Hurricanes, sea level rise, and coastal change
Sallenger,, Asbury H.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.
2011-01-01
Sixteen hurricanes have made landfall along the U.S. east and Gulf coasts over the past decade. For most of these storms, the USGS with our partners in NASA and the U.S. Army Corps of Engineers have flown before and after lidar missions to detect changes in beaches and dunes. The most dramatic changes occurred when the coasts were completely submerged in an inundation regime. Where this occurred locally, a new breach was cut, like during Hurricane Isabel in North Carolina. Where surge inundated an entire island, the sand was stripped off leaving marshy outcrops behind, like during Hurricane Katrina in Louisiana. Sea level rise together with sand starvation and repeated hurricane impacts could increase the probabilities of inundation and degrade coasts more than sea level rise alone.
Commercialism in Schools. ERIC Digest.
ERIC Educational Resources Information Center
Larson, Kirstin
Businesses are increasingly making inroads into the classroom, particularly in underfunded schools. The dramatic rise in commercial activities in schools has sparked intense public debate, triggering a U.S. General Accounting Office (GAO) report and various regulatory attempts at district, state, and federal levels. This digest offers an overview…
USDA-ARS?s Scientific Manuscript database
Burning fossil fuels and land use changes such as deforestation and urbanization have led to a dramatic rise in the concentration of carbon dioxide (CO2) in the atmosphere since the onset of the Industrial Revolution. The highly dilute CO2 from the atmosphere enters plant leaves where it is concentr...
COMPARISON OF QPCR METHODS FOR THE DETECTION OF VITELLOGENIN EXPRESSION IN FATHEAD MINNOWS
Male fathead minnows (FHM) normally express little if any of the egg yolk precursor protein vitellogenin (Vg). However, when exposed to estrogenic compounds such as 17a-ethynylestradiol (EE2), transcriptional levels of Vg rise dramatically and result in decreased fecundity and i...
Effects of climate change on forest insect and disease outbreaks
David W. Williams; Robert P. Long; Philip M. Wargo; Andrew M. Liebhold
2000-01-01
General circulation models (GCMs) predict dramatic future changes in climate for the northeastern and north central United States under doubled carbon dioxide (CO2) levels (Hansen et al., 1984; Manabe and Wetherald, 1987; Wilson and Mitchell, 1987; Cubasch and Cess, 1990; Mitchell et al., 1990). January temperatures are projected to rise as much...
Learning Sustainability by Developing a Solar Dryer for Microalgae Retrieval
ERIC Educational Resources Information Center
Malheiro, Benedita; Ribeiro, Cristina; Silva, Manuel F.; Caetano, Nídia; Paulo Ferreira,; Guedes, Pedro
2015-01-01
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather…
Consequences of salinity and freezing stress for two populations of Quercus virginiana Mill
Cassandra M. Kurtz; Jessica A. Savage; I-Yu Huang; Jeannine Cavender-Bares
2013-01-01
Climate change is of increasing concern in coastal forests where rising sea levels could lead to dramatic shifts in ecosystem composition. To investigate how inundation may impact coastal ecosystems, we examined the sensitivity of Quercus virginiana Mill., a dominant tree in the southeastern U.S., to increased soil salinity and examined whether high...
Impact of sea level rise on tide gate function.
Walsh, Sean; Miskewitz, Robert
2013-01-01
Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.
A meeting of the waters: interdisciplinary challenges and opportunities in tidal rivers
Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Fagherazzi, Sergio
2012-01-01
At the interface of estuarine tides and freshwater rivers lie wetland and aquatic ecosystems, which experience dramatic effects of sea level rise. There, nontidal channels and riparian floodplains are transforming into tidal ecosystems, and tidal freshwater ecosystems are receiving increasing salinity. These river-floodplain systems have both fluvial characteristics, including meandering channels and expansive floodplain forests, and estuarine characteristics, including tides and intertidal wetlands [see Barendregt et al., 2009; Conner et al., 2007, and references therein]. Because tidal rivers lie at the disciplinary divide between fluvial and estuarine science, a knowledge gap has developed in scientists' understanding of the geomorphic and biogeochemical response of these environments to sea level rise, climate change, and anthropogenically driven variations in watershed exports.
The south's timer export potential
James E. Granskog
1986-01-01
Exports of southern wood products have bccil dcclirling since 1980, following a dramatic rise during the 1970s. The value of these exports rose from near the $50 million level in the early 1970s to almost $500 million in 1980, but has dropped by more than a third since then. Now, however, changing monetary conditions appear to be turning the trend upward again....
NASA Astrophysics Data System (ADS)
Mohamed, Ahmed-Salem; Leduc, Christian; Marlin, Christelle; Wagué, Oumar; Sidi Cheikh, Mohamed-Ahmed
2017-10-01
Declining groundwater resources in semi-arid areas are often cited because of anthropization and climate change. This is not the case in Nouakchott (Mauritania) where the water level has risen by 1 to 2 m over the last 40 years in parallel with urban expansion (+1 million inhabitants in 60 years). Using former and new data, primarily water table measurements and chemical indicators (major ions, bromide, 18O, 2H), we show that the groundwater level rise is mainly a consequence of the rapid population growth in the Nouakchott area, while the global sea level rise only has a limited impact. The increased supply of domestic water (currently 120,000 m3/day) and the lack of waste water networks have added large amounts of water to the Quaternary aquifer. In this metropolis where 60% of the total area is at an elevation of less than 1 m asl, the rise in the groundwater level has dramatic consequences, including the abandonment of flooded districts, and the emergence of new diseases.
Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago.
Deschamps, Pierre; Durand, Nicolas; Bard, Edouard; Hamelin, Bruno; Camoin, Gilbert; Thomas, Alexander L; Henderson, Gideon M; Okuno, Jun'ichi; Yokoyama, Yusuke
2012-03-28
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resolving the Nurse Crisis in San Antonio
2007-04-01
health care services will rise dramatically. The reality is that the supply of nurses is not growing as fast as the demand for nurses is. This growing...shortage of nurses threatens the ability of hospitals and other health care providers to continue providing the health care services we all depend on...over the next decade, demand for health care services will rise dramatically. The reality is that the supply of nurses is not growing as fast as the
Bencze, Szilvia; Puskás, Katalin; Vida, Gyula; Karsai, Ildikó; Balla, Krisztina; Komáromi, Judit; Veisz, Ottó
2017-08-01
Increasing atmospheric CO 2 concentration not only has a direct impact on plants but also affects plant-pathogen interactions. Due to economic and health-related problems, special concern was given thus in the present work to the effect of elevated CO 2 (750 μmol mol -1 ) level on the Fusarium culmorum infection and mycotoxin contamination of wheat. Despite the fact that disease severity was found to be not or little affected by elevated CO 2 in most varieties, as the spread of Fusarium increased only in one variety, spike grain number and/or grain weight decreased significantly at elevated CO 2 in all the varieties, indicating that Fusarium infection generally had a more dramatic impact on the grain yield at elevated CO 2 than at the ambient level. Likewise, grain deoxynivalenol (DON) content was usually considerably higher at elevated CO 2 than at the ambient level in the single-floret inoculation treatment, suggesting that the toxin content is not in direct relation to the level of Fusarium infection. In the whole-spike inoculation, DON production did not change, decreased or increased depending on the variety × experiment interaction. Cooler (18 °C) conditions delayed rachis penetration while 20 °C maximum temperature caused striking increases in the mycotoxin contents, resulting in extremely high DON values and also in a dramatic triggering of the grain zearalenone contamination at elevated CO 2 . The results indicate that future environmental conditions, such as rising CO 2 levels, may increase the threat of grain mycotoxin contamination.
Upper Limit for Regional Sea Level Projections
NASA Astrophysics Data System (ADS)
Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John
2016-04-01
With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.
The Wadden Sea in transition - consequences of sea level rise
NASA Astrophysics Data System (ADS)
Becherer, Johannes; Hofstede, Jacobus; Gräwe, Ulf; Purkiani, Kaveh; Schulz, Elisabeth; Burchard, Hans
2018-01-01
The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010-2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.
Ward, Jeanine; Kanchagar, Chitra; Veksler-Lublinsky, Isana; Lee, Rosalind C; McGill, Mitchell R; Jaeschke, Hartmut; Curry, Steven C; Ambros, Victor R
2014-08-19
We have identified, by quantitative real-time PCR, hundreds of miRNAs that are dramatically elevated in the plasma or serum of acetaminophen (APAP) overdose patients. Most of these circulating microRNAs decrease toward normal levels during treatment with N-acetyl cysteine (NAC). We identified a set of 11 miRNAs whose profiles and dynamics in the circulation during NAC treatment can discriminate APAP hepatotoxicity from ischemic hepatitis. The elevation of certain miRNAs can precede the dramatic rise in the standard biomarker, alanine aminotransferase (ALT), and these miRNAs also respond more rapidly than ALT to successful treatment. Our results suggest that miRNAs can serve as sensitive diagnostic and prognostic clinical tools for severe liver injury and could be useful for monitoring drug-induced liver injury during drug discovery.
Probabilistic 21st and 22nd Century Sea-Level Projections at a Global Network of Tide-Gauge Sites
NASA Technical Reports Server (NTRS)
Kopp, Robert E.; Horton, Radley M.; Little, Christopher M.; Mitrovica, Jerry X.; Oppenheimer, Michael; Rasmussen, D. J.; Strauss, Benjamin H.; Tebaldi, Claudia
2014-01-01
Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5–1.2?m under representative concentration pathway (RCP) 8.5, 0.4–0.9?m under RCP 4.5, and 0.3–0.8?m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of “1-in-10” and “1-in-100” year events.
Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites
NASA Astrophysics Data System (ADS)
Kopp, Robert E.; Horton, Radley M.; Little, Christopher M.; Mitrovica, Jerry X.; Oppenheimer, Michael; Rasmussen, D. J.; Strauss, Benjamin H.; Tebaldi, Claudia
2014-08-01
Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5-1.2 m under representative concentration pathway (RCP) 8.5, 0.4-0.9 m under RCP 4.5, and 0.3-0.8 m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of "1-in-10" and "1-in-100" year events.
Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B.; Schenk, T.
2016-06-01
During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.
Kobayashi, Yoshio; Takeuchi, Toshiko; Hosoi, Teruo; Yoshizaki, Hidekiyo; Loeppky, Jack A
2005-12-01
The objective of this study was to determine the effect of a marathon run on serum lipid and lipoprotein concentrations and serum muscle enzyme activities and follow their recovery after the run. These blood concentrations were measured before, immediately after, and serially after a marathon run in 15 male recreational runners. The triglyceride level was significantly elevated postrace, then fell 30% below baseline 1 day after the run, and returned to baseline after 1 week. Total cholesterol responded less dramatically but with a similar pattern. High-density lipoprotein cholesterol remained significantly elevated and low-density lipoprotein cholesterol was transiently reduced for 3 days after the run. The total cholesterol/high-density cholesterol ratio was significantly lowered for 3 days. Serum lactate dehydrogenase activity significantly doubled postrace and then declined but remained elevated for 2 weeks. Serum creatine kinase activity peaked 24 hr after the run, with a 15-fold rise, and returned to baseline after 1 week. The rise of these enzymes reflects mechanically damaged muscle cells leaking contents into the interstitial fluid. It is concluded that a prolonged strenuous exercise bout in recreational runners, such as a marathon, produces beneficial changes in lipid blood profiles that are significant for only 3 days. However, muscle damage is also evident for 1 week or more from the dramatic and long-lasting effect on enzyme levels. Laboratory values for these runners were outside normal ranges for some days after the race.
ERIC Educational Resources Information Center
Sapp, Jeff
2006-01-01
According to the Children's Defense Fund, 17.6% of American children live in poverty--about one of every six children. The numbers are rising, and, alarmingly, the number of children living in extreme poverty--families with incomes at or below 50% of the poverty line--is rising even more dramatically. They live in cities, towns and rural areas.…
NASA Astrophysics Data System (ADS)
Kopp, R. E., III; Delgado, M.; Horton, R. M.; Houser, T.; Little, C. M.; Muir-Wood, R.; Oppenheimer, M.; Rasmussen, D. M., Jr.; Strauss, B.; Tebaldi, C.
2014-12-01
Global mean sea level (GMSL) rise projections are insufficient for adaptation planning; local decisions require local projections that characterize risk over a range of timeframes and tolerances. We present a global set of local sea level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We present complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling [1]. We illustrate the application of this framework by estimating the joint distribution of future sea-level change and coastal flooding, and associated economic costs [1,2]. In much of the world in the current century, differences in median LSL projections are due primarily to varying levels of non-climatic uplift or subsidence. In the 22nd century and in the high-end tails, larger ice sheet contributions, particularly from the Antarctic ice sheet (AIS), contribute significantly to site-to-site differences. Uncertainty in GMSL and most LSL projections is dominated by the uncertain AIS component. Sea-level rise dramatically reshapes flood risk. For example, at the New York City (Battery) tide gauge, our projections indicate a likely (67% probability) 21st century LSL rise under RCP 8.5 of 65--129 cm (1-in-20 chance of exceeding 154 cm). Convolving the distribution of projected sea-level rise with the extreme value distribution of flood return periods indicates that this rise will cause the current 1.80 m `1-in-100 year' flood event to occur an expected nine times over the 21st century -- equivalent to the expected number of `1-in-11 year' floods in the absence of sea-level change. Projected sea-level rise for 2100 under RCP 8.5 would likely place 80-160 billion of current property in New York below the high tide line, with a 1-in-20 chance of losses >190 billion. Even without accounting for potential changes in storms themselves, it would likely increase average annual storm damage by 2.6-5.2 billion (1-in-20 chance of >7 billion). Projected increases in tropical cyclone intensity would further increase damages [2]. References: [1] R. E. Kopp et al. (2014), Earth's Future, doi:10.1002/2014EF000239. [2] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.
Implications of sea-level rise in a modern carbonate ramp setting
NASA Astrophysics Data System (ADS)
Lokier, Stephen W.; Court, Wesley M.; Onuma, Takumi; Paul, Andreas
2018-03-01
This study addresses a gap in our understanding of the effects of sea-level rise on the sedimentary systems and morphological development of recent and ancient carbonate ramp settings. Many ancient carbonate sequences are interpreted as having been deposited in carbonate ramp settings. These settings are poorly-represented in the Recent. The study documents the present-day transgressive flooding of the Abu Dhabi coastline at the southern shoreline of the Arabian/Persian Gulf, a carbonate ramp depositional system that is widely employed as a Recent analogue for numerous ancient carbonate systems. Fourteen years of field-based observations are integrated with historical and recent high-resolution satellite imagery in order to document and assess the onset of flooding. Predicted rates of transgression (i.e. landward movement of the shoreline) of 2.5 m yr- 1 (± 0.2 m yr- 1) based on global sea-level rise alone were far exceeded by the flooding rate calculated from the back-stepping of coastal features (10-29 m yr- 1). This discrepancy results from the dynamic nature of the flooding with increased water depth exposing the coastline to increased erosion and, thereby, enhancing back-stepping. A non-accretionary transgressive shoreline trajectory results from relatively rapid sea-level rise coupled with a low-angle ramp geometry and a paucity of sediments. The flooding is represented by the landward migration of facies belts, a range of erosive features and the onset of bioturbation. Employing Intergovernmental Panel on Climate Change (Church et al., 2013) predictions for 21st century sea-level rise, and allowing for the post-flooding lag time that is typical for the start-up of carbonate factories, it is calculated that the coastline will continue to retrograde for the foreseeable future. Total passive flooding (without considering feedback in the modification of the shoreline) by the year 2100 is calculated to likely be between 340 and 571 m with a flooding rate of 3.40-8.64 m yr- 1. However, adopting the observation that global sea-level rise only accounts for 15% of the recorded shoreline retreat, this figure rises dramatically to a total likely dynamic flooding (considering modifications to the shoreline) of between 2.3 and 3.8 km. Loss of microbial and mangal habitats will subject the exposed shoreline to increasing erosion. Shoreline retreat will threaten existing coastal infrastructure.
NASA Astrophysics Data System (ADS)
Yao, Jing; Zhang, Qi; Ye, Xuchun; Zhang, Dan; Bai, Peng
2018-06-01
The hydrological regime of a lake is largely dependent on its bathymetry. A dramatic water level reduction has occurred in Poyang Lake in recent years, coinciding with significant bed erosion. Few studies have focused on the influence of bathymetric changes on the hydrological regime in such a complex river-lake floodplain system. This study combined hydrological data and a physically based hydrodynamic model to quantify the influence of the bathymetric changes (1998-2010) on the water level spatiotemporal distribution in Poyang Lake, based on a dry year (2006), a wet year (2010) and an average year (2000-2010). The following conclusions can be drawn from the results of this study: (1) The bed erosion of the northern outlet channel averaged 3 m, resulting in a decrease in the water level by 1.2-2 m in the northern channels (the most significantly influenced areas) and approximately 0.3 m in the central lake areas during low-level periods. The water levels below 16 m and 14 m were significantly affected during the rising period and recession period, respectively. The water level reduction was enhanced due to lower water levels. (2) The water surface profiles adjusted, and the rising and recession rates of the water level increased by 0.5-3.1 cm/d at the lake outlet. The bathymetric influence extended across the entire lake due to the emptying effect, resulting in a change in the water level distribution. The average annual outflow increased by 6.8%. (3) The bathymetric changes contributed approximately 14.4% to the extreme low water level in autumn 2006 and enhanced the drought in the dry season. This study quantified the impact of the bathymetric changes on the lake water levels, thereby providing a better understanding of the potential effects of continued sand mining operations and providing scientific explanations for the considerable variations in the hydrological regimes of Poyang Lake. Moreover, this study attempts to provide a reference for the assessment of similarly dramatic bathymetric changes in complex floodplain lakes.
Alcohol-Related Problems in High-Risk Groups. EURO Reports and Studies 109. Report on a WHO Study.
ERIC Educational Resources Information Center
Plant, Martin, Ed.
Alcohol consumption has risen dramatically in many countries since the Second World War. Accompanying this rise has been a rise in alcohol-related problems, including liver cirrhosis mortality, alcohol dependence, and alcohol-related crimes and accidents. Alcohol misuse presents huge health, social, and legal problems throughout most of Europe and…
Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles.
Lo, Li; Chang, Sheng-Pu; Wei, Kuo-Yen; Lee, Shih-Yu; Ou, Tsong-Hua; Chen, Yi-Chi; Chuang, Chih-Kai; Mii, Horng-Sheng; Burr, George S; Chen, Min-Te; Tung, Ying-Hung; Tsai, Meng-Chieh; Hodell, David A; Shen, Chuan-Chou
2017-07-04
The paleoclimatic sensitivity to atmospheric greenhouse gases (GHGs) has recently been suggested to be nonlinear, however a GHG threshold value associated with deglaciation remains uncertain. Here, we combine a new sea surface temperature record spanning the last 360,000 years from the southern Western Pacific Warm Pool with records from five previous studies in the equatorial Pacific to document the nonlinear relationship between climatic sensitivity and GHG levels over the past four glacial/interglacial cycles. The sensitivity of the responses to GHG concentrations rises dramatically by a factor of 2-4 at atmospheric CO 2 levels of >220 ppm. Our results suggest that the equatorial Pacific acts as a nonlinear amplifier that allows global climate to transition from deglacial to full interglacial conditions once atmospheric CO 2 levels reach threshold levels.
Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam
NASA Astrophysics Data System (ADS)
Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.
2017-12-01
The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.
Does the CRH binding protein shield the anterior pituitary from placental CRH?
Thomson, M
1998-12-01
Corticotropin releasing factor (CRH) is released from the hypothalamus and travels to the anterior pituitary where it stimulates the release of adrenocorticotropin (ACTH). In turn, ACTH travels through the blood and stimulates the release of cortisol from the adrenal. The placenta is also a source of CRH and is responsible for the dramatic rises in CRH plasma levels in the third trimester of pregnancy. A CRH binding protein may stop placental CRH from overstimulating the pituitary and may contribute to the reason that pregnant women show only mildly elevated levels of ACTH in the blood. There is evidence to suggest, however, that the CRH binding protein does not completely shield the corticotrope from placental CRH.
NASA Astrophysics Data System (ADS)
Hwang, Cheinway; Huang, YongRuei; Cheng, Ys; Shen, WenBin; Pan, Yuanjin
2017-04-01
The mean elevation of the Qinghai-Tibet Plateau (QTP) exceeds 4000 m. Lake levels in the QTP are less affected by human activities than elsewhere, and may better reflect the state of contemporary climate change. Here ground-based lake level measurements are rare. Repeat altimeter missions, particularly those from the TOPEX and ERS series of altimetry, have provided long-term lake level observations in the QTP, but their large cross-track distances allow only few lakes to be monitored. In contrast, the Cryosat-2 altimeter, equipped with the new sensor SIRAL (interferometric/ synthetic aperture radar altimeter), provides a much better ranging accuracy and a finer spatial coverage than these repeated missions, and can detect water level changes over a large number of lakes in the QTP. In this study, Cryosat-2 data are used to determine lake level changes over 75˚E-100˚E and 28˚N-37.5˚N, where Cryosat-2 covers 60 lakes and SARAL/ AltiKa covers 32 lakes from 2013 to 2016. Over a lake, Cryosat-2 in different cycles can pass through different spots of the lake, making the numbers of observations non-uniform and requiring corrections for lake slopes. Four cases are investigated to cope with these situations: (1) neglecting inconsistency in data volume and lake slopes (2) considering data volume, (3) considering lake slopes only, and (4) considering both data volume and lake slopes. The CRYOSAT-2 result is then compared with the result from the SARAL to determine the best case. Because Cryosat-2 is available from 2010 to 2016, Jason-2 data are used to fill gaps between the time series of Cryosat-2 and ICESat (2003-2009) to obtain >10 years of lake level series. The Cryosat-2 result shows dramatic lake level rises in Lakes Kusai, Zhuoaihu and Salt in 2011 caused by floods. Landsat satellite imagery assists the determination and interpretation of such rises.
NASA Astrophysics Data System (ADS)
Grall, C.; Steckler, M. S.; Pickering, J.; Goodbred, S. L., Jr.; Sincavage, R.; Hossain, S.; Paola, C.; Spiess, V.
2016-12-01
The hazard associated with sea-level rise (shoreline erosion, flooding and wetlands loss) may dramatically increase when human interventions interfere with the natural responses of the coastal regions to the eustatic rise. We here provide insights about such natural processes, by documenting the manner in which subsidence, sediment input and sediment distribution interact together during the well-known Holocene eustatic rise period, in the Ganges- Brahmaputra-Meghna Delta (GBMD) in Bangladesh. The dataset combines more than 400 hand-drilled stratigraphic wells, 185 radiocarbon ages, and seismic reflection imaging data (255 km of high resolution multichannel seismic dataset), collected thanks to recent research in the BanglaPIRE project. We use two independent approaches for analyzing this broad dataset. First, we estimate the total volume of Holocene sediments in the GBMD. In doing so, we define empirical laws to build up a virtual model of sediment accumulation that takes into account the contrasts in accumulation between rivers and alluvial plains as well as the regional seaward gradient of sediment accumulation. As the evolution of river occupation over the Holocene at the regional scale is now relatively well constrained, we estimate the total volume of sediment deposited in the Delta during the Holocene. Secondly, we use detailed age-models of sediment accumulation at 92 sites (based on 185 radiocarbon ages) for distinguishing the effects of eustasy and subsidence on the sediment accumulation in the different domains of the delta (namely the tidal dominated plain and the fluvial dominated plain). Using these two independent approaches, we are able to quantify the natural subsidence and the relative distribution of subsidence. We emphasize the difference between the subsidence and the sediment accumulation, by showing that sediment accumulation is more than twice the subsidence on average during the Holocene, which allows us to quantify the increase of sediment deposition associated with the eustatic rise in sea-level. We suggests that consequences of sediment starvation in low lying lands associated with human impacts may be masked, and thus underappreciated, during periods of eustatic rise in sea-level.
Glied, Sherry; Zaylor, Abigail
2015-07-01
The authors assess how Medicare financing and projections of future costs have changed since 2000. They also assess the impact of legislative reforms on the sources and levels of financing and compare cost forecasts made at different times. Although the aging U.S. population and rising health care costs are expected to increase the share of gross domestic product devoted to Medicare, changes made in the program over the past decade have helped stabilize Medicare's financial outlook--even as benefits have been expanded. Long-term forecasting uncertainty should make policymakers and beneficiaries wary of dramatic changes to the program in the near term that are intended to alter its long-term forecast: the range of error associated with cost forecasts rises as the forecast window lengthens. Instead, policymakers should focus on the immediate policy window, taking steps to reduce the current burden of Medicare costs by containing spending today.
Scraping by: Income and Program Participation After the Loss of Extended Unemployment Benefits.
Rothstein, Jesse; Valletta, Robert G
Many Unemployment Insurance (UI) recipients do not find new jobs before exhausting their benefits, even when benefits are extended during recessions. Using Survey of Income and Program Participation (SIPP) panel data covering the 2001 and 2007 to 2009 recessions and their aftermaths, we identify individuals whose jobless spells outlasted their UI benefits (exhaustees) and examine household income, program participation, and health-related outcomes during the six months following UI exhaustion. For the average exhaustee, the loss of UI benefits is only slightly offset by increased participation in other safety net programs (e.g., food stamps), and family poverty rates rise substantially. Self-reported disability also rises following UI exhaustion. These patterns do not vary dramatically across household demographic groups, broad income level prior to job loss, or the two business cycles. The results highlight the unique, important role of UI in the U.S. social safety net.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K.A.; Neumann, A.C.; Haddad, R.I.
The stable-isotope composition ({delta}{sup 13}C) of total organic carbon (TOC) was measured as a function of depth throughout a 217-cm-thick sequence of Holocene carbonate sediment within the Bight of Abaco lagoon, Little Bahama Bank. Biofacies and lithofacies analyses indicate progressive banktop submergence and paleoenvironmental response during Holocene sea-level rise. Stable-isotope values shift markedly from {minus}27.7{per thousand} within the 7900 B.P. paleosol at the base of the core to {minus}11.1{per thousand} at the present-day sediment-water interface. An abrupt excursion toward heavy-isotope values records the first establishment of Thalassia seagrass upon open-marine flooding. A multitracer approach, combining biofacies, lithofacies, and stable-isotope analysismore » of TOC confirms that the dramatic +17{per thousand} shift observed in {delta}{sup 13}C was a direct result of sea-level rise and associated environmental changes over the banktop; there is little evidence of spurious diagenetic overprint. Stable-isotope analyses of organic carbon may enhance the reconstruction of carbonate sequences by revealing a distinctive geochemical signature of banktop flooding, including the onset of growth of otherwise unpreservable Thalassia seagrass.« less
Parental environment mediates impacts of increased carbon dioxide on a coral reef fish
NASA Astrophysics Data System (ADS)
Miller, Gabrielle M.; Watson, Sue-Ann; Donelson, Jennifer M.; McCormick, Mark I.; Munday, Philip L.
2012-12-01
Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000μatm CO2 and a temperature rise of 1.5-3.0°C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.
Why did employee health insurance contributions rise?
Gruber, Jonathan; McKnight, Robin
2003-11-01
We explore the causes of the dramatic rise in employee contributions to health insurance over the past two decades. In 1982, 44% of those who were covered by their employer-provided health insurance had their costs fully financed by their employer, but by 1998 this had fallen to 28%. We discuss the theory of why employers might shift premiums to their employees, and empirically model the role of four factors suggested by the theory. We find that there was a large impact of falling tax rates, rising eligibility for insurance through the Medicaid system, rising medical costs, and increased managed care penetration. Overall, this set of factors can explain more than one-half of the rise in employee premiums over the 1982-1996 period.
Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus
2017-09-05
Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.
High tides and rising seas: potential effects on estuarine waterbirds
Erwin, R.M.; Sanders, G.M.; Prosser, D.J.; Cahoon, D.R.; Greenberg, Russell; Maldonado, Jesus; Droege, Sam; McDonald, M.V.
