated room temperature and tubing type as ways to reduce condensate and its effect on bi-level triggering and pressure delivery. In this bench study, the aim was to test the hypothesis that a relationship exists between room temperature and tubing condensate. Using a patient simulator, a Res-med bi-level device was set to 18/8 cm H(2)O and run for 6 h at room temperatures of 16°C, 18°C and 20°C. The built-in humidifier was set to a low, medium or high setting while using unheated or insulated tubing or replaced with a humidifier using heated tubing. Humidifier output, condensate, mask pressure and triggering delay of the bi-level were measured at 1 and 6 h using an infrared hygrometer, metric weights, Honeywell pressure transducer and TSI pneumotach. When humidity output exceeded 17.5 mg H(2)O/L, inspiratory pressure fell by 2-15 cm H(2)O and triggering was delayed by 0.2-0.9 s. Heating the tubing avoided any such ventilatory effect whereas warmer room temperatures or insulating the tubing were of marginal benefit. Users of bi-level ventilators need to be aware of this problem and its solution. Bi-level humidifier tubing may need to be heated to ensure correct humidification, pressure delivery and triggering.

  14. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  15. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE PAGES

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...

    2018-04-09

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  16. A purity monitor for the KEDR liquid krypton calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evtushenko, P. N.; Kotov, K. Yu.; Maslennikov, A. L.

    We present a purity monitor for the KEDR liquid krypton calorimeter. A new method is suggested based on the usage of a short pulse of a gas discharge as a source of ultraviolet radiation for the photoproduction of electrons in a drift cell of the monitor. This paper describes the design of the monitor, the results of experiments with gaseous and liquid krypton, as well as the experience of using the developed device in the process of krypton purification for the KEDR liquid krypton calorimeter.

  17. Correlation between molecular tumor volume evaluated with 68Ga-PSMA PET/CT and prostatic specific antigen levels.

    PubMed

    Medina-Ornelas Sevastián, S; García-Pérez Francisco, O; Hernández-Pedro Norma, Y; Arellano-Zarate Angélica, E; Abúndiz-López Blanca, L

    2018-02-14

    To investigate the association between prostatic-specific antigen (PSA) levels and molecular tumor volume (MTV) measured in the 68 Ga-PSMA PET/CT, both done in a short period of time, in prostate cancer patients with biochemical failure. Eighty-four patients who underwent 68 Ga-PSMA PET/CT and measurement of PSA levels in the same week (trigger-PSA) were studied in this retrospective analysis. MTV was calculated from the sum of the metastatic lesions. To determine the association between trigger-PSA level and PET/CT findings, Spearman rank correlation was used. The median MTV of metastatic bone disease (mBD) was significantly higher than in metastatic lymph-nodes (mLN) (139.5 versus 17.7; P<.05). Disease was limited to the prostate in 8 patients (9.5%), mLN in 21 patients (25%), mBD in 32 patients (38.1%) and the 3 sites (prostate, mLN, and mBD) in 17 patients (20.2%). In 6 patients (6.14%), 68 Ga-PSMA-PET/CT was not capable of detecting disease. The median trigger-PSA levels of patients with disease limited to the prostate (2.8ng/mL), mLN (6.8ng/mL), and for mBD (16.8ng/mL) was statically significant (P<.05). Positive patients had a mean trigger-PSA of 4.3ng/mL vs 1.5ng/mL in negative patients (P<.05). We established 3 threshold-points for trigger-PSA level detection rate:≤1ng/mL (47.3%), 1-4ng/mL (68.4%) and≥4ng/mL (96.7%). When trigger-PSA exceeded 4ng/mL, the MTV was higher (P<.001). The correlation of MTV with trigger-PSA is demonstrated, which may have an impact on management. However, trigger-PSA levels were not capable of distinguishing between localized or distant disease. An accurate detection of disease can lead to a better therapeutic strategy. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  18. THERMAL PROPERTIES OF SOLID HYDROGEN UNDER PRESSURE (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orttung, W.H.

    1961-02-01

    A calorimeter was designed and constructed for use in the temperature interval 1 to 25 deg K with samples of solid hydrogen under pressures up to 12,000 kg/cm/sup 2/. Unusual features of the calorimeter include the use of two baths for liquid hydrogen or helium, a jaw-type thermal contact capable of high contact pressure, and a set of flanges at the cell level for ready access. The associated high-pressuregenerating apparatus was also designed and constructed. Pressures were generated with oil pumps and an intensifier. The oil was separated from the hydrogen by steel U-tubes half full of mercury, three ofmore » which were required for different pressure ranges. The highest-pressure U-tube was isolated from the rest of the system by mercury frozen in a steel capillary. The hydrogen entered the calorimeter through high-pressure capillary tubing, in which it was then frozen to isolate the sample in the cell. Catalyst chambers were constructed for the conversion of normal hydrogen to para hydrogen, and a three- stage system uti lizing alumina catalyst at liquid-hydrogen temperature was constructed for the separation of ortho hydrogen from para hydrogen. Because the calorimeter was of unconventional design, various modifications and procedures had to bo worked out. A dummy cell was used for these developments. The high- pressure apparatas was tested to 6000 kg/cm/sup 2/ with hydrogen at room temperature. Satisfactory highpressure seals for the low-temperatare cell were not developed soon enough to enable data to be taken. The theory of the anomalous heat capacity for low concentrations of ortho hydrogen or para deuterium Was extended by a calculation based on the angular potential energy between adjacent molecules. At 1 atm it was found that only electrostatic quadrupole-quadrupole interactions had to be considered, but at higher pressures, the valence forces became important. The case of three ortho molecules in a row was also treated in the quadrupole approximation. The heat capacity predicted by this model is somewhat different from that predicted for isolated ortho-ortho pairs. The theory was compared with the avnilable 1-atm data, taking into consideration the relation between the total ortho concentration and the relative amounts of isolated ortho molecules, isolated pairs of ortho molecules, and more complicated configurations. The suggestion of T. Nakamura that an additional term in the anomalous heat capacity proportional to the ortho concentration is needed to explain the data seems to be supported by the analysis, although comparison with a larger amount of data would be desirable. (auth)« less

  19. The Electron Spectrum above 20 GeV Measured by ATIC-2

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasigha, R. M.

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment has been flown from McMurdo, Antarctica in 2000-01 (test flight) and 2002-03 (science flight). ATIC is composed of a segmented BGO calorimeter following a carbon target with scintillator tracking layers and a Silicon matrix detector at the entrance. ATIC measures the composition and energy spectra of the nuclei plus electrons. We present the electron spectrum derived from the ATIC-2 science flight, from 20 GeV to 1.5 TeV, and compare it to existing very high energy measurements from emulsion chambers and to the results of galactic propagation calculations. The good energy resolution and high statistics in the ATIC data allow detailed astrophysical interpretation of the results.

  20. Poster — Thur Eve — 22: A water calorimeter for low-energy particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, J; Sarfehnia, A; Seuntjens, J

    2014-08-15

    In this work, the feasibility of absolute dose to water measurements in low-energy electron beams using a water calorimeter specifically developed for shallow measurements is established. The calorimeter design consists of a cylindrical glass vessel encased in a block of expanded polystyrene. The vessel has a front window thickness of 1.1 mm, a 4 cm radius, and is 2.5 cm in depth. The vessel-block assembly sits inside a thermally-insulated box and is air-cooled to an operating temperature of 4 °C. Radiation-induced thermal gradients were simulated in a geometric model of the calorimeter using a finite element analysis software package. 52more » absorbed dose to water measurements were performed in a 6 and 8 MeV electron beam (z{sub max} of 1.32 and 1.76 cm, respectively) for 60 seconds at a repetition rate of 400 MU/min and an SSD of 120 cm. Within the vessel, the depth of measurement was set to 1.08 cm relative to the inner front window. The average measured dose to water was 59.6 ± 0.2 cGy/100 MU (6 MeV), and 63.7 ± 0.3 cGy/100 MU (8 MeV). The associated heat transfer corrections were determined to be 1.026 ± 0.003 and 1.017 ± 0.004 for the 6 and 8 MeV beams, respectively. The most significant source of uncertainty in this study was the repeatability (type A, 0.42%). It is expected that performing fewer consecutive measurements under higher dose rate conditions will improve the stability of the thermal background, thereby improving the repeatability and reducing the overall standard uncertainty.« less

  1. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments Database

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  2. 40 CFR 98.34 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... D4809-06 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter... Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (incorporated by reference...

  3. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ponce, J. M. Iturbe; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Dortz, O. Le; Guirriec, E. Le; Menedeu, E. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Garcia, B. R. Mellado; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Hanninger, G. Nunes; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Codina, E. Perez; García-Estañ, M. T. Pérez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Saleem, M.; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2017-07-01

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  4. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Garcia, J A Benitez; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelli, A; Gimenez, V Castillo; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Colasurdo, L; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fulsom, B G; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; Garberson, F; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, L; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henkelmann, S; Henrichs, A; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Quiles, A Irles; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ponce, J M Iturbe; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Rozas, A Juste; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Dortz, O Le; Guirriec, E Le; Menedeu, E Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, X; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Garcia, B R Mellado; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monini, C; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Hanninger, G Nunes; Nunnemann, T; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Barrera, C Oropeza; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Codina, E Perez; García-Estañ, M T Pérez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pin, A W J; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Ryzhov, A; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Saleem, M; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schmitz, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, F E; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2017-01-01

    The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.

  5. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections dependingmore » on the nature of the cluster. Lastly, topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.« less

  6. Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2017-07-24

    The reconstruction of the signal from hadrons and jets emerging from the proton–proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections dependingmore » on the nature of the cluster. Lastly, topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.« less

  7. Temperature Effects in the ATIC BGO Calorimeter

    NASA Technical Reports Server (NTRS)

    Isbert, J.; Adams, J. H.; Ahn, H.; Bashindzhagyan, G.; Batkov, K.; Chang, J.; Christl, M. J.; Fazely, A.; Ganel, O.; Gunasigha, R.

    2006-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.

  8. Design and Performance Tests of Ultra-Compact Calorimeters for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Salgado, Carlos W.

    2003-01-01

    This R&D project had two goals: a) the study of general-application ultra-compact calorimetry technologies for use in High Energy Astrophysics and, b) contribute to the design of an efficient calorimeter for the ACCESS mission. The direct measurement of galactic cosmic ray fluxes is performed from space or from balloon-borne detectors. Detectors used in those studies are limited in size and, specially, in weight. Since galactic cosmic ray fluxes are very small, detectors with high geometrical acceptances and long exposures are usually required for collecting enough statistics. We have studied calorimeter techniques that could produce large geometrical acceptance per unit of mass (G/w) and that may be used to study galactic cosmic rays at intermediate energies (knee energies).-The most important asset for detection of primary cosmic rays at and about the knee is large acceptance. To construct a large acceptance calorimeter (this term is used here in its most general accepted meaning of calorimeter as a device to measure particle energies ) the detector needs to be verv liaht or verv shallow . We studied two possible technologies to built compact calorimeters: the use of lead-tungstate crystals (PWO) and the use of sampling calorimetry using scintillating fibers embedded in a matrix of powder tungsten. For a very light detector, we considered the possibility of using Optical Transition Radiation (OTR) to measure the energy (and perhaps also direction and identity) of VHE cosmic rays.

  9. Episodes of breathlessness: types and patterns - a qualitative study exploring experiences of patients with advanced diseases.

    PubMed

    Simon, Steffen T; Higginson, Irene J; Benalia, Hamid; Gysels, Marjolein; Murtagh, Fliss Em; Spicer, James; Bausewein, Claudia

    2013-06-01

    Despite the high prevalence and impact of episodic breathlessness, information about characteristics and patterns is scarce. To explore the experience of patients with advanced disease suffering from episodic breathlessness, in order to describe types and patterns. Qualitative design using in-depth interviews with patients suffering from advanced stages of chronic heart failure, chronic obstructive pulmonary disease, lung cancer or motor neurone disease. As part of the interviews, patients were asked to draw a graph to illustrate typical patterns of breathlessness episodes. Interviews were tape-recorded, transcribed verbatim and analysed using Framework Analysis. The graphs were grouped according to their patterns. Fifty-one participants (15 chronic heart failure, 14 chronic obstructive pulmonary disease, 13 lung cancer and 9 motor neurone disease) were included (mean age 68.2 years, 30 of 51 men, mean Karnofsky 63.1, mean breathlessness intensity 3.2 of 10). Five different types of episodic breathlessness were described: triggered with normal level of breathlessness, triggered with predictable response (always related to trigger level, e.g. slight exertion causes severe breathlessness), triggered with unpredictable response (not related to trigger level), non-triggered attack-like (quick onset, often severe) and wave-like (triggered or non-triggered, gradual onset). Four patterns of episodic breathlessness could be identified based on the graphs with differences regarding onset and recovery of episodes. These did not correspond with the types of breathlessness described before. Patients with advanced disease experience clearly distinguishable types and patterns of episodic breathlessness. The understanding of these will help clinicians to tailor specific management strategies for patients who suffer from episodes of breathlessness.

