Science.gov

Sample records for levels affects stomatal

  1. Drawing the future: Stomatal response to CO(2) levels.

    PubMed

    Serna, Laura

    2008-04-01

    Gas exchange between the plant and the atmosphere is regulated by controlling both the stomatal density and the aperture of the stomatal pore. Environmental factors such as light, the level of atmospheric CO(2) and hormones regulate stomatal development and/or function. Because atmospheric CO(2) levels have been rising since the Industrial Revolution, and it is predicted that they will continue doing so in the future, an understanding of the CO(2) signalling mechanisms in the stomatal responses will help to know how plants were in the past and will allow predicting how they will respond to climate change in the near future. This article covers the recent knowledge of the CO(2) signalling mechanisms that regulate both stomatal function and development.

  2. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  3. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  4. Tree-Level Hydrodynamic Approach for Improved Stomatal Conductance Parameterization

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Ivanov, V. Y.

    2014-12-01

    between species which affect their response to the disturbance. We used FETCH2 to conduct a sensitivity analysis of the total stand-level transpiration to the inter-specific differences in hydraulic strategies and used the results to reflect on the future trajectory of the forest, in terms of species composition and transpiration.

  5. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    SciTech Connect

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang -Jiao; Chung, Jeng -Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung -Jui

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.

  6. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea.

    PubMed

    Niinemets, Ulo; Reichstein, Markus; Staudt, Michael; Seufert, Günther; Tenhunen, John D

    2002-11-01

    Dependence of monoterpenoid emission and fractional composition on stomatal conductance (G(V)) was studied in Mediterranean conifer Pinus pinea, which primarily emits limonene and trans-beta-ocimene but also large fractions of oxygenated monoterpenoids linalool and 1,8-cineole. Strong decreases in G(V) attributable to diurnal water stress were accompanied by a significant reduction in total monoterpenoid emission rate in midday. However, various monoterpenoids responded differently to the reduction in G(V), with the emission rates of limonene and trans-beta-ocimene being unaffected but those of linalool and 1,8-cineole closely following diurnal variability in G(V). A dynamic emission model indicated that stomatal sensitivity of emissions was associated with monoterpenoid Henry's law constant (H, gas/liquid phase partition coefficient). Monoterpenoids with a large H such as trans-beta-ocimene sustain higher intercellular partial pressure for a certain liquid phase concentration, and stomatal closure is balanced by a nearly immediate increase in monoterpene diffusion gradient from intercellular air-space to ambient air. The partial pressure rises also in compounds with a low H, but more than 1,000-fold higher liquid phase concentrations of linalool and 1,8-cineole are necessary to increase intercellular partial pressure high enough to balance stomatal closure. The system response is accordingly slower, and the emission rates may be transiently suppressed by low G(V). Simulations further suggested that linalool and 1,8-cineole synthesis rates also decreased with decreasing G(V), possibly as the result of selective inhibition of various monoterpene synthases by stomata. We conclude that physicochemical characteristics of volatiles not only affect total emission but also alter the fractional composition of emitted monoterpenoids.

  7. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels

    NASA Astrophysics Data System (ADS)

    Woodward, F. I.

    1987-06-01

    Recent measurements of atmospheric CO2 levels in ice cores1 have shown that global CO2 has increased by about 60 µmol mol-1 over the past 200 years. Evidence for the response of plants in the field to this change in CO2 levels is here presented in the form of a significant change in stomatal density-an anatomical response of considerable ecophysiological importance. A 40% decrease in density of stomata was observed in herbarium specimens of leaves of eight temperate arboreal species collected over the last 200 years. This decline was confirmed for some of the species observed as herbarium specimens by experiments under controlled environmental conditions. In these an increase in the mole fraction of CO2 from 280 μmol mol-1 to the current ambient level of 340 µmol mol-1 was found to cause a decrease in stomatal density of 67%. Experiments have shown that the combination of this previously unreported response of stomatal density to the level of CO2, with the known responses of stomatal aperture2, cause water use efficiency to be much lower than expected at low levels of CO2 and over a wide range of humidities.

  8. Assessment of serum enzymatic antioxidant levels in patients with recurrent aphthous stomatitis: a case control study.

    PubMed

    Gupta, Ishita; Shetti, Arvind; Keluskar, Vaishali; Bagewadi, Anjana

    2014-01-01

    Background and Aim. Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae. Despite extensive research, the exact etiology of RAS remains elusive. Recently oxidant-antioxidant imbalance of the body has been implicated in the pathogenesis of recurrent aphthous stomatitis. Thus, the aim of the study was to evaluate the enzymatic antioxidant levels in patients with recurrent aphthous stomatitis. Materials and Methods. The serum levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured in 30 patients with recurrent aphthous stomatitis and compared to the control group, which included 30 healthy subjects. Student's t-test was performed for statistical evaluation. Results. The mean levels of superoxide dismutase (130.2 ± 15.94 U/mL) and glutathione peroxidase (3527.93 ± 488.32 U/L) were found to be significantly lower in study group as compared to control group (211.9 ± 20.93 U/mL, 8860.93 ± 1105.31 U/L, resp.) (P = 0.000) while level of catalase in study group was significantly higher when compared to control group (10981.00 ± 1018.07 U/mL versus 9764.00 ± 1621.19 U/mL) (P = 0.000). Conclusion. Enzymatic antioxidant system is impaired in recurrent aphthous stomatitis patients and seems to play a crucial role in its pathogenesis.

  9. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    PubMed

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.

  10. Recurrent aphthous stomatitis.

    PubMed

    Chattopadhyay, Amit; Shetty, Kishore V

    2011-02-01

    Recurrent aphthous stomatitis is a common oral ulcerative disease, affecting 10% to 15% of the general US population. This article reviews the epidemiology and clinical presentations of recurrent aphthous stomatitis, including diagnosis and management.

  11. Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana.

    PubMed

    Tomiyama, Masakazu; Inoue, Shin-Ichiro; Tsuzuki, Tomo; Soda, Midori; Morimoto, Sayuri; Okigaki, Yukiko; Ohishi, Takaya; Mochizuki, Nobuyoshi; Takahashi, Koji; Kinoshita, Toshinori

    2014-07-01

    To elucidate the molecular mechanisms of stomatal opening and closure, we performed a genetic screen using infrared thermography to isolate stomatal aperture mutants. We identified a mutant designated low temperature with open-stomata 1 (lost1), which exhibited reduced leaf temperature, wider stomatal aperture, and a pale green phenotype. Map-based analysis of the LOST1 locus revealed that the lost1 mutant resulted from a missense mutation in the Mg-chelatase I subunit 1 (CHLI1) gene, which encodes a subunit of the Mg-chelatase complex involved in chlorophyll synthesis. Transformation of the wild-type CHLI1 gene into lost1 complemented all lost1 phenotypes. Stomata in lost1 exhibited a partial ABA-insensitive phenotype similar to that of rtl1, a Mg-chelatase H subunit missense mutant. The Mg-protoporphyrin IX methyltransferase (CHLM) gene encodes a subsequent enzyme in the chlorophyll synthesis pathway. We examined stomatal movement in a CHLM knockdown mutant, chlm, and found that it also exhibited an ABA-insensitive phenotype. However, lost1 and chlm seedlings all showed normal expression of ABA-induced genes, such as RAB18 and RD29B, in response to ABA. These results suggest that the chlorophyll synthesis enzymes, Mg-chelatase complex and CHLM, specifically affect ABA signaling in the control of stomatal aperture and have no effect on ABA-induced gene expression.

  12. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement

    PubMed Central

    Nagatoshi, Yukari; Mitsuda, Nobutaka; Hayashi, Maki; Inoue, Shin-ichiro; Okuma, Eiji; Kubo, Akihiro; Murata, Yoshiyuki; Seo, Mitsunori; Saji, Hikaru; Kinoshita, Toshinori; Ohme-Takagi, Masaru

    2016-01-01

    Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K+ (K+in) channels and reduced K+in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K+in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K+in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants. PMID:27035938

  13. GOLDEN 2-LIKE transcription factors for chloroplast development affect ozone tolerance through the regulation of stomatal movement.

    PubMed

    Nagatoshi, Yukari; Mitsuda, Nobutaka; Hayashi, Maki; Inoue, Shin-Ichiro; Okuma, Eiji; Kubo, Akihiro; Murata, Yoshiyuki; Seo, Mitsunori; Saji, Hikaru; Kinoshita, Toshinori; Ohme-Takagi, Masaru

    2016-04-12

    Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.

  14. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN

    PubMed Central

    Khaling, Eliezer; Lassueur, Steve

    2016-01-01

    Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847

  15. ALA Inhibits ABA-induced Stomatal Closure via Reducing H2O2 and Ca2+ Levels in Guard Cells

    PubMed Central

    An, Yuyan; Liu, Longbo; Chen, Linghui; Wang, Liangju

    2016-01-01

    5-Aminolevulinic acid (ALA), a newly proved natural plant growth regulator, is well known to improve plant photosynthesis under both normal and stressful conditions. However, its underlying mechanism remains largely unknown. Stomatal closure is one of the major limiting factors for photosynthesis and abscisic acid (ABA) is the most important hormone in provoking stomatal closing. Here, we showed that ALA significantly inhibited ABA-induced stomatal closure using wild-type and ALA-overproducing transgenic Arabidopsis (YHem1). We found that ALA decreased ABA-induced H2O2 and cytosolic Ca2+ accumulation in guard cells with stomatal bioassay, laser-scanning confocal microscopy and pharmacological methods. The inhibitory effect of ALA on ABA-induced stomatal closure was similar to that of AsA (an important reducing substrate for H2O2 removal), CAT (a H2O2-scavenging enzyme), DPI (an inhibitor of the H2O2-generating NADPH oxidase), EGTA (a Ca-chelating agent), and AlCl3 (an inhibitor of calcium channel). Furthermore, ALA inhibited exogenous H2O2- or Ca2+-induced stomatal closure. Taken together, we conclude that ALA inhibits ABA-induced stomatal closure via reducing H2O2, probably by scavenging, and Ca2+ levels in guard cells. Moreover, the inhibitive effect of ALA on ABA-induced stomatal closure was further confirmed in the whole plant. Finally, we demonstrated that ALA inhibits stomatal closing, but significantly improves plant drought tolerance. Our results provide valuable information for the promotion of plant production and development of a sustainable low-carbon society. PMID:27148309

  16. Molecular characterization of a mutation affecting abscisic acid biosynthesis and consequently stomatal responses to humidity in an agriculturally important species

    PubMed Central

    McAdam, Scott A. M.; Sussmilch, Frances C.; Brodribb, Timothy J.; Ross, John J.

    2015-01-01

    Mutants deficient in the phytohormone abscisic acid (ABA) have been instrumental in determining not only the biosynthetic pathway for this hormone, but also its physiological role in land plants. The wilty mutant of Pisum sativum is one of the classical, well-studied ABA-deficient mutants; however, this mutant remains uncharacterized at a molecular level. Using a candidate gene approach, we show that the wilty mutation affects the xanthoxin dehydrogenase step in ABA biosynthesis. To date, this step has only been represented by mutants in the ABA2 gene of Arabidopsis thaliana. Functional ABA biosynthesis appears to be critical for normal stomatal responses to changes in humidity in angiosperms, with wilty mutant plants having no increase in foliar ABA levels in response to a doubling in vapour pressure deficit, and no closure of stomata. Phylogenetic analysis of the ABA2 gene family from diverse land plants indicates that an ABA-biosynthesis-specific short-chain dehydrogenase (ABA2) evolved in the earliest angiosperms. The relatively recent origin of specificity in this step has important implications for both the evolution of ABA biosynthesis and action in land plants. PMID:26216469

  17. Mutations in the glycoprotein of vesicular stomatitis virus affect cytopathogenicity: potential for oncolytic virotherapy.

    PubMed

    Janelle, Valérie; Brassard, Frédérick; Lapierre, Pascal; Lamarre, Alain; Poliquin, Laurent

    2011-07-01

    Vesicular stomatitis virus (VSV) has been widely used to characterize cellular processes, viral resistance, and cytopathogenicity. Recently, VSV has also been used for oncolytic virotherapy due to its capacity to selectively lyse tumor cells. Mutants of the matrix (M) protein of VSV have generally been preferred to the wild-type virus for oncolysis because of their ability to induce type I interferon (IFN) despite causing weaker cytopathic effects. However, due to the large variability of tumor types, it is quite clear that various approaches and combinations of multiple oncolytic viruses will be needed to effectively treat most cancers. With this in mind, our work focused on characterizing the cytopathogenic profiles of four replicative envelope glycoprotein (G) VSV mutants. In contrast to the prototypic M mutant, VSV G mutants are as efficient as wild-type virus at inhibiting cellular transcription and host protein translation. Despite being highly cytopathic, the mutant G(6R) triggers type I interferon secretion as efficiently as the M mutant. Importantly, most VSV G mutants are more effective at killing B16 and MC57 tumor cells in vitro than the M mutant or wild-type virus through apoptosis induction. Taken together, our results demonstrate that VSV G mutants retain the high cytopathogenicity of wild-type VSV, with G(6R) inducing type I IFN secretion at levels similar to that of the M mutant. VSV G protein mutants could therefore prove to be highly valuable for the development of novel oncolytic virotherapy strategies that are both safe and efficient for the treatment of various types of cancer.

  18. An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests.

    PubMed

    Sicard, Pierre; De Marco, Alessandra; Dalstein-Richier, Laurence; Tagliaferro, Francesco; Renou, Camille; Paoletti, Elena

    2016-01-15

    Southern forests are at the highest ozone (O3) risk in Europe where ground-level O3 is a pressing sanitary problem for ecosystem health. Exposure-based standards for protecting vegetation are not representative of actual field conditions. A biologically-sound stomatal flux-based standard has been proposed, although critical levels for protection still need to be validated. This innovative epidemiological assessment of forest responses to O3 was carried out in 54 plots in Southeastern France and Northwestern Italy in 2012 and 2013. Three O3 indices, namely the accumulated exposure AOT40, and the accumulated stomatal flux with and without an hourly threshold of uptake (POD1 and POD0) were compared. Stomatal O3 fluxes were modeled (DO3SE) and correlated to measured forest-response indicators, i.e. crown defoliation, crown discoloration and visible foliar O3 injury. Soil water content, a key variable affecting the severity of visible foliar O3 injury, was included in DO3SE. Based on flux-effect relationships, we developed species-specific flux-based critical levels (CLef) for forest protection against visible O3 injury. For O3 sensitive conifers, CLef of 19 mmol m(-2) for Pinus cembra (high O3 sensitivity) and 32 mmol m(-2) for Pinus halepensis (moderate O3 sensitivity) were calculated. For broadleaved species, we obtained a CLef of 25 mmol m(-2) for Fagus sylvatica (moderate O3 sensitivity) and of 19 mmol m(-2) for Fraxinus excelsior (high O3 sensitivity). We showed that an assessment based on PODY and on real plant symptoms is more appropriated than the concentration-based method. Indeed, POD0 was better correlated with visible foliar O3 injury than AOT40, whereas AOT40 was better correlated with crown discoloration and defoliation (aspecific indicators). To avoid an underestimation of the real O3 uptake, we recommend the use of POD0 calculated for hours with a non-null global radiation over the 24-h O3 accumulation window.

  19. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity

    PubMed Central

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-01-01

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303

  20. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity.

    PubMed

    Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping

    2015-09-25

    To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function.

  1. New stomatal flux-based critical levels for ozone effects on vegetation

    NASA Astrophysics Data System (ADS)

    Mills, Gina; Pleijel, Håkan; Braun, Sabine; Büker, Patrick; Bermejo, Victoria; Calvo, Esperanza; Danielsson, Helena; Emberson, Lisa; Fernández, Ignacio González; Grünhage, Ludger; Harmens, Harry; Hayes, Felicity; Karlsson, Per-Erik; Simpson, David

    2011-09-01

    The critical levels for ozone effects on vegetation have been reviewed and revised by the LRTAP Convention. Eight new or revised critical levels based on the accumulated stomatal flux of ozone (POD Y, the Phytotoxic Ozone Dose above a threshold flux of Y nmol m -2 PLA s -1, where PLA is the projected leaf area) have been agreed. For each receptor, data were combined from experiments conducted under naturally fluctuating environmental conditions in 2-4 countries, resulting in linear dose-response relationships with response variables specific to each receptor ( r2 = 0.49-0.87, p < 0.001 for all). For crops, critical levels were derived for effects on wheat (grain yield, grain mass, and protein yield), potato (tuber yield) and tomato (fruit yield). For forest trees, critical levels were derived for effects on changes in annual increment in whole tree biomass for beech and birch, and Norway spruce. For (semi-)natural vegetation, the critical level for effects on productive and high conservation value perennial grasslands was based on effects on important component species of the genus Trifolium (clover species). These critical levels can be used to assess protection against the damaging effects of ozone on food security, important ecosystem services provided by forest trees (roundwood production, C sequestration, soil stability and flood prevention) and the vitality of pasture.

  2. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure.

    PubMed

    Leal-Alvarado, Daniel A; Espadas-Gil, Francisco; Sáenz-Carbonell, Luis; Talavera-May, Carlos; Santamaría, Jorge M

    2016-02-01

    Salvinia minima Baker accumulates a fair amount of lead in its tissues; however, no studies have investigated the effect of lead on the physiological processes that affect photosynthesis in this species. The objective of the present study was to assess whether the high amounts of lead accumulated by S. minima can affect its photosynthetic apparatus. The physiological changes in the roots and leaves in response to lead accumulation were analyzed. An exposure to 40 μM Pb(NO3)2 for 24 h (first stage) was sufficient to reduce the photosynthetic rate (Pn) by 44%. This reduction in Pn was apparently the result of processes at various levels, including damage to the cell membranes (mainly in roots). Interestingly, although the plants were transferred to fresh medium without lead for an additional 24 h (second stage), Pn not only remained low, but was reduced even further, which was apparently related to stomatal closure, and may have led to reduced CO2 availability. Therefore, it can be concluded that lead exposure first decreases the photosynthetic rate by damaging the root membrane and then induces stomatal closure, resulting in decreased CO2 availability.

  3. Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into Its Regulation by Drought

    PubMed Central

    Sun, Zhongyao; Jin, Xiaofen; Albert, Réka; Assmann, Sarah M.

    2014-01-01

    Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 1031 distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems. PMID:25393147

  4. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice.

    PubMed

    Liu, Jing; Zhang, Fang; Zhou, Jinjun; Chen, Fan; Wang, Baoshan; Xie, Xianzhi

    2012-02-01

    We report that phytochrome B (phyB) mutants exhibit improved drought tolerance compared to wild type (WT) rice (Oryza sativa L. cv. Nipponbare). To understand the underlying mechanism by which phyB regulates drought tolerance, we analyzed root growth and water loss from the leaves of phyB mutants. The root system showed no significant difference between the phyB mutants and WT, suggesting that improved drought tolerance has little relation to root growth. However, phyB mutants exhibited reduced total leaf area per plant, which was probably due to a reduction in the total number of cells per leaf caused by enhanced expression of Orysa;KRP1 and Orysa;KRP4 (encoding inhibitors of cyclin-dependent kinase complex activity) in the phyB mutants. In addition, the developed leaves of phyB mutants displayed larger epidermal cells than WT leaves, resulting in reduced stomatal density. phyB deficiency promoted the expression of both putative ERECTA family genes and EXPANSIN family genes involved in cell expansion in leaves, thus causing greater epidermal cell expansion in the phyB mutants. Reduced stomatal density resulted in reduced transpiration per unit leaf area in the phyB mutants. Considering all these findings, we propose that phyB deficiency causes both reduced total leaf area and reduced transpiration per unit leaf area, which explains the reduced water loss and improved drought tolerance of phyB mutants.

  5. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2012-08-01

    To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.

  6. Absence of OsβCA1 causes CO2 deficit and affects leaf photosynthesis and stomatal response to CO2 in rice.

    PubMed

    Chen, Taiyu; Wu, Huan; Wu, Jiemin; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2017-01-31

    Plants always adjust the opening of stomatal pores to adapt to the environments, such as [CO2 ], humidity and temperature. Low [CO2 ] will trigger the opening of stomatal pores to absorb extra CO2 . However, little is known about how CO2 supply affects the carbon fixation and opening of stomatal pores in rice. Here, a chloroplast-located β-carbonic anhydrase (β-CA) coding gene was found to be involved in carbon assimilation and CO2 -mediated stomatal pore response in rice. OsβCA1 was constitutively expressed in all tissues and its transcripts were induced by high [CO2 ] in leaves. Both T-DNA mutant and RNAi lines showed phenotypes of lower biomass and CA activities. The knock-out of OsβCA1 obviously decreased the photosynthesis capacity, as demonstrated by the increased CO2 compensation point and decreased light saturation point in the mutant; while the knock-out increased the opening ratio of stomatal pores and water loss rate. Moreover, the mutant showed a delayed response to low [CO2 ], and they could not be closed to the degree of wild plants even though the stomatal pores could rapidly respond to high [CO2 ]. Genome-wide gene expression analysis via RNA-seq demonstrated that the transcript abundance of the genes related to RuBisCO, photosystem compounds and opening of stomatal pores were globally up-regulated in the mutant. Taken together, the inadequate CO2 supply caused by the absence of OsβCA1 reduces photosynthesis efficiency, triggers the opening of stomatal pores and finally decreases their sensitivity to CO2 fluctuation. This article is protected by copyright. All rights reserved.

  7. An overview of models of stomatal conductance at the leaf level.

    PubMed

    Damour, Gaëlle; Simonneau, Thierry; Cochard, Hervé; Urban, Laurent

    2010-09-01

    Stomata play a key role in plant adaptation to changing environmental conditions as they control both water losses and CO(2) uptake. Particularly, in the context of global change, simulations of the consequences of drought on crop plants are needed to design more efficient and water-saving cropping systems. However, most of the models of stomatal conductance (g(s)) developed at the leaf level link g(s) to environmental factors or net photosynthesis (A(net)), but do not include satisfactorily the effects of drought, impairing our capacity to simulate plant functioning in conditions of limited water supply. The objective of this review was to draw an up-to-date picture of the g(s) models, from the empirical to the process-based ones, along with their mechanistic or deterministic bases. It focuses on models capable to account for multiple environmental influences with emphasis on drought conditions. We examine how models that have been proposed for well-watered conditions can be combined with those specifically designed to deal with drought conditions. Ideas for future improvements of g(s) models are discussed: the issue of co-regulation of g(s) and A(net); the roles of CO(2), absissic acid and H(2)O(2); and finally, how to better address the new challenges arising from the issue of global change.

  8. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  9. Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions.

    PubMed

    Dzikiti, S; Steppe, K; Lemeur, R; Milford, J R

    2007-01-01

    Sustained cyclic oscillations in stomatal conductance, leaf water potential, and sap flow were observed in young orange trees growing under natural conditions. The oscillations had an average period of approximately 70 min. Water uptake by the roots and loss by the leaves was characterized by large time lags which led to imbalances between water supply and demand in the leaves. The bulk of the lag in response between stomatal movements and the upstream water balance resided downstream of the branch, with branch level sap flow lagging behind the stomatal conductance by approximately 20 min while the stem sap flow had a much shorter time lag of only 5 min behind the branch sap flow. This imbalance between water uptake and loss caused transient changes in internal water deficits which were closely correlated to the dynamics of the leaf water potential. The hydraulic resistance of the whole tree fluctuated throughout the day, suggesting transient changes in the efficiency of water supply to the leaves. A simple whole-tree water balance model was applied to describe the dynamics of water transport in the young orange trees, and typical values of the hydraulic parameters of the transpiration stream were estimated. In addition to the hydro-passive stomatal movements, whole-tree water balance appears to be an important factor in the generation of stomatal oscillations.

  10. Light-induced STOMAGEN-mediated stomatal development in Arabidopsis leaves.

    PubMed

    Hronková, Marie; Wiesnerová, Dana; Šimková, Marie; Skůpa, Petr; Dewitte, Walter; Vráblová, Martina; Zažímalová, Eva; Šantrůček, Jiří

    2015-08-01

    The initiation of stomata, microscopic valves in the epidermis of higher plants that control of gas exchange, requires a co-ordinated sequence of asymmetric and symmetric divisions, which is under tight environmental and developmental control. Arabidopsis leaves grown under elevated photosynthetic photon flux density have a higher density of stomata. STOMAGEN encodes an epidermal patterning factor produced in the mesophyll, and our observations indicated that elevated photosynthetic irradiation stimulates STOMAGEN expression. Our analysis of gain and loss of function of STOMAGEN further detailed its function as a positive regulator of stomatal formation on both sides of the leaf, not only in terms of stomatal density across the leaf surface but also in terms of their stomatal index. STOMAGEN function was rate limiting for the light response of the stomatal lineage in the adaxial epidermis. Mutants in pathways that regulate stomatal spacing in the epidermis and have elevated stomatal density, such as stomatal density and distribution (sdd1) and too many mouth alleles, displayed elevated STOMAGEN expression, suggesting that STOMAGEN is either under the direct control of these pathways or is indirectly affected by stomatal patterning, suggestive of a feedback mechanism. These observations support a model in which changes in levels of light irradiation are perceived in the mesophyll and control the production of stomata in the epidermis by mesophyll-produced STOMAGEN, and whereby, conversely, stomatal patterning, either directly or indirectly, influences STOMAGEN levels.

  11. Vesicular stomatitis.

    PubMed

    Letchworth, G J; Rodriguez, L L; Del cbarrera, J

    1999-05-01

    Vesicular stomatitis is a disease of livestock caused by some members of the Vesiculovirus genus (Family Rhabdoviridae), two of which are called 'vesicular stomatitis virus'. Clinical disease presents as severe vesiculation and/or ulceration of the tongue, oral tissues, feet, and teats, and results in substantial loss of productivity. Except for its appearance in horses, it is clinically indistinguishable from foot-and-mouth disease. Unlike foot-and-mouth disease, it is very infectious for man and can cause a temporarily debilitating disease. Vesicular stomatitis occurs seasonally every year in the southeastern USA, southern Mexico, throughout Central America and in northern South America, and emerges from tropical areas to cause sporadic epidemics in cooler climates during the summer months. Other Vesiculoviruses are endemic in India and Africa. Vesiculoviruses are arthropod-borne and it is possible they are actually well adapted insect viruses that incidentally infect mammals. Vesiculoviruses are relatively simple, having a linear, single stranded, negative sense RNA genome encased in a bullet-shaped virion made from only five proteins. Upon infection of cultured cells, viral products turn off cellular gene expression and seize the entire metabolic potential of the cell. They also depolymerize the cytoskeleton to cause rapid tissue destruction. Virus infection in animals provokes interferon and nitric oxide responses, which quickly control viral replication, and an antibody response that prevents further viral replication. Vesiculovirus genome replication is error-prone, resulting in viral progeny containing many variants. This allows rapid adaptation. Nevertheless, vesicular stomatitis virus genomic sequences appear relatively stable within single endemic areas, and vary progressively on a North-South axis in the Western Hemisphere. Numerous important fundamental discoveries in immunology and virology have come from recent studies of vesicular stomatitis virus

  12. Cytokinin activity increases stomatal density and transpiration rate in tomato

    PubMed Central

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-01-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions. PMID:27811005

  13. Cytokinin activity increases stomatal density and transpiration rate in tomato.

    PubMed

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-12-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

  14. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels

    PubMed Central

    Hu, Jin-Jin; Xing, Yao-Wu; Turkington, Roy; Jacques, Frédéric M. B.; Su, Tao; Huang, Yong-Jiang; Zhou, Zhe-Kun

    2015-01-01

    Background and Aims The inverse relationship between atmospheric CO2 partial pressure (pCO2) and stomatal frequency in many species of plants has been widely used to estimate palaeoatmospheric CO2 (palaeo-CO2) levels; however, the results obtained have been quite variable. This study attempts to find a potential new proxy for palaeo-CO2 levels by analysing stomatal frequency in Quercus guyavifolia (Q. guajavifolia, Fagaceae), an extant dominant species of sclerophyllous forests in the Himalayas with abundant fossil relatives. Methods Stomatal frequency was analysed for extant samples of Q. guyavifolia collected from17 field sites at altitudes ranging between 2493 and 4497 m. Herbarium specimens collected between 1926 and 2011 were also examined. Correlations of pCO2–stomatal frequency were determined using samples from both sources, and these were then applied to Q. preguyavaefolia fossils in order to estimate palaeo-CO2 concentrations for two late-Pliocene floras in south-western China. Key Results In contrast to the negative correlations detected for most other species that have been studied, a positive correlation between pCO2 and stomatal frequency was determined in Q. guyavifolia sampled from both extant field collections and historical herbarium specimens. Palaeo-CO2 concentrations were estimated to be approx. 180–240 ppm in the late Pliocene, which is consistent with most other previous estimates. Conclusions A new positive relationship between pCO2 and stomatal frequency in Q. guyavifolia is presented, which can be applied to the fossils closely related to this species that are widely distributed in the late-Cenozoic strata in order to estimate palaeo-CO2 concentrations. The results show that it is valid to use a positive relationship to estimate palaeo-CO2 concentrations, and the study adds to the variety of stomatal density/index relationships that available for estimating pCO2. The physiological mechanisms underlying this positive response are

  15. Canopy stomatal conductance

    SciTech Connect

    Baldocchi, D.D.; Luxmoore, R.J.; Hatfield, J.L.

    1989-07-14

    Stomata are major conduits for the diffusion of many trace gas species between leaves and the atmosphere. The role of the stomata on controlling gas exchange between the terrestrial biosphere and the atmosphere at the landscape, meso- and global-scales has only recently been recognized. Further advances in modelling large-scale trace gas exchange will depend on our ability to understand and model stomatal mechanics at the scale of the pertinent sub-unit, which is typically that of the canopy. This paper describes two approaches for estimating canopy stomatal conductance. One approach is based on 'bottom-up' scaling. This approach computes canopy stomatal conductance by integrating detailed leaf-level and environmentally-driven, physiological processes with the use of a detailed canopy micrometeorology model. The other approach is based on 'top-down' scaling. It interprets the integrated canopy stomatal conductance from measured fluxes of trace gas exchange. Frameworks for extending these scaling approaches to non-idea conditions are given. 96 refs., 5 figs.

  16. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  17. Clinical assessment of the therapeutic effect of low-level laser therapy on chronic recurrent aphthous stomatitis

    PubMed Central

    Lalabonova, Hristina; Daskalov, Hristo

    2014-01-01

    The aim of this study was to clinically assess the therapeutic effect of low-level laser therapy (LLLT) on chronic recurrent aphthous stomatitis (RAS) using a protocol we developed especially for the purpose. The study included 180 patients: group 1 (the study group) – 90 patients who received LLLT using a laser operating in the red spectrum (658 nm; in a non-contact mode; power output P = 27 mW; frequency f 1 = 5.8 Hz, f 2 – continuous waveform; time T = 1.14 min; dosage of 2 J/cm2 once daily); group 2 (controls) – 90 patients who received pharmacotherapy (Granofurin and solcoseryl given twice daily). The indices we assessed were pain intensity, erythema dynamics and epithelization time. Pain was completely managed in 55.6% of group 1 patients one day after therapy began, while it took three days to alleviate pain for 11.1% of the patients in group 2. The erythema was managed entirely in 24.4% of group 1 patients after the first session, while it did not change in any of the group 2 patients. Pain intensity and erythema had similar dynamics for both groups. In 5 days, 75.6% of group 1 patients showed complete epithelization, while in group 2 the process was completed in only 37.8% of patients. As a whole, the results we obtained using LLLT to treat chronic RAS were better than those obtained in the group receiving pharmacotherapy. Pain and inflammation were very effectively managed with LLLT with the parameters we used and epithelization was considerably accelerated. PMID:26019580

  18. Clinical assessment of the therapeutic effect of low-level laser therapy on chronic recurrent aphthous stomatitis.

    PubMed

    Lalabonova, Hristina; Daskalov, Hristo

    2014-09-03

    The aim of this study was to clinically assess the therapeutic effect of low-level laser therapy (LLLT) on chronic recurrent aphthous stomatitis (RAS) using a protocol we developed especially for the purpose. The study included 180 patients: group 1 (the study group) - 90 patients who received LLLT using a laser operating in the red spectrum (658 nm; in a non-contact mode; power output P = 27 mW; frequency f1 = 5.8 Hz, f2 - continuous waveform; time T = 1.14 min; dosage of 2 J/cm(2) once daily); group 2 (controls) - 90 patients who received pharmacotherapy (Granofurin and solcoseryl given twice daily). The indices we assessed were pain intensity, erythema dynamics and epithelization time. Pain was completely managed in 55.6% of group 1 patients one day after therapy began, while it took three days to alleviate pain for 11.1% of the patients in group 2. The erythema was managed entirely in 24.4% of group 1 patients after the first session, while it did not change in any of the group 2 patients. Pain intensity and erythema had similar dynamics for both groups. In 5 days, 75.6% of group 1 patients showed complete epithelization, while in group 2 the process was completed in only 37.8% of patients. As a whole, the results we obtained using LLLT to treat chronic RAS were better than those obtained in the group receiving pharmacotherapy. Pain and inflammation were very effectively managed with LLLT with the parameters we used and epithelization was considerably accelerated.

  19. A novel root-to-shoot stomatal response to very high CO2 levels in the soil: electrical, hydraulic and biochemical signalling.

    PubMed

    Lake, Janice A; Walker, Heather J; Cameron, Duncan D; Lomax, Barry H

    2017-04-01

    Investigations were undertaken in the context of the potential environmental impact of carbon capture and storage (CCS) transportation in the form of a hypothetical leak of extreme levels of CO2 into the soil environment and subsequent effects on plant physiology. Laboratory studies using purpose built soil chambers, separating and isolating the soil and aerial environments, were used to introduce high levels of CO2 gas exclusively into the rhizosphere. CO2 concentrations greater than 32% in the isolated soil environment revealed a previously unknown whole plant stomatal response. Time course measurements of stomatal conductance (gs ), leaf temperature and leaf abscisic acid (ABA) show strong coupling between all three variables over a specific period (3 h following CO2 gassing) occurring as a result of CO2 -specific detection by roots. The coupling of gs and ABA subsequently breaks down resulting in a rapid and complete loss of turgor in the shoot. Root access to water is severely restricted as evidenced by the inability to counter turgor loss, however, the plant regains some turgor over time. Recovery of full turgor is not achieved over the longer term. Results suggest an immediate perception and whole plant response as changes in measured parameters (leaf temperature, gs and ABA) occur in the shoot, but the response is solely due to detection of very high CO2 concentration at the root/soil interface which results in loss of stomatal regulation and disruption to control over water uptake.

  20. Stomatal response and leaf injury of Pisum sativum L. with SO/sub 2/ and O/sub 3/ exposures. I. Influence of pollutant level and leaf maturity

    SciTech Connect

    Olszyk, D.M.; Tibbitts, T.W.

    1981-03-01

    Plants of Pisum sativum L. Alsweet were grown under a controlled environment and exposed to SO/sub 2/ and O/sub 3/ to determine whether changes in stomatal aperture during exposure were related to subsequent leaf injury. Stomata consistently closed with injurious levels of SO/sub 2/ and O/sub 3/. Measurements with diffusion porometers demonstrated approx. = 75 and 25% lower conductance with SO/sub 2/ and O/sub 3/ exposures, respectively, compared to the conductance of control plants. Stomata also showed a closing response with noninjurious levels of SO/sub 2/ but an opening response with noninjurious levels of O/sub 3/. Stomata closed to the same degree with combinations of SO/sub 2/ plus O/sub 3/ as with SO/sub 2/ alone. Stomata of expanding leaves closed more during pollutant exposures than stomata of expanded leaves. The abaxial and adaxial stomata both exhibited closure with SO/sub 2/ and combinations of SO/sub 2/ plus O/sub 3/, but abaxial stomata tended to close and adaxial stomata tended to open with exposure to O/sub 3/ alone. The changes in stomatal aperture were not closely correlated with the amount of leaf injury produced by different pollutant levels. Stomata closed, not only with exposure to pollutant levels that caused severe necrosis, but also with levels that caused only a trace of injury. There was no evidence of a reduced amount of closure or even stomatal opening with combinations of SO/sub 2/ and O/sub 3/ compared to plants exposed to the pollutants alone to explain the large amount of injury to plants exposed to pollutant combinations.

  1. Recurrent aphthous stomatitis.

    PubMed

    Akintoye, Sunday O; Greenberg, Martin S

    2014-04-01

    Recurrent aphthous stomatitis (RAS) is the most common ulcerative disease affecting the oral mucosa. RAS occurs mostly in healthy individuals and has an atypical clinical presentation in immunocompromised individuals. The etiology of RAS is still unknown, but several local, systemic, immunologic, genetic, allergic, nutritional, and microbial factors, as well as immunosuppressive drugs, have been proposed as causative agents. Clinical management of RAS using topical and systemic therapies is based on severity of symptoms and the frequency, size, and number of lesions. The goals of therapy are to decrease pain and ulcer size, promote healing, and decrease the frequency of recurrence.

  2. Recurrent Aphthous Stomatitis

    PubMed Central

    Akintoye, Sunday O.; Greenberg, Martin S.

    2014-01-01

    Recurrent Aphthous Stomatitis (RAS) is the most common ulcerative disease affecting the oral mucosa. It occurs mostly in healthy individuals and has atypical clinical presentation in immunocompromised individuals. The etiology of RAS is still unknown, but several local, systemic, immunologic, genetic, allergic, nutritional, and microbial factors, as well as immunosuppressive drugs, have been proposed as causative agents. Clinical management of RAS is based on severity of symptoms, frequency, size and number of lesions using topical and systemic therapies. The goals of therapy are to decrease pain and ulcer size, promote healing and decrease frequency of recurrence. PMID:24655523

  3. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  4. Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H₂O₂) levels in guard cells in Vicia faba.

    PubMed

    Ma, Yinli; She, Xiaoping; Yang, Shushen

    2012-11-01

    The role and signaling of sphingosine-1-phosphate (S1P) during darkness-induced stomatal closure were examined in Vicia faba. Darkness substantially raised S1P and hydrogen peroxide (H(2)O(2)) levels and closed stomata. These darkness effects were significantly suppressed by DL-threo-dihydrosphingosine (DL-threo-DHS) and N,N-dimethylsphingosine (DMS), two inhibitors of long-chain base kinases. Exogenous S1P led to stomatal closure and H(2)O(2) production, and the effects of S1P were largely prevented by the H(2)O(2) modulators ascorbic acid, catalase, and diphenyleneiodonium. These results indicated that S1P mediated darkness-induced stomatal closure by triggering H(2)O(2) production. In addition, DL-threo-DHS and DMS significantly suppressed both darkness-induced cytosolic alkalization in guard cells and stomatal closure. Exogenous S1P caused cytosolic alkalization and stomatal closure, which could be largely abolished by butyric acid. These results demonstrated that S1P synthesis was necessary for cytosolic alkalization during stomatal closure caused by darkness. Furthermore, together with the data described above, inhibition of darkness-induced H(2)O(2) production by butyric acid revealed that S1P synthesis-induced cytosolic alkalization was a prerequisite for H(2)O(2) production during stomatal closure caused by darkness, a conclusion supported by the facts that the pH increase caused by exogenous S1P had a shorter lag and peaked faster than H(2)O(2) levels and that butyric acid prevented exogenous S1P-induced H(2)O(2) production. Altogether, our data suggested that darkness induced S1P synthesis, causing cytosolic alkalization and subsequent H(2)O(2) production, finally leading to stomatal closure.

  5. Oral medicine case book 65: Necrotising stomatitis.

    PubMed

    Khammissa, R A G; Ciya, R; Munzhelele, T I; Altini, M; Rikhotso, E; Lemmer, J; Feller, L

    2014-11-01

    Necrotising stomatitis is a fulminating anaerobic polybacterial infection affecting predominantly the oral mucosa of debilitated malnourished children or immunosuppressed HIV-seropositive subjects. It starts as necrotising gingivitis which progresses to necrotising periodontitis and subsequently to necrotising stomatitis. In order to prevent the progression of necrotising stomatitis to noma (cancrum oris), affected patients should be vigorously treated and may require admission to hospital. Healthcare personnel should therefore be familiar with the signs and symptoms of necrotising gingivitis/necrotising periodontitis, of their potential sequelae and of the need for immediate therapeutic intervention.

  6. A novel allele of L-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat.

    PubMed

    Zhang, Juncheng; Li, Bin; Yang, Yanping; Mu, Peiyuan; Qian, Weiqiang; Dong, Lingli; Zhang, Kunpu; Liu, Xin; Qin, Huanju; Ling, Hongqing; Wang, Daowen

    2016-07-22

    In higher plants, L-galactono-1,4-lactone dehydrogenase (GLDH) plays important roles in ascorbic acid (AsA) biosynthesis and assembly of respiration complex I. Here we report three homoeologous genes (TaGLDH-A1, -B1 and -D1) encoding common wheat GLDH isozymes and a unique allelic variant (TaGLDH-A1b) associated with enhanced drought tolerance. TaGLDH-A1, -B1 and -D1 were located on chromosomes 5A, 5B and 5D, respectively, and their transcripts were found in multiple organs. The three homoeologs each conferred increased GLDH activity when ectopically expressed in tobacco. Decreasing TaGLDH expression in wheat significantly reduced GLDH activity and AsA content. TaGLDH-A1b differed from wild type allele TaGLDH-A1a by an in-frame deletion of three nucleotides. TaGLDH-A1b was biochemically less active than TaGLDH-A1a, and the total GLDH activity levels were generally lower in the cultivars carrying TaGLDH-A1b relative to those with TaGLDH-A1a. Interestingly, TaGLDH-A1b cultivars showed stronger water deficiency tolerance than TaGLDH-A1a cultivars, and TaGLDH-A1b co-segregated with decreased leaf water loss in a F2 population. Finally, TaGLDH-A1b cultivars generally exhibited smaller leaf stomatal aperture than TaGLDH-A1a varieties in control or water deficiency environments. Our work provides new information on GLDH genes and function in higher plants. TaGLDH-A1b is likely useful for further studying and improving wheat tolerance to drought stress.

  7. A novel allele of L-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat

    PubMed Central

    Zhang, Juncheng; Li, Bin; Yang, Yanping; Mu, Peiyuan; Qian, Weiqiang; Dong, Lingli; Zhang, Kunpu; Liu, Xin; Qin, Huanju; Ling, Hongqing; Wang, Daowen

    2016-01-01

    In higher plants, L-galactono-1,4-lactone dehydrogenase (GLDH) plays important roles in ascorbic acid (AsA) biosynthesis and assembly of respiration complex I. Here we report three homoeologous genes (TaGLDH-A1, -B1 and -D1) encoding common wheat GLDH isozymes and a unique allelic variant (TaGLDH-A1b) associated with enhanced drought tolerance. TaGLDH-A1, -B1 and -D1 were located on chromosomes 5A, 5B and 5D, respectively, and their transcripts were found in multiple organs. The three homoeologs each conferred increased GLDH activity when ectopically expressed in tobacco. Decreasing TaGLDH expression in wheat significantly reduced GLDH activity and AsA content. TaGLDH-A1b differed from wild type allele TaGLDH-A1a by an in-frame deletion of three nucleotides. TaGLDH-A1b was biochemically less active than TaGLDH-A1a, and the total GLDH activity levels were generally lower in the cultivars carrying TaGLDH-A1b relative to those with TaGLDH-A1a. Interestingly, TaGLDH-A1b cultivars showed stronger water deficiency tolerance than TaGLDH-A1a cultivars, and TaGLDH-A1b co-segregated with decreased leaf water loss in a F2 population. Finally, TaGLDH-A1b cultivars generally exhibited smaller leaf stomatal aperture than TaGLDH-A1a varieties in control or water deficiency environments. Our work provides new information on GLDH genes and function in higher plants. TaGLDH-A1b is likely useful for further studying and improving wheat tolerance to drought stress. PMID:27443220

  8. Recurrent aphthous stomatitis and Helicobacter pylori

    PubMed Central

    Gomes, Carolina-Cavaliéri; Gomez, Ricardo-Santiago; Zina, Lívia-Guimarães

    2016-01-01

    Background Recurrent aphthous stomatitis (RAS) is a recurrent painful ulcerative disorder that commonly affects the oral mucosa. Local and systemic factors such as trauma, food sensitivity, nutritional deficiencies, systemic conditions, immunological disorders and genetic polymorphisms are associated with the development of the disease. Helicobacter pylori (H. pylori) is a gram-negative, microaerophile bacteria, that colonizes the gastric mucosa and it was previously suggested to be involved in RAS development. In the present paper we reviewed all previous studies that investigated the association between RAS and H. pylori. Material and Methods A search in Pubmed (MEDLINE) databases was made of articles published up until July 2015 using the following keywords: Helicobacter Pylori or H. pylori and RAS or Recurrent aphthous stomatitis. Results Fifteen experimental studies that addressed the relationship between infection with H. pylori and the presence of RAS and three reviews, including a systematic review and a meta-analysis were included in this review. The studies reviewed used different methods to assess this relationship, including PCR, nested PCR, culture, ELISA and urea breath test. A large variation in the number of patients included in each study, as well as inclusion criteria and laboratorial methods was observed. H. pylori can be detected in the oral mucosa or ulcerated lesion of some patients with RAS. The quality of the all studies included in this review was assessed using levels of evidence based on the University of Oxford’s Center for Evidence Based Medicine Criteria. Conclusions Although the eradication of the infection may affect the clinical course of the oral lesions by undetermined mechanisms, RAS ulcers are not associated with the presence of the bacteria in the oral cavity and there is no evidence that H. pylori infection drives RAS development. Key words:Campylobacter, elisa, h. pylori, Helicobacter Pylori, RAS, recurrent aphthous

  9. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis

    PubMed Central

    Ha, Yunmi; Shang, Yun; Nam, Kyoung Hee

    2016-01-01

    Stomatal movement in response to water availability is an important physiological process in the survival of land plants. The plant hormone abscisic acid (ABA) and brassinosteroids (BRs) regulate stomatal closure. The physiological functions of ABA and BRs, including germination, cell elongation and stomatal movement, are generally known to be antagonistic. Here, we investigated how BRs affect stomatal movement alone and in combination with ABA. We demonstrate that brassinoslide (BL), the most active BR, promotes stomatal closure in an ABA-independent manner. Interestingly, BL also inhibited ABA-induced stomatal closure when a high concentration of BL was added to ABA. Furthermore, we found that the induction of some genes for reactive oxygen species (ROS) generation by ABA (AtrbohD, NIA1 and NIA2) and subsequent ROS production were repressed by BL treatment. The BR signaling mutant bri1-301 failed to inhibit ABA-induced stomatal closure upon BL treatment. However, BRI1-overexpressing transgenic plants were hypersensitive to ABA during stomatal closure, and BL reversed ABA-induced stomatal closure more completely than in wild type plants. Taken together, these results suggest that BRs can positively and negatively modulate ABA-induced stomatal closure. Therefore, interactions between ABA and BR signaling are important for the regulation of stomatal closure. PMID:27856707

  10. Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon

    NASA Astrophysics Data System (ADS)

    Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle

    2013-07-01

    Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.

  11. Canopy-level stomatal narrowing in adult Fagus sylvatica under O3 stress - means of preventing enhanced O3 uptake under high O3 exposure?