2006-01-01
Coastal waterbirds are vulnerable to water-level changes especially under predictions of accelerating sea-level rise and increased storm frequency in the next century. Tidal and wind-driven fluctuations in water levels affecting marshes, their invertebrate communities, and their dependent waterbirds are manifested in daily, monthly, seasonal, annual, and supra-annual (e.g., decadal or 18.6-yr) periodicities. Superimposed on these cyclic patterns is a long-term (50?80 yr) increase in relative sea-level rise that varies from about 2?4 + mm/yr along the Atlantic coastline. At five study sites selected on marsh islands from Cape Cod, Massachusetts to coastal Virginia, we monitored marsh elevation changes and flooding, tide variations over time, and waterbird use. We found from longterm marsh core data that marsh elevations at three of five sites may not be sufficient to maintain pace with current sea-level rise. Results of the short-term (3?4 yr) measures using surface elevation tables suggest a more dramatic difference, with marsh elevation change at four of five sites falling below relative sea-level rise. In addition, we have found a significant increase (in three of four cases) in the rate of surface marsh flooding in New Jersey and Virginia over the past 70?80 yr during May?July when waterbirds are nesting on or near the marsh surface. Short-term, immediate effects of flooding will jeopardize annual fecundity of many species of concern to federal and state agencies, most notably American Black Duck (Anas rubripes), Nelson?s Sharp-tailed Sparrow (Ammodramus nelsoni), Saltmarsh Sharp-tailed Sparrow (A. caudacutus), Seaside Sparrow (A. maritima), Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens), Black Rail (Laterallus jamaicensis), Forster?s Tern (Sterna forsteri), Gull-billed Tern (S. nilotica), Black Skimmer (Rynchops niger), and American Oystercatcher (Haemotopus palliatus). Forster?s Terns are probably most at risk given the large proportion of their breeding range in the mid-Atlantic and their saltmarsh specialization. At a scale of 1?2 decades, vegetation changes (saltmeadow cordgrass [Spartina patens] and salt grass [Distichlis spicata] converting to smooth cordgrass [Spartina alternifl ora]), interior pond expansion and erosion of marshes will reduce nesting habitat for many of these species, but may enhance feeding habitat of migrant shorebirds and/or migrant or wintering waterfowl. At scales of 50?100 yr, reversion of marsh island complexes to open water may enhance populations of open-bay waterfowl, e.g., Bufflehead (Bucephala albeola) and Canvasback (Aythya valisneria), but reduce nesting habitats dramatically for the above named marsh-nesting species, may reduce estuarine productivity by loss of the detrital food web and nursery habitat for fish and invertebrates, and cause redistribution of waterfowl, shorebirds, and other species. Such scenarios are more likely to occur in the mid- and north Atlantic regions since these estuaries are lower in sediment delivery on average than those in the Southeast. A simple hypothetical example from New Jersey is presented where waterbirds are forced to shift from submerged natural marshes to nearby impoundments, resulting in roughly a 10-fold increase in density. Whether prey fauna are sufficiently abundant to support this level of increase remains an open question, but extreme densities in confined habitats would exacerbate competition, increase disease risk, and possibly increase predation.
The Changing Realities of Teacher Needs.
ERIC Educational Resources Information Center
Lightfoot, Alfred
1986-01-01
The teaching profession is facing a dramatic crisis as it attempts to deal with both "quantity" (teacher shortages, rising student enrollments, teacher persistence) and "quality" (teacher competence, teacher certification, teacher testing) problems. (CB)
Commentary on "Psychiatric Aspects of Child and Adolescent Obesity: A Review of the Past 10 Years"
ERIC Educational Resources Information Center
Fitzgibbon, Marian L.
2004-01-01
This article is a brief review of child and adolescent obesity over the past ten years. The starting point for the review is the well-known fact that there has been a dramatic rise in the prevalence of obesity among children, adolescents, and adults in the United Sates (Ogden et al., 2002). The rise has occurred across all age and ethnic groups,…
Evidence of exceptional oyster-reef resilience to fluctuations in sea level.
Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel
2017-12-01
Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n = 3) constructed in 1997 and 2000, young reefs ( n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration.
Trends in Fatalities From Distracted Driving in the United States, 1999 to 2008
Stimpson, Jim P.
2010-01-01
Objectives. We examined trends in distracted driving fatalities and their relation to cell phone use and texting volume. Methods. The Fatality Analysis Reporting System (FARS) records data on all road fatalities that occurred on public roads in the United States from 1999 to 2008. We studied trends in distracted driving fatalities, driver and crash characteristics, and trends in cell phone use and texting volume. We used multivariate regression analysis to estimate the relation between state-level distracted driving fatalities and texting volumes. Results. After declining from 1999 to 2005, fatalities from distracted driving increased 28% after 2005, rising from 4572 fatalities to 5870 in 2008. Crashes increasingly involved male drivers driving alone in collisions with roadside obstructions in urban areas. By use of multivariate analyses, we predicted that increasing texting volumes resulted in more than 16 000 additional road fatalities from 2001 to 2007. Conclusions. Distracted driving is a growing public safety hazard. Specifically, the dramatic rise in texting volume since 2005 appeared to be contributing to an alarming rise in distracted driving fatalities. Legislation enacting texting bans should be paired with effective enforcement to deter drivers from using cell phones while driving. PMID:20864709
Trends in fatalities from distracted driving in the United States, 1999 to 2008.
Wilson, Fernando A; Stimpson, Jim P
2010-11-01
We examined trends in distracted driving fatalities and their relation to cell phone use and texting volume. The Fatality Analysis Reporting System (FARS) records data on all road fatalities that occurred on public roads in the United States from 1999 to 2008. We studied trends in distracted driving fatalities, driver and crash characteristics, and trends in cell phone use and texting volume. We used multivariate regression analysis to estimate the relation between state-level distracted driving fatalities and texting volumes. After declining from 1999 to 2005, fatalities from distracted driving increased 28% after 2005, rising from 4572 fatalities to 5870 in 2008. Crashes increasingly involved male drivers driving alone in collisions with roadside obstructions in urban areas. By use of multivariate analyses, we predicted that increasing texting volumes resulted in more than 16,000 additional road fatalities from 2001 to 2007. Distracted driving is a growing public safety hazard. Specifically, the dramatic rise in texting volume since 2005 appeared to be contributing to an alarming rise in distracted driving fatalities. Legislation enacting texting bans should be paired with effective enforcement to deter drivers from using cell phones while driving.
NASA Astrophysics Data System (ADS)
Gomboso, J.; Ghassemi, F.; Appleyard, S. J.
1997-01-01
The North Stirling Land Conservation District consists of approximately 100,000 hectares north of the Stirling Range National Park, Western Australia. Clearing of land for agriculture occurred in the 1960's and early 1970's. The groundwater is highly saline, and, since clearing, the water table has risen by as much as 12 m; it is now generally less than 3 m below ground level throughout the area. The rise in groundwater levels following clearing and the use of crops and pastures requiring low water use have caused dramatic secondary salinisation over a short period of time. Groundwater flow was simulated with models of steady-state and transient groundwater flow. By incorporating economic simulations with the calibrated transient hydrogeological model, estimates of the expected gross margin losses were made. Three salinity-management strategies were simulated. Results indicate that 1) under the `do-nothing' strategy, future gross margins are expected to decline; 2) under the agronomic strategy, the rate of water-table rise would be reduced and foregone agricultural production losses would be less than the `do-nothing' strategy; and 3) under the agroforestry strategy, the water table is expected to decline in the long term, which would increase future agricultural production levels and, hence, profitability.
Wiegman, Adrian R H; Day, John W; D'Elia, Christopher F; Rutherford, Jeffrey S; Morris, James T; Roy, Eric D; Lane, Robert R; Dismukes, David E; Snyder, Brian F
2018-03-15
Over 25% of Mississippi River delta plain (MRDP) wetlands were lost over the past century. There is currently a major effort to restore the MRDP focused on a 50-year time horizon, a period during which the energy system and climate will change dramatically. We used a calibrated MRDP marsh elevation model to assess the costs of hydraulic dredging to sustain wetlands from 2016 to 2066 and 2016 to 2100 under a range of scenarios for sea level rise, energy price, and management regimes. We developed a subroutine to simulate dredging costs based on the price of crude oil and a project efficiency factor. Crude oil prices were projected using forecasts from global energy models. The costs to sustain marsh between 2016 and 2100 changed from $128,000/ha in the no change scenario to ~$1,010,000/ha in the worst-case scenario for sea level rise and energy price, an ~8-fold increase. Increasing suspended sediment concentrations, which is possible using managed river diversions, raised created marsh lifespan and decreased long term dredging costs. Created marsh lifespan changed nonlinearly with dredging fill elevation and suspended sediment level. Cost effectiveness of marsh creation and nourishment can be optimized by adjusting dredging fill elevation to the local sediment regime. Regardless of management scenario, sustaining the MRDP with hydraulic dredging suffered declining returns on investment due to the convergence of energy and climate trends. Marsh creation will likely become unaffordable in the mid to late 21st century, especially if river sediment diversions are not constructed before 2030. We recommend that environmental managers take into consideration coupled energy and climate scenarios for long-term risk assessments and adjust restoration goals accordingly. Copyright © 2017 Elsevier B.V. All rights reserved.
Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery
Rick, Torben C.; Reeder-Myers, Leslie A.; Hofman, Courtney A.; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W.; Mann, Roger; Ogburn, Matthew B.; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H.
2016-01-01
Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America’s Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries. PMID:27217572
Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery.
Rick, Torben C; Reeder-Myers, Leslie A; Hofman, Courtney A; Breitburg, Denise; Lockwood, Rowan; Henkes, Gregory; Kellogg, Lisa; Lowery, Darrin; Luckenbach, Mark W; Mann, Roger; Ogburn, Matthew B; Southworth, Melissa; Wah, John; Wesson, James; Hines, Anson H
2016-06-07
Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America's Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning ∼3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries.
Real-time subway information for improving transit ridership.
DOT National Transportation Integrated Search
2016-08-01
In recent years, the standardization of transit schedule information has yielded a dramatic increase in the accessibility of computerized transit schedules and given rise to real-time service schedules. Two such real-time service schedules are the Ge...
USDA-ARS?s Scientific Manuscript database
Apex predators have experienced catastrophic declines throughout the world due to human persecution and habitat loss. These collapses in top predator populations are commonly associated with dramatic increases in the abundance of smaller predators. Known as ‘mesopredator release,’ this trophic inte...
Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region
Gutierrez, Benjamin T.; Williams, S. Jeffress; Thieler, E. Robert
2007-01-01
Sea-level rise over the next century is expected to contribute significantly to physical changes along open-ocean shorelines. Predicting the form and magnitude of coastal changes is important for understanding the impacts to humans and the environment. Presently, the ability to predict coastal changes is limited by the scientific understanding of the many variables and processes involved in coastal change, and the lack of consensus regarding the validity of existing conceptual, analytical, or numerical models. In order to assess potential future coastal changes in the mid-Atlantic U.S. for the U.S. Climate Change Science Program (CCSP), a workshop was convened by the U.S. Geological Survey. Assessments of future coastal change were made by a committee of coastal scientists with extensive professional experience in the mid-Atlantic region. Thirteen scientists convened for a two-day meeting to exchange information and develop a consensus opinion on potential future coastal changes for the mid-Atlantic coast in response to sea-level rise. Using criteria defined in past work, the mid-Atlantic coast was divided into four geomorphic compartments: spits, headlands, wave-dominated barriers, and mixed-energy barriers. A range of potential coastal responses was identified for each compartment based on four sea-level rise scenarios. The four scenarios were based on the assumptions that: a) the long-term sea-level rise rate observed over the 20th century would persist over the 21st century, b) the 20th century rate would increase by 2 mm/yr, c) the 20th century rate would increase by 7 mm/yr, or d) sea-level would rise by 2 m over the next few hundred years. Potential responses to these sea-level rise scenarios depend on the landforms that occur within a region and include increased likelihood for erosion and shoreline retreat for all coastal types, increased likelihood for erosion, overwash and inlet breaching for barrier islands, as well as the possibility of a threshold state (e.g., dramatic change in barrier evolution, such as segmentation or disintegration) for some barrier island systems. The likelihood of the potential coastal responses is expressed using standard terminology employed in climate change assessments (e.g., as used by the Intergovernmental Panel on Climate Change and CCSP). This assessment was based on the coastal geomorphology in its present condition and does not consider any coastal protection that might be undertaken in the future. The committee recognized that a variety of erosion mitigation measures have been implemented along developed portions of the coast and these are very likely to be applied in the future. It was also acknowledged that economics, political will, and other factors can drive decisions to implement these measures, and that such decisions cannot be predicted with confidence. The results of this assessment are depicted graphically on maps of the study area.
Are methamphetamine precursor control laws effective tools to fight the methamphetamine epidemic?
Nonnemaker, James; Engelen, Mark; Shive, Daniel
2011-05-01
One of the most notable trends in illegal substance use among Americans over the past decade is the dramatic growth and spread of methamphetamine use. In response to the dramatic rise in methamphetamine use and its associated burden, a broad range of legislations has been passed to combat the problem. In this paper, we assess the impact of retail-level laws intended to restrict chemicals used to manufacture methamphetamine (methamphetamine precursor laws) in reducing indicators of domestic production, methamphetamine availability, and the consequences of methamphetamine use. Specifically, we examine trends in these indicators of methamphetamine supply and use over a period spanning the implementation of the federal Methamphetamine Anti-Proliferation Act (MAPA) (October 2000) and a more stringent state-level restriction enacted in California (January 2000). The results are mixed in terms of the effectiveness of legislative efforts to control methamphetamine production and use, depending on the strength of the legislation (California Uniform Controlled Substances Act versus federal MAPA), the specification of the comparison group, and the particular outcome of interest. Some evidence suggests that domestic production was impacted by these legislative efforts, but there is also evidence that prices fell, purities rose, and treatment episodes increased. Copyright © 2010 John Wiley & Sons, Ltd.
On-chip phase-change photonic memory and computing
NASA Astrophysics Data System (ADS)
Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish
2017-08-01
The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).
The rising level of medical student debt: potential risk for a national default.
Ariyan, S
2000-04-01
At the turn of the 20th century, mostly as a result of the Flexner report, medical education changed dramatically by establishing a scientific basis for the study of medicine within the institutions of the major universities. There have been major and dramatic changes in medicine during the past 80 years that have improved medical education in the United States, but these changes have also placed major economic strains on students who have educational debts. If medicine is a social responsibility to the public, then the public should share the responsibility of identifying and supporting new approaches to funding and financially managing the teaching of future physicians. There is no universal solution because there are various approaches institutions may take to structure these financial responsibilities. This article describes trends in medical student educational debt, identifies the financial needs of medical students, and proposes ways of addressing those needs to avert a possible national financial crisis among medical students. We must invest in medical students because they will be the leaders we need to help care for our society and our own families in the next century.
Sea-level rise: towards understanding local vulnerability
NASA Astrophysics Data System (ADS)
Rahmstorf, Stefan
2012-06-01
Projections of global sea-level rise into the future have become more pessimistic over the past five years or so. A global rise by more than one metre by the year 2100 is now widely accepted as a serious possibility if greenhouse gas emissions continue unabated. That is witnessed by the scientific assessments that were made since the last IPCC report was published in 2007. The Delta Commission of the Dutch government projected up to 1.10 m as a 'high-end' scenario (Vellinga et al 2009). The Scientific Committee on Antarctic Research (SCAR) projected up to 1.40 m (Scientific Committee on Antarctic Research 2009), and the Arctic Monitoring and Assessment Programme (AMAP) gives a range of 0.90-1.60 m in its 2011 report (Arctic Monitoring and Assessment Programme 2011). And recently the US Army Corps of Engineers recommends using a 'low', an 'intermediate' and a 'high' scenario for global sea-level rise when planning civil works programmes, with the high one corresponding to a 1.50 m rise by 2100 (US Army Corps of Engineers 2011). This more pessimistic view is based on a number of observations, most importantly perhaps the fact that sea level has been rising at least 50% faster in the past decades than projected by the IPCC (Rahmstorf et al 2007, IPCC 2007). Also, the rate of rise (averaged over two decades) has accelerated threefold, from around 1 mm yr-1 at the start of the 20th century to around 3 mm yr-1 over the past 20 years (Church and White 2006), and this rate increase closely correlates with global warming (Rahmstorf et al 2011). The IPCC projections, which assume almost no further acceleration in the 20th century, thus look less plausible. And finally the observed net mass loss of the two big continental ice sheets (Van den Broeke et al 2011) calls into question the assumption that ice accumulation in Antarctica would largely balance ice loss from Greenland in the course of further global warming (IPCC 2007). With such a serious sea-level rise on the horizon, experts are increasingly looking at its potential impacts on coasts to facilitate local adaptation planning. This is a more complex issue than one might think, because different stretches of coast can be affected in very different ways. First of all, the sea-level response to global warming will not be globally uniform, since factors like changes in ocean currents (Levermann et al 2005) and the changing gravitational pull of continental ice (Mitrovica et al 2001) affect the local rise. Secondly, superimposed on the climatic trend is natural variability in sea level, which regionally can be as large as the climatic signal on multi-decadal timescales. Over the past decades, sea level has dropped in sizable parts of the world ocean, although it has of course risen in global mean (IPCC 2007). Thirdly, local land uplift or subsidence affects the local sea-level change relative to the coast, both for natural reasons (post-glacial isostatic adjustment centred on regions that were covered by ice sheets during the last ice age) and artificial ones (e.g., extraction of water or oil as in the Gulf of Mexico). Finally, local vulnerability to sea-level rise depends on many factors. Two interesting new studies in this journal (Tebaldi et al 2012, Strauss et al 2012) make important steps towards understanding sea-level vulnerability along the coasts of the United States, with methods that could also be applied elsewhere. The first, by Strauss and colleagues, merges high-resolution topographic data and a newly available tidal model together with population and housing data in order to estimate what land area and population would be at risk given certain increments in sea level. The results are mapped and tabulated at county and city level. They reveal the 'hot spots' along the US coast where sea-level rise is of the highest concern because of large populations living near the high-tide line: New York City and Long Island; the New Jersey shore; the Norfolk, Virginia, area; near Charleston, South Carolina; coastal cities across Florida, especially its southeast and the Tampa area; New Orleans; the San Francisco Bay Area and San Joaquin Delta; and greater Los Angeles. Overall, 3.7 million people across the US are estimated to live within 1 m of the present high-tide line. The second paper, by Tebaldi et al, specifically looks at storm surges and how their frequency is expected to change along the US coastline in the coming four decades due to rising sea levels. They first estimate future local sea-level rise relative to the land by combining the observed local trend of the past fifty years with a future acceleration due to global warming as estimated by a semi-empirical model (Vermeer and Rahmstorf 2009). Then they use past storm surge statistics for many different locations and shift the return level curves according to the projected sea-level rise. The authors find that by mid-century, in some locations what is now a once-per-century flooding event could become an annual event. Those are exceptional places—but at about a third of the sites investigated, a century flood could become a once-per-decade flood. Of course, many of these events need not have dramatic impacts: in fact, locations where rare floods are quite small in amplitude (and hence presumably modest in their impacts) are precisely those where the return period decreases most dramatically. In a place where the once-per-century flood is only 50 cm higher than the annual flood, a typical 30 cm rise in sea level makes a bigger difference than one in a place where the century flood is 2 m higher than the annual flood. Nevertheless, the expected large changes in return periods and return levels of storm surges clearly demonstrate that accounting for accelerating sea-level rise is vital in the planning and design of coastal infrastructure. But most importantly, these studies highlight the fact that the modern world, with many millions of people living right by the coast, is highly vulnerable to even modest sea-level rise. Losing just 1% of the present continental ice would raise sea level globally by about 75 cm—a tiny amount in the perspective of palaeoclimate history, e.g. the 120 m rise at the end of the last ice age, but a large amount in terms of impacts on human society. We should do everything we can to limit global warming and thereby sea-level rise to a manageable level. References Arctic Monitoring and Assessment Programme 2011 Snow, Water, Ice and Permafrost in the Arctic (Oslo: AMAP) Church J A and White N J 2006 A 20th century acceleration in global sea-level rise Geophys. Res. Lett. 33 L01602 IPCC 2007 Climate Change 2007: The Physical Science Basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Levermann A, Griesel A, Hofmann M, Montoya M and Rahmstorf S 2005 Dynamic sea level changes following changes in the thermohaline circulation Clim. Dyn. 24 347-54 Mitrovica J X, Tamisiea M E, Davis J L and Milne G A 2001 Recent mass balance of polar ice sheets inferred from patterns of global sea-level change Nature 409 1026-9 Rahmstorf S, Cazenave A, Church J A, Hansen J E, Keeling R F, Parker D E and Somerville C J 2007 Recent climate observations compared to projections Science 316 709 Rahmstorf S, Perrette M and Vermeer M 2011 Testing the robustness of semi-empirical sea level projections Clim. Dyn. at press (doi:10.1007/s00382-011-1226-7) Scientific Committee on Antarctic Research 2009 Antarctic Climate Change and the Environment (Cambridge: Scott Polar Research Institute) Strauss B, Ziemlinski R, Weiss J and Overpeck J T 2012 Tidally-adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States Environ. Res. Lett. 7 014033 Tebaldi C, Strauss B and Zervas C 2012 Modelling sea level rise impacts on storm surges along US coasts Environ. Res. Lett. 7 014032 US Army Corps of Engineers 2011 Sea-Level Change Considerations for Civil Works Programs (Washington, DC: Department of the Army) Van den Broeke M R, Bamber J, Lenaerts J and Rignot E 2011 Ice sheets and sea level: thinking outside the box Sur. Geophys. 32 495-505 Vellinga P, Katsman C A, Sterl A and Beersma J J 2009 Exploring high-end climate change scenarios for flood protection of the Netherlands International Scientific Assessment Carried out at the Request of the Delta Committee (De Bilt: KNMI) Vermeer M and Rahmstorf S 2009 Global sea level linked to global temperature Proc. Natl Acad. Sci. USA 106 21527-32
Andrews, Michelle
2016-10-01
Medical identity theft--when someone steals your personal data to get prescription drugs, doctor care, or surgery--is dramatically on the rise. Such a crime can endanger your own treatment and trash your finances. Learn who's most at risk and how to protect yourself from becoming a victim.
Drought stress suppresses phytoalexin production against Fusarium verticilliodes
USDA-ARS?s Scientific Manuscript database
Global climate change involves rising temperatures and potentially decreased rainfall or changes in rainfall patterns, which could dramatically decrease the yield of food crops. Drought alone can impair plant growth and development, but in nature plants are continuously exposed to both abiotic and b...
A Psychoecological Model of Academic Performance among Hispanic Adolescents
ERIC Educational Resources Information Center
Chun, Heejung; Dickson, Ginger
2011-01-01
Although the number of students who complete high school continues to rise, dramatic differences in school success remain across racial/ethnic groups. The current study addressed Hispanic adolescents' academic performance by investigating the relationships of parental involvement, culturally responsive teaching, sense of school belonging, and…
An Ongoing Shift in Pacific Ocean Sea Level
NASA Astrophysics Data System (ADS)
Cheon, S. H.; Hamlington, B.; Thompson, P. R.; Merrifield, M. A.; Nerem, R. S.; Leben, R. R.; Kim, K. Y.
2016-12-01
According to the satellite altimeter data, local sea level trends have shown considerable diversity spatially as well as temporally. In particular, dramatic changes in sea level in the Pacific have been observed throughout the altimeter record, with high trends in the western tropical Pacific (WTP) and comparatively lower trends in the eastern Pacific. In recent years, however, a shift appears to be occurring, with falling trends in the (WTP) and rising trends in the eastern tropical and northeastern Pacific (ETP and NEP). From a planning perspective, it is important to figure out whether these sharp changes are part of a short-term shift or the beginning of a longer-term change in sea level. In this study, we distinguish the origins of the recent shift in Pacific Ocean sea level. Cyclostationary empirical orthogonal function (CSEOF) analysis is applied to separate the properties of the recent sea level change in the Pacific Ocean. From the CSEOF analysis results, we point out two dominant modes of sea level shift in the Pacific Ocean. The first mode is related to the biennial oscillation associated with El Nino-Southern Oscillation (ENSO) and the other is related to lower-frequency variability with a strong signal in the northern Pacific. Considering a relatively high correlation between recent sea level change and the low-frequency mode, we suggest that the low-frequency mode has played a dominant role in the sea level shift in the Pacific Ocean. Using a reconstructed sea level dataset, we examine the variability of this low-frequency mode in the past, and find similar periods of dramatic sea level change in the Pacific. Based on the sea level record of the last five years and according to the analysis, we conclude that in the coming decades, higher sea level trends off the U.S. West Coast should be expected, while reduced trends in the WTP will likely be observed.
NASA Astrophysics Data System (ADS)
Grubler, Arnulf; Wilson, Charlie; Bento, Nuno; Boza-Kiss, Benigna; Krey, Volker; McCollum, David L.; Rao, Narasimha D.; Riahi, Keywan; Rogelj, Joeri; De Stercke, Simon; Cullen, Jonathan; Frank, Stefan; Fricko, Oliver; Guo, Fei; Gidden, Matt; Havlík, Petr; Huppmann, Daniel; Kiesewetter, Gregor; Rafaj, Peter; Schoepp, Wolfgang; Valin, Hugo
2018-06-01
Scenarios that limit global warming to 1.5 °C describe major transformations in energy supply and ever-rising energy demand. Here, we provide a contrasting perspective by developing a narrative of future change based on observable trends that results in low energy demand. We describe and quantify changes in activity levels and energy intensity in the global North and global South for all major energy services. We project that global final energy demand by 2050 reduces to 245 EJ, around 40% lower than today, despite rises in population, income and activity. Using an integrated assessment modelling framework, we show how changes in the quantity and type of energy services drive structural change in intermediate and upstream supply sectors (energy and land use). Down-sizing the global energy system dramatically improves the feasibility of a low-carbon supply-side transformation. Our scenario meets the 1.5 °C climate target as well as many sustainable development goals, without relying on negative emission technologies.
An analysis of secular trends in method-specific suicides in Japan, 1950-1975.
Yoshioka, Eiji; Saijo, Yasuaki; Kawachi, Ichiro
2017-04-05
In Japan, a dramatic rise in suicide rates was observed in the 1950s, especially among the younger population, and then the rate decreased rapidly again in the 1960s. The aim of this study was to assess secular trends in method-specific suicides by gender and age in Japan between 1950 and 1975. We paid special attention to suicides by poisoning (solid and liquid substances), and their contribution to dramatic swings in the overall suicide rate in Japan during the 1950s and 1960s. Mortality and population data were obtained from the Vital Statistics of Japan and Statistics Bureau, Ministry of Internal Affairs and Communications in Japan, respectively. We calculated method-specific age-standardized suicide rates by gender and age group (15-29, 30-49, or 50+ years). The change in the suicide rate during the research period was larger in males than females in all age groups, and was more marked among people aged 15-29 years compared to those aged 30-49 years and 50 years or over. Poisoning by solid and liquid substances overwhelmingly contributed to the dramatic change in the overall suicide rates in males and females aged 15-49 years in the 1950s and 1960s. For the peak years of the rise in poisoning suicides, bromide was the most frequently used substance. Our results for the 1950s and 1960s in Japan illustrated how assessing secular trends in method-specific suicides by gender and age could provide a deeper understanding of the dramatic swings in overall suicide rate. Although rapid increases or decreases in suicide rates have been also observed in some countries or regions recently, trends in method-specific suicides have not been analyzed because of a lack of data on method-specific suicide in many countries. Our study illustrates how the collection and analysis of method-specific data can contribute to an understanding of dramatic shifts in national suicide rates.
Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.
1994-01-01
Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has fallen about 6 m due to erosion of the Port Huron outlet, a trend around which occurred relatively small (± ∼2 m), short-term fluctuations controlled mainly by climatic changes. These cyclic fluctuations are reflected in the sed-imentological and sediment-magnetic properties of the sediments.
Orem, William; Newman, Susan; Osborne, Todd Z; Reddy, K Ramesh
2015-04-01
Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.
Capacity of old trees to respond to environmental change.