  10. Isothermal titration calorimetry in nanoliter droplets with subsecond time constants.

    PubMed

    Lubbers, Brad; Baudenbacher, Franz

    2011-10-15

    We reduced the reaction volume in microfabricated suspended-membrane titration calorimeters to nanoliter droplets and improved the sensitivities to below a nanowatt with time constants of around 100 ms. The device performance was characterized using exothermic acid-base neutralizations and a detailed numerical model. The finite element based numerical model allowed us to determine the sensitivities within 1% and the temporal dynamics of the temperature rise in neutralization reactions as a function of droplet size. The model was used to determine the optimum calorimeter design (membrane size and thickness, junction area, and thermopile thickness) and sensitivities for sample volumes of 1 nL for silicon nitride and polymer membranes. We obtained a maximum sensitivity of 153 pW/(Hz)(1/2) for a 1 μm SiN membrane and 79 pW/(Hz)(1/2) for a 1 μm polymer membrane. The time constant of the calorimeter system was determined experimentally using a pulsed laser to increase the temperature of nanoliter sample volumes. For a 2.5 nanoliter sample volume, we experimentally determined a noise equivalent power of 500 pW/(Hz)(1/2) and a 1/e time constant of 110 ms for a modified commercially available infrared sensor with a thin-film thermopile. Furthermore, we demonstrated detection of 1.4 nJ reaction energies from injection of 25 pL of 1 mM HCl into a 2.5 nL droplet of 1 mM NaOH. © 2011 American Chemical Society

  11. Development of shashlik electromagnetic calorimeter prototype for SoLID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, C.; Wang, Y.; Xiao, D.

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less

  12. Development of shashlik electromagnetic calorimeter prototype for SoLID

    DOE PAGES

    Shen, C.; Wang, Y.; Xiao, D.; ...

    2017-03-07

    A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less

  13. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  14. Processing of the signals from the Liquid Xenon Calorimeter for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Grebenuyk, A. A.; Kozyrev, A. N.; Logashenko, I. B.; Mikhaylov, K. Yu.; Ruban, A. A.; Yudin, Yu. V.

    2017-02-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of hadron production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs about 5 ns or later after the beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with an accuracy of about a few nanoseconds. The LXe-calorimeter consists of 14 layers of ionization chambers with two readout: anode and cathode. The duration of charge collection to the anodes is about 4.5 μs, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that (i.e. 4.5 ns). Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. In the paper we describ the development of the special electronics which performs waveform digitization and the on-line measurement of signals' arrival times and amplitudes.

  15. 40 CFR 61.18 - Incorporations by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... D2382-76, 88, Heat of Combustion of Hydrocarbon Fuels by Bomb Calorimeter (High-Precision Method), IBR... Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method), IBR approved for § 61.245(e)(3...

  16. 40 CFR 49.123 - General provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Liquid Hydrocarbon Fuels by Bomb Calorimeter, IBR approved for § 49.123(a). (iv) ASTM D1826-94(Reapproved... Test Method for Gross Calorific Value of Refuse-Derived Fuel by the Bomb Calorimeter, IBR approved for...

  17. --No Title--

    Science.gov Websites

    CERN. Useful events will be selected by a trigger that consists of three levels (level 1, level 2 and the event filter). The Argonne HEP division is responsible for critical components of the level 2

  18. Finding the Higgs boson of the standard model in the channel ZH → e +e -b$$\\bar{b}$$ with the D0 detector at the Tevatron; Recherche du boson de Higgs du nideke standard dans le canal ZH → e +e -b$$\\bar{b}$$ avec le detecteur DØ aupres du Tevatron (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calpas, Betty Constante

    2010-06-11

    The organization of this thesis consists of three main ideas: the first presents the theoretical framework and experimental, as well as objects used in the analysis and the second relates to the various work tasks of service that I performed on the calorimeter, and the third is the search for the Higgs boson in the channel ZH → e +e -bmore » $$\\bar{b}$$. Thus, this thesis has the following structure: Chapter 1 is an introduction to the standard model of particle physics and the Higgs mechanism; Chapter 2 is an overview of the complex and the acceleration of the Tevatron at Fermilab DØ detector; Chapter 3 is an introduction to physical objects used in this thesis; Chapter 4 presents the study made on correcting the energy measured in the calorimeter; Chapter 5 describes the study of certification of electrons in the calorimeter; Chapter 6 describes the study of certification of electrons in the intercryostat region of calorimeter; Chapter 7 Detailed analysis on the search for Higgs production in the channel ZH → e +e -b$$\\bar{b}$$; and Chapter 8 presents the final results of the calculations of upper limits to the production cross section of the Higgs boson on a range of low masses.« less

  19. Study of the influence of heat sources on the out-of-pile calibration curve of calorimetric cells used for nuclear energy deposition quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vita, C.; Brun, J.; Reynard-Carette, C.

    2015-07-01

    At present the Jules Horowitz Reactor is under construction in Cadarache research center of CEA 'French Alternative Energies and Atomic Energy Commission' center located in the south-east of France. This new Material Testing Reactor (MTR) will be operational in late 2019 and will allow the generation of a new experimental potential (up to 20 irradiation devices simultaneously) and new harsh conditions such as higher neutron fluxes (5.10{sup 14} n.cm{sup -2}.s{sup -1} for E≥1 MeV), faster material ageing and higher nuclear heating (up to 20 W/g for nominal capacity of 100 MW). In nuclear research field, the control and the measurementmore » of the nuclear heating (energy deposition rate per mass unit induced by the interactions of radiations with matter) is crucial to carry out accurate studies on ageing of materials and on the behavior of nuclear fuels under irradiation. Several experiments need to know precisely this key parameter in order to establish dedicated thermal conditions. The measurement of the nuclear heating inside MTRs is realized by three kinds of sensors: single-cell calorimeter, differential calorimeter and gamma thermometer. One scientific objective of the IN-CORE program, between CEA and Aix-Marseille University in 2009, is to improve the nuclear heating measurement. In this context a new multi-sensor device, called CARMEN, was made. This device contains in particular a differential calorimeter which was designed to measure the nuclear heating in the periphery of OSIRIS reactor (a MTR located at Saclay, France) up to 2 W/g and tested during two irradiation campaigns. Results obtained during these campaigns showed that temperatures reached inside the calorimeter are higher than ones obtained during the preliminary out-of-pile calibration experiments. For instance for 1.74 W/g, the in-pile temperature of the calorimeter rod is equal to 305 deg. C against 225 deg. C in laboratory conditions by simulating the nuclear heating by Joule Effect inside the calorimeter cell head. This discrepancy is higher than in previous experiments because the calorimeter owns a high sensitivity. Consequently, a new prototype was created and instrumented by other heat sources in order to impose an energy deposition on the calorimetric cell structure (in particular in the base) and to improve the calibration step in out-of-pile conditions. In this paper, on the first part a detailed description of the new calorimetric sensor will be given. On the second part, the experimental response of the sensor obtained for several internal heating conditions will be shown. The influence of these conditions on the calibration curve will be discussed. Then the response of this prototype will be also presented for different external cooling fluid conditions (in particular flow temperature). In this part, the comparison between the in-pile and out-of-pile experimental results will be performed. On the last part, these out-of-pile experiments will be completed by 2D axisymmetrical thermal simulations with the CEA code CAST3M using Finite Elements Method. After a comparison between experimental and numerical works, improvements of the sensor prototype will be studied (new heat sources). (authors)« less

  20. Power Transmission From The ITER Model Negative Ion Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boilson, D.; Esch, H. P. L. de; Grand, C.

    2007-08-10

    In Cadarache development on negative ion sources is being carried out on the KAMABOKO III ion source on the MANTIS test bed. This is a model of the ion source designed for the neutral beam injectors of ITER. This ion source has been developed in collaboration with JAERI, Japan, who also designed and supplied the ion source. Its target performance is to accelerate a D- beam, with a current density of 200 A/m2 and <1 electron extracted per accelerated D- ion, at a source filling pressure of 0.3 Pa. For ITER a continuous ion beam must be assured for pulsemore » lengths of 1000 s, but beams of up to 3,600 s are also envisaged. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter. During long pulse operation ({<=}1000 s) it was found that the current density of both D- and H- beams, measured at the calorimeter was lower than expected and that a large discrepancy existed between the accelerated currents measured electrically and those transmitted to the calorimeter. The possibility that this discrepancy arose because the accelerated current included electrons (which would not be able to reach the calorimeter) was investigated and subsequently eliminated. Further studies have shown that the fraction of the electrical current reaching the calorimeter varies with the pulse length, which led to the suggestion that one or more of the accelerator grids were distorting due to the incident power during operation, leading to a progressive deterioration in the beam quality.. New extraction and acceleration grids have been designed and installed, which should have a better tolerance to thermal loads than those previously used. This paper describes the measurements of the power transmission and distribution using these grids.« less

  1. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  2. Precision Crystal Calorimeters in High Energy Physics

    ScienceCinema

    Ren-Yuan Zhu

    2017-12-09

    Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal’s radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed.

  3. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm-2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb-1 and 3000 fb-1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  4. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  5. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Cameron Russell

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, anmore » experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium disposition treaty.« less

  6. Study of thermal effects on nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Foley, R. T.; Webster, W. H.

    1967-01-01

    Isothermal continuous flow calorimeter is designed to test a nickel-cadmium battery under numerous orbital conditions. This sensitive calorimeter collects cell data such as oxygen pressure and rate of heat generation, and calculates changes in enthalpy.

  7. Optimization of Energy Resolution in the Digital Hadron Calorimeter using Longitudinal Weights

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Bilki, B.; Francis, K.; Repond, J.; Schlereth, J.; Xia, L.

    2013-04-01

    Physics at a future lepton collider requires unprecedented jet energy and dijet mass resolutions. Particle Flow Algorithms (PFAs) have been proposed to achieve these. PFAs measure particles in a jet individually with the detector subsystem providing the best resolution. For this to work a calorimeter system with very high granularity is required. A prototype Digital Hadron Calorimeter (the DHCAL) based on the Resistive Plate Chamber (RPC) technology with a record count of readout channels has been developed, constructed, and exposed to particle beams. In this context, we report on a technique to improve the single hadron energy resolution by applying a set of calibration weights to the individual layers of the calorimeter. This weighting procedure was applied to approximately 1 million events in the energy range up to 60 GeV and shows an improvement in the pion energy resolution. Simulated data is used to verify particle identification techniques and to compare with the data.

  8. Validation of GEANT4 Monte Carlo models with a highly granular scintillator-steel hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Götze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-07-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8 GeV to 100 GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  9. R&D of the CEPC scintillator-tungsten ECAL

    NASA Astrophysics Data System (ADS)

    Dong, M. Y.

    2018-03-01

    The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.

  10. In-depth analysis and discussions of water absorption-typed high power laser calorimeter

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng

    2017-02-01

    In high-power and high-energy laser measurement, the absorber materials can be easily destroyed under long-term direct laser irradiation. In order to improve the calorimeter's measuring capacity, a measuring system directly using water flow as the absorber medium was built. The system's basic principles and the designing parameters of major parts were elaborated. The system's measuring capacity, the laser working modes, and the effects of major parameters were analyzed deeply. Moreover, the factors that may affect the accuracy of measurement were analyzed and discussed. The specific control measures and methods were elaborated. The self-calibration and normal calibration experiments show that this calorimeter has very high accuracy. In electrical calibration, the average correction coefficient is only 1.015, with standard deviation of only 0.5%. In calibration experiments, the standard deviation relative to a middle-power standard calorimeter is only 1.9%.

  11. Impedance Measurement of a Gamma-Ray TES Calorimeter with a Bulk Sn Absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akamatsu, H.; Ishisaki, Y.; Hoshino, A.

    2009-12-16

    We performed complex impedance measurements with a Ti/Au-based gamma-ray TES calorimeter with a bulk Sn absorber. Excellent energy resolution of 38.4{+-}0.9eV at 60 keV was observed. The impedance of the calorimeter can be well explained by a two-body thermal model. We investigated the behavior of the parameters of the calorimeter during the superconducting-to-normal transition. We confirmed that C and G{sub a} are in good agreement with the predicted values. We performed a noise analysis and found several excess noise components, as well as internal thermal fluctuation noise (ITFN) term due to the thermal conductance between the Sn absorber and themore » Ti/Au TES. Dominanting the noise is an excess noise having a similar frequency dependence to the phonon noise and the ITFN noise.« less

  12. An instrument to measure the spectrum of cosmic ray iron and other nuclei to above 100 GeV-nucleon

    NASA Technical Reports Server (NTRS)

    Arens, J. F.; Balasubrahmanyan, V. K.; Ormes, J. F.; Siohan, F.; Schmidt, W. K. H.; Simon, M.; Spiegelhauer, H.

    1978-01-01

    A balloon-borne detector system for extending the study of cosmic ray composition to the energy region beyond 100 GeV/nucleon is described. The instrument incorporates an ionization calorimeter and a gas Cherenkov counter filled with freon for the determination of energies, and a charge module, consisting of scintillation and a lucite Cherenkov counter, for determining the charge of the incoming particle. The scintillators were utilized to determine the position of the incoming particle in addition to its charge. The characteristics of these detectors with respect to resolution, and the methods employed in laboratory calibration, cross-checks with flight data and actual performance in the flights are described in detail. Monte Carlo simulation of the ionization calorimeter and comparison of the response of the calorimeter and gas Cherenkov counter for complex nuclei was used to convert the observed calorimeter signal to absolute energy in a consistent manner.

  13. Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-06-01

    We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.

  14. A power compensated differential scanning calorimeter for protein stability characterization

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael; ...

    2017-10-07

    This study presented a power compensated MEMS differential scanning calorimeter (DSC) for protein stability characterization. In this microfabricated sensor, PDMS (Polydimethylsiloxane) and polyimide were used to construct the adiabatic chamber (1 μL) and temperature sensitive vanadium oxide was used as the thermistor material. A power compensation system was implemented to maintain the sample and reference at the same temperature. The resolution study and step response characterization indicated the high sensitivity (6 V/W) and low noise level (60 μk) of the device. The test with IgG1 antibody (mAb1) samples showed clear phase transitions and the data was confirmed to be reasonablemore » by comparing it with the results of commercial DSC’s test. Finally, this device used ~1uL sample amount and could complete the scanning process in 4 min, significantly increasing the throughput of the bimolecular thermodynamics study like drug formulation process.« less

  15. Gonadotropin-releasing hormone agonist trigger in oocyte donors co-treated with a gonadotropin-releasing hormone antagonist: a dose-finding study.