    PubMed

    Matyssek, R; Baumgarten, M; Hummel, U; Häberle, K-H; Kitao, M; Wieser, G

    2015-01-01

    Spatio-temporally consistent O(3) doses are demonstrated in adult Fagus sylvatica from the Kranzberg Forest free-air fumigation experiment, covering cross-canopy and whole-seasonal scopes through sap flow measurement. Given O(3)-driven closure of stomata, we hypothesized enhanced whole-tree level O(3) influx to be prevented under enhanced O(3) exposure. Although foliage transpiration rate was lowered under twice-ambient O(3) around noon by 30% along with canopy conductance, the hypothesis was falsified, as O(3) influx was raised by 25%. Nevertheless, the twice-ambient/ambient ratio of O(3) uptake was smaller by about 20% than that of O(3) exposure, suggesting stomatal limitation of uptake. The O(3) response was traceable from leaves across branches to the canopy, where peak transpiration rates resembled those of shade rather than sun branches. Rainy/overcast-day and nightly O(3) uptake is quantified and discussed. Whole-seasonal canopy-level validation of modelled with sap flow-derived O(3) flux becomes available in assessing O(3) risk for forest trees.

  12. Epidemiology and etiology of denture stomatitis.

    PubMed

    Gendreau, Linda; Loewy, Zvi G

    2011-06-01

    Denture stomatitis, a common disorder affecting denture wearers, is characterized as inflammation and erythema of the oral mucosal areas covered by the denture. Despite its commonality, the etiology of denture stomatitis is not completely understood. A search of the literature was conducted in the PubMed electronic database (through November 2009) to identify relevant articles for inclusion in a review updating information on the epidemiology and etiology of denture stomatitis and the potential role of denture materials in this disorder. Epidemiological studies report prevalence of denture stomatitis among denture wearers to range from 15% to over 70%. Studies have been conducted among various population samples, and this appears to influence prevalence rates. In general, where reported, incidence of denture stomatitis is higher among elderly denture users and among women. Etiological factors include poor denture hygiene, continual and nighttime wearing of removable dentures, accumulation of denture plaque, and bacterial and yeast contamination of denture surface. In addition, poor-fitting dentures can increase mucosal trauma. All of these factors appear to increase the ability of Candida albicans to colonize both the denture and oral mucosal surfaces, where it acts as an opportunistic pathogen. Antifungal treatment can eradicate C. albicans contamination and relieve stomatitis symptoms, but unless dentures are decontaminated and their cleanliness maintained, stomatitis will recur when antifungal therapy is discontinued. New developments related to denture materials are focusing on means to reduce development of adherent biofilms. These may have value in reducing bacterial and yeast colonization, and could lead to reductions in denture stomatitis with appropriate denture hygiene.

  13. Clinical Evaluation of High and Low-Level Laser Treatment (CO2vsInGaAlP Diode Laser) for Recurrent Aphthous Stomatitis

    PubMed Central

    Zeini Jahromi, Nasim; Ghapanchi, Janan; Pourshahidi, Sara; Zahed, Maryam; Ebrahimi, Hooman

    2017-01-01

    Statement of the Problem: Recurrent aphthous stomatitis (RAS) is one of the most common lesions in the oral cavity. Due to its multifactorial nature, there is no definitive treatment for RAS. Laser therapy is one of the suggested treatments to reduce patient’s discomfort. Purpose: The purpose of the present clinical trial is to assess the effect of low and high level laser therapy on pain control and wound healing of RAS. Materials and Method: Thirty six patients with minor RAS were divided into three groups. Group 1 (n=14) received CO2 laser, group 2 (n=12) were treated with InGaAlP Diode laser and group 3 (n=10) received sham laser as placebo. All patients were evaluated daily up to 15 days after receiving one session of laser therapy. Pain severity before and after treatment, wound healing, patient’s satisfaction, and functional disturbance before and after treatment were recorded for each patient. Results: According to statistical analysis, pain reduction after treatment in group 1 was 7.00±2.41, in group 2 was 2.08±2.31, and in group 3 was 1.40±1.77. In addition, a significant difference was observed in the reduction of functional complications in CO2 laser treated patients compared to the other two groups. Conclusion: High-level laser treatment showed analgesic effects on RAS, but no healing was observed. Low-level laser therapy demonstrated no positive effect on recurrent aphthous ulcers. PMID:28280755

  14. Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth.

    PubMed

    Giday, Habtamu; Fanourakis, Dimitrios; Kjaer, Katrine H; Fomsgaard, Inge S; Ottosen, Carl-Otto

    2014-08-01

    Leaf abscisic acid concentration ([ABA]) during growth influences morpho-physiological traits associated with the plant's ability to cope with stress. A dose-response curve between [ABA] during growth and the leaf's ability to regulate water loss during desiccation or rehydrate upon re-watering was obtained. Rosa hybrida plants were grown at two relative air humidities (RHs, 60% or 90%) under different soil water potentials (-0.01, -0.06, or -0.08MPa) or upon grafting onto the rootstock of a cultivar sustaining [ABA] at elevated RH. Measurements included [ABA], stomatal anatomical features, stomatal responsiveness to desiccation, and the ability of leaves, desiccated to varying degrees, to recover their weight (rehydrate) following re-watering. Transpiration efficiency (plant mass per transpired water) was also determined. Soil water deficit resulted in a lower transpiration rate and higher transpiration efficiency at both RHs. The lowest [ABA] was observed in well-watered plants grown at high RH. [ABA] was increased by soil water deficit or grafting, at both RHs. The growth environment-induced changes in stomatal size were mediated by [ABA]. When [ABA] was increased from the level of (well-watered) high RH-grown plants to the value of (well-watered) plants grown at moderate RH, stomatal responsiveness was proportionally improved. A further increase in [ABA] did not affect stomatal responsiveness to desiccation. [ABA] was positively related to the ability of dehydrated leaves to rehydrate. The data indicate a growth [ABA]-related threshold for stomatal sensitivity to desiccation, which was not apparent either for stomatal size or for recovery (rehydration) upon re-watering.

  15. The guard cell metabolome: functions in stomatal movement and global food security

    PubMed Central

    Misra, Biswapriya B.; Acharya, Biswa R.; Granot, David; Assmann, Sarah M.; Chen, Sixue

    2015-01-01

    Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other “omics” approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security. PMID:26042131

  16. The guard cell metabolome: functions in stomatal movement and global food security.

    PubMed

    Misra, Biswapriya B; Acharya, Biswa R; Granot, David; Assmann, Sarah M; Chen, Sixue

    2015-01-01

    Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other "omics" approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.

  17. Modelling stomatal conductance in Acacia caven: A two way approach to understand vapor fluxes

    NASA Astrophysics Data System (ADS)

    Raab, N.; Meza, F. J.

    2012-12-01

    Evapotranspiration fluxes from semi arid ecosystems show a strong interannual variability and dependence on water availability. Usually this variable is regarded as very small but at local scale could substantially affect water balance at basin level. Climate Change scenarios for these regions are a source of concern as they project an increase in temperature, leading to a greater atmospheric water demand. In addition, precipitation is expected to decrease, increasing pressure for this kind of ecosystems. At a plant level, a rise on the actual atmospheric CO2 concentration is expected to improve photosynthetic performance and water use efficiency. However, as stomatal conductance is the main pathway for water vapor flux, from the leaf to the atmosphere, and CO2 entrance to the substomatal cavity, a larger control of the stomatal opening, due to a severe water control lost from the plant, could lead to shortages in net assimilation, jeopardizing the behavior of Semi Arid ecosystems as natural carbon sinks. Stoma is also one of the main lock of the soil-plant-water continuum, thus finally controlling the rate of soil water depletion. Its modeling presents a key role in determining future groundwater availability and net ecosystem exchange. There are several approaches for stomatal conductance modeling, from mechanistic models, based on the physiological functioning of the stomata, to empirical models where the stomatal behavior is correlated with environmental conditions. We modeled stomatal conductance for a Chilean typical Mediterranean Savannanh, dominated by Acacia caven, comparing two different empirical approaches. We used a Shuttleworth and Wallace model for sparse canopies combined with an inversion of the Penman-Monteith equation. This model allowed us to link stomatal conductance to evapotranspiration. The second approach was based on a multiplicative model for stomatal conductance based on environmental limitation, following Jarvis's model

  18. Mechanisms of stomatal development.

    PubMed

    Pillitteri, Lynn Jo; Torii, Keiko U

    2012-01-01

    The main route for CO(2) and water vapor exchange between a plant and the environment is through small pores called stomata. The accessibility of stomata and predictable division series that characterize their development provides an excellent system to address fundamental questions in biology. Stomatal cell-state transition and specification are regulated by a suite of transcription factors controlled by positional signaling via peptide ligands and transmembrane receptors. Downstream effectors include several members of the core cell-cycle genes. Environmentally induced signals are integrated into this essential developmental program to modulate stomatal development or function in response to changes in the abiotic environment. In addition, the recent identification of premitotic polarly localized proteins from both Arabidopsis and maize has laid a foundation for the future understanding of intrinsic cell polarity in plants. This review highlights the mechanisms of stomatal development through characterization of genes controlling cell-fate specification, cell polarity, cell division, and cell-cell communication during stomatal development and discusses the genetic framework linking these molecular processes with the correct spacing, density, and differentiation of stomata.

  19. Dependence of the Extent and Direction of Average Stomatal Response in Zea mays L. and Phaseolus vulgaris L. on the Frequency of Fluctuations in Environmental Stimuli.

    PubMed Central

    Cardon, Z. G.; Berry, J. A.; Woodrow, I. E.

    1994-01-01

    Stomatal responses to fluctuating light and CO2 were investigated in Zea mays and Phaseolus vulgaris. Slow-moving stomata can affect carbon gain and water loss by plants during light flecks, under dynamic cloud cover, during alternating windy and calm air conditions (which influence CO2 concentrations and humidity immediately around leaves in plant canopies), at natural CO2 vents, or in growth chambers with imperfect CO2 control. It was found that the frequency of constant-amplitude fluctuations in light and CO2 dramatically affected the time-averaged stomatal conductance in both Zea and Phaseolus. During oscillations in light, average stomatal conductance was driven either above or below that observed at steady state at the average light level, depending on the frequency of the oscillations. Under oscillating CO2, the departure of average stomatal conductance away from that observed at steady state at the average CO2 level was also frequency dependent in both species. Upon cessation of oscillations and return of light or CO2 to the stable median level, stomatal conductance also returned to a steady state, matching that before oscillations were initiated. This work shows that fluctuations in light and CO2, and equally important, their frequency, can be critical in determining time-averaged stomatal conductance under unstable environmental conditions. PMID:12232261

  20. Recurrent Aphthous Stomatitis: A Review

    PubMed Central

    Saleh, Dahlia; Miller, Richard A.

    2017-01-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of systems can assist the clinician in determining whether it is related to a systemic inflammatory process or truly idiopathic. Management of aphthous stomatitis is challenging. For recurrent aphthous stomatitis or recalcitrant aphthous stomatitis from underlying disease, first-line treatment consists of topical medications with use of systemic medications as necessary. Herein, the authors discuss the differential diagnosis and treatment ladder of aphthous stomatitis as described in the literature. PMID:28360966

  1. Recurrent Aphthous Stomatitis: A Review.

    PubMed

    Edgar, Natalie Rose; Saleh, Dahlia; Miller, Richard A

    2017-03-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of systems can assist the clinician in determining whether it is related to a systemic inflammatory process or truly idiopathic. Management of aphthous stomatitis is challenging. For recurrent aphthous stomatitis or recalcitrant aphthous stomatitis from underlying disease, first-line treatment consists of topical medications with use of systemic medications as necessary. Herein, the authors discuss the differential diagnosis and treatment ladder of aphthous stomatitis as described in the literature.

  2. Stomatal control of transpiration.

    PubMed

    Meinzer, F C

    1993-08-01

    The role of stomata in regulating transpiration from vegetation has historically been controversial among those working either at the single leaf, or at the extensive canopy scales. Recently, the role of unstirred air layers surrounding leaves and canopies in limiting the impact of stomatal movements on transpiration has received renewed recognition. This has led to notable progress in quantitatively describing the effectiveness of stomata in controlling transpiration and in reconciling contrasting viewpoints concerning the role of stomata at the leaf, stand and regional scales. Considerable progress has also been made in understanding how variations in aerial factors such as evaporative demand and edaphic factors such as soil water availability are sensed and transduced into appropriate stomatal regulatory responses. These developments indicate that studies carried out at multiple scales of observation are needed to understand how external environmental factors and intrinsic plant properties interact to determine the role of stomata in regulating transpiration from different types of vegetation.

  3. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.

    PubMed

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2016-09-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells.

  4. Positive and negative peptide signals control stomatal density.

    PubMed

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  5. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.

    PubMed

    Fu, Zheng-Wei; Wang, Yan-Li; Lu, Ying-Tang; Yuan, Ting-Ting

    2016-11-01

    As sessile organisms, plants require many flexible strategies to adapt to the environment. Although some environmental signaling pathways regulating stomatal development have been identified, how stomatal regulators are modulated by internal and external signals to determine the final stomatal abundance requires further exploration. In our studies, we found that nitric oxide (NO) promotes stomatal development with increased stomatal index as well as the relative number of meristemoids and guard mother cells [%(M+GMC)] in NO-treated wild-type Arabidopsis plants; this role of NO was further verified in the nox1 mutant, which exhibits higher NO levels, and the noa1 mutant, which exhibits low NO accumulation. To gain insight into the molecular mechanisms underlying the effect of NO, we further assayed the expression of genes involved in stomatal development and found that NO induces the expression of the master regulators SPCH, MUTE and SCRM2 to initiate stomatal development. In addition, MPK6 is also involved in NO-promoted stomatal development, as MPK6 expression was repressed in nox1 and NO-treated plants, and transgenic plants overexpressing MPK6 were less sensitive to SNP treatment in terms of changes in the%(M+GMC). Thus, our study shows that NO promotes the production of stomata by up-regulating the expression of SPCH, MUTE and SCRM2 and down-regulating MPK6 expression.

  6. A mathematical model of the interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in plants

    PubMed Central

    Hernandez, Bryan Sapon

    2017-01-01

    Stomatal closure is affected by various stimuli such as light, atmospheric carbon dioxide concentration, humidity and phytohormones. Our research focuses on phytohormones, specifically: abscisic acid (ABA), ethylene (ET) and methyl jasmonate (MeJA) that are responsible for the regulation of several plant processes, especially in guard cell signalling. While several studies show that these three phytohormones cause stomatal closure in plants, only two studies are notable for establishing a mathematical model of guard cell signalling involving phytohormones. Those two studies employed Boolean modelling and mechanistic ordinary differential equations modelling. In this study, we propose a new mathematical model of guard cell transduction network for stomatal closure using continuous logical modelling framework. Results showed how the different components of the network function. Furthermore, the model verified the role of antioxidants in the closure mechanism, and the diminished closure level of stomata with combined ABA-ET stimulus. The analysis was extended to ABA-ET-MeJA crosstalk. PMID:28182683

  7. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and

  8. The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.

    PubMed

    Sakai, Yumiko; Sugano, Shigeo S; Kawase, Takashi; Shirakawa, Makoto; Imai, Yu; Kawamoto, Yusuke; Sugiyama, Hiroshi; Nakagawa, Tsuyoshi; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2017-02-01

    Stem cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several rounds of asymmetric divisions. In this study, we identified and characterized a chemical compound that affects stomatal stem cell polarity. High-throughput screening for bioactive molecules identified a pyridine-thiazole derivative, named bubblin, which induced stomatal clustering in Arabidopsis epidermis. Bubblin perturbed stomatal asymmetric division, resulting in the generation of two identical daughter cells. Both cells continued to express the stomatal fate determinant SPEECHLESS, and then differentiated into mispatterned stomata. Bubblin-treated cells had a defect in the polarized localization of BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), which is required for asymmetric cell fate determination. Our results suggest that bubblin induces stomatal lineage cells to divide without BASL-dependent pre-mitotic establishment of polarity. Bubblin is a potentially valuable tool for investigating cell polarity establishment in stomatal asymmetric division.

  9. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  10. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  11. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    PubMed Central

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-01-01

    Tropospheric ozone concentrations have increased by 60–100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected. PMID:25943276

  12. Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba.

    PubMed

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.

  13. Chlorella Induces Stomatal Closure via NADPH Oxidase-Dependent ROS Production and Its Effects on Instantaneous Water Use Efficiency in Vicia faba

    PubMed Central

    Li, Yan; Xu, Shan-Shan; Gao, Jing; Pan, Sha; Wang, Gen-Xuan

    2014-01-01

    Reactive oxygen species (ROS) have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs). Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2) scavenger, catalase (CAT), significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM), suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi) in Vicia faba via a reduction in leaf transpiration rate (E) without a parallel reduction in net photosynthetic rate (Pn) assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels. PMID:24687099

  14. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  15. Vesicular stomatitis outbreak in the southwestern United States, 2012.

    PubMed

    McCluskey, Brian J; Pelzel-McCluskey, Angela M; Creekmore, Lynn; Schiltz, John

    2013-09-01

    Vesicular stomatitis is a viral disease primarily affecting horses and cattle when it occurs in the United States. Outbreaks in the southwestern United States occur sporadically, with initial cases typically occurring in Texas, New Mexico, or Arizona and subsequent cases occurring in a northward progression. The viruses causing vesicular stomatitis can be transmitted by direct contact of lesioned animals with other susceptible animals, but transmission is primarily through arthropod vectors. In 2012, an outbreak of vesicular stomatitis in the United States occurred that was caused by Vesicular stomatitis New Jersey virus serotype. Overall, 51 horses on 36 premises in 2 states were confirmed positive. Phylogenetic analysis of the virus indicated that it was most closely related to viruses detected in the state of Veracruz, Mexico, in 2000.

  16. Cytokine levels affected by gamma-linolenic acid.

    PubMed

    Dirks, J; van Aswegen, C H; du Plessis, D J

    1998-10-01

    This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.

  17. [Recurrent aphthous stomatitis in Rheumatology].

    PubMed

    Riera Matute, Gabriel; Riera Alonso, Elena

    2011-01-01

    Recurrent aphthous stomatitis consists on recurring oral ulcers of unknown etiology. Oral ulcers may be different in number and size depending on the clinical presentation, which also determines the time needed for healing. Moreover, there are factors associated to outbreaks but not implicated in its etiopathogenesis. When oral aphthosis has a known etiology, it is not considered as recurrent aphthous stomatitis. The severity and the clinical presentation helps in the differential diagnosis. Treatment is symptomatic in recurrent aphthous stomatitis while, if there is an underlying systemic disease, the treatment of such disease is need in addition to topical treatment.

  18. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  19. Context affects lightness at the level of surfaces.

    PubMed

    Maertens, Marianne; Wichmann, Felix A; Shapley, Robert

    2015-01-14

    Visual perception of object attributes such as surface lightness is crucial for successful interaction with the environment. How the visual system assigns lightness to image regions is not yet understood. It has been shown that the context in which a surface is embedded influences its perceived lightness, but whether that influence involves predominantly low-, mid-, or high-level visual mechanisms has not been resolved. To answer this question, we measured whether perceptual attributes of target image regions affected their perceived lightness when they were placed in different contexts. We varied the sharpness of the edge while keeping total target flux fixed. Targets with a sharp edge were consistent with the perceptual interpretation of a surface, and in that case, observers perceived significant brightening or darkening of the target. Targets with blurred edges rather appeared to be spotlights instead of surfaces; for targets with blurred edges, there was much less of a contextual effect on target lightness. The results indicate that the effect of context on the lightness of an image region is not fixed but is strongly affected by image manipulations that modify the perceptual attributes of the target, implying that a mid-level scene interpretation affects lightness perception.

  20. Sleep complaints affecting school performance at different educational levels.

    PubMed

    Pagel, James F; Kwiatkowski, Carol F

    2010-01-01

    The clear association between reports of sleep disturbance and poor school performance has been documented for sleepy adolescents. This study extends that research to students outside the adolescent age grouping in an associated school setting (98 middle school students, 67 high school students, and 64 college students). Reported restless legs and periodic limb movements are significantly associated with lower GPA's in junior high students. Consistent with previous studies, daytime sleepiness was the sleep variable most likely to negatively affects high school students. Sleep onset and maintenance insomnia were the reported sleep variables significantly correlated with poorer school performance in college students. This study indicates that different sleep disorder variables negatively affect performance at different age and educational levels.

  1. Inflammation and wound healing in cats with chronic gingivitis/stomatitis after extraction of all premolars and molars were not affected by feeding of two diets with different omega-6/omega-3 polyunsaturated fatty acid ratios.

    PubMed

    Corbee, R J; Booij-Vrieling, H E; van de Lest, C H A; Penning, L C; Tryfonidou, M A; Riemers, F M; Hazewinkel, H A W

    2012-08-01

    Feline chronic gingivitis/stomatitis (FCGS) is a painful inflammatory disease in cats. Extraction of teeth, including all premolars and molars, has been shown to be the therapy of choice in cats not responding sufficiently to home care (e.g. tooth brushing) and/or medical treatment (corticosteroids and/or antibiotics). In this study, we hypothesize that a cat food with an omega-6 polyunsaturated fatty acid (ω6 PUFA) to ω3 PUFA ratio of 10:1 reduces inflammation of the FCGS and accelerates soft tissue wound healing of the gingiva after dental extractions, compared to a cat food with a ω6:ω3 PUFA ratio of 40:1. The cats were fed diets with chicken fat and fish oil as sources of fatty acids. In one diet, part of the fish oil was replaced by safflower oil, resulting in two diets with ω6:ω3 PUFA ratios of 10:1 and 40:1. This double-blinded study in two groups of seven cats revealed that dietary fatty acids influence the composition of plasma cholesteryl esters and plasma levels of inflammatory cytokines. The diet with the 10:1 ratio lowered PGD(2) , PGE(2) and LTB(4) plasma levels significantly, compared to the diet with the 40:1 ratio (p = 0.05, p = 0.04, and p = 0.02 respectively). However, feeding diets with dietary ω6:ω3 PUFA ratios of 10:1 and 40:1, given to cats with FCGS for 4 weeks after extraction of all premolars and molars, did not alter the degree of inflammation or wound healing.

  2. HIV Infection Affects Streptococcus mutans Levels, but Not Genotypes

    PubMed Central

    Liu, G.; Saxena, D.; Chen, Z.; Norman, R.G.; Phelan, J.A.; Laverty, M.; Fisch, G.S.; Corby, P.M.; Abrams, W.; Malamud, D.; Li, Y.

    2012-01-01

    We report a clinical study that examines whether HIV infection affects Streptococcus mutans colonization in the oral cavity. Whole stimulated saliva samples were collected from 46 HIV-seropositive individuals and 69 HIV-seronegative control individuals. The level of S. mutans colonization was determined by conventional culture methods. The genotype of S. mutans was compared between 10 HIV-positive individuals before and after highly active antiretroviral therapy (HAART) and 10 non-HIV-infected control individuals. The results were analyzed against viral load, CD4+ and CD8+ T-cell counts, salivary flow rate, and caries status. We observed that S. mutans levels were higher in HIV-infected individuals than in the non-HIV-infected control individuals (p = 0.013). No significant differences in S. mutans genotypes were found between the two groups over the six-month study period, even after HAART. There was a bivariate linear relationship between S. mutans levels and CD8+ counts (r = 0.412; p = 0.007), but not between S. mutans levels and either CD4+ counts or viral load. Furthermore, compared with non-HIV-infected control individuals, HIV-infected individuals experienced lower salivary secretion (p = 0.009) and a positive trend toward more decayed tooth surfaces (p = 0.027). These findings suggest that HIV infection can have a significant effect on the level of S. mutans, but not genotypes. PMID:22821240

  3. Neural Affective Mechanisms Predict Market-Level Microlending.

    PubMed

    Genevsky, Alexander; Knutson, Brian

    2015-09-01

    Humans sometimes share with others whom they may never meet or know, in violation of the dictates of pure self-interest. Research has not established which neuropsychological mechanisms support lending decisions, nor whether their influence extends to markets involving significant financial incentives. In two studies, we found that neural affective mechanisms influence the success of requests for microloans. In a large Internet database of microloan requests (N = 13,500), we found that positive affective features of photographs promoted the success of those requests. We then established that neural activity (i.e., in the nucleus accumbens) and self-reported positive arousal in a neuroimaging sample (N = 28) predicted the success of loan requests on the Internet, above and beyond the effects of the neuroimaging sample's own choices (i.e., to lend or not). These findings suggest that elicitation of positive arousal can promote the success of loan requests, both in the laboratory and on the Internet. They also highlight affective neuroscience's potential to probe neuropsychological mechanisms that drive microlending, enhance the effectiveness of loan requests, and forecast market-level behavior.

  4. Optimized stomatal conductance and the climate sensitivity to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kleidon, A.

    2007-07-01

    Stomatal conductance shapes the exchange of water and carbon of vegetated land surfaces. Previous studies have demonstrated that optimized stomatal functioning that maximizes productivity provides a realistic description of how stomata operate. Here I investigate the role of optimum stomatal functioning for the sensitivity of terrestrial productivity and land surface climate to concentrations of atmospheric carbon dioxide (pCO 2). I conduct sensitivity simulations with a coupled vegetation-climate system model with different values of maximum stomatal conductance at different prescribed levels of pCO 2. The optimum in stomatal conductance shifts to lower values with increasing pCO 2, which is consistent with observed sensitivities of stomatal density of leaves. If this change in optimum conditions is not taken into account, the climate sensitivity shows (1) a general underestimation of terrestrial productivity under altered pCO 2, and (2) different sensitivities of key climatic variables to pCO 2. The climate sensitivity of land temperature for a doubling of pCO 2 ranges from ΔT = 2.7 K to ΔT = 3.2 K, depending on whether stomata adapt optimally or not at all. These results demonstrate that the assumed ability of vegetation to adapt to its environment can have important consequences for the simulated climate system sensitivity to pCO 2.

  5. Calcium effects on stomatal movement in Commelina communis L

    SciTech Connect

    Schwartz, A.; Ilan, N.; Grantz, D.A. )

    1988-07-01

    Stomatal movements depends on both ion influx and efflux: attainment of steady state apertures reflects modulation of either or both processes. The role of Ca{sup 2+} in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca{sup 2+} chelator EGTA to reduce apoplastic (Ca{sup 2+}). The results suggest that a certain concentration of Ca{sup 2+} is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance of stomata in the open state does not necessarily depend on continued K{sup +} influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO{sub 2} causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO{sub 2}-induced closing of open stomata but only partially prevented the inhibition of opening.

  6. Environmental adaptation in stomatal size independent of the effects of genome size

    PubMed Central

    Jordan, Gregory J; Carpenter, Raymond J; Koutoulis, Anthony; Price, Aina; Brodribb, Timothy J

    2015-01-01

    Cell sizes are linked across multiple tissues, including stomata, and this variation is closely correlated with genome size. These associations raise the question of whether generic changes in cell size cause suboptimal changes in stomata, requiring subsequent evolution under selection for stomatal size. We tested the relationships among guard cell length, genome size and vegetation type using phylogenetically independent analyses on 67 species of the ecologically and structurally diverse family, Proteaceae. We also compared how genome and stomatal sizes varied at ancient (among genera) and more recent (within genus) levels. The observed 60-fold range in genome size in Proteaceae largely reflected the mean chromosome size. Compared with variation among genera, genome size varied much less within genera (< 6% of total variance) than stomatal size, implying evolution in stomatal size subsequent to changes in genome size. Open vegetation and closed forest had significantly different relationships between stomatal and genome sizes. Ancient changes in genome size clearly influenced stomatal size in Proteaceae, but adaptation to habitat strongly modified the genome–stomatal size relationship. Direct adaptation to the environment in stomatal size argues that new proxies for past concentrations of atmospheric CO2 that incorporate stomatal size are superior to older models based solely on stomatal frequency. PMID:25266914

  7. Comparable Low-Level Mosaicism in Affected and Non Affected Tissue of a Complex CDH Patient

    PubMed Central

    Veenma, Danielle; Beurskens, Niels; Douben, Hannie; Eussen, Bert; Noomen, Petra; Govaerts, Lutgarde; Grijseels, Els; Lequin, Maarten; de Krijger, Ronald; Tibboel, Dick; de Klein, Annelies; Van Opstal, Dian

    2010-01-01

    In this paper we present the detailed clinical and cytogenetic analysis of a prenatally detected complex Congenital Diaphragmatic Hernia (CDH) patient with a mosaic unbalanced translocation (5;12). High-resolution whole genome SNP array confirmed a low-level mosaicism (20%) in uncultured cells, underlining the value of array technology for identification studies. Subsequently, targeted Fluorescence In-Situ Hybridization in postmortem collected tissues demonstrated a similar low-level mosaicism, independently of the affected status of the tissue. Thus, a higher incidence of the genetic aberration in affected organs as lung and diaphragm cannot explain the severe phenotype of this complex CDH patient. Comparison with other described chromosome 5p and 12p anomalies indicated that half of the features presented in our patient (including the diaphragm defect) could be attributed to both chromosomal areas. In contrast, a few features such as the palpebral downslant, the broad nasal bridge, the micrognathia, microcephaly, abnormal dermatoglyphics and IUGR better fitted the 5p associated syndromes only. This study underlines the fact that low-level mosaicism can be associated with severe birth defects including CDH. The contribution of mosaicism to human diseases and specifically to congenital anomalies and spontaneous abortions becomes more and more accepted, although its phenotypic consequences are poorly described phenomena leading to counseling issues. Therefore, thorough follow–up of mosaic aberrations such as presented here is indicated in order to provide genetic counselors a more evidence based prediction of fetal prognosis in the future. PMID:21203572

  8. Time to seroconversion to vesicular stomatitis virus in sentinel cows in Southern Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vesicular stomatitis (VS) is a disease of livestock and some wildlife species caused by vesicular stomatitis virus (VSV). VS epidemics are frequent in certain regions of the United States and such epidemics inflict severe economic losses to affected regions of the country. In this study, a prospecti...

  9. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture.

    PubMed

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-03-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.

  10. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    PubMed

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange.

  11. In situ stomatal responses to long-term CO 2 enrichment in calcareous grassland plants

    NASA Astrophysics Data System (ADS)

    Lauber, Wolfgang; Körner, Christian

    A calcareous grassland community growing under full season CO 2 enrichment at low altitude in the Swiss Jura mountains was investigated for diurnal and seasonal variations of leaf diffusive conductance. A new CO 2 enrichment method (Screen aided CO 2 control, SACC) permitted in situ leaf porometry under natural climatic conditions without disturbance of plants. At 600 ppm CO 2, leaf conductance in the dominant species, Bromus erectus (a species so far not showing a growth response to elevated CO 2) was reduced to half the values measured in controls. In contrast, leaf conductance in Carex flacca, a species of low cover (the only species so far exhibiting a dramatic growth stimulation by CO 2 fertilization) remained almost unaffected by elevated CO 2. Sanguisorba minor, Plantago media, and Cirsium acaule showed intermediate responses. Trifolium montanum, studied only on a single day, showed a reduction like Bromus. Differences between treatments were largest under humid conditions and disappeared during dry periods. In none of the species studied did stomatal density or stomatal index differ between treatments. A parallel investigation of whole ecosystem evapotranspiration indicated only small (<10%) and non significant CO 2 responses, suggesting that both aerodynamic effects at the canopy level and a great interspecific variation of leaf level responses overshadow the clear CO 2 response of Bromus stomata. The different stomatal responses to CO 2 enrichment are likely to alter species specific water consumption, and may thus affect community structure in the long run.

  12. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans.

    PubMed

    Luo, Zhong-Cheng; Bilodeau, Jean-François; Nuyt, Anne Monique; Fraser, William D; Julien, Pierre; Audibert, Francois; Xiao, Lin; Garofalo, Carole; Levy, Emile

    2015-12-08

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24-28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), proinsulin-to-insulin ratio (an indicator of beta-cell function), insulin, IGF-I, IGF-II, leptin, adiponectin and ghrelin concentrations. Strong positive correlations were observed between maternal and cord plasma biomarkers of oxidative stress (r = 0.33 for MDA, r = 0.74 for total F2-isoprostanes, all p < 0.0001). Adjusting for gestational age at blood sampling, cord plasma ghrelin concentrations were consistently negatively correlated to oxidative stress biomarkers in maternal (r = -0.32, p < 0.0001 for MDA; r = -0.31, p < 0.0001 for F2-isoprostanes) or cord plasma (r = -0.13, p = 0.04 for MDA; r = -0.32, p < 0.0001 for F2-isoprostanes). Other fetal metabolic health biomarkers were not correlated to oxidative stress. Adjusting for maternal and pregnancy characteristics, similar associations were observed. Our study provides the first preliminary evidence suggesting that oxidative stress may affect fetal ghrelin levels in humans. The implications in developmental "programming" the vulnerability to metabolic syndrome related disorders remain to be elucidated.

  13. Outbreaks of Vesicular stomatitis Alagoas virus in horses and cattle in northeastern Brazil.

    PubMed

    Cargnelutti, Juliana F; Olinda, Roberio G; Maia, Lisanka A; de Aguiar, Gildeni M N; Neto, Eldinê G M; Simões, Sara V D; de Lima, Tatiane G; Dantas, Antônio F M; Weiblen, Rudi; Flores, Eduardo F; Riet-Correa, Franklin

    2014-11-01

    The current article describes outbreaks of vesicular stomatitis (VS) in horses and cattle in Paraiba and Rio Grande do Norte states, northeastern Brazil, between June and August 2013. The reported cases affected 15-20 horses and 6 cattle distributed over 6 small farms in 4 municipalities, but additional data indicated the involvement of a large number of animals on several farms. The disease was characterized by blisters; eruptive lesions in coronary bands, lips, mouth, and muzzle; salivation; claudication and loss of condition. Swollen lower limbs and lips, and ulcerated and erosive areas in the lips and muzzle were observed in some horses. A necrotizing vesiculopustular dermatitis and stomatitis was observed histologically. Vesicular stomatitis virus was isolated from the vesicular fluid of a horse lesion and shown to be serologically related to the VS Indiana serogroup (VSIV) by virus neutralization. Convalescent sera of affected horses and cattle, and from healthy contacts, harbored high levels of neutralizing antibodies against the isolated virus (named VSIV-3 2013SaoBento/ParaibaE). Genomic sequences of VSIV subtype 3 (Vesicular stomatitis Alagoas virus) were amplified by reverse transcription polymerase chain reaction out of clinical specimens from a cow and a horse from different farms. Nucleotide sequencing and phylogenetic analysis of the phosphoprotein gene indicated that the 2 isolates were derived from the same virus and clustered them in VSIV-3, along with VS viruses identified in southeastern and northeastern Brazil in the last decades. Thus, the present report demonstrates the circulation of VSIV-3 in northeastern Brazil and urges for more effective diagnosis and surveillance.

  14. Levels of maternal care in dogs affect adult offspring temperament

    PubMed Central

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs. PMID:26758076

  15. Levels of maternal care in dogs affect adult offspring temperament.

    PubMed

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-13

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  16. Levels of maternal care in dogs affect adult offspring temperament

    NASA Astrophysics Data System (ADS)

    Foyer, Pernilla; Wilsson, Erik; Jensen, Per

    2016-01-01

    Dog puppies are born in a state of large neural immaturity; therefore, the nervous system is sensitive to environmental influences early in life. In primates and rodents, early experiences, such as maternal care, have been shown to have profound and lasting effects on the later behaviour and physiology of offspring. We hypothesised that this would also be the case for dogs with important implications for the breeding of working dogs. In the present study, variation in the mother-offspring interactions of German Shepherd dogs within the Swedish breeding program for military working dogs was studied by video recording 22 mothers with their litters during the first three weeks postpartum. The aim was to classify mothers with respect to their level of maternal care and to investigate the effect of this care on pup behaviour in a standardised temperament test carried out at approximately 18 months of age. The results show that females differed consistently in their level of maternal care, which significantly affected the adult behaviour of the offspring, mainly with respect to behaviours classified as Physical and Social Engagement, as well as Aggression. Taking maternal quality into account in breeding programs may therefore improve the process of selecting working dogs.

  17. Ozone Inhibits Guard Cell K+ Channels Implicated in Stomatal Opening

    NASA Astrophysics Data System (ADS)

    Torsethaugen, Gro; Pell, Eva J.; Assmann, Sarah M.

    1999-11-01

    Ozone (O3) deleteriously affects organisms ranging from humans to crop plants, yet little is understood regarding the underlying mechanisms. In plants, O3 decreases CO2 assimilation, but whether this could result from direct O3 action on guard cells remained unknown. Potassium flux causes osmotically driven changes in guard cell volume that regulate apertures of associated microscopic pores through which CO2 is supplied to the photosynthetic mesophyll tissue. We show in Vicia faba that O3 inhibits (i) guard cell K+ channels that mediate K+ uptake that drives stomatal opening; (ii) stomatal opening in isolated epidermes; and (iii) stomatal opening in leaves, such that CO2 assimilation is reduced without direct effects of O3 on photosynthetic capacity. Direct O3 effects on guard cells may have ecological and agronomic implications for plant productivity and for response to other environmental stressors including drought.

  18. A rate equation model of stomatal responses to vapour pressure deficit and drought

    PubMed Central

    Eamus, D; Shanahan, ST

    2002-01-01

    Background Stomata respond to vapour pressure deficit (D) – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses. PMID:12153703

  19. Recurrent aphthous stomatitis: a review.

    PubMed

    Chavan, Mahesh; Jain, Hansa; Diwan, Nikhil; Khedkar, Shivaji; Shete, Anagha; Durkar, Sachin

    2012-09-01

    Recurrent aphthous stomatitis (RAS) is a common clinical condition producing painful ulcerations in oral cavity. The diagnosis of RAS is based on well-defined clinical characteristics but the precise etiology and pathogenesis of RAS remain unclear. The present article provides a detailed review of the current concepts and knowledge of the etiology, pathogenesis, and management of RAS.

  20. Viral Surveillance during the 2006 Vesicular Stomatitis Outbreak in Natrona County, Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, we collected 12203 biting flies from a vesicular stomatitis outbreak in Natrona County, Wyoming. Flies were identified to the species level and viruses were isolated and identified by RT-PCR. We detected vesicular stomatitis virus-New Jersey serotype in two pools of Simulium bivittatum, W...

  1. [The laser therapy and laser acupunture of patients with chronic recurrent aphthous stomatitis].

    PubMed

    Mikhaĭlova, R I; Terekhova, N V; Zemskaia, E A; Melkadze, N

    1992-01-01

    Laser therapy and laser acupuncture of the biologically active sites were administered to 24 patients with chronic recurrent aphthous stomatitis. The biologically active sites were selected individually with due consideration for the underlying somatic condition. Good results were achieved in the patients with the fibrous form of chronic aphthous stomatitis. Secretory and serum immunoglobulin levels were monitored over the course of laser treatment.

  2. Type of Speech Material Affects Acceptable Noise Level Test Outcome

    PubMed Central

    Koch, Xaver; Dingemanse, Gertjan; Goedegebure, André; Janse, Esther

    2016-01-01

    The acceptable noise level (ANL) test, in which individuals indicate what level of noise they are willing to put up with while following speech, has been used to guide hearing aid fitting decisions and has been found to relate to prospective hearing aid use. Unlike objective measures of speech perception ability, ANL outcome is not related to individual hearing loss or age, but rather reflects an individual’s inherent acceptance of competing noise while listening to speech. As such, the measure may predict aspects of hearing aid success. Crucially, however, recent studies have questioned its repeatability (test–retest reliability). The first question for this study was whether the inconsistent results regarding the repeatability of the ANL test may be due to differences in speech material types used in previous studies. Second, it is unclear whether meaningfulness and semantic coherence of the speech modify ANL outcome. To investigate these questions, we compared ANLs obtained with three types of materials: the International Speech Test Signal (ISTS), which is non-meaningful and semantically non-coherent by definition, passages consisting of concatenated meaningful standard audiology sentences, and longer fragments taken from conversational speech. We included conversational speech as this type of speech material is most representative of everyday listening. Additionally, we investigated whether ANL outcomes, obtained with these three different speech materials, were associated with self-reported limitations due to hearing problems and listening effort in everyday life, as assessed by a questionnaire. ANL data were collected for 57 relatively good-hearing adult participants with an age range representative for hearing aid users. Results showed that meaningfulness, but not semantic coherence of the speech material affected ANL. Less noise was accepted for the non-meaningful ISTS signal than for the meaningful speech materials. ANL repeatability was comparable

  3. An integrated model of stomatal development and leaf physiology.

    PubMed

    Dow, Graham J; Bergmann, Dominique C; Berry, Joseph A

    2014-03-01

    Stomatal conductance (g(s)) is constrained by the size and number of stomata on the plant epidermis, and the potential maximum rate of g(s) can be calculated based on these stomatal traits (Anatomical g(smax)). However, the relationship between Anatomical g(smax) and operational g(s) under atmospheric conditions remains undefined. • Leaf-level gas-exchange measurements were performed for six Arabidopsis thaliana genotypes that have different Anatomical g(smax) profiles resulting from mutations or transgene activity in stomatal development. • We found that Anatomical g(smax) was an accurate prediction of g(s) under gas-exchange conditions that maximized stomatal opening, namely high-intensity light, low [CO₂], and high relative humidity. Plants with different Anatomical g(smax) had quantitatively similar responses to increasing [CO₂] when g(s) was scaled to Anatomical g(smax). This latter relationship allowed us to produce and test an empirical model derived from the Ball-Woodrow-Berry equation that estimates g(s) as a function of Anatomical g(smax), relative humidity, and [CO₂] at the leaf. • The capacity to predict operational g(s) via Anatomical g(smax) and the pore-specific short-term response to [CO₂] demonstrates a precise link between stomatal development and leaf physiology. This connection should be useful to quantify the gas flux of plants in past, present, and future CO₂ regimes based upon the anatomical features of stomata.

  4. Treatment of recurrent aphthous stomatitis. A literature review

    PubMed Central

    Jiménez-Soriano, Yolanda; Claramunt-Lozano, Ariadna

    2014-01-01

    Recurrent aphthous stomatitis (RAS) is the most common chronic disease of the oral cavity, affecting 5-25% of the population. The underlying etiology remains unclear, and no curative treatment is available. The present review examines the existing treatments for RAS with the purpose of answering a number of questions: How should these patients be treated in the dental clinic? What topical drugs are available and when should they be used? What systemic drugs are available and when should they be used? A literature search was made of the PubMed, Cochrane and Scopus databases, limited to articles published between 2008-2012, with scientific levels of evidence 1 and 2 (metaanalyses, systematic reviews, phase I and II randomized clinical trials, cohort studies and case-control studies), and conducted in humans. The results obtained indicate that the management of RAS should be based on identification and control of the possible predisposing factors, with the exclusion of possible underlying systemic causes, and the use of a detailed clinical history along with complementary procedures such as laboratory tests, where required. Only in the case of continuous outbreaks and symptoms should drug treatment be prescribed, with the initial application of local treatments in all cases. A broad range of topical medications are available, including antiseptics (chlorhexidine), antiinflammatory drugs (amlexanox), antibiotics (tetracyclines) and corticosteroids (triamcinolone acetonide). In patients with constant and aggressive outbreaks (major aphthae), pain is intense and topical treatment is unable to afford symptoms relief. Systemic therapy is indicated in such situations, in the form of corticosteroids (prednisone) or thalidomide, among other drugs. Key words:Recurrent aphthous stomatitis, treatment, clinical management. PMID:24790718

  5. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    PubMed

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  6. Role of salivary and candidal proteins in denture stomatitis: an exploratory proteomic analysis.

    PubMed

    Byrd, Warren C; Schwartz-Baxter, Sarah; Carlson, Jim; Barros, Silvana; Offenbacher, Steven; Bencharit, Sompop

    2014-07-29

    Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candidal organisms, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n = 15 each), healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine the differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p < 0.01) differentially expressed among the healthy, type 2 and 3 stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggests that multiple species of candidal organisms play a role in denture stomatitis.

  7. Role of Salivary and Candidal Proteins in Denture Stomatitis; an exploratory proteomic analysis

    PubMed Central

    Byrd, Warren C.; Schwartz-Baxter, Sarah; Carlson, Jim; Barros, Silvana; Offenbacher, Steven; Bencharit, Sompop

    2014-01-01

    Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candida organism, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n=15 each); healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p<0.01) differentially expressed among the healthy, type 2 and 3 stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggest that multiple species of candidal organisms play a role in denture stomatitis. PMID:24947908

  8. Elevated levels of CXCL10 in the Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) during and between febrile episodes; an indication of a persistent activation of the innate immune system

    PubMed Central

    2013-01-01

    Background The Periodic Fever, Aphthous stomatitis, Pharyngitis and cervical Adenitis syndrome (PFAPA) is the most common periodic fever syndrome in childhood. Clinically, PFAPA may resemble autoinflammatory diseases, but the etiology is not fully understood. Methods We measured inflammatory proteins in plasma and hematologic parameters in children with PFAPA during and between febrile episodes, and in a control group with suspected bacterial pneumonia. In children with PFAPA, a first blood sample was taken within 24 hours of a febrile episode and a second sample between episodes. In children with pneumonia, the first sample was taken shortly after admission and a second sample after full recovery. Results A total of 22 children with PFAPA and 14 children with pneumonia were included. In children with PFAPA, levels of interleukin (IL) 6, CXCL10 and CCL4 were significantly increased during febrile episodes. The levels of IL-6 and CXCL10 were higher in children with PFAPA during febrile episodes than in children with pneumonia. The levels of CXCL10 remained higher in children with PFAPA between febrile episodes compared to children with pneumonia after recovery. Children with PFAPA had a relative eosinopenia and lymphocytopenia with reduced numbers of both CD4+ and CD8+ T cells during febrile episodes. This pattern was not observed in the children with pneumonia. Conclusions The results indicate an innate immune response as the initial step in PFAPA, and a subsequent adaptive response with activation and redistribution of T cells. Moreover, an activation of the innate immune system involving CXCL10 may persist between febrile episodes. CXCL10 may be a possibly clinical marker in children with PFAPA. PMID:24134207

  9. Contextualizing Mathematics Related Affect: Significance of Students' Individual and Social Level Affect in Finland and Chile

    ERIC Educational Resources Information Center

    Tuohilampi, Laura

    2016-01-01

    Mathematics related affect turn from positive to negative during comprehensive school years worldwide. There is a clear need to find solutions to the problem. However, some gaps and problems appear in the methodologies and the common approaches used in the field. This article discusses five studies addressing affective development, challenges some…

  10. Electrical potentials in stomatal complexes

    SciTech Connect

    Saftner, R.A.; Raschke, K.

    1981-06-01

    Guard cells of several species, but predominantly Commelina communis, were impaled by micropipette electrodes and potential differences measured that occurred between cell compartments and the flowing bathing medium. The wall developed a Donnan potential that was between -60 and -70 millivolt in 30 millimolar KC1 at pH 7. The density of the fixed charges ranged from 0.3 to 0.5 molar; its dependence on pH was almost identical with the titration curve of authentic polygalacturonic acid. The vacuolar potential of guard cells of Commelina communis L., Zea mays L., Nicotiana glauca Graham, Allium cepa L., and Vicia faba L. was between -40 and -50 millivolt in 30 millimolar KCl when stomata were open and about -30 millivolt when stomata were closed. The vacuolar potential of guard cells of C. communis was almost linearly related to stomatal aperture and responded to changes in the ionic strength in the bathing medium in a Nernstian manner. No specificity for any alkali ion (except Li/sup +/), ammonium, or choline appeared. Lithium caused hyperpolarization. Calcium in concentrations between 1 and 100 millimolar in the medium led to stomatal closure, also caused hyperpolarization, and triggered transient oscillations in the intracellular potential. Gradients in the electrical potential existed across stomatal complexes with open pores. When stomata closed, these gradients almost disappeared or slightly reverted; all epidermal cells were then at potentials near -30 millivolt in 30 millimolar KCl.

  11. Between Affect and Cognition: Proving at University Level

    ERIC Educational Resources Information Center

    Furinghetti, Fulvia; Morselli, Francesca

    2004-01-01

    In this paper we report on a case study of a university student (third year of Mathematics course). She was engaged in proving a statement of elementary number theory. We asked her to write the thoughts that accompanied her solving process. She was collaborative and her protocol is suitable to study the interrelation between affect and cognition.…

  12. Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light.