Phillips, Nathan G; Buckley, Thomas N; Tissue, David T
2008-11-01
Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its life growing under pre-industrial levels of [CO2], which were 30% lower than current levels. Here we address the question of whether old trees have already responded to the rapid rise in [CO2] occurring over the past 150 years. In spite of limited data, aging trees have been shown to possess a substantial capacity for increased net growth after a period of post-maturity growth decline. Observations of renewed growth and physiological function in old trees have, in some instances, coincided with Industrial Age increases in key environmental resources, including [CO2], suggesting the potential for continued growth in old trees as a function of continued global climate change.
Socioeconomic Status and the Increased Prevalence of Autism in California
King, Marissa D.; Bearman, Peter S.
2011-01-01
The prevalence of autism has increased precipitously—roughly 10-fold in the past 40 years—yet no one knows exactly what caused this dramatic rise. Using a large and representative dataset that spans the California birth cohorts from 1992 through 2000, we examine individual and community resources associated with the likelihood of an autism diagnosis over time. This allows us to identify key social factors that have contributed to increased autism prevalence. While individual-level factors, such as birth weight and parental education, have had a fairly constant effect on likelihood of diagnosis over time, we find that community-level resources drive increased prevalence. This study suggests that neighborhoods dynamically interact with the people living in them in different ways at different times to shape health outcomes. By treating neighborhoods as dynamic, we can better understand the changing socioeconomic gradient of autism and the increase in prevalence. PMID:21547238
Family structure and income inequality in families with children, 1976 to 2000.
Martin, Molly A
2006-08-01
Using 24 years of data from the March supplements to the Current Population Survey and detailed categories of family structure, including cohabiting unions, I assess the contribution of changes in family structure to the dramatic rise in family income inequality. Between 1976 and 2000, family structure shifts explain 41% of the increase in inequality, but the influence of family structure change is not uniform within this period or across racial-ethnic groups. In general, the estimated role of family structure change is inversely related to the magnitude of the changes in inequality. Furthermore, by including cohabitation, I find lower levels of total inequality and a weaker role for demographic shifts in family structure for trends in income inequality.
Corporatizing Higher Education
ERIC Educational Resources Information Center
Lerner, Gerda
2008-01-01
The process of changing U.S. higher education institutions along a corporate model has been going on for several decades. It consists of changes, some open, some obscured, on various fronts: the erosion of tenure by attrition; the simultaneous increase in the use of contingent faculty; the rise in tuition; the dramatic decrease in federal and…
The Rise of the Life Narrative
ERIC Educational Resources Information Center
Goodson, Ivor
2006-01-01
In this article, the author discusses how narratives, which are part of the common currency of the day, have dramatically changed over the years. Grand narratives, which grew exponentially in the mid-nineteenth century, have now been replaced by two different narratives: life narratives and small-scale narratives. He also discusses how small…
The Rise of "Like" in Spontaneous Quotations
ERIC Educational Resources Information Center
Tree, Jean E. Fox; Tomlinson, John M., Jr.
2008-01-01
A comparison across spontaneous speech collected in the 1980s and the 2000s reveals a dramatic flip between the use of "said" versus "like" as enquoting devices. The greater use of "like" is reflected in a wide variety of quotation types including reported speech, thoughts, exclamations, and sounds. There is no…
Innovative new drugs have improved outcomes for many cancer patients. But spending on cancer drugs has increased dramatically in recent years, placing a burden on cancer patients and a strain on health system and societal resources.
H. Ken Cordell; John C. Bliss; Cassandra Y. Johnson; Mark Fly
1998-01-01
The faces and voices of the South have been changing dramatically over the last several decades, just like the rest of the Nation. Population growth, immigration, urbanization, expanding minority proportions, a thriving economy, rising environmental sentiments, and shifts in property ownership, among many other changes, have put forest and wildlife management in a much...
The Filipino Nursing Students' Dilemmas in Geriatric Care
ERIC Educational Resources Information Center
de Guzman, Allan B.; Cruz, Andrei Angelo R.; Cruz, Angela Laurice G.; Cruz, Robert Edward D.; Cuarto, Jose Mari Nino L.
2009-01-01
The continually rising percentage of the elderly population and the demand for geriatric nursing care are dramatically related. While it is true that most undergraduate programs prepare nurses for the care of geriatric patients, most receive limited academic preparation in the nursing curriculum (Williams & Mezey, 2000). This is particularly…
China-ASEAN Relations in Higher Education: An Analytical Framework
ERIC Educational Resources Information Center
Welch, Anthony
2012-01-01
China's dramatic economic rise has tended to overshadow other wider perspectives on the developing China and Association of Southeast Asian Nations (ASEAN) relationship, including in higher education. The article examines contemporary relations between China and ASEAN, set against the longer term development of cultural and trade relations. It is…
Opinion Leaders See Rising College Costs as Major Concern.
ERIC Educational Resources Information Center
Chronicle of Higher Education, 1988
1988-01-01
A recent survey of federal government officials, corporate leaders in charge of personnel and research, and journalists found dramatically different views in some areas, but agreement in concern about college costs, financing, and lack of government spending for research. Most felt college is a fair value for the cost. (MSE)
Karaboyas, Angelo; Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L; Port, Friedrich K; Robinson, Bruce M
2015-10-07
Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients' changes in ferritin over time. Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009-2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. Copyright © 2015 by the American Society of Nephrology.
Zee, Jarcy; Morgenstern, Hal; Nolen, Jacqueline G.; Hakim, Raymond; Kalantar-Zadeh, Kamyar; Zager, Philip; Pisoni, Ronald L.; Port, Friedrich K.; Robinson, Bruce M.
2015-01-01
Background and objectives Anemia management changed substantially among dialysis patients in the United States around the time of implementation of the new Centers for Medicare & Medicaid Services bundled payment system and erythropoiesis-stimulating agent (ESA) label change in 2011. Among these, average ferritin levels increased dramatically and have remained high since; this study sought to gain understanding of this sustained rise in ferritin levels. Design, setting, participants, & measurements Trends in mean ferritin, hemoglobin, IV iron dose, and ESA dose from 2009 to 2013 were examined in 9735 patients from 91 United States Dialysis Outcomes and Practice Patterns Study facilities. Linear mixed models were used to assess the extent to which intravenous (IV) iron and ESA dose accounted for patients’ changes in ferritin over time. Results Mean ESA dose and hemoglobin levels declined throughout the study. Mean IV iron dose increased from 210 mg/mo in 2009–2010 to a peak of 280 mg/mo in 2011, then declined back to 200 mg/mo and remained stable from 2012 to 2013. Mean ferritin increased from 601 ng/ml in the third quarter of 2009 to 887 ng/ml in the first quarter of 2012; models suggest that higher IV iron dosing was a primary determinant during 2011, but lower ESA doses contributed to the sustained high ferritin levels thereafter. In a subset of 17 facilities that decreased IV iron dose in 2011, mean ferritin rose by 120 ng/ml to 764 ng/ml, which appeared to be primarily due to ESA reduction. Together, changes in IV iron and ESA doses accounted for 46% of the increase in ferritin over the study period. Conclusions In contrast to expectations, the rise in average IV iron dose did not persist beyond 2011. The sustained rise in ferritin levels in United States dialysis patients after policy changes in 2011, to average levels well in excess of 800 ng/ml, appeared to be partly due to reductions in ESA dosing and not solely IV iron dosing practices. The effect of these changes in ferritin on health outcomes requires further investigation. PMID:26286925
Long-term Stability and Erosion in Marshes of Three Large Estuarine Basins in Louisiana
NASA Astrophysics Data System (ADS)
Kearney, M.; Riter, A.; Mo, Y.; Turner, R. E.
2016-02-01
Landsat TM data using a spectral mixture model indicate that marshes in large areas of Terrebonne Bay, Barataria Bay, and Breton Sound have been relatively stable for several decades. Marsh loss has been greatest in the most seaward, saline marshes - at rates of 0.3-1% yr-1 - and these losses are highly correlated with sea level rise. Some interior marshes, especially in the mesohaline parts of the basins, also show some sea level-driven losses, especially where seasonal differences in storm-generated waves greatly enhance the sea level signal. By comparison, oligohaline and tidal freshwater marshes farther inland present a picture of relative stability. The impacts of major hurricanes (e.g., Hurricanes Katrina and Gustav) that tracked over the study area were dramatic, but transient; most marshes rebounded to previous conditions within a few years. Significant marsh losses, other than those from shoreline retreat in more seaward zones, however, were confined to sites of freshwater river diversions.
The Challenge of Communicating Flood Risk
NASA Astrophysics Data System (ADS)
Matthew, R.
2015-12-01
Worldwide, natural hazard risks, and especially flood risk, are increasing dramatically as populations grow, infrastructure deteriorates, and climate change worsens. Street level modeling technologies may help decision makers and the general public understand risk and explore options for building resilience. But there are challenges in linking powerful visualization technologies to people in ways that they trust, support and can use. Technology adoption depends on a host of social and psychological factors—for example, how have past experiences shaped perceptions? Where do people currently turn for information? Who do they trust? Who do they see as responsible for implementing response and resilience measures? What do people think about climate change and sea level rise? What are the values that will motivate them to act? The answers vary from place to place and group to group. Visualization technologies that are responsive to this type of information may be most effective. Through household level survey data collected at sites in California and Mexico, we identify factors that may help in designing effective flood risk communication tools.
Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin
NASA Astrophysics Data System (ADS)
Bookman, R.; Filin, S.; Avni, Y.; Rosenfeld, D.; Marco, S.
2014-12-01
The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in climate. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a morphological terrace along the lake's shore. Given the global effects of volcanogenic aerosols, we tested the hypothesis that the 1991-92 shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces in the Dead Sea Basin. Analysis of precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern eruptions and annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene and the last glacial-interglacial cycle. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the LGM. The terraces were compared with a time series of volcanogenic sulfate from the GISP2 record, and similar numbers of sulfate concentration peaks and terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the terraces heights. This correlation may indicate a link between the explosivity, magnitude of stratospheric injection, and the impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events provide a demonstration of global climatic teleconnections.
Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Ralph
2008-05-15
Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the usemore » of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.« less
Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task
Plack, Christopher J.
2010-01-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201
Subcortical plasticity following perceptual learning in a pitch discrimination task.
Carcagno, Samuele; Plack, Christopher J
2011-02-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.
Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
Munday, Philip L; McCormick, Mark I; Nilsson, Göran E
2012-11-15
Average sea-surface temperature and the amount of CO(2) dissolved in the ocean are rising as a result of increasing concentrations of atmospheric CO(2). Many coral reef fishes appear to be living close to their thermal optimum, and for some of them, even relatively moderate increases in temperature (2-4°C) lead to significant reductions in aerobic scope. Reduced aerobic capacity could affect population sustainability because less energy can be devoted to feeding and reproduction. Coral reef fishes seem to have limited capacity to acclimate to elevated temperature as adults, but recent research shows that developmental and transgenerational plasticity occur, which might enable some species to adjust to rising ocean temperatures. Predicted increases in P(CO(2)), and associated ocean acidification, can also influence the aerobic scope of coral reef fishes, although there is considerable interspecific variation, with some species exhibiting a decline and others an increase in aerobic scope at near-future CO(2) levels. As with thermal effects, there are transgenerational changes in response to elevated CO(2) that could mitigate impacts of high CO(2) on the growth and survival of reef fishes. An unexpected discovery is that elevated CO(2) has a dramatic effect on a wide range of behaviours and sensory responses of reef fishes, with consequences for the timing of settlement, habitat selection, predator avoidance and individual fitness. The underlying physiological mechanism appears to be the interference of acid-base regulatory processes with brain neurotransmitter function. Differences in the sensitivity of species and populations to global warming and rising CO(2) have been identified that will lead to changes in fish community structure as the oceans warm and becomes more acidic; however, the prospect for acclimation and adaptation of populations to these threats also needs to be considered. Ultimately, it will be the capacity for species to adjust to environmental change over coming decades that will determine the impact of climate change on marine ecosystems.
ERIC Educational Resources Information Center
Su, Ning
2011-01-01
Leading Chinese technology firms, from automobile manufacturer to information service provider, are evolving into some of the world's most innovative and competitive players, and dramatically changing the global business landscape. What underlies the rise of these firms is China's national strategy of transforming itself from a low-cost…
USDA-ARS?s Scientific Manuscript database
Carbon dioxide (CO2) concentrations in the earth’s atmosphere have continually increased each year since the beginning of the Industrial revolution and are expected to continue rising in the future, which could have a dramatic impact on agricultural production. Previous research has shown that eleva...
Building a Business Case for Going Green
ERIC Educational Resources Information Center
Harris, Bill; Maldeis, Neil
2011-01-01
Community college enrollments usually rise during tough economic times and the recent recession and slow recovery are no exception. According to the American Association of Community Colleges (AACC), the number of students attending community colleges has grown dramatically in the last decade to about 12.4 million last fall. The AACC says that 1.4…
The Geopolitics and Meanings of India's Massive Skills Development Ambitions
ERIC Educational Resources Information Center
King, Kenneth
2012-01-01
This paper interrogates the drivers and meanings behind the dramatic rise of technical and vocational education and training in the policy and political agenda of India. What are the assumptions about the existing traditions and character of India's culture or cultures of skills development? Is the massive planned expansion of skilled people in…
Factors Affecting Use of Instant Messaging Software by Information Technology Professionals
ERIC Educational Resources Information Center
Pratt, Robert C.
2010-01-01
Instant messaging systems--a type of social networking technology that connects people who are physically separated but working together--have seen a dramatic rise in use in globally dispersed organizations, yet there is an absence of academic research in predictive factors of instant messaging adoption. This study examined the factors influencing…
Rise of the Science and Engineering Postdoctorate and the Restructuring of Academic Research
ERIC Educational Resources Information Center
Cantwell, Brendan; Taylor, Barrett J.
2015-01-01
Since the 1980s the number of postdocs employed at U.S. research universities has increased dramatically as has the importance of postdocs to academic research. Growth in postdoc employment has coincided with increased dependence on external research funds. Using panel regression analysis, this article explores the organizational characteristics…
Setting an Agenda for Social Justice through Leadership Development
ERIC Educational Resources Information Center
Brundrett, Mark; de Cuevas, Rachel Anderson
2007-01-01
The profile, status and funding of leadership development has risen dramatically both in the UK and internationally over the last decade. In England this has been denoted by the rise of national programmes of leadership development and the creation of the National College for School Leadership (NCSL). Although the original inception of such…
The Secret to Finland's Success: Educating Teachers. Research Brief
ERIC Educational Resources Information Center
Sahlberg, Pasi
2010-01-01
In the last decade, Finland has emerged as the leading OECD country in educational achievement. In examining the sources of Finland's dramatic rise to the top, research shows one key element that has impacted Finland's success above all others: excellent teachers. This policy brief details the key elements of Finland's successful system, examining…
ERIC Educational Resources Information Center
Elzinga, Aant
2012-01-01
When the journal "Minerva" was founded in 1962, science and higher educational issues were high on the agenda, lending impetus to the interdisciplinary field of "Science Studies" "qua" "Science Policy Studies." As government expenditures for promoting various branches of science increased dramatically on…
ERIC Educational Resources Information Center
Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.
During the 1920s and 1930s, millions of wind energy systems were used on farms and other locations far from utility lines. However, with passage of the Rural Electrification Act in 1939, cheap electricity was brought to rural areas. After that, the use of wind machines dramatically declined. Recently, the rapid rise in fuel prices has led to a…
iNACOL Blended Learning Teacher Competency Framework
ERIC Educational Resources Information Center
Powell, Allison; Rabbitt, Beth; Kennedy, Kathryn
2014-01-01
In recent years there has been a dramatic rise in interest and early adoption of blended learning to improve the educational experiences of students. A great amount of work has been done to codify approaches, with tools and resources emphasizing the structural components of new models, such as the configuration of physical learning space, use of…
Indiana State University Graduates to Advanced Plastic Cooling Towers
ERIC Educational Resources Information Center
Sullivan, Ed
2012-01-01
Perhaps more than many other industries, today's universities and colleges are beset by dramatically rising costs on every front. One of the areas where overhead can be contained or reduced is in the operation of the chilled water systems that support air conditioning throughout college campuses, specifically the cooling towers. Like many…
Small Town Renewal: Overview and Case Studies.
ERIC Educational Resources Information Center
Kenyon, Peter, Ed.; Black, Alan, Ed.
Many small, inland, and remote Australian rural communities continue to lose population and businesses, a trend that has intensified over the last 2 decades. Mean age continues to rise, while the 15-24 age group contracts dramatically. Such declining demographics are caused by the stress and uncertainty of volatile world commodity markets, as well…
Zhou, Jianhong; Li, Bo; Han, Yong; Zhao, Lingzhou
2016-07-01
Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Birdsong and anthropogenic noise: implications and applications for conservation.
Slabbekoorn, Hans; Ripmeester, Erwin A P
2008-01-01
The dramatic increase in human activities all over the world has caused, on an evolutionary time scale, a sudden rise in especially low-pitched noise levels. Ambient noise may be detrimental to birds through direct stress, masking of predator arrival or associated alarm calls, and by interference of acoustic signals in general. Two of the most important functions of avian acoustic signals are territory defence and mate attraction. Both of these functions are hampered when signal efficiency is reduced through rising noise levels, resulting in direct negative fitness consequences. Many bird species are less abundant near highways and studies are becoming available on reduced reproductive success in noisy territories. Urbanization typically leads to homogenization of bird communities over large geographical ranges. We review current evidence for whether and how anthropogenic noise plays a role in these patterns of decline in diversity and density. We also provide details of a case study on great tits (Parus major), a successful urban species. Great tits show features that other species may lack and make them unsuitable for city life. We hypothesize that behavioural plasticity in singing behaviour may allow species more time to adapt to human-altered environments and we address the potential for microevolutionary changes and urban speciation in European blackbirds (Turdus merula). We conclude by providing an overview of mitigating measures available to abate noise levels that are degrading bird breeding areas. Bird conservationists probably gain most by realizing that birds and humans often benefit from the same or only slightly modified measures.
NASA Astrophysics Data System (ADS)
Cooper, H.; Zhang, C.
2017-12-01
Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps to increase the integrity of derived products used to support and guide coastal restoration managers and planners under the challenge of rising seas.
Coping with cyclic oxygen availability: evolutionary aspects.
Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke
2007-10-01
Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.
Dawson, Neal J; Storey, Kenneth B
2017-09-01
Wood frogs inhabit a broad range across North America, extending from the southern tip of the Appalachian Mountains to the northern boreal forest. Remarkably, they can survive the winter in a frozen state, where as much as 70% of their body water is converted into ice. Whilst in the frozen state, their hearts cease to pump blood, causing their cells to experience ischemia, which can dramatically increase the production of reactive oxygen species within the cell. To overcome this, wood frogs have elevated levels of glutathione, a primary antioxidant. We examined the regulation of glutathione reductase, the enzyme involved in recycling glutathione, in both the frozen and unfrozen (control) state. Glutathione reductase activity from both the control and frozen state showed a dramatic reduction in substrate specificity ( K m ) for oxidized glutathione (50%) when measured in the presence of glucose (300 mmol l -1 ) and a increase (157%) when measured in the presence of levels of urea (75 mmol l -1 ) encountered in the frozen state. However, when we tested the synergistic effect of urea and glucose simultaneously, we observed a substantial reduction in the K m for oxidized glutathione (43%) to a value similar to that with glucose alone. In fact, we found no observable differences in the kinetic and structural properties of glutathione reductase between the two states. Therefore, a significant increase in the affinity for oxidized glutathione in the presence of endogenous levels of glucose suggests that increased glutathione recycling may occur as a result of passive regulation of glutathione reductase by rising levels of glucose during freezing. © 2017. Published by The Company of Biologists Ltd.
Economics and siting of Fischer-Tropsch coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, J.P. Jr.; Ferreira, J.P.; Benefiel, J.
The capital intensity and low conversion efficiency of Fischer-Tropsch synthesis makes it noncompetitive with conventional petroleum in the midterm (e.g., 5 to 10 years) under normal economic conditions. However, if crude oil prices rise to higher levels (e.g., $25 to $30/bbl), coal liquefaction processes may prove to be economical. It appears that several other processes under development may become economically attractive before Fischer-Tropsch, although Fischer-Tropsch is the only proven commercially feasible venture at present. The above statement is subject, however, to the successful demonstration and commercialization of these alternative processes. Fischer-Tropsch, as a commercially proven process, may be called uponmore » as a backup should petroleum shortages ensue, world oil prices continue to increase dramatically, and alternate coal liquefaction processes fail to fully develop.« less
Sexual dimorphism in ischemic stroke: lessons from the laboratory
Manwani, Bharti; McCullough, Louise D
2011-01-01
Ischemic stroke is emerging as a major health problem for elderly women. Women have lower stroke incidence than men until an advanced age, when the epidemiology of ischemic stroke shifts and incidence rises dramatically in women. Experimental models of rodent stroke have replicated this clinical epidemiology, with exacerbated injury in older compared with young female rodents Many of the detrimental effects of aging on ischemic stroke outcome in females can be replicated by ovariectomy, suggesting that hormones such as estrogen play a neuroprotective role. However, emerging data suggest that the molecular mechanisms leading to ischemic cell death differ in the two sexes, and these effects may be independent of circulating hormone levels. This article highlights recent clinical and experimental literature on sex differences in stroke outcomes and mechanisms. PMID:21612353
NASA Technical Reports Server (NTRS)
Steffen, Morgan; Estes, Maurice G.; Al-Hamdan, Mohammad
2010-01-01
The Gulf of Mexico has experienced dramatic wetland habitat area losses over the last two centuries. These losses not only damage species diversity, but contribute to water quality, flood control, and aspects of the Gulf coast economy. Overall wetland losses since the 1950s were examined using land cover/land use (LCLU) change analysis in three Gulf coast watershed regions: Mobile Bay, Galveston Bay, and Tampa Bay. Two primary causes of this loss, LCLU change and climate change, were then assessed using LCLU maps, U.S. census population data, and available current and historical climate data from NOAA. Sea level rise, precipitation, and temperature effects were addressed, with emphasis on analysis of the effects of sea level rise on salt marsh degradation. Ecological impacts of wetland loss, including fishery depletion, eutrophication, and hypoxia were addressed using existing literature and data available from NOAA. These ecological consequences in turn have had an affect on the Gulf coast economy, which was analyzed using fishery data and addressing public health impacts of changes in the environment caused by wetland habitat loss. While recent federal and state efforts to reduce wetland habitat loss have been relatively successful, this study implies a need for more aggressive action in the Gulf coast area, as the effects of wetland loss reach far beyond individual wetland systems themselves to the Gulf of Mexico as a whole.
Child Care in the 1980's: Exploring New Resources.
ERIC Educational Resources Information Center
Virginia State Div. for Children, Richmond.
Because resources from the federal government will continue to diminish, and because rising costs and inflation could make quality child care services more scarce and expensive than they are at present, it is crucial to examine new alternatives for meeting child care needs in the 1980's. Dramatic changes in the structure of the American family in…
ERIC Educational Resources Information Center
Wright, Nick
2004-01-01
The dramatic rise in popularity of action learning (AL) over recent years has provided opportunity and impetus for various applications of this approach to be developed and tested in practice. This article describes one organisation's experience of AL, demonstrating that it can be effective in terms of stimulating and supporting reflective…
ERIC Educational Resources Information Center
Sarwer, David B.; Dilks, Rebecca J.
2012-01-01
The prevalence of childhood and adolescent obesity has tripled in the past three decades. This increase has been accompanied by a dramatic rise in obesity-related health complications among American youth. Thus, many obese youth are now experiencing illnesses that will threaten their life expectancy in the absence of significant weight loss.…
Introducing Educational Technologies to Teachers: Experience Report
ERIC Educational Resources Information Center
Thota, Neena; Negreiros, Joao G. M.
2015-01-01
The dramatic rise in use of digital media has changed the way learning is taking place and has led to new ways to teach with digital technologies. In this article, we describe the experiences of teaching a course that introduces educational technologies to teachers in Macau. The course design is based on connectivism, a learning theory for the…
Reforming BTECs: Applied General Qualifications as a Route to Higher Education. HEPI Report 94
ERIC Educational Resources Information Center
Kelly, Scott
2017-01-01
The dramatic rise in the number of university students holding BTECs [Business and Technology Education Councils] raises important questions about the purpose of the qualification and whether it should be treated by policymakers as part of an academic or vocational pathway. Scott Kelly discusses these issues and makes a number of recommendations…
Disrupting Law School: How Disruptive Innovation Will Revolutionize the Legal World
ERIC Educational Resources Information Center
Pistone, Michele R.; Horn, Michael B.
2016-01-01
Facing dramatic declines in enrollment, revenue, and student quality at the same time that their cost structure continues to rise and public support has waned, law schools are in crisis. A key driver of the crisis is shrinking employment opportunities for recent graduates, which stem in part from the disruption of the traditional business model…
ERIC Educational Resources Information Center
Wingate, LaRicka R.; Bobadilla, Leonardo; Burns, Andrea B.; Cukrowicz, Kelly C.; Hernandez, Annya; Ketterman, Rita L.; Minnix, Jennifer; Petty, Scharles; Richey, J. Anthony; Sachs-Ericsson, Natalie; Stanley, Sheila; Williams, Foluso M.; Joiner, Thomas E., Jr.
2005-01-01
The rise in suicide by African Americans in the United States is directly attributable to the dramatic, nearly three-fold increase in suicide rates of African American males. Gibbs (1997) hypothesized high social support, religiosity, and southern residence are protective factors against suicidality for Black people. This hypothesis was tested…
USDA-ARS?s Scientific Manuscript database
Commercial refrigeration equipment is projected to rise 5.2% annually to meet the consumer demand for fresh-cut produce items. The highly variable temperature conditions associated with storage of fresh-cuts in commercial open-refrigerated display cases dramatically affects the shelf-life and qualit...
Policy Options for Managing International Student Migration: The Sending Country's Perspective
ERIC Educational Resources Information Center
Gribble, Cate
2008-01-01
A consequence of the dramatic rise in international student mobility is the trend for international students to remain in the country in which they study after graduation. Countries such as Australia, the UK and Canada stand to benefit from international student migration, as they are able to fill skill shortages with locally trained foreign…
Brutal Borders? Examining the Treatment of Deportees during Arrest and Detention
ERIC Educational Resources Information Center
Phillips, Scott; Hagan, Jacqueline Maria; Rodriguez, Nestor
2006-01-01
Recent legislation has produced a dramatic rise in the detention and removal of immigrants from the United States. Drawing on interviews with a random sample of Salvadoran deportees, we examine treatment during arrest and detention. Our findings indicate: (1) deportees are often subject to verbal harassment, procedural failings and use of force;…
Screen Capture Technology: A Digital Window into Students' Writing Processes
ERIC Educational Resources Information Center
Seror, Jeremie
2013-01-01
Technological innovations and the prevalence of the computer as a means of producing and engaging with texts have dramatically transformed how literacy is defined and developed in modern society. This rise in digital writing practices has led to a growing number of tools and methods that can be used to explore second language (L2) writing…
Risk and Resilience in Orphaned Adolescents Living in a Community Affected by AIDS
ERIC Educational Resources Information Center
Wild, Lauren G.; Flisher, Alan J.; Robertson, Brian A.
2013-01-01
The AIDS pandemic has resulted in a dramatic rise in the number of orphans in South Africa. This study was designed to investigate the associations between family, peer, and community factors and resilience in orphaned adolescents. Self-report questionnaires were administered verbally to 159 parentally bereaved adolescents (aged 10-19) in an…
Beyond the "c" and the "x": Learning with Algorithms in Massive Open Online Courses (MOOCs)
ERIC Educational Resources Information Center
Knox, Jeremy
2018-01-01
This article examines how algorithms are shaping student learning in massive open online courses (MOOCs). Following the dramatic rise of MOOC platform organisations in 2012, over 4,500 MOOCs have been offered to date, in increasingly diverse languages, and with a growing requirement for fees. However, discussions of "learning" in MOOCs…
Defined contribution: a part of our future.
Baugh, Reginald F.
2003-01-01
Rising employer health care costs and consumer backlash against managed care are trends fostering the development of defined contribution plans. Defined contribution plans limit employer responsibility to a fixed financial contribution rather than a benefit program and dramatically increase consumer responsibility for health care decision making. Possible outcomes of widespread adoption of defined contribution plans are presented. PMID:12934869
Suicide Notes in Mexico: What Do They Tell Us?