    PubMed

    Vuong, Thi Ngoc Lan; Ho, Manh Tuong; Ha, Tan Duc; Phung, Huy Tuan; Huynh, Gia Bao; Humaidan, Peter

    2016-02-01

    To determine the optimal GnRH agonist dose for triggering of oocyte maturation in oocyte donors. Single-center, randomized, parallel, investigator-blinded trial. IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam. One hundred sixty-five oocyte donors (aged 18-35 years, body mass index [BMI] <28 kg/m(2), antimüllerian hormone level >1.25 ng/mL, and antral follicle count ≥6). Ovulation trigger with 0.2, 0.3, or 0.4 mg triptorelin in a GnRH antagonist cycle. The primary end point was number of metaphase II oocytes. Secondary end points were fertilization and cleavage rates, number of embryos and top-quality embryos, steroid levels, ovarian volume, and ongoing pregnancy rate (PR) in recipients. There were no significant differences between the triptorelin 0.2, 0.3, and 0.4 mg trigger groups with respect to number of metaphase II oocytes (16.0 ± 8.5, 15.9 ± 7.8, and 14.7 ± 8.4, respectively), embryos (13.2 ± 7.8, 11.7 ± 6.9, 11.8 ± 7.0), and number of top-quality embryos (3.8 ± 2.9, 3.6 ± 3.0, 4.1 ± 3.0). Luteinizing hormone levels at 24 hours and 36 hours after trigger was significantly higher with triptorelin 0.4 mg versus 0.2 mg and 0.3 mg (9.8 ± 7.1 IU/L vs. 7.3 ± 4.1 IU/L and 7.2 ± 3.7 IU/L, respectively; 4.6 ± 3.2 IU/L vs. 3.2 ± 2.3 IU/L and 3.3 ± 2.1 IU/L, respectively. Progesterone level at oocyte pick-up +6 days was significantly higher in the 0.4-mg group (2.2 ± 3.7 ng/ml) versus 0.2 mg (1.1 ± 1.0 ng/ml) and 0.3 mg (1.2 ± 1.6 ng/ml). One patient developed early-onset severe ovarian hyperstimulation syndrome (OHSS). No significant differences between triptorelin doses of 0.2, 0.3, and 0.4 mg used for ovulation trigger in oocyte donors were seen with regard to the number of mature oocytes and top-quality embryos. NCT02208986. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links,more » will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.« less

  17. The Ca(2+)-EDTA chelation as standard reaction to validate Isothermal Titration Calorimeter measurements (ITC).

    PubMed

    Ràfols, Clara; Bosch, Elisabeth; Barbas, Rafael; Prohens, Rafel

    2016-07-01

    A study about the suitability of the chelation reaction of Ca(2+)with ethylenediaminetetraacetic acid (EDTA) as a validation standard for Isothermal Titration Calorimeter measurements has been performed exploring the common experimental variables (buffer, pH, ionic strength and temperature). Results obtained in a variety of experimental conditions have been amended according to the side reactions involved in the main process and to the experimental ionic strength and, finally, validated by contrast with the potentiometric reference values. It is demonstrated that the chelation reaction performed in acetate buffer 0.1M and 25°C shows accurate and precise results and it is robust enough to be adopted as a standard calibration process. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  19. A first look at reconstructed data from the GlueX detector

    NASA Astrophysics Data System (ADS)

    Taylor, Simon; GlueX Collaboration

    2015-10-01

    Construction of the GlueX detector in Hall D at the Thomas Jefferson National Accelerator Facility has recently been completed as part of the 12 GeV Upgrade to the facility. The detector consists of a barrel region containing devices for tracking charged particles and a lead-scintillator calorimeter for detecting photons, and a forward region consisting of two layers of scintillator paddles for time-of-flight measurements and a lead-glass electromagnetic calorimeter. The electron beam from the accelerator is converted into a photon beam by inserting a diamond radiator, thereby producing a coherent bremsstrahlung spectrum of photons impinging on a 30 cm-long LH2 target. The energy of the photon beam is determined using a tagging spectrometer. A commissioning run took place in Spring of 2015 during which all of the detector components were read out. Preliminary calibrations have been determined to a level sufficient to allow reconstruction of final states with several charged tracks and neutral particles. A first look at results of reconstruction of events using the GlueX detector will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.

  20. The Heavy Photon Search test detector

    DOE PAGES

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; ...

    2014-12-17

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in themore » e⁺e⁻invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW0 4 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e⁺e⁻ pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. In addition, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.« less

  1. 40 CFR 600.011-93 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter 600.113-93, 600... Hydrocarbon Fuels by Bomb Calorimeter, IBR approved for §§ 600.113-93, 600.510-93, 600.113-08, and 600.510-08...

  2. Role of albedo from the Gamma-400 telescope calorimeter when recording the primary gamma emission.

    NASA Astrophysics Data System (ADS)

    Ginsburg, V. L.; Kurnosova, L. V.; Labensky, A. G.; Topchiev, N. P.; Fradkin, M. I.; Kaplin, V. A.; Kaplin, D. V.; Loginov, V. A.; Maklyaev, E. F.; Runtso, M. F.; Gorchakov, E. V.

    A calorimeter albedo emission affecting the Gamma-400 telescope operation is studied, when recording γ-quanta at energies from 10 to 1000 GeV. Methods for diminishing this impact on measuring data are proposed.

  3. Tests of the module array of the ECAL0 electromagnetic calorimeter for the COMPASS experiment with the electron beam at ELSA

    NASA Astrophysics Data System (ADS)

    Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Dziewiecki, M.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Hillert, W.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rezinko, T.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-07-01

    The array of 3 × 3 modules of the electromagnetic calorimeter ECAL0 of the COMPASS experiment at CERN has been tested with an electron beam of the ELSA (Germany) facility. The dependence of the response and the energy resolution of the calorimeter from the angle of incidence of the electron beam has been studied. A good agreement between the experimental data and the results of Monte Carlo simulation has been obtained. It will significantly expand the use of simulation to optimize event reconstruction algorithms.

  4. Calorimetry at the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Repond, José

    2007-03-01

    The physics potential of the International Linear Collider depends critically on the jet energy resolution of its detector. Detector concepts are being developed which optimize the jet energy resolution, with the aim of achieving σjet=30%/√{Ejet}. Under the assumption that Particle Flow Algorithms (PFAs), which combine tracking and calorimeter information to reconstruct the energy of hadronic jets, can provide this unprecedented jet energy resolution, calorimeters with very fine granularity are being developed. After a brief introduction outlining the principles of PFAs, the current status of various calorimeter prototype construction projects and their plans for the next few years will be reviewed.

  5. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  6. Design and Performance of the Astro-E/XRS Signal Processing System

    NASA Technical Reports Server (NTRS)

    Boyce, Kevin R.; Audley, M. D.; Baker, R. G.; Dumonthier, J. J.; Fujimoto, R.; Gendreau, K. C.; Ishisaki, Y.; Kelley, R. L.; Stahle, C. K.; Szymkowiak, A. E.

    1999-01-01

    We describe the signal processing system of the Astro-E XRS instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, Pulse height analysis. and risetime determination. We also discuss performance, including the three event grades (hi-res mid-res, and low-res). anticoincidence detection, counting rate dependence, and noise rejection.

  7. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  8. The Scintillating Optical Fiber Calorimeter Instrument Performance (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. J.; Benson, C. M.; Berry, F. A.; Fountain, W. F.; Gregory, J. C.; Johnson, J. S.; Munroe, R. B.; Parnell, T. A.; Takahashi, Y.; Watts, J. W.

    1999-01-01

    SOFCAL is a balloon-borne instrument designed to measure the P-He cosmic ray spectra from about 200 GeV/amu - 20 TeV/amu. SOFCAL uses a thin lead and scintillating-fiber ionization calorimeter to measure the cascades produced by cosmic rays interacting in the hybrid detector system. Above the fiber calorimeter is an emulsion chamber that provides the interaction target, primary particle identification and in-flight energy calibration for the scintillating fiber data. The energy measurement technique and its calibration are described, and the present results from the analysis of a 1 day balloon flight will be presented.

  9. Design, implementation, and performance of the Astro-H SXS calorimeter array and anticoincidence detector

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.

  10. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  11. The Crystal Zero Degree Detector at BESIII

    NASA Astrophysics Data System (ADS)

    Koch, L.; Denig, A.; Drexler, P.; Garillon, B.; Johansson, T.; Kühn, W.; Lange, S.; Lauth, W.; Liang, Y.; Marciniewski, P.; Rathmann, T.; Redmer, C.

    2017-07-01

    The BESIII experiment at the BEPCII electron positron collider at IHEP (Beijing) is collecting data in the charm-τ mass region. Electron positron collisions are a very well suited environment for the study of initial state radiation (ISR). However, the photons from ISR are strongly peaked towards small polar angles and are currently detected with limited efficiency. In order to increase the detection efficiency of ISR photons, we are developing small-size calorimeters to be placed in the very forward and backward regions. Each detector will consist of two 4×3 arrays of 1×1×14 cm3 LYSO crystals. A 1 cm gap separating each of the two arrays will reduce the contamination from background at very low angles. The scintillation light will be collected by silicon photomultipliers (SiPMs). The expected event rate in the MHz range requires flash ADCs recording the preamplified SiPM outputs.The digitized waveforms will be analyzed in realtime yielding data reduction and pile-up detection. This high bandwidth data stream will be transmitted via optical fibers to FPGA-based hardware performing sub-event building, buffering, and event correlation with the BESIII trigger. The sub-events with a corresponding trigger will be sent to the BESIII event builder via TCP/IP. A single crystal equipped with a SiPM was instrumented as a prototype detector. Tests with radioactive sources were performed successfully.

  12. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, S.; Crnkovic, J.; Morse, W. M.

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the storedmore » muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.« less

  13. Workshop on data acquisition and trigger system simulations for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    This report discusses the following topics: DAQSIM: A data acquisition system simulation tool; Front end and DCC Simulations for the SDC Straw Tube System; Simulation of Non-Blocklng Data Acquisition Architectures; Simulation Studies of the SDC Data Collection Chip; Correlation Studies of the Data Collection Circuit & The Design of a Queue for this Circuit; Fast Data Compression & Transmission from a Silicon Strip Wafer; Simulation of SCI Protocols in Modsim; Visual Design with vVHDL; Stochastic Simulation of Asynchronous Buffers; SDC Trigger Simulations; Trigger Rates, DAQ & Online Processing at the SSC; Planned Enhancements to MODSEM II & SIMOBJECT -- anmore » Overview -- R.; DAGAR -- A synthesis system; Proposed Silicon Compiler for Physics Applications; Timed -- LOTOS in a PROLOG Environment: an Algebraic language for Simulation; Modeling and Simulation of an Event Builder for High Energy Physics Data Acquisition Systems; A Verilog Simulation for the CDF DAQ; Simulation to Design with Verilog; The DZero Data Acquisition System: Model and Measurements; DZero Trigger Level 1.5 Modeling; Strategies Optimizing Data Load in the DZero Triggers; Simulation of the DZero Level 2 Data Acquisition System; A Fast Method for Calculating DZero Level 1 Jet Trigger Properties and Physics Input to DAQ Studies.« less

  14. The design of a fast Level 1 Track trigger for the ATLAS High Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Miller Allbrooke, Benedict Marc; ATLAS Collaboration

    2017-10-01

    The ATLAS experiment at the high-luminosity LHC will face a five-fold increase in the number of interactions per collision relative to the ongoing Run 2. This will require a proportional improvement in rejection power at the earliest levels of the detector trigger system, while preserving good signal efficiency, due to the increase in the likelihood of individual trigger thresholds being passed as a result of pile-up related activity. One critical aspect of this improvement will be the implementation of precise track reconstruction, through which sharper turn-on curves, b-tagging and tau-tagging techniques can in principle be implemented. The challenge of such a project comes in the development of a fast, precise custom electronic device integrated in the hardware-based first trigger level of the experiment, with repercussions propagating as far as the detector read-out philosophy.

  15. Measurement of the {sup 157}Gd(n,{gamma}) reaction with the DANCE {gamma} calorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Dashdorj, D.; Lawrence Livermore National Laboratory, Livermore, California 94551

    2011-07-15

    The {sup 157}Gd(n,{gamma}) reaction was measured with the DANCE {gamma} calorimeter (consisting of 160 BaF{sub 2} scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the {gamma} decay were used to determine the resonance spins up to E{sub n}=300 eV. The {gamma}-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  16. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  17. The thermodynamic properties of 2-ethylhexyl acrylate over the temperature range from T → 0 to 350 K

    NASA Astrophysics Data System (ADS)

    Kulagina, T. G.; Samosudova, Ya. S.; Letyanina, I. A.; Sevast'yanov, E. V.; Smirnova, N. N.; Smirnova, L. A.; Mochalova, A. E.

    2012-05-01

    The temperature dependence of the heat capacity C {/p o}= f( T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6-350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C {/p o}( T), H o( T)- H o(0), S o( T)- S o(0), and G o( T)- H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.

  18. Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Strharsky, Roger Joseph

    Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.

  19. LYSO based precision timing calorimeters

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Duarte, J.; Spiropulu, M.; Trevor, J.; Anderson, D.; Pena, C.; Hassanshahi, M. H.

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beams for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.

  20. Calorimetry of heterogeneous systems: H+ binding to TiO2 in NaCl

    USGS Publications Warehouse

    Mehr, S.R.; Eatough, D.J.; Hansen, L.D.; Lewis, E.A.; Davis, J.A.