    PubMed Central

    Gorton, H. L.; Williams, W. E.; Assmann, S. M.

    1993-01-01

    Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance. PMID:12231947

  13. Common occurrence of everolimus-associated aphthous stomatitis in Japanese heart transplant recipients.

    PubMed

    Sasaoka, T; Kato, T S; Oda, N; Wada, K; Komamura, K; Asakura, M; Hashimura, K; Ishibashi-Ueda, H; Nakatani, T; Isobe, M; Kitakaze, M

    2010-11-01

    Mammalian target of rapamycin (mTOR) inhibitors display antiproliferative effects with less nephrotoxicity than calcineurin inhibitors. However, clinical use of mTOR inhibitors can be associated with a series of adverse events. We experienced cases of aphthous stomatitis associated with everolimus (EVL) in four Japanese heart transplant recipients treated at the target trough EVL blood level after a switch from mycophenolate mofetil between April and December 2007. All four patients developed aphthous stomatitis; three required reduction of the exposure and one, EVL discontinuation due to stomatitis as well as other side effects. All patients recovered from stomatitis after reduction or withdrawal of EVL. Thus, we considered that EVL-related stomatitis might occur commonly among the Japanese population. The proper dosage, effects, and frequency of the side effects of mTOR inhibitors may vary by ethnic population.

  14. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    PubMed Central

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  15. Recurrent aphthous stomatitis caused by food allergy.

    PubMed

    Wardhana; Datau, E A

    2010-10-01

    Recurrent Aphthous Stomatitis (RAS) is one of the most common oral lesions which occur either in single or multiple forms in oral mucosa. The mouth is subjected to a wide spectrum of antigenic agents, including foodstuff, and allergic reactions to such antigens may manifest in a number of diverse ways. Food allergy, however, has not been widely investigated as the cause of RAS. The main complaint of RAS typically is pain, and the main therapy is still corticosteroids, besides avoiding allergenic foodstuff. In RAS, there is often a genetic basis. More than 42 percent of patients with RAS have first-degree relatives with RAS. The likelihood of RAS is 90 percent when both parents are affected, but only 20 percent when neither parent has RAS, and it is also likely to be more severe and to start at an earlier age in patients with a positive family history. The primary goals of therapy of RAS are relief of pain, reduction of ulcer duration, and restoration of normal oral function. The secondary goals include reduction in frequency and severity of recurrences and maintenance of remission. Diagnostic elimination diets are frequently utilized both in diagnosis and management of RAS caused by food allergy. Patients with RAS may have increased levels of CD8+ T-lymphocytes and/or decreased CD4+ T-lymphocytes. There may be a reduced percentage of "virgin" T-cells and an increased of "memory" T-lymphocytes. Patients with active RAS have an increased proportion of gd T-cells compared with healthy control subjects and RAS patients with inactive disease. The gd T-cells may play a role in ADCC and it is believed that gd T-cells play a role in immunological damages. Preventive treatment is a consideration for patients with RAS caused by food allergy who report regular exacerbations of their condition. It focuses on dietary modifications, the earliest stage, the prodromal stage, and attempts to intercept ulcer development again by the use of topical immunosuppressant and particularly

  16. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    NASA Astrophysics Data System (ADS)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  17. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  18. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient.

    PubMed

    Doheny-Adams, Timothy; Hunt, Lee; Franks, Peter J; Beerling, David J; Gray, Julie E

    2012-02-19

    To investigate the impact of manipulating stomatal density, a collection of Arabidopsis epidermal patterning factor (EPF) mutants with an approximately 16-fold range of stomatal densities (approx. 20-325% of that of control plants) were grown at three atmospheric carbon dioxide (CO(2)) concentrations (200, 450 and 1000 ppm), and 30 per cent or 70 per cent soil water content. A strong negative correlation between stomatal size (S) and stomatal density (D) was observed, suggesting that factors that control D also affect S. Under some but not all conditions, mutant plants exhibited abnormal stomatal density responses to CO(2) concentration, suggesting that the EPF signalling pathway may play a role in the environmental adjustment of D. In response to reduced water availability, maximal stomatal conductance was adjusted through reductions in S, rather than D. Plant size negatively correlated with D. For example, at 450 ppm CO(2) EPF2-overexpressing plants, with reduced D, had larger leaves and increased dry weight in comparison with controls. The growth of these plants was also less adversely affected by reduced water availability than plants with higher D, indicating that plants with low D may be well suited to growth under predicted future atmospheric CO(2) environments and/or water-scarce environments.

  19. Everolimus-associated stomatitis in a patient who had renal transplant.

    PubMed

    Ji, Yisi D; Aboalela, Ali; Villa, Alessandro

    2016-10-19

    Everolimus is used as an immunosuppressant in renal allograft transplant rejection and in metastatic breast cancer treatment. One side effect of everolimus is stomatitis, referred to as mammalian target of rapamycin inhibitor-associated stomatitis. This side effect can affect treatment course and contribute to discontinuation of therapy or dose reduction, previously reported in the treatment of metastatic breast cancer. Here, we present a case of everolimus-associated stomatitis with a novel management method with intralesional triamcinolone that allows for continuous course of everolimus.

  20. CAN FLUORIDATION AFFECT WATER LEAD LEVELS AND LEAD NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of nexafluo...

  1. CHILDHOOD BLOOD LEAD LEVELS NOT AFFECTED BY HOUSING COMPLIANCE STATUS

    EPA Science Inventory

    In a secondary analysis of data from the Childhood Lead Poisoning Prevention Program of Philadelphia (July 1, 1999 through September 1, 2004), the authors evaluated the effect of housing compliance status and time to achieve compliance on changes in children's blood lead levels. ...

  2. Affect and Digital Learning at the University Level

    ERIC Educational Resources Information Center

    Katz, Yaacov J.; Yablon, Yaacov B.

    2011-01-01

    Purpose: The purpose of the paper is to examine the efficiency of SMS based cell-phone vocabulary learning as compared to email vocabulary delivery and snail mail vocabulary delivery at the university level. Design/methodology/approach: A total of 241 first year university students studied English vocabulary in their mandatory English foundation…

  3. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2- and ABA-induced stomatal closing

    PubMed Central

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andish; Israelsson-Nordstrom, Maria; Engineer, Cawas B.; Bargmann, Bastiaan O.R.; Stephan, Aaron B.; Schroeder, Julian I.

    2015-01-01

    SUMMARY Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard-cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard-cell specific enhancer trap-line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately ~ 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable to wild-type plants. Time-resolved intact leaf gas exchange analyses showed a reduction in stomatal conductance and carbon assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard-cell CO2 and ABA signal transduction are not directly modulated by guard-cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a “deflated” thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard-cell turgor production. PMID:26096271

  4. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    PubMed

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.

  5. Fruiting Branch K+ Level Affects Cotton Fiber Elongation Through Osmoregulation

    PubMed Central

    Yang, Jiashuo; Hu, Wei; Zhao, Wenqing; Chen, Binglin; Wang, Youhua; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K+ contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha-1) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (Vmax) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K+ was the major osmotic factor affecting fiber length, and malate was likely facilitating K+ accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K+ absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls. PMID:26834777

  6. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).

    PubMed

    Pou, Alícia; Flexas, Jaume; Alsina, Maria del Mar; Bota, Josefina; Carambula, Cecilia; de Herralde, Felicidad; Galmés, Jeroni; Lovisolo, Claudio; Jiménez, Miguel; Ribas-Carbó, Miquel; Rusjan, Denis; Secchi, Francesca; Tomàs, Magdalena; Zsófi, Zsolt; Medrano, Hipólito

    2008-10-01

    The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.

  7. Factors affecting the levels of hydrogen peroxide in rainwater

    NASA Astrophysics Data System (ADS)

    Deng, Yiwei; Zuo, Yuegang

    Measurements of hydrogen peroxide (H 2O 2) and several meteorological and chemical parameters were made for 34 rain events which occurred in Miami, Florida between April, 1995 and October, 1996. The measured H 2O 2 concentrations ranged from 0.3 to 38.6 μM with an average concentration of 6.9 μM. A strong seasonal dependence for H 2O 2 concentrations was observed during this period, with highest concentrations in the summer and lower levels in the winter, which corresponds to the stronger solar radiation and higher vaporization of volatile organic compounds (VOCs) in the summer and fall, and the weaker sunlight and lower vaporization in the winter and spring. Measurements also showed a significant increase trend of H 2O 2 with increasing ambient rainwater temperature. Rains that were out from lower latitude were exposed to higher solar irradiation and contained relatively higher levels of H 2O 2 than those from the north. All these observations indicate that photochemical reactions that involved volatile organic compounds are the predominant source of H 2O 2 observed in rainwater. During several individual rainstorms, H 2O 2 concentration was found to increase as a function of time due to electrical storm activities. This finding suggests that lightning could be an important factor that determines the level of H 2O 2 during thunderstorms. Statistical data showed that the highest concentrations of H 2O 2 were observed only in rains containing low levels of nonsea-salt sulfate (NSS), nitrate and hydrogen ion. H 2O 2 concentrations in continental originated rains were much lower than marine originated ones, indicating that air pollutants in continental rains could significantly deplete the H 2O 2 concentration in atmospheric gas-phase, clouds and rainwater.

  8. Factors Affecting Noise Levels of High-Speed Handpieces

    DTIC Science & Technology

    2012-06-01

    office communication and increase patient anxiety. Purpose: To determine if three noise-reducing techniques utilized in larger scale , non- dental...hearing loss may cause confusion, fear, and loneliness , and that sometimes hearing loss is accompanied by dizziness, which would be a handicap in the...employee noise exposures equal or exceed an 8- hour time-weighted average sound level (TWA) of 85 decibels measured on the A scale (slow response) or

  9. Wind resource quality affected by high levels of renewables

    DOE PAGES

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a givenmore » level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.« less

  10. Wind resource quality affected by high levels of renewables

    SciTech Connect

    Diakov, Victor

    2015-06-17

    For solar photovoltaic (PV) and wind resources, the capacity factor is an important parameter describing the quality of the resource. As the share of variable renewable resources (such as PV and wind) on the electric system is increasing, so does curtailment (and the fraction of time when it cannot be avoided). At high levels of renewable generation, curtailments effectively change the practical measure of resource quality from capacity factor to the incremental capacity factor. The latter accounts only for generation during hours of no curtailment and is directly connected with the marginal capital cost of renewable generators for a given level of renewable generation during the year. The Western U.S. wind generation is analyzed hourly for a system with 75% of annual generation from wind, and it is found that the value for the system of resources with equal capacity factors can vary by a factor of 2, which highlights the importance of using the incremental capacity factor instead. Finally, the effect is expected to be more pronounced in smaller geographic areas (or when transmission limitations imposed) and less pronounced at lower levels of renewable energy in the system with less curtailment.

  11. Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light

    SciTech Connect

    Zeiger, E.; Grivet, C.; Assmann, S.M.; Dietzer, G.F.; Hannegan, M.W.

    1985-02-01

    Leaves from Paphiopedilum sp. (Orchidaceae) having achlorophyllous stomata, show reduced levels of stomatal conductance when irradiated with red light, as compared with either the related, chlorophyllous genus Phragmipedium or with their response to blue light. These reduced levels of stomatal conductance, and the failure of isolated Paphiopedilum stomata to open under red irradiation indicates that the small stomatal response measured in the intact leaf under red light is indirect. The overall low levels of stomatal conductance observed in Paphiopedilum leaves under most growing conditions and their capacity to increase stomatal conductance in response to blue light suggested that growth and carbon gain in Paphiopedilum could be enhanced in a blue light-enriched environment. To test that hypothesis, plants of Paphiopedilum acmodontum were grown in controlled growth chambers under daylight fluorescent light, with or without blue light supplementation. Blue light enrichment resulted in significantly higher growth rates over a 3 to 4 week growing period, with all evidence indicating that the blue light effect was a stomatal response. Manipulations of stomatal properties aimed at long-term carbon gains could have agronomic applications.

  12. Feline gingivitis-stomatitis-pharyngitis.

    PubMed

    Diehl, K; Rosychuk, R A

    1993-01-01

    Inflammatory conditions of the feline mouth are commonly encountered in small animal practice. Although the majority can be attributed to dental disease and a small percentage are due to autoimmune diseases, the eosinophilic granuloma complex, neoplasia, and other miscellaneous syndromes, many cases appear to be due to a gingivitis-stomatitis-pharyngitis complex, which is likely multifactorial in origin. Viruses, bacterial infection, diet, dental disease, oral conformation, genetic predisposition, hypersensitivities, immunoinsufficiencies, and other defects in oral defense mechanisms may all be contributory. The complexities of this syndrome have made it one of the most challenging diagnostic and therapeutic problems in feline medicine.

  13. Sweet future: fluctuating blood glucose levels affect future discounting.

    PubMed

    Wang, X T; Dvorak, Robert D

    2010-02-01

    This study explored metabolic mechanisms of future (delay) discounting, a choice phenomenon where people value present goods over future goods. Using fluctuating blood glucose as an index of body-energy budget, optimal discounting should regulate choice among rewards as a function of temporal caloric requirement. We identified this novel link between blood glucose levels measured in the lab and future-discounting rates of participants, who made choices between a "smaller and sooner" reward and a "larger but later" option, with possible actual monetary rewards. A group of participants who drank a soft drink that contained sugar showed a reduced rate of future discounting afterward, when we controlled for sex, age, body mass index, and the taste of the drink. In contrast, a group of participants who drank a soft drink that contained artificial sweetener showed an increased rate of future discounting. Blood glucose levels not only varied as a result of caloric intake but also regulated the rate of future discounting, according to participants' dynamic body-energy budget.

  14. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants.

    PubMed

    Barber, Jonathan L; Kurt, Perihan B; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C

    2002-10-15

    The transfer of persistent organic pollutants (POPs) from air to vegetation is an important air-surface exchange process that affects global cycling and can result in human and wildlife exposure via the terrestrial food chain. To improve understanding of this process, the role of stomata in uptake of gas-phase polychlorinated biphenyls (PCBs) was investigated using Hemerocallis x hybrida "Black Eyed Stella", a plant with a high stomatal density. Uptake of PCBs was monitored over a 72-h period in the presence and absence of light. Uptake rates were significantly greater in illuminated (stomata open) plants than unilluminated (stomata closed) plants for 18 of the 28 measured PCB congeners (p < 0.05). Depuration of PCBs was monitored in a subsequent experiment over a period of 3 weeks. Levels after 3 weeks of depuration time were still much higher than the concentration prior to contamination. Tri- and tetrachlorinated PCBs showed the greatest depuration, with less than 20% and 50% of accumulated PCBs respectively remaining, while approximately 70% of higher chlorinated PCB congeners remained in the plants at the end of the experiment. Treatments with/without light (to control stomatal opening during uptake) and with/without abscisic acid (ABA) application (to control stomatal opening during depuration) were compared. After contamination indoors for 3 days, there was a significantly higher concentration of PCBs (p < 0.05) in the light contaminated plants than the dark-contaminated plants for 13 of the 28 measured PCB congeners. The ABA treatment affected depuration of PCB-18 only. "Light/ABA-treated" plants had a significantly slower depuration rate for PCB-18 than "light/untreated", "dark/ABA-treated", and "dark/untreated" plants (p < 0.05). The results of the study indicate that there is a stomatal effect on the rate of exchange of PCBs between Hemerocallis leaves and air.

  15. Prions are affected by evolution at two levels.

    PubMed

    Wickner, Reed B; Kelly, Amy C

    2016-03-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.

  16. Prions are Affected by Evolution at Two Levels

    PubMed Central

    Wickner, Reed B.; Kelly, Amy C.

    2015-01-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), most based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals. PMID:26713322

  17. Dietary levels of acrylamide affect rat cardiomyocyte properties.

    PubMed

    Walters, Brandan; Hariharan, Venkatesh; Huang, Hayden

    2014-09-01

    The toxic effects of acrylamide on cytoskeletal integrity and ion channel balance is well-established in many cell types, but there has been little examination regarding the effects of acrylamide on primary cardiomyocytes, despite the importance of such components in their function. Furthermore, acrylamide toxicity is generally examined using concentrations higher than those found in vivo under starch-rich diets. Accordingly, we sought to characterize the dose-dependent effects of acrylamide on various properties, including cell morphology, contraction patterns, and junctional connexin 43 staining, in primary cardiomyocytes. We show that several days exposure to 1-100 μM acrylamide resulted in altered morphology, irregular contraction patterns, and an increase in the amount of immunoreactive signal for connexin 43 at cell junctions. We conclude that dietary levels of acrylamide may alter cellular function with prolonged exposure, in primary cardiomyocytes.

  18. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  19. Mean platelet volume in recurrent aphthous stomatitis and Behçet disease.

    PubMed

    Ekiz, Ozlem; Balta, Ilknur; Sen, Bilge Bulbul; Rifaioglu, Emine Nur; Ergin, Can; Balta, Sevket; Demirkol, Sait

    2014-02-01

    Behcet disease (BD) and recurrent aphthous stomatitis (RAS) are systemic inflammatory diseases, but the exact pathogenesis of both the diseases is unknown. Mean platelet volume (MPV) is an indicator of platelet activation. The aim of this study was to investigate the MPV levels in patients with BD, RAS, and healthy participants. A total of 61 patients with BD, 60 patients with RAS, and 60 healthy controls were included in this study. The MPV levels and erythrocyte sedimentation rate in patients with BD and RAS groups were significantly higher than the control groups (P < .001). In the BD group as well as in the RAS group, the disease activity does not affect the levels of MPV. The MPV levels may be used as a cheap and feasible diagnostic marker in patients with BD and RAS. Nevertheless, the MPV does not have a predictive value in differentiating the diagnosis of BD and RAS.

  20. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum.

    PubMed

    Guo, Yanling; Guo, Moran; Zhao, Wenlu; Chen, Kaoshan; Zhang, Pengying

    2013-09-12

    Burdock fructooligosaccharide (BFO) isolated from the root tissue of Arctium lappa is a reserve carbohydrate that can induce resistance against a number of plant diseases. Stomatal closure is a part of plant innate immune response to restrict bacterial invasion. In this study, the effects of BFO on stomata movement in Pisum sativum and the possible mechanisms were studied with abscisic acid (ABA) as a positive control. The results showed that BFO could induce stomatal closure accompanied by ROS and NO production, as is the case with ABA. BFO-induced stomatal closure was inhibited by pre-treatment with L-NAME (N(G)-nitro-L-arginine methyl ester, hydrochloride; nitric oxide synthase inhibitor) and catalase (hydrogen peroxide scavenger). Exogenous catalase completely restricted BFO-induced production of ROS and NO in guard cells. In contrast, L-NAME prevented the rise in NO levels but only partially restricted the ROS production. These results indicate that BFO-induced stomatal closure is mediated by ROS and ROS-dependent NO production.

  1. Urban legends: recurrent aphthous stomatitis.

    PubMed

    Baccaglini, L; Lalla, R V; Bruce, A J; Sartori-Valinotti, J C; Latortue, M C; Carrozzo, M; Rogers, R S

    2011-11-01

    Recurrent aphthous stomatitis (RAS) is the most common idiopathic intraoral ulcerative disease in the USA. Aphthae typically occur in apparently healthy individuals, although an association with certain systemic diseases has been reported. Despite the unclear etiopathogenesis, new drug trials are continuously conducted in an attempt to reduce pain and dysfunction. We investigated four controversial topics: (1) Is complex aphthosis a mild form of Behçet's disease (BD)? (2) Is periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome a distinct medical entity? (3) Is RAS associated with other systemic diseases [e.g., celiac disease (CD) and B12 deficiency]? (4) Are there any new RAS treatments? Results from extensive literature searches, including a systematic review of RAS trials, suggested the following: (1) Complex aphthosis is not a mild form of BD in North America or Western Europe; (2) Diagnostic criteria for PFAPA have low specificity and the characteristics of the oral ulcers warrant further studies; (3) Oral ulcers may be associated with CD; however, these ulcers may not be RAS; RAS is rarely associated with B12 deficiency; nevertheless, B12 treatment may be beneficial, via mechanisms that warrant further study; (4) Thirty-three controlled trials published in the past 6 years reported some effectiveness, although potential for bias was high.

  2. Histopathological study of stomatitis nicotina.

    PubMed

    Reddy, C R; Kameswari, V R; Ramulu, C; Reddy, P G

    1971-09-01

    One hundred and thirteen biopsies of the palate in people accustomed to smoking cigars, most of them with the burning end of the cigar inside the mouth, have been studied.Thirty-eight of these showed mild to severe atypical changes in the epithelium. There were 19 lesions showing orthokeratosis and 53 showing hyperorthokeratosis.The earliest atypical change is seen in the mouths of the ducts of the glands.There were 3 cases showing microinvasive carcinomas.Pigmentation is a prominent feature in these cases.The papules with umbilication could be due to hyperplasia of the mucous glands.It is suggested that stomatitis nicotina occurring in men and women with the habit of reverse smoking is probably precancerous because of the presence of atypical changes in the epithelium and also the finding of 3 microinvasive carcinomas without any macroscopic evidence.There is no acceptable explanation why the soft palate escapes getting either stomatitis nicotina lesion or carcinoma in reverse smokers.

  3. Determinants affecting physical activity levels in animal models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C L.; Wade, Charles E.

    2002-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play an underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multifactorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked, making it difficult to determine whether a single, combination, or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to the ventral medial hypothalamus, and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  4. Determinants Affecting Physical Activity Levels In Animal Models

    NASA Technical Reports Server (NTRS)

    Tou, Janet C. L.; Wade, Charles E.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Weight control is dependent on energy balance. Reduced energy expenditure (EE) associated with decreased physical activity is suggested to be a major underlying cause in the increasing prevalence of weight gain and obesity. Therefore, a better understanding of the biological determinants involved in the regulation of physical activity is essential. To facilitate interpretation in humans, it is helpful to consider the evidence from animal studies. This review focuses on animal studies examining the biological determinants influencing activity and potential implications to human. It appears that physical activity is influenced by a number of parameters. However, regardless of the parameter involved, body weight appears to play all underlying role in the regulation of activity. Furthermore, the regulation of activity associated with body weight appears to occur only after the animal achieves a critical weight. This suggests that activity levels are a consequence rather than a contributor to weight control. However, the existence of an inverse weight-activity relationship remains inconclusive. Confounding the results are the multi-factorial nature of physical activity and the lack of appropriate measuring devices. Furthermore, many determinants of body weight are closely interlocked making it difficult to determine whether a single, combination or interaction of factors is important for the regulation of activity. For example, diet-induced obesity, aging, lesions to tile ventral medial hypothalamus and genetics all produce hypoactivity. Providing a better understanding of the biological determinants involved in the regulation of activity has important implications for the development of strategies for the prevention of weight gain leading to obesity and subsequent morbidity and mortality in the human population.

  5. Transmission and pathogenesis of vesicular stomatitis viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  6. Low level methylmercury exposure affects neuropsychological function in adults

    PubMed Central

    Yokoo, Edna M; Valente, Joaquim G; Grattan, Lynn; Schmidt, Sérgio Luís; Platt, Illeane; Silbergeld, Ellen K

    2003-01-01

    Background The neurotoxic effects of methylmercury (MeHg) have been demonstrated in both human and animal studies. Both adult and fetal brains are susceptible to the effects of MeHg toxicity. However, the specific effects of adult exposures have been less well-documented than those of children with prenatal exposures. This is largely because few studies of MeHg exposures in adults have used sensitive neurological endpoints. The present study reports on the results of neuropsychological testing and hair mercury concentrations in adults (>17 yrs) living in fishing communities of Baixada Cuiabana (Mato Grosso) in the Pantanal region of Brazil. Methods A cross-sectional study was conducted in six villages on the Cuiaba River. Participants included 129 men and women older than 17 years of age. They were randomly selected in proportion to the age range and number of inhabitants in each village. Questionnaire information was collected on demographic variables, including education, occupation, and residence history. Mercury exposure was determined by analysis of hair using flameless atomic absorption spectrophotometry. The neurocognitive screening battery included tests from the Wechsler Memory Scale and the Wechsler Adult Intelligence Scale, Concentrated Attention Test of the Toulouse-Pierron Factorial Battery, the Manual Ability Subtests of the Tests of Mechanical Ability, and the Profile of Mood States. Results Mercury exposures in this population were associated with fish consumption. The hair mercury concentration in the 129 subjects ranged from 0.56 to 13.6 μg/g; the mean concentration was 4.2 ± 2.4 micrograms/g and the median was 3.7 μg/g. Hair mercury levels were associated with detectable alterations in performance on tests of fine motor speed and dexterity, and concentration. Some aspects of verbal learning and memory were also disrupted by mercury exposure. The magnitude of the effects increased with hair mercury concentration, consistent with a dose

  7. Maternal HIV status affects the infant hemoglobin level

    PubMed Central

    Feleke, Berhanu Elfu

    2016-01-01

    Abstract Children, especially infants, are highly vulnerable to iron-deficiency anemia because of their rapid growth of the brain and the rest of the body. The objectives of this study were to compare the prevalence of iron-deficiency anemia in infants born from HIV-positive mothers and HIV-negative mothers and to identify the determinants of iron-deficiency anemia in infants. A comparative cross-sectional study was conducted in Bahir Dar city. Simple random sampling technique was used to select the study participants. Mothers were interviewed; blood samples were collected from mothers and infants to measure the hemoglobin level and anthropometric indicators were obtained from the infants using world health organization standards. Descriptive statistics were used to estimate the prevalence of infantile anemia. Binary logistic regression and multiple linear regressions were used to identify the determinants of infant anemia. A total of 1459 infants born from HIV-positive and HIV-negative mothers were included. The prevalence of iron-deficiency anemia in infants born from HIV-positive and HIV-negative mothers was 41.9% (95% CI: 39–44). Infantile iron-deficiency anemia was associated with maternal HIV infection (adjusted odds ratio [AOR] 2.54 [95% CI: 1.65–3.9]), stunting (AOR 3.46 [95% CI: 2.41–4.97]), low income (AOR 2.72 [95% CI: 2–3.73]), maternal malaria during pregnancy (AOR 1.81 [95% CI: 1.33–2.47]), use of cow milk before 6 month (AOR 1.82 [95% CI: 1.35–2.45]), residence (AOR 0.09 [95% CI: 0.06–0.13]), history of cough or fever 7 days preceding the survey (AOR 2.71 [95% CI: 1.99–3.69]), maternal hemoglobin (B 0.65 [95% CI: 0.61–0.68]), educational status of mother (B 0.22 [95% CI: 0.2–0.23]), age of the mother (B –0.03 [95% CI: –0.03, –0.02]), and family size (B –0.14 [95% CI: –0.18,–0.11]). PMID:27495044

  8. Mucosal microbiome in patients with recurrent aphthous stomatitis.

    PubMed

    Hijazi, K; Lowe, T; Meharg, C; Berry, S H; Foley, J; Hold, G L

    2015-03-01

    Recurrent aphthous stomatitis (RAS) is the most common disease affecting oral mucosae. Etiology is unknown, but several factors have been implicated, all of which influence the composition of microbiota residing on oral mucosae, which in turn modulates immunity and thereby affects disease progression. Although no individual pathogens have been conclusively shown to be causative agents of RAS, imbalanced composition of the oral microbiota may play a key role. In this study, we sought to determine composition profiles of bacterial microbiota in the oral mucosa associated with RAS. Using high-throughput 16S rRNA gene sequencing, we characterized the most abundant bacterial populations residing on healthy and ulcerated mucosae in patients with RAS (recruited using highly stringent criteria) and no associated medical conditions; we also compared these to the bacterial microbiota of healthy controls (HCs). Phylum-level diversity comparisons revealed decreased Firmicutes and increased Proteobacteria in ulcerated sites, as compared with healthy sites in RAS patients, and no differences between RAS patients with healthy sites and HCs. Genus-level analysis demonstrated higher abundance of total Bacteroidales in RAS patients with healthy sites over HCs. Porphyromonadaceae comprising species associated with periodontal disease and Veillonellaceae predominated in ulcerated sites over HCs, while no quantitative differences of these families were observed between healthy sites in RAS patients and HCs. Streptococcaceae comprising species associated with oral health predominated in HCs over ulcerated sites but not in HCs over healthy sites in RAS patients. This study demonstrates that mucosal microbiome changes in patients with idiopathic RAS--namely, increased Bacteroidales species in mucosae of RAS patients not affected by active ulceration. While these changes suggest a microbial role in initiation of RAS, this study does not provide data on causality. Within this limitation

  9. Mucosal Microbiome in Patients with Recurrent Aphthous Stomatitis

    PubMed Central

    Hijazi, K.; Lowe, T.; Meharg, C.; Berry, S.H.; Foley, J.; Hold, G.L.

    2015-01-01

    Recurrent aphthous stomatitis (RAS) is the most common disease affecting oral mucosae. Etiology is unknown, but several factors have been implicated, all of which influence the composition of microbiota residing on oral mucosae, which in turn modulates immunity and thereby affects disease progression. Although no individual pathogens have been conclusively shown to be causative agents of RAS, imbalanced composition of the oral microbiota may play a key role. In this study, we sought to determine composition profiles of bacterial microbiota in the oral mucosa associated with RAS. Using high-throughput 16S rRNA gene sequencing, we characterized the most abundant bacterial populations residing on healthy and ulcerated mucosae in patients with RAS (recruited using highly stringent criteria) and no associated medical conditions; we also compared these to the bacterial microbiota of healthy controls (HCs). Phylum-level diversity comparisons revealed decreased Firmicutes and increased Proteobacteria in ulcerated sites, as compared with healthy sites in RAS patients, and no differences between RAS patients with healthy sites and HCs. Genus-level analysis demonstrated higher abundance of total Bacteroidales in RAS patients with healthy sites over HCs. Porphyromonadaceae comprising species associated with periodontal disease and Veillonellaceae predominated in ulcerated sites over HCs, while no quantitative differences of these families were observed between healthy sites in RAS patients and HCs. Streptococcaceae comprising species associated with oral health predominated in HCs over ulcerated sites but not in HCs over healthy sites in RAS patients. This study demonstrates that mucosal microbiome changes in patients with idiopathic RAS—namely, increased Bacteroidales species in mucosae of RAS patients not affected by active ulceration. While these changes suggest a microbial role in initiation of RAS, this study does not provide data on causality. Within this limitation

  10. A New mouthwash for Chemotherapy Induced Stomatitis

    PubMed Central

    Miranzadeh, Sedigheh; Adib-Hajbaghery, Mohsen; Soleymanpoor, Leyla; Ehsani, Majid

    2014-01-01

    Background: Stomatitis is a disturbing side-effect of chemotherapy that disturbs patients and causes difficulties in patient’s drinking, eating and talking, and may results in infection and bleeding. Objectives: This study aimed to investigate the effect of Yarrow distillate in the treatment of chemotherapy-induced stomatitis. Patients and Methods: This randomized controlled trial study was conducted during 2013. The study population consisted of all cancer patients with chemotherapy-induced oral stomatitis referred to Shahid Beheshti Medical Center, Kashan, Iran. The data collection instrument had two-part; a demographic part and another part recording the severity of the stomatitis at the first, seventh, and 14th days of the intervention based on a WHO criteria checklist in 2005. In this study, 56 patients diagnosed with cancer were randomly assigned into control and experimental groups in similar blocks according to their stomatitis severity. The experimental group gargled 15 mL of a routine solution mixed with Yarrow distillate 4 times a day for 14 days while the control group gargled 15 mL of routine solution. The severity of stomatitis was assessed at the beginning of the intervention, and then after 7 and 14 days of the study. Data were analyzed using chi-square and Fisher exact test, Mann-Whitney U, Kruskal-Wallis, and Friedman tests using SPSS 11.5 software. Results: At first, the median score of stomatitis in the experimental group was 2.50 that significantly reduced to 1 and 0 in days 7 and 14 of the intervention, respectively (P value < 0.001). However, in the control group, the median score of stomatitis was 2.50, which significantly increased to 3 in days 7 and 14 (P value < 0.001). Conclusions: Yarrow distillate-contained solution reduced stomatitis severity more than the routine solution. Therefore, we suggest using it in patients with chemotherapy-induced stomatitis. PMID:25699281

  11. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    PubMed Central

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  12. Implications of climate change for the stomatal flux of ozone: a case study for winter wheat.

    PubMed

    Harmens, Harry; Mills, Gina; Emberson, Lisa D; Ashmore, Mike R

    2007-04-01

    Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.

  13. Ionic partitioning and stomatal regulation

    PubMed Central

    Sanoubar, Rabab; Orsini, Francesco; Gianquinto, Giorgio Prosdocimi

    2013-01-01

    Vegetable grafting is commonly claimed to improve crop’s tolerance to biotic and abiotic stresses, including salinity. Although the use of inter-specific graftings is relatively common, whether the improved salt tolerance should be attributed to the genotypic background rather than the grafting per se is a matter of discussion among scientists. It is clear that most of published research has to date overlooked the issue, with the mutual presence of self-grafted and non-grafted controls resulting to be quite rare within experimental evidences. It was recently demonstrated that the genotype of the rootstock and grafting per se are responsible respectively for the differential ion accumulation and partitioning as well as to the stomatal adaptation to the stress. The present paper contributes to the ongoing discussion with further data on the differences associated to salinity response in a range of grafted melon combinations. PMID:24309549

  14. Stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant.

    PubMed

    Fall-Dickson, Jane M; Mock, Victoria; Berk, Ronald A; Grimm, Patricia M; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. The hypotheses that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing were tested. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two women were recruited at 2 East Coast comprehensive cancer centers. Data were collected on bone marrow transplantation day +7 +/- 24 hours using Painometer, Oral Mucositis Index-20, Oral Assessment Guide, State-Trait Anxiety Inventory, and Beck Depression Inventory. Data analysis included descriptive statistics, correlations, and stepwise multiple regression. All participants had stomatitis; 47% had oral pain, with a subset reporting continuous moderate to severe oral pain despite pain management algorithms. Significant, positive associations were seen between oral pain, stomatitis, and alteration in swallowing and between oral pain with swallowing and alteration in swallowing. Oral pain was not significantly correlated with state anxiety and depression. Oral sensory and affective pain intensity most accurately predicted oral pain overall intensity. Future research needs to explore factors that affect perception and response to stomatitis-related oropharyngeal pain and individual patient response to opioid treatment.

  15. Original findings associated with two cases of bovine papular stomatitis.

    PubMed

    Dal Pozzo, F; Martinelle, L; Gallina, L; Mast, J; Sarradin, P; Thiry, E; Scagliarini, A; Büttner, M; Saegerman, C

    2011-12-01

    Bovine papular stomatitis virus was isolated from two calves in an animal house with biosafety level 3 confinement. The hypotheses on the origin of the infection, the interesting features of the partial amino acid sequences of the major envelope viral protein, and the importance of diagnostic tools available for animal diseases that are not listed by the World Organization for Animal Health (OIE) are discussed.

  16. Starch Biosynthesis in Guard Cells But Not in Mesophyll Cells Is Involved in CO2-Induced Stomatal Closing1[OPEN

    PubMed Central

    Stephan, Aaron B.; Schroeder, Julian I.

    2016-01-01

    Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296

  17. Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    The plant hormone abscisic acid (ABA) is a primary regulator of plant transpiration, but its influence in determining seasonal stomatal behaviour in natural plant communities is poorly understood. We examined distantly related vascular plants growing together in a seasonally dry, monsoonal environment to determine whether ABA dynamics contributed to contrasting water use patterns in this natural setting. Regular sampling of angiosperm, cycad, conifer and fern species revealed characteristic seasonal patterns in ABA production, but these were highly distinct among species. Although no general relationship was observed between ABA levels, plant hydration or stomatal conductance among species, the seasonal dynamics in stomatal behaviour within species were predictable functions of either ABA or leaf water potential. Strong divergence in the seasonal role of ABA among species suggests that modification in ABA-stomatal interactions represents an important evolutionary pathway for adaptation in plant water use.

  18. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance

    PubMed Central

    Franks, Peter J.

    2013-01-01

    Maximum and minimum stomatal conductance, as well as stomatal size and rate of response, are known to vary widely across plant species, but the functional relationship between these static and dynamic stomatal properties is unknown. The objective of this study was to test three hypotheses: (i) operating stomatal conductance under standard conditions (g op) correlates with minimum stomatal conductance prior to morning light [g min(dawn)]; (ii) stomatal size (S) is negatively correlated with g op and the maximum rate of stomatal opening in response to light, (dg/dt)max; and (iii) g op correlates negatively with instantaneous water-use efficiency (WUE) despite positive correlations with maximum rate of carboxylation (Vc max) and light-saturated rate of electron transport (J max). Using five closely related species of the genus Banksia, the above variables were measured, and it was found that all three hypotheses were supported by the results. Overall, this indicates that leaves built for higher rates of gas exchange have smaller stomata and faster dynamic characteristics. With the aid of a stomatal control model, it is demonstrated that higher g op can potentially expose plants to larger tissue water potential gradients, and that faster stomatal response times can help offset this risk. PMID:23264516

  19. Carbonic anhydrases, EPF2 and a novel protease mediate CO2 control of stomatal development

    NASA Astrophysics Data System (ADS)

    Engineer, Cawas B.; Ghassemian, Majid; Anderson, Jeffrey C.; Peck, Scott C.; Hu, Honghong; Schroeder, Julian I.

    2014-09-01

    Environmental stimuli, including elevated carbon dioxide levels, regulate stomatal development; however, the key mechanisms mediating the perception and relay of the CO2 signal to the stomatal development machinery remain elusive. To adapt CO2 intake to water loss, plants regulate the development of stomatal gas exchange pores in the aerial epidermis. A diverse range of plant species show a decrease in stomatal density in response to the continuing rise in atmospheric CO2 (ref. 4). To date, one mutant that exhibits deregulation of this CO2-controlled stomatal development response, hic (which is defective in cell-wall wax biosynthesis, ref. 5), has been identified. Here we show that recently isolated Arabidopsis thaliana β-carbonic anhydrase double mutants (ca1 ca4) exhibit an inversion in their response to elevated CO2, showing increased stomatal development at elevated CO2 levels. We characterized the mechanisms mediating this response and identified an extracellular signalling pathway involved in the regulation of CO2-controlled stomatal development by carbonic anhydrases. RNA-seq analyses of transcripts show that the extracellular pro-peptide-encoding gene EPIDERMAL PATTERNING FACTOR 2 (EPF2), but not EPF1 (ref. 9), is induced in wild-type leaves but not in ca1 ca4 mutant leaves at elevated CO2 levels. Moreover, EPF2 is essential for CO2 control of stomatal development. Using cell-wall proteomic analyses and CO2-dependent transcriptomic analyses, we identified a novel CO2-induced extracellular protease, CRSP (CO2 RESPONSE SECRETED PROTEASE), as a mediator of CO2-controlled stomatal development. Our results identify mechanisms and genes that function in the repression of stomatal development in leaves during atmospheric CO2 elevation, including the carbonic-anhydrase-encoding genes CA1 and CA4 and the secreted protease CRSP, which cleaves the pro-peptide EPF2, in turn repressing stomatal development. Elucidation of these mechanisms advances the understanding of

  20. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    PubMed

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions.

  1. Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf

    SciTech Connect

    Zeiger, E.; Field, C.

    1982-08-01

    The photocontrol of the functional coupling between photosynthesis and stomatal conductance in the leaf was investigated in gas exchange experiments using monochromatic light provided by lasers. Net photosynthesis and stomatal conductance were measured in attached leaves of Malva parviflora L. as a function of photon irradiance at 457.9 and 640.0 nanometers. Photosynthetic rates and quantum yields of photosynthesis were higher under red light than under blue, on an absorbed or incident basis. Stomatal conductance was higher under blue than under red light at all intensities. Based on a calculated apparent photon efficiency of conductance, blue and red light had similar effects on conductance at intensities higher than 0.02 millimoles per square meter per second, but blue light was several-fold more efficient at very low photon irradiances. Red light had no effect on conductance at photon irradiances below 0.02 millimoles per square meter per second. These observations support the hypothesis that stomatal conductance is modulated by two photosystems: a blue light-dependent one, driving stomatal opening at low light intensities and a photosynthetically active radiation (PAR)-dependent one operating at higher irradiances. When low intensity blue light was used to illuminate a leaf already irradiated with high intensity, 640 nanometers light, the leaf exhibited substantial increases in stomatal conductance. Net photosynthesis changed only slightly. Additional far-red light increased net photosynthesis without affecting stomatal conductance. These observations indicate that under conditions where the PAR-dependent system is driven by high intensity red light, the blue light-dependent system has an additive effect on stomatal conductance.

  2. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  3. [Denture stomatitis - definition, etiology, classification and treatment].

    PubMed

    Cubera, Katarzyna

    2013-01-01

    Denture stomatitis pertains to a number of pathological symptoms in the oral cavity caused by wearing acrylic dentures. Etiological factors include: mucosal trauma, fungal infection and accumulation of denture plaque. All of these factors appear to increase the ability of Candida albicans to colonize both the denture and oral mucosal surfaces. Antifungal treatment can eradicate C. albicans contamination and relieve stomatitis symptoms. Early diagnosis of the lesion is essential to assure rational therapy.

  4. Relating Stomatal Conductance to Leaf Functional Traits

    PubMed Central

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES

  5. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances.

    PubMed

    Djebbar, Reda; Rzigui, Touhami; Pétriacq, Pierre; Mauve, Caroline; Priault, Pierrick; Fresneau, Chantal; De Paepe, Marianne; Florez-Sarasa, Igor; Benhassaine-Kesri, Ghouziel; Streb, Peter; Gakière, Bertrand; Cornic, Gabriel; De Paepe, Rosine

    2012-03-01

    To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.

  6. Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2013-04-01

    Little is known about how a predominantly passive hydraulic stomatal control in ferns and lycophytes might impact water use under stress. Ferns and lycophytes occupy a diverse array of habitats, from deserts to rainforest canopies, raising the question of whether stomatal behaviour is the same under all ecological strategies and imposes ecological or functional constraints on ferns and lycophytes. We examined the stomatal response of a diverse sample of fern and lycophyte species to both soil and atmospheric water stress, assessing the foliar level of the hormone abscisic acid (ABA) over drought and recovery and the critical leaf water potential (Ψl) at which photosynthesis in droughted leaves failed to recover. The stomata of all ferns and lycophytes showed very predictable responses to soil and atmospheric water deficit via Ψl, while stomatal closure was poorly correlated with changes in ABA. We found that all ferns closed stomata at very low levels of water stress and their survival afterwards was limited only by their capacitance and desiccation tolerance. Ferns and lycophytes have constrained stomatal responses to soil and atmospheric water deficit as a consequence of a predominantly passive stomatal regulation. This results in a monotypic strategy in ferns and lycophytes under water stress.

  7. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture1[OPEN

    PubMed Central

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-01-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant’s gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance. PMID:26754665

  8. Blood Feeding Behavior of Vesicular Stomatitis Virus Infected Culicoides Sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Culicoides sonorensis (Diptera: Ceratopogonidae) is the primary vector of Bluetongue virus in North America and a competent vector of Vesicular Stomatitis virus (VSV). Little is known about how viral infection of this midge affects blood feeding behavior and how this might affect virus transmission....

  9. Ecological concerns following Superstorm Sandy: stressor level and recreational activity levels affect perceptions of ecosystem

    PubMed Central

    2015-01-01

    Coastal habitats are vulnerable to storms, and with increasing urbanization, sea level rise, and storm frequency, some urban populations are at risk. This study examined perceptions of respondents in coastal and central New Jersey to Superstorm Sandy, including: 1) concerns about ecological resources and effects (open-ended question), 2) information sources for ecology of the coast (open-ended), and 3) ratings of a list of ecological services as a function of demographics, location (coastal, central Jersey), stressor level (power outages, high winds, flooding) and recreational rates. “Wildlife” and “fish” were the ecological concerns mentioned most often, while beaches and dunes were most often mentioned for environmental concerns. Television, radio, and web/internet were sources trusted for ecological information. The data indicate 1) stressor level was a better predictor of ratings of ecological services than geographical location, but days engaged in recreation contributed the most to variations in ratings, 2) ecological services were rated the highest by respondents with the highest stressor levels, and by those from the coast, compared to others, 3) Caucasians rated ecological services higher than all others, and 4) recreational rates were highest for coastal respondents, and ratings for ecological services increased with recreational rates. Only 20 % of respondents listed specific ecological services as one of their three most important environmental concerns. These data will be useful for increasing preparedness, enhancing educational strategies for shore protection, and providing managers and public policy makers with data essential to developing resiliency strategies. PMID:27011729

  10. Ecological concerns following Superstorm Sandy: stressor level and recreational activity levels affect perceptions of ecosystem.

    PubMed

    Burger, Joanna

    2015-06-01

    Coastal habitats are vulnerable to storms, and with increasing urbanization, sea level rise, and storm frequency, some urban populations are at risk. This study examined perceptions of respondents in coastal and central New Jersey to Superstorm Sandy, including: 1) concerns about ecological resources and effects (open-ended question), 2) information sources for ecology of the coast (open-ended), and 3) ratings of a list of ecological services as a function of demographics, location (coastal, central Jersey), stressor level (power outages, high winds, flooding) and recreational rates. "Wildlife" and "fish" were the ecological concerns mentioned most often, while beaches and dunes were most often mentioned for environmental concerns. Television, radio, and web/internet were sources trusted for ecological information. The data indicate 1) stressor level was a better predictor of ratings of ecological services than geographical location, but days engaged in recreation contributed the most to variations in ratings, 2) ecological services were rated the highest by respondents with the highest stressor levels, and by those from the coast, compared to others, 3) Caucasians rated ecological services higher than all others, and 4) recreational rates were highest for coastal respondents, and ratings for ecological services increased with recreational rates. Only 20 % of respondents listed specific ecological services as one of their three most important environmental concerns. These data will be useful for increasing preparedness, enhancing educational strategies for shore protection, and providing managers and public policy makers with data essential to developing resiliency strategies.

  11. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2

    PubMed Central

    Haworth, Matthew; Killi, Dilek; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro

    2016-01-01

    Physiological control of stomatal conductance (Gs) permits plants to balance CO2-uptake for photosynthesis (PN) against water-loss, so optimizing water use efficiency (WUE). An increase in the atmospheric concentration of carbon dioxide ([CO2]) will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesized that the increase in WUE associated with lower Gs at elevated [CO2] would reduce the negative impacts of drought on many crops. Despite the large number of CO2-enrichment studies to date, there is relatively little information regarding the effect of elevated [CO2] on stomatal control. Five crop species with active physiological stomatal behavior were grown at ambient (400 ppm) and elevated (2000 ppm) [CO2]. We investigated the relationship between stomatal function, stomatal size, and photosynthetic capacity in the five species, and then assessed the mechanistic effect of elevated [CO2] on photosynthetic physiology, stomatal sensitivity to [CO2] and the effectiveness of stomatal closure to darkness. We observed positive relationships between the speed of stomatal response and the maximum rates of PN and Gs sustained by the plants; indicative of close co-ordination of stomatal behavior and PN. In contrast to previous studies we did not observe a negative relationship between speed of stomatal response and stomatal size. The sensitivity of stomata to [CO2] declined with the ribulose-1,5-bisphosphate limited rate of PN at elevated [CO2]. The effectiveness of stomatal closure was also impaired at high [CO2]. Growth at elevated [CO2] did not affect the performance of photosystem II indicating that high [CO2] had not induced damage to the photosynthetic physiology, and suggesting that photosynthetic control of Gs is either directly impaired at high [CO2], sensing/signaling of environmental change is disrupted or elevated [CO2] causes some physical effect that constrains stomatal

  12. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2].