ERIC Educational Resources Information Center
Chavez-Hernandez, Ana-Maria; Paramo, Daniel; Leenaars, Antoon A.; Leenaars, Lindsey
2006-01-01
According to international and Mexican official statistics, there is a dramatic rise in suicide in Mexico; however, research in this area is severely limited. This is the first study of suicide notes from Mexico in the international literature. From a population of 747 registered suicides, a sample of 106 note-writers and 106 nonnote writers was…
Socioeconomic Status and the Increased Prevalence of Autism in California
ERIC Educational Resources Information Center
King, Marissa D.; Bearman, Peter S.
2011-01-01
The prevalence of autism has increased precipitously--roughly 10-fold in the past 40 years--yet no one knows exactly what caused this dramatic rise. Using a large and representative dataset that spans the California birth cohorts from 1992 through 2000, we examine individual and community resources associated with the likelihood of an autism…
On the history of New York Medical College.
Greenberg, S J
1986-01-01
The history of New York Medical College reflects three distinct trends in the development of medical education: the rise and fall of homeopathy, the input of civic leaders (in this case, William Cullen Bryant) and the uneasy relationship between medical schools and hospitals caused by the dramatic increase in the complexity and cost of hospital care.
How the Media Misleads the Story of School Consumerism: A Perspective from School Finance
ERIC Educational Resources Information Center
Killeen, Kieran
2007-01-01
Noting the dramatic rise in media reporting on the topic of school commercialism and consumer activity in schools, this research explores the fiscal benefits of such activities. Though a variety of activities frequently associated with school consumerism generate revenues for schools, in the example of student activity fees there is very little…
"Betwixt Brewings": A History of College Students and Alcohol, 1820-1933
ERIC Educational Resources Information Center
Hevel, Michael Stephen
2011-01-01
This dissertation offers a history of white college students' relationship with alcohol between 1820 and 1933. The years that frame this study represent a long crisis regarding alcohol in the United States. A dramatic rise in alcohol consumption began around 1800, the negative consequences of which led growing numbers of Americans, for the first…
Technology and the Broken Higher Education Cost Model: Insights from the Delta Cost Project
ERIC Educational Resources Information Center
Kirshstein, Rita; Wellman, Jane
2012-01-01
Although U.S. higher education has faced numerous crises and dilemmas in its history, the situation in which colleges and universities find themselves at the moment is indeed different. Shrinking public subsidies coupled with historic rises in tuitions come at the same time that colleges and universities have been tasked to dramatically increase…
With a dramatic rise in complexity, needs of nanotoxicology research go beyond simple forms of nanomaterials. This study compared the phototoxicity of nano-TiO2and graphene-TiO2 nanocomposite (GNP). GNP was synthesized based on a hydrothermal method, which simultaneously performe...
ERIC Educational Resources Information Center
Mwale, Shadreck; Alhawsawi, Sajjadllah; Sayed, Yusuf; Rind, Irfan. A.
2018-01-01
The internationalisation of higher education has influenced the dramatic rise in the mobility of students, academics and knowledge across borders. There has been growing research interest focusing on international students studying abroad. While the student experience is an area of education that is often researched, most research focuses on…
Schirrmeister, Bettina E; de Vos, Jurriaan M; Antonelli, Alexandre; Bagheri, Homayoun C
2013-01-29
Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45-2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE.
Schirrmeister, Bettina E.; de Vos, Jurriaan M.; Antonelli, Alexandre; Bagheri, Homayoun C.
2013-01-01
Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to terminally (i.e., irreversibly) differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion y ago during the Great Oxidation Event (GOE), hence dramatically changing life on the planet. However, little is known about the temporal evolution of cyanobacterial lineages, and possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen. We estimated divergence times of extant cyanobacterial lineages under Bayesian relaxed clocks for a dataset of 16S rRNA sequences representing the entire known diversity of this phylum. We tested whether the evolution of multicellularity overlaps with the GOE, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincides with the onset of the GOE and an increase in diversification rates. These results suggest that multicellularity could have played a key role in triggering cyanobacterial evolution around the GOE. PMID:23319632
The Science-Policy Link: Stakeholder Reactions to the Uncertainties of Future Sea Level Rise
NASA Astrophysics Data System (ADS)
Plag, H.; Bye, B.
2011-12-01
Policy makers and stakeholders in the coastal zone are equally challenged by the risk of an anticipated rise of coastal Local Sea Level (LSL) as a consequence of future global warming. Many low-lying and often densely populated coastal areas are under risk of increased inundation. More than 40% of the global population is living in or near the coastal zone and this fraction is steadily increasing. A rise in LSL will increase the vulnerability of coastal infrastructure and population dramatically, with potentially devastating consequences for the global economy, society, and environment. Policy makers are faced with a trade-off between imposing today the often very high costs of coastal protection and adaptation upon national economies and leaving the costs of potential major disasters to future generations. They are in need of actionable information that provides guidance for the development of coastal zones resilient to future sea level changes. Part of this actionable information comes from risk and vulnerability assessments, which require information on future LSL changes as input. In most cases, a deterministic approach has been applied based on predictions of the plausible range of future LSL trajectories as input. However, there is little consensus in the scientific community on how these trajectories should be determined, and what the boundaries of the plausible range are. Over the last few years, many publications in Science, Nature and other peer-reviewed scientific journals have revealed a broad range of possible futures and significant epistemic uncertainties and gaps concerning LSL changes. Based on the somewhat diffuse science input, policy and decision makers have made rather different choices for mitigation and adaptation in cases such as Venice, The Netherlands, New York City, and the San Francisco Bay area. Replacing the deterministic, prediction-based approach with a statistical one that fully accounts for the uncertainties and epistemic gaps would provide a different kind of science input to policy makers and stakeholders. Like in many other insurance problems (for example, earthquakes), where deterministic predictions are not possible and decisions have to be made on the basis of statistics and probabilities, the statistical approach to coastal resilience would require stakeholders to make decisions on the basis of probabilities instead of predictions. The science input for informed decisions on adaptation would consist of general probabilities of decadal to century scale sea level changes derived from paleo records, including the probabilities for large and rapid rises. Similar to other problems where the appearance of a hazard is associated with a high risk (like a fire in a house), this approach would also require a monitoring and warning system (a "smoke detector") capable of detecting any onset of a rapid sea level rise.
Conway, Christopher C; Rancourt, Diana; Adelman, Caroline B; Burk, William J; Prinstein, Mitchell J
2011-11-01
Tests of interpersonal theories of depression have established that elevated depression levels among peers portend increases in individuals' own depressive symptoms, a phenomenon known as depression socialization. Susceptibility to this socialization effect may be enhanced during the transition to adolescence as the strength of peer influence rises dramatically. Socialization of depressive symptoms among members of child and adolescent friendship groups was examined over a 1-year period among 648 youth in grades six through eight. Sociometric methods were utilized to identify friendship groups and ascertain the prospective effect of group-level depressive symptoms on youths' own depressive symptoms. Hierarchical linear modeling results revealed a significant socialization effect and indicated that this effect was most potent for (a) girls and (b) individuals on the periphery of friendship groups. Future studies would benefit from incorporating child and adolescent peer groups as a developmentally salient context for interpersonal models of depression.
Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago
2014-01-01
The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community. PMID:25047077
Ariza, Alejandro; Kaartvedt, Stein; Røstad, Anders; Garijo, Juan Carlos; Arístegui, Javier; Fraile-Nuez, Eugenio; Hernández-León, Santiago
2014-01-01
The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.
Conway, Christopher C.; Rancourt, Diana; Adelman, Caroline B.; Burk, William J.; Prinstein, Mitchell J.
2012-01-01
Tests of interpersonal theories of depression have established that elevated depression levels among peers portend increases in individuals’ own depressive symptoms, a phenomenon known as depression socialization. Susceptibility to this socialization effect may be enhanced during the transition to adolescence as the strength of peer influence rises dramatically. Socialization of depressive symptoms among members of child and adolescent friendship groups was examined over a 1-year period among 648 youth in grades six through eight. Sociometric methods were utilized to identify friendship groups and ascertain the prospective effect of group-level depressive symptoms on youths’ own depressive symptoms. Hierarchical linear modeling results revealed a significant socialization effect and indicated that this effect was most potent for (a) girls and (b) individuals on the periphery of friendship groups. Future studies would benefit from incorporating child and adolescent peer groups as a developmentally salient context for interpersonal models of depression. PMID:21842961
Visualizing Dynamic Weather and Ocean Data in Google Earth
NASA Astrophysics Data System (ADS)
Castello, C.; Giencke, P.
2008-12-01
Katrina. Climate change. Rising sea levels. Low lake levels. These headliners, and countless others like them, underscore the need to better understand our changing oceans and lakes. Over the past decade, efforts such as the Global Ocean Observing System (GOOS) have added to this understanding, through the creation of interoperable ocean observing systems. These systems, including buoy networks, gliders, UAV's, etc, have resulted in a dramatic increase in the amount of Earth observation data available to the public. Unfortunately, these data tend to be restrictive to mass consumption, owing to large file sizes, incompatible formats, and/or a dearth of user friendly visualization software. Google Earth offers a flexible way to visualize Earth observation data. Marrying high resolution orthoimagery, user friendly query and navigation tools, and the power of OGC's KML standard, Google Earth can make observation data universally understandable and accessible. This presentation will feature examples of meteorological and oceanographic data visualized using KML and Google Earth, along with tools and tips for integrating other such environmental datasets.
Vertebrate community on an ice-age Caribbean island
Steadman, David W.; Albury, Nancy A.; Kakuk, Brian; Mead, Jim I.; Soto-Centeno, J. Angel; Singleton, Hayley M.; Franklin, Janet
2015-01-01
We report 95 vertebrate taxa (13 fishes, 11 reptiles, 63 birds, 8 mammals) from late Pleistocene bone deposits in Sawmill Sink, Abaco, The Bahamas. The >5,000 fossils were recovered by scuba divers on ledges at depths of 27–35 m below sea level. Of the 95 species, 39 (41%) no longer occur on Abaco (4 reptiles, 31 birds, 4 mammals). We estimate that 17 of the 39 losses (all of them birds) are linked to changes during the Pleistocene–Holocene Transition (PHT) (∼15–9 ka) in climate (becoming more warm and moist), habitat (expansion of broadleaf forest at the expense of pine woodland), sea level (rising from −80 m to nearly modern levels), and island area (receding from ∼17,000 km2 to 1,214 km2). The remaining 22 losses likely are related to the presence of humans on Abaco for the past 1,000 y. Thus, the late Holocene arrival of people probably depleted more populations than the dramatic physical and biological changes associated with the PHT. PMID:26483484
Wang, Jing; Tergel, Tergel; Chen, Jianhua; Yang, Ju; Kang, Yan; Qi, Zhi
2015-02-01
Ecological evidence indicates a worldwide trend of dramatically decreased soil Ca(2+) levels caused by increased acid deposition and massive timber harvesting. Little is known about the genetic and cellular mechanism of plants' responses to Ca(2+) depletion. In this study, transcriptional profiling analysis helped identify multiple extracellular Ca(2+) ([Ca(2+) ]ext ) depletion-responsive genes in Arabidopsis thaliana L., many of which are involved in response to other environmental stresses. Interestingly, a group of genes encoding putative cytosolic Ca(2+) ([Ca(2+) ]cyt ) sensors were significantly upregulated, implying that [Ca(2+) ]cyt has a role in sensing [Ca(2+) ]ext depletion. Consistent with this observation, [Ca(2+) ]ext depletion stimulated a transient rise in [Ca(2+) ]cyt that was negatively influenced by [K(+) ]ext , suggesting the involvement of a membrane potential-sensitive component. The [Ca(2+) ]cyt response to [Ca(2+) ]ext depletion was significantly desensitized after the initial treatment, which is typical of a receptor-mediated signaling event. The response was insensitive to an animal Ca(2+) sensor antagonist, but was suppressed by neomycin, an inhibitor of phospholipase C. Gd(3+) , an inhibitor of Ca(2+) channels, suppressed the [Ca(2+) ]ext -triggered rise in [Ca(2+) ]cyt and downstream changes in gene expression. Taken together, this study demonstrates that [Ca(2+) ]cyt plays an important role in the putative receptor-mediated cellular and transcriptional response to [Ca(2+) ]ext depletion of plant cells. © 2014 Institute of Botany, Chinese Academy of Sciences.
Leung, M M; Fu, H; Agaronov, A; Freudenberg, N
2015-04-01
Over the past three decades, both Shanghai and New York City (NYC), have experienced dramatic rises in childhood obesity rates. Given the role that obesity plays in the aetiology of chronic diseases such as diabetes and heart disease, the elevated rates are a major concern. Despite differences in governance systems and cultures, Shanghai and NYC have experienced rapid industrialization, a growing population and a rise in income inequality. The prevalence of childhood obesity in Shanghai and NYC is greater than their respective national rate. However, the trajectory and development of this epidemic has differed between the cities. The distribution of obesity by race and ethnicity, socio-economic status, sex, and age differs markedly between the two cities. To reduce prevalence and inequities within this complex epidemic requires an understanding of the dynamic changes in living conditions among social groups in each city and the behaviours that are influenced by such changes. By comparing changes in the influences on dietary behaviours, such as food distribution, pricing, gender values, and media and marketing, this highlights opportunities for Shanghai, NYC, and other world cities with high or rising rates of childhood obesity to inform future program and policy initiatives. It reiterates the importance of a comprehensive and multilevel approach that includes action at the individual, family, community, municipal, national, and global levels. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Guerra, Nancy G.; Boxer, Paul; Cook, Clayton R.
2006-01-01
Dramatic rises in youth violence in the United States beginning in the 1980s coupled with high visibility acts such as school shootings have resulted in a corresponding proliferation of programs designed to prevent aggression and violence in children and youth. Parallel with this increasing programmatic expansion, there have been repeated calls…
Women's Rising Share of Tertiary Enrollment: A Cross-National Analysis
ERIC Educational Resources Information Center
McDaniel, Anne
2014-01-01
In recent decades, a dramatic shift occurred in higher education throughout the world. Women now enroll in and complete more education than men in the majority of countries. Using a lagged cross-sectional design on a dataset of 75 countries from 1990 to 2008, this study examines the predictors of the current gender gap in tertiary enrollment. I…
New! Improved? The Transformation of the Global Agrifood System
ERIC Educational Resources Information Center
Busch, Lawrence; Bain, Carmen
2004-01-01
The last decade has witnessed a dramatic rise in global trade in food and agricultural products. While much analysis has focused on the role of the world Trade Organization (WTO) in this process, we argue that other forms of regulation are of far greater consequence. In this paper, we examine changes in the agrifood system made possible by the…
ERIC Educational Resources Information Center
Castle, Kathryn; Conner, Kenneth; Kaukeinen, Kimberly; Tu, Xin
2011-01-01
During young adulthood the suicide rate among Blacks rises dramatically and approaches that of the U.S. general population, requiring that prevention efforts include a focus on Black young adults. Although most research on suicidality among Blacks has focused on risk factors observed in the dominant culture, in this study the authors examined…
ERIC Educational Resources Information Center
Cawley, John; Frisvold, David; Meyerhoefer, Chad
2012-01-01
In response to the dramatic rise in childhood obesity, the Centers for Disease Control (CDC) and other organizations have advocated increasing the time that elementary school children spend in physical education (PE) classes. However, little is known about the effect of PE on child weight. This paper measures that effect by instrumenting for child…
Pathology of wildfire risk: A characterization of social and ecological dimensions
A. Paige Fischer; Thomas A Spies; Toddi A Steelman; Cassandra Moseley; Bart R Johnson; John D Bailey; Alan A Ager; Patrick Bourgeron; Susan Charnley; Brandon M Collins; Jeffrey D Kline; Jessica E Leahy; Jeremy S Littell; James DA Millington; Max Nielsen-Pincus; Christine S Olsen; Travis B Paveglio; Christopher I Roos; Michelle M Steen-Adams; Forrest R Stevens; Jelena Vukomanovic; Eric M White; David M. J. S. Bowman
2016-01-01
Despite dramatic increases in suppression spending, the risk of life and property loss associated with wildfire has continued to rise in recent decades. Economic losses from wildfires have doubled in the United States and suppression expenses have tripled between 2002 and 2012 compared to the decade prior. Loss of property to wildfire has outpaced efforts to reduce...
ERIC Educational Resources Information Center
Antink-Meyer, Allison; Bartos, Stephen; Lederman, Judith S.; Lederman, Norman G.
2016-01-01
Recent years have witnessed a dramatic rise in the number of middle and high school students from Asian countries participating in U.S.-based summer experiences (Perlez & Gao, 2013). Although summer science camps have been shown to improve students' attitudes and interests related to science and science learning (Bhattacharyya, Mead &…
ERIC Educational Resources Information Center
Wolf, Angela M.; Graziano, Juliette; Hartney, Christopher
2009-01-01
Beginning in the late 1980s, the number of girls entering the juvenile justice system increased dramatically. Although historically girls had entered the justice system with status offenses, recent examinations suggest a sharp rise in the number of girls charged with more serious crimes. Researchers and policy makers have increasingly acknowledged…
Patterns and Potential Drivers of Dramatic Changes in Tibetan Lakes, 1972–2010
Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang
2014-01-01
Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia. PMID:25372787
Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.
Li, Yingkui; Liao, Jingjuan; Guo, Huadong; Liu, Zewen; Shen, Guozhuang
2014-01-01
Most glaciers in the Himalayas and the Tibetan Plateau are retreating, and glacier melt has been emphasized as the dominant driver for recent lake expansions on the Tibetan Plateau. By investigating detailed changes in lake extents and levels across the Tibetan Plateau from Landsat/ICESat data, we found a pattern of dramatic lake changes from 1970 to 2010 (especially after 2000) with a southwest-northeast transition from shrinking, to stable, to rapidly expanding. This pattern is in distinct contrast to the spatial characteristics of glacier retreat, suggesting limited influence of glacier melt on lake dynamics. The plateau-wide pattern of lake change is related to precipitation variation and consistent with the pattern of permafrost degradation induced by rising temperature. More than 79% of lakes we observed on the central-northern plateau (with continuous permafrost) are rapidly expanding, even without glacial contributions, while lakes fed by retreating glaciers in southern regions (with isolated permafrost) are relatively stable or shrinking. Our study shows the limited role of glacier melt and highlights the potentially important contribution of permafrost degradation in predicting future water availability in this region, where understanding these processes is of critical importance to drinking water, agriculture, and hydropower supply of densely populated areas in South and East Asia.
Animal production systems in the industrialised world.
Sørensen, J T; Edwards, S; Noordhuizen, J; Gunnarsson, S
2006-08-01
The production of food from animal origin is relatively stable in the industrialised world. However, animal production systems are changing dramatically with respect to location, herd size and specialisation. Increased pressure from a critical public is moving animal-based production towards systems such as organic production and loose-housing systems which allow the animals to better express normal behaviour. The focus on food safety promotes systems with a high degree of biosecurity, often associated with an increase in herd size and self-containment. The globalisation of agricultural trade and increased competition also favours an increase in herd size and specialisation. These trends also lead to regions with livestock-dense areas, giving rise to environmental concerns. Therefore, good farming practice regulations and systems to provide a higher level of transparency, such as quality risk management programmes, are being developed.
Charging effects in single InP/GaInP baby dots
NASA Astrophysics Data System (ADS)
Persson, Jonas
2001-03-01
It has recently been demonstrated that the matrix material plays a major role for the physical behavior of self-assembled InP/GaInP quantum dots. As the "intrinsically" n-type GaInP matrix fills the quantum dot with electrons the spectral behavior of the dot dramatically changes. For the larger, fully developed dots, the charging gives rise to several broad lines. With an external bias it is possible to reduce the electron population of the dot. For smaller dots, baby dots, we show the possibility of dramatically changing the appearance of the dot spectrum by a precise tuning of the size of the quantum dot. When the dot is small enough it is uncharged and the spectrum is very similar to other material systems, whereas a slightly larger dot is charged and the number of lines is dramatically increased. We present high spectral resolution photoluminescence measurements of individual InP/GaInP baby-dots and k\\cdotp calculations including direct and exchange interactions.
Northern Chile and Andes Mountains seen from STS-61 Shuttle Endeavour
1993-12-09
STS061-101-023 (8 Dec 1993) --- This color photograph is a spectacular, panoramic (southeastern view) shot that features the northern half of the country of Chile and the Andes Mountains of South America. The Atacama Desert, one of the driest regions on earth, is clearly visible along the northern Chilean coast. This desert extends from roughly Arica in the north to the city of Caldera in the south, a distance of six hundred miles. Some parts of this very arid region go for more than twenty years without measurable precipitation. It is an area of dramatic and abrupt elevation changes. For example, from the waters edge there is an escarpment of the coastal plateau that rises like an unbroken wall two or three thousand feet above the Pacific Ocean. From the coastal plateau, there is an even more dramatic increase in elevation -- from two thousand feet above sea level to an average elevation of thirteen thousand feet above sea level in the Bolivian Altiplano. This elevation change occurs within a one hundred to two hundred mile distance from the Pacific Ocean. The north-south trending spine of the Andes Mountains can be seen on this photograph. Several of the volcanic peaks in this mountain chain exceed 20,000 feet above sea level. Interspersed with these volcanic peaks, numerous dry lake beds (salars) can be seen as highly reflective surfaces. The largest of these salars (Salar de Uyuni) is visible at the edge of the Hubble Space Telescope (HST). Offshore, the cold Peruvian current produces low stratus clouds that can be found along this coastline at certain times of the year. This is the same type of meteorological phenomena that is found along the southern California coast and the Skeleton coast of southwestern Africa.
The curse of wealth – Middle Eastern countries need to address the rapidly rising burden of diabetes
Klautzer, Lisa; Becker, Joachim; Mattke, Soeren
2014-01-01
The energy boom of the last decade has led to rapidly increasing wealth in the Middle East, particularly in the oil and gas-rich Gulf Cooperation Council (GCC) countries. This exceptional growth in prosperity has brought with it rapid changes in lifestyles that have resulted in a significant rise in chronic disease. In particular the number of people diagnosed with diabetes has increased dramatically and health system capacity has not kept pace. In this article, we summarize the current literature to illustrate the magnitude of the problem, its causes and its impact on health and point to options how to address it. PMID:24757686
Progranulin expression is upregulated after spinal contusion in mice
Naphade, Swati B.; Kigerl, Kristina A.; Jakeman, Lyn B.; Kostyk, Sandra K.; Popovich, Phillip G.
2015-01-01
Progranulin (proepithelin) is a pleiotropic growth factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7–14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a 10-fold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury. PMID:19946692
NASA Astrophysics Data System (ADS)
Galvin, C.
2008-12-01
"No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens. It would further clarify popular understanding if the term "actual sea level rise" were used in place of "eustatic sea level rise". (2)Geologists have approximated the the practice of paleontologists and biologists in establishing type examples of important geological features. This is a useful practice. A graduate geologist holds in mind clear conceptions of "beach cusps", "drumlin fields", "birdfoot deltas", and "igneous sills" based on seeing field examples accepted by professional geologists as representative of these features. However, although publications frequently report that sea level rise erodes a particular beach, no one identifies a type beach where that cause has been proven to produce the alleged effect. At the type beach, it is necessary to show that sea level is rising, and that the beach erodes primarily from this sea level rise, rather than from interrupted longshore transport. Thus, the second challenge is to identify a type ocean beach proven to erode because of sea level rise.
Climate Adaptation and Policy-Induced Inflation of Coastal Property Value
McNamara, Dylan E.; Gopalakrishnan, Sathya; Smith, Martin D.; Murray, A. Brad
2015-01-01
Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities. PMID:25806944
Climate adaptation and policy-induced inflation of coastal property value.
McNamara, Dylan E; Gopalakrishnan, Sathya; Smith, Martin D; Murray, A Brad
2015-01-01
Human population density in the coastal zone and potential impacts of climate change underscore a growing conflict between coastal development and an encroaching shoreline. Rising sea-levels and increased storminess threaten to accelerate coastal erosion, while growing demand for coastal real estate encourages more spending to hold back the sea in spite of the shrinking federal budget for beach nourishment. As climatic drivers and federal policies for beach nourishment change, the evolution of coastline mitigation and property values is uncertain. We develop an empirically grounded, stochastic dynamic model coupling coastal property markets and shoreline evolution, including beach nourishment, and show that a large share of coastal property value reflects capitalized erosion control. The model is parameterized for coastal properties and physical forcing in North Carolina, U.S.A. and we conduct sensitivity analyses using property values spanning a wide range of sandy coastlines along the U.S. East Coast. The model shows that a sudden removal of federal nourishment subsidies, as has been proposed, could trigger a dramatic downward adjustment in coastal real estate, analogous to the bursting of a bubble. We find that the policy-induced inflation of property value grows with increased erosion from sea level rise or increased storminess, but the effect of background erosion is larger due to human behavioral feedbacks. Our results suggest that if nourishment is not a long-run strategy to manage eroding coastlines, a gradual removal is more likely to smooth the transition to more climate-resilient coastal communities.
High frequency new particle formation in the Himalayas
Venzac, Hervé; Sellegri, Karine; Laj, Paolo; Villani, Paolo; Bonasoni, Paolo; Marinoni, Angela; Cristofanelli, Paolo; Calzolari, Francescopiero; Fuzzi, Sandro; Decesari, Stefano; Facchini, Maria-Cristina; Vuillermoz, Elisa; Verza, Gian Pietro
2008-01-01
Rising air pollution levels in South Asia will have worldwide environmental consequences. Transport of pollutants from the densely populated regions of India, Pakistan, China, and Nepal to the Himalayas may lead to substantial radiative forcing in South Asia with potential effects on the monsoon circulation and, hence, on regional climate and hydrological cycles, as well as to dramatic impacts on glacier retreat. An improved description of particulate sources is needed to constrain the simulation of future regional climate changes. Here, the first evidence of very frequent new particle formation events occurring up to high altitudes is presented. A 16-month record of aerosol size distribution from the Nepal Climate Observatory at Pyramid (Nepal, 5,079 m above sea level), the highest atmospheric research station, is shown. Aerosol concentrations are driven by intense ultrafine particle events occurring on >35% of the days at the interface between clean tropospheric air and the more polluted air rising from the valleys. During a pilot study, we observed a significant increase of ion cluster concentrations with the onset of new particle formation events. The ion clusters rapidly grew to a 10-nm size within a few hours, confirming, thus, that in situ nucleation takes place up to high altitudes. The initiation of the new particle events coincides with the shift from free tropospheric downslope winds to thermal upslope winds from the valley in the morning hours. The new particle formation events represent a very significant additional source of particles possibly injected into the free troposphere by thermal winds. PMID:18852453
Back to the future: The AMA and religion, 1961-1974.
Kim, Daniel T; Curlin, Farr A; Wolenberg, Kelly M; Sulmasy, Daniel P
2014-12-01
U.S. medical scholarship and education regarding religion and spirituality has been growing rapidly in recent years. This rising interest, however, is not new; it is a renewal of significant interweavings that date back to the mid-20th century. In this Perspective, the authors draw attention to the little-known history of organized medicine's engagement with religion from 1961 to 1974. Relying on primary source documents, they recount the dramatic rise and fall of the Committee on Medicine and Religion (CMR) at the American Medical Association (AMA). At its height, there were state-level committees on medicine and religion in 49 states, the District of Columbia, and Puerto Rico, and there were county-level committees in over 800 county medical societies. Thousands of physicians attended annual conferences for clinicians and clergy, and direct outreach to patients included a film viewed by millions. The CMR arose in the context of rapid medical advances, the growth of professional chaplaincy, and concern for declining "humanism" in medicine-conditions with parallels in medicine today. The CMR was brought to a puzzling end in 1972 by the AMA's Board of Trustees. The authors argue that this termination was linked to the AMA's long and contentious debate on abortion. They conclude with the story's significance for today's explorations of the intersection of spirituality, religion, and medicine, focusing on the need for mutual respect, transparency, and dialogue around the needs of patients and physicians.
ERIC Educational Resources Information Center
Mabel, Zachary A.