    1989-01-01

    A simultaneous calorimetric and potentiometric technique has been developed for measuring the thermodynamics of proton binding to mineral oxides in the presence of a supporting electrolyte. Modifications made to a commercial titration calorimeter to add a combination pH electrode and maintain an inert atmosphere in the calorimeter reaction vessel are described. A procedure to calibrate potentiometric measurements in heterogeneous systems to correct for the suspension effect on pH is given. The enthalpy change for proton dissociation from TiO2 in aqueous suspension as a function of pH is reported for 0.01, 0.1, and 0.5 M NaCl. The enthalpy change for proton dissociation is endothermic, ranging from 10.5 ?? 3.8 to 45.0 ?? 3.8 kJ mol-1 over the pH range from 4 to 10. ?? 1989.

  1. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE PAGES

    Adams, T.; Adzic, P.; Ahuja, S.; ...

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  2. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO 4 crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; Adzic, P.; Ahuja, S.

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO 4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO 4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 10 13 and 1.3 × 10 14 cm –2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb –1 and 3000 fb –1 respectively, corresponding to the end of the LHCmore » and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  3. Construction of the Zeus forward/rear calorimeter modules at NIKHEF

    NASA Astrophysics Data System (ADS)

    Blankers, R.; Engelen, J.; Geerinck, H.; Homma, J.; Hunck, P.; Dekoning, N.; Kooijman, P.; Korporaal, A.; Loos, R.; Straver, J.

    1990-07-01

    The design and assembly procedure of the FCAL/RCAL (Forward (in proton direction) Calorimeter/Rear (in electron direction) Calorimeter) of the Zeus detector to study electron proton interactions at Desy, Hamburg (Germany, F.R.) are detailed. The main components of the modules are described: steel C-frame which provides the overall mechanical module structure; a stack of depleted uranium plates and scintillator plates; wavelength shifter material, mounted in cassettes for the readout of the scintillator light; stainless steel straps which compress the stack and fix it to the C-frame. Finite element techniques for module force calculations are outlined. The module assembly and transport and calibration tools are described.

  4. 40 CFR 63.14 - Incorporations by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Heat of Combustion of Hydrocarbon Fuels by Bomb Calorimeter (High-Precision Method), IBR approved for... for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method), IBR... Oxygen Bomb Combustion/Atomic Absorption Method,1 IBR approved for table 6 to subpart DDDDD of this part...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, G.P.; /Fermilab

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  6. Isothermal Battery Calorimeters | Transportation Research | NREL

    Science.gov Websites

    only calorimeters in the world capable of providing the precise thermal measurements needed for safer battery energy efficiency with 98% accuracy and provide precise measurements through complete thermal make it possible for battery developers to predict thermal performance before installing batteries in

  7. Nano-Calorimetry based point of care biosensor for metabolic disease management.

    PubMed

    Kazura, Evan; Lubbers, Brad R; Dawson, Elliott; Phillips, John A; Baudenbacher, Franz

    2017-09-01

    Point of care (POC) diagnostics represents one of the fastest growing health care technology segments. Developments in microfabrication have led to the development of highly-sensitive nanocalorimeters ideal for directly measuring heat generated in POC biosensors. Here we present a novel nano-calorimeter-based biosensor design with differential sensing to eliminate common mode noise and capillary microfluidic channels for sample delivery to the thermoelectric sensor. The calorimeter has a resolution of 1.4 ± 0.2 nJ/(Hz) 1/2 utilizing a 27 junction bismuth/titanium thermopile, with a total Seebeck coefficient of 2160 μV/K. Sample is wicked to the calorimeter through a capillary channel making it suitable for monitoring blood obtained through a finger prick (<1 μL sample required). We demonstrate device performance in a model assay using catalase, achieving a threshold for hydrogen peroxide quantification of 50 μM. The potential for our device as a POC blood test for metabolic diseases is shown through the quantification of phenylalanine (Phe) in serum, an unmet necessary service in the management of Phenylketonuria (PKU). Pegylated phenylalanine ammonia-lyase (PEG-PAL) was utilized to react with Phe, but reliable detection was limited to <5 mM due to low enzymatic activity. The POC biosensor concept can be multiplexed and adapted to a large number of metabolic diseases utilizing different immobilized enzymes.

  8. Thermal Capacitance (Slug) Calorimeter Theory Including Heat Losses and Other Decaying Processes

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; Olivares, Ricardo A.; Philippidis, Daniel

    2008-01-01

    A mathematical model, termed the Slug Loss Model, has been developed for describing thermal capacitance (slug) calorimeter behavior when heat losses and other decaying processes are not negligible. This model results in the temperature time slope taking the mathematical form of exponential decay. When data is found to fit well to this model, it allows a heat flux value to be calculated that corrects for the losses and may be a better estimate of the cold wall fully catalytic heat flux, as is desired in arc jet testing. The model was applied to the data from a copper slug calorimeter inserted during a particularly severe high heating rate arc jet run to illustrate its use. The Slug Loss Model gave a cold wall heat flux 15% higher than the value of 2,250 W/sq cm obtained from the conventional approach to processing the data (where no correction is made for losses). For comparison, a Finite Element Analysis (FEA) model was created and applied to the same data, where conduction heat losses from the slug were simulated. The heat flux determined by the FEA model was found to be in close agreement with the heat flux determined by the Slug Loss Model.

  9. The DAMPE experiment: 2 year in orbit

    NASA Astrophysics Data System (ADS)

    Gargano, Fabio; DAMPE Collaboration

    2017-12-01

    The DArk Matter Particle Explorer (DAMPE) is a space mission within the strategic framework of the Chinese Academy of Sciences, resulting from a collaboration of Chinese, Italian, and Swiss institutions, and is a new addition to the growing number of particle detectors in space. It was successfully launched in December 2015 and has commenced nominal science operations since shortly after launch. Lending technologies from its predecessors such as AMS and Fermi-LAT, it features a powerful segmented electromagnetic calorimeter which thanks to its 31 radiation lengths enables the study of charged cosmic rays in the energy domain of up to 100 TeV and gamma rays of up to 10 TeV. The calorimeter is complemented with a silicon-tungsten tracker converter which yields a comparable angular resolution as current space-borne pair-conversion gamma-ray detectors. In addition, the detector features a top anti-coincidence shield made of segmented silicon plastic scintillators and a boron-doped plastic scintillator on the bottom of the instrument to detect delayed neutrons arising from cosmic ray protons showering in the calorimeter. An overview of the mission and a summary of the latest results in the domain of charged cosmic rays, gamma rays and heavy ions will be presented.

  10. An optimized prototype of electromagnetic calorimeter for the SoLID project at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Shen, C.; Wang, Y.; Xiao, D.; Han, D.; Zou, Z.; Li, Y.; Zheng, X.; Chen, J.

    2018-02-01

    A shashlik-type electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for the Solenoidal Large Intensity Device (SoLID). Wavelength-shifting (WLS) fibers and clear fibers will be used as the light guide part of the calorimeter. The blue light from scintillators is converted into green light by WLS fibers and is carried out to the back of the calorimeters for readout. Since the magnetic field of SoLID reaches about 1.5 T behind the calorimeters, the design is to use clear fibers to further guide the light out of the solenoid for readout by PMTs. Therefore, it is important to study the perfomance of WLS and clear fibers. This paper describes a comparative test of two different WLS fibers and a light attenuation test for a clear fiber. The results show that the performance of the two WLS fibers is the same under large curvature bending, and that the bending has no effect on the light transmission through the clear fiber. In addition, a comparison test for two fiber end-face reflective materials is also reported. It reveals that the use of silver ink as a reflective material can increase the light yield by 30%. Thereby, an optimized prototype based on the above experimental results was built and the basic performance was tested.

  11. Characterization of Low Level Wastes: a new design for calorimetric measurement

    NASA Astrophysics Data System (ADS)

    Galliez, Kévin; Jossens, Guillaume; Godot, Alain; Mathonat, Christophe

    2018-01-01

    Calorimetry is one of the best solutions to estimate the overall quantity of nuclear material on a wide range of masses, from a few milligrams up to kilograms of radionuclides, by measuring the overall thermal power due to the radioactive decay coming from the waste contained in a metallic drum or a different type of container. It has many advantages as it features a non-destructive method which remains independent of matrix effect or the chemical composition. Until now, calorimetry allows to measure at the lowest 0.5 to 1 mW for samples up to 385 liters. But nowadays, thanks to new technological breakthroughs, KEP-Technologies calorimeters are able to measure as low as 50 μW for 40 liters samples. The μLVC is based on a new design with twin cells, a new temperature regulation loop and a heat-flow measurement system inside a vacuum chamber (Patent deposit P005299 LA/VL). The μLVC is a differential heat-flow calorimeter for precise measurement independent of the residual fluctuations caused by environmental changes. The new calorimeter is an industrial product able to work in environmental conditions with wide temperature variations. The first results have shown a great improvement in the detection of very low thermal effect thanks to the thermal noise reduction. The paper presents the developments in Large Volume Calorimetry as a new tool for quantification of nuclear material to characterize Pu-Am samples, i-graphite, and low tritium samples with high precision and reliability.

  12. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deluca Silberberg, Carolina

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb -1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in themore » final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb -1. Both Run I and Run II results show agreement with the theoretical predictions except for the low p T γ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower p T γ ranges, showing excess of data compared to the theory, particularly at high x T. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons require a good understanding of the background, mainly dominated by light mesons (π 0 and η) which decay into two very collinear photons. Since these photons are produced within a jet, they tend to be non-isolated in most of the cases, and can be suppressed by requiring the photon candidates to be isolated in the calorimeter. In the case the hard scattered parton hadronizes leaving most of its energy to the meson, the photon produced in the decay will not be surrounded by large energy depositions. To further reduce this remaining isolated background, we present a new technique based on the isolation distribution in the calorimeter. The measured cross section is compared to next-to-leading order (NLO) pQCD calculations, which have been corrected for non-perturbative contributions. This thesis is organized as follows: we start with a brief review of QCD theory and the formalism to calculate cross sections in Chapter 2, where we also introduce the physics of prompt photon production and summarize the current status of the prompt photon phenomenology. Chapter 3 contains a description of the Tevatron and the CDF detector. The experimental measurement is described in Chapter 4, where we provide details on the different datasets used in the measurement, the trigger, and the event selection requirements. Most of this Chapter is devoted to the explanation of the background subtraction method and the determination of the photon signal fraction. The systematic uncertainties on the measurement are evaluated in Chapter 5, while Chapter 6 discusses the final results and the comparison to the theoretical predictions. Finally, the conclusions are presented in Chapter 7.« less

  13. TH-CD-BRA-09: Towards Absolute Dose Measurement in MRI-Linac and Gamma-Knife: Design and Construction of An MR-Compatible Water Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entezari, N; Sarfehnia, A; Renaud, J

    Purpose: The purpose of this work is to design and optimize a portable Water Calorimeter (WC) for use in a commercial MRI-linac and Gamma-knife in addition to conventional radiotherapy linacs. Water calorimeters determine absorbed dose to water at a point by measuring radiation-induced temperature rise of the volume (the two are related by the medium specific heat capacity). In this formalism, one important correction factor is heat transfer correction k-ht. It compensates for heat gain/loss due to conductive and convective effects, and is numerically calculated as ratio of temperature rise in the absence of heat loss to that in themore » presence of heat loss. Operating at 4°C ensures convection is minimal. Methods: A commercial finite element software was used to evaluate several WC designs with different insulation materials and thicknesses; channels allowing coolant to travel around WC (to sustain WC at 4°C) were modeled, and worst-case scenario variation in the temperature of the coolant was simulated for optimization purposes (2.6 mK/s). Additionally, several calorimeter vessel design parameters (front/back glass thickness/separation, diameter) were also simulated and optimized. Optimization is based on minimizing long term calorimeter drift (24h) as well as variation and magnitude of k-ht. Results: The final selected WC design reached a modest drift of 11µK/s after 15h for the worst-case coolant temperature variation. This design consists of coolant channels being encompassed on both sides by cryogel insulation. For the MRI-linac beam, glass thickness plays the largest effect on k-ht with variation of upto 0.6% in the first run for thicknesses ranging between 0.5–1.7mm. Subsequent runs vary only within 0.1% with glass thickness. Other factors such as vessel radius and top/bottom glass separation have sub 0.1% effects on k-ht. Conclusion: An MR-safe 4°C stagnant WC appropriate for dosimetry in MRI-linac and Gamma-Knife was designed, optimized, and construction is nearly completed. NSERC Discovery Grant RGPIN-435608.« less

  14. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  15. Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $$\\sqrt{s_{NN}} =$$ 2.76 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-20

    Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $$v_2$$ to $$v_6$$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $$v_2$$ harmonic becomes significantly smaller than the higher-order $$v_n$$ (n greater than or equal to 3). The pt-averaged $$v_2$$ and $$v_3$$ are found to be equal within 2%, while higher-order $$v_n$$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less

  16. Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?

    NASA Astrophysics Data System (ADS)

    Ramirez, R.

    2014-04-01

    Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.

  17. Temperature and humidity control in indirect calorimeter chambers

    USDA-ARS?s Scientific Manuscript database

    A three-chamber, indirect calorimeter has been a part of the Environmental Laboratory at the U.S. Meat Animal Research Center (MARC) for over 25 yr. Corrosion of the animal chambers and unreliable temperature control forced either major repairs or complete replacement. There is a strong demand for...

  18. Fast-acting calorimeter measures heat output of plasma gun accelerator

    NASA Technical Reports Server (NTRS)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  19. 40 CFR 98.7 - What standardized methods are incorporated by reference into this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Liquid Hydrocarbon Fuels by Bomb Calorimeter, IBR approved for §§ 98.34(a) and 98.254(e). (5) ASTM D388... Hydrocarbon Fuels by Bomb Calorimeter (Precision Method), IBR approved for §§ 98.34(a) and 98.254(e). (25...