    PubMed

    Haworth, Matthew; Killi, Dilek; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro

    2016-01-01

    Physiological control of stomatal conductance (Gs) permits plants to balance CO2-uptake for photosynthesis (PN) against water-loss, so optimizing water use efficiency (WUE). An increase in the atmospheric concentration of carbon dioxide ([CO2]) will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesized that the increase in WUE associated with lower Gs at elevated [CO2] would reduce the negative impacts of drought on many crops. Despite the large number of CO2-enrichment studies to date, there is relatively little information regarding the effect of elevated [CO2] on stomatal control. Five crop species with active physiological stomatal behavior were grown at ambient (400 ppm) and elevated (2000 ppm) [CO2]. We investigated the relationship between stomatal function, stomatal size, and photosynthetic capacity in the five species, and then assessed the mechanistic effect of elevated [CO2] on photosynthetic physiology, stomatal sensitivity to [CO2] and the effectiveness of stomatal closure to darkness. We observed positive relationships between the speed of stomatal response and the maximum rates of PN and Gs sustained by the plants; indicative of close co-ordination of stomatal behavior and PN. In contrast to previous studies we did not observe a negative relationship between speed of stomatal response and stomatal size. The sensitivity of stomata to [CO2] declined with the ribulose-1,5-bisphosphate limited rate of PN at elevated [CO2]. The effectiveness of stomatal closure was also impaired at high [CO2]. Growth at elevated [CO2] did not affect the performance of photosystem II indicating that high [CO2] had not induced damage to the photosynthetic physiology, and suggesting that photosynthetic control of Gs is either directly impaired at high [CO2], sensing/signaling of environmental change is disrupted or elevated [CO2] causes some physical effect that constrains stomatal

  13. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid.

    PubMed

    Gonugunta, Vijay K; Srivastava, Nupur; Puli, Mallikarjuna R; Raghavendra, Agepati S

    2008-11-01

    Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.

  14. Brazilian Green Propolis Compared to Miconazole Gel in the Treatment of Candida-Associated Denture Stomatitis

    PubMed Central

    Capistrano, Hermínia Marques; de Assis, Eliene Magda; Leal, Rosana Maria; Alvarez-Leite, Maria Eugênia; Brener, Sylvie; Bastos, Esther Margarida Alves Ferreira

    2013-01-01

    Aim. To evaluate the efficacy of Brazilian green propolis in comparison to miconazole gel in the treatment of Candida-associated denture stomatitis. Methods. Forty-five denture stomatitis patients, with palatal mucosa erythema levels classified according to Newtons's criteria and with positive culture to Candida spp., were randomly divided into three treatment groups: 15 received miconazole gel 2%, 15 received propolis gel 2,5%, and 15 received propolis 24% for mouthwash. After four daily use lasting two weeks, they were reexamined for the denture stomatitis degree and for a second culture of Candida. The Wilcoxon's test was applied to compare the results of clinical classification of the denture stomatitis and the Candida spp. colonies numbers, before and after each treatment. The Kruskall-Wallis's test was used to compare efficacy among the three treatment groups. Results. There were a significant reduction or complete remission of denture stomatitis (P < 0.05) and a significant decrease of Candida colonies for the three groups (P < 0.05). There was no difference in the efficacy among the treatment groups (P > 0.05). Conclusion. Brazilian green propolis has a similar effect as miconazole in the treatment of Candida-associated denture stomatitis being an alternative in the therapeutics of this condition. PMID:23737855

  15. Phospholipase Dδ is involved in nitric oxide-induced stomatal closure.

    PubMed

    Distéfano, Ayelen M; Scuffi, Denise; García-Mata, Carlos; Lamattina, Lorenzo; Laxalt, Ana M

    2012-12-01

    Nitric oxide (NO) has recently emerged as a second messenger involved in the complex network of signaling events that regulate stomatal closure. Little is known about the signaling events occurring downstream of NO. Previously, we demonstrated the involvement of phospholipase D (PLD) in NO signaling during stomatal closure. PLDδ, one of the 12 Arabidopsis PLDs, is involved in dehydration stress responses. To investigate the role of PLDδ in NO signaling in guard cells, we analyzed guard cells responses using Arabidopsis wild type and two independent pldδ single mutants. In this work, we show that pldδ mutants failed to close the stomata in response to NO. Treatments with phosphatidic acid, the product of PLD activity, induced stomatal closure in pldδ mutants. Abscisic acid (ABA) signaling in guard cells involved H(2)O(2) and NO production, both required for ABA-induced stomatal closure. pldδ guard cells produced similar NO and H(2)O(2) levels as the wild type in response to ABA. However, ABA- or H(2)O(2)-induced stomatal closure was impaired in pldδ plants. These data indicate that PLDδ is downstream of NO and H(2)O(2) in ABA-induced stomatal closure.

  16. [Veterinary dentistry (11). Feline gingivitis-stomatitis-pharyngitis complex. Chronic/recurrent stomatitis in cats].

    PubMed

    van Foreest, A

    1995-10-01

    This is the fourth article in a series on veterinary dentistry in cats. This article describes the clinical signs, possible investigations, and differential diagnosis of the gingivitis-stomatitis pharyngitis complex (GSP complex), a complex and frequently occurring disease. Strategies for the treatment of feline chronic stomatitis complex, which is frequently idiopathic, are presented.

  17. Psychological Stress and Recurrent Aphthous Stomatitis

    PubMed Central

    de Barros Gallo, Camila; Mimura, Maria Angela Martins; Sugaya, Norberto Nobuo

    2009-01-01

    INTRODUCTION AND OBJECTIVES: Recurrent aphthous stomatitis (RAS) is the most common type of ulcerative disease of the oral mucosa. Despite its worldwide occurrence and the extensive amount of research that has been devoted to the subject, the etiology of RAS remains unclear. Nevertheless, several hereditary, nutritional, infectious and psychological factors have been associated with RAS. The aim of this case-control study was to assess the influence of psychological stress on the manifestation of RAS. METHOD: Fifty patients were enrolled in the trial. Twenty-five RAS patients constituted the study group and another 25 non-RAS patients who were similarly matched for sex, age and socioeconomic status constituted the control group. Each patient was evaluated in terms of the four domains of stress (emotional, physical, social and cognitive) using an internationally validated questionnaire, which was comprised of 59 items and measured the frequency and intensity of stress symptoms. The RAS group was interviewed during an active RAS episode. Completed questionnaires were submitted to proper analytical software and interpreted by an expert psychologist. RESULTS: There was a higher level of psychological stress among RAS group patients when compared to the control group (P < 0.05). CONCLUSION: Psychological stress may play a role in the manifestation of RAS; it may serve as a trigger or a modifying factor rather than being a cause of the disease. PMID:19606240

  18. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  19. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.

    PubMed

    Wright, Thomas E; Tausz, Michael; Kasel, Sabine; Volkova, Liubov; Merchant, Andrew; Bennett, Lauren T

    2012-03-01

    While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than

  20. Role of hysteresis in stomatal aperture dynamics

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Prado, Carmen P. C.

    2013-01-01

    Stomata are pores responsible for gas exchange in leaves. Several experiments indicate that stomata synchronize into clusters or patches. The patches’ coordination may produce oscillations in stomatal conductance. Previous studies claim to reproduce some experimental results. However, none was able to explain the variety of behavior observed in the stomatal dynamics. Recently, Ferraz and Prado suggested a realistic geometry of vein distribution. Although it reproduces the patches, no oscillation was observed and the patches remain static. Without exploring significant details, the authors stated that hysteresis in stomatal aperture could explain several experimental features. In this paper, the hysteresis hypothesis is further explored through the concept of hysteretic operators. We have shown that the hysteresis assumption is sufficient to obtain dynamical patches and oscillations in stomatal conductance. The robustness of this hypothesis is tested by using different hysteresis operators. The model analysis reveals a dependence between the period of oscillation in stomatal conductance and the water deficit between the leaf and the environment. This underlying feature of the model might inspire further experiments to test this hypothesis.

  1. Stomatal architecture and evolution in basal angiosperms.

    PubMed

    Carpenter, Kevin J

    2005-10-01

    Stomatal architecture-the number, form, and arrangement of specialized epidermal cells associated with stomatal guard cells-of 46 species of basal angiosperms representing all ANITA grade families and Chloranthaceae was investigated. Leaf clearings and cuticular preparations were examined with light microscopy, and a sample of 100 stomata from each specimen was coded for stomatal type and five other characters contributing to stomatal architecture. New stomatal types were defined, and many species were examined and illustrated for the first time. Character evolution was examined in light of the ANITA hypothesis using MacClade software. Analysis of character evolution, along with other evidence from this study and evidence from the literature on fossil angiosperms and other seed plant lineages, suggests that the ancestral condition of angiosperms can be described as anomo-stephanocytic, a system in which complexes lacking subdidiaries (anomocytic) intergrade with those having weakly differentiated subsidiaries arranged in a rosette (stephanocytic). From this ancestral condition, tangential divisions of contact cells led to the profusion of different types seen in early fossil angiosperms and Amborellaceae, Austrobaileyales, and derived Chloranthaceae, while the state in Nymphaeales is little modified. Formation of new, derived types by tangential division appears to be a recurrent theme in seed plant evolution.

  2. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2015-01-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  3. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage.

  4. Exploring Factors Affecting Girls' Education at Secondary Level: A Case of Karak District, Pakistan

    ERIC Educational Resources Information Center

    Suleman, Qaiser; Aslam, Hassan Danial; Habib, Muhammad Badar; Yasmeen, Kausar; Jalalian, Mehrdad; Akhtar, Zaitoon; Akhtar, Basreen

    2015-01-01

    The study examined the factors that affect girls' education at secondary school level in Karak District, Khyber Pakhtunkhwa (Pakistan). All the female heads, teachers and students serving and studying at secondary school level in Karak District constituted the population of the study. The study was delimited to only 30 girls' secondary schools in…

  5. Arabidopsis HY1-Modulated Stomatal Movement: An Integrative Hub Is Functionally Associated with ABI4 in Dehydration-Induced ABA Responsiveness1

    PubMed Central

    Xie, Yanjie; Mao, Yu; Duan, Xingliang; Zhou, Heng; Lai, Diwen; Zhang, Yihua; Shen, Wenbiao

    2016-01-01

    Heme oxygenase (HO; EC 1.14.99.3) has recently been proposed as a novel component in mediating wide ranges of the plant adaptive signaling processes. However, the physiological significance and molecular basis underlying Arabidopsis (Arabidopsis thaliana) HO1 (HY1) functioning in drought tolerance remained unclear. Here, we report that mutation of HY1 promoted, but overexpression of this gene impaired, Arabidopsis drought tolerance. This was attributed to the abscisic acid (ABA)-hypersensitive or -hyposensitive phenotypes, with the regulation of stomatal closure in particular. However, comparative transcriptomic profile analysis showed that the induction of numerous ABA/stress-dependent genes in dehydrated wild-type plants was differentially impaired in the hy1 mutant. In agreement, ABA-induced ABSCISIC ACID-INSENSITIVE4 (ABI4) transcript accumulation was strengthened in the hy1 mutant. Genetic analysis further identified that the hy1-associated ABA hypersensitivity and drought tolerance were arrested in the abi4 background. Moreover, the promotion of ABA-triggered up-regulation of RbohD abundance and reactive oxygen species (ROS) levels in the hy1 mutant was almost fully blocked by the mutation of ABI4, suggesting that the HY1-ABI4 signaling in the wild type involved in stomatal closure was dependent on the RbohD-derived ROS production. However, hy1-promoted stomatal closure was not affected by a nitric oxide scavenger. Correspondingly, ABA-insensitive behaviors in rbohD stomata were not affected by either the mutation of HY1 or its ectopic expression in the rbohD background, both of which responded significantly to exogenous ROS. These data indicate that HY1 functioned negatively and acted upstream of ABI4 in drought signaling, which was casually dependent on the RbohD-derived ROS in the regulation of stomatal closure. PMID:26704641

  6. Gingivitis/stomatitis in cats.

    PubMed

    Williams, C A; Aller, M S

    1992-11-01

    Any alteration in the balance of bacterial challenge versus the host's ability to resist and repair will result in oral lesions that are similar in appearance. The bacterial cause of gingivitis and periodontitis in humans and in all other animals in which it has been studied is firmly established, and specific species of predominantly gram-negative anaerobes have been implicated. Naturally occurring or acquired immunopathologies are likely to result in premature dental disease. When oral disease is associated with the accumulation of plaque, a positive response can be achieved by reducing the bacterial challenge to the host through the maintenance of oral hygiene by timely professional dental prophylaxis and home care. Disease that is the result of atypical immune responses, however, can be much more difficult to manage. Such oral disease can occur with either immune deficiencies or exaggerated immune responses, and it is likely that multiple mechanisms are active concurrently. In any case, gram-negative anaerobes present in plaque are likely to be a major contributing factor. Therefore patients with chronic refractory gingivitis-stomatitis must be considered to be plaque intolerant. Only with a frequent regimen of aggressive and thorough professional dental treatment plus meticulous oral home care on a daily basis can one expect to keep these cases in remission. Because this is often unrealistic, the only other way to keep these patients free of disease is by total dental extraction. The tissues that are colonized by the causative organisms must be eliminated. All root tips and bony sequestra must be removed and healing with intact epithelium accomplished before these cases will go into remission. Edentulous feline patients that continue to have signs of gingivostomatitis have been found to have an area of nonhealed bony sequestrum and chronic osteomyelitis. Once effective debridement has been accomplished and epithelial healing completed, nonresponsive cases can

  7. Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand.

    PubMed

    Tissue, David T; Griffin, Kevin L; Turnbull, Matthew H; Whitehead, David

    2005-04-01

    We assessed the relative limitations to photosynthesis imposed by stomatal and non-stomatal processes in Dacrydium cupressinum Lamb. (Podocarpaceae), which is the dominant species in a native, mixed conifer-broad-leaved rainforest in New Zealand. For comparison, we included three co-occurring broad-leaved tree species (Meterosideros umbellata Cav. (Myrtaceae), Weinmannia racemosa L.f. (Cunoniaceae) and Quintinia acutifolia Kirk (Escalloniaceae)) that differ in phylogeny and in leaf morphology from D. cupressinum. We found that low foliage phosphorus content on an area basis (P(a)) limited light-saturated photosynthesis on an area basis (A(sat)) in Q. acutifolia. Depth in the canopy did not generally affect A(sat) or the relative limitations to A(sat) because of stomatal and non-stomatal constraints, despite reductions in the ratio of foliage mass to area, foliar nitrogen on an area basis (N(a)) and P(a) with depth in the canopy. In the canopy-dominant conifer D. cupressinum, A(sat) was low, consistent with low values of the maximum rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (V(cmax)). In comparison, the A(sat) response of the three broad-leaved tree species was quite variable. Although A(sat) was high in the canopy-dominant M. umbellata, it was low in the sub-canopy trees W. racemosa and Q. acutifolia. Relative stomatal limitation to photosynthesis was more pronounced in W. racemosa (40%) than in the other three species (28-33%). Despite differences in degree, non-stomatal limitation to A(sat) predominated in all tree species.

  8. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    PubMed Central

    Carvalho, Dália R. A.; Torre, Sissel; Kraniotis, Dimitrios; Almeida, Domingos P. F.; Heuvelink, Ep; Carvalho, Susana M. P.

    2015-01-01

    High relative air humidity (RH ≥ 85%) during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV) 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA]) enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61%) or high (92%) RH combined with a continuous low (0.08 m s-1) or high (0.92 m s-1) MOV. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA]. PMID:26074943

  9. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?

    PubMed Central

    Hodgson, J. G.; Sharafi, M.; Jalili, A.; Díaz, S.; Montserrat-Martí, G.; Palmer, C.; Cerabolini, B.; Pierce, S.; Hamzehee, B.; Asri, Y.; Jamzad, Z.; Wilson, P.; Raven, J. A.; Band, S. R.; Basconcelo, S.; Bogard, A.; Carter, G.; Charles, M.; Castro-Díez, P.; Cornelissen, J. H. C.; Funes, G.; Jones, G.; Khoshnevis, M.; Pérez-Harguindeguy, N.; Pérez-Rontomé, M. C.; Shirvany, F. A.; Vendramini, F.; Yazdani, S.; Abbas-Azimi, R.; Boustani, S.; Dehghan, M.; Guerrero-Campo, J.; Hynd, A.; Kowsary, E.; Kazemi-Saeed, F.; Siavash, B.; Villar-Salvador, P.; Craigie, R.; Naqinezhad, A.; Romo-Díez, A.; de Torres Espuny, L.; Simmons, E.

    2010-01-01

    Background and Aims Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of ‘this ecological circumstance’ is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this ‘missing link’: the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. Methods Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. Key Results Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. Conclusions Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven

  10. Study of some parameters affecting noise level in textile spinning and weaving mills.

    PubMed

    el-Dakhakhny, A A; Noweir, M H; Kamel, N R

    1975-01-01

    Noise was evaluated in six spinning and five weaving halls located in three textile mills in Egypt. Spindle speed (rpm) and loom speed (picks per minutes) were found to be important parameters affecting the noise level in these mills. Reduction of the number of spinning machines to five spindles per square meter of floor area will probably bring the noise level below the TLV. In the weaving departments, the decrease in the number of looms will not effectively reduce the noise level.

  11. Stomagen positively regulates stomatal density in Arabidopsis.

    PubMed

    Sugano, Shigeo S; Shimada, Tomoo; Imai, Yu; Okawa, Katsuya; Tamai, Atsushi; Mori, Masashi; Hara-Nishimura, Ikuko

    2010-01-14

    Stomata in the epidermal tissues of leaves are valves through which passes CO(2), and as such they influence the global carbon cycle. The two-dimensional pattern and density of stomata in the leaf epidermis are genetically and environmentally regulated to optimize gas exchange. Two putative intercellular signalling factors, EPF1 and EPF2, function as negative regulators of stomatal development in Arabidopsis, possibly by interacting with the receptor-like protein TMM. One or more positive intercellular signalling factors are assumed to be involved in stomatal development, but their identities are unknown. Here we show that a novel secretory peptide, which we designate as stomagen, is a positive intercellular signalling factor that is conserved among vascular plants. Stomagen is a 45-amino-rich peptide that is generated from a 102-amino-acid precursor protein designated as STOMAGEN. Both an in planta analysis and a semi-in-vitro analysis with recombinant and chemically synthesized stomagen peptides showed that stomagen has stomata-inducing activity in a dose-dependent manner. A genetic analysis showed that TMM is epistatic to STOMAGEN (At4g12970), suggesting that stomatal development is finely regulated by competitive binding of positive and negative regulators to the same receptor. Notably, STOMAGEN is expressed in inner tissues (the mesophyll) of immature leaves but not in the epidermal tissues where stomata develop. This study provides evidence of a mesophyll-derived positive regulator of stomatal density. Our findings provide a conceptual advancement in understanding stomatal development: inner photosynthetic tissues optimize their function by regulating stomatal density in the epidermis for efficient uptake of CO(2).

  12. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2016-07-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability.

  13. Analysis of gas exchange, stomatal behaviour and micronutrients uncovers dynamic response and adaptation of tomato plants to monochromatic light treatments.

    PubMed

    O'Carrigan, Andrew; Babla, Mohammad; Wang, Feifei; Liu, Xiaohui; Mak, Michelle; Thomas, Richard; Bellotti, Bill; Chen, Zhong-Hua

    2014-09-01

    Light spectrum affects the yield and quality of greenhouse tomato, especially over a prolonged period of monochromatic light treatments. Physiological and chemical analysis was employed to investigate the influence of light spectral (blue, green and red) changes on growth, photosynthesis, stomatal behaviour, leaf pigment, and micronutrient levels. We found that plants are less affected under blue light treatment, which was evident by the maintenance of higher A, gs, Tr, and stomatal parameters and significantly lower VPD and Tleaf as compared to those plants grown in green and red light treatments. Green and red light treatments led to significantly larger increase in the accumulation of Fe, B, Zn, and Cu than blue light. Moreover, guard cell length, width, and volume all showed highly significant positive correlations to gs, Tr and negative links to VPD. There was negative impact of monochromatic lights-induced accumulation of Mn, Cu, and Zn on photosynthesis, leaf pigments and plant growth. Furthermore, most of the light-induced significant changes of the physiological traits were partially recovered at the end of experiment. A high degree of morphological and physiological plasticity to blue, green and red light treatments suggested that tomato plants may have developed mechanisms to adapt to the light treatments. Thus, understanding the optimization of light spectrum for photosynthesis and growth is one of the key components for greenhouse tomato production.

  14. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation.

    PubMed

    Merilo, Ebe; Laanemets, Kristiina; Hu, Honghong; Xue, Shaowu; Jakobson, Liina; Tulva, Ingmar; Gonzalez-Guzman, Miguel; Rodriguez, Pedro L; Schroeder, Julian I; Broschè, Mikael; Kollist, Hannes

    2013-07-01

    Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca(2+)-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.

  15. Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells.

    PubMed

    Hu, Honghong; Boisson-Dernier, Aurélien; Israelsson-Nordström, Maria; Böhmer, Maik; Xue, Shaowu; Ries, Amber; Godoski, Jan; Kuhn, Josef M; Schroeder, Julian I

    2010-01-01

    The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.

  16. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces

    NASA Astrophysics Data System (ADS)

    Baldocchi, Dennis D.; Hicks, Bruce B.; Camara, Pamela

    A gaseous deposition model, based on a realistic canopy stomatal resistance submodel, is described, analyzed and tested. This model is designed as one of a hierarchy of simulations, leading up to a "big-leaf" model of the processes contributing to the exchange of trace gases between the atmosphere and vegetated surfaces. Computations show that differences in plant species and environmental and physiological conditions can affect the canopy stomatal resistance by a factor of four. Canopy stomatal resistances to water vapor transfer computed with the present model are compared against values measured with a porometer and computed with the Penman-Monteith equation. Computed stomatal resistances from a soybean canopy in both well-watered and water-stressed conditions yield good agreement with test data. The stomatal resistance submodel responds well to changing environmental and physiological conditions. Model predictions of deposition velocities are evaluated for the case of ozone, transferred to maize. Calculated deposition velocities of O 3 overestimate measured values on the average by about 30%, probably largely as a consequence of uncertainties in leaf area index, soil and cuticle resistances, and other modeling parameters, but also partially due to imperfect measurement of O 3 deposition velocities.

  17. Blood Feeding Behavior of Vesicular Stomatitis Virus Infected Culicoides Sonorensis (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether vesicular stomatitis virus (VSV) infection of Culicoides sonorensis affects subsequent blood feeding behavior, midges injected with either virus-infected or virus-free cell lysates were allowed to blood feed for short (10 min) or long (60 min) periods of time on days 2, 3, and 4...

  18. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance1

    PubMed Central

    Martins, Samuel C.V.; Daloso, Danilo M.; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M.; Fernie, Alisdair R.; Araújo, Wagner L.

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  19. Mechanisms of abscisic acid-mediated control of stomatal aperture.

    PubMed

    Munemasa, Shintaro; Hauser, Felix; Park, Jiyoung; Waadt, Rainer; Brandt, Benjamin; Schroeder, Julian I

    2015-12-01

    Drought stress triggers an increase in the level of the plant hormone abscisic acid (ABA), which initiates a signaling cascade to close stomata and reduce water loss. Recent studies have revealed that guard cells control cytosolic ABA concentration through the concerted actions of biosynthesis, catabolism as well as transport across membranes. Substantial progress has been made at understanding the molecular mechanisms of how the ABA signaling core module controls the activity of anion channels and thereby stomatal aperture. In this review, we focus on our current mechanistic understanding of ABA signaling in guard cells including the role of the second messenger Ca(2+) as well as crosstalk with biotic stress responses.

  20. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling.

    PubMed

    Fotopoulos, Vasileios; De Tullio, Mario C; Barnes, Jeremy; Kanellis, Angelos K

    2008-01-01

    Control of stomatal aperture is of paramount importance for plant adaptation to the surrounding environment. Here, we report on several parameters related to stomatal dynamics and performance in transgenic tobacco plants (Nicotiana tabacum L., cv. Xanthi) over-expressing cucumber ascorbate oxidase (AO), a cell wall-localized enzyme of uncertain biological function that oxidizes ascorbic acid (AA) to monodehydroascorbic acid which dismutates yielding AA and dehydroascorbic acid (DHA). In comparison to WT plants, leaves of AO over-expressing plants exhibited reduced stomatal conductance (due to partial stomatal closure), higher water content, and reduced rates of water loss on detachment. Transgenic plants also exhibited elevated levels of hydrogen peroxide and a decline in hydrogen peroxide-scavenging enzyme activity. Leaf ABA content was also higher in AO over-expressing plants. Treatment of epidermal strips with either 1 mM DHA or 100 microM hydrogen peroxide resulted in rapid stomatal closure in WT plants, but not in AO-over-expressing plants. This suggests that signal perception and/or transduction associated with stomatal closure is altered by AO over-expression. These data support a specific role for cell wall-localized AA in the perception of environmental cues, and suggest that DHA acts as a regulator of stomatal dynamics.

  1. Optimal stomatal behaviour around the world

    SciTech Connect

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-StPaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; De Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-03-02

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  2. Optimal stomatal behaviour around the world

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  3. Optimal stomatal behaviour around the world

    DOE PAGES

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; ...

    2015-03-02

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbonmore » cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.« less

  4. Ethylene modifies architecture of root system in response to stomatal opening and water allocation changes between root and shoot.

    PubMed

    Patrick, Beauclair; Antonin, Leblanc; Servane, Lemauviel-Lavenant; Deleu, Carole; Le Deunff, Erwan

    2009-01-01

    Ethylene plays a key role in the elongation of exploratory and root hair systems in plants, as demonstrated by pharmacological modulation of the activity of ethylene biosynthesis enzymes: ACC synthase (ACS) and ACC oxidase (ACO). Thus, treatments with high concentrations (10 microM) of aminoethoxyvinylglycine (AVG, inhibitor of ACS) and 1-aminocyclopropane carboxylic acid (ACC, ethylene precursor, ACO activator) severely decrease the elongation of the exploratory root system but induce opposite effects on the root hair system: root hair length and numbers were increased in seedlings treated with ACC, whereas they were reduced in seedlings treated with AVG. Until now, such elongation changes of root architecture had not been questioned in terms of nitrate uptake. In the march issue of Plant Physiology we report that N uptake and nitrate transporter BnNrt2.1 transcript level were markedly reduced in ACC treated seedlings, but were increased in AVG treated seedlings compared to the control.1 Because recent studies have revealed that ethylene can also modulate stomatal opening as well as root hair cell elongation, we have examined whether pharmacological modulation of ethylene biosynthesis could affect, in an integrated manner, and at a whole-plant level, the exploratory and root hair systems, through changes of stomatal conductance and water allocation between the root and shoot.

  5. Ethylene modifies architecture of root system in response to stomatal opening and water allocation changes between root and shoot

    PubMed Central

    Patrick, Beauclair; Antonin, Leblanc; Servane, Lemauviel-Lavenant; Deleu, Carole

    2009-01-01

    Ethylene plays a key role in the elongation of exploratory and root hair systems in plants, as demonstrated by pharmacological modulation of the activity of ethylene biosynthesis enzymes: ACC synthase (ACS) and ACC oxidase (ACO). Thus, treatments with high concentrations (10 µM) of aminoethoxyvinylglycine (AVG, inhibitor of ACS) and 1-aminocyclopropane carboxylic acid (ACC, ethylene precursor, ACO activator) severely decrease the elongation of the exploratory root system but induce opposite effects on the root hair system: root hair length and numbers were increased in seedlings treated with ACC, whereas they were reduced in seedlings treated with AVG. Until now, such elongation changes of root architecture had not been questioned in terms of nitrate uptake. In the march issue of Plant Physiology we report that N uptake and nitrate transporter BnNrt2.1 transcript level were markedly reduced in ACC treated seedlings, but were increased in AVG treated seedlings compared to the control.1 Because recent studies have revealed that ethylene can also modulate stomatal opening as well as root hair cell elongation, we have examined whether pharmacological modulation of ethylene biosynthesis could affect, in an integrated manner, and at a whole-plant level, the exploratory and root hair systems, through changes of stomatal conductance and water allocation between the root and shoot. PMID:19704705

  6. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar.

    PubMed

    Wang, Congpeng; Liu, Sha; Dong, Yan; Zhao, Ying; Geng, Anke; Xia, Xinli; Yin, Weilun

    2016-03-01

    Water deficiency is a critical environmental condition that is seriously reducing global plant production. Improved water-use efficiency (WUE) and drought tolerance are effective strategies to address this problem. In this study, PdEPF1, a member of the EPIDERMAL PATTERNING FACTOR (EPF) family, was isolated from the fast-growing poplar clone NE-19 [Populus nigra × (Populus deltoides × Populus nigra)]. Significantly, higher PdEPF1 levels were detected after induction by dehydration and abscisic acid. To explore the biological functions of PdEPF1, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PdEPF1 were constructed. PdEPF1 overexpression resulted in increased water deficit tolerance and greater WUE. We confirmed that the transgenic lines with greater instantaneous WUE had approximately 30% lower transpiration but equivalent CO2 assimilation. Lower transpiration was associated with a 28% reduction in abaxial stomatal density. PdEPF1 overexpression not only strongly enhanced WUE, but also greatly improved drought tolerance, as measured by the leaf relative water content and water potential, under limited water conditions. In addition, the growth of these oxPdEPF1 plants was less adversely affected by reduced water availability than plants with a higher stomatal density, indicating that plants with a low stomatal density may be well suited to grow in water-scarce environments. Taken together, our data suggest that PdEPF1 improves WUE and confers drought tolerance in poplar; thus, it could be used to breed drought-tolerant plants with increased production under conditions of water deficiency.

  7. Affective, Normative, and Continuance Commitment Levels across Cultures: A Meta-Analysis

    ERIC Educational Resources Information Center

    Meyer, John P.; Stanley, David J.; Jackson, Timothy A.; McInnis, Kate J.; Maltin, Elyse R.; Sheppard, Leah

    2012-01-01

    With increasing globalization of business and diversity within the workplace, there has been growing interest in cultural differences in employee commitment. We used meta-analysis to compute mean levels of affective (AC; K=966, N=433,129), continuance (CC; K=428, N=199,831), and normative (NC; K=336, N=133,277) organizational commitment for as…

  8. Changes in Affective Profiles of Postsecondary Students in Lower-Level Foreign Language Classes

    ERIC Educational Resources Information Center

    Kondo-Brown, Kimi

    2013-01-01

    Recent surveys and research on second language (L2)/foreign language acquisition help explain the challenges that postsecondary students in lower-level foreign language (FL) courses may experience. The present study extends this line of research by examining changes in students' affective profiles in a two-year Japanese program (n = 382) at an…

  9. Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)

    EPA Science Inventory

    A commonly used landscape model to simulate wetland change – the Sea Level Affecting Marshes Model(SLAMM) – has rarely been explicitly assessed for its prediction accuracy. Here, we evaluated this model using recently proposed neutral models – including the random constraint matc...

  10. Effect of Cognitive Entry Behaviors and Affective Entry Characteristics on Learning Level

    ERIC Educational Resources Information Center

    Çaliskan, Muhittin

    2014-01-01

    In this study, the effect of cognitive entry behaviors and affective entry characteristics on learning level was investigated. The study was conducted on 258 first year students attending the Faculty of Education in the autumn semester of the 2011-2012 academic year. The study was conducted using the relational survey model and data was collected…

  11. Level of Mercury Manometer With Respect to Heart: Does it Affect Blood Pressure Measurement?

    PubMed

    Kapoor, Raj; Roy, V K; Manna, S; Bhattacharjee, M

    2015-01-01

    Measurement of blood pressure is an integral part of clinical examination. Over the years various types of instruments have been used to measure blood pressure but till date the mercury sphygmomanometer is regarded as the gold standard. However, there is a myth prevalent among health professionals regarding the level of the manometer in relation to heart at the time of measuring of blood pressure. Many professionals insist that it has to be placed at the level of the heart. We argue that the limb from which pressure is measured must be at the heart level rather than the manometer. We conducted a study in which we measured the blood pressure in adults by placing the manometer at three different levels with respect to the heart. The values of blood pressure obtained at all levels were similar and did not show any statistically significant difference. We therefore conclude that the level of sphygmomanometer per se does not affect blood pressure measurement.

  12. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives.

    PubMed

    Singh, Rachana; Parihar, Parul; Singh, Samiksha; Mishra, Rohit Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2017-04-01

    Reactive oxygen species (ROS), a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca(2+) level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.

  13. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.

    PubMed

    Rielly-Carroll, Elizabeth; Freestone, Amy L

    2017-03-01

    Seagrass, an important subtidal marine ecosystem, is being lost at a rate of 110 km(2) year(-1), leading to fragmented seagrass seascapes. Habitat fragmentation is predicted to affect trophic levels differently, with higher trophic levels being more sensitive, stressing the importance of a multi-trophic perspective. Utilizing the trophic relationship between the blue crab (Callinectes sapidus) and hard clam (Mercenaria mercenaria), where adult blue crabs prey on juvenile blue crabs, and juvenile blue crabs prey on small hard clams, we examined whether predation rates, abundance, and behavior of predators and prey differed between continuous and fragmented seagrass in a multi-trophic context at two sites in Barnegat Bay, NJ. We tested the hypothesis that fragmented habitats would differentially affect trophic levels within a tri-trophic system, and our results supported this hypothesis. Densities of adult blue crabs were higher in fragmented than continuous habitats. Densities of juvenile blue crabs, the primary predator of hard clams, were lower in fragmented habitats than continuous, potentially due to increased predation by adult blue crabs. Clams experienced lower predation and burrowed to a shallower depth in fragmented habitats than in continuous habitat, likely due in part to the low densities of juvenile blue crabs, their primary predator. Our results suggest that while trophic levels are differentially affected, the impact of habitat fragmentation may be stronger on intermediate rather than top trophic levels in some marine systems.

  14. Temperature and dietary starch level affected protein but not starch digestibility in gilthead sea bream juveniles.

    PubMed

    Couto, A; Enes, P; Peres, H; Oliva-Teles, A

    2012-06-01

    A study was carried out with gilthead sea bream juveniles to assess the effect of water temperature (18 and 25°C) and dietary pregelatinized starch level (10, 20 and 30%) on digestibility of protein and starch and on the activity of proteolytic and amylolytic enzymes. ADC of pregelatinized starch was very high (>99%) irrespectively of dietary inclusion level, and it was not affected by water temperature. ADC of protein was also high (>90%) but improved at the higher water temperature. Dietary starch interacted with protein digestibility, which decreased as dietary starch level increased. Temperature affected both acid and basic protease activities, with acid protease activity being higher at 25°C and basic protease activity being higher at 18°C. However, total proteolytic activity and amylase activities were not affected by water temperature. Dietary carbohydrate exerted no effect on proteolytic or amylolitic activities. It is concluded that gilthead sea bream juveniles digest pregelatinized starch very efficiently irrespective of water temperature, due to adjustments of amylase activity to cope with temperature differences. Pregelatinized starch interacts negatively with protein digestibility, with the ADC of protein decreasing as dietary starch levels increase.

  15. Leaf water potential, stomatal resistance, and photosynthetic response to water stress in peach seedlings.

    PubMed

    Hand, J M; Young, E; Vasconcelos, A C

    1982-05-01

    Individual groups of peach (Prunus persica [L.] Batsch) seedlings stressed to -17, -26 and -36 bars recovered to control levels within 1, 3, and 4 days, respectively. Stomatal resistance was significantly correlated with both leaf water potential and net photosynthesis. In seedlings stressed to -52 bars, leaf water potential and stomatal resistance recovered sooner than net photosynthesis, despite recovery of 0(2) evolution at a rate similar to leaf water potential. Therefore, some nonstomatal factor other than reduction in photochemical activity must be responsible for the lag in recovery of CO(2) assimilation following irrigation.

  16. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.

    PubMed

    Zhang, Shi-Bao; Guan, Zhi-Jie; Chang, Wei; Hu, Hong; Yin, Qing; Cao, Kun-Fang

    2011-06-01

    Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic induction of Paphiopedilum and Cypripedium, the stomatal anatomy and photosynthetic induction of Paphiopedilum armeniacum and Cypripedium flavum were investigated at different ratios of red to blue light. The highest stomatal opening and photosynthesis of intact leaves in P. armeniacum were induced by irradiance enriched with blue light. Its stomatal opening could be induced by red light 250 µmol m⁻² s⁻¹, but the magnitude of stomatal opening was lower than those at the other light qualities. However, the stomatal opening and photosynthesis of C. flavum were highly induced by mixed blue and red light rather than pure blue or red light. The two orchid species did not differ in stomatal density, but P. armeniacum had smaller stomatal size than C. flavum. The stomata of P. armeniacum were slightly sunken into the leaf epidermis, while C. flavum protruded above the leaf surface. The slower photosynthetic induction and lower photosynthetic rate of P. armeniacum than C. flavum were linked to the lack of guard cell chloroplasts and specific stomatal structure, which reflected an adaptation of Paphiopedilum to periodic water deficiency in limestone habitats. These results provide evidence for the morphological and physiological evolution of stomata relation for water conservation under natural selection.

  17. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis.

    PubMed

    Miura, Kenji; Okamoto, Hiroyuki; Okuma, Eiji; Shiba, Hayato; Kamada, Hiroshi; Hasegawa, Paul M; Murata, Yoshiyuki

    2013-01-01

    Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.

  18. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species : I. VPD effects on the transient stomatal response to lightflecks.

    PubMed

    Tinoco-Ojanguren, Clara; Pearcy, Robert W

    1993-06-01

    The effects of leaf-air vapor pressure deficit (VPD) on the transient and steady-state stomatal responses to photon flux density (PFD) were evaluated in Piper auritum, a pioneer tree, and Piper aequale, a shade tolerant shrub, that are both native to tropical forests at Los Tuxtlas, Veracruz, México. Under constant high-PFD conditions, the stomata of shade-acclimated plants of both species were sensitive to VPD, exhibiting a nearly uniform decrease in gs as VPD increased. Acclimation of P. auritum to high light increased the stomatal sensitivity to VPD that was sufflcient to cause a reduction in transpiration at high VPD's. At low PFD, where gs was already reduced, there was little additional absolute change with VPD for any species or growth condition. The stomatal response to 8-min duration lightflecks was strongly modulated by VPD and varied between the species and growth light conditions. In P. aequale shade plants, increased VPD had no effect on the extent of stomatal opening but caused the rate of closure after the lightfleck to be faster. Thus, the overall response to a lightfleck changed from hysteretic (faster opening than closure) to symmetric (similar opening and closing rates). Either high or low VPD caused gs not to return to the steady-state value present before the lightfleck. At high VPD the value after was considerably less than the value before whereas at low VPD the opposite occurred. Shade-acclimated plants of P. auritum showed only a small gs response to lightflecks, which was not affected by VPD. Under sunfleck regimes in the understory, the stomatal response of P. aequale at low VPD may function to enhance carbon gain by increasing the induction state. At high VPD, the shift in the response enhances water use efficiency but at the cost of reduced assimilation.

  19. Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca(2+) and water channel in Vicia faba.

    PubMed

    Li, Yan; Xu, ShanShan; Gao, Jing; Pan, Sha; Wang, GenXuan

    2016-03-01

    Sugars act as vital signaling molecules that regulate plant growth, development and stress responses. However, the effects of sugars on stomatal movement have been unclear. In our study, we explored the effects of monosaccharides such as glucose and mannose on stomatal aperture. Here, we demonstrate that glucose and mannose trigger stomatal closure in a dose- and time-dependent manner in epidermal peels of broad bean (Vicia faba). Pharmacological studies revealed that glucose- and mannose-induced stomatal closure was almost completely inhibited by two reactive oxygen species (ROS) scavengers, catalase (CAT) and reduced glutathione (GSH), was significantly abolished by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI), whereas they were hardly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM). Furthermore, glucose- and mannose-induced stomatal closure was strongly inhibited by a Ca(2+) channel blocker, LaCl3 , a Ca(2+) chelator, ethyleneglycol-bis(beta-aminoethylether)-N,N'-tetraacetic acid (EGTA) and two water channel blockers, HgCl2 and dimethyl sulfoxide (DMSO); whereas the inhibitory effects of the water channel blockers were essentially abolished by the reversing agent β-mercaptoethanol (β-ME). These results suggest that ROS production mainly via NADPH oxidases, Ca(2+) and water channels are involved in glucose- and mannose-induced stomatal closure.

  20. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    NASA Astrophysics Data System (ADS)

    Wehr, Richard; Commane, Róisín; Munger, J. William; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Saleska, Scott R.; Wofsy, Steven C.

    2017-01-01

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem-atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further

  1. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE PAGES

    Wehr, Richard; Commane, Róisín; Munger, J. William; ...

    2017-01-26

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is

  2. Analysis of factors affecting satisfaction level on problem based learning approach using structural equation modeling

    NASA Astrophysics Data System (ADS)

    Hussain, Nur Farahin Mee; Zahid, Zalina

    2014-12-01

    Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.

  3. [How to cope with recurrent aphthous stomatitis].

    PubMed

    Madrid, C; Jaques, B; Bouferrrache, K; Broome, M

    2010-10-06

    Recurrent aphthous stomatitis (RAS) is the most common oral mucosa ailment. This condition is frequently considered as idiopathic due to the doubts about its etiology, probably related to a minor immunological dysregulation in a context of genetic predisposition. However, ulcers that resemble recurrent aphthous stomatitis in some respects can be found in systemic disorders that must be ruled out for the differential diagnosis of SAR, particularly when they appear after adolescence and/or when associated lesions exist out of the oral cavity. SAR management lies on the elimination of predisposing factors (drugs, oral trauma, food allergies...) and if needed, topical corticosteroids are the first choice regimen. More severe cases may require systemic regimens.

  4. Does the Maritime Continent region affect sea level change of the eastern Indian Ocean?

    NASA Astrophysics Data System (ADS)

    Llovel, W.; Lee, T.

    2014-12-01

    The Maritime Continent region, in particular, the Indonesian Sea, regulates the oceanic communication between the Pacific and Indian Oceans. Previous studies suggest that the freshwater transported from the South China Sea to the Indonesian Sea affects the magnitude and structure of the Indonesian throughflow, and the strong tidal mixing in the Indonesian Sea alters the time mean vertical structure of the water mass carried from the Pacific to the Indian Oceans. Sea level changes in the eastern Indian Ocean is known to be affected by those in the northwestern Pacific via coastal Kelvin wave propagation through the Indonesian Sea. However, whether the Maritime Continent region influences sea level changes in the eastern Indian Ocean has not been investigated. In this study, we used Argo floats and satellite altimeter data to study the near decadal change of sea level during the 2005-2013 period. We found that the steric sea level change in eastern Indian Ocean cannot be fully explained by either local forcing or the transmission of steric signal from the western Pacific. This implicates the potential role of the Maritime Continent region in regulating sea level changes in the eastern Indian Ocean.

  5. Environmental noise levels affect the activity budget of the Florida manatee

    NASA Astrophysics Data System (ADS)

    Miksis-Olds, Jennifer L.; Donaghay, Percy L.; Miller, James H.; Tyack, Peter L.

    2005-09-01

    Manatees inhabit coastal bays, lagoons, and estuaries because they are dependent on the aquatic vegetation that grows in shallow waters. Food requirements force manatees to occupy the same areas in which human activities are the greatest. Noise produced from human activities has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. This study quantifies the behavioral responses of manatees to both changing levels of ambient noise and transient noise sources. Results indicate that elevated environmental noise levels do affect the overall activity budget of this species. The proportion of time manatees spend feeding, milling, and traveling in critical habitats changed as a function of noise level. More time was spent in the directed, goal-oriented behaviors of feeding and traveling, while less time was spent milling when noise levels were highest. The animals also responded to the transient noise of approaching vessels with changes in behavioral state and movements out of the geographical area. This suggests that manatees detect and respond to changes in environmental noise levels. Whether these changes legally constitute harassment and produce biologically significant effects need to be addressed with hypothesis-driven experiments and long-term monitoring. [For Animal Bioacoustics Best Student Paper Award.

  6. [NO may function in the downstream of Ca2+ in ethylene induced stomatal closure in Vicia faba L].

    PubMed

    Liu, Guo Hua; Liu, Jing; Hou, Li Xia; Tang, Jing; Liu, Xin

    2009-04-01

    Through pharmacological combined with laser scanning confocal microscope (LSCM) and spectrophotography to study the role of Ca2+ and NO in signaling during Vicia faba L. stomatal movement response to ethylene (Eth). The results showed that treatment with ethephon (0.004%, 0.04%, 0.4%) resulted in a time- and dose-dependent stomatal closure under light. NO scavenger cPTIO, nitrate reductase inhibitor NaN3, or extracellular Ca2+ chelation EGTA reduced ethylene-induced stomatal closure. Moreover, ethylene was shown to enhance nitric oxide levels and, corresponding, nitrate reductase activity. Inhibition of the nitrate reductase diminished ethylene-induced NO production in both stomatal guard cell and leaf. Finally, ethylene-induced NO levels and nitrate reductase activity decreased when Ca2+ was compromised. On the basis of biochemical and pharmacological experimental results, we can conclude that Ca2+ and NO were involved in the signal transduction pathway of ethylene induced stomatal closure. Nitrate reductase-derived NO may represents a novel downstream component of Ca2+ signaling cascade during ethylene-induced stomatal movement in Vicia faba L.

  7. Clustered Stomates in "Begonia": An Exercise in Data Collection & Statistical Analysis of Biological Space

    ERIC Educational Resources Information Center

    Lau, Joann M.; Korn, Robert W.

    2007-01-01

    In this article, the authors present a laboratory exercise in data collection and statistical analysis in biological space using clustered stomates on leaves of "Begonia" plants. The exercise can be done in middle school classes by students making their own slides and seeing imprints of cells, or at the high school level through collecting data of…

  8. Cell fate transitions during stomatal development.

    PubMed

    Serna, Laura

    2009-08-01

    Stomata, the most influential components in gas exchange with the atmosphere, represent a revealing system for studying cell fate determination. Studies in Arabidopsis thaliana have demonstrated that many of the components, functioning in a signaling cascade, guide numerous cell fate transitions that occur during stomatal development. The signaling cascade is initiated at the cell surface through the activation of the membrane receptors TOO MANY MOUTHS (TMM) and/or ERECTA (ER) family members by the secretory peptide EPIDERMAL PATTERNING FACTOR1 (EPF1) and/or a substrate processed proteolytically by the subtilase STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) and transduced through cytoplasmic MAP kinases (YODA (YDA), MKK4/MKK5, and MPK3/MPK6) towards the nucleus. In the nucleus, these MAP kinases regulate the activity of the basic helix-loop-helix (bHLH) proteins SPEECHLESS (SPCH), MUTE, and FAMA, which act in concert with the bHLH-Leu zipper protein SCREAM (SCRM) (and/or its closely related paralog, SCREAM2). This article reviews current insights into the role of this signaling cascade during stomatal development.

  9. Plant virus infections control stomatal development

    NASA Astrophysics Data System (ADS)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  10. Plant virus infections control stomatal development

    PubMed Central

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-01-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum. PMID:27687773

  11. Stomatal Dimorphism of Neodiplogaster acaloleptae (Diplogastromorpha: Diplogastridae)

    PubMed Central

    Kanzaki, Natsumi

    2016-01-01

    Several genera belonging to the nematode family Diplogastridae show characteristic dimorphism in their feeding structures; specifically, they have microbial feeding stenostomatous and predatory eurystomatous morphs. A diplogastrid satellite model species, Pristionchus pacificus, and its close relatives have become a model system for studying this phenotypic plasticity, with intensive physiological and structural studies having been undertaken. However, the many other species that are morphologically and phylogenetically divergent from P. pacificus have not been examined to date. In the present study, the detailed stomatal structure and induction of dimorphism in Neodiplogaster acaloleptae were examined. N. acaloleptae has a fungal feeding stenostomatous morph and a predatory eurystomatous morph. The predatory morph was induced by starvation, high population density, and co-culturing with its potential prey, Caenorhabditis elegans. The feeding behavior of the stenostomatous and eurystomatous morphs of N. acaloleptae was confirmed, demonstrating that 1) the stomatal and pharyngeal movements of the two morphs were basically identical, and 2) the stomatal elements were protracted to cut open the hyphae and/or prey to feed when a N. acaloleptae flips its dorsal movable tooth dorsally and tilts its subventral stegostomatal cylinder ventrally, forming a pair of scissors to cut the food source. The stoma morphology of N. acaloleptae with a single movable tooth and a long stoma is markedly different from that of Pristionchus, which has two movable teeth and a short stoma. It is, however, similar to that of Mononchoides, tentatively a sister to Neodiplogaster. PMID:27196730

  12. Denture-Related Stomatitis Is Associated with Endothelial Dysfunction

    PubMed Central

    Osmenda, Grzegorz; Nowakowski, Daniel; Wilk, Grzegorz; Maciąg, Anna; Mikołajczyk, Tomasz; Sagan, Agnieszka; Filip, Magdalena; Dróżdż, Mirosław; Guzik, Tomasz J.