2016-01-01
The returns to higher education have increased dramatically in recent decades with the rise of the global, knowledge-based economy. Research shows that the college earnings premium has increased more than 10 percent over the last fifteen years and that the returns to college are concentrated among completers. Despite these benefits, many students…
ERIC Educational Resources Information Center
Doody, Catriona M.; Markey, Kathleen; Doody, Owen
2013-01-01
People with an intellectual disability are living longer, and the numbers continue to rise. Ireland has and is seeing a dramatic change in the age pro?le of clients and the support services they require. While Ireland had speci?cally trained nurses in intellectual disability, they predominately work in residential settings. This can be seen as…
ERIC Educational Resources Information Center
Bartholdsson, Åsa; Gustafsson-Lundberg, Johanna; Hultin, Eva
2014-01-01
Social emotional learning (SEL) is common in preschools and schools both in Europe and North America today. Programmes for socio-emotional training and the rise of what is labelled therapeutic education have dramatically increased during the first decade of the millennium. In this article, a manual-based programme used for SEL in a Swedish school…
ERIC Educational Resources Information Center
Grosch, Michael
2014-01-01
The rise of the web 2.0 led to dramatic changes in media usage behavior of students in tertiary education. Services such as Google and Facebook are most accepted amongst students not only in pastime but also for learning. A representative survey was made at Karlsruhe Institute of Technology (KIT). About 1,400 students were asked 150 questions to…
ERIC Educational Resources Information Center
DeLuca, Christopher; Godden, Lorraine; Hutchinson, Nancy L.; Versnel, Joan
2015-01-01
Background: The current global cohort of youth has been called "a generation at-risk", marked by a dramatic rise in youth who are not in employment, education or training programmes. In 2010, youth were three times as likely as adults to be unemployed, with youth unemployment worsening in 2012 and 2013. Accordingly, there is an urgent…
Automatic for the Borrower: How Repayment Based on Income Can Reduce Loan Defaults and Manage Risk
ERIC Educational Resources Information Center
Baum, Sandy; Carew, Diana; Fraire, Jacob; Jacks, Kay; James, Kevin; Madzelan, Daniel; Miller, Scott E.; Simmons, Barry; Thompson, Jessica
2014-01-01
When borrowers default on a federal student loan, it can have catastrophic consequences. Their credit scores drop dramatically, severely curtailing their ability to afford a home or a car, and even limiting their ability to sign up for utilities. The cost of their loan rises as late fees pile up. Moreover, the federal government can garnish…
Taxonomy for Child Well-Being Indicators: A Framework for the Analysis of the Well-Being of Children
ERIC Educational Resources Information Center
Ben-Arieh, Asher; Frones, Ivar
2011-01-01
Recent years have brought a dramatic rise in the number of efforts to measure and monitor the status of children. Yet, despite numerous efforts and reports with "Child indicators" in the title, the field of social child indication is fragmented and lacking a unifying taxonomy. The more ambitious the analysis and the more elaborate the statistics,…
USDA-ARS?s Scientific Manuscript database
Non-alcoholic fatty liver disease (NAFLD) is considered a part of the 'metabolic syndrome' associated with obesity and can progress in some patients to chirrosis, loss of liver function and liver cancer. NAFLD is now the most common form of liver injury, and rates are rising dramatically as a result...
Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duysen, Ellen G.; Lockridge, Oksana, E-mail: olockrid@unmc.edu
2011-09-01
The restoration of plasma acetylcholinesterase activity in mice following inhibition by organophosphorus pesticides and nerve agents has been attributed to synthesis of new enzyme. It is generally assumed that activity levels return to normal, are stable and do not exceed the normal level. We have observed over the past 10 years that recovery of acetylcholinesterase activity levels in mice treated with organophosphorus agents (OP) exceeds pretreatment levels and remains elevated for up to 2 months. The most dramatic case was in mice treated with tri-cresyl phosphate and tri-ortho-cresyl phosphate, where plasma acetylcholinesterase activity rebounded to a level 250% higher thanmore » the pretreatment activity. The present report summarizes our observations on plasma acetylcholinesterase activity in mice treated with chlorpyrifos, chlorpyrifos oxon, diazinon, tri-ortho-cresyl phosphate, tri-cresyl phosphate, tabun thiocholine, parathion, dichlorvos, and diisopropylfluorophosphate. We have developed a hypothesis to explain the excess acetylcholinesterase activity, based on published observations. We hypothesize that acetylcholinesterase activity is induced when cells undergo apoptosis and that consequently there is a rise in the level of plasma acetylcholinesterase. - Highlights: > Acetylcholinesterase activity is induced by organophosphorus agents. > AChE induction is related to apoptosis. > Induction of AChE activity by OP is independent of BChE.« less
Nielsen, Stine N.; Frandsen, Thomas L.; Nersting, Jacob
2014-01-01
The antileukemic mechanisms of 6-mercaptopurine (6MP) and methotrexate (MTX) maintenance therapy are poorly understood, but the benefits of several years of myelosuppressive maintenance therapy for acute lymphoblastic leukemia are well proven. Currently, there is no international consensus on drug dosing. Because of significant interindividual and intraindividual variations in drug disposition and pharmacodynamics, vigorous dose adjustments are needed to obtain a target degree of myelosuppression. As the normal white blood cell counts vary by patients’ ages and ethnicity, and also within age groups, identical white blood cell levels for 2 patients may not reflect the same treatment intensity. Measurements of intracellular levels of cytotoxic metabolites of 6MP and MTX can identify nonadherent patients, but therapeutic target levels remains to be established. A rise in serum aminotransferase levels during maintenance therapy is common and often related to high levels of methylated 6MP metabolites. However, except for episodes of hypoglycemia, serious liver dysfunction is rare, the risk of permanent liver damage is low, and aminotransferase levels usually normalize within a few weeks after discontinuation of therapy. 6MP and MTX dose increments should lead to either leukopenia or a rise in aminotransferases, and if neither is experienced, poor treatment adherence should be considered. The many genetic polymorphisms that determine 6MP and MTX disposition, efficacy, and toxicity have precluded implementation of pharmacogenomics into treatment, the sole exception being dramatic 6MP dose reductions in patients who are homozygous deficient for thiopurine methyltransferase, the enzyme that methylates 6MP and several of its metabolites. In conclusion, maintenance therapy is as important as the more intensive and toxic earlier treatment phases, and often more challenging. Ongoing research address the applicability of drug metabolite measurements for dose adjustments, extensive host genome profiling to understand diversity in treatment efficacy and toxicity, and alternative thiopurine dosing regimens to improve therapy for the individual patient. PMID:24936744
Climate Literacy: Springboard to Action
NASA Astrophysics Data System (ADS)
Long, B.; Bader, D.
2011-12-01
Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation (Ocean Project, 2009). The Aquarium of the Pacific is using NOAA's Science on a Sphere (SOS)° and linked flat screens to convey climate concepts to the public and serve as a model for how aquariums can promote climate literacy. The Ocean Science Center houses the SOS and is designed to immerse our visitors in an experience that extends from the sphere, to our live animals, and to our public programming. The first SOS exhibit, the sea level rise story, opened as the cornerstone of an aquarium-wide climate literacy strategy. Large panels next to the SOS prompts visitors to pledge actions to reduce their personal carbon footprint. The exhibit objectives were to provide a visual presentation that conveys a dramatic story about sea level rise, and to engage the audience in confronting the impact of sea level rise, and the local implications. The Aquarium utilized Yale's Six Americas survey instrument during summer 2010 to measure our audience interpretations of and responses to climate change. The survey showed that 78% of visitors categorized themselves as either alarmed or concerned about climate change, greater than the national average. Thus our climate literacy programs do not focus on convincing visitors of climate change and its causes, but on encouraging adaptive responses to varying scenarios. University of California, Berkeley, Lawrence Hall of Science Center for Research Evaluation and Assessment (REA) conducted a pre-opening evaluation of the exhibit's impact. The participants, 58% of whom were families with children, did not want to know more about climate change, but wanted tangible activities they could engage in to mitigate human induced effects, and more details about the impact of climate change on marine animals. REA stated that, "the sea level rise programs (both facilitated and non-facilitated) are well positioned to be successful and effective at the goal of helping visitors understand the very real threat of sea level rise and inspiring them to take action." (REA, May 2011). REA also found that 31% of the Spanish-speaking visitors thought the Spanish captioning was important. Census data indicates that the local Hispanic population has grown 27.8% over the past decade, so translation will continue to be an important way to reach a diverse spectrum of peoples. The Six Americas survey of the Aquarium did not sample enough Spanish speaking visitors to produce meaningful results, and the Aquarium is working to resolve that issue. The Aquarium is developing another program for the SOS, marine ecosystems, connecting climate literacy messages to the live animal collection. REA will complete its evaluation of both programs in 2012, and the Aquarium will again conduct the Six Americas survey. Conveying climate literacy in an impactful way requires innovation and constant updates. The Aquarium uses informal education methodology combined with scientific discipline to bring actionable solutions to over 1.4 million visitors each year.
The early life origin theory in the development of cardiovascular disease and type 2 diabetes.
Lindblom, Runa; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C
2015-04-01
Life expectancy has been examined from a variety of perspectives in recent history. Epidemiology is one perspective which examines causes of morbidity and mortality at the population level. Over the past few 100 years there have been dramatic shifts in the major causes of death and expected life length. This change has suffered from inconsistency across time and space with vast inequalities observed between population groups. In current focus is the challenge of rising non-communicable diseases (NCD), such as cardiovascular disease and type 2 diabetes mellitus. In the search to discover methods to combat the rising incidence of these diseases, a number of new theories on the development of morbidity have arisen. A pertinent example is the hypothesis published by David Barker in 1995 which postulates the prenatal and early developmental origin of adult onset disease, and highlights the importance of the maternal environment. This theory has been subject to criticism however it has gradually gained acceptance. In addition, the relatively new field of epigenetics is contributing evidence in support of the theory. This review aims to explore the implication and limitations of the developmental origin hypothesis, via an historical perspective, in order to enhance understanding of the increasing incidence of NCDs, and facilitate an improvement in planning public health policy.
De Sherbinin, A
1990-10-01
Largely due to government-sponsored pronatalist measures, Iraq possesses the highest natural increase rate of any country, 3.9% a situation that could lead to serous problems in the future. Iraq's population currently stand at 19 million (75-80% are Iraqi Arabs, 15-20% Kurds, and 5% other minorities), but at the present rate of growth, it could double in less than 20 years. Prior to its recent invasion of Kuwait, Iraq was also host to about 1 million foreign workers. About 95% of the country's revenues come from oil export; agriculture accounts for only 10% of its Gross National Product. With Saddam Hussein's rise to power in 1979, Iraq embarked on a plan of rapid population growth, seen as necessary step to better exploit the country's agricultural and mineral resources. Among the pronatalist measures, the government grants women 100% paid maternity leave during the first 10 weeks and restricts access to contraceptives. The aim is for married women to have at least 4 children. Besides increasing fertility, the government has also succeeded in lowering mortality levels by improving maternal and child health care. The dramatic rise in population growth could have serious consequences. Iraq could face serious water shortages in the near future, once Turkey completes its Ataturk dam in the Euphrates river. A greater population will only place a greater demand on the availability of water.
A key circulatory defence against asphyxia in infancy – the heart of the matter!
Cohen, Gary; Katz-Salamon, Miriam; Malcolm, Girvan
2012-01-01
A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1–8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O2 level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia ‘reset’ after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO2 consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO2 on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea – asphyxia. PMID:23006482
A key circulatory defence against asphyxia in infancy--the heart of the matter!
Cohen, Gary; Katz-Salamon, Miriam; Malcolm, Girvan
2012-12-01
A resumption of, and escalation in, breathing efforts (hyperpnoea) reflexively accelerates heart rate (HR) and may facilitate cardiac and circulatory recovery from apnoea. We analysed whether this mechanism can produce a sustained rise in HR (tachycardia) when a sleeping infant is confronted by mild, rapidly worsening asphyxia, simulating apnoea. Twenty-seven healthy term-born infants aged 1-8 days rebreathed the expired gas for 90 s during quiet sleep to stimulate breathing and heart rate. To discriminate cardio-excitatory effects of central respiratory drive, lung inflation, hypoxia, hypercapnia and asphyxia, we varied the inspired O(2) level and compared temporal changes in response profiles as respiratory sensitivity to hypoxia and asphyxia 'reset' after birth. We demonstrate that asphyxia-induced hyperpnoea and tachycardia strengthen dramatically over the first week with different time courses and via separate mechanisms. Cardiac excitation by hypercapnia improves first, followed by a slower improvement in respiratory hypoxic drive. A rise in CO(2) consequently elicits stronger, longer lasting tachycardia than moderate increases in respiratory drive or lung expansion. We suggest that without a strong facilitating action of CO(2) on the immature heart, respiratory manoeuvres may be unable to reflexively counteract strong vagal bradycardia. This may increase the vulnerability of some infants to apnoea-asphyxia.
Friedman, W J; Dreyfus, C F; McEwen, B; Black, I B
1988-10-01
Recent evidence suggests that extracellular signals regulate neurotransmitter traits in brain catecholaminergic (CA) neurons as in the periphery. Development of the dopaminergic phenotype in the mouse substantia nigra (SN) was studied by monitoring tyrosine hydroxylase (TH), the rate-limiting enzyme in CA biosynthesis in vivo and in culture. Explants of SN were dissected from embryonic day 15 embryos and grown in culture for a week. To define the influence of depolarizing signals on central dopaminergic neurons, cultures were grown with the pharmacologic depolarizing agent veratridine. This treatment elicited a significant increase in TH enzyme activity, accompanied by elevated levels of enzyme protein. The increase in activity was prevented by TTX, suggesting that transmembrane Na+ influx was necessary for the rise in TH. A physiologic presynaptic agonist, substance P, also evoked a significant increase in TH activity; however, the coproduced tachykinin peptide, substance K (SK, neurokinin A) elicited a more dramatic rise. The SK effect was blocked by TTX, suggesting that the physiologic agonist was acting through the same mechanism as the pharmacologic agent veratridine. Immunoblot analysis revealed that SK elicited a parallel increase in TH enzyme protein. Our observations suggest that the novel peptide, SK, serves a physiological role in the regulation of TH in the striatonigral pathway.
When Might Barrier Island Chains 'Collapse'? An Initial Model Investigation
NASA Astrophysics Data System (ADS)
Slott, J. M.; Murray, A. B.
2007-12-01
There has been recent speculation that, in response to the accelerated sea-level rise and intensified storms expected over the coming century, barrier island chains such as those found on the US Atlantic and Gulf coastlines, could develop large (10-kilometer-scale) gaps in their most narrow stretches, or might disappear completely (Riggs, S. R., 2001). Such a collapse along the North Carolina Outer Banks barrier island chain, for example, would leave the mainland vulnerable to direct hits from Western Atlantic storm systems, and also would dramatically alter the estuarine system it encloses with potentially devastating effects to marine life. Concern for the future of the Outer Banks is also motivated by the decimation of the Chandeleur Islands in 2005 from Hurricane Katrina. We will present a series of initial numerical modeling experiments addressing how barrier island morphodynamics respond to the sudden creation of kilometer-scale gaps. Large-scale barrier island evolution is influenced by sea-level rise and barrier island overwash, alongshore sediment transport, tidal currents, and the availability of mobile sediment. Barrier islands transgress towards the mainland in response to sea-level rise through overwash: ocean-facing shorelines provide sediment that is transported onto the island to maintain its subaerial height and behind the island to maintain its width, while gradients in alongshore sediment transport typically dictate the large-scale shape of a coastline over long time frames (decades to millenia). Tidal currents also tend to scour inlet channels; the relative strength of this effect depends in part upon the width of the inlet channel. Our exploratory model includes both a one-line alongshore transport component and a cross-shore overwash component, as well as representations of underlying geology (weathering rates and material compositions). In our modeling experiments, we test the effects of perforating a 30 km barrier island chain with variable-sized gaps, ranging between 2.5-10 km. In preliminary model experiments, where we do not limit the availability of mobile sediment nor include tidal inlet dynamics, large gaps tend to close under all of the erosion rate scenarios and gap sizes. The ends of barrier islands extend to fill in the gaps and recurve landward. The rate of closure of gaps is unaffected by sea-level rise rates even under the most extreme cases; alongshore sediment fluxes exceed those associated with sea-level rise as highly curved isolated islands migrate rapidly landward before coalescing into an island chain again at a new location. In a natural setting, the overwash and spit-growth that maintain sub-aerial islands and tend to knit them back together (respectively) could be inhibited by a lack of mobile sediment. The shoreface of the Outer Banks, for example, consists of sometimes patchy Holocene sands perched atop a semi-lithified, sometimes more muddy Pleistocene substrate. Weathering of the Pleistocene substrate over long timescales generates mobile sediment consisting of both sands and muds. The fine-grained material, however, is typically lost to the nearshore system. The shoreface may not be able to weather fast enough to keep up with rapidly migrating islands. This effect, combined with that of substrate composition, will tend to limit the rate that sediment can be liberated, and, in turn, could prevent island-chain recovery. We conduct a series of model experiments to determine the combinations of geological parameters (weathering rates, composition) and forcing parameters (rate of sea-level rise, frequency of storms) that prevent barrier-island-chain recovery.
Seventh-day syndrome: a catastrophic event after liver transplantation: case report.
Pereira, M; Ferreira, I; Gandara, J; Ferreira, S; Lopes, V; Coelho, A; Vizcaino, R; Marinho, A; Daniel, J; Miranda, H P
2015-05-01
Seventh-day syndrome (7DS) is an early serious complication of liver transplantation, characterized by sudden failure of a previously normally functioning liver graft ∼1 week after the surgery. Although it is an uncommon event, it has major associated mortality. As its etiology is yet to be recognized, the only currently available treatment is retransplantation. We present 3 cases of orthotopic liver transplantation recipients who had an initial uneventful recovery after surgery followed by a dramatic rise of serum liver enzyme levels ∼7 days later and hepatic failure with subsequent graft loss and death despite high-dose immunosuppressive therapy. Histologic findings showed massive centrolobular hemorrhage and hepatocellular necrosis with reduced inflammation. It is essential to review and accumulate more clinical and laboratory information to better understand this syndrome and to better prevent and treat it. Copyright © 2015 Elsevier Inc. All rights reserved.
Low noise and conductively cooled microchannel plates
NASA Technical Reports Server (NTRS)
Feller, W. B.
1990-01-01
Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.
Centuries of human-driven change in salt marsh ecosystems.
Gedan, K Bromberg; Silliman, B R; Bertness, M D
2009-01-01
Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems--exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Retinal Origin of Direction Selectivity in the Superior Colliculus
Shi, Xuefeng; Barchini, Jad; Ledesma, Hector Acaron; Koren, David; Jin, Yanjiao; Liu, Xiaorong; Wei, Wei; Cang, Jianhua
2017-01-01
Detecting visual features in the environment such as motion direction is crucial for survival. The circuit mechanisms that give rise to direction selectivity in a major visual center, the superior colliculus (SC), are entirely unknown. Here, we optogenetically isolate the retinal inputs that individual direction-selective SC neurons receive and find that they are already selective as a result of precisely converging inputs from similarly-tuned retinal ganglion cells. The direction selective retinal input is linearly amplified by the intracollicular circuits without changing its preferred direction or level of selectivity. Finally, using 2-photon calcium imaging, we show that SC direction selectivity is dramatically reduced in transgenic mice that have decreased retinal selectivity. Together, our studies demonstrate a retinal origin of direction selectivity in the SC, and reveal a central visual deficit as a consequence of altered feature selectivity in the retina. PMID:28192394
Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice
Ishimoto, Takuji; Lanaspa, Miguel A.; Le, MyPhuong T.; Garcia, Gabriela E.; Diggle, Christine P.; MacLean, Paul S.; Jackman, Matthew R.; Asipu, Aruna; Roncal-Jimenez, Carlos A.; Kosugi, Tomoki; Rivard, Christopher J.; Maruyama, Shoichi; Rodriguez-Iturbe, Bernardo; Sánchez-Lozada, Laura G.; Bonthron, David T.; Sautin, Yuri Y.; Johnson, Richard J.
2012-01-01
Fructose intake from added sugars correlates with the epidemic rise in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Fructose intake also causes features of metabolic syndrome in laboratory animals and humans. The first enzyme in fructose metabolism is fructokinase, which exists as two isoforms, A and C. Here we show that fructose-induced metabolic syndrome is prevented in mice lacking both isoforms but is exacerbated in mice lacking fructokinase A. Fructokinase C is expressed primarily in liver, intestine, and kidney and has high affinity for fructose, resulting in rapid metabolism and marked ATP depletion. In contrast, fructokinase A is widely distributed, has low affinity for fructose, and has less dramatic effects on ATP levels. By reducing the amount of fructose for metabolism in the liver, fructokinase A protects against fructokinase C-mediated metabolic syndrome. These studies provide insights into the mechanisms by which fructose causes obesity and metabolic syndrome. PMID:22371574
ERIC Educational Resources Information Center
Ghatty, Sundara L.
2013-01-01
Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses…
Eurabia: Strategic Implications for the United States
2010-03-01
display a currently valid OMB control number. 1. REPORT DATE 30 MAR 2010 2. REPORT TYPE 3. DATES COVERED 4. TITLE AND SUBTITLE Eurabia: Strategic...projecting current trends into the future seldom holds true in the face of demographic realities, i.e. nature gets a vote so to speak. These social welfare...portion of the population. Nevertheless, current predictions have it rising dramatically over the coming decades. Most demographers predict that by
ERIC Educational Resources Information Center
Picton, Irene
2014-01-01
While ebooks have been around for many years, recent rapid improvements in the versatility and affordability of e-readers and tablets, along with increased access to broadband internet, have lead to a dramatic rise in household ownership of these devices. Between 2012 and 2013, the proportion of children responding to the National Literacy Trust's…
ERIC Educational Resources Information Center
Olivares Pasillas, Maria Concepción
2017-01-01
The national imperative to increase the presence of women and people of color in science, technology, engineering, and mathematics (STEM) coupled with the growing presence of Latinos in the United States has led to the dramatic rise of programs and initiatives aimed at improving access to and equity in STEM careers and education for Latino youth.…
Self induced gratings in ternary SiO2:SnO2:Na2O bulk glasses by UV light seeding.
Lancry, M; Douay, M; Niay, P; Beclin, F; Menke, Y; Milanese, D; Ferraris, M; Poumellec, B
2005-09-05
The diffraction efficiency of gratings written in ternary SnO2:SiO2:Na2O bulk glasses rises dramatically with time after the occultation of the cw 244nm light used to write the thick hologram. This self-induced behavior lasts for several hours and ultimately leads to refractive index changes as high as 3 10-3.
Increased incidence of syphilis in Tennessee during the 1980s: challenges for a new decade.
Quinn, R W; Federspiel, C F; Lefkowitz, L B; Keller, R
1992-08-01
Although recent increases in the incidence of syphilis are well known to public health officials, the general medical community is less well informed regarding the dramatic rise in cases. We present trend data from Nashville and Tennessee over the past decade. These statistics emphasize specific factors, such as drug abuse, that contribute to new difficulties in controlling this sexually transmitted disease.
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh
2015-04-01
Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.
Constructive systems, load-bearing and enclosing structures of high-rise buildings
NASA Astrophysics Data System (ADS)
Anatol'evna Korol', Elena; Olegovna Kustikova, Yuliya
2018-03-01
As the height of the building increases, loads on load-carrying structures increase dramatically, and as a result of the development of high-rise construction, several structural systems of such buildings have been developed: frame, frame-frame, cross-wall, barrel, box-type, box-to-wall ("pipe in pipe", "Trumpet in the farm"), etc. In turn, the barrel systems have their own versions: cantilever support of the ceilings on the trunk, suspension of the outer part of the overlap to the upper carrying console "hanging house" or its support by means of the walls on the lower bearing cantilever, intermediate position of the supporting cantilevers in height to the floor, from a part of floors. The object of the study are the structural solutions of high-rise buildings. The subject of the study is the layout of structural schemes of high-rise buildings, taking into account the main parameters - altitude (height), natural climatic conditions of construction, materials of structural elements and their physical and mechanical characteristics. The purpose of the study is to identify the features and systematization of structural systems of high-rise buildings and the corresponding structural elements. The results of the research make it possible, at the stage of making design decisions, to establish rational parameters for the correspondence between the structural systems of high-rise buildings and their individual elements.
Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy B
2018-06-25
Recent analyses of data show a warming trend in global average air and sea surface ocean temperatures. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, the sea level has risen, and the concentrations of greenhouse gases have increased. This article will focus on climate change and projected effects on venomous marine and amphibious creatures with the potential impact on human health. Retrospective analysis of environmental, ecological, and medical literature with a focus on climate change, toxinology, and future modeling specific to venomous aquatic and amphibious creatures. Species included venomous jellyfish, poisonous fish, crown-of-thorns starfish, sea snakes, and toxic frogs. In several projected scenarios, rising temperatures, weather extremes, and shifts in seasons will increase poisonous population numbers, particularly with certain marine creatures like jellyfish and crown-of-thorns starfish. Habitat expansions by lionfish and sea snakes are projected to occur. These phenomena, along with increases in human populations and coastal development will likely increase human-animal encounters. Other species, particularly amphibious toxic frogs, are declining rapidly due to their sensitivity to any temperature change or subtle alterations in the stability of their environment. If temperatures continue to rise to record levels over the next decades, it is predicted that the populations of these once plentiful and critically important animals to the aquatic ecosystem will decline and their geographic distributions will shrink. Review of the literature investigating the effect and forecasts of climate change on venomous marine and amphibious creatures has demonstrated that temperature extremes and changes to climatic norms will likely have a dramatic effect on these toxicological organisms. The effects of climate change on these species through temperature alteration and rising coastal waters will influence each species differently and in turn potentially affect commercial industries, travel, tourism, and human health. Published by Elsevier Inc.
Plants mediate soil organic matter decomposition in response to sea level rise.
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2016-01-01
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. © 2015 John Wiley & Sons Ltd.
Retinal Vessel Oxygen Saturation during 100% Oxygen Breathing in Healthy Individuals
Olafsdottir, Olof Birna; Eliasdottir, Thorunn Scheving; Kristjansdottir, Jona Valgerdur; Hardarson, Sveinn Hakon; Stefánsson, Einar
2015-01-01
Purpose To detect how systemic hyperoxia affects oxygen saturation in retinal arterioles and venules in healthy individuals. Methods Retinal vessel oxygen saturation was measured in 30 healthy individuals with a spectrophotometric retinal oximeter (Oxymap T1). Oximetry was performed during breathing of room air, 100% oxygen (10 minutes, 6L/min) and then again room air (10 minutes recovery). Results Mean oxygen saturation rises modestly in retinal arterioles during 100% oxygen breathing (94.5%±3.8 vs. 92.0%±3.7% at baseline, p<0.0001) and dramatically in retinal venules (76.2%±8.0% vs. 51.3%±5.6%, p<0.0001). The arteriovenous difference decreased during 100% oxygen breathing (18.3%±9.0% vs. 40.7%±5.7%, p<0.0001). The mean diameter of arterioles decreased during 100% oxygen breathing compared to baseline (9.7±1.4 pixels vs. 10.3±1.3 pixels, p<0.0001) and the same applies to the mean venular diameter (11.4±1.2 pixels vs. 13.3±1.5 pixels, p<0.0001). Conclusions Breathing 100% oxygen increases oxygen saturation in retinal arterioles and more so in venules and constricts them compared to baseline levels. The dramatic increase in oxygen saturation in venules reflects oxygen flow from the choroid and the unusual vascular anatomy and oxygen physiology of the eye. PMID:26042732
Crime and violence in Brazil: Systematic review of time trends, prevalence rates and risk factors☆
Murray, Joseph; Cerqueira, Daniel Ricardo de Castro; Kahn, Tulio
2013-01-01
Between 1980 and 2010 there were 1 million homicides in Brazil. Dramatic increases in homicide rates followed rises in inequality, more young men in the population, greater availability of firearms, and increased drug use. Nevertheless, disarmament legislation may have helped reduce homicide rates in recent years. Despite its very high rate of lethal violence, Brazil appears to have similar levels of general criminal victimization as several other Latin American and North American countries. Brazil has lower rates of drug use compared to other countries such as the United States, but the prevalence of youth drug use in Brazil has increased substantially in recent years. Since 1990, the growth of the Brazilian prison population has been enormous, resulting in the fourth largest prison population in the world. Through a systematic review of the literature, we identified 10 studies assessing the prevalence of self-reported offending in Brazil and 9 studies examining risk factors. Levels of self-reported offending seem quite high among school students in Brazil. Individual and family-level risk factors identified in Brazil are very similar to those found in high-income countries. PMID:24027422
Pertussis leukocytosis: mechanisms, clinical relevance and treatment
Carbonetti, Nicholas H.