  20. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  1. Interferometer-Based Calorimetric Measurements of Absorbed Dose to Water in External Beam Radiotherapy

    NASA Astrophysics Data System (ADS)

    Flores-Martinez, Everardo

    Calorimetry is often used to establish high-energy photon absorbed dose to water (ADW) primary standards as calorimetry is a direct measurement of the energy imparted to the water by ionizing radiation. Current calorimeters use thermistors to establish national standards but there is the possibility of systematic errors in these instruments because thermistors overheat due to their low heat capacity. For this reason, there has been renewed interest in using alternative temperature measurement techniques, especially those that do not require a mechanical probe. Interferometer-based thermometry is a technique that exploits the temperature dependence of the refractive index of water and can be used as an alternative method for temperature measurement in radiation calorimetry. A distinctive advantage of the use of interferometry for radiation calorimetry is the capability of obtaining 2D or 3D temperature/dose distributions. Compared to thermistor-based measurements, the use of interferometer-based ADW measurements has been limited by the low measurement resolution. Optimized setups with higher accuracy and precision are necessary to perform measurements at clinically relevant dose rates. A calorimeter for thermistor-based ADW measurements was developed. The instrument was used to measure thermal drifts and noise were measured using the instrument in a water phantom. Residual thermal drifts were accounted for by using a three-step measurement protocol. Additionally, the instrument was used to measure ADW from a 6MV photon beam from a medical linear accelerator. A Michelson-type interferometer was built, characterized, and placed inside the calorimeter with the water phantom at the reference arm. Interferometer and phantom temperature fluctuations were minimized by means of the passive thermal control provide by the calorimeter enclosure, leading to increased fringe pattern stability. The interferometer characterization included phase shift measurements induced by displacing a piezoelectric transducer. Measurements were compared with calculations to estimate the accuracy of the technique. The interferometer-based system was used to measure ADW in a water-filled glass phantom, irradiated with a 6MV photon beam. The estimated Type-A, (k = 1) uncertainty in the associated doses was about 0.3Gy, which is an order of magnitude lower than previously published interferometer-based ADW measurements. Additionally a comparative analysis was performed with the thermistor-based measurements, results for both techniques agreed within the uncertainty. This work presents the first absolute ADW measurements performed using interferometry in the dose range of linac-based radiotherapy and represents a significant step towards standards-level measurements using this technique.

  2. Experimentally-determined external heat loss of automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  3. MicroTCA-based Global Trigger Upgrade project for the CMS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Rahbaran, B.; Arnold, B.; Bergauer, H.; Eichberger, M.; Rabady, D.

    2011-12-01

    The electronics of the first Level Global Trigger (GT) of CMS is the last stage of the Level-1 trigger system [1]. At LHC up to 40 million collisions of proton bunches occur every second, resulting in about 800 million proton collisions. The CMS Level-1 Global Trigger [1], a custom designed electronics system based on FPGA technology and the VMEbus system, performs a quick on-line analysis of each collision every 25 ns and decides whether to reject or to accept it for further analysis. The CMS trigger group of the Institute of High Energy Physics in Vienna (HEPHY) is involved in the Level-1 trigger of the CMS experiment at CERN. As part of the Trigger Upgrade, the Level-1 Global Trigger will be redesigned and implemented in MicroTCA based technology, which allows engineers to detect all possible faults on plug-in boards, in the power supply and in the cooling system. The upgraded Global Trigger will be designed to have the same basic categories of functions as the present GT, but will have more algorithms and more possibilities for combining trigger candidates. Additionally, reconfigurability and testability will be supported based on the next system generation.

  4. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; hide

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  5. Heat capacity and thermal relaxation of bulk helium very near the lambda point

    NASA Technical Reports Server (NTRS)

    Lipa, John A.; Swanson, D. R.; Nissen, J. A.; Chui, T. C. P.

    1994-01-01

    In October 1992 a low temperature experiment was flown on the Space Shuttle in low Earth orbit. The objective of the mission was to measure the heat capacity and thermal conductivity of helium very close to the lambda point with the smearing effect of gravity removed. We report preliminary results from the experiment, and compare them with related measurements performed on the ground. The sample was s sphere of helium 3.5 cm in diameter contained within a copper calorimeter of vey high thermal conductivity. The calorimeter was attached to a pair of high resolution paramagnetic salt thermometers with noise levels in the 10(exp -10) K range and suspended from a high stability thermal isolation system. During the mission we found that the resolution of the thermometers was degraded somewhat due to the impact of charged particles. This effect limited the useful resolution of the measurements to about two nanokelvins from the lambda point. The results reported here are limited to about ten nanokelvins from the transition.

  6. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon calorimeter to study cosmic rays

    NASA Astrophysics Data System (ADS)

    Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Schiavon, P.; Sparvoli, R.; Spillantini, P.; Stochaj, S. J.; Streitmatter, R. E.; Stephens, S. A.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    2001-04-01

    CAPRICE98 is a superconducting magnetic spectrometer, equipped with a gas RICH and a silicon calorimeter, launched from Ft. Sumner (USA), on the 28th of May 1998, by the WiZard collaboration. For the first time a gas RICH detector flew together with a silicon electromagnetic calorimeter, allowing mass resolved antiprotons, with E>18 GeV, to be detected. The detector configuration was completed by a time of flight for particle identification, and a set of three drift chambers for rigidity measurement. The science objectives are the study of antimatter in cosmic rays and the cosmic ray composition in the atmosphere with special focus on muons.

  7. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  8. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  9. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  10. Micro-differential scanning calorimeter for liquid biological samples

    DOE PAGES

    Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; ...

    2016-10-20

    Here, we developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. Our design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. Furthermore, we demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturizedmore » sample consumption.« less

  11. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  12. Design and performance of SiPM-based readout of PbF 2 crystals for high-rate, precision timing applications

    DOE PAGES

    Kaspar, J.; Fienberg, A. T.; Hertzog, D. W.; ...

    2017-01-11

    Here, we have developed a custom amplifier board coupled to a large-format 16-channel Hamamatsu silicon photomultiplier device for use as the light sensor for the electromagnetic calorimeters in the Muon g-2 experiment at Fermilab. The calorimeter absorber is an array of lead-fluoride crystals, which produces short-duration Cherenkov light. The detector sits in the high magnetic field of the muon storage ring. The SiPMs selected, and their accompanying custom electronics, must preserve the short pulse shape, have high quantum efficiency, be non-magnetic, exhibit gain stability under varying rate conditions, and cover a fairly large fraction of the crystal exit surface area.more » We describe an optimized design that employs the new-generation of thru-silicon via devices. As a result, the performance is documented in a series of bench and beam tests.« less

  13. HGCAL: A High-Granularity Calorimeter for the Endcaps of CMS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Ochando, Christophe; CMS Collaboration

    2017-11-01

    Calorimetry at the High Luminosity LHC (HL-LHC) faces two enormous challenges, particularly in the forward direction: radiation tolerance and unprecedented in-time event pileup. To meet these challenges, the CMS experiment has decided to construct a High Granularity Calorimeter (HGCAL), featuring a previously unrealized transverse and longitudinal segmentation, for both electromagnetic and hadronic compartments. This will facilitate particle-flow-type calorimetry, where the fine structure of showers can be measured and used to enhance particle identification, energy resolution and pileup rejection. The majority of the HGCAL will be based on robust and cost-effective hexagonal silicon sensors with about 1cm2 or 0.5cm2 hexagonal cell size, with the final 5 interaction lengths of the hadronic compartment being based on highly segmented plastic scintillator with on-scintillator SiPM readout. We present an overview of the HGCAL project, including the motivation, engineering design, readout concept and simulated performance.

  14. 2 MeV linear accelerator for industrial applications

    NASA Astrophysics Data System (ADS)

    Smith, Richard R.; Farrell, Sherman R.

    1997-02-01

    RPC Industries has developed a high average power scanned electron beam linac system for medium energy industrial processing, such as in-line sterilization. The parameters are: electron energy 2 MeV; average beam current 5.0 mA; and scanned width 0.5 meters. The control system features data logging and a Man-Machine Interface system. The accelerator is vertically mounted, the system height above the floor is 3.4 m, and the footprint is 0.9×1.2 meter2. The typical processing cell inside dimensions are 3.0 m by 3.5 m by 4.2 m high with concrete side walls 0.5 m thick above ground level. The equal exit depth dose is 0.73 gm cm-2. Additional topics that will be reported are: throughput, measurements of dose vs depth, dose uniformity across the web, and beam power by calorimeter and magnetic deflection of the beam.

  15. Charring rate of wood exposed to a constant heat flux

    Treesearch

    R. H. White; H. C. Tran

    1996-01-01

    A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...

  16. An Inexpensive Solution Calorimeter

    ERIC Educational Resources Information Center

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  17. PHENIX Muon Piston Calorimeter (MPC) APD and Prototype MPC Extension (MPC-EX) Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lajoie, John

    2013-06-20

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Muon Piston Calorimeter Extension (MPC-EX) Collaboration who have committed to participate in beam tests to be carried out during the 2013- 2014 Fermilab Test Beam Facility program.

  18. Treated and Untreated foam core particleboards with intumescent veneer

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling; Charles Boardman

    2013-01-01

    The effectiveness of treatments for the surface layer of novel foam core particleboards was evaluated by means of Cone calorimeter tests, Foam cote particleboards with variations of surface layer treatment, adhesives, and surface layer thicknesses under similar processing conditions were used to produce the test specimen for the Cone calorimeter tests. Ignitability,...

  19. LYSO based precision timing calorimeters

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-01

    In this report we outline the study of the development of calorimeter detectors using bright scintillating crystals. We discuss how timing information with a precision of a few tens of pico seconds and below can significantly improve the reconstruction of the physics events under challenging high pileup conditions to be faced at the High-Luminosity LHC or a future hadron collider. The particular challenge in measuring the time of arrival of a high energy photon lies in the stochastic component of the distance of initial conversion and the size of the electromagnetic shower. We present studies and measurements from test beamsmore » for calorimeter based timing measurements to explore the ultimate timing precision achievable for high energy photons of 10 GeV and above. We focus on techniques to measure the timing with a high precision in association with the energy of the photon. We present test-beam studies and results on the timing performance and characterization of the time resolution of LYSO-based calorimeters. We demonstrate time resolution of 30 ps is achievable for a particular design.« less

  20. Thermalization of X-rays in evaporated tin and bismuth films used as the absorbing materials in X-ray calorimeters

    NASA Astrophysics Data System (ADS)

    Stahle, C. K.; Kelley, R. L.; Moseley, S. H.; Szymkowiak, A. E.; Juda, M.; McCammon, D.; Zhang, J.

    1993-11-01

    We have investigated the use of evaporated tin and bismuth films as the absorbing materials in X-ray calorimeters. When the films were deposited directly on monolithic silicon calorimeters, the output signal from both Sn and Bi devices was strongly dependent on the location of the absorption event relative to the ion-implanted thermistors, presumably indicating thermistor sensitivity to a non-thermal spectrum of phonons. With Sn films we also observed that a component of the thermalization proceeded slowly, relative to a complete thermalization reference. The thermalization function could be modified by trapping magnetic flux within the film. In order to distinguish thermalization effects in the films from the thermistor sensitivity to energetic phonons, we deposited Sn and Bi films on thin Si substrates which we then affixed to calorimeters using epoxy. With glued Sn films, we were able to attain as good as 13.6 eV resolution of 6 keV X-rays with no excess broadening of the line beyond the width of the baseline, while similarly made Bi devices showed excess broadening.

  1. Evaluating the Radiation Damage to Quartz Rods in the ATLAS Zero Degree Calorimeter

    NASA Astrophysics Data System (ADS)

    Goodale, Kathryn

    2017-09-01

    At the Large Hadron Collider, the ATLAS experiment studies particle collisions to explore the fundamental particles of nature. A key instrumentation technology used by the ATLAS experiment are calorimeters for particle energy measurements. UIUC is developing a new Zero-Degree Calorimeter; a hadronic calorimeter located at zero-degrees from the collision axis. It consists of alternating layers of tungsten and oil; passive and active layers, respectively. The passive layers cause intense showers of secondary particles. These particles then produce Cherenkov radiation in the active layer. The oil in the active layer is replaced at a constant rate allowing for very high radiation doses in the detector without deteriorating the radiator material. The active layer includes wavelength shifters that absorb and re-emit isotropically the Cherenkov radiation. In this way, some of the photons arrive at two, hollow quartz rods which are filled by a second stage wavelength shifter. Here the light is absorbed and re-directed to a Silicon Photomultiplier for detection. In this paper, the impact of ionizing radiation on quartz rods will be discussed and the results from attenuation measurements will be presented.

  2. Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems

    NASA Astrophysics Data System (ADS)

    Israeli, Y.

    2018-05-01

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.

  3. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    NASA Astrophysics Data System (ADS)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  4. New method to measure the attenuation of hadrons in extensive air showers

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hildebrand, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2009-07-01

    Extensive air showers are generated through interactions of high-energy cosmic rays impinging the Earth’s atmosphere. A new method is described to infer the attenuation of hadrons in air showers. The numbers of electrons and muons, registered with the scintillator array of the KASCADE experiment, are used to estimate the energy of the shower inducing primary particle. A large hadron calorimeter is used to measure the hadronic energy reaching observation level. The ratio of energy reaching ground level to the energy of the primary particle is used to derive an attenuation length of hadrons in air showers. In the energy range from 106 to 3×107GeV the attenuation length obtained increases from 170 to 210g/cm2. The experimental results are compared to predictions of simulations based on contemporary high-energy interaction models.