    2014-01-01

    Oral inflammation, such as periodontitis, can lead to endothelial dysfunction, accelerated atherosclerosis, and vascular dysfunction. The relationship between vascular dysfunction and other common forms of oral infections such as denture-related stomatitis (DRS) is unknown. Similar risk factors predispose to both conditions including smoking, diabetes, age, and obesity. Accordingly, we aimed to investigate endothelial function and major vascular disease risk factors in 44 consecutive patients with dentures with clinical and microbiological features of DRS (n = 20) and without DRS (n = 24). While there was a tendency for higher occurrence of diabetes and smoking, groups did not differ significantly in respect to major vascular disease risk factors. Groups did not differ in main ambulatory blood pressure, total cholesterol, or even CRP. Importantly, flow mediated dilatation (FMD) was significantly lower in DRS than in non-DRS subjects, while nitroglycerin induced vasorelaxation (NMD) or intima-media thickness (IMT) was similar. Interestingly, while triglyceride levels were normal in both groups, they were higher in DRS subjects, although they did not correlate with either FMD or NMD. Conclusions. Denture related stomatitis is associated with endothelial dysfunction in elderly patients with dentures. This is in part related to the fact that diabetes and smoking increase risk of both DRS and cardiovascular disease. PMID:25045683

  13. Strain Observation Affected by Groundwater-Level Change in Seismic Precursor Monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Cao, Daiyong; Zhang, Jingfa

    2017-03-01

    Groundwater extraction is one of the most typical disturbance factors for strain observation in seismic precursor monitoring. The statistic regression method is used to study based on the relation between the variation of strain and the groundwater level. The least square regression linear model is built between the annual variation of Sangzi groundwater level and the Xiaoxinzhuang strain data. Such model meets t test with significance level α = 0. 0 5, which confirms that groundwater-level change in each year affects strain measurement significantly and strain's trend variation is related to groundwater-level change. Consequently, a new correction method about strain data is put forward based on the groundwater-level annual variation to eliminate the trend change. Results indicate that the accumulated residual deformation causes the horizontal displacement and strain change, which is on account of that the amount of groundwater recharge is less than that of extraction around Xiaoxinzhuang cave, the phreatic surface continues to descend, and residual deformation accumulates and leads to local subsidence area. Therefore, the decline trend change of strain is related to groundwater-level change and is not seismic precursor.

  14. Strain Observation Affected by Groundwater-Level Change in Seismic Precursor Monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Cao, Daiyong; Zhang, Jingfa

    2016-09-01

    Groundwater extraction is one of the most typical disturbance factors for strain observation in seismic precursor monitoring. The statistic regression method is used to study based on the relation between the variation of strain and the groundwater level. The least square regression linear model is built between the annual variation of Sangzi groundwater level and the Xiaoxinzhuang strain data. Such model meets t test with significance level α = 0. 0 5 , which confirms that groundwater-level change in each year affects strain measurement significantly and strain's trend variation is related to groundwater-level change. Consequently, a new correction method about strain data is put forward based on the groundwater-level annual variation to eliminate the trend change. Results indicate that the accumulated residual deformation causes the horizontal displacement and strain change, which is on account of that the amount of groundwater recharge is less than that of extraction around Xiaoxinzhuang cave, the phreatic surface continues to descend, and residual deformation accumulates and leads to local subsidence area. Therefore, the decline trend change of strain is related to groundwater-level change and is not seismic precursor.

  15. Non-patient related variables affecting levels of vascular endothelial growth factor in urine biospecimens.

    PubMed

    Kirk, M J; Hayward, R M; Sproull, M; Scott, T; Smith, S; Cooley-Zgela, T; Crouse, N S; Citrin, D E; Camphausen, K

    2008-08-01

    Vascular endothelial growth factor (VEGF) is an angiogenic protein proposed to be an important biomarker for the prediction of tumour growth and disease progression. Recent studies suggest that VEGF measurements in biospecimens, including urine, may have predictive value across a range of cancers. However, the reproducibility and reliability of urinary VEGF measurements have not been determined. We collected urine samples from patients receiving radiation treatment for glioblastoma multiforme (GBM) and examined the effects of five variables on measured VEGF levels using an ELISA assay. To quantify the factors affecting the precision of the assay, two variables were examined: the variation between ELISA kits with different lot numbers and the variation between different technicians. Three variables were tested for their effects on measured VEGF concentration: the time the specimen spent at room temperature prior to assay, the addition of protease inhibitors prior to specimen storage and the alteration of urinary pH. This study found that VEGF levels were consistent across three different ELISA kit lot numbers. However, significant variation was observed between results obtained by different technicians. VEGF concentrations were dependent on time at room temperature before measurement, with higher values observed 3-7 hrs after removal from the freezer. No significant difference was observed in VEGF levels with the addition of protease inhibitors, and alteration of urinary pH did not significantly affect VEGF measurements. In conclusion, this determination of the conditions necessary to reliably measure urinary VEGF levels will be useful for future studies related to protein biomarkers and disease progression.

  16. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species.

    PubMed

    Eller, Franziska; Jensen, Kai; Reisdorff, Christoph

    2016-12-14

    Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe

  17. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  18. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  19. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-06

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex.

  20. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria.

    PubMed

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

  1. Diazepam affects the nuclear thyroid hormone receptor density and their expression levels in adult rat brain.

    PubMed

    Constantinou, Caterina; Bolaris, Stamatis; Valcana, Theony; Margarity, Marigoula

    2005-07-01

    Thyroid hormones (THs) are involved in the occurrence of anxiety and affective disorders; however, the effects following an anxiolytic benzodiazepine treatment, such as diazepam administration, on the mechanism of action of thyroid hormones has not yet been investigated. The effect of diazepam on the in vitro nuclear T3 binding, on the relative expression of the TH receptors (TRs) and on the synaptosomal TH availability were examined in adult rat cerebral hemispheres 24 h after a single intraperitoneal dose (5 mg/kg BW) of this tranquillizer. Although, diazepam did not affect the availability of TH either in blood circulation or in the synaptosomal fraction, it decreased (33%) the nuclear T3 maximal binding density (B(max)). No differences were observed in the equilibrium dissociation constant (K(d)). The TRalpha2 variant (non-T3-binding) mRNA levels were increased by 33%, whereas no changes in the relative expression of the T3-binding isoforms of TRs (TRalpha1, TRbeta1) were observed. This study shows that a single intraperitoneal injection of diazepam affects within 24 h, the density of the nuclear TRs and their expression pattern. The latest effect occurs in an isoform-specific manner involving specifically the TRalpha2 mRNA levels in adult rat brain.

  2. Development of high-level streptomycin resistance affected by a plasmid in lactic streptococci.

    PubMed

    Sinha, R P

    1986-08-01

    Some lactose-negative (Lac-) mutants of Streptococcus lactis C2 and ML3 exhibited development of very high level streptomycin resistance after incubation with subinhibitory concentrations of the drug for 18 to 22 h. These drug-resistant mutants showed no loss of resistance even after 6 months of subculturing in broth without any drug. The parental Lac+ strains did not show mutation to high-level streptomycin resistance. The Lac+ characteristic of the parental strain was conjugally transferred to Lac- derivatives of C2 and ML3, showing the ability to mutate to high-level resistance. When transconjugants were analyzed for this characteristic, they showed both mutable and nonmutable Lac+ types. The results suggested that genetic information for mutation to high-level streptomycin resistance in lactic streptococci resides on the chromosome, and its expression is affected by a plasmid. The plasmid profiles of strains C2, ML3, C2 Lac-, ML3 Lac-, and two kinds of transconjugants confirmed the presence of a plasmid of approximately 5.5 megadaltons in strains showing no mutation to high-level streptomycin resistance, while strains missing such a plasmid exhibited high-level streptomycin resistance after incubation with subinhibitory concentrations of the drug.

  3. Ecological and physiological factors affecting brood patch area and prolactin levels in arctic-nesting geese

    USGS Publications Warehouse

    Jonsson, J.E.; Afton, A.D.; Alisauskas, R.T.; Bluhm, C.K.; El Halawani, M.E.

    2006-01-01

    We investigated effects of ecological and physiological factors on brood patch area and prolactin levels in free-ranging Lesser Snow Geese (Chen caerulescens caerulescens; hereafter "Snow Geese") and Ross's Geese (C. rossii). On the basis of the body-size hypothesis, we predicted that the relationships between prolactin levels, brood patch area, and body condition would be stronger in Ross's Geese than in the larger Snow Geese. We found that brood patch area was positively related to clutch volume and inversely related to prolactin levels in Ross's Geese, but not in Snow Geese. Nest size, nest habitat, and first egg date did not affect brood patch area in either species. Prolactin levels increased as incubation progressed in female Snow Geese, but this relationship was not significant in Ross's Geese. Prolactin levels and body condition (as indexed by size-adjusted body mass) were inversely related in Ross's Geese, but not in Snow Geese. Our findings are consistent with the prediction that relationships between prolactin levels, brood patch area, and body condition are relatively stronger in Ross's Geese, because they mobilize endogenous reserves at faster rates than Snow Geese. ?? The American Ornithologists' Union, 2006. Printed in USA.

  4. Xanthomonas campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor1[OA

    PubMed Central

    Gudesblat, Gustavo E.; Torres, Pablo S.; Vojnov, Adrián A.

    2009-01-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  5. Performance level affects the dietary supplement intake of both individual and team sports athletes.

    PubMed

    Giannopoulou, Ifigenia; Noutsos, Kostantinos; Apostolidis, Nikolaos; Bayios, Ioannis; Nassis, George P

    2013-01-01

    Dietary supplement (DS) intake is high in elite level athletes, however few studies have investigated the impact that the performance level of the athletes has on supplementation intake in individual and team sports. The purpose of the study was to determine and compare the DS intake among individual and team sport athletes of various performance levels. A total of 2845 participants (athletes: 2783, controls: 62) between the ages of 11 and 44 years old participated in the study. A 3-page questionnaire was developed to assess the intake of DS. Athletes were categorized based on participation in individual (n = 775) and team sports (n = 2008). To assess the effect of performance level in supplementation intake, athletes were categorized based on training volume, participation in the national team, and winning at least one medal in provincial, national, international or Olympic games. Overall, 37% of all athletes of various performance levels reported taking at least one DS in the last month. A higher prevalence of DS intake was reported in individual (44%) compared to team sport athletes (35%) (p < 0.001). Athletes of high performance level reported greater DS intake compared to lower performance athletes. Males reported a significantly greater prevalence of DS intake compared to females. The most popular supplement reported was amino acid preparation with the main reason of supplementation being endurance improvements. In conclusion, performance level and type of sport appear to impact the DS practices of male and female athletes. These findings should be validated in other populations. Key points37% of Mediterranean athletes of various sports and levels have reported taking dietary supplements.The performance level of the athletes affects the dietary supplementation intake.Athletes in individual sports appear to have a higher DS intake compared to team sport athletes.Male athletes appear to take more dietary supplements compared to female athletes.

  6. Performance Level Affects the Dietary Supplement Intake of Both Individual and Team Sports Athletes

    PubMed Central

    Giannopoulou, Ifigenia; Noutsos, Kostantinos; Apostolidis, Nikolaos; Bayios, Ioannis; Nassis, George P.

    2013-01-01

    Dietary supplement (DS) intake is high in elite level athletes, however few studies have investigated the impact that the performance level of the athletes has on supplementation intake in individual and team sports. The purpose of the study was to determine and compare the DS intake among individual and team sport athletes of various performance levels. A total of 2845 participants (athletes: 2783, controls: 62) between the ages of 11 and 44 years old participated in the study. A 3-page questionnaire was developed to assess the intake of DS. Athletes were categorized based on participation in individual (n = 775) and team sports (n = 2008). To assess the effect of performance level in supplementation intake, athletes were categorized based on training volume, participation in the national team, and winning at least one medal in provincial, national, international or Olympic games. Overall, 37% of all athletes of various performance levels reported taking at least one DS in the last month. A higher prevalence of DS intake was reported in individual (44%) compared to team sport athletes (35%) (p < 0.001). Athletes of high performance level reported greater DS intake compared to lower performance athletes. Males reported a significantly greater prevalence of DS intake compared to females. The most popular supplement reported was amino acid preparation with the main reason of supplementation being endurance improvements. In conclusion, performance level and type of sport appear to impact the DS practices of male and female athletes. These findings should be validated in other populations. Key points 37% of Mediterranean athletes of various sports and levels have reported taking dietary supplements. The performance level of the athletes affects the dietary supplementation intake. Athletes in individual sports appear to have a higher DS intake compared to team sport athletes. Male athletes appear to take more dietary supplements compared to female athletes. PMID

  7. Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles.

    PubMed

    Huang, Bo; Ren, Xinling; Wu, Li; Zhu, Lixia; Xu, Bei; Li, Yufeng; Ai, Jihui; Jin, Lei

    2016-01-01

    In contrast to the impact of elevated progesterone on endometrial receptivity, the data on whether increased progesterone levels affects the quality of embryos is still limited. This study retrospectively enrolled 4,236 fresh in vitro fertilization (IVF) cycles and sought to determine whether increased progesterone is associated with adverse outcomes with regard to top quality embryos (TQE). The results showed that the TQE rate significantly correlated with progesterone levels on the day of human chorionic gonadotropin (hCG) trigger (P = 0.009). Multivariate linear regression analysis of factors related to the TQE rate, in conventional IVF cycles, showed that the TQE rate was negatively associated with progesterone concentration on the day of hCG (OR was -1.658, 95% CI: -2.806 to -0.510, P = 0.005). When the serum progesterone level was within the interval 2.0-2.5 ng/ml, the TQE rate was significantly lower (P <0.05) than when the progesterone level was < 1.0 ng/ml; similar results were obtained for serum progesterone levels >2.5 ng/ml. Then, we choose a progesterone level at 1.5ng/ml, 2.0 ng/ml and 2.5 ng/ml as cut-off points to verify this result. We found that the TQE rate was significantly different (P <0.05) between serum progesterone levels < 2.0 ng/ml and >2.0 ng/ml. In conclusion, the results of this study clearly demonstrated a negative effect of elevated progesterone levels on the day of hCG trigger, on TQE rate, regardless of the basal FSH, the total gonadotropin, the age of the woman, or the time of ovarian stimulation. These data demonstrate that elevated progesterone levels (>2.0 ng/ml) before oocyte maturation were consistently detrimental to the oocyte.

  8. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.

    PubMed

    McKown, Athena D; Guy, Robert D; Quamme, Linda; Klápště, Jaroslav; La Mantia, Jonathan; Constabel, C P; El-Kassaby, Yousry A; Hamelin, Richard C; Zifkin, Michael; Azam, M S

    2014-12-01

    Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.

  9. Energized by love: thinking about romantic relationships increases positive affect and blood glucose levels.

    PubMed

    Stanton, Sarah C E; Campbell, Lorne; Loving, Timothy J

    2014-10-01

    We assessed the impact of thinking of a current romantic partner on acute blood glucose responses and positive affect over a short period of time. Participants in romantic relationships were randomly assigned to reflect on their partner, an opposite-sex friend, or their morning routine. Blood glucose levels were assessed prior to reflection, as well as at 10 and 25 min postreflection. Results revealed that individuals in the routine and friend conditions exhibited a decline in glucose over time, whereas individuals in the partner condition did not exhibit this decline (rather, a slight increase) in glucose over time. Reported positive affect following reflection was positively associated with increases in glucose, but only for individuals who reflected on their partner, suggesting this physiological response reflects eustress. These findings add to the literature on eustress in relationships and have implications for relationship processes.

  10. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation.

    PubMed

    Garcia-Forner, Núria; Adams, Henry D; Sevanto, Sanna; Collins, Adam D; Dickman, Lee T; Hudson, Patrick J; Zeppel, Melanie J B; Jenkins, Michael W; Powers, Heath; Martínez-Vilalta, Jordi; Mcdowell, Nate G

    2016-01-01

    Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

  11. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    DOE PAGES

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; ...

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

  12. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    SciTech Connect

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; Mcdowell, Nate G.

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

  13. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-05-12

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  14. A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening.

    PubMed

    Hayashi, Maki; Inoue, Shin-Ichiro; Ueno, Yoshihisa; Kinoshita, Toshinori

    2017-03-30

    Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H(+)-ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H(+)-ATPase activation drives stomatal opening. However, details of the signaling between phototropins and H(+)-ATPase remain largely unknown. In this study, through a screening of specific inhibitors for the blue light-dependent H(+)-ATPase phosphorylation in guard cells, we identified a Raf-like protein kinase, BLUE LIGHT-DEPENDENT H(+)-ATPASE PHOSPHORYLATION (BHP). Guard cells in the bhp mutant showed impairments of stomatal opening and H(+)-ATPase phosphorylation in response to blue light. BHP is abundantly expressed in the cytosol of guard cells and interacts with BLUS1 both in vitro and in vivo. Based on these results, BHP is a novel signaling mediator in blue light-dependent stomatal opening, likely downstream of BLUS1.

  15. Stomatal penetration by aqueous solutions--an update involving leaf surface particles.

    PubMed

    Burkhardt, Juergen; Basi, Sabin; Pariyar, Shyam; Hunsche, Mauricio

    2012-11-01

    The recent visualization of stomatal nanoparticle uptake ended a 40-yr-old paradigm. Assuming clean, hydrophobic leaf surfaces, the paradigm considered stomatal liquid water transport to be impossible as a result of water surface tension. However, real leaves are not clean, and deposited aerosols may change hydrophobicity and water surface tension. Droplets containing NaCl, NaClO(3), (NH(4))(2) SO(4), glyphosate, an organosilicone surfactant or various combinations thereof were evaporated on stomatous abaxial and astomatous adaxial surfaces of apple (Malus domestica) leaves. The effects on photosynthesis, necrosis and biomass were determined. Observed using an environmental scanning electron microscope, NaCl and NaClO(3) crystals on hydrophobic tomato (Solanum lycopersicum) cuticles underwent several humidity cycles, causing repeated deliquescence and efflorescence of the salts. All physiological parameters were more strongly affected by abaxial than adaxial treatments. Spatial expansion and dendritic crystallization of the salts occurred and cuticular hydrophobicity was decreased more rapidly by NaClO(3) than NaCl. The results confirmed the stomatal uptake of aqueous solutions. Humidity fluctuations promote the spatial expansion of salts into the stomata. The ion-specific effects point to the Hofmeister series: chaotropic ions reduce surface tension, probably contributing to the defoliant action of NaClO(3), whereas the salt spray tolerance of coastal plants is probably linked to the kosmotropic nature of chloride ions.

  16. A Raf-like protein kinase BHP mediates blue light-dependent stomatal opening

    PubMed Central

    Hayashi, Maki; Inoue, Shin-ichiro; Ueno, Yoshihisa; Kinoshita, Toshinori

    2017-01-01

    Stomata in the plant epidermis open in response to blue light and affect photosynthesis and plant growth by regulating CO2 uptake and transpiration. In stomatal guard cells under blue light, plasma membrane H+-ATPase is phosphorylated and activated via blue light-receptor phototropins and a signaling mediator BLUS1, and H+-ATPase activation drives stomatal opening. However, details of the signaling between phototropins and H+-ATPase remain largely unknown. In this study, through a screening of specific inhibitors for the blue light-dependent H+-ATPase phosphorylation in guard cells, we identified a Raf-like protein kinase, BLUE LIGHT-DEPENDENT H+-ATPASE PHOSPHORYLATION (BHP). Guard cells in the bhp mutant showed impairments of stomatal opening and H+-ATPase phosphorylation in response to blue light. BHP is abundantly expressed in the cytosol of guard cells and interacts with BLUS1 both in vitro and in vivo. Based on these results, BHP is a novel signaling mediator in blue light-dependent stomatal opening, likely downstream of BLUS1. PMID:28358053

  17. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants.

    PubMed

    Benlloch-González, María; Romera, Javier; Cristescu, Simona; Harren, Fran; Fournier, José María; Benlloch, Manuel

    2010-02-01

    The effect of water stress on stomatal closure in sunflower plants has been found to be dependent on K(+) nutrient status. When plants with different internal K(+) content were subjected to a water-stress period, stomatal conductance was reduced more markedly in plants with an adequate K(+) supply than in K(+)-starved plants. K(+) starvation promoted the production of ethylene by detached leaves, as well as by the shoot of whole plants. Water stress had no significant effect on this synthesis. The effect on stomatal conductance of adding 5 microM cobalt (an ethylene synthesis inhibitor) to the growing medium of plants subjected to water stress was also dependent on their K(+) nutritional status: conductance was not significantly affected in normal K(+) plants whereas it was reduced in K(+)-starved plants. Cobalt had no harmful effects on growth, and did not alter the internal K(+) content in the plants. These results suggest that ethylene may play a role in the inhibiting effect of K(+) starvation on stomatal closure.

  18. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine.

    PubMed

    Jones, Hamlyn G; Stoll, Manfred; Santos, Tiago; de Sousa, Claudia; Chaves, M Manuela; Grant, Olga M

    2002-11-01

    This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.

  19. Spontaneous mutation 7B-1 in tomato impairs blue light-induced stomatal opening.

    PubMed

    Hlavinka, Jan; Nauš, Jan; Fellner, Martin

    2013-08-01

    It was reported earlier that 7B-1 mutant in tomato (Solanum lycopersicum L.), an ABA overproducer, is defective in blue light (BL) signaling leading to BL-specific resistance to abiotic and biotic stresses. In this work, we examine responses of stomata to blue, red and white lights, fusicoccin, anion channel blockers (anthracene-9-carboxylic acid; 9-AC and niflumic acid; NIF) and ABA. Our results showed that the aperture of 7B-1 stomata does not increase in BL, suggesting that 7B-1 mutation impairs an element of BL signaling pathway involved in stomatal opening. Similar stomatal responses of 7B-1 and wild type (WT) to fusicoccin or 9-AC points out that activity of H(+)-ATPase and 9-AC-sensitive anion channels per se is not likely affected by the mutation. Since 9-AC restored stomatal opening of 7B-1 in BL, it seems that 9-AC and BL could block similar type of anion channels. The stomata of both genotypes did not respond to NIF neither in darkness nor in any light conditions tested. In light, 9-AC but not NIF restored stomatal opening inhibited by ABA in WT and 7B-1. We suggest that in comparison to WT, the activity of S-type anion channels in 7B-1 is more promoted by increased ABA content, and less reduced by BL, because of the mutant resistance to BL.

  20. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    PubMed

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA.

  1. The Potential of Stomatal Frequency Analysis as a Paleo-Altimeter

    NASA Astrophysics Data System (ADS)

    Kouwenberg, L. L.; McElwain, J. C.

    2005-12-01

    Quantitative estimations of paleo-elevation are invaluable for setting boundary conditions in both orogenic and paleo-climate models. Ideally, these estimates are based on the reconstruction of a physical parameter changing predictably with altitude, independent of latitude or atmospheric circulation patterns. One such parameter is CO2 partial pressure that declines with the decrease in atmospheric pressure over altitude in an entirely predictable manner. The CO2 partial pressure can be estimated through stomatal frequency analysis of fossil leaves, which has been used extensively to generate paleo-CO2 reconstructions throughout the Phanerozoic. If sea-level atmospheric CO2 levels are known, either through stomatal frequency analysis of sea-level floras or alternative methods, altitude can theoretically be estimated by determining the difference in CO2 partial pressure between sea level and a flora from unknown higher elevation. Thus, stomatal analysis of fossil leaves should be applicable to reconstruct paleo-elevation, and in this study we validate the potential of different tree species, both angiosperm and conifer, as paleo-altimeters by (1) developing calibration curves of stomatal frequency vs altitude in modern trees, (2) estimating prediction errors by predicting known modern elevations, and (3) discuss the influence of altitude-dependent environmental factors, other than CO2, on the stomatal frequency that might have the capacity to mask the CO2 partial pressure signal. To test the global applicability of this method in different climate regimes and latitudes, intrageneric and interspecific variability in elevational response is assessed for a tropical everwet ( Quercus costaricensis, Q. copeyensis), temperate winterwet ( Quercus kelloggii) and a temperate everwet climate ( Nothofagus solandri (var. cliffortioides)). Finally, we hope to present the first stomata-based Tertiary paleo-elevation estimates for the western US and compare these to existing

  2. Drought induces alterations in the stomatal development program in Populus.

    PubMed

    Hamanishi, Erin T; Thomas, Barb R; Campbell, Malcolm M

    2012-08-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.

  3. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.

  4. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey.

    PubMed

    Kaiser, H; Kappen, L

    2000-10-01

    Observations of stomata in situ while simultaneously measuring CO(2) gas exchange and transpiration were made in field experiments with Aegopodium podagraria in a highly variable light climate in the understorey of trees. The low background photosynthetic photon flux density (PPFD) caused a slight opening of the stomata and no visible response to sporadic lightflecks. However, if lightflecks were frequent and brighter, slow opening movements were observed. Small apertures were sufficient to allow maximal photosynthetic rates. Therefore, the small apertures observed in low light usually only caused minor stomatal limitations of lightfleck photosynthesis. The response of stomata to step-wise changes in PPFD under different levels of leaf to air vapour pressure difference (Delta(W)) was observed under controlled conditions. High Delta(W) influenced the stomatal response only slightly by reducing stomatal aperture in low light and causing a slight reduction in the initial capacity to utilize high PPFD levels. Under continuous high PPFD, however, stomata opened to the same degree irrespective of Delta(W). Under high Delta(W), opening and closing responses to PPFD-changes were faster, which enabled a rapid removal of the small stomatal limitations of photosynthesis initially present in high Delta(W) after longer periods in low light. It is concluded that A. podagraria maintains a superoptimal aperture in low light which leads to a low instantaneous water use efficiency, but allows an efficient utilization of randomly occurring lightflecks.

  5. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    PubMed

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  6. Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl

    USGS Publications Warehouse

    Bridges, C.M.

    1997-01-01

    General activity and swimming performance (i.e., sprint speed and distance) of plains leopard frog tadpoles (Rana blairi) were examined after acute exposure to three sublethal concentrations of carbaryl (3.5, 5.0, and 7.2 mg/L). Both swimming performance and spontaneous swimming activity are important for carrying out life history functions (e.g., growth and development) and for escaping from predators. Measured tadpole activity diminished by nearly 90% at 3.5 mg/L carbaryl and completely ceased at 7.2 mg/L. Sprint speed and sprint distance also decreased significantly following exposure. Carbaryl affected both swimming performance and activity after just 24 h, suggesting that 24 h may be an adequate length of exposure to determine behavioral effects on tadpoles. Slight recovery of activity levels was noted at 24 and 48 h post-exposure; no recovery of swimming performance was observed. Reduction in activity and swimming performance may result in increased predation rates and, because activity is closely associated with feeding, may result in slowed growth leading to a failure to emerge before pond drying or an indirect reduction in adult fitness. Acute exposure to sublethal toxicants such as carbaryl may not only affect immediate survival of tadpoles but also impact critical life history functions and generate changes at the local population level.

  7. An evaluation of supervised classifiers for indirectly detecting salt-affected areas at irrigation scheme level

    NASA Astrophysics Data System (ADS)

    Muller, Sybrand Jacobus; van Niekerk, Adriaan

    2016-07-01

    Soil salinity often leads to reduced crop yield and quality and can render soils barren. Irrigated areas are particularly at risk due to intensive cultivation and secondary salinization caused by waterlogging. Regular monitoring of salt accumulation in irrigation schemes is needed to keep its negative effects under control. The dynamic spatial and temporal characteristics of remote sensing can provide a cost-effective solution for monitoring salt accumulation at irrigation scheme level. This study evaluated a range of pan-fused SPOT-5 derived features (spectral bands, vegetation indices, image textures and image transformations) for classifying salt-affected areas in two distinctly different irrigation schemes in South Africa, namely Vaalharts and Breede River. The relationship between the input features and electro conductivity measurements were investigated using regression modelling (stepwise linear regression, partial least squares regression, curve fit regression modelling) and supervised classification (maximum likelihood, nearest neighbour, decision tree analysis, support vector machine and random forests). Classification and regression trees and random forest were used to select the most important features for differentiating salt-affected and unaffected areas. The results showed that the regression analyses produced weak models (<0.4 R squared). Better results were achieved using the supervised classifiers, but the algorithms tend to over-estimate salt-affected areas. A key finding was that none of the feature sets or classification algorithms stood out as being superior for monitoring salt accumulation at irrigation scheme level. This was attributed to the large variations in the spectral responses of different crops types at different growing stages, coupled with their individual tolerances to saline conditions.

  8. Natural Disaster Induced Losses at Household Level: A Study on the Disaster Affected Migrants

    NASA Astrophysics Data System (ADS)

    Ishtiaque, A.; Nazem, N. I.; Jerin, T.

    2015-12-01

    Given its geographical location Bangladesh frequently confronts natural disasters. Disaster induced losses often obligate socio-economic dislocation from rural areas to large urban centers. After incurring what type/amount of losses people migrate is still unknown. In this paper we focus on migrants who migrated due to natural disasters. Thus, the objectives of this paper are, first, ascertaining the proportion of disaster migrants in Dhaka city; second, determining types of natural disasters which compel rural out-migration; third, assessing the resource and economic losses stem from these disasters at household level. Using the slum database (N = 4966), we select eight slums randomly with a purpose to include migrants from maximum districts available. In order to identify the proportion of disaster affected migrants a census is conducted in 407 households of those 8 slums and the result demonstrates that 18.43% of the migrants are disaster affected, which was only 5% in 1993. Out of all hydro-meteorological disasters, river bank erosion (RBE), followed by flood, drives most people out of their abode. However, unlike RBE migrants, migrants affected by flood usually return to their origin after certain period. In-depth interviews on the disaster migrants reveal that RBE claims total loss of homestead land & agricultural land while flood causes 20% and 23% loss respectively. Agricultural income decreases 96% because of RBE whereas flood victims encounter 98% decrease. People also incur 79% & 69% loss in livestock owing to RBE and flood severally. These disasters cause more than eighty percent reduction in total monthly income. Albeit RBE appears more vigorous but total economic loss is greater in flood- on average each household experiences a loss of BDT 350,555 due to flood and BDT 300,000 on account of RBE. Receiving no substantial support from community or government the affected people are compelled to migrate.

  9. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  10. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  11. Muscular activity level during pedalling is not affected by crank inertial load.

    PubMed

    Duc, S; Villerius, V; Bertucci, W; Pernin, J N; Grappe, F

    2005-10-01

    The aim of the present study was to investigate the influence of gear ratio (GR) and thus crank inertial load (CIL), on the activity levels of lower limb muscles. Twelve competitive cyclists performed three randomised trials with their own bicycle equipped with a SRM crankset and mounted on an Axiom ergometer. The power output ( approximately 80% of maximal aerobic power) and the pedalling cadence were kept constant for each subject across all trials but three different GR (low, medium and high) were indirectly obtained for each trial by altering the electromagnetic brake of the ergometer. The low, medium and high GR (mean +/- SD) resulted in CIL of 44 +/- 3.7, 84 +/- 6.5 and 152 +/- 17.9 kg.m(2), respectively. Muscular activity levels of the gluteus maximus (GM), the vastus medialis (VM), the vastus lateralis (VL), the rectus femoris (RF), the medial hamstrings (MHAM), the gastrocnemius (GAS) and the soleus (SOL) muscles were quantified and analysed by mean root mean square (RMS(mean)). The muscular activity levels of the measured lower limb muscles were not significantly affected when the CIL was increased approximately four fold. This suggests that muscular activity levels measured on different cycling ergometers (with different GR and flywheel inertia) can be compared among each other, as they are not influenced by CIL.

  12. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  13. T3 supplementation affects ventilatory timing & glucose levels in type 2 diabetes mellitus model.

    PubMed

    Bollinger, Stephen S; Weltman, Nathen Y; Gerdes, A Martin; Schlenker, Evelyn H

    2015-01-01

    Type II diabetes mellitus (T2DM) can affect ventilation, metabolism, and fasting blood glucose levels. Hypothyroidism may be a comorbidity of T2DM. In this study T2DM was induced in 20 female Sprague Dawley rats using Streptozotocin (STZ) and Nicotinamide (N). One of experimental STZ/N groups (N=10 per group) was treated with a low dose of triiodothyronine (T3). Blood glucose levels, metabolism and ventilation (in air and in response to hypoxia) were measured in the 3 groups. STZ/N-treated rats increased fasting blood glucose compared to control rats eight days and 2 months post-STZ/N injections indicating stable induction of T2DM state. Treatments had no effects on ventilation, metabolism or body weight. After one month of T3 supplementation, there were no physiological indications of hyperthyroidism, but T3 supplementation altered ventilatory timing and decreased blood glucose levels compared to STZ/N rats. These results suggest that low levels of T3 supplementation could offer modest effects on blood glucose and ventilatory timing in this T2M model.

  14. Social competition affects electric signal plasticity and steroid levels in the gymnotiform fish Brachyhypopomus gauderio.

    PubMed

    Salazar, Vielka L; Stoddard, Philip K

    2009-10-01

    Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. Steroid regulation of these signals can render them as reliable indicators of a male's physiological state. We investigated how plasticity in electrocommunication signals is driven by social competition for mates, mediated by steroid hormones, and subject to the effects of past social experience. We measured the electric waveform's amplitude and duration and steroid hormone levels of male gymnotiform electric fish (Brachyhypopomus gauderio) following week-long periods of social isolation, and low or high social competition. To quantify the effect of social history on the modulation of the electric signal, six groups of six males experienced all three social conditions but in different order. We found that males differentially modulate their electric signals depending on the order they experienced these conditions. Thus, past social interactions affect both present and future social electric signals. Cortisol levels and the amplitude of the electric signal appeared to track the intensity of competition, while androgen levels and the duration of the electric signal only responded to the presence (low and high competition) or absence (isolation) of a social environment (low and high androgens respectively). In addition, cortisol levels were related to the body size of the males at high social competition. Taken together, these findings suggest that the capacity of males to modulate their signals in response to social competition is regulated by steroids.

  15. Apple quality, storage, and washing treatments affect patulin levels in apple cider.

    PubMed

    Jackson, Lauren S; Beacham-Bowden, Tina; Keller, Susanne E; Adhikari, Chaitali; Taylor, Kirk T; Chirtel, Stewart J; Merker, Robert I

    2003-04-01

    Patulin is a mycotoxin produced primarily by Penicillium expansum, a mold responsible for rot in apples and other fruits. The growth of this fungus and the production of patulin are common in fruit that has been damaged. However, patulin can be detected in visibly sound fruit. The purpose of this project was to determine how apple quality, storage, and washing treatments affect patulin levels in apple cider. Patulin was not detected in cider pressed from fresh tree-picked apples (seven cultivars) but was found at levels of 40.2 to 374 microg/liter in cider pressed from four cultivars of fresh ground-harvested (dropped) apples. Patulin was not detected in cider pressed from culled tree-picked apples stored for 4 to 6 weeks at 0 to 2 degrees C but was found at levels of 0.97 to 64.0 microg/liter in cider pressed from unculled fruit stored under the same conditions. Cider from controlled-atmosphere-stored apples that were culled before pressing contained 0 to 15.1 microg of patulin per liter, while cider made from unculled fruit contained 59.9 to 120.5 microg of patulin per liter. The washing of ground-harvested apples before pressing reduced patulin levels in cider by 10 to 100%, depending on the initial patulin levels and the type of wash solution used. These results indicate that patulin is a good indicator of the quality of the apples used to manufacture cider. The avoidance of ground-harvested apples and the careful culling of apples before pressing are good methods for reducing patulin levels in cider.

  16. Fibrillin levels in a severely affected Marfan syndrome patient with a null allele

    SciTech Connect

    Boxer, M.; Withers, A.P.; Al-Ghaban, Z. |

    1994-09-01

    Marfan syndrome is an autosomal dominantly inherited connective tissue disorder characterized by defects in the cardiovascular, skeletal and ocular systems. A patient was first examined in 1992 having survived an acute sortic dissection with subsequent composite repair and insertion of a prosthetic aortic valve. Clinical examination revealed arachnodactyly, narrow, high arched palate with dental crowding, an arm span exceeding her height by 10.5 cm, joint laxity and bilateral lens subluxation. Analysis of the family showed affected members in three generations and the fibrillin gene, FBN1, was shown to segregate with the disease when using polymorphic markers including an RsaI polymorphism in the 3{prime}-untranslated region of the gene. Analysis of patient mRNA for this RsaI polymorphism by RT-PCR (reverse transcriptase-PCR) amplification and restriction enzyme digestion of the PCR products showed that the copy of the gene segregating with the disease was not transcribed. No low level expression of this allele was observed despite RT-PCR amplification incorporating radioactively labelled dCTP, thus revealing a null allele phenotype. Western blotting analysis of fibrillin secreted by the patient`s dermal fibroblasts using fibrillin-specific antibodies showed only normal sized fibrillin protein. However, immunohistochemical studies of the patient`s tissue and fibroblasts showed markedly lowered levels in staining of microfibrillar structures compared with age-matched controls. This low level of expression of the protein affected in Marfan syndrome in a patient with such severe clinical manifestations is surprising since current understanding would suggest that this molecular phenotype should lead to a mild clinical disorder.

  17. Sediment size distribution and composition in a reservoir affected by severe water level fluctuations.

    PubMed

    López, Pilar; López-Tarazón, José A; Casas-Ruiz, Joan P; Pompeo, Marcelo; Ordoñez, Jaime; Muñoz, Isabel

    2016-01-01

    The reservoir sediments are important sinks for organic carbon (OC), the OC burial being dependent on two opposite processes, deposition and mineralization. Hence factors such as severe water level fluctuations are expected to influence the rate of OC accumulation as they may affect both deposition and mineralization. The Barasona Reservoir has been historically threatened by siltation, whilst the use of water for irrigation involves a drastic decrease of the water level. In this context, we have studied the physical and chemical characteristics (grain size, major and minor elemental compositions, organic and inorganic carbon, and nitrogen) of the recent sediments of the Barasona Reservoir and the relationships among them in order to: a) elucidate the main processes governing OC accumulation, b) evaluate the rate of OC mineralization and c) approach the effect of drought on the sediment characteristics in this system. Our results indicated that Barasona sediments were dominated by fine silts (>60%) and clays (>20%), the mean particle size decreasing from tail to dam. Desiccation increased particle sorting and size distribution became bimodal, but no effect on average size was observed. Attending to the composition, Barasona sediments were very homogeneous with low concentrations of nitrogen (TN) and phosphorus (<1.2 g kg(-1) dw and <0.6 g kg(-1) dw, respectively) and high concentration of OC (≈36 g kg(-1) dw). TN was negatively related to dry weight. Sediment mixing due to drastic changes in water level may have favoured the observed homogeneity of Barasona sediments affecting carbon, major ions and grain size. The high amount of OC deposited in Barasona sediment suggested that the adsorption of OC onto fine particles was more important than in boreal lakes. The rate of oxygen consumption by wet sediment ranged from 2.26 to 3.15 mg O2 m(-2) day(-1), values close to those compiled for Mediterranean running waters.

  18. [Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance].

    PubMed

    Wang, Shu-Guang; Li, Zhong-Qing; Jia, Shou-Shan; Sun, Dai-Zhen; Shi, Yu-Gang; Fan, Hua; Liang, Zeng-Hao; Jing, Rui-Lian

    2013-06-01

    Taking the DH population of wheat cultivar Hanxuan10/Lumai14 as test object, and by the methods of correlation analysis and path analysis, this paper studied the relationships of the flag leaf stomatal density (SD), stomatal length and width (SL and SW), stomatal conductance (g(s)), photosynthetic rate (P(n)), and transpiration rate (T(r)) on the 10th and 20th day after anthesis with the yield and the index of drought-resistance under the conditions of drought stress and normal irrigation. Under the two conditions, most of the test leaf traits on the 10th day after anthesis had less correlation with the yield and the index of drought-resistance, whereas the leaf traits on the 20th day after anthesis had significant positive correlations with thousand kernel weight but less correlation with grain number per ear, grain yield per plant, and index of drought-resistance. Path analysis showed that g(s), P(n), and T(r) were the main factors affecting the grain yield per plant (YPP) and the index of drought resistance (IDR), and the effects were stronger both in direct and in indirect ways. The direct and indirect effects of SD, SL, and SW on the YPP and IDR were lesser. Under both drought stress and normal irrigation, and on the 10th and 20th day after anthesis, there were significant correlations between SD and SL, and between SL and SW, g(s), P(n), and Tr, but the correlations of SD and SL with g(s), P(n), and T(r) changed with water condition or growth stage. Therefore, it would be not always a good means to select the leaf stomatal density and size as the targets for breeding to improve the leaf stomatal conductance, photosynthetic rate, and transpiration rate, and further, to promote the yield.

  19. Thiazide diuretics affect osteocalcin production in human osteoblasts at the transcription level without affecting vitamin D3 receptors.

    PubMed

    Lajeunesse, D; Delalandre, A; Guggino, S E

    2000-05-01

    Besides their natriuretic and calciuretic effect, thiazide diuretics have been shown to decrease bone loss rate and improve bone mineral density. Clinical evidence suggests a specific role of thiazides on osteoblasts, because it reduces serum osteocalcin (OC), an osteoblast-specific protein, yet the mechanisms implicated are unknown. We therefore investigated the role of hydrochlorothiazide (HCTZ) on OC production by the human osteoblast-like cell line MG-63. HCTZ dose-dependently (1-100 microM) inhibited 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-induced OC release by these cells (maximal effect, -40-50% and p < 0.005 by analysis of variance [ANOVA]) as measured by ELISA. This effect of HCTZ on OC release was caused by a direct effect on OC gene expression because Northern blot analysis revealed that OC messenger RNA (mRNA) levels were reduced in the presence of increasing doses of the diuretic (-47.2+/-4.0%; p < 0.0001 by paired ANOVA with 100 microM 13.6+/-0.49 pmol/mg protein/15 minutes; p < 0.05) in MG-63 cells. Reducing extracellular Ca2+ concentration with 0.5 mM EDTA or 0.5 mM ethylene glycol-bis(beta-amino ethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) only partly prevented the inhibitory effect of the diuretic on OC secretion (maximal effect, -22.5+/-6.9%), suggesting that thiazide-dependent Ca2+ influx is not sufficient to elicit the inhibition of OC secretion. Because OC production is strictly dependent on the presence of 1,25(OH)2D3 in human osteoblasts, we next evaluated the possible role of HCTZ on vitamin D3 receptors (VDR) at the mRNA and protein levels. Both Northern and Western blot analyses showed no effect of HCTZ (1-100 microM) on VDR levels. The presence of EGTA in the culture media reduced slightly the VDR mRNA levels under basal condition but this was not modified in the presence of increasing levels of HCTZ. The OC gene promoter also is under the control of transcription factors such as Yin Yang 1 (YY1) and cFOS. Western blot analysis revealed

  20. Adaptive phenotypic plasticity of Siberian elm in response to drought stress: increased stomatal pore depth.

    PubMed

    Park, Go Eun; Kim, Ki Woo; Lee, Don Koo; Hyun, Jung Oh

    2013-08-01

    Leaf stomatal characteristics of Siberian elm (Ulmus pumila) were investigated by electron microscopy and white light scanning interferometry. On the basis of average annual precipitations, two types of tree specimens were collected from Korea, China, and Mongolia: (1) trees under normal environmental conditions and (2) trees under arid conditions. Field emission scanning electron microscopy revealed oval-shaped stomata on the lower surface, and they were ca. 20 μm in width. In-lens secondary electron imaging showed differences in electron density and stomatal pore depth between the two types. According to the line profile analysis by white light scanning interferometry, stomata under arid conditions appeared to have higher levels of the stomatal pore depth than ones under normal conditions. Focused ion beam-field emission electron microscopy supported the increased stomatal pore depth with the increasing drought stress gradient. These results suggest that complementary microscopy can be employed to unravel the adaptive phenotypic plasticity of Siberian elm in response to drought stress.

  1. Toxaphene affects the levels of mRNA transcripts that encode antioxidant enzymes in Hydra.

    PubMed

    Woo, Seonock; Lee, Aekyung; Won, Hyokyoung; Ryu, Jae-Chun; Yum, Seungshic

    2012-06-01

    We evaluated toxaphene-induced acute toxicity in Hydra magnipapillata. The median lethal concentrations of the animals (LC(50)) were determined to be 34.5 mg/L, 25.0 mg/L and 12.0 mg/L after exposure to toxaphene for 24 h, 48 h and 72 h, respectively. Morphological responses of hydra polyps to a range of toxaphene concentrations suggested that toxaphene negatively affects the nervous system of H. magnipapillata. We used real-time quantitative PCR of RNA extracted from polyps exposed to two concentrations of toxaphene (0.3 mg/L and 3 mg/L) for 24 h to evaluate the differential regulation of levels of transcripts that encode six antioxidant enzymes (CAT, G6PD, GPx, GR, GST and SOD), two proteins involved in detoxification and molecular stress responses (CYP1A and UB), and two proteins involved in neurotransmission and nerve cell differentiation (AChE and Hym-355). Of the genes involved in antioxidant responses, the most striking changes were observed for transcripts that encode GPx, G6PD, SOD, CAT and GST, with no evident change in levels of transcripts encoding GR. Levels of UB and CYP1A transcripts increased in a dose-dependent manner following exposure to toxaphene. Given that toxaphene-induced neurotoxicity was not reflected in the level of AChE transcripts and only slight accumulation of Hym-355 transcript was observed only at the higher of the two doses of toxaphene tested, there remains a need to identify transcriptional biomarkers for toxaphene-mediated neurotoxicity in H. magnipapillata. Transcripts that respond to toxaphene exposure could be valuable biomarkers for stress levels in H. magnipapillata and may be useful for monitoring the pollution of aquatic environments.

  2. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    PubMed

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  3. Treatment of aphthous stomatitis with saturated potassium nitrate/dimethyl isosorbide.

    PubMed

    Hodosh, Milton; Hodosh, Steven H; Hodosh, Alex J

    2004-02-01

    Concentrated potassium nitrate has been used to lessen the pain caused by aphthous stomatitis. The problem with this approach is that it can have difficulty penetrating into the deeper layers of mucosae or skin, and for this reason, its beneficial affects are not routinely predictable. When dimethyl isosorbide is added to potassium nitrate in an aqueous hydroxyethyl cellulose gel, it enhances the capacity of potassium nitrate to more completely permeate these tissues and predictably promote rapid pain control and aphthae healing.

  4. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.

    PubMed

    Boccalandro, Hernán E; Giordano, Carla V; Ploschuk, Edmundo L; Piccoli, Patricia N; Bottini, Rubén; Casal, Jorge J

    2012-03-01

    Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.

  5. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest

    NASA Astrophysics Data System (ADS)

    Fares, S.; Matteucci, G.; Scarascia Mugnozza, G.; Morani, A.; Calfapietra, C.; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.