2016-01-01
The significant and sometimes dramatic rise in the number of circulating white blood cells (leukocytosis) in infants suffering from pertussis (whooping cough) has been recognized for over a century. Although pertussis is a disease that afflicts people of all ages, it can be particularly severe in young infants, and these are the individuals in whom leukocytosis is most pronounced. Very high levels of leukocytosis are associated with poor outcome in infants hospitalized with pertussis and modern treatments are often aimed at reducing the number of leukocytes. Pertussis leukocytosis is caused by pertussis toxin, a soluble protein toxin released by Bordetella pertussis during infection, but the exact mechanisms by which this occurs are still unclear. In this minireview, I discuss the history of clinical and experimental findings on pertussis leukocytosis, possible contributing mechanisms causing this condition and treatments aimed at reducing leukocytosis in hospitalized infants. Since recent studies have detailed significant associations between specific levels of pertussis leukocytosis and fatal outcome, this is a timely review that may stimulate new thinking on how to understand and combat this problem. PMID:27609461
Latus, Joerg; Braun, Niko; Alscher, M Dominik; Kimmel, Martin
2012-01-01
A 76-year-old woman (51 kg, 158 cm, body mass index 20.5) was admitted to the hospital because of an acute kidney injury with hyperkalemia. On admission, she reported progredient muscle weakness of all limbs for several days. Serum potassium level was dramatically elevated and ECG showed QRS with a ‘sine-wave’ pattern and haemodialysis was started. 45 days ago, Hartmann’s operation was done because of stenosing sigmoid diverticulitis. At this time, the serum creatinine was 0.4 mg/dl (‘normal’ 0.5–1.2). Thereafter, she got severe ‘high output-ileostoma’ with severe intestinal fluid losses and treatment with potassium supplementation and spironolactone was started by the surgeons. She was discharged with elevated serum potassium levels and serum creatinine of 1.0 mg/dl (‘normal’ range (0.5–1.2 mg/dl)). This case illustrates impressively the lack of serum creatinine as an ideal kidney function test, because it is depending on muscle mass and there is no interindividual normal range. PMID:22605836
Hondares, Elayne; Rosell, Meritxell; Gonzalez, Frank J; Giralt, Marta; Iglesias, Roser; Villarroya, Francesc
2010-03-03
Plasma FGF21 levels and hepatic FGF21 gene expression increase dramatically after birth in mice. This induction is initiated by suckling, requires lipid intake, is impaired in PPARalpha null neonates, and is mimicked by treatment with the PPARalpha activator, Wy14,643. Neonates exhibit reduced FGF21 expression in response to fasting, in contrast to the upregulation occurring in adults. Changes in FGF21 expression due to suckling or nutritional manipulations were associated with circulating free fatty acid and ketone body levels. We mimicked the FGF21 postnatal rise by injecting FGF21 into fasting neonates, and found that this enhanced the expression of genes involved in thermogenesis within brown fat, and increased body temperature. Brown adipocytes treated with FGF21 exhibited increased expression of thermogenic genes, higher total and uncoupled respiration, and enhanced glucose oxidation. We propose that the induction of FGF21 production by the liver mediates direct activation of brown fat thermogenesis during the fetal-to-neonatal transition. 2010 Elsevier Inc. All rights reserved.
Sea-level rise caused by climate change and its implications for society
MIMURA, Nobuo
2013-01-01
Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609
Rising methane emissions from northern wetlands associated with sea ice decline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less
Rising methane emissions from northern wetlands associated with sea ice decline.
Parmentier, Frans-Jan W; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J; Zhuang, Qianlai; Christensen, Torben R; McGuire, A David
2015-09-16
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH 4 yr -1 higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
Rising methane emissions from northern wetlands associated with sea ice decline
Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; ...
2015-09-10
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less
Rising methane emissions from northern wetlands associated with sea ice decline
Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David
2015-01-01
The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
NASA Astrophysics Data System (ADS)
Yao, Lu; Ma, Shengli; Niemeijer, André R.; Shimamoto, Toshihiko; Platt, John D.
2016-07-01
To examine whether faults can be lubricated by preexisting and newly formed nanoparticles, we perform high-velocity friction experiments on periclase (MgO) nanoparticles and on bare surfaces of Carrara marble cylinders/slices, respectively. Variable temperature conditions were simulated by using host blocks of different thermal conductivities. When temperature rises are relatively low, we observe high friction in nano-MgO tests and unexpected slip strengthening following initial weakening in marble slice tests, suggesting that the dominant weakening mechanisms are of thermal origin. Solely the rolling of nanoparticles without significant temperature rise is insufficient to cause dynamic fault weakening. For nano-MgO experiments, comprehensive investigations suggest that flash heating is the most likely weakening mechanism. In marble experiments, flash heating controls the unique evolutions of friction, and the competition between bulk temperature rise and wear-induced changes of asperity contact numbers seems to strongly affect the efficiency of flash heating.
Rising methane emissions from northern wetlands associated with sea ice decline
Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David
2015-01-01
Abstract The Arctic is rapidly transitioning toward a seasonal sea ice‐free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process‐based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high‐latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice‐induced, autumn‐focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions. PMID:27667870
Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE
Russell, P.; Thomas, N.; Byrne, S.; Herkenhoff, K.; Fishbaugh, K.; Bridges, N.; Okubo, C.; Milazzo, M.; Daubar, I.; Hansen, C.; McEwen, A.
2008-01-01
North-polar temporal monitoring by the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars has discovered new, dramatic examples that Mars1 CO2-dominated seasonal volatile cycle is not limited to quiet deposition and sublimation of frost. In early northern martian spring, 2008, HiRISE captured several cases of CO2 frost and dust cascading down a steep, polar scarp in discrete clouds. Analysis of morphology and process reveals these events to be similar to terrestrial powder avalanches, sluffs, and falls of loose, dry snow. Potential material sources and initiating mechanisms are discussed in the context of the Martian polar spring environment and of additional, active, aeolian processes observed on the plateau above the scarp. The scarp events are identified as a trigger for mass wasting of bright, fractured layers within the basal unit, and may indirectly influence the retreat rate of steep polar scarps in competing ways. Copyright 2008 by the American Geophysical Union.
Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.
Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich
2018-02-20
Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.
Projecting Future Sea Level Rise for Water Resources Planning in California
NASA Astrophysics Data System (ADS)
Anderson, J.; Kao, K.; Chung, F.
2008-12-01
Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise that account for this acceleration are needed. One such method is an empirical relationship between air temperatures and global sea levels. The air temperature-sea level rise relationship was applied to the 12 climate change projections selected by the California Climate Action Team to estimate future sea levels. The 95% confidence level developed from the historical data was extrapolated to estimate the uncertainties in the future projections. To create sea level rise trend probability distributions, a lognormal probability distribution and a generalized extreme value probability distribution are used. Parameter estimations for these distributions are subjective and inevitably involve uncertainties, which will be improved as more research is conducted in this area.
Future sea level rise constrained by observations and long-term commitment.
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-03-08
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.
Future sea level rise constrained by observations and long-term commitment
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-01-01
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648
The social values at risk from sea-level rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au; Barnett, Jon, E-mail: jbarn@unimelb.edu.au; Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au
Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values frommore » within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.« less
Modern Attitudes Toward Older Adults in the Aging World: A Cross-Cultural Meta-Analysis.
North, Michael S; Fiske, Susan T
2015-09-01
Prevailing beliefs suggest that Eastern cultures hold older adults in higher esteem than Western cultures do, due to stronger collectivist traditions of filial piety. However, in modern, industrialized societies, the strain presented by dramatic rises in population aging potentially threatens traditional cultural expectations. Addressing these competing hypotheses, a literature search located 37 eligible papers, comprising samples from 23 countries and 21,093 total participants, directly comparing Easterners and Westerners (as classified per U.N. conventions) in their attitudes toward aging and the aged. Contradicting conventional wisdom, a random-effects meta-analysis on these articles found such evaluations to be more negative in the East overall (standardized mean difference = -0.31). High heterogeneity in study comparisons suggested the presence of moderators; indeed, geographical region emerged as a significant moderating factor, with the strongest levels of senior derogation emerging in East Asia (compared with South and Southeast Asia) and non-Anglophone Europe (compared with North American and Anglophone Western regions). At the country level, multiple-moderator meta-regression analysis confirmed recent rises in population aging to significantly predict negative elder attitudes, controlling for industrialization per se over the same time period. Unexpectedly, these analyses also found that cultural individualism significantly predicted relative positivity-suggesting that, for generating elder respect within rapidly aging societies, collectivist traditions may backfire. The findings suggest the importance of demographic challenges in shaping modern attitudes toward elders-presenting considerations for future research in ageism, cross-cultural psychology, and even economic development, as societies across the globe accommodate unprecedented numbers of older citizens. (c) 2015 APA, all rights reserved).
The Great Diversion: Danube Delta under Human Control (Invited)
NASA Astrophysics Data System (ADS)
Giosan, L.
2009-12-01
Many deltas around the world are suffering from sediment deficits that render them unstable to current and predicted rates of sea level rise. One solution proposed to alleviate the complete or partial drowning of such deltas is the use of river diversions to increase the quantity of sediment supplied to the delta plain to support marsh accretion. We examine the results of a half century old program of diversion in the Danube delta that led to the creation of an extensive diversion channel network akin in scope and size to a natural deltaic network. Danube’s importance as a shipping route increased after the Crimean War in the 1850s; the European Danube Commission was charged with maintaining the Sulina distributary as a shipping channel until 1940s. In the same period, several canals were dug to aid fishing in lakes and bring freshwater to brackish lagoons. After World War II, Communist authorities dramatically increased the number of canals for fishing, fish-farming and reed harvesting. New data on sedimentation rates and estimates of sediment fluxes suggest that the intensive canalization in the second half of the 20th Century led to increased sediment deposition that compensated the decreasing sediment discharge linked to damming within the internal fluvial part of the delta; however, the external marine delta has become increasingly sediment starved during the same interval. We emphasize the similarities and contrasts between the “human-controlled” and natural deltaic channel networks of the Danube delta and discuss the sustainability of the delta as a sediment budget problem within a sea level rise context.
Leucocyte protein Trojan, a possible regulator of apoptosis.
Petrov, Petar; Syrjänen, Riikka; Uchida, Tatsuya; Vainio, Olli
2017-02-01
Trojan is a leucocyte-specific protein, cloned from chicken embryonic thymocyte cDNA library. The molecule is a type I transmembrane protein with an extracellular CCP domain, followed by two FN3 domains. Its cytoplasmic tail is predicted to possess a MAPK docking and a PKA phosphorylation sites. Trojan has been proposed to have an anti-apoptotic role based on its differential expression on developing thymocyte subpopulations. Using a chicken cell line, our in vitro studies showed that upon apoptosis induction, Trojan expression rises dramatically on the surface of surviving cells and gradually decreases towards its normal levels as cells recover. When sorted based on their expression levels of Trojan, cells with high expression appeared less susceptible to apoptotic induction than those bearing no or low levels of Trojan on their surface. The mechanism by which the molecule exerts its function is yet to be discovered. We found that cells overexpressing Trojan from a cDNA plasmid show elevated steady-state levels of intracellular calcium, suggesting the molecule is able to transmit cytoplasmic signals. The mechanistic nature of Trojan-induced signalling is a target of future investigation. In this article, we conducted a series of experiments that suggest Trojan as an anti-apoptotic regulator. © 2016 APMIS. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
White, J. W. C.; Michel, S. E.; Vaughn, B. H.; Miller, J. B.; Masarie, K. A.; Dlugokencky, E. J.; Sherwood, O.; Tans, P. P.
2015-12-01
Methane is increasing again in the atmosphere after nearly a decade of stable concentrations. As methane has risen by 2.5 times since the beginning of the industrial era, such a rise in concentrations is not surprising. Carbon isotopes, however, make it clear that the recent rise is not simply a resumption of the dramatic rise in the 1900s, but that other causes are at play, and that multiple fluxes may be interacting to yield the observed rise. At the same time, cautious attention is focused on the Arctic, where vast stores of carbon are poised for release as frozen soils melt, and some of that carbon will be released as methane. These realities make it imperative that we improve our monitoring of methane and methane isotopes in the atmosphere. This talk will address the issues that we face in meeting this challenge in the NOAA Global Greenhouse Gas Reference Network, including targets for precision and accuracy needed to calculate regional and global fluxes, technological advances in analytical equipment, maintaining standards, ensuring adequate monitoring sites and meeting all of these needs in an era of funding cuts and uncertainty for environmental monitoring.
Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin
NASA Astrophysics Data System (ADS)
Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel
2014-05-01
The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin. Analysis of historical annual precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern largest eruptions and corresponding annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. The atmospheric effect of the volcanic aerosol cloud produced after the Mt. Pinatubo eruption shows responses in the climate system on a hemispherical to global scale. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene period at a rate that persisted throughout the last glacial-interglacial cycle, though with large variations in the mean. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the Last Glacial Maximum. The terraces were compared with a dated time series of volcanogenic sulfate from the GISP2 ice core, and similar numbers of sulfate concentration peaks and shore terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the heights of the terraces. This correlation may indicate a link between the explosivity of past eruptions, the magnitude of stratospheric injection, and their impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events, albeit rare because of their vulnerability and short longevity, provide an important demonstration of global climatic teleconnections.
Sea-level rise caused by climate change and its implications for society.
Mimura, Nobuo
2013-01-01
Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).
NASA Astrophysics Data System (ADS)
Kononenko, Taras V.; Freitag, Christian; Sovyk, Dmitry N.; Lukhter, Alexander B.; Skvortsov, Konstantin V.; Konov, Vitaly I.
2018-04-01
Percussion drilling of a Ti-based alloy with 8 ps laser pulses was investigated with emphasis on the influence of the pulse repetition rate (1-300 kHz) on the drilling process. Heat accumulation is found to be responsible for simultaneous significant rise of the average drilling rate, the occurrence of a rim around the hole entrance, as well as noticeable surface oxidation. This can be observed as soon as the repetition rate exceeds a certain critical value, which depends on the pulse energy applied. Dramatic rise of the recast layer thickness inside the growing hole was revealed for the limited range of the repetition rates around the lower boundary of the heat accumulation regime. Possible origins of this phenomenon are discussed.
Possible relation of water structural relaxation to water anomalies
Mallamace, Francesco; Corsaro, Carmelo; Stanley, H. Eugene
2013-01-01
The anomalous behavior of thermodynamic response functions is an unsolved problem in the physics of water. The mechanism that gives rise to the dramatic indefinite increase at low temperature in the heat capacity, the compressibility, and the coefficient of thermal expansion, is unknown. We explore this problem by analyzing both new and existing experimental data on the power spectrum S(Q, ω) of bulk and confined water at ambient pressure. When decreasing the temperature, we find that the liquid undergoes a structural transformation coinciding with the onset of an extended hydrogen bond network. This network onset seems to give rise to the marked viscoelastic behavior, consistent with the interesting possibility that the sound velocity and response functions of water depend upon both the frequency and wave vector. PMID:23483053
Zahran, Sammy; Laidlaw, Mark A S; Rowe, Dominic B; Ball, Andrew S; Mielke, Howard W
2017-02-01
The age standardized death rate from motor neuron disease (MND) for persons 40-84 years of age in the Australian States of New South Wales, Victoria, and Queensland increased dramatically from 1958 to 2013. Nationally, age-specific MND death rates also increased over this time period, but the rate of the rise varied considerably by age-group. The historic use of lead (Pb) additives in Australian petrol is a candidate explanation for these trends in MND mortality (International Classification of Disease (ICD)-10 G12.2). Leveraging temporal and spatial variation in petrol lead exposure risk resulting from the slow rise and rapid phase-out of lead as a constituent in gasoline in Australia, we analyze relationships between (1) national age-specific MND death rates in Australia and age-specific lifetime petrol lead exposure, (2) annual between-age dispersions in age-specific MND death rates and age-specific lifetime petrol lead exposure; and (3) state-level age-standardized MND death rates as a function of age-weighted lifetime petrol lead exposure. Other things held equal, we find that a one percent increase in lifetime petrol lead exposure increases the MND death rate by about one-third of one percent in both national age-specific and state-level age-standardized models of MND mortality. Lending support to the supposition that lead exposure is a driver of MND mortality risk, we find that the annual between-age group standard deviation in age-specific MND death rates is strongly correlated with the between-age standard deviation in age-specific lifetime petrol lead exposure. Legacy petrol lead emissions are associated with age-specific MND death rates as well as state-level age-standardized MND death rates in Australia. Results indicate that we are approaching peak lead exposure-attributable MND mortality. Copyright © 2016 Elsevier Inc. All rights reserved.
Analysis of global impacts of sea-level rise: a case study of flooding
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.
Analysis of the response to climate change and sea-level rise requires a link from climate change science to the resulting impacts and their policy implications. This paper explores the impacts of sea-level rise, particularly increased coastal flooding due to storm surges. In particular, it asks the simple question “how much will projected global sea-level rise exacerbate coastal flood problems, if ignored?” This is an important question to the intergovernmental process considering climate change. Further many countries presently ignore sea-level rise in long-term coastal planning, even though global sea levels are presently slowly rising. Using the model of Nicholls et al. [Global Environmental Change 9 (1999) S69], the analysis considers the flood impacts of sea-level rise on an “IS92a world” based on a consistent set of scenarios of global-mean sea-level rise, subsidence (where appropriate), coastal population change (usually increase), and flood defence standards (derived from GDP/capita). Two of the protection scenarios consider the possible upgrade of flood defences, but no allowance for global-mean sea-level rise is allowed to ensure consistency with the question being investigated. This model has been validated against national- and regional-scale assessments indicating that the relative results are reasonable, and the absolute results are of the right order of magnitude. The model estimates that 10 million people experienced flooding annually in 1990. It also predicts that the incidence of flooding will change without sea-level rise due to changes to the other three factors. Taking the full range of scenarios considered by 2100 the number of people flooded could be from 0.4 to 39 million/year. All the sea-level rise scenarios would cause an increase in flooding during the 21st century if measures to adapt to sea-level rise are not taken. However, there are significant uncertainties and the number of people who are estimated to experience flooding in 2100 is 16-388 million for the mid (55-cm) global-mean sea-level rise scenarios, and up to 510 million people/year for the high (96-cm) scenario. These results suggest that sea-level rise could be a significant problem if it is ignored, and hence it needs to be considered within the policy process considering climate change in terms of mitigation (reducing greenhouse gas emissions) and adaptation (improved coastal management and planning) needs.
Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.
Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun
2015-05-01
The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... rise to the level of imminent jeopardy? 1000.363 Section 1000.363 Indians OFFICE OF THE ASSISTANT... Trust Evaluations § 1000.363 What if the trust evaluation reveals problems that do not rise to the level of imminent jeopardy? Where problems not rising to the level of imminent jeopardy are caused by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... rise to the level of imminent jeopardy? 1000.363 Section 1000.363 Indians OFFICE OF THE ASSISTANT... Trust Evaluations § 1000.363 What if the trust evaluation reveals problems that do not rise to the level of imminent jeopardy? Where problems not rising to the level of imminent jeopardy are caused by...
2007-07-23
or more days) were at 4.5 times greater risk of obesity compared to those who regularly consumed breakfast . Although total energy intake by meal was...promotes continuing weight loss: Preliminary results of a cognitive-behavioral decision-based treatment for obesity . Journal of Consulting...Sbrocco, Ph.D. Associate Professor Department of Medical and Clinical Psychology Given the dramatic rise in obesity and related disorders, it is
Drug-induced iatrogenic intraparenchymal hemorrhage.
Lapsiwala, Samir; Moftakhar, Roham; Badie, Behnam
2002-07-01
Intracerebral hemorrhage is bleeding into the brain parenchyma with possible extension into the ventricles and subarachnoid space. Each year, approximately 37,000 to 52,400 people suffer from intraparenchymal hemorrhage (IPH) in the United States. This rate is expected to rise dramatically in the next few decades as a result of the increasing age of the population and a change in racial demographics. IPH accounts for 8% to 13% of all stroke cases and is associated with the highest mortality rate.
Saving our backs: safe patient handling and mobility for home care.
Beauvais, Audrey; Frost, Lenore
2014-01-01
Predicted work-related injuries for nurses and home healthcare workers are on the rise given the many risk factors in the home environment and the escalating demands for home healthcare workers in the United States. Fortunately, safe patient handling and mobility programs can dramatically decrease injuries. Despite strides being made to promote safe patient handling and mobility programs in acute care, more can be done to establish such initiatives in the home care setting.
Skirt clouds associated with the soufriere eruption of 17 april 1979.
Barr, S
1982-06-04
A fortuitous and dramatic photograph of the Soufriere eruption column of 17 April 1979 displays a series of highly structured skirt clouds. The gentle distortion of thin, quasi-horizontal layers of moist air has been documented in meteorological situations. It is proposed that at St. Vincent subhorizontal layers of moist air were intensely deformed by the rapidly rising eruption column and were carried to higher altitudes, where they condensed to form the skirt clouds.
Beyond the Wall: Chinese Far Seas Operations (China Maritime Study, Number 13)
2015-05-01
the most significant resource is energy. Asian oil consumption has risen far more quickly than that of any other region in the world, growing from...17 percent of global daily consumption in 1983 to 31 percent by 2009. China in particular has seen its dependence on foreign oil rise dramatically...since it became a net importer of oil in 1993. Another emerging economy, India, has also experienced fast growth in consumption of foreign oil . The
Acute effects of a glucose energy drink on behavioral control.
Howard, Meagan A; Marczinski, Cecile A
2010-12-01
There has been a dramatic rise in the consumption of glucose energy drinks (e.g., Amp, Monster, and Red Bull) in the past decade, particularly among high school and college students. However, little laboratory research has examined the acute objective and subjective effects of energy drinks. The purpose of this study was to investigate the acute effects of a glucose energy drink (Red Bull) on cognitive functioning. Participants (N = 80) were randomly assigned to one of five conditions: 1.8 ml/kg energy drink, 3.6 ml/kg energy drink, 5.4 ml/kg energy drink, placebo beverage, or no drink. Participants completed a well-validated behavioral control task (the cued go/no-go task) and subjective measures of stimulation, sedation, and mental fatigue both before and 30 minutes following beverage administration. The results indicated that compared with the placebo and no drink conditions, the energy drink doses decreased reaction times on the behavioral control task, increased subjective ratings of stimulation and decreased ratings of mental fatigue. Greatest improvements in reaction times and subjective measures were observed with the lowest dose and improvements diminished as the dose increased. The findings suggest that energy drink consumption can improve cognitive performance on a behavioral control task, potentially explaining the dramatic rise in popularity of these controversial new beverages. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.
2015-11-17
In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by 2110.
Sea level rise with warming above 2 degree
NASA Astrophysics Data System (ADS)
Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John
2017-04-01
Holding the increase in the global average temperature to below 2 °C above pre-industrial levels, and pursuing efforts to limit the temperature increase to 1.5 °C, has been agreed by the representatives of the 196 parties of United Nations, as an appropriate threshold beyond which climate change risks become unacceptably high. Sea level rise is one of the most damaging aspects of warming climate for the more than 600 million people living in low-elevation coastal areas less than 10 meters above sea level. Fragile coastal ecosystems and increasing concentrations of population and economic activity in coastal areas, are reasons why future sea level rise is one of the most damaging aspects of the warming climate. Furthermore, sea level is set to continue to rise for centuries after greenhouse gas emissions concentrations are stabilised due to system inertia and feedback time scales. Impact, risk, adaptation policies and long-term decision making in coastal areas depend on regional and local sea level rise projections and local projections can differ substantially from the global one. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 degree goal. A warming of 2°C makes global ocean rise on average by 20 cm, but more than 90% of coastal areas will experience greater rises, 40 cm along the Atlantic coast of North America and Norway, due to ocean dynamics. If warming continues above 2°C, then by 2100 sea level will rise with speeds unprecedented throughout human civilization, reaching 0.9 m (median), and 80% of the global coastline will exceed the global ocean sea level rise upper 95% confidence limit of 1.8 m. Coastal communities of rapidly expanding cities in the developing world, small island states, and vulnerable tropical coastal ecosystems will have a very limited time after mid-century to adapt to sea level rises.
Nanotechnology in corneal neovascularization therapy--a review.
Gonzalez, Lilian; Loza, Raymond J; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo; Chang, Jin-Hong
2013-03-01
Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods. The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play.
Lou, Cai-Rong; Liu, Hong-Yu; Li, Yu-Feng; Li, Yu-Ling
2016-01-01
Recent studies in PM2.5 sources show that anthropogenic emissions are the main contributors to haze pollution. Due to their essential roles in establishing policies for improving air quality, socioeconomic drivers of PM2.5 levels have attracted increasing attention. Unlike previous studies focusing on the annual PM2.5 concentration (Cyear), this paper focuses on the accumulation phase of PM2.5 during the pollution episode (PMAE) in the Yangtze River Delta in China. This paper mainly explores the spatial variations of PMAE and its links to the socioeconomic factors using a geographical detector and simple linear regression. The results indicated that PM2.5 was more likely to accumulate in more developed cities, such as Nanjing and Shanghai. Compared with Cyear, PMAE was more sensitive to socioeconomic impacts. Among the twelve indicators chosen for this study, population density was an especially critical factor that could affect the accumulation of PM2.5 dramatically and accounted for the regional difference. A 1% increase in population density could cause a 0.167% rise in the maximal increment and a 0.214% rise in the daily increase rate of PM2.5. Additionally, industry, energy consumption, and vehicles were also significantly associated with PM2.5 accumulation. These conclusions could serve to remediate the severe PM2.5 pollution in China. PMID:27669272
ERIC Educational Resources Information Center
Philadelphia School District, PA. Office of Early Childhood Programs.
This handbook on creative dramatics at the elementary school level is primarily intended to assist the teacher who already has some training in creative dramatics. The handbook contains sections on (1) the philosophy and objectives of the program, including a discussion of an affective curriculum; (2) definitions of key concepts, including general…
Sea-level rise in New Jersey over the past 5000 years: Implications to anthropogenic changes
Miller, Kenneth G.; Sugarman, Peter J.; Browning, James V.; Horton, Benjamin P.; Stanley, Alissa; Kahn, Alicia; Uptegrove, Jane; Aucott, Michael
2009-01-01
We present a mid to late Holocene sea-level record derived from drilling the New Jersey coast that shows a relatively constant rise of 1.8??mm/yr from ~ 5000 to 500 calibrated calendar years before present (yrBP). This contrasts with previous New Jersey estimates that showed only 0.5??mm/yr rise since 2000??yrBP. Comparison with other Mid-Atlantic sea-level records (Delaware to southern New England) indicates surprising uniformity considering different proximities to the peripheral bulge of the Laurentide ice sheet, with a relative rise throughout the region of ~ 1.7-1.9??mm/yr since ~ 5000??yrBP. This regional sea-level rise includes both: 1) global sea-level (eustatic) rise; and 2) far-field geoidal subsidence (estimated as ~ 0.8-1.4??mm/yr today) due to removal of the Laurentide ice sheet and water loading. Correcting for geoidal subsidence, the U.S. east coast records suggest a global sea-level (eustatic) rise of ~ 0.4-1.0??mm/yr (with a best estimate of 0.7 ?? 0.3??mm/yr) since 5000??yrBP. Comparison with other records provides a best estimate of pre-anthropogenic global sea-level rise of < 1.0??mm/yr from 5000 until ~ 200??yrBP. Tide gauge data indicate a 20th century rate of eustatic rise of 1.8??mm/yr, whereas both tide gauge and satellite data suggest an increase in the rate of rise to ~ 3.3??mm/yr from 1993-2006 AD. This indicates that the modern rise (~ 3.3??mm/yr) is significantly higher than the pre-anthropogenic rise (0.7 ?? 0.3??mm/yr). ?? 2008 Elsevier B.V. All rights reserved.