  5. Measuring the short-term substrate utilization response to high-carbohydrate and high-fat meals in the whole-body indirect calorimeter.

    PubMed

    Gribok, Andrei; Leger, Jayme L; Stevens, Michelle; Hoyt, Reed; Buller, Mark; Rumpler, William

    2016-06-01

    The paper demonstrates that minute-to-minute metabolic response to meals with different macronutrient content can be measured and discerned in the whole-body indirect calorimeter. The ability to discriminate between high-carbohydrate and high-fat meals is achieved by applying a modified regularization technique with additional constraints imposed on oxygen consumption rate. These additional constraints reduce the differences in accuracy between the oxygen and carbon dioxide analyzers. The modified technique was applied to 63 calorimeter sessions that were each 24 h long. The data were collected from 16 healthy volunteers (eight males, eight females, aged 22-35 years). Each volunteer performed four 24-h long calorimeter sessions. At each session, they received one of four treatment combinations involving exercise (high or low intensity) and diet (a high-fat or high-carbohydrate shake for lunch). One volunteer did not complete all four assignments, which brought the total number of sessions to 63 instead of 64. During the 24-h stay in the calorimeter, subjects wore a continuous glucose monitoring system, which was used as a benchmark for subject's postprandial glycemic response. The minute-by-minute respiratory exchange ratio (RER) data showed excellent agreement with concurrent subcutaneous glucose concentrations in postprandial state. The averaged minute-to-minute RER response to the high-carbohydrate shake was significantly different from the response to high-fat shake. Also, postprandial RER slopes were significantly different for two dietary treatments. The results show that whole-body respiration calorimeters can be utilized as tools to study short-term kinetics of substrate oxidation in humans. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Electrons and photons at High Level Trigger in CMS for Run II

    NASA Astrophysics Data System (ADS)

    Anuar, Afiq A.

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on: updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, and the electron-dedicated track fitting algorithm based on Gaussian Sum Filter.

  7. Irradiation study of UV Silicon Photomultipliers for the Mu2e calorimeter

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Ferrari, A.; Giovannella, S.; Loreti, S.; Miscetti, S.; Müller, S.; Pillon, M.; Sarra, I.

    2017-02-01

    The Mu2e calorimeter is composed of 1400 un-doped CsI crystals, coupled to large area UV extended Silicon Photomultipliers (SiPMs), arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position resolutions. It should also be fast enough to handle the high rate background and it must operate and survive in the high radiation environment. Simulation studies estimated that, in the highest irradiated regions, each photo-sensor will absorb a dose of 20 krad and will be exposed to a neutron fluency of 5.5×1011n1 MeV/cm2 in three years of running, with a safety factor of 3 included. At the end of 2015, we have concluded an irradiation campaign at the Frascati Neutron Generator (FNG, Frascati, Italy) measuring the response of two different 16 array models from Hamamatsu, which differ for the protection windows and a SiPM from FBK. In 2016, we have carried out two additional irradiation campaigns with neutrons and photons at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR, Dresden, Germany) and at the Calliope gamma irradiation facility at ENEA-Casaccia, respectively. A negligible increment of the leakage current and no gain change have been observed with the dose irradiation. On the other hand, at the end of the neutron irradiation, the gain does not show large changes whilst the leakage current increases by around a factor of 2000. In these conditions, the too high leakage current makes problematic to bias the SiPMs, thus requiring to cool them down to a running temperature of ~0oC.

  8. The Sagnac-configured fiber optic calorimeter: An investigation of an improved non-destructive methodology for determining the thermal power output of heat-producing nuclear materials

    NASA Astrophysics Data System (ADS)

    Bayliss, Stephen Carlton

    An essential component in an ever-expanding global nuclear economy is the nondestructive assay (NDA) of nuclear materials. Accurate accounting of these materials helps to insure the safe handling and disposal of them and the accurate monitoring of these materials can help prevent their diversion. A particularly useful and important NDA technique has proven to be isothermal calorimetry. With state-of-the-art calorimeters, heat rates as low as a few milliwatts can be measured, which correspond to approximately one gram of plutonium or one milligram of tritium; two materials of particular interest. In addition, calorimetry is relatively insensitive to the matrix of the sample. This work reports on the development of a calorimeter technique based on fiber optics, which can greatly increase the sensitivity of the calorimeter compared with present day devices. Specifically, this device uses an optical fiber configuration based on the Sagnac interferometer. Fundamentally, the optical fiber is replacing the resistive wire used in conventional calorimeters. The optical fiber is wrapped around two "thermels;" a reference and a sample thermel; the thermal sample to be measured is placed in the sample thermel. The light within the optical fiber of the sample arm experiences a change in phase due to the change in the index of refraction caused by the thermal load. When this light mixes with the light from the reference arm, a change in the light intensity results. An electro-optic receiver converts the time-varying light intensity to a time-varying voltage output. It is this voltage output that is stored and analyzed. A prototype fiber calorimeter has been built and proved capable of measuring heat loads in the microwatt regime. This sensitivity represents a factor of a one thousand-fold improvement over conventional calorimeters. This would allow plutonium samples as small as one milligram to be measured and microgram quantities of tritium. In addition, gram quantities of 93% enriched uranium could be measured for the first time using calorimetry. This device has not been optimized with respect to background interferences (room thermal loads and acoustics), but indications are that the sensitivity could be improved further with more development.

  9. The High Energy Particle Detector (HEPD) for the CSES satellite

    NASA Astrophysics Data System (ADS)

    Sparvoli, Roberta

    2016-04-01

    We present the advanced High Energy Particle Detector (HEPD) developed to be installed on the China Seismo-Electromagnetic Satellite (CSES), launch scheduled by the end of 2016. The HEPD instrument aims at studying the temporal stability of the inner Van Allen radiation belts and at investigating precipitation of trapped particles induced by magnetospheric, ionosferic and tropospheric EM emissions, as well as by the seismo-electromagnetic and anthropogenic disturbances. In occasion of many earthquakes and volcanic eruptions, several measurements, on ground and by experiments on LEO satellites revealed: electromagnetic and plasma perturbations, and anomalous increases of high-energy Van Allen charged particle flux. The precipitation of trapped electrons and protons (from a few MeV to several tens of MeV) could be induced by diffusion of particles pitch-angle possibly caused by the seismo-electromagnetic emissions generated before (a few hours) earthquakes. Due to the longitudinal drift along a same L-shell, anomalous particle bursts of precipitating particles could be detected by satellites not only on the epicentral area of the incoming earthquake, but along the drift path. Moreover, the opposite drift directions of positive and negative particles could allow reconstructing the longitude of the earthquake focal area. Although, the earthquake prediction is not within the reach of current knowledge, however the study of the precursors aims at collecting all relevant information that can infer the spatial and temporal coordinates of the seismic events from measurements. At this purposes, it is essential to detect particles in a wide range of energies (because particles of different energies are sensitive to different frequencies of seismo-electromagnetic emissions), with a good angular resolution (in order to separate fluxes of trapped and precipitating particles), and excellent ability to recognize the charge (that determines the direction of the longitudinal drift of precipitating particles). The East-West or West-East drift direction is an essential information to retrieve the longitude of the starting point of the burst precipitation and then to reconstruct the geographical area where the interaction between particles and seismo-electromagnetic emissions occurred. HEPD has been designed to provide good energy resolution and high angular resolution for electrons (3 - 100 MeV) and proton (30 - 200 MeV). The detector consists of two layers of segmented plastic scintillators and a calorimeter, constituted by a tower of scintillator counters. The direction of the incident particle is provided by two planes of double-side silicon micro-strip detectors placed in front of the trigger scintillator planes to limit the effect of Coulomb multiple scattering on the direction measurement. The electron angular resolution varies between 13° at 2.5 MeV and ≤ 1° for energies above 35 MeV. The detector has a wide angular acceptance (>60°) over the full energy range 2.5-100 MeV. The angle-integrated, total acceptance is larger than 100 cm2sr between 2.5 and 35 MeV, decreasing at higher energies (about 40 cm2sr at 100 MeV). The proton angular resolution is ≤1° over the full detection range. The proton integrated-angle, total acceptance is larger than 100 cm2sr between 30 MeV and 150 MeV, decreasing to 60 cm2sr at 200 MeV. The good energy-loss measurement of the silicon track, combined with the energy resolution of the scintillators and calorimeter, allows identifying electrons with acceptable proton background levels (10-5-10-3).

  10. Lepton identification at particle flow oriented detector for the future e+e- Higgs factories

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Ruan, Manqi; Boudry, Vincent; Videau, Henri

    2017-09-01

    The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a toolkit for multivariate data analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/μ μ H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.

  11. Sliding scale HCG trigger yields equivalent pregnancy outcomes and reduces ovarian hyperstimulation syndrome: Analysis of 10,427 IVF-ICSI cycles.

    PubMed

    Gunnala, Vinay; Melnick, Alexis; Irani, Mohamad; Reichman, David; Schattman, Glenn; Davis, Owen; Rosenwaks, Zev

    2017-01-01

    To evaluate pregnancy outcomes and the incidence of ovarian hyperstimulation syndrome (OHSS) using a sliding scale hCG protocol to trigger oocyte maturity and establish a threshold level of serum b-hCG associated with optimal oocyte maturity. Retrospective cohort. Academic medical center. Fresh IVF cycles from 9/2004-12/2011. 10,427 fresh IVF-ICSI cycles met inclusion criteria. hCG was administered according to E2 level at trigger: 10,000IU vs. 5,000IU vs. 4,000IU vs. 3,300IU vs. dual trigger (2mg leuprolide acetate + 1,500IU hCG). Serum absorption of hCG was assessed according to dose and BMI. Oocyte maturity was analyzed according to post-trigger serum b-hCG. Fertilization, clinical pregnancy, live birth and OHSS rates were examined by hCG trigger dose. Post-trigger serum b-hCG 20-30, 30-40, and 40-50 mIU/mL was associated with reduced oocyte maturity as compared b-hCG >50 (67.8% vs. 71.4% vs. 73.3% vs. 78.9%, respectively, P<0.05). b-hCG 20-50 mIU/mL was associated with a 40.1% reduction in live birth (OR 0.59, 95% CI 0.41-0.87). No differences in IVF outcomes per retrieval were seen for varying doses of hCG or dual trigger when controlling for patient age. The incidence of moderate to severe OHSS was 0.13% (n = 14) and severe OHSS was 0.03% (n = 4) of cycles. Moderate stimulation with sliding scale hCG at trigger and fresh transfer is associated with low rates of OHSS and favorable pregnancy rates. Doses as low as 3,300IU alone or dual trigger with 1,500IU are sufficient to facilitate oocyte maturity.

  12. Sliding scale HCG trigger yields equivalent pregnancy outcomes and reduces ovarian hyperstimulation syndrome: Analysis of 10,427 IVF-ICSI cycles

    PubMed Central

    Schattman, Glenn; Davis, Owen; Rosenwaks, Zev

    2017-01-01

    Objective To evaluate pregnancy outcomes and the incidence of ovarian hyperstimulation syndrome (OHSS) using a sliding scale hCG protocol to trigger oocyte maturity and establish a threshold level of serum b-hCG associated with optimal oocyte maturity. Design Retrospective cohort. Setting Academic medical center. Patients Fresh IVF cycles from 9/2004–12/2011. Intervention 10,427 fresh IVF-ICSI cycles met inclusion criteria. hCG was administered according to E2 level at trigger: 10,000IU vs. 5,000IU vs. 4,000IU vs. 3,300IU vs. dual trigger (2mg leuprolide acetate + 1,500IU hCG). Serum absorption of hCG was assessed according to dose and BMI. Main outcome measures Oocyte maturity was analyzed according to post-trigger serum b-hCG. Fertilization, clinical pregnancy, live birth and OHSS rates were examined by hCG trigger dose. Results Post-trigger serum b-hCG 20–30, 30–40, and 40–50 mIU/mL was associated with reduced oocyte maturity as compared b-hCG >50 (67.8% vs. 71.4% vs. 73.3% vs. 78.9%, respectively, P<0.05). b-hCG 20–50 mIU/mL was associated with a 40.1% reduction in live birth (OR 0.59, 95% CI 0.41–0.87). No differences in IVF outcomes per retrieval were seen for varying doses of hCG or dual trigger when controlling for patient age. The incidence of moderate to severe OHSS was 0.13% (n = 14) and severe OHSS was 0.03% (n = 4) of cycles. Conclusions Moderate stimulation with sliding scale hCG at trigger and fresh transfer is associated with low rates of OHSS and favorable pregnancy rates. Doses as low as 3,300IU alone or dual trigger with 1,500IU are sufficient to facilitate oocyte maturity. PMID:28441461

  13. Elevated progesterone on the trigger day does not impair the outcome of Human Menotrophins Gonadotrophin and Medroxyprogesterone acetate treatment cycles

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Chen, Qiuju; Fu, Yonglun; Ai, Ai; Lyu, Qifeng; Kuang, Yan Ping

    2016-08-01

    To demonstrate the incidence and effects of elevated progesterone (P) on the trigger day on the outcome of in-vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles using Medroxyprogesterone acetate (MPA) co-treated with Human Menotrophins Gonadotrophin (hMG + MPA), we performed a retrospective analysis including 4106 IVF/ICSI cycles. The cycles were grouped according to the P level on the trigger day: <1 ng/mL, between 1-1.5 ng/ml (including 1), between 1.5-2 ng/mL (including 1.5), and ≥2 ng/mL. The primary outcome measure was live birth rate. The prevalence of P level categories was 12.93% (531/4106), 2.92% (120/4106), and 1.92% (79/4106) in women with P between 1-1.5 ng/mL, between 1.5-2 ng/mL, and ≥2 ng/mL, respectively. The mean stimulation duration, total hMG dose, serum follicle stimulating hormone (FSH), estrogen(E2) on the trigger day and the number of oocytes in patients with elevated P were significantly higher than patients with P < 1 ng/mL (P < 0.05). However, there were no significant differences in the oocyte retrieval rates, fertilization rates, implantation rates, clinical pregnancy rates and live birth rates between the groups based on frozen embryo transfer (FET). We concluded that elevated P on the trigger day had no negative effect on the final outcome of the hMG + MPA treatment cycles based on FET.