    2013-03-01

    Mediterranean forests close to urban areas are exposed to polluted plumes loaded with tropospheric ozone. This is the case of Castelporziano Estate, a 6000 ha Mediterranean forest 25 km from Rome downtown on the coast of the Mediterranean Sea. In September 2011 we started an intensive field campaign aimed at investigating ozone deposition from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements at canopy level with the eddy covariance technique were supported by a vegetation survey and the measurement of all environmental parameters which allowed to calculate stomatal ozone fluxes. Leaf-level measurements were used to parameterize models to calculate stomatal conductance based on a Jarvis-type and Ball-Berry approach. We show changes in magnitude of ozone fluxes from a warm (September) to a cold period (October-December). Stomatal component explained almost the totality of ozone fluxes during the cold days, but contributed only up to 50% to total ozone deposition during warm days, suggesting that other sinks (e.g. chemistry in the gas-phase) play a major role. Modeled stomatal ozone fluxes based on a Jarvis-type approach (DO3SE) correlated with measured fluxes better than using a Ball-Berry approach. A third model based on a modified Ball-Berry equation was proposed to account for the non-linear dependency of stomatal conductance on relative humidity. This research will help the development of metrics for ozone-risk assessment and advance our understanding of mixed Mediterranean forests in biosphere-atmosphere exchange.

  6. Factors affecting allergen-specific IgE serum levels in cats

    PubMed Central

    Belova, S.; Wilhelm, S.; Linek, M.; Beco, L.; Fontaine, J.; Bergvall, K.; Favrot, C.

    2012-01-01

    Pruritic skin diseases are common in cats and demand rigorous diagnostic workup for finding an underlying etiology. Measurement of a serum allergen-specific IgE in a pruritic cat is often used to make or confirm the diagnosis of a skin hypersensitivity disease, although current evidence suggests that elevated allergen-specific IgE do not always correlate with a clinical disease and vice versa. The aim of the study was to to assess the possible influence of age, deworming status, lifestyle, flea treatment, and gender on allergen-specific IgE levels and to evaluate the reliability of IgE testing in predicting the final diagnosis of a pruritic cat. For this purpose sera of 179 cats with pruritus of different causes and 20 healthy cats were evaluated for allergen-specific IgE against environmental, food and flea allergens using the Fc-epsilon receptor based enzyme-linked immunosorbent assay (ELISA) test. The results of the study showed positive correlation between age, outdoor life style, absence of deworming, absence of flea control measures and levels of allergen-specific IgE. Gender and living area (urban versus rural) did not seem to affect the formation of allergen-specific IgE. According to these findings, evaluating allergen-specific IgE levels, is not a reliable test to diagnose hypersensitivity to food or environmental allergens in cats. On the contrary, this test can be successfully used for diagnosing feline flea bite hypersensitivity. PMID:22754094

  7. Low-level lasers affect Escherichia coli cultures in hyperosmotic stress

    NASA Astrophysics Data System (ADS)

    Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.

    2015-08-01

    Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.

  8. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2016-01-01

    Stomatal responses to changes in vapor pressure deficit (VPD) constitute the predominant form of daytime gas-exchange regulation in plants. Stomatal closure in response to increased VPD is driven by the rapid up-regulation of foliar abscisic acid (ABA) biosynthesis and ABA levels in angiosperms; however, very little is known about the physiological trigger for this increase in ABA biosynthesis at increased VPD. Using a novel method of modifying leaf cell turgor by the application of external pressures, we test whether changes in turgor pressure can trigger increases in foliar ABA levels over 20 min, a period of time most relevant to the stomatal response to VPD. We found in angiosperm species that the biosynthesis of ABA was triggered by reductions in leaf turgor, and in two species tested, that a higher sensitivity of ABA synthesis to leaf turgor corresponded with a higher stomatal sensitivity to VPD. In contrast, representative species from nonflowering plant lineages did not show a rapid turgor-triggered increase in foliar ABA levels, which is consistent with previous studies demonstrating passive stomatal responses to changes in VPD in these lineages. Our method provides a new tool for characterizing the response of stomata to water availability. PMID:27208264

  9. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides

    PubMed Central

    Fanourakis, Dimitrios; Giday, Habtamu; Milla, Rubén; Pieruschka, Roland; Kjaer, Katrine H.; Bolger, Marie; Vasilevski, Aleksandar; Nunes-Nesi, Adriano; Fiorani, Fabio; Ottosen, Carl-Otto

    2015-01-01

    Background and Aims Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width. Methods Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum ‘M82’. A quantitative trait locus (QTL) analysis for stomatal traits was also performed. Key Results A wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2–16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60–83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii. Conclusions The data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45–91 %), because stomatal size inadequately reflects operating pore area (R2 = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis. PMID:25538116

  10. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    PubMed

    Aasamaa, Krõõt; Aphalo, Pedro José

    2016-09-26

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role.

  11. Predator diversity and density affect levels of predation upon strongly interactive species in temperate rocky reefs.

    PubMed

    Guidetti, Paolo

    2007-12-01

    Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.

  12. Experimental simulation of radio- and chemoradio stomatitis in rats.

    PubMed

    Antushevich, A A; Grebenyuk, A N; Antushevich, A Y; Polevay, L P

    2013-04-01

    Experimental models of stomatitis developing in response to an isolated (radiation) and combined (radiation and chemical) exposure of experimental animals, were created. The severity of radiation-induced stomatitis was determined by the dose of radiation exposure. Additional exposure to a chemical factor (cyclophosphamide) augmented the destructive effect of ionizing radiation on the buccal mucosa of rats.

  13. [Reading poems to oneself affects emotional state and level of distraction].

    PubMed

    Morita, Haruka; Sugamura, Genji

    2014-12-01

    Bibliotherapy has occasionally been used as a counseling technique. However, most reports are basically single-case studies and the psychological effect of this approach remains unclear. Two experiments using 96 healthy college volunteers were conducted to determine how the reading of emotionally positive, negative, or neutral passages affect one's mood and level of distraction. Study 1 revealed that participants felt more relaxed after reading positive poems with either personal or social content than after reading negativie ones, and they felt least refreshed and calm after reading negative poems with personal content. Study 2 showed that participants reported less depressed feelings, both after reading an excerpt from an explanatory leaflet and after a controlled rest period. These results were discussed in terms of the mood congruence effect. Future research may evaluate the effects of reading novels, manga, and life teachings on self-narratives and views of life in normal and clinical populations.

  14. Daytime light intensity affects seasonal timing via changes in the nocturnal melatonin levels

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Rani, Sangeeta; Malik, Shalie; Trivedi, Amit K.; Schwabl, Ingrid; Helm, Barbara; Gwinner, Eberhard

    2007-08-01

    Daytime light intensity can affect the photoperiodic regulation of the reproductive cycle in birds. The actual way by which light intensity information is transduced is, however, unknown. We postulate that transduction of the light intensity information is mediated by changes in the pattern of melatonin secretion. This study, therefore, investigated the effects of high and low daytime light intensities on the daily melatonin rhythm of Afro-tropical stonechats ( Saxicola torquata axillaris) in which seasonal changes in daytime light intensity act as a zeitgeber of the circannual rhythms controlling annual reproduction and molt. Stonechats were subjected to light conditions simulated as closely as possible to native conditions near the equator. Photoperiod was held constant at 12.25 h of light and 11.75 h of darkness per day. At intervals of 2.5 to 3.5 weeks, daytime light intensity was changed from bright (12,000 lux at one and 2,000 lux at the other perch) to dim (1,600 lux at one and 250 lux at the other perch) and back to the original bright light. Daily plasma melatonin profiles showed that they were linked with changes in daytime light intensity: Nighttime peak and total nocturnal levels were altered when transitions between light conditions were made, and these changes were significant when light intensity was changed from dim to bright. We suggest that daytime light intensity could affect seasonal timing via changes in melatonin profiles.

  15. Dietary copper level affects copper metabolism during lipopolysaccharide-induced immunological stress in chicks.

    PubMed

    Koh, T S; Peng, R K; Klasing, K C

    1996-07-01

    Two experiments were conducted to examine the effect of dietary Cu level on Cu metabolism during the acute phase response in broiler chicks with adequate (Experiment 1) or deficient (Experiment 2) Cu. Diets based on cornstarch and isolated soybean protein were used to formulate a basal diet, and basal diet plus either 5, 10, or 15 mg/kg additional Cu as either CuO or CuSO4. Each diet was fed to six pens of five chicks per pen (Experiment 1) or eight pens of five chicks (Experiment 2). Half of the chicks on each diet were injected with Salmonella typhymurium lipopolysaccharide (LPS) on alternate days. In Experiment 1, LPS significantly decreased daily gain, feed intake, and feed efficiency (P < 0.01) and increased the concentration of Cu in blood plasma (P < 0.01). In the uninjected birds, adding 5, 10, or 15 mg/kg Cu as CuO or 15 mg/kg Cu as CuSO4 increased the rate of gain over that of chicks fed the basal diet. In the birds challenged with LPS, 10 mg/kg Cu as CuO increased the rate of gain and efficiency compared to those of chicks fed the basal diet. Addition of CuSO4 to the diet of chicks challenged with LPS did not affect gain, intake, or feed efficiency compared to those of chicks fed the basal diet. Ceruloplasmin levels were higher in chicks challenged with LPS than in control chicks (P = 0.03), and this difference tended to be greater in chickens fed CuO than in chickens fed CuSO4 (P = 0.07). In chicks challenged with LPS, feeding CuO at all levels and feeding CuSO4 to give 10 or 15 mg/kg Cu increased ceruloplasmin levels above that of chicks fed the basal diet. Hepatic Mn superoxide dismutase (SOD) and Cu/Zn SOD were not influenced by dietary Cu level or source or LPS. Results of Experiment 2 were similar to those of Experiment 1 except that supplemental CuSO4 and CuO gave similar increases in gain and CuSO4 was more effective at increasing ceruloplasmin levels. Chicks given supplemental Cu had higher ceruloplasmin levels following challenge with LPS than

  16. Serotonin (5-HT) receptor 5A sequence variants affect human plasma triglyceride levels

    PubMed Central

    Zhang, Y.; Smith, E. M.; Baye, T. M.; Eckert, J. V.; Abraham, L. J.; Moses, E. K.; Kissebah, A. H.; Martin, L. J.

    2010-01-01

    Neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) work closely with leptin and insulin to fine-tune the metabolic and neuroendocrine responses to dietary intake. Losing the sensitivity to excess food intake can lead to obesity, diabetes, and a multitude of behavioral disorders. It is largely unclear how different serotonin receptor subtypes respond to and integrate metabolic signals and which genetic variations in these receptor genes lead to individual differences in susceptibility to metabolic disorders. In an obese cohort of families of Northern European descent (n = 2,209), the serotonin type 5A receptor gene, HTR5A, was identified as a prominent factor affecting plasma levels of triglycerides (TG), supported by our data from both genome-wide linkage and targeted association analyses using 28 publicly available and 12 newly discovered single nucleotide polymorphisms (SNPs), of which 3 were strongly associated with plasma TG levels (P < 0.00125). Bayesian quantitative trait nucleotide (BQTN) analysis identified a putative causal promoter SNP (rs3734967) with substantial posterior probability (P = 0.59). Functional analysis of rs3734967 by electrophoretic mobility shift assay (EMSA) showed distinct binding patterns of the two alleles of this SNP with nuclear proteins from glioma cell lines. In conclusion, sequence variants in HTR5A are strongly associated with high plasma levels of TG in a Northern European population, suggesting a novel role of the serotonin receptor system in humans. This suggests a potential brain-specific regulation of plasma TG levels, possibly by alteration of the expression of HTR5A. PMID:20388841

  17. Reactive Oxygen Species in the Regulation of Stomatal Movements.

    PubMed

    Sierla, Maija; Waszczak, Cezary; Vahisalu, Triin; Kangasjärvi, Jaakko

    2016-07-01

    Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.

  18. The regulatory benefits of high levels of affect perception accuracy: a process analysis of reactions to stressors in daily life.

    PubMed

    Robinson, Michael D; Moeller, Sara K; Buchholz, Maria M; Boyd, Ryan L; Troop-Gordon, Wendy

    2012-08-01

    Individuals attuned to affective signals from the environment may possess an advantage in the emotion-regulation realm. In two studies (total n = 151), individual differences in affective perception accuracy were assessed in an objective, performance-based manner. Subsequently, the same individuals completed daily diary protocols in which daily stressor levels were reported as well as problematic states shown to be stress-reactive in previous studies. In both studies, individual differences in affect perception accuracy interacted with daily stressor levels to predict the problematic outcomes. Daily stressors precipitated problematic reactions--whether depressive feelings (study 1) or somatic symptoms (study 2)--at low levels of affect perception accuracy, but did not do so at high levels of affect perception accuracy. The findings support a regulatory view of such perceptual abilities. Implications for understanding emotion regulation processes, emotional intelligence, and individual differences in reactivity are discussed.

  19. Pulling Rank: Military Rank Affects Hormone Levels and Fairness in an Allocation Experiment

    PubMed Central

    Siart, Benjamin; Pflüger, Lena S.; Wallner, Bernard

    2016-01-01

    . This would be in line with the observation that unequally shared duty favored HR in most cases. We conclude that social status, in the form of military rank affects fairness behavior in social interaction and endocrine levels. PMID:27891109

  20. Pulling Rank: Military Rank Affects Hormone Levels and Fairness in an Allocation Experiment.

    PubMed

    Siart, Benjamin; Pflüger, Lena S; Wallner, Bernard

    2016-01-01

    . This would be in line with the observation that unequally shared duty favored HR in most cases. We conclude that social status, in the form of military rank affects fairness behavior in social interaction and endocrine levels.

  1. Does the patients’ educational level and previous counseling affect their medication knowledge?

    PubMed Central

    Alkatheri, Abdulmalik M.; Albekairy, Abdulkareem M.

    2013-01-01

    AIMS: The direct involvement of clinical pharmacists in patient care is an ever-evolving role in the pharmacy profession. Studies have demonstrated that discharge counseling performed by a clinical pharmacist improves patients’ knowledge of their medications. The aim of this article is to evaluate the effect of patients’ educational level and previous counseling on medication knowledge among patients visiting King Abdulaziz Medical City, a tertiary care center. METHODS: The effect of the education level and previous counseling on medication knowledge was assessed in 90 patients in both inpatient and outpatient settings at King Abdul Aziz Medical City during a 5-week period using a questionnaire that contains items to assess patients’ medication knowledge and the pharmacists’ performance during counseling. RESULTS: The average age of the participants was 52.9 ± 17.6 years. The participants’ education level was not significantly associated with gender; however, it was significantly associated with age, P < 0.05. A higher educational level was found to positively affect the aspects of medication knowledge that were assessed in this study (P < 0.05): 35.8-56.9% of the non-educated patients showed good to excellent recognition of medications, knowledge of their indications, and knowledge of dosage schedule compared to 76.2-90.5% for the more educated participants. Furthermore, 13.6%, 38.1%, and 70.0% of the non-educated group, the below high school group and high school education or above group, respectively, demonstrated good to excellent knowledge of their medications’ side effects. Previous counseling was also positively linked to medication knowledge (P < 0.05). Here, 87.8-97.6% of the patients who received previous counseling showed good to excellent recognition of medications, knowledge of their indications, and better knowledge of dosage schedule compared to 37.2-43.2% for those who did not. Finally, 52.9% of the patients who received previous

  2. How Out-of-Level Testing Affects the Psychometric Quality of Test Scores. Out-of-Level Testing Report 2.

    ERIC Educational Resources Information Center

    Bielinski, John; Thurlow, Martha; Minnema, Jane; Scott, Jim

    This report is a review and analysis of the psychometric literature on the topic of out-of-level testing. Out-of-level testing refers to the practice of using a level of the test other than the test taken by most of the students in a student's current grade level. Much of the research on out-of-level testing was conducted in the 1970s and 1980s,…

  3. Spatial and phylogenetic analysis of the vesicular stomatitis virus epidemic in the southwestern United States in 2004-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southwestern United States has been incidentally affected by vesicular stomatitis virus (VSV) epidemics during the last 100 years. By the time this manuscript was written, the last episodes were reported in 2004-2006. Results of space clustering and phylogenetic analysis techniques used here sug...

  4. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  5. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe.

    PubMed

    Di, Guo-Qing; Zhou, Bing; Li, Zheng-Guang; Lin, Qi-Li

    2011-12-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L(WECPN)) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe.

  6. Physical fitness level affects perception of chronic stress in military trainees.

    PubMed

    Tuch, Carolin; Teubel, Thomas; La Marca, Roberto; Roos, Lilian; Annen, Hubert; Wyss, Thomas

    2016-12-13

    This study investigated whether physical fitness affects the perception of chronic stress in military trainees while controlling for established factors influencing stress perception. The sample consisted of 273 men (20.23 ± 1.12 years, 73.56 ± 10.52 kg, 1.78 ± 0.06 m). Physical fitness was measured by progressive endurance run (maximum oxygen uptake; VO2 max), standing long jump, seated shot put, trunk muscle strength, and one leg standing test. Perceived stress was measured using the Perceived Stress Questionnaire in Weeks 1 and 11 of basic military training (BMT). VO2 max and four influencing variables (perceived stress in Week 1, neuroticism, transformational leadership style, and education level) explained 44.44% of the variance of the increase in perceived stress during 10 weeks of BMT (R(2)  = 0.444, F = 23.334, p < .001). The explained variance of VO2 max was 4.14% (R(2)  = 0.041), with a Cohen's f(2) effect size of 0.045 (assigned as a small effect by Cohen, ). The results indicate a moderating influence of good aerobic fitness on the varied level of perceived stress. We conclude that it is advisable to provide conscripts with a specific endurance training program prior to BMT for stress prevention reasons.

  7. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    PubMed Central

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  8. How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1.

    PubMed

    Serra, Laura; Petrucci, Antonio; Spanò, Barbara; Torso, Mario; Olivito, Giusy; Lispi, Ludovico; Costanzi-Porrini, Sandro; Giulietti, Giovanni; Koch, Giacomo; Giacanelli, Manlio; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Myotonic dystrophy type 1 (DM1) is a multisystemic disorder dominated by muscular impairment and brain dysfunctions. Although brain damage has previously been demonstrated in DM1, its associations with the genetics and clinical/neuropsychological features of the disease are controversial. This study assessed the differential role of gray matter (GM) and white matter (WM) damage in determining higher-level dysfunctions in DM1. Ten patients with genetically confirmed DM1 and 16 healthy How genetics affects the brain to produce higher-level dysfunctions in myotonic dystrophy type 1 matched controls entered the study. The patients underwent a neuropsychological assessment and quantification of CTG triplet expansion. All the subjects underwent MR scanning at 3T, with studies including T1-weighted volumes and diffusion-weighted images. Voxel-based morphometry and tractbased spatial statistics were used for unbiased quantification of regional GM atrophy and WM integrity. The DM1 patients showed widespread involvement of both tissues. The extent of the damage correlated with CTG triplet expansion and cognition. This study supports the idea that genetic abnormalities in DM1mainly target the WM, but GM involvement is also crucial in determining the clinical characteristics of DM1.

  9. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  10. How the initial level of visibility and limited resource affect the evolution of cooperation

    PubMed Central

    Han, Dun; Li, Dandan; Sun, Mei

    2016-01-01

    This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure. PMID:27250335

  11. LRRK2 Affects Vesicle Trafficking, Neurotransmitter Extracellular Level and Membrane Receptor Localization

    PubMed Central

    Spissu, Ylenia; Sanna, Giovanna; Xiong, Yulan; Dawson, Ted M.; Dawson, Valina L.; Galioto, Manuela; Rocchitta, Gaia; Biosa, Alice; Serra, Pier Andrea; Carri, Maria Teresa; Crosio, Claudia; Iaccarino, Ciro

    2013-01-01

    The leucine-rich repeat kinase 2 (LRRK2) gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson’s disease (PD). LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2G2019S pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2G2019S shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells. PMID:24167564

  12. How the initial level of visibility and limited resource affect the evolution of cooperation

    NASA Astrophysics Data System (ADS)

    Han, Dun; Li, Dandan; Sun, Mei

    2016-06-01

    This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.

  13. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors

    PubMed Central

    Agurla, Srinivas; Raghavendra, Agepati S.

    2016-01-01

    Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca2+, and ion channels. Once formed, the ROS and free Ca2+ of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca2+ in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca2+ and modulate ion channels, through a network of events, in such a way that the guard cells lose K+/Cl−/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca2+ act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research. PMID:27605934

  14. Nitrogen Addition Significantly Affects Forest Litter Decomposition under High Levels of Ambient Nitrogen Deposition

    PubMed Central

    Chen, Gang; Peng, Yong; Xiao, Yin-long; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi

    2014-01-01

    Background Forest litter decomposition is a major component of the global carbon (C) budget, and is greatly affected by the atmospheric nitrogen (N) deposition observed globally. However, the effects of N addition on forest litter decomposition, in ecosystems receiving increasingly higher levels of ambient N deposition, are poorly understood. Methodology/Principal Findings We conducted a two-year field experiment in five forests along the western edge of the Sichuan Basin in China, where atmospheric N deposition was up to 82–114 kg N ha–1 in the study sites. Four levels of N treatments were applied: (1) control (no N added), (2) low-N (50 kg N ha–1 year–1), (3) medium-N (150 kg N ha–1 year–1), and (4) high-N (300 kg N ha–1 year–1), N additions ranging from 40% to 370% of ambient N deposition. The decomposition processes of ten types of forest litters were then studied. Nitrogen additions significantly decreased the decomposition rates of six types of forest litters. N additions decreased forest litter decomposition, and the mass of residual litter was closely correlated to residual lignin during the decomposition process over the study period. The inhibitory effect of N addition on litter decomposition can be primarily explained by the inhibition of lignin decomposition by exogenous inorganic N. The overall decomposition rate of ten investigated substrates exhibited a significant negative linear relationship with initial tissue C/N and lignin/N, and significant positive relationships with initial tissue K and N concentrations; these relationships exhibited linear and logarithmic curves, respectively. Conclusions/Significance This study suggests that the expected progressive increases in N deposition may have a potential important impact on forest litter decomposition in the study area in the presence of high levels of ambient N deposition. PMID:24551152

  15. Chronic exposure to hypergravity affects thyrotropin-releasing hormone levels in rat brainstem and cerebellum

    NASA Technical Reports Server (NTRS)

    Daunton, N. G.; Tang, F.; Corcoran, M. L.; Fox, R. A.; Man, S. Y.

    1998-01-01

    In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.

  16. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the

  17. Ground-level ozone differentially affects nitrogen acquisition and allocation in mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees.

    PubMed

    Weigt, R B; Häberle, K H; Millard, P; Metzger, U; Ritter, W; Blaschke, H; Göttlein, A; Matyssek, R

    2012-10-01

    Impacts of elevated ground-level ozone (O(3)) on nitrogen (N) uptake and allocation were studied on mature European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) in a forest stand, hypothesizing that: (i) chronically elevated O(3) limits nutrient uptake, and (ii) beech responds more sensitively to elevated O(3) than spruce, as previously found for juvenile trees. Tree canopies were exposed to twice-ambient O(3) concentrations (2 × O(3)) by a free-air fumigation system, with trees under ambient O(3) serving as control. After 5 years of O(3) fumigation, (15)NH(4)(15)NO(3) was applied to soil, and concentrations of newly acquired N (N(labelled)) and total N (N(total)) in plant compartments and soil measured. Under 2 × O(3), N(labelled) and N(total) were increased in the bulk soil and tended to be lower in fine and coarse roots of both species across the soil horizons, supporting hypothesis (i). N(labelled) was reduced in beech foliage by up to 60%, and by up to 50% in buds under 2 × O(3). Similarly, N(labelled) in stem bark and phloem was reduced. No such reduction was observed in spruce, reflecting a stronger effect on N acquisition in beech in accordance with hypothesis (ii). In spruce, 2 × O(3) tended to favour allocation of new N to foliage. N(labelled) in beech foliage correlated with cumulative seasonal transpiration, indicating impaired N acquisition was probably caused by reduced stomatal conductance and, hence, water transport under elevated O(3). Stimulated fine root growth under 2 × O(3) with a possible increase of below-ground N sink strength may also have accounted for lowered N allocation to above-ground organs. Reduced N uptake and altered allocation may enhance the use of stored N for growth, possibly affecting long-term stand nutrition.

  18. Salivary Alpha-Amylase Enzyme, Psychological Disorders, and Life Quality in Patients with Recurrent Aphthous Stomatitis

    PubMed Central

    Cardoso, Juliana Andrade; dos Santos Junior, André Avelino; Nunes, Maria Lucia Tiellet; de Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen

    2017-01-01

    Objective. The aim of this study was to evaluate stress, anxiety, and salivary alpha-amylase (SAA) activity in patients with recurrent aphthous stomatitis (RAS). The impact of this disease on the life quality was also evaluated. Design. Twenty-two patients with RAS and controls, matched by sex and age, were selected. Stress and anxiety were assessed using Lipp's Inventory of Stress Symptoms and Beck Anxiety Inventory. Life quality was assessed through the World Health Organization Quality of Life-bref (WHOQOL-BREF) and the Oral Health Impact Profile-14 (OHIP-14). Saliva samples were collected in the morning and afternoon and the SAA activity was analyzed by enzymatic kinetic method. Results. No significant difference was observed between the groups regarding the SAA activity (p = 0.306). Patients with RAS had higher scores of anxiety (p = 0.016). The scores of WHOQOL-BREF were significantly lower in patients with RAS. The values obtained through OHIP-14 were significantly higher in these patients (p = 0.002). Conclusion. RAS negatively affects the life quality. Patients with the disease have higher levels of anxiety, suggesting its association with the etiopathogenesis of RAS.

  19. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.

    PubMed

    Lackner, J R; Dizio, P

    1998-08-01

    We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, approximately 0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.

  20. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Dizio, P.

    1998-01-01

    We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, approximately 0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.

  1. The Effect of Exogenous Abscisic Acid on Stomatal Development, Stomatal Mechanics, and Leaf Gas Exchange in Tradescantia virginiana

    PubMed Central

    Franks, Peter J.; Farquhar, Graham D.

    2001-01-01

    Gas exchange parameters and stomatal physical properties were measured in Tradescantia virginiana plants grown under well-watered conditions and treated daily with either distilled water (control) or 3.0 mm abscisic acid (ABA). Photosynthetic capacity (CO2 assimilation rate for any given leaf intercellular CO2 concentration [ci]) and relative stomatal sensitivity to leaf-to-air vapor-pressure difference were unaffected by the ABA treatment. However, at an ambient CO2 concentration (ca) of 350 μmol mol−1, ABA-treated plants operated with significantly lower ci. ABA-treated plants had significantly smaller stomata and higher stomatal density in their lower epidermis. Stomatal aperture versus guard cell pressure (Pg) characteristics measured with a cell pressure probe showed that although the form of the relationship was similar in control and ABA-treated plants, stomata of ABA-treated plants exhibited more complete closure at Pg = 0 MPa and less than half the aperture of stomata in control plants at any given Pg. Scaling from stomatal aperture versus Pg to stomatal conductance versus Pg showed that plants grown under ABA treatment would have had significantly lower maximum stomatal conductance and would have operated with lower stomatal conductance for any given guard cell turgor. This is consistent with the observation of lower ci/ca in ABA-treated plants with a ca of 350 μmol mol−1. It is proposed that the ABA-induced changes in stomatal mechanics and stomatal conductance versus Pg characteristics constitute an improvement in water-use efficiency that may be invoked under prolonged drought conditions. PMID:11161050

  2. Management of Recurrent Aphthous Stomatitis in Children.

    PubMed

    Montgomery-Cranny, Jodie A; Wallace, Ann; Rogers, Helen J; Hughes, Sophie C; Hegarty, Anne M; Zaitoun, Halla

    2015-01-01

    Recurrent oral ulceration is common and may present in childhood. Causes of recurrent oral ulceration are numerous and there may be an association with underlying systemic disease. Recurrent aphthous stomatitis (RAS) is the most common underlying diagnosis in children. The discomfort of oral ulcers can impact negatively on quality of life of a child, interfering with eating, speaking and may result in missed school days. The role of the general dental practitioner is to identify patients who can be treated with simple measures in primary dental care and those who require assessment and treatment in secondary care. Management may include topical agents for symptomatic relief, topical corticosteroids and, in severe recalcitrant cases, systemic agents may be necessary.

  3. Stomatal conductance of lettuce grown under or exposed to different light qualities

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.

  4. The Application of Stomatal Frequency Analysis As A Proxy For Paleo-atmospheric Co2: Calibration and Proxy-validation

    NASA Astrophysics Data System (ADS)

    Kouwenberg, L. L. R.; Wagner, F.; Kürschner, W. M.; Visscher, H.

    Stomata regulate gas-exchange in leaves and their frequency on leaves has a profound influence on the intake of CO2 and the loss of water through the stomata. Experiments and analysis of leaves that have grown naturally under the historical CO2 levels of the past 200 years have demonstrated that many plant species, especially woody an- giosperms, show a reduction in stomatal frequency in relation to a rise in atmospheric CO2. This decrease in stomatal frequency restricts water loss, while the CO2 intake is not substantially reduced due to the higher CO2 concentration in the atmosphere. This species-specific response has been successfully used to reconstruct past CO2 lev- els from the stomatal frequency on fossil leaves after careful calibration to a series of known atmospheric CO2 levels. Methods to obtain such a calibration, are discussed by example of two tree taxa, the tree birch (Betula pubescens/pendula) and the west- ern hemlock (Tsuga heterophylla). The effective use of stomatal frequency analysis as a proxy of atmospheric CO2 requires validation by determination of the influence of other factors such as light availability, humidity, temperature and leaf age on stom- atal frequency. The (dis)advantages of using experiments vs material from naturally grown trees for validation and calibration will be discussed. For angiosperm species, such as Betula, the influence of other factors besides CO2 on stomatal frequency is shown to be of a lesser magnitude when the stomatal index (the number of stomata as a proportion of epidermal cells) is used instead of the stomatal density (the number of stomata per mm2 leaf area). Stomatal frequency in Tsuga heterophylla is not influ- enced by light regime or leaf age, and the observed reduction in stomatal frequency related to the CO2 rise of the last century cannot be explained by trends in precip- itation or temperature as apparent in local climate records. Thus, these two species are considered highly suitable as proxies

  5. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought.

    PubMed

    Savchenko, Tatyana; Kolla, Venkat A; Wang, Chang-Quan; Nasafi, Zainab; Hicks, Derrick R; Phadungchob, Bpantamars; Chehab, Wassim E; Brandizzi, Federica; Froehlich, John; Dehesh, Katayoon

    2014-03-01

    Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.

  6. ALA-Induced Flavonols Accumulation in Guard Cells Is Involved in Scavenging H2O2 and Inhibiting Stomatal Closure in Arabidopsis Cotyledons

    PubMed Central

    An, Yuyan; Feng, Xinxin; Liu, Longbo; Xiong, Lijun; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a new plant growth regulator, can inhibit stomatal closure by reducing H2O2 accumulation in guard cells. Flavonols are a main kind of flavonoids and have been proposed as H2O2 scavengers in guard cells. 5-aminolevulinic acid can significantly improve flavonoids accumulation in plants. However, whether ALA increases flavonols content in guard cells and the role of flavonols in ALA-regulated stomatal movement remains unclear. In this study, we first demonstrated that ALA pretreatment inhibited ABA-induced stomatal closure by reducing H2O2 accumulation in guard cells of Arabidopsis seedlings. This result confirms the inhibitory effect of ALA on stomatal closure and the important role of decreased H2O2 accumulation in this process. We also found that ALA significantly improved flavonols accumulation in guard cells using a flavonol-specific dye. Furthermore, using exogenous quercetin and kaempferol, two major components of flavonols in Arabidopsis leaves, we showed that flavonols accumulation inhibited ABA-induced stomatal movement by suppressing H2O2 in guard cells. Finally, we showed that the inhibitory effect of ALA on ABA-induced stomatal closure was largely impaired in flavonoid-deficient transparent testa4 (tt4) mutant. In addition, exogenous flavonols recovered stomatal responses of tt4 to the wild-type levels. Taken together, we conclude that ALA-induced flavonol accumulation in guard cells is partially involved in the inhibitory effect of ALA on ABA-induced H2O2 accumulation and stomatal closure. Our data provide direct evidence that ALA can regulate stomatal movement by improving flavonols accumulation, revealing new insights into guard cell signaling. PMID:27895660

  7. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  8. Stomatal development in Arabidopsis and grasses: differences and commonalities.

    PubMed

    Serna, Laura

    2011-01-01

    Stomata, found on the epidermis of all terrestrial plants, consist of two specialized cells called guard cells, which surround a tiny pore. Major advances have been made in our understanding of the genetic control of stomatal development in Arabidopsis and grasses. In Arabidopsis, three basic-helix-loop-helix (bHLH) genes control the successive steps that lead to stomatal formation. SPEECHLESS (SPCH) drives the cell division that initiates the stomatal cell lineage, MUTE induces the formation of the immediate stomatal precursor cell, and FAMA causes the stomatal precursor cell to divide into the two guard cells. Recent results demonstrate that these genes share functions with their grass homologs, and that MUTE is expressed later in development than its grass counterparts. Other differences in stomatal development between these two plant groups are exemplified by the PANGLOSS1 (PAN1) gene of maize. PAN1, which encodes a leucine-rich repeat receptor-like kinase with an inactive kinase domain, promotes polarization of the subsidiary mother cell and orients its cell division plane. Because such events do not exist in Arabidopsis, it is likely that the PAN1-like genes of Arabidopsis and PAN1 are paralogs. Together, these results indicate that distinctions in the regulation of gene expression and protein function are both responsible for the divergence of stomatal development between Arabidopsis and grasses.

  9. Reconstructing Atmospheric CO2 Through The Paleocene-Eocene Thermal Maximum Using Stomatal Index and Stomatal Density Values From Ginkgo adiantoides

    NASA Astrophysics Data System (ADS)

    Barclay, R. S.; Wing, S. L.

    2013-12-01

    CIE coincides in part with the 'pre-warming' interval documented from δ18O in mammalian tooth enamel from the Bighorn Basin. Stomatal density values increase ~30ka prior to the CIE, suggesting a decrease in cell size from water stress, a change that closely matches the timing of a trend towards drier paleosols in the same region of the Bighorn Basin. All evidence collected to date suggests a long-term rise in pCO2 and temperature, and drying of soils prior to the prominent CIE. Presumably the source for CO2 released prior to the CIE did not significantly alter the isotopic value of atmospheric CO2. As suggested by previous authors, warming prior to the CIE may have triggered the release of carbon from a source depleted in 13C at the onset of the PETM. Well-preserved dispersed cuticle has been extracted from stratigraphic levels within the CIE, and may permit reconstruction of changes in pCO2 during the PETM.

  10. [Ecosystem service interactions and their affecting factors in Jinghe watershed at county level].

    PubMed

    Pan, Ying; Zhen, Lin; Long, Xin; Cao, Xiao-Chang

    2012-05-01

    Taking the multiple ecosystem services (grain supply, meat supply, fuel-wood supply, water resource conservation and soil retention) as test objects, this paper analyzed the interactions among these services, the interaction modes and the possible affecting factors in 31 counties of Jinghe watershed. At the county level, there existed great differences in the interactions among different pairs of the ecosystem services. The grain supply showed significant positive correlation with meat supply but negative correlation with soil retention, whereas the water resource conservation showed significant positive correlations with fuel-wood supply and soil retention. As for the interaction modes of the ecosystem services, 24 counties were primarily of regulation services, 3 counties were of supply and regulation services in balance, and 4 counties were primarily of grain supply. The total ecosystem service index of the interaction modes in each county varied greatly, with 5.1 times of difference between the maximum (Jingyuan County) and the minimum value (Yanchi County). The total ecosystem service index was significantly positively correlated with precipitation and soil total nitrogen, and negatively correlated with solar hours. The increase of farmland had negative effects, while that of shrub land and grassland had great positive effects on the total ecosystem service index, but the increase of forestland had less effects.

  11. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.

    PubMed

    Brand, John; Johnson, Aaron P

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.

  12. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization

    PubMed Central

    Brand, John; Johnson, Aaron P.

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675

  13. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control

    PubMed Central

    Huang, Xin-Yuan; Chao, Dai-Yin; Gao, Ji-Ping; Zhu, Mei-Zhen; Shi, Min; Lin, Hong-Xuan

    2009-01-01

    Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO2 uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H2O2) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H2O2 level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)—a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H2O2 homeostasis—and identify a novel pathway for the signal transduction of DST-mediated H2O2-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops. PMID:19651988

  14. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis.

    PubMed

    Wang, Wen-Hua; Yi, Xiao-Qian; Han, Ai-Dong; Liu, Ting-Wu; Chen, Juan; Wu, Fei-Hua; Dong, Xue-Jun; He, Jun-Xian; Pei, Zhen-Ming; Zheng, Hai-Lei

    2012-01-01

    The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca(2+) (Ca(2+)(i)) increases in response to a high extracellular calcium (Ca(2+)(o)) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling in the CAS signalling pathway in guard cells in response to Ca(2+)(o). Here it is shown that Ca(2+)(o) could induce H(2)O(2) and NO production from guard cells but only H(2)O(2) from chloroplasts, leading to stomatal closure. In addition, the CASas mutant, the atrbohD/F double mutant, and the Atnoa1 mutant were all insensitive to Ca(2+)(o)-stimulated stomatal closure, as well as H(2)O(2) and NO elevation in the case of CASas. Furthermore, it was found that the antioxidant system might function as a mediator in Ca(2+)(o) and H(2)O(2) signalling in guard cells. The results suggest a hypothetical model whereby Ca(2+)(o) induces H(2)O(2) and NO accumulation in guard cells through the CAS signalling pathway, which further triggers Ca(2+)(i) transients and finally stomatal closure. The possible cross-talk of Ca(2+)(o) and abscisic acid signalling as well as the antioxidant system are discussed.

  15. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.

    PubMed

    Huang, Xin-Yuan; Chao, Dai-Yin; Gao, Ji-Ping; Zhu, Mei-Zhen; Shi, Min; Lin, Hong-Xuan

    2009-08-01

    Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO(2) uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H(2)O(2)) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H(2)O(2) level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)-a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H(2)O(2) homeostasis-and identify a novel pathway for the signal transduction of DST-mediated H(2)O(2)-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops.

  16. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes.

    PubMed

    Schlüter, Urte; Muschak, Michael; Berger, Dieter; Altmann, Thomas

    2003-02-01

    In the Arabidopsis mutant sdd1-1, a point mutation in a single gene (SDD1) causes specific alterations in stomatal density and distribution. In comparison to the wild type (C24), abaxial surfaces of sdd1-1 rosette leaves have about 2.5-fold higher stomatal densities. This mutant was used to study the consequence of stomatal density on photosynthesis under various light regimes. The increased stomatal density in the mutant had no significant influence on the leaf CO(2) assimilation rate (A) under constant light conditions. Mutant and wild-type plants contained similar amounts of carbohydrates under these conditions. However, exposure of plants to increasing photon flux densities resulted in differences in gas exchange and the carbohydrate metabolism of the wild type and mutant. Increased stomatal densities in sdd1-1 enabled low-light-adapted plants to have 30% higher CO(2) assimilation rates compared to the wild type when exposed to high light intensities. After 2 d under high light conditions leaves of sdd1-1 accumulated 30% higher levels of starch and hexoses than wild-type plants.

  17. The levels and composition of persistent organic pollutants in alluvial agriculture soils affected by flooding.

    PubMed

    Maliszewska-Kordybach, Barbara; Smreczak, Bozena; Klimkowicz-Pawlas, Agnieszka

    2013-12-01

    The concentrations and composition of persistent organic pollutants (POPs) were determined in alluvial soils subjected to heavy flooding in a rural region of Poland. Soil samples (n = 30) were collected from the upper soil layer from a 70-km(2) area. Chemical determinations included basic physicochemical properties and the contents of polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and polycyclic aromatic hydrocarbons (PAHs, 16 compounds). The median concentrations of Σ7PCB (PCB28 + PCB52 + PCB101 + PCB118 + PCB138 + PCB153 + PCB180), Σ3HCH (α-HCH + β-HCH + γ-HCH) and Σ3pp'(DDT + DDE + DDD) were 1.60 ± 1.03, 0.22 ± 0.13 and 25.18 ± 82.70 μg kg(-1), respectively. The median concentrations of the most abundant PAHs, phenanthrene, fluoranthene, pyrene, benzo[b]fluoranthene and benzo[a]pyrene were 50 ± 37, 38 ± 27, 29 ± 30, 45 ± 36 and 24 ± 22 μg kg(-1), respectively. Compared with elsewhere in the world, the overall level of contamination with POPs was low and similar to the levels in agricultural soils from neighbouring countries, except for benzo[a]pyrene and DDT. There was no evidence that flooding affected the levels of POPs in the studied soils. The patterns observed for PAHs and PCBs indicate that atmospheric deposition is the most important long-term source of these contaminants. DDTs were the dominant organochlorine pesticides (up to 99%), and the contribution of the parent pp' isomer was up to 50 % of the ΣDDT, which indicates the advantage of aged contamination. A high pp'DDE/pp'DDD ratio suggests the prevalence of aerobic transformations of parent DDT. Dominance of the γ isomer in the HCHs implies historical use of lindane in the area. The effect of soil properties on the POP concentrations was rather weak, although statistically significant links with the content of the <0.02-mm fraction, Ctotal or Ntotal were observed for some individual compounds in the PCB group.

  18. Exposure to Palladium Nanoparticles Affects Serum Levels of Cytokines in Female Wistar Rats

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Corbi, Maddalena; Leso, Veruscka; Marinaccio, Alessandro; Leopold, Kerstin; Schindl, Roland; Sgambato, Alessandro

    2015-01-01

    Background Information currently available on the impact of palladium on the immune system mainly derives from studies assessing the biological effects of palladium salts. However, in the last years, there has been a notable increase in occupational and environmental levels of fine and ultrafine palladium particles released from automobile catalytic converters, which may play a role in palladium sensitization. In this context, the evaluation of the possible effects exerted by palladium nanoparticles (Pd-NPs) on the immune system is essential to comprehensively assess palladium immunotoxic potential. Aim Therefore, the aim of this study was to investigate the effects of Pd-NPs on the immune system of female Wistar rats exposed to this xenobiotic for 14 days, by assessing possible quantitative changes in a number of cytokines: IL-1α, IL-2, IL-4, IL-6, IL-10, IL-12, GM-CSF, INF-γ and TNF-α. Methods Twenty rats were randomly divided into four exposure groups and one of control. Animals were given a single tail vein injection of vehicle (control group) and different concentrations of Pd-NPs (0.012, 0.12, 1.2 and 12 μg/kg). A multiplex biometric enzyme linked immunosorbent assay was used to evaluate cytokine serum levels. Results The mean serum concentrations of all cytokines decreased after the administration of 0.012 μg/kg of Pd-NPs, whereas exceeded the control levels at higher exposure doses. The highest concentration of Pd-NPs (12 μg/kg) induced a significant increase of IL-1α, IL-4, IL-6, IL-10, IL-12, GM-CSF and INF-γ compared to controls. Discussion and Conclusions These results demonstrated that Pd-NP exposure can affect the immune response of rats inducing a stimulatory action that becomes significant at the highest administered dose. Our findings did not show an imbalance between cytokines produced by CD4+ T helper (Th) cells 1 and 2, thus suggesting a generalized stimulation of the immune system with a simultaneous activation and polarization of the

  19. Original Findings Associated with Two Cases of Bovine Papular Stomatitis

    PubMed Central

    Dal Pozzo, F.; Martinelle, L.; Gallina, L.; Mast, J.; Sarradin, P.; Thiry, E.; Scagliarini, A.; Büttner, M.; Saegerman, C.

    2011-01-01

    Bovine papular stomatitis virus was isolated from two calves in an animal house with biosafety level 3 confinement. The hypotheses on the origin of the infection, the interesting features of the partial amino acid sequences of the major envelope viral protein, and the importance of diagnostic tools available for animal diseases that are not listed by the World Organization for Animal Health (OIE) are discussed. PMID:21976753

  20. Recalibrating the Ginkgo Stomatal Index Proxy for Past CO2 with Herbarium Specimens

    NASA Astrophysics Data System (ADS)

    Conde, G. D.; Retallack, G.

    2015-12-01

    The stomatal index of plant cuticles is inversely related to atmospheric CO2 concentrations, as calibrated from greenhouse experiments and herbarium specimens. Such calibration data for Ginkgo biloba are available for the ongoing rise in atmospheric CO2 and for high levels of CO2 anticipated in the future, but lacking for low CO2 levels of preindustrial and glacial ages. The oldest modern specimen that we have been able to obtain consists of leaf fragments collected in 1829 and provided by Arne Anderberg from the Swedish Natural History Museum. The specimen was labeled "Argentina", but also "Hortus Botanicus Augustinus", a garden founded in 1638 in Amsterdam, Netherlands. Ginkgo has a very thin cuticle that is difficult to prepare, but images very similar to cuticular preparation can be obtained by backscatter SEM imagery. We also obtained secondary SEM images of the same areas and counted 13 images with 6,184 cells from five leaf fragments. Our analyses yield a stomatal index of 10.9 ± 0.9 % for an atmospheric CO2 of 286 ppm, as determined by ice core data from Ciais and Sabine for IPCC-2013. This value is lower than from previous calibration curves for this level of CO2 and changes their curvature. With additional late nineteenth, twentieth and twenty-first century leaves, we can improve both the precision and lower limits of the transfer function for atmospheric CO2 from Ginkgo stomatal index last revised in 2009.

  1. Individual and Center-Level Factors Affecting Mortality Among Extremely Low Birth Weight Infants

    PubMed Central

    Alleman, Brandon W.; Li, Lei; Dagle, John M.; Smith, P. Brian; Ambalavanan, Namasivayam; Laughon, Matthew M.; Stoll, Barbara J.; Goldberg, Ronald N.; Carlo, Waldemar A.; Murray, Jeffrey C.; Cotten, C. Michael; Shankaran, Seetha; Walsh, Michele C.; Laptook, Abbot R.; Ellsbury, Dan L.; Hale, Ellen C.; Newman, Nancy S.; Wallace, Dennis D.; Das, Abhik; Higgins, Rosemary D.

    2013-01-01

    OBJECTIVE: To examine factors affecting center differences in mortality for extremely low birth weight (ELBW) infants. METHODS: We analyzed data for 5418 ELBW infants born at 16 Neonatal Research Network centers during 2006–2009. The primary outcomes of early mortality (≤12 hours after birth) and in-hospital mortality were assessed by using multilevel hierarchical models. Models were developed to investigate associations of center rates of selected interventions with mortality while adjusting for patient-level risk factors. These analyses were performed for all gestational ages (GAs) and separately for GAs <25 weeks and ≥25 weeks. RESULTS: Early and in-hospital mortality rates among centers were 5% to 36% and 11% to 53% for all GAs, 13% to 73% and 28% to 90% for GAs <25 weeks, and 1% to 11% and 7% to 26% for GAs ≥25 weeks, respectively. Center intervention rates significantly predicted both early and in-hospital mortality for infants <25 weeks. For infants ≥25 weeks, intervention rates did not predict mortality. The variance in mortality among centers was significant for all GAs and outcomes. Center use of interventions and patient risk factors explained some but not all of the center variation in mortality rates. CONCLUSIONS: Center intervention rates explain a portion of the center variation in mortality, especially for infants born at <25 weeks’ GA. This finding suggests that deaths may be prevented by standardizing care for very early GA infants. However, differences in patient characteristics and center intervention rates do not account for all of the observed variability in mortality; and for infants with GA ≥25 weeks these differences account for only a small part of the variation in mortality. PMID:23753096

  2. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  3. Low doses of estradiol partly inhibit release of GH in sheep without affecting basal levels.