Coastal sea level rise with warming above 2 °C
Jevrejeva, Svetlana; Jackson, Luke P.; Riva, Riccardo E. M.; Grinsted, Aslak; Moore, John C.
2016-01-01
Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This “2 °C” threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age. PMID:27821743
Coastal sea level rise with warming above 2 °C.
Jevrejeva, Svetlana; Jackson, Luke P; Riva, Riccardo E M; Grinsted, Aslak; Moore, John C
2016-11-22
Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This "2 °C" threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age.
NASA Astrophysics Data System (ADS)
Shin, J.; Kim, K.-H.; Lee, K.-K.
2012-04-01
Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea level rising. Since relatively flat seashores where the slope is less than 1-2 degrees are much more common in Korea, it is expected that the quantity of fresh groundwater storage in most of the coastal region in Korea will be greatly reduced with sea level rise. Acknowledgement: This study is financially supported by BK21.
The complex reality of sea-level rise in an atoll nation
NASA Astrophysics Data System (ADS)
Donner, S. D.
2012-12-01
Sea-level rise famously poses an existential threat to island nations like Kiribati, Tuvalu and the Maldives. Yet as the global mean sea-level rises, the response of any one location at any given time will depend on the natural variability in regional sea-level and other impact of local human activities on coastal processes. As with climate warming, the state of an individual shoreline or the extent of flooding on a given day is not proof of a sea-level trend, nor is a global sea-level trend a good predictor of individual flooding or erosion events. Failure to consider the effect of natural variability and local human activity on coastal processes often leads to misattribution of flooding events and even some long-term shoreline changes to global sea level rise. Moreover, unverified attribution of individual events or changes to specific islets to sea level rise can inflame or invite scepticism of the strong scientific evidence for an accelerating increase in the global sea level due to the impacts of human activity on the climate system. This is particularly important in developing nations like Kiribati, which are depending on international financial support to adapt to rising sea levels. In this presentation, I use gauge data and examples from seven years of field work in Tarawa Atoll, the densely populated capital of Kiribati, to examine the complexity of local sea level and shoreline change in one of the world's most vulnerable countries. First, I discuss how the combination of El Nino-driven variability in sea-level and the astronomical tidal cycle leads to flooding and erosion events which can be mistaken for evidence of sea-level rise. Second, I show that human modification to shorelines has redirected sediment supply, leading, in some cases, to expansion of islets despite rising sea levels. Taken together, the analysis demonstrates the challenge of attributing particular coastal events to global mean sea-level rise and the impact on decision-making. The presentation concludes with a discussion of the implications for attribution research, discourse about sea-level rise, and adaptation planning.
Payne, Dorothy F.
2010-01-01
Saltwater intrusion of the Upper Floridan aquifer has been observed in the Hilton Head area, South Carolina since the late 1970s and currently affects freshwater supply. Rising sea level in the Hilton Head Island area may contribute to the occurrence of and affect the rate of saltwater intrusion into the Upper Floridan aquifer by increasing the hydraulic gradient and by inundating an increasing area with saltwater, which may then migrate downward into geologic units that presently contain freshwater. Rising sea level may offset any beneficial results from reductions in groundwater pumpage, and thus needs to be considered in groundwater-management decisions. A variable-density groundwater flow and transport model was modified from a previously existing model to simulate the effects of sea-level rise in the Hilton Head Island area. Specifically, the model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004) and evaluate the conceptual model, (2) project these trends from the present day into the future based on different potential rates of sea-level change, and (3) evaluate the relative influences of pumpage and sea-level rise on saltwater intrusion. Four scenarios were simulated for 2004-2104: (1) continuation of the estimated sea-level rise rate over the last century, (2) a doubling of the sea-level rise, (3) a cessation of sea-level rise, and (4) continuation of the rate over the last century coupled with an elimination of all pumpage. Results show that, if present-day (year 2004) pumping conditions are maintained, the extent of saltwater in the Upper Floridan aquifer will increase, whether or not sea level continues to rise. Furthermore, if all pumpage is eliminated and sea level continues to rise, the simulated saltwater extent in the Upper Floridan aquifer is reduced. These results indicate that pumpage is a strong driving force for simulated saltwater intrusion, more so than sea-level rise at current rates. However, results must be considered in light of limitations in the model, including, but not limited to uncertainty in field data, the conceptual model, the physical properties and representation of the hydrogeologic framework, and boundary and initial conditions, as well as uncertainty in future conditions, such as the rate of sea-level rise.
Comment [on “Sea level rise shown to drive coastal erosion”
Pilkey, Orrin H.; Young, Robert S.; Bush, David M.
2000-01-01
Leatherman et al. [2000] (Eos, Trans., AGU, February 8, 2000, p.55) affirm that global eustatic sea-level rise is driving coastal erosion. Furthermore, they argue that the long-term average rate of shoreline retreat is 150 times the rate of sea-level rise. This rate, they say, is more than a magnitude greater than would be expected from a simple response to sea-level rise through inundation of the shoreline. We agree that sea-level rise is the primary factor causing shoreline retreat in stable coastal areas.This is intuitive. We also believe, however, that the Leatherman et al. [2000] study has greatly underestimated the rate of coastal recession along most low slope shorelines. Slopes along the North Carolina continental shelf/coastal plain approach 10,000:1. To us, this suggests that we should expect rates of shoreline recession 10,000 times the rate of sea-level rise through simple inundation of the shoreline.
Olszynko-Gryn, Jesse
2017-09-01
This article uses the case of pregnancy testing in Britain to investigate the process whereby new and often controversial reproductive technologies are made visible and normalized in mainstream entertainment media. It shows how in the 1980s and 1990s the then nascent product placement industry was instrumental in embedding pregnancy testing in British cinema and television's dramatic productions. In this period, the pregnancy-test close-up became a conventional trope and the thin blue lines associated with Unilever's Clearblue rose to prominence in mainstream consumer culture. This article investigates the aestheticization of pregnancy testing and shows how increasingly visible public concerns about 'schoolgirl mums', abortion and the biological clock, dramatized on the big and small screen, propelled the commercial rise of Clearblue. It argues that the Clearblue close-up ambiguously concealed as much as it revealed; abstraction, ambiguity and flexibility were its keys to success.
Basu, Sandip; Abhyankar, Amit
2014-12-01
This report describes a case of extensive diffuse bone marrow involvement with bilateral breast metastases from duodenal neuroendocrine tumor giving rise to a superscan-like appearance on somatostatin receptor-targeted (99m)Tc-hydrazinonicotinamide-TOC scintigraphy. The metastatic lesions demonstrated partial concordance with (18)F-FDG PET/CT findings, signifying varying tumor biology and heterogeneity among metastatic lesions in the same individual, as illustrated with a dual-tracer approach. There was a dramatic symptomatic and biochemical response and better health-related quality of life with a single fraction of peptide receptor radionuclide therapy with (177)Lu-DOTATATE, and radiologically there was stable disease at that point. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
[Urinary tract infections in the elderly].
Becher, Klaus Friedrich; Klempien, Ingo; Wiedemann, Andreas
2015-10-01
Acute infection of the urinary tract is one of the most commonly encountered bacterial infections in the frail elderly population and is responsible for substantial morbidity and recurrent infections with antibiotic resistance. Although generally considered to be self-limiting without treatment or easily treated with a short antibiotic regime, urinary tract infections (UTIs) often have a dramatic history, associated with incomplete resolution and frequent recurrence. The biological complexity of the infections combined with a dramatic rise in antibiotic-resistant pathogens highlight the need for an anticipating strategy for therapy necessary for a rapid recovery. The first crucial step is the classification in asymptomatic bacteriuria or complicated pyelonephritis, on which the decision for the intensity of treatment and diagnostic effort is based. For the selection of empiric antibiotic therapy, knowledge about the predominant uropathogens as well as local resistance patterns is important. In this manner, most urinary tract infections in the elderly can be treated without greater expense.
NASA Astrophysics Data System (ADS)
Quinn, N.; Bates, P. D.; Siddall, M.
2013-12-01
The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution presented in this research, while the larger, low probability scenarios beyond this level are estimated to contribute a residual annual risk of approximately £0.45 million. These findings clearly demonstrate that uncertainty in future sea level rise is a vital component of coastal flood risk, and therefore, needs to be accounted for by decision makers when considering mitigation policies related to coastal flooding.
Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress
Chen, Jianmin; Herrup, Karl
2012-01-01
Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H2O2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD. PMID:22413000
Hsieh, S L; Kuo, C-M
2005-05-01
Desaturation of fatty acids is an important adaptation mechanism for fish to maintain membrane fluidity under thermal stress. To comprehend the temperature adaptation mechanism in fish, we investigated the difference in the changes of stearoyl-CoA desaturase expression and fatty acid composition between milkfish and grass carp under cold acclimation. We find that in both fish the proportions of unsaturated fatty acids at 15 degrees C are all higher than those at 25 degrees C. In milkfish Delta(9)-desaturation index (ratios of 16:1/16:0 and 18:1/18:0) increases significantly in the beginning of cold acclimation at 15 degrees C and decreases afterward, but in grass carp it increases slightly in the beginning of cold acclimation followed by a sustained dramatic increase. Similarly, activity of stearoyl-CoA desaturase in milkfish increases significantly in the beginning, peaks at day 4, and then decreases constantly, but in grass carp it increases gradually in the first week, rises dramatically afterward, and then maintains a very high level. The change of stearoyl-CoA desaturase activity is parallel to the change of Delta(9)-desaturation index in both milkfish and grass carp, but it is one day earlier than Delta(9)-desaturation index in milkfish. The difference of adaptation capability between milkfish and grass carp under cold stress is further evidenced by RT-PCR and Northern blot analysis of stearoyl-CoA desaturase gene expression.
Doubling of coastal flooding frequency within decades due to sea-level rise
Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.
2017-01-01
Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.
Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008
NASA Technical Reports Server (NTRS)
2008-01-01
Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant area of rising sea levels in the North Atlantic where sea levels are usually low. This large pool of rapidly rising warm water is evidence of a major change in ocean circulation. It signals a slow down in the sub-polar gyre, a counter-clockwise system of currents that loop between Ireland, Greenland and Newfoundland. Such a change could have an impact on climate since the sub-polar gyre may be connected in some way to the nearby global thermohaline circulation, commonly known as the global conveyor belt. This is the slow-moving circulation in which water sinks in the North Atlantic at different locations around the sub-polar gyre, spreads south, travels around the globe, and slowly up-wells to the surface before returning around the southern tip of Africa. Then it winds its way through the surface currents in the Atlantic and eventually comes back to the North Atlantic. It is unclear if the weakening of the North Atlantic sub-polar gyre is part of a natural cycle or related to global warming. This image was made possible by the detailed record of sea surface height measurements begun by Topex/Poseidon and continued by Jason-1. The recently launched Ocean Surface Topography Mission on the Jason-2 satellite (OSTM/Jason-2) will soon take over this responsibility from Jason-1. The older satellite will move alongside OSTM/Jason-2 and continue to measure sea surface height on an adjacent ground track for as long as it is in good health. Topex/Poseidon and Jason-1 are joint missions of NASA and the French space agency, CNES. OSTM/Jason-2 is collaboration between NASA; the National Oceanic and Atmospheric Administration; CNES; and the European Organisation for the Exploitation of Meteorological Satellites. JPL manages the U.S. portion of the missions for NASA's Science Mission Directorate, Washington, D.C.Tidal wetland stability in the face of human impacts and sea-level rise.
Kirwan, Matthew L; Megonigal, J Patrick
2013-12-05
Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.
The Role of the Department of Defense (DoD) in Solar Energy Research, Development and Diffusion
2008-06-01
calculation: 103M gallons x $13.68 (total ownership cost) = $1.4B. 3 Another cost consideration that could be taken into account are the causalities... ownership cost of $1.4B will rise dramatically. 41 • Static structure, no moving parts; hence, no noise. • Longer life with little maintenance because of...instrument in DoD’s energy portfolio for the future. b. Solar vs . Wind: A Further Comparison In 2006, Detronics Limited, a company in Ontario, Canada
2014-06-13
rising China signals a major shift in the balance of power, and this has long-term and complex ramifications on Asia’s strategic calculus . However...in support of belligerent actions on its neighbors. Either way, it shifts the strategic calculus for ASEAN dramatically. The second assumption is...and Security Policy, and Conflict Resolution: The Future of European (and Global?) Security” (Paper presented at EUSA’s 8th Biennial International
Many atolls may be uninhabitable within decades due to climate change
Storlazzi, Curt; Elias, Edwin P.L.; Berkowitz, Paul
2015-01-01
Observations show global sea level is rising due to climate change, with the highest rates in the tropical Pacific Ocean where many of the world’s low-lying atolls are located. Sea-level rise is particularly critical for low-lying carbonate reef-lined atoll islands; these islands have limited land and water available for human habitation, water and food sources, and ecosystems that are vulnerable to inundation from sea-level rise. Here we demonstrate that sea-level rise will result in larger waves and higher wave-driven water levels along atoll islands’ shorelines than at present. Numerical model results reveal waves will synergistically interact with sea-level rise, causing twice as much land forecast to be flooded for a given value of sea-level rise than currently predicted by current models that do not take wave-driven water levels into account. Atolls with islands close to the shallow reef crest are more likely to be subjected to greater wave-induced run-up and flooding due to sea-level rise than those with deeper reef crests farther from the islands’ shorelines. It appears that many atoll islands will be flooded annually, salinizing the limited freshwater resources and thus likely forcing inhabitants to abandon their islands in decades, not centuries, as previously thought.
NASA Astrophysics Data System (ADS)
Sandi, Steven G.; Rodríguez, José F.; Saintilan, Neil; Riccardi, Gerardo; Saco, Patricia M.
2018-04-01
Coastal wetlands are vulnerable to submergence due to sea-level rise, as shown by predictions of up to 80% of global wetland loss by the end of the century. Coastal wetlands with mixed mangrove-saltmarsh vegetation are particularly vulnerable because sea-level rise can promote mangrove encroachment on saltmarsh, reducing overall wetland biodiversity. Here we use an ecogeomorphic framework that incorporates hydrodynamic effects, mangrove-saltmarsh dynamics, and soil accretion processes to assess the effects of control structures on wetland evolution. Migration and accretion patterns of mangrove and saltmarsh are heavily dependent on topography and control structures. We find that current management practices that incorporate a fixed gate for the control of mangrove encroachment are useful initially, but soon become ineffective due to sea-level rise. Raising the gate, to counteract the effects of sea level rise and promote suitable hydrodynamic conditions, excludes mangrove and maintains saltmarsh over the entire simulation period of 100 years
Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F
2016-08-16
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.
Hood, Rachel D.; Higgins, Sean A.; Flamholz, Avi; Nichols, Robert J.
2016-01-01
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3′-diphosphate 5′-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247
Population challenges for Bangladesh in the coming decades.
Streatfield, Peter Kim; Karar, Zunaid Ahsan
2008-09-01
Bangladesh currently has a population approaching 150 million and will add another 100 million before stabilizing, unless fertility can soon drop below replacement level. This level of fertility decline will require a change in marriage patterns, which have been minimal so far, even with increasing female schooling. It would also benefit from a long-awaited shift to long-term contraception. In addition to the consequence of huge population size, the density of population is already five times that of any other 'mega' country (> 100 million), a very challenging situation for an agricultural society. Most of the future growth will be urban, increasingly in slums. Numbers of young people will not increase, but numbers of older people will increase 10-fold this century, creating a large burden on the health system, especially for chronic illnesses. High density of population means that agricultural land is virtually saturated, with very limited capacity to expand food production. Climate change may have dramatic impacts on agriculture, through flooding and drought resulting from weather changes and geopolitical influences on transborder rivers. Rising sea-levels and consequent salinity will affect crops and require shifts to alternative land use. Serious long-term planning is needed for meeting the growing needs of the population, both for distribution and consumption.
Population Challenges for Bangladesh in the Coming Decades
Streatfield, Peter Kim; Karar, Zunaid Ahsan
2008-01-01
Bangladesh currently has a population approaching 150 million and will add another 100 million before stabilizing, unless fertility can soon drop below replacement level. This level of fertility decline will require a change in marriage patterns, which have been minimal so far, even with increasing female schooling. It would also benefit from a long-awaited shift to long-term contraception. In addition to the consequence of huge population size, the density of population is already five times that of any other ‘mega’ country (>100 million), a very challenging situation for an agricultural society. Most of the future growth will be urban, increasingly in slums. Numbers of young people will not increase, but numbers of older people will increase 10-fold this century, creating a large burden on the health system, especially for chronic illnesses. High density of population means that agricultural land is virtually saturated, with very limited capacity to expand food production. Climate change may have dramatic impacts on agriculture, through flooding and drought resulting from weather changes and geopolitical influences on transborder rivers. Rising sea-levels and consequent salinity will affect crops and require shifts to alternative land use. Serious long-term planning is needed for meeting the growing needs of the population, both for distribution and consumption. PMID:18831223
Chemistry of Urban Grime: Inorganic Ion Composition of Grime vs Particles in Leipzig, Germany.
Baergen, Alyson M; Styler, Sarah A; van Pinxteren, Dominik; Müller, Konrad; Herrmann, Hartmut; Donaldson, D James
2015-11-03
Deposition of atmospheric constituents--either gas phase or particulate--onto urban impervious surfaces gives rise to a thin "urban grime" film. The area exposed by these impervious surfaces in a typical urban environment is comparable to, or greater than, that of particles present in the urban boundary layer; however, it is largely overlooked as a site for heterogeneous reactions. Here we present the results of a field campaign to determine and compare the chemical composition of urban grime and of particles collected simultaneously during the autumn of 2014 at an urban site in central Leipzig, Germany. We see dramatically reduced ammonium and nitrate levels in the film as compared to particles, suggesting a significant loss of ammonium nitrate, thus enhancing the mobility of these species in the environment. Nitrate levels are 10% lower for films exposed to sunlight compared to those that were shielded from direct sun, indicating a possible mechanism for recycling nitrate anion to reactive nitrogen species. Finally, chloride levels in the film suggest that urban grime could represent an unrecognized source of continental chloride available for ClNO2 production even in times of low particulate chloride. Such source and recycling processes could prove to be important to local and regional air quality.
A Phase-Locked Loop Epilepsy Network Emulator.
Watson, P D; Horecka, K M; Cohen, N J; Ratnam, R
2016-10-15
Most seizure forecasting employs statistical learning techniques that lack a representation of the network interactions that give rise to seizures. We present an epilepsy network emulator (ENE) that uses a network of interconnected phase-locked loops (PLLs) to model synchronous, circuit-level oscillations between electrocorticography (ECoG) electrodes. Using ECoG data from a canine-epilepsy model (Davis et al. 2011) and a physiological entropy measure (approximate entropy or ApEn, Pincus 1995), we demonstrate the entropy of the emulator phases increases dramatically during ictal periods across all ECoG recording sites and across all animals in the sample. Further, this increase precedes the observable voltage spikes that characterize seizure activity in the ECoG data. These results suggest that the ENE is sensitive to phase-domain information in the neural circuits measured by ECoG and that an increase in the entropy of this measure coincides with increasing likelihood of seizure activity. Understanding this unpredictable phase-domain electrical activity present in ECoG recordings may provide a target for seizure detection and feedback control.
Growing Epidemic of Coronary Heart Disease in Low- and Middle-Income Countries
Gaziano, Thomas A.; Bitton, Asaf; Anand, Shuchi; Abrahams-Gessel, Shafika; Murphy, Adrianna
2010-01-01
Coronary heart disease (CHD) is the single largest cause of death in the developed countries and is one of the leading causes of disease burden in developing countries. In 2001, there were 7.3 million deaths due to CHD worldwide. Three-fourths of global deaths due to CHD occurred in the low and middle-income countries. The rapid rise in CHD burden in most of the low and middle and income countries is due to socio-economic changes, increase in life span and acquisition of lifestyle related risk factors. The CHD death rate, however, varies dramatically across the developing countries. The varying incidence, prevalence, and mortality rates reflect the different levels of risk factors, other competing causes of death, availability of resources to combat CVD, and the stage of epidemiologic transition that each country or region finds itself. The economic burden of CHD is equally large but solutions exist to manage this growing burden. PMID:20109979
Paull, C.K.; Ussler, W.; Dallimore, S.R.; Blasco, S.M.; Lorenson, T.D.; Melling, H.; Medioli, B.E.; Nixon, F.M.; McLaughlin, F.A.
2007-01-01
The Arctic shelf is currently undergoing dramatic thermal changes caused by the continued warming associated with Holocene sea level rise. During this transgression, comparatively warm waters have flooded over cold permafrost areas of the Arctic Shelf. A thermal pulse of more than 10??C is still propagating down into the submerged sediment and may be decomposing gas hydrate as well as permafrost. A search for gas venting on the Arctic seafloor focused on pingo-like-features (PLFs) on the Beaufort Sea Shelf because they may be a direct consequence of gas hydrate decomposition at depth. Vibracores collected from eight PLFs had systematically elevated methane concentrations. ROV observations revealed streams of methane-rich gas bubbles coming from the crests of PLFs. We offer a scenario of how PLFs may be growing offshore as a result of gas pressure associated with gas hydrate decomposition. Copyright 2007 by the American Geophysical Union.
The relationship between orphanhood and child fostering in sub-Saharan Africa, 1990s–2000s
Grant, Monica J.; Yeatman, Sara
2012-01-01
In countries most afflicted by HIV/AIDS in sub-Saharan Africa, orphanhood has increased dramatically, but the potential consequences of the increase have been mitigated by the ability of households to absorb orphans. This paper examines what the rising levels of orphanhood mean for the common practice of non-orphan child fostering in regions of high and low HIV prevalence in sub-Saharan Africa, which has a long history of child fostering. Using Demographic and Health Survey data from 135 regions within 14 sub-Saharan countries that undertake HIV testing and have had at least two surveys, we examine changes in fostering patterns. In most regions, we find a more accommodating relationship between orphan and non-orphan fostering: communities are able to absorb the demand for both orphans and non-orphans. Where HIV prevalence exceeds ten per cent there is some evidence that the need to care for orphans is beginning to reduce opportunities for non-orphan fostering. PMID:22607126
Frost, S D; McLean, A R
1994-03-01
To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.
Critchley, Julia; Capewell, Simon; O'Flaherty, Martin; Abu-Rmeileh, Niveen; Rastam, Samer; Saidi, Olfa; Sözmen, Kaan; Shoaibi, Azza; Husseini, Abdullatif; Fouad, Fouad; Ben Mansour, Nadia; Aissi, Wafa; Ben Romdhane, Habiba; Unal, Belgin; Bandosz, Piotr; Bennett, Kathleen; Dherani, Mukesh; Al Ali, Radwan; Maziak, Wasim; Arık, Hale; Gerçeklioğlu, Gül; Altun, Deniz Utku; Şimşek, Hatice; Doganay, Sinem; Demiral, Yücel; Aslan, Özgür; Unwin, Nigel; Phillimore, Peter; Achour, Nourredine; Aissi, Waffa; Allani, Riadh; Arfa, Chokra; Abu-Kteish, Heidar; Abu-Rmeileh, Niveen; Al Ali, Radwan; Altun, Deniz; Ahmad, Balsam; Arık, Hale; Aslan, Özgür; Beltaifa, Latifa; Ben Mansour, Nadia; Bennett, Kathleen; Ben Romdhane, Habiba; Ben Salah, Nabil; Collins, Marissa; Critchley, Julia; Capewell, Simon; Dherani, Mukesh; Demiral, Yücel; Doganay, Sinem; Elias, Madonna; Ergör, Gül; Fadhil, Ibtihal; Fouad, Fouad; Gerçeklioğlu, Gül; Ghandour, Rula; Göğen, Sibel; Husseini, Abdullatif; Jaber, Samer; Kalaca, Sibel; Khatib, Rana; Khatib, Rasha; Koudsie, Saer; Kilic, Bülent; Lassoued, Olfa; Mason, Helen; Maziak, Wasim; Mayaleh, Maher Abou; Mikki, Nahed; Moukeh, Ghmaez; Flaherty, Martin O; Phillimore, Peter; Rastam, Samer; Roglic, Gojka; Saidi, Olfa; Saatli, Gül; Satman, Ilhan; Shoaibi, Azza; Şimşek, Hatice; Soulaiman, Nesrien; Sözmen, Kaan; Tlili, Faten; Unal, Belgin; Unwin, Nigel; Yardim, Nazan; Zaman, Shahaduz
2016-04-01
Middle income countries are facing an epidemic of non-communicable diseases, especially coronary heart disease (CHD). We used a validated CHD mortality model (IMPACT) to explain recent trends in Tunisia, Syria, the occupied Palestinian territory (oPt) and Turkey. Data on populations, mortality, patient numbers, treatments and risk factor trends from national and local surveys in each country were collated over two time points (1995-97; 2006-09); integrated and analysed using the IMPACT model. Risk factor trends: Smoking prevalence was high in men, persisting in Syria but decreasing in Tunisia, oPt and Turkey. BMI rose by 1-2 kg/m(2) and diabetes prevalence increased by 40%-50%. Mean systolic blood pressure and cholesterol levels increased in Tunisia and Syria. Mortality trends: Age-standardised CHD mortality rates rose by 20% in Tunisia and 62% in Syria. Much of this increase (79% and 72% respectively) was attributed to adverse trends in major risk factors, occurring despite some improvements in treatment uptake. CHD mortality rates fell by 17% in oPt and by 25% in Turkey, with risk factor changes accounting for around 46% and 30% of this reduction respectively. Increased uptake of community treatments (drug treatments for chronic angina, heart failure, hypertension and secondary prevention after a cardiac event) accounted for most of the remainder. CHD death rates are rising in Tunisia and Syria, whilst oPt and Turkey demonstrate clear falls, reflecting improvements in major risk factors with contributions from medical treatments. However, smoking prevalence remains very high in men; obesity and diabetes levels are rising dramatically. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Is nuance possible in climate change communication?
NASA Astrophysics Data System (ADS)
Donner, S. D.
2015-12-01
One of the core challenges of climate communication is finding the balance between honestly portraying the science, with all its complexity, and effectively engaging the audience. At a time when all politics are partisan and the media measures value in clicks, complicated stories can become black-and-white. This loss of nuance is acute in tales told of climate change impacts in the developing world, particularly in the low-lying island states of the Pacific. Atoll countries like Kiribati, Tuvalu, the Marshall Islands and the Maldives are certainly existentially threatened by climate change and sea-level rise. Yet the islands and their residents are also more resilient than the dramatic headlines about sinking islands would have you think. Casting the people as helpless victims, however well-intentioned, can actually hurt their ability to respond to climate change. This presentation examines the risks and benefits of providing such nuance on a climate issue that the public and policy-makers generally view as black-and-white. Drawing on efforts a decade of research in Kiribati and other small island developing states in the Pacific, I describe how a mix of cultural differences, geopolitics, and the legacy of colonialism has made the Pacific Islands a narrative device in a western discussion about climate change. I then describe in detail the challenging process of writing a popular magazine story which questions that narrative - but not the long-term threat of sea-level rise - and the personal and political aftermath of its publication. Building upon this humbling experience and findings from psychology, communications and science and technology studies, I outline the key benefits and risks of engaging publicly with the nuances of a climate change issue, and provide a template for effectively communicating nuance in a politically charged atmosphere.
Coastal vulnerability assessment of Olympic National Park to sea-level rise
Pendleton, Elizabeth A.; Hammar-Klose, Erika S.; Thieler, E. Robert; Williams, S. Jeffress
2004-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Olympic National Park (OLYM), Washington. The CVI scores the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. The Olympic National Park coast consists of rocky headlands, pocket beaches, glacial-fluvial features, and sand and gravel beaches. The Olympic coastline that is most vulnerable to sea-level rise are beaches in gently sloping areas.