  14. Confirming Glycemic Status in the Diabetes Prevention Program: Implications for Diagnosing Diabetes in High Risk Adults

    PubMed Central

    Christophi, C. A.; Resnick, H. E.; Ratner, R. E.; Temprosa, M.; Fowler, S.; Knowler, W. C.; Shamoon, H.; Barrett-Connor, E.; Kahn, S. E.

    2012-01-01

    Aims To examine the ability of FPG and/or 2-hr glucose to confirm diabetes and to determine the proportion of participants with HbA1c ≥6.5%. Methods Diabetes confirmation rates were calculated after a single elevated FPG and/or 2-hr glucose on an oral glucose tolerance test (OGTT) using a confirmatory OGTT performed within 6 weeks. Results 772 (24%) participants had elevated FPG or 2-hr glucose on an OGTT that triggered a confirmation visit. There were 101 triggers on FPG alone, 574 on 2-hr glucose alone, and 97 on both. Only 47% of participants who triggered had confirmed diabetes. While the confirmation rate for FPG was higher than that for 2-hr glucose, the larger number of 2-hr glucose triggers resulted in 87% of confirmed cases triggering on 2-hr glucose. Confirmation rates increased to 75% among persons with FPG ≥126 mg/dl and HbA1c ≥6.5%. Conclusions Only half of persons with elevated FPG and IGT were subsequently confirmed to have diabetes. At current diagnostic levels, more persons trigger on 2-hr glucose than on FPG, but fewer of these persons have their diagnoses confirmed. In individuals with FPG ≥126 mg/dl and HbA1c ≥6.5%, the confirmation rate was increased. PMID:23140912

  15. Confirming glycemic status in the Diabetes Prevention Program: implications for diagnosing diabetes in high risk adults.

    PubMed

    Christophi, C A; Resnick, H E; Ratner, R E; Temprosa, M; Fowler, S; Knowler, W C; Shamoon, H; Barrett-Connor, E; Kahn, S E

    2013-01-01

    To examine the ability of fasting plasma glucose (FPG) and/or 2-h glucose to confirm diabetes and to determine the proportion of participants with HbA1c ≥6.5%. Diabetes confirmation rates were calculated after a single elevated FPG and/or 2-h glucose on an oral glucose tolerance test (OGTT) using a confirmatory OGTT performed within 6 weeks. 772 (24%) participants had elevated FPG or 2-h glucose on an OGTT that triggered a confirmation visit. There were 101 triggers on FPG alone, 574 on 2-h glucose alone, and 97 on both. Only 47% of participants who triggered had confirmed diabetes. While the confirmation rate for FPG was higher than that for 2-h glucose, the larger number of 2-h glucose triggers resulted in 87% of confirmed cases triggering on 2-h glucose. Confirmation rates increased to 75% among persons with FPG ≥126 mg/dl and HbA1c ≥6.5%. Only half of the persons with elevated FPG and IGT were subsequently confirmed to have diabetes. At current diagnostic levels, more persons trigger on 2-h glucose than on FPG, but fewer of these persons have their diagnoses confirmed. In individuals with FPG ≥126 mg/dl and HbA1c ≥6.5%, the confirmation rate was increased. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Simple Rate Law Experiment Using a Custom-Built Isothermal Heat Conduction Calorimeter

    ERIC Educational Resources Information Center

    Wadso, Lars; Li, Xi.

    2008-01-01

    Most processes (whether physical, chemical, or biological) produce or consume heat: measuring thermal power (the heat production rate) is therefore a typical method of studying processes. Here we describe the design of a simple isothermal heat conduction calorimeter built for use in teaching; we also provide an example of its use in simultaneously…

  17. Reaction-to-fire testing and modeling for wood products

    Treesearch

    Mark A. Dietenberger; Robert H. White

    2001-01-01

    In this review we primarily discuss our use of the oxygen consumption calorimeter (ASTM E1354 for cone calorimeter and ISO9705 for room/corner tests) and fire growth modeling to evaluate treated wood products. With recent development towards performance-based building codes, new methodology requires engineering calculations of various fire growth scenarios. The initial...

  18. Waste-to-Energy Laboratory. Grades 8-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an activity for grades 8-12 students that focuses on the reuse of waste as an energy source by burning and converting it into energy. For this experiment students construct a calorimeter from simple recyclable material. The calorimeter is used to measure the amount of energy stored in paper and yard waste that could be used…

  19. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    ERIC Educational Resources Information Center

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  20. A stopped-flow calorimeter for biochemical applications.

    PubMed Central

    Howarth, J V; Millar, N C; Gutfreund, H

    1987-01-01

    A rapid-response stopped-flow calorimeter for small samples of reagents is described. The construction, performance characteristics and operational limitations are described, along with an example of its ability to resolve the kinetics of an enzyme-catalysed hydrolysis. It is thought likely that the method would find useful application in a variety of chemical and biochemical investigations. PMID:3435478

  1. NREL Scientists and Engineers Recognized for Top Innovations | NREL | News

    Science.gov Websites

    commercially available, large-format isothermal battery calorimeter for lithium-ion battery safety testing to test the performance and safety of large-format lithium-ion batteries used extensively in electric develop NREL intellectual property representing an isothermal battery calorimeter. The technical

  2. Deconvolution of Energy Spectra in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasigha, R. M.; hide

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic- ray elemental spectra measurements from below 100 GeV up to tens TeV for nuclei from hydrogen to iron. The instrument is composed of a silicon matrix detector followed by a carbon target, interleaved with scintillator tracking layers, and a segmented BGO calorimeter composed of 320 individual crystals totalling 18 radiation lengths, used to determine the particle energy. The technique for deconvolution of the energy spectra measured in the thin calorimeter is based on detailed simulations of the response of the ATIC instrument to different cosmic ray nuclei over a wide energy range. The method of deconvolution is described and energy spectrum of carbon obtained by this technique is presented.

  3. Projective geometry for the NICA/MPD Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Basylev, S.; Dabrowska, B.; Egorov, D.; Filippov, I.; Golovatyuk, V.; Krechetov, Yu.; Shutov, A.; Shutov, V.; Terletskiy, A.; Tyapkin, I.

    2018-02-01

    A Multi Purpose Detector (MPD) is being constructed for the Heavy-Ion Collider at Dubna (NICA). One of the important components of MPD setup is an Electromagnetic Calorimeter, which will operate in the magnetic field of MPD solenoid 0.5 T and provide good energy and space resolution to detect particles in the energy range from ~20 MeV to few GeV . For this purpose the, so-called, "shashlyk" sampling structure with the fiber readout to the silicon Multi Pixel Avalanche Photodetector is used. Serious modifications in comparison to conventional "shaslyk" calorimeter are proposed to improve the properties of device. These modifications are presented in the report along with the beam test results obtained with the MPD/NICA module prototypes.

  4. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  5. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  6. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  7. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Happacher, F.

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμ e = μ- + A(Z,N) → e- +A(Z,N)/μ- + A(Z,N) → νμ - +A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  8. The Mu2e crystal calorimeter

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Danè, E.; Davidov, Y.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Mu2e Collaboration

    2017-09-01

    The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe = μ- + A(Z,N) → e- + A(Z,N)/μ- + A(Z,N) → νμ- + A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.

  9. The Silicon Matrix as a Charge Detector in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.

  10. Rigidity Spectra of Protons and Helium as Measured in the First Flight of the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2003-01-01

    ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure cosmic ray composition for elements from hydrogen to iron and their energy spectra from 30 GeV to near 100 TeV. It is comprised of a fully active BGO calorimeter, a carbon interaction target, scintillator hodoscopes, and a silicon matrix that is used as a charge detector in the experiment. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). Preliminary rigidity spectra of protons and helium nuclei and their ratio are presented for the test flight (ATIC-1). Particular attention is given to problems associated with measuring energy.

  11. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  12. Construction of a technological semi-digital hadronic calorimeter using GRPC

    NASA Astrophysics Data System (ADS)

    Laktineh, I.

    2011-04-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojocaru, Claudiu; Mui, Bryan; McEwen, Malcolm

    Purpose: To investigate the stability of a water calorimetry system as a primary standard for absorbed dose to water using measurements performed in cobalt-60 and high-energy linac photon beams over a span of more than a decade. Methods: Calorimetry measures adsorbed dose directly by recording the amount of heat created when ionizing radiation passes through matter. The radiation-induced temperature rise was measured using two thermistors calibrated against the NRC temperature primary standard, using an AC bridge with lock-in amplifier for precise measurement. The calorimeter system was operated under thermal equilibrium at 4 °C (to eliminate convection) with drifts in watermore » temperature less than 0.1 mK/min. Seven water vessels of various designs were used to make repeated measurements over the course of 17 years. Results: The standard uncertainty achieved for a set of ten calorimeter measurements (4 Gy delivered) was generally well below 0.15 % while the variation between multiple sets for a given vessel was consistent with this value. The long-term stability of the system combined with inter-vessel variations indicated that there was good control of the radiochemistry (chemical heat defect). Conclusions: The measurements performed over a period of several years showed that the combined water calorimeters showed stability at +/− 0.25 % level. Thus, rather than relying on a particular vessel as an artifact one can realize the Gray through the more generalized method of combining a glass vessel, high-purity water and thermistor probes. This provides increased robustness in the dissemination of absorbed dose to Canadian users.« less

  14. Track vertex reconstruction with neural networks at the first level trigger of Belle II

    NASA Astrophysics Data System (ADS)

    Neuhaus, Sara; Skambraks, Sebastian; Kiesling, Christian

    2017-08-01

    The track trigger is one of the main components of the Belle II first level trigger, taking input from the Central Drift Chamber (CDC). It consists of several stages, first combining hits to track segments, followed by a 2D track finding in the transverse plane and finally a 3D track reconstruction. The results of the track trigger are the track multiplicity, the momentum vector of each track and the longitudinal displacement of the origin or production vertex of each track ("z-vertex"). The latter allows to reject background tracks from outside of the interaction region and thus to suppress a large fraction of the machine background. This contribution focuses on the track finding stage using Hough transforms and on the z-vertex reconstruction with neural networks. We describe the algorithms and show performance studies on simulated events.

  15. Implementation of a level 1 trigger system using high speed serial (VXS) techniques for the 12GeV high luminosity experimental programs at Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Cuevas, B. Raydo, H. Dong, A. Gupta, F.J. Barbosa, J. Wilson, W.M. Taylor, E. Jastrzembski, D. Abbott

    We will demonstrate a hardware and firmware solution for a complete fully pipelined multi-crate trigger system that takes advantage of the elegant high speed VXS serial extensions for VME. This trigger system includes three sections starting with the front end crate trigger processor (CTP), a global Sub-System Processor (SSP) and a Trigger Supervisor that manages the timing, synchronization and front end event readout. Within a front end crate, trigger information is gathered from each 16 Channel, 12 bit Flash ADC module at 4 nS intervals via the VXS backplane, to a Crate Trigger Processor (CTP). Each Crate Trigger Processor receivesmore » these 500 MB/S VXS links from the 16 FADC-250 modules, aligns skewed data inherent of Aurora protocol, and performs real time crate level trigger algorithms. The algorithm results are encoded using a Reed-Solomon technique and transmission of this Level 1 trigger data is sent to the SSP using a multi-fiber link. The multi-fiber link achieves an aggregate trigger data transfer rate to the global trigger at 8 Gb/s. The SSP receives and decodes Reed-Solomon error correcting transmission from each crate, aligns the data, and performs the global level trigger algorithms. The entire trigger system is synchronous and operates at 250 MHz with the Trigger Supervisor managing not only the front end event readout, but also the distribution of the critical timing clocks, synchronization signals, and the global trigger signals to each front end readout crate. These signals are distributed to the front end crates on a separate fiber link and each crate is synchronized using a unique encoding scheme to guarantee that each front end crate is synchronous with a fixed latency, independent of the distance between each crate. The overall trigger signal latency is <3 uS, and the proposed 12GeV experiments at Jefferson Lab require up to 200KHz Level 1 trigger rate.« less

  16. 40 CFR 761.19 - References.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Products (General Bomb Method) § 761.71(b)(2)(vi) ASTM D 240-87 Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuel by Bomb Calorimeter § 761.71(b)(2)(vi) ASTM D 482-87 Standard Test Method... in New and Used Petroleum Products (Bomb Method) § 761.71(b)(2)(vi) ASTM D 923-86 Standard Test...

  17. Defining when to initiate massive transfusion: a validation study of individual massive transfusion triggers in PROMMTT patients.