    PubMed

    Hudmon, A; Davenport, G; Coleman, E S; Sartin, J L

    2009-10-01

    Estradiol increases basal growth hormone (GH) concentrations in sheep and cattle. This study sought to determine the effects of estradiol on GH-releasing hormone (GRH)-stimulated GH release in sheep. Growth hormone secretory characteristics, the GH response to GRH, and steady-state GH mRNA concentrations were determined in castrated male lambs treated with 2 different doses of estradiol 17-beta for a 28-d experimental period. Although no differences between treatments in mean GH, basal GH, or GH pulse number were observed after 28 d of estradiol treatment, GH pulse amplitude was greater (P < 0.05) in the 2.00-cm implant-treated animals than in the control and 0.75-cm implant group. The effect of estradiol treatment on GRH-stimulated GH release revealed differences between the control and estradiol-treated animals (P < 0.05). The 15-min GH responses to 0.075 microg/kg hGRH in the control, 0.75-cm, and 2.00-cm implant groups, respectively, were 76 +/- 10, 22.6 +/- 2.1, and 43.6 +/- 15.0 ng/mL. Growth hormone mRNA content was determined for pituitary glands from the different treatment groups, and no differences in steady-state GH mRNA levels were observed. There were no differences in the mean plasma concentrations of IGF-I, cortisol, T(3), or T(4) from weekly samples. Growth hormone release from cultured ovine pituitary cells from control sheep was not affected by estradiol after 72 h or in a subsequent 3-h incubation with estradiol combined with GRH. These data suggest that estradiol has differing actions on basal and GRH-stimulated GH concentrations in plasma, but the increase in pulse amplitude does not represent an increased pituitary sensitivity to GRH.

  4. Coronatine Inhibits Stomatal Closure through Guard Cell-Specific Inhibition of NADPH Oxidase-Dependent ROS Production

    PubMed Central

    Toum, Laila; Torres, Pablo S.; Gallego, Susana M.; Benavídes, María P.; Vojnov, Adrián A.; Gudesblat, Gustavo E.

    2016-01-01

    Microbes trigger stomatal closure through microbe-associated molecular patterns (MAMPs). The bacterial pathogen Pseudomonas syringae pv. tomato (Pst) synthesizes the polyketide toxin coronatine, which inhibits stomatal closure by MAMPs and by the hormone abscisic acid (ABA). The mechanism by which coronatine, a jasmonic acid-isoleucine analog, achieves this effect is not completely clear. Reactive oxygen species (ROS) are essential second messengers in stomatal immunity, therefore we investigated the possible effect of coronatine on their production. We found that coronatine inhibits NADPH oxidase-dependent ROS production induced by ABA, and by the flagellin-derived peptide flg22. This toxin also inhibited NADPH oxidase-dependent stomatal closure induced by darkness, however, it failed to prevent stomatal closure by exogenously applied H2O2 or by salicylic acid, which induces ROS production through peroxidases. Contrary to what was observed on stomata, coronatine did not affect the oxidative burst induced by flg22 in leaf disks. Additionally, we observed that in NADPH oxidase mutants atrbohd and atrbohd/f, as well as in guard cell ABA responsive but flg22 insensitive mutants mpk3, mpk6, npr1-3, and lecrk-VI.2-1, the inhibition of ABA stomatal responses by both coronatine and the NADPH oxidase inhibitor diphenylene iodonium was markedly reduced. Interestingly, coronatine still impaired ABA-induced ROS synthesis in mpk3, mpk6, npr1-3, and lecrk-VI.2-1, suggesting a possible feedback regulation of ROS on other guard cell ABA signaling elements in these mutants. Altogether our results show that inhibition of NADPH oxidase-dependent ROS synthesis in guard cells plays an important role during endophytic colonization by Pst through stomata. PMID:28018388

  5. Resource level affects relative performance of the two motility systems of Myxococcus xanthus.

    PubMed

    Hillesland, Kristina L; Velicer, Gregory J

    2005-05-01

    The adventurous (A) and social (S) motility systems of the microbial predator Myxococcus xanthus show differential swarming performance on distinct surface types. Under standard laboratory conditions, A-motility performs well on hard agar but poorly on soft agar, whereas the inverse pattern is shown by S-motility. These properties may allow M. xanthus to swarm effectively across a greater diversity of natural surfaces than would be possible with one motility system alone. Nonetheless, the range of ecological conditions under which dual motility enhances effective swarming across distinct surfaces and how ecological parameters affect the complementarity of A-motility and S-motility remain unclear. Here we have examined the role of nutrient concentration in determining swarming patterns driven by dual motility on distinct agar surfaces, as well as the relative contributions of A-motility and S-motility to these patterns. Swarm expansion rates of dually motile (A+S+), solely A-motile (A+S-), and solely S-motile (A-S+) strains were compared on hard and soft agar across a wide range of casitone concentrations. At low casitone concentrations (0-0.1%), swarming on soft agar driven by S-motility is very poor, and is significantly slower than swarming on hard agar driven by A-motility. This reverses at high casitone concentration (1-3.2%) such that swarming on soft agar is much faster than swarming on hard agar. This pattern greatly constrained the ability of M. xanthus to encounter patches of prey bacteria on a soft agar surface when nutrient levels between the patches were low. The swarming patterns of a strain that is unable to produce extracellular fibrils indicate that these appendages are responsible for the elevated swarming of S-motility at high resource levels. Together, these data suggest that large contributions by S-motility to predatory swarming in natural soils may be limited to soft, wet, high-nutrient conditions that may be uncommon. Several likely benefits

  6. Ozone treatment of recurrent aphthous stomatitis: a double blinded study

    PubMed Central

    AL-Omiri, Mahmoud K.; Alhijawi, Mohannad; AlZarea, Bader K.; Abul Hassan, Ra’ed S.; Lynch, Edward

    2016-01-01

    This study aimed to evaluate the use of ozone to treat recurrent aphthous stomatitis (RAS). Consecutive sixty-nine participants with RAS were recruited into this non-randomized double blind, controlled cohort observational study (test group). A control group of 69 RAS patients who matched test group with age and gender was recruited. RAS lesions in test group were exposed to ozone in air for 60 seconds while controls received only air. Ulcer size and pain were recorded for each participant at baseline and daily for 15 days. Ulcer duration was determined by recording the time taken for ulcers to disappear. The main outcome measures were pain due to the ulcer, ulcer size and ulcer duration. 138 RAS participants (69 participants and 69 controls) were analyzed. Ulcer size was reduced starting from the second day in test group and from the fourth day in controls (p ≤ 0.004). Pain levels were reduced starting from the first day in the test group and from the third day in controls (p ≤ 0.001). Ulcer duration, ulcer size after day 2 and pain levels were more reduced in the test group. In conclusion, application of ozone on RAS lesions for 60 seconds reduced pain levels and enhanced ulcers’ healing by reducing ulcers’ size and duration. PMID:27301301

  7. Ozone treatment of recurrent aphthous stomatitis: a double blinded study.

    PubMed

    Al-Omiri, Mahmoud K; Alhijawi, Mohannad; AlZarea, Bader K; Abul Hassan, Ra'ed S; Lynch, Edward

    2016-06-15

    This study aimed to evaluate the use of ozone to treat recurrent aphthous stomatitis (RAS). Consecutive sixty-nine participants with RAS were recruited into this non-randomized double blind, controlled cohort observational study (test group). A control group of 69 RAS patients who matched test group with age and gender was recruited. RAS lesions in test group were exposed to ozone in air for 60 seconds while controls received only air. Ulcer size and pain were recorded for each participant at baseline and daily for 15 days. Ulcer duration was determined by recording the time taken for ulcers to disappear. The main outcome measures were pain due to the ulcer, ulcer size and ulcer duration. 138 RAS participants (69 participants and 69 controls) were analyzed. Ulcer size was reduced starting from the second day in test group and from the fourth day in controls (p ≤ 0.004). Pain levels were reduced starting from the first day in the test group and from the third day in controls (p ≤ 0.001). Ulcer duration, ulcer size after day 2 and pain levels were more reduced in the test group. In conclusion, application of ozone on RAS lesions for 60 seconds reduced pain levels and enhanced ulcers' healing by reducing ulcers' size and duration.

  8. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    ERIC Educational Resources Information Center

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  9. Observations on the Stomatal Control of NO2 Exchange.

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.; Chaparro-Suarez, I. G.; Meixner, F. X.

    2005-12-01

    Nitrogen oxides play a central role in tropospheric chemistry especially in the formation of tropospheric ozone, acid rain and hydroxyl radical as well as in CH4 and CO oxidation processes. NO2 can be assimilated and emitted by the plant leaves as well. We investigated the impact of the stomatal regulation with four tree species (Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris) by exposure of leaves to the hormone abscisic acid inducing stomatal closure. The results showed that the NO2 uptake was strongly dependent on stomatal aperture. The uptake correlated linearly with stomatal (leaf) conductance in case of all four tree species investigated. In contrast an NO2 emission was observed with beech in the dark when stomata were basically closed.

  10. [Management of Stomatitis Associated with Treatment with Everolimus].

    PubMed

    Ota, Yoshihide; Kurita, Hiroshi; Umeda, Masahiro

    2016-02-01

    Stomatitis is a characteristic adverse event of everolimus and other mTOR inhibitors, and occurs at a high incidence and impairs QOL owing to pain. Most cases of stomatitis are mild to moderate. However, when stomatitis becomes serious, it can interfere with the continuation of medication. Therefore, it is important to place more emphasis on the prevention as well as early detection and treatment. In addition, patient education is also important. The possible occurrence of stomatitis, its signs and symptoms, as well as the importance of oral care need to be thoroughly explained prior to starting treatment. In order to smoothly carry out these measures, it will also be essential that cancer-treating physicians coordinate and collaborate with dentists, nurses, and pharmacists. It is desirable to establish appropriate prevention and management methods on the basis of the results of the Phase III prospective study, Oral Care-BC, currently ongoing in Japan.

  11. Investigating Polyploidy: Using Marigold Stomates and Fingernail Polish.

    ERIC Educational Resources Information Center

    Hunter, Kimberly L.; Leone, Rebecca S.; Kohlhepp, Kimberly; Hunter, Richard B.

    2002-01-01

    Describes a science activity on polyploidy targeting middle and high school students which can be used to discuss topics such as chromosomes, cells, plant growth, and functions of stomates. Integrates mathematics in data collection. (Contains 13 references.) (YDS)

  12. Stomatal innovation and the rise of seed plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2012-01-01

    Stomatal valves on the leaves of vascular plants not only prevent desiccation but also dynamically regulate water loss to maintain efficient daytime water use. This latter process involves sophisticated active control of stomatal aperture that may be absent from early-branching plant clades. To test this hypothesis, we compare the stomatal response to light intensity in 13 species of ferns and lycophytes with a diverse sample of seed plants to determine whether the capacity to optimise water use is an ancestral or derived feature of stomatal physiology. We found that in seed plants, the ratio of photosynthesis to water use remained high and constant at different light intensities, but fern and lycophyte stomata were incapable of sustaining homeostatic water use efficiency. We conclude that efficient water use in early seed plants provided them with a competitive advantage that contributed to the decline of fern and lycophyte dominated-ecosystems in the late Paleozoic.

  13. Role of Sucrose in Emerging Mechanisms of Stomatal Aperture Regulation.

    SciTech Connect

    Outlaw, W. H.

    2000-09-15

    Focused on the second of 2 hypotheses that were proposed for testing that transpiration rate determines the extent to which suc accumulates in the GC wall providing a mechanism for regulating stomatal aperture size.

  14. Hyperpolization-activated Ca(2+) channels in guard cell plasma membrane are involved in extracellular ATP-promoted stomatal opening in Vicia faba.

    PubMed

    Wang, Fang; Jia, Juanjuan; Wang, Yufang; Wang, Weixia; Chen, Yuling; Liu, Ting; Shang, Zhonglin

    2014-09-01

    Extracellular ATP (eATP) plays essential roles in plant growth, development, and stress tolerance. Extracellular ATP-regulated stomatal movement of Arabidopsis thaliana has been reported. Here, ATP was found to promote stomatal opening of Vicia faba in a dose-dependent manner. Three weakly hydrolysable ATP analogs (adenosine 5'-O-(3-thio) triphosphate (ATPγS), 3'-O-(4-benzoyl) benzoyl adenosine 5'-triphosphate (Bz-ATP) and 2-methylthio-adenosine 5'-triphosphate (2meATP)) showed similar effects, indicating that ATP acts as a signal molecule rather than an energy charger. ADP promoted stomatal opening, while AMP and adenosine did not affect stomatal movement. An ATP-promoted stomatal opening was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI), the reductant dithiothreitol (DTT) or the Ca(2+) channel blockers GdCl3 and LaCl3. A hyperpolarization-activated Ca(2+) channel was detected in plasma membrane of guard cell protoplast. Extracellular ATP and weakly hydrolyzable ATP analogs activated this Ca(2+) channel significantly. Extracellular ATP-promoted Ca(2+) channel activation was markedly inhibited by DPI or DTT. These results indicated that eATP may promote stomatal opening via reactive oxygen species that regulate guard cell plasma membrane Ca(2+) channels.

  15. SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth.

    PubMed

    Upadhyay, Rakesh Kumar; Soni, Devendra K; Singh, Ruchi; Dwivedi, Upendra N; Pathre, Uday V; Nath, Pravendra; Sane, Aniruddha P

    2013-08-01

    The AP2 domain class of transcription factors is a large family of genes with various roles in plant development and adaptation but with very little functional information in plants other than Arabidopsis. Here, the characterization of an EAR motif-containing transcription factor, SlERF36, from tomato that affects stomatal density, conductance, and photosynthesis is described. Heterologous expression of SlERF36 under the CaMV35S promoter in tobacco leads to a 25-35% reduction in stomatal density but without any effect on stomatal size or sensitivity. Reduction in stomatal density leads to a marked reduction in stomatal conductance (42-56%) as well as transpiration and is associated with reduced CO₂ assimilation rates, reduction in growth, early flowering, and senescence. A prominent adaptive response of SlERF36 overexpressors is development of constitutively high non-photochemical quenching (NPQ) that might function as a protective measure to prevent damage from high excitation pressure. The high NPQ leads to markedly reduced light utilization and low electron transport rates even at low light intensities. Taken together, these data suggest that SlERF36 exerts a negative control over stomatal density and modulates photosynthesis and plant development through its direct or indirect effects.

  16. Sensitivity of global climate model simulations to increased stomatal resistance and CO{sub 2} increases

    SciTech Connect

    Henderson-Sellers, A.; McGuffie, K.; Gross, C.

    1995-07-01

    Increasing levels of atmospheric CO{sub 2} will not only modify climate, they will also likely increase the water-use efficiency of plants by decreasing stomatal openings. The effect of the imposition of {open_quotes}doubled stomatal resistance{close_quotes} on climate is investigated in off-line simulations with the Biosphere-Atmosphere Transfer Scheme (BATS) and in two sets of global climate model simulations: for present-day and doubled atmospheric CO{sub 2} concentrations. The anticipated evapotranspiration decrease is seen most clearly in the boreal forests in the summer although, for the present-day climate (but not at 2 x CO{sub 2}), there are also noticeable responses in the tropical forests in South America. In the latitude zone 44{degrees}N to 58{degrees}N, evapotranspiration decreases by -15 W m{sup 2}, temperatures increase by =2 K, and the sensible heat flux by +15 W m{sup {minus}2}. Soil moisture is often, but less extensively, increased, which can cause increases in runoff. The responses at 2 x CO{sub 2} are larger in the 44{degrees}N to 58{degrees}N zone than elsewhere. Globally, the impact of imposing a doubled stomatal resistance in the present-day climate is an increase in the annually averaged surface air temperature of 0.13 K and a reduction in total precipitation of -0.82%. If both the atmospheric CO{sub 2} content and the stomatal resistance are doubled, the global response in surface air temperature and precipitation are +2.72 K and +5.01% compared with +2.67 K and + 7.73% if CO{sub 2} is doubled but stomatal resistance remains unchanged as in the usual {open_quotes}greenhouse{close_quotes} experiment. Doubling stomatal resistance as well as atmospheric CO{sub 2} results in increased soil moisture in northern midlatitudes in summer. 40 refs.. 17 figs., 5 tabs.

  17. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  18. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Wallin, Göran; Uddling, Johan

    2013-12-01

    The sensitivity of carbon (C) assimilation to within-canopy nitrogen (N) allocation and of stomatal conductance (g s) to environmental variables were investigated along a vertical canopy gradient in a fertile Norway spruce [Picea abies (L.) Karst.] stand. Maximum rates of ribulose bisphosphate-saturated carboxylation (V (cmax)) and electron transport (J (max)) exhibited weak relationships with needle N content. Using these relationships together with a combined stomatal-photosynthesis model, it was found that the sensitivity of C assimilation of 12 1-year old shoots to within-canopy N allocation pattern was very weak. Modelled C assimilation based on optimal compared to observed N allocation pattern increased by only 1-2 %, and altering total needle N content by ± 30 % resulted in a 2-4 % change in modelled C assimilation. C assimilation was more sensitive to water use and changed by 8-12 % in response to ± 30 % altered stomatal conductance. No indications of significant limitations of photosynthesis by other nutrients or non-optimal within-canopy allocation of water were detected. The sensitivity of g s to photosynthetic photon flux density (PPFD) was found to be stronger in the lower canopy, while no significant within-canopy variation was observed in light-saturated g( s) or stomatal sensitivity to vapour pressure deficit (VPD). The results of this study show that, at this N rich site, photosynthesis integrated for shoots at different canopy positions is only marginally affected by N allocation pattern and that increased stand-scale N availability would only be truly beneficial to canopy photosynthesis if it resulted in increased leaf area.

  19. Bovine lactoferrin and piroxicam as an adjunct treatment for lymphocytic-plasmacytic gingivitis stomatitis in cats.

    PubMed

    Hung, Yi-Ping; Yang, Yi-Ping; Wang, Hsien-Chi; Liao, Jiunn-Wang; Hsu, Wei-Li; Chang, Chao-Chin; Chang, Shih-Chieh

    2014-10-01

    Feline lymphocytic-plasmacytic gingivitis/stomatitis (LPGS) or caudal stomatitis is an inflammatory disease that causes painfully erosive lesions and proliferations of the oral mucosa. The disease is difficult to cure and can affect cats at an early age, resulting in lifetime therapy. In this study, a new treatment using a combination of bovine lactoferrin (bLf) oral spray and oral piroxicam was investigated using a randomized double-blinded clinical trial in 13 cats with caudal stomatitis. Oral lesion grading and scoring of clinical signs were conducted during and after the trial to assess treatment outcome. Oral mucosal biopsies were used to evaluate histological changes during and after treatment. Clinical signs were significantly improved in 77% of the cats. In a 4-week study, clinical signs were considerably ameliorated by oral piroxicam during the first 2 weeks. In a 12-week study, the combined bLf oral spray and piroxicam, when compared with piroxicam alone, exhibited an enhanced effect that reduced the severity of the oral lesions (P = 0.059), while also significantly improving clinical signs (P <0.05), quality of life (P <0.05), and weight gain (P <0.05). The remission of oral inflammation was closely correlated with the decreased number of macrophages (OR = 4.719, P < 0.05). There was no detectable influence on liver or kidney function during a 12-week assessment. It was concluded that combining oral bLf spray and piroxicam was safe and might be used to decrease the clinical signs of caudal stomatitis in cats.

  20. Understanding and altering cell tropism of vesicular stomatitis virus

    PubMed Central

    Hastie, Eric; Cataldi, Marcela; Marriott, Ian; Grdzelishvili, Valery Z.

    2013-01-01

    Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand RNA virus. VSV’s broad cell tropism makes it a popular model virus for many basic research applications. In addition, a lack of preexisting human immunity against VSV, inherent oncotropism and other features make VSV a widely used platform for vaccine and oncolytic vectors. However, VSV’s neurotropism that can result in viral encephalitis in experimental animals needs to be addressed for the use of the virus as a safe vector. Therefore, it is very important to understand the determinants of VSV tropism and develop strategies to alter it. VSV glycoprotein (G) and matrix (M) protein play major roles in its cell tropism. VSV G protein is responsible for VSV broad cell tropism and is often used for pseudotyping other viruses. VSV M affects cell tropism via evasion of antiviral responses, and M mutants can be used to limit cell tropism to cell types defective in interferon signaling. In addition, other VSV proteins and host proteins may function as determinants of VSV cell tropism. Various approaches have been successfully used to alter VSV tropism to benefit basic research and clinically relevant applications. PMID:23796410

  1. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.

    PubMed

    Lawson, Tracy; Lefebvre, Stephane; Baker, Neil R; Morison, James I L; Raines, Christine A

    2008-01-01

    Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F(q)(')/F(m)(')) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO(2) assimilation rates and higher internal CO(2) concentrations. Increasing CO(2) concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C(i) levels. Together, these data suggest that the primary light-induced opening or CO(2)-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO(2).

  2. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers

    PubMed Central

    Haworth, Matthew; Heath, James; McElwain, Jennifer C.

    2010-01-01

    Background and Aims The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2]. Methods Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2). Key Results T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris. Conclusions The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species. PMID:20089556

  3. Adverse childhood experiences associate to reduced glutamate levels in the hippocampus of patients affected by mood disorders.

    PubMed

    Poletti, Sara; Locatelli, Clara; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco

    2016-11-03

    Adverse childhood experiences (ACE) can possibly permanently alter the stress response system, affect the glutamatergic system and influence hippocampal volume in mood disorders. The aim of the study is to investigate the association between glutamate levels in the hippocampus, measured through single proton magnetic resonance spectroscopy (1H-MRS), and ACE in patients affected by mood disorders and healthy controls. Higher levels of early stress associate to reduced levels of Glx/Cr in the hippocampus in depressed patients but not in healthy controls. Exposure to stress during early life could lead to a hypofunctionality of the glutamatergic system in the hippocampus of depressed patients. Abnormalities of glutamatergic signaling could then possibly underpin the structural and functional abnormalities observed in patients affected by mood disorders.

  4. Assimilation of Cloud- and Land-affected TOVS/ATOVS Level 1b data at DAO

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Frank, Donald; daSilva, Arlindo; Bosilovich, Mike; Radacovich, Jon; Atlas, Robert (Technical Monitor)

    2002-01-01

    Despite significant advances in the assimilation of TIROS Operational Vertical Sounder/Advanced TIROS Operational Vertical Sounder (TOVS)/(ATOVS) data over the last decade, there are still many unresolved issues. For example, at several centers, cloud-and land-affected TOVS data are not assimilated. In this study, we show positive impact from the use of cloud cleared and land-affected TOVS data in the NASA Data Assimilation Office's (DAO) Finite Volume Data Assimilation System (fv-DAS). We will discuss how treatment of TOVS data affects the stratosphere and tropopause in the fvDAS. We will also describe the use of TOVS data for land-surface analysis and assimilation and other developments regarding the use of TOVS data at the DAO.

  5. [Soil enzyme activities under two forest types as affected by different levels of nitrogen deposition].

    PubMed

    Zhao, Yu-tao; Li, Xue-feng; Han, Shi-jie; Hu, Yan-ling

    2008-12-01

    A simulation test was conducted to study the change trends of soil cellulase, polyphenol oxidase, and sucrase activities under natural broadleaf-Korean pine (Pinus koraiensis) and secondary poplar (Populus davidiana) -birch (Betula platyphylla) mixed forests as affected by 0, 25, and 50 kg x hm(-2) x a(-1) of N deposition. The results showed that the effects of elevated N deposition on test enzyme activities varied with forest type, and short-term nitrogen addition could significantly affect the test enzyme activities. High N deposition decreased soil polyphyneol oxidase activity, and correspondingly, soil cellulase and sucrase activities also had a trend of decrease.

  6. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans.

    PubMed

    Del Pozo-Cruz, Jesús; Rodríguez-Bies, Elisabet; Ballesteros-Simarro, Manuel; Navas-Enamorado, Ignacio; Tung, Bui Thanh; Navas, Plácido; López-Lluch, Guillermo

    2014-04-01

    Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.

  7. Effects of elevated carbon dioxide on stomatal characteristics and carbon isotope ratio of Arabidopsis thaliana ecotypes originating from an altitudinal gradient.

    PubMed

    Caldera, H Iroja U; De Costa, W A Janendra M; Woodward, F Ian; Lake, Janice A; Ranwala, Sudheera M W

    2017-01-01

    Stomatal functioning regulates the fluxes of CO2 and water vapor between vegetation and atmosphere and thereby influences plant adaptation to their habitats. Stomatal traits are controlled by external environmental and internal cellular signaling. The objective of this study was to quantify the effects of CO2 enrichment (CE) on stomatal density (SD)-related properties, guard cell length (GCL) and carbon isotope ratio (δ(13) C) of a range of Arabidopsis thaliana ecotypes originating from a wide altitudinal range [50-1260 m above sea level (asl)], and grown at 400 and 800 ppm [CO2 ], and thereby elucidate the possible adaptation and acclimation responses controlling stomatal traits and water use efficiency (WUE). There was a highly significant variation among ecotypes in the magnitude and direction of response of stomatal traits namely, SD and stomatal index (SI) and GCL, and δ(13) C to CE, which represented a short-term acclimation response. A majority of ecotypes showed increased SD and SI with CE with the response not depending on the altitude of origin. Significant ecotypic variation was shown in all stomatal traits and δ(13) C at each [CO2 ]. At 400 ppm, means of SD, SI and GCL for broad altitudinal ranges, i.e. low (<100 m), mid (100-400 m) and high (>400 m), increased with increasing altitude, which represented an adaptation response to decreased availability of CO2 with altitude. δ(13) C was negatively correlated to SD and SI at 800 ppm but not at 400 ppm. Our results highlight the diversity in the response of key stomatal characters to CE and altitude within the germplasm of A. thaliana and the need to consider this diversity when using A. thaliana as a model plant.

  8. A new stomatal paradigm for earth system models? (Invited)

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.

    2013-12-01

    The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress

  9. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture

    NASA Astrophysics Data System (ADS)

    Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.

    2011-10-01

    Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.

  10. Simple relations for different stomatal control mechanisms link partially drying soil and transpiration

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Stomata can close to regulate plant water loss under unfavourable water availability. This closure can be triggered by hydraulic ('H') and/or chemical signals ('C', 'H+C'). By combining plant hydraulic relations with a model for stomatal conductance, including chemical signalling, our aim was to derive a simple relation that links soil water availability, expressed as the fraction of roots in dry soil, to transpiration. We used the detailed mechanistic soil-root water flow model R-SWMS to verify this relation. Virtual split root experiments were simulated, comparing horizontally and vertically split domains with varying fractions of roots in dry soil and comparing different strengths of stomatal regulation by chemical and hydraulic signals. Transpiration predicted by the relation was in good agreement with numerical simulations. Under certain conditions H+C control leads to isohydric plant behaviour, which means that stomata close to keep leaf water potential constant after reaching a certain level. C control on the other hand exerts anisohydric behaviour, meaning that stomata remain fully open during changes in leaf water potential. For C control the relation between transpiration reduction and fraction of roots in dry soil becomes independent of transpiration rate whereas H+C control results in stronger reduction for higher transpiration rates. Simple relations that link effective soil and leaf water potential can describe different stomatal control resulting in contrasting behaviour.

  11. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves

    SciTech Connect

    Poschenrieder, C.; Gunse, B.; Barcelo, J. )

    1989-08-01

    Ten day old bush bean plants (Phaseolus vulgaris L. cv Contender) were used to analyze the effects of 3 micromolar Cd on the time courses of expansion growth, dry weight, leaf water relations, stomatal resistance, and abscisic acid (ABA) levels in roots and leaves. Control and Cd-treated plants were grown for 144 hours in nutrient solution. Samples were taken at 24 hour intervals. At the 96 and 144 hour harvests, additional measurements were made on excised leaves which were allowed to dry for 2 hours. From the 48 hour harvest, Cd-treated plants showed lower leaf relative water contents and higher stomatal resistances than controls. At the same time, root and leaf expansion growth, but not dry weight, was significantly reduced. The turgor potentials of leaves from Cd-treated plants were nonsignificantly higher than those of control leaves. A significant increase (almost 400%) of the leaf ABA concentration was detected after 120 hours exposure to Cd. But Cd was found to inhibit ABA accumulation during drying of excised leaves. It is concluded that Cd-induced decrease of expansion growth is not due to turgor decrease. The possible mechanisms of Cd-induced stomatal closure are discussed.

  12. Root signalling and modulation of stomatal closure in flooded citrus seedlings.

    PubMed

    Rodríguez-Gamir, Juan; Ancillo, Gema; González-Mas, M Carmen; Primo-Millo, Eduardo; Iglesias, Domingo J; Forner-Giner, M Angeles

    2011-06-01

    In this work, we studied the sequence of responses induced by flooding in citrus plants, with the aim of identifying the signals that lead to stomatal closure. One-year-old seedlings of Carrizo citrange, grown in sand under greenhouse conditions, were waterlogged for 35 d and compared with normally watered well-drained plants. Significant decreases in stomatal conductance and transpiration were detected between flooded and control seedlings from a week after the beginning of the experiment. However ABA concentration in leaves only started to increase after three weeks of flooding, suggesting that stomata closed in the absence of a rise in foliar ABA. Therefore, stomatal closure in waterlogged seedlings does not appear to be induced by ABA, at least during the early stages of flood-stress. The low levels of ABA detected in roots and xylem sap from flooded seedlings indicated that it is very unlikely that the ABA increase in the leaves of these plants is due to ABA translocation from roots to shoots. We propose that ABA is produced in old leaves and transported to younger leaves. Flooding had no effect on water potential or the relative water content of leaves. Soil flooding reduced root hydraulic conductance in citrus seedlings. This effect was already evident after a week of waterlogging, and at the end of the experiment, flood-stressed seedlings reached values of root hydraulic conductance below 12% of that of control plants. This reduction was related to down-regulation of the expression of PIP aquaporins. In addition, whole plant transpiration was reduced by 56% after 35 d under flooding conditions. Flood-stress also decreased the pH of sap extracted from citrus roots. Evidence is presented suggesting that acidosis induced by anoxic stress in roots causes gating of aquaporins, thereby decreasing hydraulic conductance. Additionally, stomatal closure finely balances-out low pH-mediated losses of root hydraulic conductance therefore maintaining stable leaf

  13. Student Cognitive and Affective Development in the Context of Classroom-Level Curriculum Development

    ERIC Educational Resources Information Center

    Shawer, Saad Fathy; Gilmore, Deanna; Banks-Joseph, Susan Rae

    2008-01-01

    This qualitative study examined the impact of teacher curriculum approaches (curriculum-transmitter/curriculum-developer/curriculum-maker) on student cognitive change (reading, writing, speaking, and listening abilities) and their affective change (motivation and interests). This study's conceptual framework was grounded in teacher curriculum…

  14. The Socio-Affective Approach in Education for International Understanding at the Primary Level

    ERIC Educational Resources Information Center

    Cohen, Rachel

    1978-01-01

    Considers whether a socio-affective approach can be effective in promoting international understanding among pupils in primary grades and suggests learning activities which reinforce personal fulfillment, experience sharing, and empathy. Activities involve students in investigation of group social life, alternative ways of comprehending,…

  15. Hormonal and nonhormonal factors affecting sex hormone-binding globulin levels in blood.

    PubMed

    Thijssen, J H

    1988-01-01

    Researchers in Utrecht, the Netherlands have studied the effects of different factors, such as oral contraceptives (OCs), on sex hormone binding globulin (SHBG) levels in blood. The SHBG levels in women who continuously used OCs consisting only of .05 mg of ethinyl estradiol (EE2) rose as high as 260% + or - 25% of those in women not using OCs. Further, mean SHBG levels of women using combination OCs of EE2 and levonorgestrel were 10-60% higher than women not using OCs. SHBG levels were significantly higher than the use of a sequential OC containing decreasing amounts of EE2 and increasing amounts of levonorgestrel than those cause by use of a continuous combined OC with .03 mg and .15 mg respectively. As the dosage of EE2 increased in combination OCs with 2.5 mg lynestrenol, the SHBG increased from 20% (.05 mg EE2) to 150% (.75 mg EE2). SHBG levels after taking EE2 and cyproterone acetate increased significantly more (240%) than levels after EE2 and desogestrel (170%), or after EE2 and gestoden (140%) [p.001]. SHBG levels of women who took OCs containing only .03 mg of levonorgestrel daily decreased 35% (p.01). These levels fell by 30% in women who received 150 mg of medroxyprogesterone acetate intramuscularly every 3 months (p.001). SHBG concentrations increased when estrogens were taken orally for noncontraceptive purposes, but they did not change when they were administered percutaneously. As body weight increased the SHBG levels decreased despite hormonal status or sex. Further, the lower the fat content of one's diet the higher the SHBG levels and vice versa. SHBG levels are higher in males with flaccid lungs than they are in males with healthy lungs.

  16. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  17. Estimating stomatal conductance with thermal imagery.

    PubMed

    Leinonen, I; Grant, O M; Tagliavia, C P P; Chaves, M M; Jones, H G

    2006-08-01

    Most thermal methods for the study of drought responses in plant leaves are based on the calculation of 'stress indices'. This paper proposes and compares three main extensions of these for the direct estimation of absolute values of stomatal conductance to water vapour (gs) using infrared thermography (IRT). All methods use the measured leaf temperature and two environmental variables (air temperature and boundary layer resistance) as input. Additional variables required, depending on the method, are the temperatures of wet and dry reference surfaces, net radiation and relative humidity. The methods were compared using measured gs data from a vineyard in Southern Portugal. The errors in thermal estimates of conductance were of the same order as the measurement errors using a porometer. Observed variability was also compared with theoretical estimates of errors in estimated gs determined on the basis of the errors in the input variables (leaf temperature, boundary layer resistance, net radiation) and the partial derivatives of the energy balance equations used for the gs calculations. The full energy balance approach requires accurate estimates of net radiation absorbed, which may not be readily available in field conditions, so alternatives using reference surfaces are shown to have advantages. A new approach using a dry reference leaf is particularly robust and recommended for those studies where the specific advantages of thermal imagery, including its non-contact nature and its ability to sample large numbers of leaves, are most apparent. Although the results suggest that estimates of the absolute magnitude of gs are somewhat subjective, depending on the skill of the experimenter at selecting evenly exposed leaves, relative treatment differences in conductance are sensitively detected by different experimenters.

  18. Parental Education Level Positively Affects Self-Esteem of Turkish Adolescents

    ERIC Educational Resources Information Center

    Sahin, Ertugrul; Barut, Yasar; Ersanli, Ercüment

    2013-01-01

    Although the literature on self-esteem has a long and prolific history in Turkey regarding which demographics may influence the self-esteem of adolescents. The research findings are intricate and undermine the need of further research in Turkey. This cross-sectional study re-examined the effects of age, grade level and education level of a mother…

  19. Factors affecting mercury and selenium levels in New Jersey flatfish: low risk to human consumers.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Shukla, Sheila; Gochfeld, Michael

    2009-01-01

    Some fish contain high levels of mercury (Hg), which could pose a risk to fish eaters themselves or their children. In making decisions about fish consumption, people must decide whether to eat fish, how much to eat, what species to eat, and what size fish to eat, as well as suitable (or unsuitable) locations, among other factors. Yet to make sound decisions, people need to know the levels of Hg in fish as a function of species, size, and location of capture. Levels of Hg and selenium (Se) were examined in three species of flatfish (fluke or summer flounder [Paralichthys dentatus], winter flounder [Pseudopleuronectes americanus], and windowpane [Scophthalmus aquosus]) from New Jersey as a function of species, fish size, season, and location. Flatfish were postulated to have low levels of Hg because they are low on the food chain and are bottom feeders, and data were generated to provide individuals with information on a species that might be safe to eat regularly. Although there were interspecific differences in Hg levels in the 3 species, total Hg levels averaged 0.18, 0.14, and 0.06 ppm (microg/g, wet weigh) in windowpane, fluke, and winter flounder, and selenium levels averaged 0.36, 0.35, and 0.25 ppm, respectively. For windowpane, 15% had Hg levels above 0.3 ppm, but no individual fish had Hg levels over 0.5 ppm. There were no significant seasonal differences in Hg levels, although Se was significantly higher in fluke in summer compared to spring. There were few geographical differences among New Jersey locations. Correlations between Hg and Se levels were low. Data, based on 464 fish samples, indicate that Hg levels are below various advisory levels and pose little risk to typical New Jersey fish consumers. A 70-kg person eating 1 meal (8 oz or 227 g) per week would not exceed the U.S. Environmental Protection Agency reference dose of 0.1 microg/kg body weight/d of methylmercury (MeHg). However, high-end fish eaters consuming several such meals per week may

  20. Factors Affecting Mercury and Selenium Levels-in New Jersey Flatfish: Low Risk to Human Consumers

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Shukla, Sheila; Gochfeld, Michael

    2014-01-01

    Some fish contain high levels of mercury (Hg), which could pose a risk to fish eaters themselves or their children. In making decisions about fish consumption, people must decide whether to eat fish, how much to eat, what species to eat, and what size fish to eat, as well as suitable (or unsuitable) locations, among other factors. Yet to make sound decisions, people need to know the levels of Hg in fish as a function of species, size, and location of capture. Levels of Hg and selenium (Se) were examined in three species of flatfish (fluke or summer flounder [Paralichthys dentatus], winter flounder [Pseudopleuronectes americanus], and windowpane [Scophthalmus aquosus]) from New Jersey as a function of species, fish size, season, and location. Flatfish were postulated to have low levels of Hg because they are low on the food chain and are bottom feeders, and data were generated to provide individuals with information on a species that might be safe to eat regularly. Although there were interspecific differences in Hg levels in the 3 species, total Hg levels averaged 0.18, 0.14, and 0.06 ppm (μg/g, wet weigh) in windowpane, fluke, and winter flounder, and selenium levels averaged 0.36, 0.35, and 0.25 ppm, respectively. For windowpane, 15% had Hg levels above 0.3 ppm, but no individual fish had Hg levels over 0.5 ppm. There were no significant seasonal differences in Hg levels, although Se was significantly higher in fluke in summer compared to spring. There were few geographical differences among New Jersey locations. Correlations between Hg and Se levels were low. Data, based on 464 fish samples, indicate that Hg levels are below various advisory levels and pose little risk to typical New Jersey fish consumers. A 70-kg person eating 1 meal (8 oz or 227 g) per week would not exceed the U.S. Environmental Protection Agency reference dose of 0.1 μg/kg body weight/d of methylmercury (MeHg). However, high-end fish eaters consuming several such meals per week may exceed

  1. ASPARTATE OXIDASE Plays an Important Role in Arabidopsis Stomatal Immunity1[W][OA

    PubMed Central

    Macho, Alberto P.; Boutrot, Freddy; Rathjen, John P.; Zipfel, Cyril

    2012-01-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis. PMID:22730426

  2. Reproductive rate, not dominance status, affects fecal glucocorticoid levels in breeding female meerkats.

    PubMed

    Barrette, Marie-France; Monfort, Steven L; Festa-Bianchet, Marco; Clutton-Brock, Tim H; Russell, Andrew F

    2012-04-01

    Glucocorticoid hormones (GCs) have been studied intensively to understand the associations between physiological stress and reproductive skew in animal societies. However, we have little appreciation of the range of either natural levels within and among individuals, or the associations among dominance status, reproductive rate and GCs levels during breeding. To address these shortcomings, we examined variation in fecal glucocorticoid metabolites (fGC) during breeding periods in free-ranging female meerkats (Suricata suricatta) over 11 years. The vast majority of variation in fGC levels was found within breeding events by the same female (~87%), with the remaining variation arising among breeding events and among females. Concentrations of fGC generally tripled as pregnancy progressed. However, females with a high reproductive rate, defined as those conceiving within a month following parturition (mean = 9 days postpartum), showed significant reductions in fGC in the final 2 weeks before parturition. Despite these reductions, females with a high reproductive rate had higher fGC levels at conception of the following litter than those breeding at a low rate. After controlling for the higher reproductive rate of dominants, we found no association between levels of fGC and either age or dominance status. Our results suggest that one should be cautious about interpreting associations between dominance status, reproductive skew and GCs levels, without knowledge of the natural variation in GCs levels within and among females.

  3. Prefrontal electrical stimulation in non-depressed reduces levels of reported negative affects from daily stressors

    PubMed Central

    Davis, Nick J.

    2017-01-01

    Advances in neuroscience and pharmacology have led to improvements in the cognitive performance of people with neurological disease and other forms of cognitive decline. These same methods may also afford cognitive enhancement in people of otherwise normal cognitive abilities. “Cosmetic”, or supranormal, cognitive enhancement offers opportunities to enrich our social or financial status, our interactions with others, and the common wealth of our community. It is common to focus on the potential benefits of cognitive enhancement, while being less than clear about the possible drawbacks. Here I examine the harms or side-effects associated with a range of cognitive enhancement interventions. I propose a taxonomy of harms in cognitive enhancement, with harms classified as (neuro)biological, ethical, or societal. Biological harms are those that directly affect the person’s biological functioning, such as when a drug affects a person’s mood or autonomic function. Ethical harms are those that touch on issues such as fairness and cheating, or on erosion of autonomy and coercion. Societal harms are harms that affect whole populations, and which are normally the province of governments, such as the use of enhancement in military contexts. This taxonomy of harms will help to focus the debate around the use and regulation of cognitive enhancement. In particular it will help to clarify the appropriate network of stakeholders who should take an interest in each potential harm, and in minimizing the impact of these harms. PMID:28261075

  4. Prefrontal electrical stimulation in non-depressed reduces levels of reported negative affects from daily stressors.

    PubMed

    Davis, Nick J

    2017-01-01

    Advances in neuroscience and pharmacology have led to improvements in the cognitive performance of people with neurological disease and other forms of cognitive decline. These same methods may also afford cognitive enhancement in people of otherwise normal cognitive abilities. "Cosmetic", or supranormal, cognitive enhancement offers opportunities to enrich our social or financial status, our interactions with others, and the common wealth of our community. It is common to focus on the potential benefits of cognitive enhancement, while being less than clear about the possible drawbacks. Here I examine the harms or side-effects associated with a range of cognitive enhancement interventions. I propose a taxonomy of harms in cognitive enhancement, with harms classified as (neuro)biological, ethical, or societal. Biological harms are those that directly affect the person's biological functioning, such as when a drug affects a person's mood or autonomic function. Ethical harms are those that touch on issues such as fairness and cheating, or on erosion of autonomy and coercion. Societal harms are harms that affect whole populations, and which are normally the province of governments, such as the use of enhancement in military contexts. This taxonomy of harms will help to focus the debate around the use and regulation of cognitive enhancement. In particular it will help to clarify the appropriate network of stakeholders who should take an interest in each potential harm, and in minimizing the impact of these harms.

  5. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees

    NASA Astrophysics Data System (ADS)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.

    2013-12-01

    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  6. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  7. High ambient noise levels in Vadodara City, India, affected by urbanization.

    PubMed

    Singh, Neha; Dhiman, Hitesh; Shaikh, Sadaf; Shah, Purvish; Sarkar, Roma; Patel, Shashin

    2016-12-01

    The present research was conducted to study the urbanization of Vadodara city and to monitor the ambient noise level in the industrial, commercial, residential and silence zones of the city. A settlement map created by unsupervised classification for the land use and land cover study of Vadodara city clearly shows the increasing pattern of urbanization in its central part, which may be the result of urban sprawl due to migration of people from the rural to the urban areas. The fluctuation in ambient noise level was recorded using an A-weighted sound level meter in all the four zones of Vadodara city for 3 h at regular intervals of 15 min on 3 consecutive days at the same time. The results showed the highest equivalent noise level of 93.7 dBA in the commercial zone followed by 85.5 dBA in the industrial zone, 73.2 dBA in silence zone, and 70.2 dBA in the residential zone. The values of noise level were high in all the zones of the city increasing remarkably over the prescribed limit given in the Noise Pollution (Control and Regulation) Rules, 2000. Continuous exposure to such high level of noise may lead to detrimental effect on people.

  8. Iron Supplementation in Suckling Piglets: How to Correct Iron Deficiency Anemia without Affecting Plasma Hepcidin Levels

    PubMed Central

    Starzyński, Rafał R.; Laarakkers, Coby M. M.; Tjalsma, Harold; Swinkels, Dorine W.; Pieszka, Marek; Styś, Agnieszka; Mickiewicz, Michał; Lipiński, Paweł

    2013-01-01

    The aim of the study was to establish an optimized protocol of iron dextran administration to pig neonates, which better meets the iron demand for erythropoiesis. Here, we monitored development of red blood cell indices, plasma iron parameters during a 28-day period after birth (till the weaning), following intramuscular administration of different concentrations of iron dextran to suckling piglets. To better assess the iron status we developed a novel mass spectrometry assay to quantify pig plasma levels of the iron-regulatory peptide hormone hepcidin-25. This hormone is predominantly secreted by the liver and acts as a negative regulator of iron absorption and reutilization. The routinely used protocol with high amount of iron resulted in the recovery of piglets from iron deficiency but also in strongly elevated plasma hepcidin-25 levels. A similar protocol with reduced amounts of iron improved hematological status of piglets to the same level while plasma hepcidin-25 levels remained low. These data show that plasma hepcidin-25 levels can guide optimal dosing of iron treatment and pave the way for mixed supplementation of piglets starting with intramuscular injection of iron dextran followed by dietary supplementation, which could be efficient under condition of very low plasma hepcidin-25 level. PMID:23737963

  9. Iron supplementation in suckling piglets: how to correct iron deficiency anemia without affecting plasma hepcidin levels.

    PubMed

    Starzyński, Rafał R; Laarakkers, Coby M M; Tjalsma, Harold; Swinkels, Dorine W; Pieszka, Marek; Styś, Agnieszka; Mickiewicz, Michał; Lipiński, Paweł

    2013-01-01

    The aim of the study was to establish an optimized protocol of iron dextran administration to pig neonates, which better meets the iron demand for erythropoiesis. Here, we monitored development of red blood cell indices, plasma iron parameters during a 28-day period after birth (till the weaning), following intramuscular administration of different concentrations of iron dextran to suckling piglets. To better assess the iron status we developed a novel mass spectrometry assay to quantify pig plasma levels of the iron-regulatory peptide hormone hepcidin-25. This hormone is predominantly secreted by the liver and acts as a negative regulator of iron absorption and reutilization. The routinely used protocol with high amount of iron resulted in the recovery of piglets from iron deficiency but also in strongly elevated plasma hepcidin-25 levels. A similar protocol with reduced amounts of iron improved hematological status of piglets to the same level while plasma hepcidin-25 levels remained low. These data show that plasma hepcidin-25 levels can guide optimal dosing of iron treatment and pave the way for mixed supplementation of piglets starting with intramuscular injection of iron dextran followed by dietary supplementation, which could be efficient under condition of very low plasma hepcidin-25 level.

  10. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells

    PubMed Central

    Balmant, Kelly M.; Zhang, Tong; Chen, Sixue

    2016-01-01

    Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding. PMID:26903877

  11. Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns.

    PubMed

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Doug; Soltis, Pamela; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Mike R; Chen, Zhong-Hua

    2017-02-23

    ABA-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 Mya. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis thaliana and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis thaliana and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report new molecular and physiological evidence for the presence of active stomatal control in ferns.

  12. How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?

    PubMed Central

    Wang, Shaobai; Xia, Qun; Passias, Peter; Li, Weishi; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Case-control study. Objective . To evaluate the effect of lumbar degenerative disc disease (DDD) on the disc deformation at the adjacent level and at the level one above the adjacent level during end ranges of lumbar motion. Summary of Background Data It has been reported that in patients with DDD, the intervertebral discs adjacent to the diseased levels have a greater tendency to degenerate. Although altered biomechanics have been suggested to be the causative factors, few data have been reported on the deformation characteristics of the adjacent discs in patients with DDD. Methods Ten symptomatic patients with discogenic low back pain between L4 and S1 and with healthy discs at the cephalic segments were involved. Eight healthy subjects recruited in our previous studies were used as a reference comparison. The in vivo kinematics of L3–L4 (the cephalic adjacent level to the degenerated discs) and L2–L3 (the level one above the adjacent level) lumbar discs of both groups were obtained using a combined magnetic resonance imaging and dual fluoroscopic imaging technique at functional postures. Deformation characteristics, in terms of areas of minimal deformation (defined as less than 5%), deformations at the center of the discs, and maximum tensile and shear deformations, were compared between the two groups at the two disc levels. Results In the patients with DDD, there were significantly smaller areas of minimal disc deformation at L3–L4 and L2–L3 than the healthy subjects (18% compared with 45% of the total disc area, on average). Both L2–L3 and L3–L4 discs underwent larger tensile and shear deformations in all postures than the healthy subjects. The maximum tensile deformations were higher by up to 23% (of the local disc height in standing) and the maximum shear deformations were higher by approximately 25% to 40% (of the local disc height in standing) compared with those of the healthy subjects. Conclusion Both the discs of the adjacent

  13. Analysis of Factors Affecting Output Levels and Frequencies of MP3 Players.

    PubMed

    Kim, Jinsook

    2013-09-01

    Exposure to high levels of music that could lead to music induced hearing loss (MIHL) has been of recent interest especially for young adults, considering their excessive use of personal listening devices such as MP3 player. More attention should be drawn to MIHL for noting that early noise exposure leads to earlier onset of presbycusis. In search of appropriate and safe listening habits for young adults, this investigation was aimed to evaluate output levels and frequencies generated by the Samsung galaxy note MP3 player depending on two earphone types; ear-bud and over-the-ear earphones and three music genres; rock, hip-hop, ballade. A sound level meter was used to measure output level and frequency spectrum between 12.5 and 16000 Hz at all 1/3-octave bands. The following results can be summarized. 1) The earphone styles did not produce significant difference in output levels, but the music genres did. However, the results of music genres varied. 2) Neither earphone styles nor music genres produced significant difference in frequency response spectrum, except music genres at the volume settings we usually listen to. Additionally, volume levels should be lower than 50% for usual listening situation. Through this investigation, it was noted that the frequency range was substantial between 50 and 1000 Hz regardless of the styles of earphones and music genres, implying that we should be cautious of this frequency range when we listen to music. Researchers should give more attention to the effects of the mixture of output level and frequency spectrum, considering that the auditory system has frequency specificity from the periphery to the central to provide refined methods for protecting our ears from MIHL.

  14. Does shift in oxygen level in soil air affect the trace gases emissions?

    NASA Astrophysics Data System (ADS)

    malghani, S.; Gleixner, G.; Trumbore, S.

    2013-12-01

    Biogenic processes in soil such as, trace gasses emissions are influenced by presence or absence of oxygen as it is a dominant final acceptor of electrons for number of biochemical processes. However, it is unknown that trace gases emissions from soil are influenced by the level of oxygen or not. To understand the impact of oxygen level on CO2, CH4 and N2O emissions, five contrasting soils which differ in land use and other properties, were incubated at constant temperature and moisture in an automated chamber measurement system. Automated system continuously (30 mL/min) flushed the chambers holding soil samples with inlet air of known composition and the outlet air, sampling the headspace of the column, was connected to an automated multiport stream selection valve (Valco) that directed the air stream from different columns sequentially to instrumental part (LiCOR6262,PICARRO2101i and PICCARO2301). Other greenhouse gases and isotopes (δ13C & D) of CH4 were sampled weekly using 2L flasks. Oxygen levels in inlet air were switched weekly, started from 20% followed by 10, 5, 2.5, 1, 0%, and all levels were repeated in reverse fashion (from 1 to 20%).The results showed that soil respiration was higher in soils that were rich in soil organic matter with higher microbial biomass. Three out of five soils exhibited a gradual decrease in soil respiration while shifting higher to lower O2 levels but no such impact was recorded during gradual increase in O2 level. The lowest respiration rates in all soil types were recorded under anaerobic conditions. Forest soils were rich in soil organic carbon and respired more CO2 than grassland or cropland soils. All soils oxidized CH4, except one grassland soil which was acidic in nature (pH=4.1), in the presence of O2 at all levels. Amount of CH4 oxidized varied among soil types and was highest in forest soils. Under anaerobic condition CH4 oxidation was not observed in any soil, while two soils (cropland and one grassland) emitted

  15. Does temperature affect the accuracy of vented pressure transducer in fine-scale water level measurement?

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Higgins, C. W.

    2015-03-01

    Submersible pressure transducers have been utilized for collecting water level data since the early 1960s. Together with a digital data logger, it is a convenient way to record water level fluctuations for long-term monitoring. Despite the wide use of pressure transducers for water level monitoring, little has been reported regarding their accuracy and performance under field conditions. The effects of temperature fluctuations on the output of vented pressure transducers were considered in this study. The pressure transducers were tested under both laboratory and field conditions. The results of this study indicate that temperature fluctuation has a strong effect on the transducer output. Rapid changes in temperature introduce noise and fluctuations in the water level readings under a constant hydraulic head while the absolute temperature is also related to sensor errors. The former is attributed to venting and the latter is attributed to temperature compensation effects in the strain gauges. Individual pressure transducers responded differently to the thermal fluctuations in the same testing environment. In the field of surface hydrology, especially when monitoring fine-scale water level fluctuations, ignoring or failing to compensate for the temperature effect can introduce considerable error into pressure transducer readings. It is recommended that a performance test for the pressure transducer is conducted before field deployment.

  16. Political Factors Affecting the Enactment of State-Level Clean Indoor Air Laws

    PubMed Central

    Vernick, Jon S.; Stuart, Elizabeth A.; Webster, Daniel W.

    2014-01-01

    Objectives. We examined the effects of key political institutional factors on the advancement of state-level clean indoor air laws. Methods. We performed an observational study of state-level clean indoor air law enactment among all 50 US states from 1993 to 2010 by using extended Cox hazard models to assess risk of enacting a relevant law. Results. During the 18-year period from 1993 to 2010, 28 states passed a law covering workplaces, 33 states passed a law covering restaurants, 29 states passed a law covering bars, and 16 states passed a law covering gaming facilities. States with term limits had a 2.15 times greater hazard (95% confidence interval [CI] = 1.27, 3.65; P = .005) of enacting clean indoor air laws. The presence of state-level preemption of local clean indoor air laws was associated with a 3.26 times greater hazard (95% CI = 1.11, 9.53; P = .031) of state-level policy enactment. In the presence of preemption, increased legislative professionalism was strongly associated (hazard ratio = 3.28; 95% CI = 1.10, 9.75; P = .033) with clean indoor air law enactment. Conclusions. Political institutional factors do influence state-level clean indoor air law enactment and may be relevant to other public health policy areas. PMID:24825239

  17. Stress in the wild: chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird.

    PubMed

    Newman, A E M; Zanette, L Y; Clinchy, M; Goodenough, N; Soma, K K

    2013-05-01

    The effects of chronic stressors on glucocorticoid levels are well described in laboratory rodents, but far less is known about the effects of chronic stressors on wild animals or on dehydroepiandrosterone (DHEA) levels. DHEA can be produced by the adrenal cortex and has prominent antiglucocorticoid properties. Here, we examined wild songbirds to elucidate the relationship between chronic predator pressure and plasma DHEA and corticosterone levels. We measured circulating steroid levels at baseline and after acute restraint in the breeding and nonbreeding seasons. During the breeding season, males in low predator pressure (LPP) environments had higher baseline DHEA levels than males in high predator pressure (HPP) environments. Also, acute restraint decreased DHEA levels in LPP males only but increased corticosterone levels in HPP and LPP males similarly. During the nonbreeding season, DHEA and corticosterone levels were lower than during the breeding season, and acute restraint decreased DHEA levels in both HPP and LPP males. Unlike males, breeding females showed no effect of predator pressure on baseline DHEA or corticosterone levels. These data suggest that naturalistic chronic and acute stressors affect circulating DHEA and corticosterone levels in wild animals and highlight the importance of using multiple endpoints when studying the physiological effects of chronic stress.

  18. Hearing levels of aerospace workers as affected by duration of employment.

    PubMed

    Martin, O E; Crowder, W F

    1978-11-01

    Studies of the audiograms of a sample of male aerospace workers to establish the relationship between hearing level and occupational exposure indicate that hearing levels at 4000 Hz of the sample are essentially the same as the general U. S. male population under age 45 but show a greater loss over age 45. Partial correlation studies relating hearing level changes to duration of employment, with age effects held constant, attribute this difference to factors other than occupational exposure. The correlation studies of the overall sample show a slight trend for increasing loss with longer durations of employment. The net effect is of no practical significance. Detailed age group correlation studies indicate that this age-related change occurs primarily in the under age 35 group, a factor of significance to hearing conservation activities.

  19. DNA Methylation of Lipid-Related Genes Affects Blood Lipid Levels

    PubMed Central

    Pfeiffer, Liliane; Wahl, Simone; Pilling, Luke C.; Reischl, Eva; Sandling, Johanna K.; Kunze, Sonja; Holdt, Lesca M.; Kretschmer, Anja; Schramm, Katharina; Adamski, Jerzy; Klopp, Norman; Illig, Thomas; Hedman, Åsa K.; Roden, Michael; Hernandez, Dena G.; Singleton, Andrew B.; Thasler, Wolfgang E.; Grallert, Harald; Gieger, Christian; Herder, Christian; Teupser, Daniel; Meisinger, Christa; Spector, Timothy D.; Kronenberg, Florian; Prokisch, Holger; Melzer, David; Peters, Annette; Deloukas, Panos; Ferrucci, Luigi; Waldenberger, Melanie

    2016-01-01

    Background Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. Methods and Results Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=−0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06–1.25). Conclusions Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases. PMID:25583993

  20. Are serum eosinophilic cationic protein levels of toll collectors affected by diesel exhaust exposure?

    PubMed Central

    Bilgin, Cahit; Arbak, Peri; Yavuz, Ozlem; Balbay, Ege Gulec; Balbay, Oner; Annakkaya, Ali Nihat

    2016-01-01

    Objective: There are few studies on the diesel exhaust particulates (DEP) / eosinophilic cationic protein (ECP) level relationship. This study aimed to detect ECP levels in a highly DE exposed group, named as toll collectors. Methods: In a cross-sectional study, levels of serum ECP, rates of respiratory symptoms, mean levels of respiratory functions, smoking status, and variations in peak expiratory flow (PEF) during weekends and working days were compared for 68 toll collectors (TC) (range of age, 24-48 years) and 28 controls (range of age, 25-61 years). All subjects in the study group were men. Results: No significant difference was observed in terms of symptoms and smoking rates between the toll collectors and control group. The number of toll collectors [12/68 (17.7%) vs 1/28 (3.5%)] with diurnal PEF variability in the working period was higher than that of controls (p=0.058). Mean ECP level of toll collectors was higher than that of controls (32.8 vs 21.4 ng/L), but the difference was not significant. Mean ECP levels were higher in subjects experiencing diurnal PEF variability during work and off-work periods (34.9 vs 28.3 ng/L, p=0.410). Conclusions: Serial PEF measurements combined with serum ECP measurements did not add a new tool to detect the sensitivity of workers dealing with DE. Much more diesel exhaust exposed workers should be included to search for cheap and available methods when evaluating airway. PMID:27882015

  1. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    PubMed

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  2. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  3. N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells.

    PubMed Central

    Puddington, L; Bevan, M J; Rose, J K; Lefrançois, L

    1986-01-01

    The specificity of anti-vesicular stomatitis virus (VSV)-specific cytotoxic T cells was explored with cell lines expressing VSV genes introduced by electroporation. Low levels of nucleocapsid (N) protein were detected on the surface of VSV-infected cells, but N protein could not be detected on the plasma membrane of transfected EL4 cells. Intracellular N protein was detectable by enzyme-linked immunosorbent assay or immunoprecipitation in some of the transfected cell lines but not in others, unless the transfected genes were induced by sodium butyrate. However, all of the stably transfected EL4 cell lines expressing the VSV-Indiana N protein were efficiently lysed by serotype-specific and cross-reactive anti-VSV cytotoxic T cells (CTLs). Primary cross-reactive anti-VSV CTLs appeared to be specific solely for N protein, based on cold-target competition assays using infected and transfected target cells. Cell lines expressing 100- to 1,000-fold less N protein than did VSV-infected cells were efficiently lysed by both primary and secondary anti-VSV CTLs. Cell lines expressing 100-fold less G protein than did VSV-infected cells were not lysed by either population of effectors. Significantly, cold-target competition studies with secondary CTLs demonstrated that N protein-expressing cell lines were more efficient competitors than were VSV-infected cells even though the latter expressed 100- to 1,000-fold more N protein. This was not an artifact of viral infection since infection of the transfected cell lines did not affect their ability to compete. The possibility that cell lines constitutively expressing internal virus proteins present antigen more effectively than infected cells do is discussed. Images PMID:3022003

  4. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants

    PubMed Central

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-01-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. PMID:27273581

  5. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    PubMed

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a

  6. Neural networks to simulate regional ground water levels affected by human activities.

    PubMed

    Feng, Shaoyuan; Kang, Shaozhong; Huo, Zailin; Chen, Shaojun; Mao, Xiaomin

    2008-01-01

    In arid regions, human activities like agriculture and industry often require large ground water extractions. Under these circumstances, appropriate ground water management policies are essential for preventing aquifer overdraft, and thereby protecting critical ecologic and economic objectives. Identification of such policies requires accurate simulation capability of the ground water system in response to hydrological, meteorological, and human factors. In this research, artificial neural networks (ANNs) were developed and applied to investigate the effects of these factors on ground water levels in the Minqin oasis, located in the lower reach of Shiyang River Basin, in Northwest China. Using data spanning 1980 through 1997, two ANNs were developed to model and simulate dynamic ground water levels for the two subregions of Xinhe and Xiqu. The ANN models achieved high predictive accuracy, validating to 0.37 m or less mean absolute error. Sensitivity analyses were conducted with the models demonstrating that agricultural ground water extraction for irrigation is the predominant factor responsible for declining ground water levels exacerbated by a reduction in regional surface water inflows. ANN simulations indicate that it is necessary to reduce the size of the irrigation area to mitigate ground water level declines in the oasis. Unlike previous research, this study demonstrates that ANN modeling can capture important temporally and spatially distributed human factors like agricultural practices and water extraction patterns on a regional basin (or subbasin) scale, providing both high-accuracy prediction capability and enhanced understanding of the critical factors influencing regional ground water conditions.

  7. CAN FLUORIDATION AFFECT WATER LEAD (II) LEVELS AND LEAD (II) NEUROTOXICITY?

    EPA Science Inventory

    Recent reports have attempted to show that certain approaches to fluoridating potable water is linked to increased levels of lead(II) in the blood. We examine these claims in light of the established science and critically evaluate their significance. The completeness of hexafl...

  8. Plant sterol consumption frequency affects plasma lipid levels and cholesterol kinetics in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: To compare the efficacy of single versus multiple doses of plant sterols on circulating lipid level and cholesterol trafficking. Subjects/Methods: A randomized, placebo-controlled, three-phase (6 days/phase) crossover, supervised feeding trial was conducted in 19 subjects. Sub...

  9. How Levels of Interactivity in Tutorials Affect Students' Learning of Modeling Transportation Problems in a Spreadsheet

    ERIC Educational Resources Information Center

    Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.

    2010-01-01

    Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…

  10. Polymorphism in CRHR1 gene affects the IL-1β levels in suicidal attempters.

    PubMed

    Bastos, Clarissa R; Gazal, Marta; Quevedo, Luciana de A; Costa, Joice Luisa; Wiener, Carolina D; Jansen, Karen; de Mola, Christian Loret; Oses, Jean P; Souza, Luciano D M; Portela, Luiz Valmor; Pinheiro, Ricardo T; da Silva, Ricardo A; Lara, Diogo R; Ghisleni, Gabriele

    2017-03-01

    Approximately one million people commit suicide every year, being suicide attempts and ideation even more common. Changes in stress response and activation of the immune system have been associated with suicide risk. Here we investigated the interaction between immune system and HPA axis alterations in the suicide risk, looking for the influence of rs110402 CRHR1 SNP in the IL-1β levels according to suicide ideation and attempt. This study evaluated 171 subjects of which 15 had suicidal ideation, 20 had suicide attempt and 136 were controls. Genotyping was performed by real-time PCR and IL-1β levels were measured by ELISA. Our data showed that for each point increase in IL-1β levels the risk of suicide attempt increased 5% [relative risk = 1.05 (95% CI: 1.0-1.10)]. After sample stratification by rs110402 SNP genotypes, we observed that in subjects carrying the A allele the risk raised to 15% [relative risk = 1.15 (95% CI: 1.03-1.28)], suggesting an apparent effect modification. Thus, this study showed that alterations in CRHR1 gene were associated with higher levels of IL-1β, and increased risk for suicide, reinforcing the importance of multifactorial interactions of biological markers for psychiatric disorders.

  11. Gait analysis in children affected by myelomeningocele: comparison of the various levels of lesion.

    PubMed

    Galli, Manuela; Albertini, Giorgio; Romei, Marianna; Santambrogio, Giorgio C; Tenore, Nunzio; Crivellini, Marcello

    2002-01-01

    The aim of this study was to utilise the gait analysis (GA) methodology to characterise the walking act in children with different levels of myelomeningocele. To this end, we analysed 30 children (mean age 11 +/- 3 years, still able to walk without ortheses) grouped according to the site of their neurological lesion (localised from L4 down to S5); ten healthy children (mean age 9 +/- 2 years) were also analysed for comparison. Of the many kinematic and kinetic parameters provided by GA, we focused on those providing a good correlation with the level of lesion. In particular, the following parameters are presented and discussed: angle of flexion at the knee joint at the moment of contact of the foot with the ground, knee joint flexion-extension range of motion, flexion of the hip at the beginning of the stride, anterior pelvic tilt, range of rotation of the pelvis in the horizontal plane and ankle joint power. The higher the level of the neurological lesion, the more these parameters of gait were found to deviate from those measured in the control group. This study emphasises the relationship that exists between the site (level) of the neurological lesion and the individual aspects of the functional limitation associated with it.

  12. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    EPA Science Inventory

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  13. Effective Participatory School Administration, Leadership, and Management: Does It Affect the Trust Levels of Stakeholders?

    ERIC Educational Resources Information Center

    Gamage, David; San Antonio, Diosdado

    2006-01-01

    This paper reports upon a study on the effectiveness of participatory school administration, leadership and management (PSALM) as perceived by 282 stakeholders in one school division in the Philippines. The study also examined the correlation between the indicators of PSALM effectiveness and the trust levels of the stakeholders. Questionnaires…

  14. Factors Affecting the Level of Test Anxiety among EFL Learners at Elementary Schools

    ERIC Educational Resources Information Center

    Aydin, Selami

    2013-01-01

    Many studies on test anxiety among adult language learners have been performed, while only a few studies have dealt with overall test anxiety. In addition, these studies do not specifically address test anxiety in foreign language learning among elementary school language learners. Thus, this study aims to investigate the level of test anxiety…

  15. Factors affecting the death anxiety levels of relatives of cancer patients undergoing treatment.

    PubMed

    Beydag, Kerime Derya

    2012-01-01

    This descriptive study was performed to determine levels of the death anxiety levels of relatives of patients who being treated in a public hospital located in the Asian side of Istanbul and influencing factors. The sample was 106 patient relatives of patients from oncology or chemotherapy units of the hospital. Data were collected between May-June 2011 with the 15-item Death Anxiety Scale developed by Templer (1970) and adapted to Turkish by Senol (1989) and evaluated by number-percentage calculations, the Kruskal Wallis, Anova and t tests. Some 36.8% of the included group were aged 45 years and over, 57.5% were female and 65.1% were married. A statistically significant difference was found between the age groups, genders of the patient relatives, the period of cancer treatment regarding the death anxiety levels (p<0.05). The death anxiety levels of the patient relatives who were in the 17-39 age group, female and had a patient who was under treatment for less than 6 months were found to high as compared to others.

  16. Dietary composition affect levels of trace elements in the predator Podisus maculiventris (Say) (Heteroptera: Pentatomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects require small amounts of dietary minerals because of the roles minerals serve as antioxidants, enzyme co-factors and as constituents of metalloproteins. We measured the levels of ten trace elements (Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Se and Zn) in the predatory insect, Podisus maculiventris rea...

  17. Even Low Levels of Alcohol during Pregnancy Can Affect Fetal Brain Development. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2008

    2008-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study "Effects of Prenatal Alcohol Exposure on GABAergic Neurons" (V. C. Cuzone; P. W. L. Yeh; Y. Yanagawa; K. Obata; and H. H. Yeh). Study results indicate that even exposure to low levels of alcohol during…

  18. Level of Dietary Fat Does Not Affect Fuel Oxidation or Endurance Exercise Performance of Soldiers

    DTIC Science & Technology

    1991-03-15

    METHODS Eight male military volunteers with normal fsting blood cholesterol and triglyceride levels and no history of diabetes gave their informed consent...measured by radloimmunoassay. Glucose, blood urea nitrogen, creatinine, cholesterol , triglycerides, high-density lipoprotein cholesterol , total protein...significant. All basal postabsorptive blood chemistries (blood urea nitrogen, creatinine, total cholesterol , HDL cholesterol , total protein, albumin, sodium

  19. Low-level lasers affect uncoupling protein gene expression in skin and skeletal muscle tissues

    NASA Astrophysics Data System (ADS)

    Canuto, K. S.; Sergio, L. P. S.; Paoli, F.; Mencalha, A. L.; Fonseca, A. S.

    2016-03-01

    Wavelength, frequency, power, fluence, and emission mode determine the photophysical, photochemical, and photobiological responses of biological tissues to low-level lasers. Free radicals are involved in these responses acting as second messengers in intracellular signaling processes. Irradiated cells present defenses against these chemical species to avoid unwanted effects, such as uncoupling proteins (UCPs), which are part of protective mechanisms and minimize the effects of free radical generation in mitochondria. In this work UCP2 and UCP3 mRNA gene relative expression in the skin and skeletal muscle tissues of Wistar rats exposed to low-level red and infrared lasers was evaluated. Samples of the skin and skeletal muscle tissue of Wistar rats exposed to low-level red and infrared lasers were withdrawn for total RNA extraction, cDNA synthesis, and the evaluation of gene expression by quantitative polymerase chain reaction. UCP2 and UCP3 mRNA expression was differently altered in skin and skeletal muscle tissues exposed to lasers in a wavelength-dependent effect, with the UCP3 mRNA expression dose-dependent. Alteration on UCP gene expression could be part of the biostimulation effect and is necessary to make cells exposed to red and infrared low-level lasers more resistant or capable of adapting in damaged tissues or diseases.

  20. A herbal medicine, saikokaryukotsuboreito, improves serum testosterone levels and affects sexual behavior in old male mice.

    PubMed

    Zang, Zhi Jun; Ji, Su Yun; Dong, Wang; Zhang, Ya Nan; Zhang, Er Hong; Bin, Zhang

    2015-06-01

    Late-onset hypogonadism (LOH) is a clinical syndrome characterized with aging and declined serum testosterone levels. Sexual symptoms are also essential for the diagnosis of LOH. Testosterone replacement therapy is used widely to treat LOH. However, the side effects of it should not be ignored, such as fluid retention, hypertension and spermatogenic suppression. Therefore, alternate treatment modalities have been pursued. Herbal medicines used widely in China have achieved satisfying results with little side effects. Nonetheless, there are few pharmacological researches on them. In this study, 24-month-old mice were used as LOH animal models to explore the pharmacological effects of a herbal medicine, saikokaryukotsuboreito (SKRBT), on serum testosterone levels and sexual functions. Furthermore, the expression of steroidogenic acute regulatory (StAR) protein, a kind of rate-limiting enzyme of testosterone synthesis, was also examined. As a result, SKRBT improved the serum testosterone levels of these mice at a dose of 300 and 450 mg/kg. Multiple measures of sexual behavior were enhanced. The expression of StAR was also increased. Therefore, this study suggested that SKRBT can improve the serum testosterone levels by activating the expression of StAR and might be a viable option to treat sexual symptoms caused by LOH.

  1. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species

    PubMed Central

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D.; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  2. Combined pesticide exposure severely affects individual- and colony-level traits in bees.

    PubMed

    Gill, Richard J; Ramos-Rodriguez, Oscar; Raine, Nigel E

    2012-11-01

    Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production. Bees contribute approximately 80% of insect pollination, so it is important to understand and mitigate the causes of current declines in bee populations . Recent studies have implicated the role of pesticides in these declines, as exposure to these chemicals has been associated with changes in bee behaviour and reductions in colony queen production. However, the key link between changes in individual behaviour and the consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of many individual workers. Thus, although field-level pesticide concentrations can have subtle or sublethal effects at the individual level, it is not known whether bee societies can buffer such effects or whether it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means that bees are exposed to numerous pesticides when foraging, yet the possible combinatorial effects of pesticide exposure have rarely been investigated. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found that worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail.

  3. Ethanol affects acylated and total ghrelin levels in peripheral blood of alcohol-dependent rats.

    PubMed

    Szulc, Michal; Mikolajczak, Przemyslaw L; Geppert, Bogna; Wachowiak, Roman; Dyr, Wanda; Bobkiewicz-Kozlowska, Teresa

    2013-07-01

    There is a hypothesis that ghrelin could take part in the central effects of alcohol as well as function as a peripheral indicator of the changes which occur during long-term alcohol consumption. The aim of this study was to determine a correlation between alcohol concentration and acylated and total form of ghrelin after a single administration of alcohol (intraperitoneal, i.p.) (experiment 1) and prolonged ethanol consumption (experiment 2). The study was performed using Wistar alcohol preferring (PR) and non-preferring (NP) rats and rats from inbred line (Warsaw High Preferring, WHP; Warsaw Low Preferring, WLP). It was found that ghrelin in ethanol-naive WHP animals showed a significantly lower level when compared with the ethanol-naive WLP or Wistar rats. After acute ethanol administration in doses of 1.0; 2.0 and 4.0 g/kg, i.p., the simple (WHP) or inverse (WLP and Wistar) relationship between alcohol concentration and both form of ghrelin levels in plasma were found. Chronic alcohol intake in all groups of rats led to decrease of acylated ghrelin concentration. PR and WHP rats, after chronic alcohol drinking, had lower levels of both form of ghrelin in comparison with NP and WLP rats, respectively, and the observed differences in ghrelin levels were in inverse relationship with their alcohol intake. In conclusion, it is suggested that there is a strong relationship between alcohol administration or intake, ethanol concentration in blood and both active and total ghrelin level in the experimental animals, and that ghrelin plasma concentration can be a marker of alcohol drinking predisposition.

  4. Combined pesticide exposure severely affects individual- and colony-level traits in bees

    PubMed Central

    Gill, Richard J.; Ramos-Rodriguez, Oscar; Raine, Nigel E.

    2012-01-01

    Reported widespread declines of wild and managed insect pollinators have serious consequences for global ecosystem services and agricultural production1-3. Bees contribute around 80% of insect pollination, so it is imperative we understand and mitigate the causes of current declines4-6. Recent studies have implicated the role of pesticides as exposure to these chemicals has been associated with changes in bee behaviour7-11 and reductions in colony queen production12. However the key link between changes in individual behaviour and consequent impact at the colony level has not been shown. Social bee colonies depend on the collective performance of numerous individual workers. So whilst field-level pesticide concentrations can have a subtle/sublethal effect at the individual level8, it is not known whether bee societies can buffer such effects or if it results in a severe cumulative effect at the colony level. Furthermore, widespread agricultural intensification means bees are exposed to numerous pesticides when foraging13-15, yet the possible combinatorial effects of pesticide exposure have rarely been investigated16,17. Here we show that chronic exposure of bumblebees to two pesticides (neonicotinoid and pyrethroid) at concentrations that could approximate field-level exposure impairs natural foraging behaviour and increases worker mortality leading to significant reductions in brood development and colony success. We found worker foraging performance, particularly pollen collecting efficiency, was significantly reduced with observed knock-on effects for forager recruitment, worker losses and overall worker productivity. Moreover, we provide evidence that combinatorial exposure to pesticides increases the propensity of colonies to fail. PMID:23086150

  5. Treatment of radiation- and chemotherapy-induced stomatitis

    SciTech Connect

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. )

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  6. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    PubMed

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  7. The role of brassinosteroids and abscisic acid in stomatal development.

    PubMed

    Serna, Laura

    2014-08-01

    Gas exchange with the atmosphere is regulated through the stomata. This process relies on both the degree and duration of stomatal opening, and the number and patterning of these structures in the plant surface. Recent work has revealed that brassinosteroids and abscisic acid (ABA), which control stomatal opening, also repress stomatal development in cotyledons and leaves of at least some plants. It is speculated that, in Arabidopsis, these phytohormones control the same steps of this developmental process, most probably, through the regulation of the same mitogen-activated protein (MAP) kinase module. The conservation, in seeds plants, of components downstream of this module with MAP kinase target domains, suggests that these proteins are also regulated by these cascades, which, in turn, may be regulated by brassinosteroids and/or ABA.

  8. Passive origins of stomatal control in vascular plants.

    PubMed

    Brodribb, Tim J; McAdam, Scott A M

    2011-02-04

    Carbon and water flow between plants and the atmosphere is regulated by the opening and closing of minute stomatal pores in surfaces of leaves. By changing the aperture of stomata, plants regulate water loss and photosynthetic carbon gain in response to many environmental stimuli, but stomatal movements cannot yet be reliably predicted. We found that the complexity that characterizes stomatal control in seed plants is absent in early-diverging vascular plant lineages. Lycophyte and fern stomata are shown to lack key responses to abscisic acid and epidermal cell turgor, making their behavior highly predictable. These results indicate that a fundamental transition from passive to active metabolic control of plant water balance occurred after the divergence of ferns about 360 million years ago.

  9. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  10. Photosynthetic and leaf morphological characteristics in Leucaena leucocephala as affected by growth under different neutral shade levels.

    PubMed

    Perry, M H; Friend, D J; Yamamoto, H Y

    1986-01-01

    Morphological and physiological measurements on individual leaves of Leucaena leucocephala seedlings were used to study acclimation to neutral shading. The light-saturated photosynthetic rate (Pn max) ranged from 19.6 to 6.5 μmol CO2 m(-2) s(-1) as photosynthetic photon flux density (PPFD) during growth decreased from 27 to 1.6 mol m(-2) s(-1). Stomatal density varied from 144 mm(-2) in plants grown in high PPFD to 84 mm(-2) in plants grown in low PPFD. Average maximal stomatal conductance for H2O was 1.1 in plants grown in high PPFD and 0.3 for plants grown in low PPFD. Plants grown in low PPFD had a greater total chlorophyll content than plants grown in high PPFD (7.2 vs 2.9 mg g(-1) on a unit fresh weight basis, and 4.3 vs 3.7 mg dm(-2) on a unit leaf area basis). Leaf area was largest when plants were grown under the intermediate PPFDs. Leaf density thickness was largest when plants were grown under the largest PPFDs. It is concluded that L. leucocephala shows extensive ability to acclimate to neutral shade, and could be considered a facultative shade plant.

  11. Attention enhances stimulus representations in macaque visual cortex without affecting their signal-to-noise level

    PubMed Central

    Daliri, Mohammad Reza; Kozyrev, Vladislav; Treue, Stefan

    2016-01-01

    The magnitude of the attentional modulation of neuronal responses in visual cortex varies with stimulus contrast. Whether the strength of these attentional influences is similarly dependent on other stimulus properties is unknown. Here we report the effect of spatial attention on responses in the medial-temporal area (MT) of macaque visual cortex to moving random dots pattern of various motion coherences, i.e. signal-to-noise ratios. Our data show that allocating spatial attention causes a gain change in MT neurons. The magnitude of this attentional modulation is independent of the attended stimulus’ motion coherence, creating a multiplicative scaling of the neuron’s coherence-response function. This is consistent with the characteristics of gain models of attentional modulation and suggests that attention strengthens the neuronal representation of behaviorally relevant visual stimuli relative to unattended stimuli, but without affecting their signal-to-noise ratios. PMID:27283275

  12. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae.

    PubMed

    Derecka, Kamila; Blythe, Martin J; Malla, Sunir; Genereux, Diane P; Guffanti, Alessandro; Pavan, Paolo; Moles, Anna; Snart, Charles; Ryder, Thomas; Ortori, Catharine A; Barrett, David A; Schuster, Eugene; Stöger, Reinhard

    2013-01-01

    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.

  13. Transient Exposure to Low Levels of Insecticide Affects Metabolic Networks of Honeybee Larvae

    PubMed Central

    Derecka, Kamila; Blythe, Martin J.; Malla, Sunir; Genereux, Diane P.; Guffanti, Alessandro; Pavan, Paolo; Moles, Anna; Snart, Charles; Ryder, Thomas; Ortori, Catharine A.; Barrett, David A.; Schuster, Eugene; Stöger, Reinhard

    2013-01-01

    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators. PMID:23844170

  14. COMBINED CIS-REGULATOR ELEMENTS AS IMPORTANT MECHANISM AFFECTING FXII PLASMA LEVELS

    PubMed Central

    Sabater-Lleal, Maria; Chillón, Miguel; Mordillo, Carolina; Martínez, Ángel; Gil, Estel; Mateo, José; Blangero, John; Almasy, Laura; Fontcuberta, Jordi; Soria, José Manuel

    2010-01-01

    Introduction Factor XII (FXII) deficiency is a recessive Mendelian trait due to mutations in the F12 gene. There is no bleeding associated with FXII deficiency, but FXII deficiency has been reported to be associated with risk of thrombosis in some studies. Material and Methods We examined the functional effect of two naturally-occurring mutations in two Spanish FXII deficient families: a C/G substitution at position –8, and a C/T substitution at position –13. Both mutations were located on a putative HNF4 binding site of F12 gene promoter. We also analyzed the F12 C46T polymorphism (rs1801020), associated with a decrease in the FXII levels, which also segregated in both families. A fragment containing each one of both –8 and -13 mutations, was cloned 5′ of a reporter gene. We compared the in vitro expression of these constructs to the wild type expression. Results Our analyses confirm that the –8C/G and the –13C/T mutations decreased expression levels, demonstrating that both mutations are involved in the observed FXII deficiency. In addition, electrophoretic shift analyses suggest that they alter the union of nuclear proteins to the promoter. Coinheritance of these mutations with the C46T polymorphism, result in a significant genotype-phenotype correlation. Conclusions We have identified two naturally-occurring mutations in the F12 promoter that drastically reduce FXII levels. Knowing rare genetic alterations in the F12 gene, together with the C46T common variant, may yield further understanding about the genetic architecture of FXII levels, which may have a role in the risk of thrombosis. PMID:19786295

  15. Habitat Degradation and Seasonality Affect Physiological Stress Levels of Eulemur collaris in Littoral Forest Fragments

    PubMed Central

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species. PMID:25229944

  16. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    PubMed

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  17. Researchers' choice of the number and range of levels in experiments affects the resultant variance-accounted-for effect size.

    PubMed

    Okada, Kensuke; Hoshino, Takahiro

    2016-08-08

    In psychology, the reporting of variance-accounted-for effect size indices has been recommended and widely accepted through the movement away from null hypothesis significance testing. However, most researchers have paid insufficient attention to the fact that effect sizes depend on the choice of the number of levels and their ranges in experiments. Moreover, the functional form of how and how much this choice affects the resultant effect size has not thus far been studied. We show that the relationship between the population effect size and number and range of levels is given as an explicit function under reasonable assumptions. Counterintuitively, it is found that researchers may affect the resultant effect size to be either double or half simply by suitably choosing the number of levels and their ranges. Through a simulation study, we confirm that this relation also applies to sample effect size indices in much the same way. Therefore, the variance-accounted-for effect size would be substantially affected by the basic research design such as the number of levels. Simple cross-study comparisons and a meta-analysis of variance-accounted-for effect sizes would generally be irrational unless differences in research designs are explicitly considered.

  18. System-level factors affecting clinicians' perceptions and use of interpreter services in California public hospitals.

    PubMed

    Baurer, Danielle; Yonek, Julie C; Cohen, Alan B; Restuccia, Joseph D; Hasnain-Wynia, Romana

    2014-04-01

    Professional language interpreters are skilled in the nuances of interpretation and are less likely to make errors of clinical significance but clinicians infrequently use them. We examine system-level factors that may shape clinicians' perceptions and use of professional interpreters. Exploratory qualitative study in 12 California public hospitals. We conducted in-person key informant interviews with hospital leadership, clinical staff, and administrative staff. Five emergent themes highlight system-level factors that may influence clinicians' perceptions and use of professional interpreters in hospitals: (1) organization-wide commitment to improving language access for LEP patients; (2) organizational investment in remote interpreter technologies to increase language access; (3)training clinicians on how to access and work with interpreters; (4) hospital supports the training and certification of bilingual staff to serve as interpreters to expand in-person, on-site, interpreter capacity; and (5)organizational investment in readily accessible telephonic interpretation. Multiple system-level factors underlie clinicians' use of professional interpreters. Interventions that target these factors could improve language services for patients with limited English proficiency.

  19. Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis.

    PubMed

    Santos, Daniel P R; Barbosa, Roberto N; Vieira, Luiz H P; Santiago, Paulo R P; Zagatto, Alessandro M; Gomes, Matheus M

    2017-01-01

    Identifying the trajectory and spin of the ball with speed and accuracy is critical for good performance in table tennis. The aim of this study was to analyze the ability of table tennis players presenting different levels of training/experience to identify the magnitude of the ball spin from the sound produced when the racket hit the ball. Four types of "forehand" contact sounds were collected in the laboratory, defined as: Fast Spin (spinning ball forward at 140 r/s); Medium Spin (105 r/s); Slow Spin (84 r/s); and Flat Hit (less than 60 r/s). Thirty-four table tennis players of both sexes (24 men and 10 women) aged 18-40 years listened to the sounds and tried to identify the magnitude of the ball spin. The results revealed that in 50.9% of the cases the table tennis players were able to identify the ball spin and the observed number of correct answers (10.2) was significantly higher (χ(2) = 270.4, p <0.05) than the number of correct answers that could occur by chance. On the other hand, the results did not show any relationship between the level of training/experience and auditory perception of the ball spin. This indicates that auditory information contributes to identification of the magnitude of the ball spin, however, it also reveals that, in table tennis, the level of training does not interfere with the auditory perception of the ball spin.

  20. Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels.

    PubMed

    Lu, Wensheng; Cheng, Yu-Ching; Chen, Keping; Wang, Hong; Gerhard, Glenn S; Still, Christopher D; Chu, Xin; Yang, Rongze; Parihar, Ankita; O'Connell, Jeffrey R; Pollin, Toni I; Angles-Cano, Eduardo; Quon, Michael J; Mitchell, Braxton D; Shuldiner, Alan R; Fu, Mao

    2015-04-15

    Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68-0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5-APOA4-APOC3-APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10(-8) to 3.91 × 10(-19)) spanning a ∼5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10(-14)) and rs10455872 (P = 1.85 × 10(-12)). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10(-9)). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation.

  1. Evidence for several independent genetic variants affecting lipoprotein (a) cholesterol levels

    PubMed Central

    Lu, Wensheng; Cheng, Yu-Ching; Chen, Keping; Wang, Hong; Gerhard, Glenn S.; Still, Christopher D.; Chu, Xin; Yang, Rongze; Parihar, Ankita; O'Connell, Jeffrey R.; Pollin, Toni I.; Angles-Cano, Eduardo; Quon, Michael J.; Mitchell, Braxton D.; Shuldiner, Alan R.; Fu, Mao

    2015-01-01

    Lipoprotein (a) [Lp(a)] is an independent risk factor for atherosclerosis-related events that is under strong genetic control (heritability = 0.68–0.98). However, causal mutations and functional validation of biological pathways modulating Lp(a) metabolism are lacking. We performed a genome-wide association scan to identify genetic variants associated with Lp(a)-cholesterol levels in the Old Order Amish. We confirmed a previously known locus on chromosome 6q25-26 and found Lp(a) levels also to be significantly associated with a SNP near the APOA5–APOA4–APOC3–APOA1 gene cluster on chromosome 11q23 linked in the Amish to the APOC3 R19X null mutation. On 6q locus, we detected associations of Lp(a)-cholesterol with 118 common variants (P = 5 × 10−8 to 3.91 × 10−19) spanning a ∼5.3 Mb region that included the LPA gene. To further elucidate variation within LPA, we sequenced LPA and identified two variants most strongly associated with Lp(a)-cholesterol, rs3798220 (P = 1.07 × 10−14) and rs10455872 (P = 1.85 × 10−12). We also measured copy numbers of kringle IV-2 (KIV-2) in LPA using qPCR. KIV-2 numbers were significantly associated with Lp(a)-cholesterol (P = 2.28 × 10−9). Conditional analyses revealed that rs3798220 and rs10455872 were associated with Lp(a)-cholesterol levels independent of each other and KIV-2 copy number. Furthermore, we determined for the first time that levels of LPA mRNA were higher in the carriers than non-carriers of rs10455872 (P = 0.0001) and were not different between carriers and non-carriers of rs3798220. Protein levels of apo(a) were higher in the carriers than non-carriers of both rs10455872 and rs3798220. In summary, we identified multiple independent genetic determinants for Lp(a)-cholesterol. These findings provide new insights into Lp(a) regulation. PMID:25575512

  2. Transcriptional control of cell fate in the stomatal lineage

    PubMed Central

    Simmons, Abigail R.; Bergmann, Dominique C.

    2015-01-01

    The Arabidopsis stomatal lineage is a microcosm of development; it undergoes selection of precursor cells, asymmetric and stem cell-like divisions, cell commitment and finally, acquisition of terminal cell fates. Recent transcriptomic approaches revealed major shifts in gene expression accompanying each fate transition, and mechanistic analysis of key bHLH transcription factors, along with mathematical modeling, has begun to unravel how these major shifts are coordinated. In addition, stomatal initiation is proving to be a tractable model for defining the genetic and epigenetic basis of stable cell identities and for understanding the integration of environmental responses into developmental programs. PMID:26550955

  3. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function

    PubMed Central

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.

    2016-01-01

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  4. Meteorological factors affecting the sudden decline in Lake Urmia's water level

    NASA Astrophysics Data System (ADS)

    Arkian, Foroozan; Nicholson, Sharon E.; Ziaie, Bahareh

    2016-11-01

    Lake Urmia, in northwest Iran, is the second most saline lake in the world. During the past two decades, the level of water has markedly decreased. In this paper, climate of the lake region is investigated by using data from four meteorological stations near the lake. The data include climatic parameters such as temperature, precipitation, humidity, wind speed, sunshine hours, number of rain days, and evaporation. Climate around the lake is examined by way of climate classification in the periods before and after the reduction in water level. Rainfall in the lake catchment is also evaluated using both gauge and satellite data. The results show a significant decreasing trend in mean annual precipitation and wind speed and an increasing trend in annual average temperature and sunshine hours at the four stations. Precipitation and wind speed have decreased by 37 mm and 2.7 m/s, respectively, and the mean annual temperature and sunshine hours have increased by 1.4 °C and 41.6 days, respectively, over these six decades. Only the climate of the Tabriz region is seen to have significantly changed, going from semiarid to arid. Gauge records and satellite data show a large-scale decreasing trend in rainfall since 1995. The correlation between rainfall and year-to-year changes in lake level is 0.69 over the period 1965 to 2010. The relationship is particularly strong from the early 1990s to 2005. This suggests that precipitation has played an important role in the documented decline of the lake.

  5. Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis

    PubMed Central

    Santos, Daniel P. R.; Barbosa, Roberto N.; Vieira, Luiz H. P.; Santiago, Paulo R. P.; Zagatto, Alessandro M.

    2017-01-01

    Abstract Identifying the trajectory and spin of the ball with speed and accuracy is critical for good performance in table tennis. The aim of this study was to analyze the ability of table tennis players presenting different levels of training/experience to identify the magnitude of the ball spin from the sound produced when the racket hit the ball. Four types of “forehand” contact sounds were collected in the laboratory, defined as: Fast Spin (spinning ball forward at 140 r/s); Medium Spin (105 r/s); Slow Spin (84 r/s); and Flat Hit (less than 60 r/s). Thirty-four table tennis players of both sexes (24 men and 10 women) aged 18-40 years listened to the sounds and tried to identify the magnitude of the ball spin. The results revealed that in 50.9% of the cases the table tennis players were able to identify the ball spin and the observed number of correct answers (10.2) was significantly higher (χ2 = 270.4, p <0.05) than the number of correct answers that could occur by chance. On the other hand, the results did not show any relationship between the level of training/experience and auditory perception of the ball spin. This indicates that auditory information contributes to identification of the magnitude of the ball spin, however, it also reveals that, in table tennis, the level of training does not interfere with the auditory perception of the ball spin. PMID:28210335

  6. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification

    PubMed Central

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m-2 s-1) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36–60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA. PMID:26938454

  7. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress.

    PubMed

    Bray, Brenna; Scholl, Jamie L; Tu, Wenyu; Watt, Michael J; Renner, Kenneth J; Forster, Gina L

    2016-08-01

    Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal.

  8. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.

    PubMed

    Ow, Yan X; Uthicke, Sven; Collier, Catherine J

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.

  9. Increased SCE levels in Mediterranean Italian buffaloes affected by limb malformation (transversal hemimelia).

    PubMed

    Peretti, V; Ciotola, F; Albarella, S; Restucci, B; Meomartino, L; Ferretti, L; Barbieri, V; Iannuzzi, L

    2008-01-01

    In recent years some buffalo farms in Campania have reported the birth of calves with limb malformation, especially with transversal hemimelia. We investigated 20 Mediterranean Italian buffaloes (8 males and 12 females) from one day to six months of age, of which 10 were affected by transversal hemimelia (group 1) and 10 were healthy controls (group 2). The following clinical and radiological patterns were observed in the malformed animals: hind limbs amputated, the right amputated off the second tarsus bones and the left amputated off the proximal epiphysis metatarsus, and the right thoracic limb hypoplasic (1 female); left hind limb amputated off the proximal epiphysis metatarsus (2 females and 1 male); left hind limb amputated off the third tarsus bones (1 female); left hind limb amputated off the tibia (1 female and 1 male); left hind limb amputated off the distal epiphysis metatarsus (1 female); left hind limb amputated off the first phalanx (1 male); right hind limb amputated off the proximal epiphysis metatarsus (1 male). In their malformed limbs all the animals presented more or less developed outlines of claws. The mean rate of SCE/cell in animals with transversal hemimelia was 8.80 +/- 3.19, that of the controls 6.61 +/- 2.73. The difference was statistically significant (P < 0.001).

  10. Analysis of factors affecting milking claw vacuum levels using a simulated milking device.

    PubMed

    Enokidani, Masafumi; Kuruhara, Kana; Kawai, Kazuhiro

    2016-06-01

    Bovine mastitis is typically caused by microbial infection of the udder, but the factors responsible for this condition are varied. One potential cause is the milking system, and although previous studies have investigated various methods for inspecting these devices, most have not assessed methods for evaluating the milking units. With this in mind, we analyzed the factors that affect the vacuum inside the milking claw by using a simulated milking device and by measuring milking claw vacuum when adjusting the flow rate in five stages. The factors analyzed in each milking system were the vacuum pressure settings (high and low line system) , milk tube length (200-328 cm), aperture diameter (14-22.2 mm), constricted aperture diameter (12 mm), tubing configurations, lift formation (0-80 cm), claw type (bottom and top flow) and use or non-use of a milk sampler. The study findings demonstrated that all of these variables had a significant impact on claw vacuum and suggest that a diagnostic method using a simulated milking device should be considered when inspecting modern milking systems.

  11. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.