    PubMed

    Callcut, Rachael A; Cotton, Bryan A; Muskat, Peter; Fox, Erin E; Wade, Charles E; Holcomb, John B; Schreiber, Martin A; Rahbar, Mohammad H; Cohen, Mitchell J; Knudson, M Margaret; Brasel, Karen J; Bulger, Eileen M; Del Junco, Deborah J; Myers, John G; Alarcon, Louis H; Robinson, Bryce R H

    2013-01-01

    Early predictors of massive transfusion (MT) would prevent undertriage of patients likely to require MT. This study validates triggers using the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study. All enrolled patients in PROMMTT were analyzed. The initial emergency department value for each trigger (international normalized ratio [INR], systolic blood pressure, hemoglobin, base deficit, positive result for Focused Assessment for the Sonography of Trauma examination, heart rate, temperature, and penetrating injury mechanism) was compared for patients receiving MT (≥ 10 U of packed red blood cells in 24 hours) versus no MT. Adjusted odds ratios (ORs) for MT are reported using multiple logistic regression. If all triggers were known, a Massive Transfusion Score (MTS) was created, with 1 point assigned for each met trigger. A total of 1,245 patients were prospectively enrolled with 297 receiving an MT. Data were available for all triggers in 66% of the patients including 67% of the MTs (199 of 297). INR was known in 87% (1,081 of 1,245). All triggers except penetrating injury mechanism and heart rate were valid individual predictors of MT, with INR as the most predictive (adjusted OR, 2.5; 95% confidence interval, 1.7-3.7). For those with all triggers known, a positive INR trigger was seen in 49% receiving MT. Patients with an MTS of less than 2 were unlikely to receive MT (negative predictive value, 89%). If any two triggers were present (MTS ≥ 2), sensitivity for predicting MT was 85%. MT was present in 33% with an MTS of 2 greater compared with 11% of those with MTS of less than 2 (OR, 3.9; 95% confidence interval, 2.6-5.8; p < 0.0005). Parameters that can be obtained early in the initial emergency department evaluation are valid predictors for determining the likelihood of MT. Diagnostic, level II.

  18. A Strategy for a Parametric Flood Insurance Using Proxies

    NASA Astrophysics Data System (ADS)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  19. Calorimetric Thermoelectric Gas Sensor for the Detection of Hydrogen, Methane and Mixed Gases

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2014-01-01

    A novel miniaturized calorimeter-type sensor device with a dual-catalyst structure was fabricated by integrating different catalysts on the hot (Pd/θ-Al2O3) and cold (Pt/α-Al2O3) ends of the device. The device comprises a calorimeter with a thermoelectric gas sensor (calorimetric-TGS), combining catalytic combustion and thermoelectric technologies. Its response for a model fuel gas of hydrogen and methane was investigated with various combustor catalyst compositions. The calorimetric-TGS devices detected H2, CH4, and a mixture of the two with concentrations ranging between 200 and 2000 ppm at temperatures of 100–400 °C, in terms of the calorie content of the gases. It was necessary to reduce the much higher response voltage of the TGS to H2 compared to CH4. We enhanced the H2 combustion on the cold side so that the temperature differences and response voltages to H2 were reduced. The device response to H2 combustion was reduced by 50% by controlling the Pt concentration in the Pt/α-Al2O3 catalyst on the cold side to 3 wt%. PMID:24818660

  20. Cone calorimeter testing of vegetation--an update

    Treesearch

    Robert H. White; David R. Weise; Kurt Mackes; Alison C. Dibble

    2002-01-01

    As part of efforts to address fire problems in the wildland-urban interface, the cone calorimeter is being used to measure the relative flammability of different plant species. In the first two studies, we tested plants used to landscape homes in California and an assortment of plants found in Colorado. Using the effective heat of combustion and the peak heat release...

  1. Cone calorimeter testing of foam core sandwich panels treated with intumescent paper underneath the veneer (FRV)

    Treesearch

    Mark A. Dietenberger; Ali Shalbafan; Johannes Welling

    2017-01-01

    Surfaces of novel foam core sandwich panels were adhered with intumescent fire‐retardant paper underneath the veneers (FRV) to improve their flammability properties. The panels were evaluated by means of cone calorimeter test (ASTM E 1354). Variables tested were different surface layer treatments, adhesives used for veneering, surface layer thicknesses, and processing...

  2. Ignitability analysis using the cone calorimeter and lift apparatus

    Treesearch

    Mark A. Dietenberger

    1996-01-01

    The irradiance plotted as function of time to ignition for wood materials tested in the Cone Calorimeter (ASTM E1354) differs signiticantly from that tested in the Lateral Ignition and Flame spread Test (LIFT) apparatus (ASTM E1321). This difference in piloted ignitabilty is primarily due to the difference in forced convective cooling of the specimen tested in both...

  3. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Treesearch

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  4. HRR Upgrade to mass loss calorimeter and modified Schlyter test for FR Wood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman

    2013-01-01

    Enhanced Heat Release Rate (HRR) methodology has been extended to the Mass Loss Calorimeter (MLC) and the Modified Schlyter flame spread test to evaluate fire retardant effectiveness used on wood based materials. Modifications to MLC include installation of thermopile on the chimney walls to correct systematic errors to the sensible HRR calculations to account for...

  5. A high-resolution thermoelectric module-based calorimeter for measuring the energetics of isolated ventricular trabeculae at body temperature.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Ruddy, Bryan P; Nielsen, Poul M F; Taberner, Andrew J

    2015-07-15

    Isolated ventricular trabeculae are the most common experimental preparations used in the study of cardiac energetics. However, the experiments have been conducted at subphysiological temperatures. We have overcome this limitation by designing and constructing a novel calorimeter with sufficiently high thermal resolution for simultaneously measuring the heat output and force production of isolated, contracting, ventricular trabeculae at body temperature. This development was largely motivated by the need to better understand cardiac energetics by performing such measurements at body temperature to relate tissue performance to whole heart behavior in vivo. Our approach uses solid-state thermoelectric modules, tailored for both temperature sensing and temperature control. The thermoelectric modules have high sensitivity and low noise, which, when coupled with a multilevel temperature control system, enable an exceptionally high temperature resolution with a noise-equivalent power an order of magnitude greater than those of other existing muscle calorimeters. Our system allows us to rapidly and easily change the experimental temperature without disturbing the state of the muscle. Our calorimeter is useful in many experiments that explore the energetics of normal physiology as well as pathophysiology of cardiac muscle. Copyright © 2015 the American Physiological Society.

  6. Heat production, respiratory quotient, and methane loss subsequent to LPS challenge in beef heifers

    USDA-ARS?s Scientific Manuscript database

    Respiration calorimetry was used to measure energy utilization during an acute phase response (APR) to lipopolysaccharide (LPS). Eight Angus heifers (208 +/- 29.2 kg) were randomly assigned to one of two calorimeters in four 2-day periods for measurement of heat production (HP), methane (CH4), and r...

  7. Flammability studies of impregnated paper sheets

    Treesearch

    Ivan Simkovic; Anne Fuller; Robert White

    2011-01-01

    Paper sheets impregnated with flame retardants made from agricultural residues and other additives were studied with the cone calorimeter. The use of sugar beet ethanol eluent (SBE), CaCl2, and ZnCl2 lowered the peak rate of heat release (PRHR) the most in comparison to water treated material. The average effective heat of...

  8. The performance of the CASTOR calorimeter during LHC Run 2

    NASA Astrophysics Data System (ADS)

    van de Klundert, Merijn H. F.; CMS Collaboration

    2017-11-01

    CASTOR is an electromagnetic and hadronic tungsten-quartz sampling Cerenkov calorimeter located at the Compact Muon Solenoid experiment at the Large Hadron Collider. The detector has pseudorapidity borders at -5.2 and -6.6. An overview is presented on the various aspects of CASTOR’s performance and their relations during LHC Run 2. The equalisation of CASTOR’s channels is performed using beam-halo muons. Thereafter, CASTOR’s pedestal spectrum is studied. It is shown that noise estimates which are extracted using a fit, give on average a 10% lower threshold than statistical estimates. Gain correction factors, which are needed for the intercalibration, are obtained using a statistical, in-situ applicable method. The results of this method are shown to be reasonably consistent with laboratory measurements. Penultimately the absolute calibration is discussed, with emphasis on the relation between the scale uncertainty and CASTOR’s alignment. It is shown that the alignment’s contribution to the systematic uncertainty is decreased by over 50% in LHC Run 2 w.r.t. LHC Run 1. Finally generalisations of the conclusions to other subsystems and future improvements are discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less

  10. Reducing patients' exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters.

    PubMed

    Brown, Kathleen Ward; Minegishi, Taeko; Allen, Joseph G; McCarthy, John F; Spengler, John D; MacIntosh, David L

    2014-08-01

    Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used "each pass removal efficiency" applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients.

  11. Reducing patients’ exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters

    PubMed Central

    Minegishi, Taeko; Allen, Joseph G.; McCarthy, John F.; Spengler, John D.; MacIntosh, David L.

    2014-01-01

    Objective Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. Methods We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used “each pass removal efficiency” applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Results Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. Conclusions The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients. PMID:24555523

  12. ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system

    NASA Astrophysics Data System (ADS)

    Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.

  13. ATLAS Tile Calorimeter time calibration, monitoring and performance

    NASA Astrophysics Data System (ADS)

    Davidek, T.; ATLAS Collaboration

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. This sampling device is made of plastic scintillating tiles alternated with iron plates and its response is calibrated to electromagnetic scale by means of several dedicated calibration systems. The accurate time calibration is important for the energy reconstruction, non-collision background removal as well as for specific physics analyses. The initial time calibration with so-called splash events and subsequent fine-tuning with collision data are presented. The monitoring of the time calibration with laser system and physics collision data is discussed as well as the corrections for sudden changes performed still before the recorded data are processed for physics analyses. Finally, the time resolution as measured with jets and isolated muons is presented.

  14. Development of high temperature calorimeter: heat capacity measurement by direct heating pulse calorimetry

    NASA Astrophysics Data System (ADS)

    Arita, Yuji; Suzuki, Keisuke; Matsui, Tsuneo

    2005-02-01

    The temperature limit for heat capacity measurements with the direct heating pulse calorimeter has been increased up to 2000 K by means of the combination of an optical pyrometer to detect the relative temperature change with tungsten rhenium thermocouples to determine absolute temperatures. With this improved calorimeter the heat capacities were measured up to 1950 K, for SiC and B4C, and 2000 K for graphite. The heat capacity values obtained in this study were in good agreement, within the error of ±5%, with those previous values calculated from the enthalpy data by drop method. The electrical conductivities of SiC, B4C and graphite were also simultaneously determined from the inducted voltage and the current for heat capacity measurement.

  15. Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N. K.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P. D.; Wing, M.; Salvatore, F.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Grenier, G.; Han, R.; Ianigro, J.-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T. H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Jeans, D.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-11-01

    A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45×10×3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. These results represent an important milestone in the development of highly granular calorimeters using scintillator strip technology. A number of possible design improvements were identified, which should be implemented in a future detector of this type. This technology is being developed for a future linear collider experiment, aiming at the precise measurement of jet energies using particle flow techniques.

  16. A FLUKA simulation of the KLOE electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Di Micco, B.; Branchini, P.; Ferrari, A.; Loffredo, S.; Passeri, A.; Patera, V.

    2007-10-01

    We present the simulation of the KLOE calorimeter with the FLUKA Monte Carlo program. The response of the detector to electromagnetic showers has been studied and compared with the publicly available KLOE data. The energy and the time resolution of the electromagnetic clusters is in good agreement with the data. The simulation has been also used to study a possible improvement of the KLOE calorimeter using multianode photo-multipliers. An HAMAMATSU R7600-M16 photomultiplier has been assembled in order to determine the whole cross talk matrix that has been included in the simulation. The cross talk matrix takes into account the effects of a realistic photo-multiplier's electronics and of its coupling to the active material. The performance of the modified readout has been compared to the usual KLOE configuration.

  17. Study of the $$H^0/A^0 \\to \\tau \\mu$$ signal at the hadronic colliders and intercalibration of the D0 calorimeter at Tevatron Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delsart, Pierre Antoine

    2003-10-13

    This thesis was realized in collaboration with the "theory'' group and the "D0" group of IPNL. Within D0 we have worked on a component of the calibration of the detector's calorimeter : the intercalibration. Using the fact the physics ismore » $$\\phi$$-symmetric in D0, we created and applied statistical methods for a relative calibration of the $$\\phi$$-symmetric parts of the calorimeter. Work on particle physics concerned the two Higgs doublet model. In such models leptonic number violation is possible : we have simulated the $$H^0/A^0 \\to \\tau \\mu$$ signal in order to study the discovery potential and the constraints on the coupling responsible for this decay.« less

  18. Methods for automatic trigger threshold adjustment

    DOEpatents

    Welch, Benjamin J; Partridge, Michael E

    2014-03-18

    Methods are presented for adjusting trigger threshold values to compensate for drift in the quiescent level of a signal monitored for initiating a data recording event, thereby avoiding false triggering conditions. Initial threshold values are periodically adjusted by re-measuring the quiescent signal level, and adjusting the threshold values by an offset computation based upon the measured quiescent signal level drift. Re-computation of the trigger threshold values can be implemented on time based or counter based criteria. Additionally, a qualification width counter can be utilized to implement a requirement that a trigger threshold criterion be met a given number of times prior to initiating a data recording event, further reducing the possibility of a false triggering situation.

  19. Upgrade project and plans for the ATLAS detector and trigger

    NASA Astrophysics Data System (ADS)

    Pastore, Francesca; Atlas Collaboration

    2013-08-01

    The LHC is expected to under go upgrades over the coming years in order to extend its scientific potential. Through two different phases (namely Phase-I and Phase-II), the average luminosity will be increased by a factor 5-10 above the design luminosity, 1034 cm-2 s-1. Consequently, the LHC experiments will need upgraded detectors and new infrastructure of the trigger and DAQ systems, to take into account the increase of radiation level and of particle rates foreseen at such high luminosity. In this paper we describe the planned changes and the investigations for the ATLAS experiment, focusing on the requirements for the trigger system to handle the increase rate of collisions per beam crossing, while maintaining widely inclusive selections. In different steps, the trigger detectors will improve their selectivity by benefiting from increased granularity. To improve the flexibility of the system, the use of the tracking information in the lower levels of the trigger selection is also discussed. Lastly different scenarios are compared, based on the expected physics potential of ATLAS in this high luminosity regime.

  20. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

Top