NASA Astrophysics Data System (ADS)
Perera, K. A. R. S.; De Silva, K. H. W. L.; Amarasinghe, M. D.
2018-02-01
Unique location in the land-sea interface makes mangrove ecosystems most vulnerable to the impacts of predicted sea level rise due to increasing anthropogenic CO2 emissions. Among others, carbon sink function of these tropical ecosystems that contribute to reduce rising atmospheric CO2 and temperature, could potentially be affected most. Present study was undertaken to explore the extent of impact of the predicted sea level rise for the region on total organic carbon (TOC) pools of the mangrove ecosystems in Negombo estuary located on the west coast of Sri Lanka. Extents of the coastal inundations under minimum (0.09 m) and maximum (0.88 m) sea level rise scenarios of IPCC for 2100 and an intermediate level of 0.48 m were determined with GIS tools. Estimated total capacity of organic carbon retention by these mangrove areas was 499.45 Mg C ha- 1 of which 84% (418.98 Mg C ha- 1) sequestered in the mangrove soil and 16% (80.56 Mg C ha- 1) in the vegetation. Total extent of land area potentially affected by inundation under lowest sea level rise scenario was 218.9 ha, while it was 476.2 ha under intermediate rise and 696.0 ha with the predicted maximum sea level rise. Estimated rate of loss of carbon sink function due to inundation by the sea level rise of 0.09 m is 6.30 Mg C ha- 1 y- 1 while the intermediate sea level rise indicated a loss of 9.92 Mg C ha- 1 y- 1 and under maximum sea level rise scenario, this loss further increases up to 11.32 Mg C ha- 1 y- 1. Adaptation of mangrove plants to withstand inundation and landward migration along with escalated photosynthetic rates, augmented by changing rainfall patterns and availability of nutrients may contribute to reduce the rate of loss of carbon sink function of these mangrove ecosystems. Predictions over change in carbon sequestration function of mangroves in Negombo estuary reveals that it is not only affected by oceanographic and hydrological alterations associated with sea level rise but also by anthropogenic processes, therefore the impacts are site specific in terms of distribution and magnitude.
Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise
Hatfield, Jeff S.; Reynolds, Michelle H.; Seavy, Nathaniel E.; Krause, Crystal M.
2012-01-01
Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.
Adapting to Rising Sea Level: A Florida Perspective
NASA Astrophysics Data System (ADS)
Parkinson, Randall W.
2009-07-01
Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.
Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy
NASA Astrophysics Data System (ADS)
Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei
2017-12-01
A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.
Greysen, S Ryan; Chen, Candice; Mullan, Fitzhugh
2011-07-01
Over the last 50 years, medical student debt has become a problem of national importance, and obtaining medical education in the United States has become a loan-dependent, individual investment. Although this phenomenon must be understood in the general context of U.S. higher education as well as economic and social trends in late-20th-century America, the historical problem of medical student debt requires specific attention for several reasons. First, current mechanisms for students' educational financing may not withstand debt levels above a certain ceiling which is rapidly approaching. Second, there are no standards for costs of medical school attendance, and these can vary dramatically between different schools even within a single city. Third, there is no consensus on the true cost of educating a medical student, which limits accountability to students and society for these costs. Fourth, policy efforts to improve physician workforce diversity and mitigate shortages in the primary care workforce are inhibited by rising levels of medical student indebtedness. Fortunately, the current effort to expand the U.S. physician workforce presents a unique opportunity to confront the unsustainable growth of medical student debt and explore new approaches to the financing of medical students' education.
Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island
NASA Astrophysics Data System (ADS)
Dallimore, A.; Enkin, R. J.
2005-12-01
Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.
Can human populations be stabilized?
NASA Astrophysics Data System (ADS)
Warren, Stephen G.
2015-02-01
Historical examples of demographic change, in China, Italy, Nigeria, Utah, Easter Island, and elsewhere, together with simple mathematics and biological principles, show that stabilizing world population before it is limited by food supply will be more difficult than is generally appreciated. United Nations population projections are wrong because they assume, in spite of the absence of necessary feedbacks, that all nations will converge rapidly to replacement-level fertility and thereafter remain at that level. Education of women and provision of contraceptives have caused dramatic reductions in fertility, but many groups, including some that are well-educated, maintain high fertility. Small groups with persistent high fertility can grow to supplant low-fertility groups, resulting in continued growth of the total population. The global average fertility rate could rise even if each country's fertility rate is falling. In some low-fertility European countries where deaths exceed births, the population continues to grow because of immigration. Producing more than two offspring is normal for all animal species with stable populations because their populations are limited by resources or predation rather than birth control. It may therefore be appropriate to view the growth of human population as the result not of excess fertility but rather of excess food.
ERIC Educational Resources Information Center
Lafo, Joseph; Robillard, Marc
2001-01-01
Explains how high-rise residence halls can provide high-level safety and security at colleges and universities. Boston University is used to illustrate high-rise security and fire protection issues. (GR)
Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Schumann, R. Randall; Agenbroad, Larry D.
2015-01-01
Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.
Sakatani, Miki; Balboula, Ahmed Z; Yamanaka, Kenichi; Takahashi, Masashi
2012-05-01
This study investigated the effect of summer heat environment on estrous cycles and blood antioxidant levels in Japanese Black cows. A total of 13 non-lactating Japanese Black cows (summer: 9, winter: 4) were examined. Body temperature was measured rectally and intravaginally using a thermometer and data logger, respectively. Estrous behavior was monitored using a radiotelemetric pedometer that recorded walking activity. Rectal temperatures were higher during summer than winter (P<0.001). There was an acute increase in vaginal temperature at the onset of estrus during winter but such an increase was not observed during summer. Walking activity during estrus decreased dramatically in the summer compared to the winter. Duration of estrous cycle was longer in summer (23.4 days, P<0.05) than winter (21.5 days), and the subsequent rise in progesterone concentrations following estrus tended to be delayed in summer. The level of thiobarbituric acid reactive substances (TBARS) in peripheral blood cells was higher during summer (P<0.05), while the levels of superoixde dismutase (SOD), glutathione peroxidase (GPx) and glutathione were lower (P<0.05). These results indicate that high ambient temperature during summer increases both body temperature and oxidative stress, and also reduces signs of estrus in Japanese Black cows. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Madricardo, F.; Foglini, F.; Kruss, A.; Bajo, M.; Campiani, E.; Ferrarin, C.; Fogarin, S.; Grande, V.; Janowski, L.; Keppel, E.; Leidi, E.; Lorenzetti, G.; Maicu, F.; Maselli, V.; Montereale Gavazzi, G.; Pellegrini, C.; Petrizzo, A.; Prampolini, M.; Remia, A.; Rizzetto, F.; Rovere, M.; Sarretta, A.; Sigovini, M.; Toso, C.; Zaggia, L.; Trincardi, F.
2017-12-01
Very shallow coastal environments are often highly urbanized with half of the world's population and 13 of the largest mega-cities located close to the coast. These environments undergo rapid morphological changes due to natural and anthropogenic pressure that will likely be enhanced in the near future by mean sea-level rise. Therefore, there is a strong need for high resolution seafloor mapping to monitor and protect shallow coastal areas. To date, only about 5% of their seafloor has been mapped: their shallowness has prevented so far the use of underwater acoustics to reveal their morphological features; their turbidity often hindered the efficient use of LIDAR technology, particularly in lagoons and estuaries. The recent technological development of multibeam echosounder systems, however, enables these instruments to achieve very high performances also in such shallow environments. In this work, we present the results of an extensive multibeam survey carried out in the Lagoon of Venice (Italy) in 2013. The Lagoon of Venice is the biggest lagoon in the Mediterranean Sea (surface area of about 550 km2, average depth of about 1 m) and it is a UNESCO World Cultural and Natural Heritage site together with the historical city of Venice which is currently endangered by relative sea-level rise. Major engineering works are ongoing at the lagoon inlets (MOSE project) to protect Venice from flood events. In the last century, the morphology and ecology of the lagoon changed dramatically: the extent of the salt marshes was reduced by 60% and some parts of the lagoon deepened by more than 1 m with a net sediment flux exiting from the inlets. To understand and monitor the future evolution of the Lagoon of Venice in view of the inlet modifications and mean sea-level rise, CNR-ISMAR within the project RITMARE (a National Research Programme funded by the Italian Ministry of University and Research) carried out an extensive survey, involving a team of more than 25 scientists, to collect high resolution (0.5 m) bathymetry of key study areas such as the tidal inlets and channels. Bathymetric and backscatter intensity data are now employed for geomorphologic studies, habitat mapping and modelling representing a paradigm of a broad multidisciplinary approach to monitor shallow coastal systems.
Nicholls, Robert J; Tol, Richard S J
2006-04-15
Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 'future worlds'), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost-benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yichen, E-mail: jeff200064017@163.com; Wang, Ping, E-mail: pingwang8000@163.com; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001
MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identifiedmore » as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.« less
Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta.
Koullias, George; Modak, Raj; Tranquilli, Maryann; Korkolis, Dimitris P; Barash, Paul; Elefteriades, John A
2005-09-01
The human ascending aorta becomes markedly prone to rupture and dissection at a diameter of 6 cm. The mechanical substrate for this malignant behavior is unknown. This investigation applied engineering analysis to human ascending aortic aneurysms and compared their structural characteristics with those of normal aortas. We measured the mechanical characteristics of the aorta by direct epiaortic echocardiography at the time of surgery in 33 patients with ascending aortic aneurysm undergoing aortic replacement and in 20 control patients with normal aortas undergoing coronary artery bypass grafting. Six parameters were measured in all patients: aortic diameter in systole and diastole, aortic wall thickness in systole and diastole, and blood pressure in systole and diastole. These were used to calculate mechanical characteristics of the aorta from standard equations. Aortic distensibility reflects the elastic qualities of the aorta. Aortic wall stress reflects the disrupting force experienced within the aortic wall. Incremental elastic modulus indicates loss of elasticity reserve. Aortic distensibility falls to extremely low levels as aortic dimension rises toward 6 cm (3.02 mm Hg(-1) for small aortas versus 1.45 mm Hg(-1) for aortas larger than 5 cm, P < .05). Aortic wall stress rises to 157.8 kPa for the aneurysmal aorta, compared with 92.5 kPa for normal aortas. For 6-cm aortas at pressures of 200 mm Hg or more, wall stress rises to 857 kPa, nearly exceeding the known maximal tensile strength of human aneurysmal aortic wall. Incremental elastic modulus deteriorates (1.93 +/- 0.88 MPa vs 1.18 +/- 0.21 MPa, P < .05) in aneurysmal aortas relative to that in normal aortas. The mechanical properties of the aneurysmal aorta deteriorate dramatically as the aorta enlarges, reaching critical levels associated with rupture by a diameter of 6 cm. This mechanical deterioration provides an explanation in engineering terms for the malignant clinical behavior (rupture and dissection) of the aorta at these dimensions. This work adds to our fundamental understanding of the biology of aortic aneurysms and promises to permit future application of engineering measurements to supplement aneurysm size in clinical decision making in aneurysmal disease.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.
2016-12-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
NASA Astrophysics Data System (ADS)
Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo
2018-01-01
A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard characteristics are dramatically changed with an evolution of the overtopping / overflowing process ratio and an increase of a factor 4.84 in volumes of water propagating inland and 3.47 in flooded surfaces.
Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River
NASA Astrophysics Data System (ADS)
Bacopoulos, P.
2015-12-01
There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.
Coastal sensitivity to sea level rise : a focus on the mid-atlantic region
DOT National Transportation Integrated Search
2009-01-15
The focus of this product is to identify and review the potential impacts of future sea-level rise based on present scientific understanding. To do so, this product evaluates : several aspects of sea-level rise impacts to the natural environment and ...
Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida
Langevin, Christian D.; Zygnerski, Michael
2013-01-01
A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.
Sea-level rise and coastal groundwater inundation and shoaling at select sites in California, USA
Hoover, Daniel J.; Odigie, Kingsley; Swarzenski, Peter W.; Barnard, Patrick
2017-01-01
Study regionThe study region spans coastal California, USA, and focuses on three primary sites: Arcata, Stinson Beach, and Malibu Lagoon.Study focus1 m and 2 m sea-level rise (SLR) projections were used to assess vulnerability to SLR-driven groundwater emergence and shoaling at select low-lying, coastal sites in California. Separate and combined inundation scenarios for SLR and groundwater emergence were developed using digital elevation models of study site topography and groundwater surfaces constructed from well data or published groundwater level contours.New hydrological insights for the regionSLR impacts are a serious concern in coastal California which has a long (∼1800 km) and populous coastline. Information on the possible importance of SLR-driven groundwater inundation in California is limited. In this study, the potential for SLR-driven groundwater inundation at three sites (Arcata, Stinson Beach, and Malibu Lagoon) was investigated under 1 m and 2 m SLR scenarios. These sites provide insight into the vulnerability of Northern California coastal plains, coastal developments built on beach sand or sand spits, and developed areas around coastal lagoons associated with seasonal streams and berms. Northern California coastal plains with abundant shallow groundwater likely will see significant and widespread groundwater emergence, while impacts along the much drier central and southern California coast may be less severe due to the absence of shallow groundwater in many areas. Vulnerability analysis is hampered by the lack of data on shallow coastal aquifers, which commonly are not studied because they are not suitable for domestic or agricultural use. Shallow saline aquifers may be present in many areas along coastal California, which would dramatically increase vulnerability to SLR-driven groundwater emergence and shoaling. Improved understanding of the extent and response of California coastal aquifers to SLR will help in preparing for mitigation and adaptation.
Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise
NASA Astrophysics Data System (ADS)
Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.
2014-12-01
Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.
NASA Astrophysics Data System (ADS)
Zimmerman, S. R.; Starratt, S.; Hemming, S. R.
2012-12-01
Mono Lake, California is a closed-basin lake on the east side of the Sierra Nevada, and inflow from snowmelt dominates the modern hydrology. Changes in wetness during the last glacial period (>12,000 years ago) and over the last 2,000 years have been extensively described, but are poorly known for the intervening period. We have recovered a 6.25 m-long core from ~3 m of water in the western embayment of Mono Lake, which is shown by initial radiocarbon dates to cover at least the last 10,000 years. The sediments of the core are variable, ranging from black to gray silts near the base, laminated olive-green silt through the center, to layers of peach-colored carbonate nodules interbedded with gray and olive silts and pea-green organic ooze. Volcanic tephras from <1 to 8 cm thick occur throughout. Results of 0.5 cm-resolution scanning-X-Ray fluoresence (XRF) analysis describe changes in lithology due to volcanism, erosion, and changing lake level and chemistry. Titanium (Ti) is chemically and biologically unreactive, and records the dominant input, from weathering of Sierra Nevada granite to the west and Miocene and Pliocene volcanic rocks of the Bodie and Adobe Hills to the north, east, and south. The rhyolitic tephras of the Mono-Inyo Craters are much lower in TiO2 than the bedrock (<0.1% vs. 1-2%), and are an unweathered source of K2O (3.5-5%), and thus form dramatic peaks in the K/Ti ratio. Calcium (Ca) and Sr are well correlated throughout the core, and normalization of both by K (detritus + tephra) corresponds with occurrence of carbonate-rich layers. These are a mixture of authigenic precipitates directly precipitated and eroded into the lake during periods of regression. The lowermost 1.5 m of the BINGO core contains the highest proportion of detrital input to Mono Lake over the last ~12,000 years, recorded by high Si, Ti, K, and Fe, in black to dark-gray, fine-grained silts above 10 cm of pure light gray silt. Based on radiocarbon dates of >10,000 calibrated years before present (cal yr BP) higher in the core, and significant disruption of the fine layers, this interval likely indicates a relatively deep lake persisting into the early Holocene, after the initial dramatic regression from late Pleistocene levels. The finely laminated olive-green silt of the period ~10,700 to ~7500 cal yr BP is very homogenous chemically, probably indicating a stable, stratified lake and a relatively wet climate. This section merits mm-scale scanning and petrographic examination in the future. The upper boundary of the laminated section shows rising Ca/K and decreasing Ti and Si/K, marking the appearance of authigenic carbonate layers. After ~7500 cal yr BP, the sediment in BINGO becomes highly variable, with increased occurrence of tephra layers and carbonate, indicating a lower and more variable lake level. A short interval of olive-green, laminated fine sand/silt just above a radiocarbon date of 3870 ± 360 cal yr BP may record the Dechambeau Ranch highstand of Stine (1990; PPP v. 78 pp 333-381), and is marked by a distinct low in Ca/K, lasting ~1000 years. The low terminates in a dramatic rise in Ca/K to some of the highest levels in the core, suggesting a period of ~1000 years of extremely dry climate, dwarfing all of the variability in Ca/K, and likely lake level, over the last 2000 years.
Foster, Tammy E.; Stolen, Eric D.; Hall, Carlton R.; Schaub, Ronald; Duncan, Brean W.; Hunt, Danny K.; Drese, John H.
2017-01-01
Society needs information about how vegetation communities in coastal regions will be impacted by hydrologic changes associated with climate change, particularly sea level rise. Due to anthropogenic influences which have significantly decreased natural coastal vegetation communities, it is important for us to understand how remaining natural communities will respond to sea level rise. The Cape Canaveral Barrier Island complex (CCBIC) on the east central coast of Florida is within one of the most biologically diverse estuarine systems in North America and has the largest number of threatened and endangered species on federal property in the contiguous United States. The high level of biodiversity is susceptible to sea level rise. Our objective was to model how vegetation communities along a gradient ranging from hydric to upland xeric on CCBIC will respond to three sea level rise scenarios (0.2 m, 0.4 m, and 1.2 m). We used a probabilistic model of the current relationship between elevation and vegetation community to determine the impact sea level rise would have on these communities. Our model correctly predicted the current proportions of vegetation communities on CCBIC based on elevation. Under all sea level rise scenarios the model predicted decreases in mesic and xeric communities, with the greatest losses occurring in the most xeric communities. Increases in total area of salt marsh were predicted with a 0.2 and 0.4 m rise in sea level. With a 1.2 m rise in sea level approximately half of CCBIC’s land area was predicted to transition to open water. On the remaining land, the proportions of most of the vegetation communities were predicted to remain similar to that of current proportions, but there was a decrease in proportion of the most xeric community (oak scrub) and an increase in the most hydric community (salt marsh). Our approach provides a first approximation of the impacts of sea level rise on terrestrial vegetation communities, including important xeric upland communities, as a foundation for management decisions and future modeling. PMID:28796807
A search for scale in sea-level studies
Larsen, C.E.; Clark, I.
2006-01-01
Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.
Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard
2006-01-01
California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and geometry of these structures. Rising sea levels from climate change will increase the frequency and duration of extreme high water levels, causing historical coastal and San Francisco Bay/Delta structure design criteria to be exceeded.
Sea-level Rise Impacts on Oregon Estuaries: Biology and Hydrology
Estuaries are transitional ecosystems located at the margin of the land and ocean and as a result they are particularly sensitive to sea level rise and other climate drivers. In this presentation, we summarize the potential impacts of sea level rise on key estuarine habitats inc...
NASA Astrophysics Data System (ADS)
Shum, C. K.; Kuo, C. Y.; Guo, J.; Shang, K.; Tseng, K. H.; Wan, J.; Calmant, S.; Ballu, V.; Valty, P.; Kusche, J.; Hossain, F.; Khan, Z. H.; Rietbroek, R.; Uebbing, B.
2014-12-01
The potential for accelerated sea-level rise under anthropogenic warming is a significant societal problem, in particular in world's coastal deltaic regions where about half of the world's population resides. Quantifying geophysical sources of sea-level rise with the goal of improved projection at local scales remains a complex and challenging interdisciplinary research problem. These processes include ice-sheet/glacier ablations, steric sea-level, solid Earth uplift or subsidence due to GIA, tectonics, sediment loading or anthropogenic causes, hydrologic imbalance, and human processes including water retention in reservoirs and aquifer extraction. The 2013 IPCC AR5 concluded that the observed and explained geophysical causes of global geocentric sea-level rise, 1993-2010, is closer towards closure. However, the discrepancy reveals that circa 1.3→37.5% of the observed sea-level rise remains unexplained. This relatively large discrepancy is primarily attributable to the wide range of estimates of respective contributions of Greenland and Antarctic ice-sheets and mountain/peripheral glaciers to sea-level rise. Understanding and quantifying the natural and anthropogenic processes governing solid Earth (land, islands and sea-floor) uplift or subsidence at the regional and local scales remain elusive to enable addressing coastal vulnerability due to relative sea-level rise hazards, such as the Bangladesh Delta. This study focuses on addressing coastal vulnerability of Bangladesh, a Belmont Forum/IGFA project, BanD-AID (http://Belmont-SeaLevel.org). Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability, affecting 150 million people in one of the world's most densely populated regions. Here we present preliminary results using space geodetic observations, including satellite radar and laser altimetry, GRACE gravity, tide gauge, hydrographic, and GPS/InSAR observed land subsidence, and via fingerprint sea-level adjustment and reconstructed sea-level approaches, for improved quantification of major contributions to, and the projection of relative sea-level rise at the Bangladesh delta, towards addressing its coastal vulnerability and sustainability.
Anthropogenic sea level rise and adaptation in the Yangtze estuary
NASA Astrophysics Data System (ADS)
Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.
2016-02-01
Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021-2030) to implement both the safety and the transformation and development of the city.
Rising ground-water level in downtown Louisville, Kentucky, 1972-1977
Kernodle, J.M.; Whitesides, D.V.
1977-01-01
Ground-water levels in the alluvial aquifer in Louisville, Jefferson County, Kentucky, are rising at a rate which could cause wet basements and possible structural damage tc buildings in the downtown area by 1982. The predicted water level for 1982 is based on the nearly linear increase which has been observed from 1972 to 1977, during which period a rise of as much as 32 feet was recorded in water-level observation wells. Foremost among the possible causes of the rise is a decrease in withdrawal of ground water.
Coastal vulnerability assessment of Dry Tortugas National Park (DRTO) to sea-level rise
Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress
2005-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Dry Tortugas National Park in Florida. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Dry Tortugas National Park (DRTO) consists of relatively stable to washover-dominated portions of carbonate beach and man-made fortification. The areas within Dry Tortugas that are likely to be most vulnerable to sea-level rise are those with the highest rates of shoreline erosion and the highest wave energy.
Coastal vulnerability assessment of Cape Hatteras National Seashore (CAHA) to sea-level rise
Pendleton, Elizabeth A.; Theiler, E. Robert; Williams, S. Jeffress
2005-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Cape Hatteras National Seashore (CAHA) in North Carolina. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range, and mean significant wave height. The rankings for each variable were combined and an index value was calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Cape Hatteras National Seashore consists of stable and washover dominated segments of barrier beach backed by wetland and marsh. The areas within Cape Hatteras that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.
Coastal Vulnerability Assessment of Padre Island National Seashore (PAIS) to Sea-Level Rise
Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress; Beavers, Rebecca S.
2004-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Padre Island National Seashore in Texas. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean significant wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Padre Island National Seashore consists of stable to washover dominated portions of barrier beach backed by wetland, marsh, tidal flat, or grassland. The areas within Padre that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.
NASA Astrophysics Data System (ADS)
Obeysekera, J.; Park, J.; Irizarry-Ortiz, M. M.; Barnes, J. A.; Trimble, P.; Said, W.
2010-12-01
Due to flat topography, a highly transmissive groundwater aquifer, and a growing population with the associated infrastructure, South Florida’s coastal environment is one of the most vulnerable areas to sea level rise. Current projections of sea level rise and the associated storm surges will have direct impacts on coastal beaches and infrastructure, flood protection, freshwater aquifers, and both the isolated and regional wetlands. Uncertainties in current projections have made it difficult for regional and local governments to develop adaptation strategies as such measures will depend heavily on the temporal and spatial patterns of sea level rise in the coming decades. We demonstrate the vulnerability of both the built and natural environments of the coastal region and present the current efforts to understand and predict the sea level rise estimate that management agencies could employ in planning of adaptation strategies. In particular, the potential vulnerabilities of the flood control system as well as the threat to the water supply wellfields in the coastal belt will be presented. In an effort to understand the historical variability of sea level rise, we present linkages to natural phenomena such as Atlantic Multi-Decadal Oscillation, and the analytical methods we have developed to provide probabilistic projections of both mean sea level rise and the extremes.
Land subsidence and relative sea-level rise in the southern Chesapeake Bay region
Eggleston, Jack; Pope, Jason
2013-01-01
The southern Chesapeake Bay region is experiencing land subsidence and rising water levels due to global sea-level rise; land subsidence and rising water levels combine to cause relative sea-level rise. Land subsidence has been observed since the 1940s in the southern Chesapeake Bay region at rates of 1.1 to 4.8 millimeters per year (mm/yr), and subsidence continues today. This land subsidence helps explain why the region has the highest rates of sea-level rise on the Atlantic Coast of the United States. Data indicate that land subsidence has been responsible for more than half the relative sea-level rise measured in the region. Land subsidence increases the risk of flooding in low-lying areas, which in turn has important economic, environmental, and human health consequences for the heavily populated and ecologically important southern Chesapeake Bay region. The aquifer system in the region has been compacted by extensive groundwater pumping in the region at rates of 1.5- to 3.7-mm/yr; this compaction accounts for more than half of observed land subsidence in the region. Glacial isostatic adjustment, or the flexing of the Earth’s crust in response to glacier formation and melting, also likely contributes to land subsidence in the region.
NASA Astrophysics Data System (ADS)
Pournazeri, Sam; Princevac, Marko; Venkatram, Akula
2012-08-01
Field and laboratory studies have been conducted to investigate the effect of surrounding buildings on the plume rise from low-level buoyant sources, such as distributed power generators. The field experiments were conducted in Palm Springs, California, USA in November 2010 and plume rise from a 9.3 m stack was measured. In addition to the field study, a laboratory study was conducted in a water channel to investigate the effects of surrounding buildings on plume rise under relatively high wind-speed conditions. Different building geometries and source conditions were tested. The experiments revealed that plume rise from low-level buoyant sources is highly affected by the complex flows induced by buildings stationed upstream and downstream of the source. The laboratory results were compared with predictions from a newly developed numerical plume-rise model. Using the flow measurements associated with each building configuration, the numerical model accurately predicted plume rise from low-level buoyant sources that are influenced by buildings. This numerical plume rise model can be used as a part of a computational fluid dynamics model.
Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century
van Woesik, R.; Golbuu, Y.; Roff, G.
2015-01-01
Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are ‘keeping up’ with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6–8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially ‘keep up’ with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low–mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m−2), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century. PMID:26587277
Rice, Karen C; Hong, Bo; Shen, Jian
2012-11-30
Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity greater than 0.1 ppt increases with increasing sea-level rise; during a dry year, 0.1 ppt would be exceeded for more than 100 days with as small a rise as 30 cm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rice, Karen; Bo Hong,; Jian Shen,
2012-01-01
Global sea level is rising, and the relative rate in the Chesapeake Bay region of the East Coast of the United States is greater than the worldwide rate. Sea-level rise can cause saline water to migrate upstream in estuaries and rivers, threatening freshwater habitat and drinking-water supplies. The effects of future sea-level rise on two tributaries of Chesapeake Bay, the James and Chickahominy (CHK) Rivers, were evaluated in order to quantify the salinity change with respect to the magnitude of sea-level rise. Such changes are critical to: 1) local floral and faunal habitats that have limited tolerance ranges to salinity; and 2) a drinking-water supply for the City of Newport News, Virginia. By using the three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D), sea-level rise scenarios of 30, 50, and 100 cm, based on the U.S. Climate Change Science Program for the mid-Atlantic region for the 21st century, were evaluated. The model results indicate that salinity increases in the entire river as sea level rises and that the salinity increase in a dry year is greater than that in a typical year. In the James River, the salinity increase in the middle-to-upper river (from 25 to 50 km upstream of the mouth) is larger than that in the lower and upper parts of the river. The maximum mean salinity increase would be 2 and 4 ppt for a sea-level rise of 50 and 100 cm, respectively. The upstream movement of the 10 ppt isohaline is much larger than the 5 and 20 ppt isohalines. The volume of water with salinity between 10 and 20 ppt would increase greatly if sea level rises 100 cm. In the CHK River, with a sea-level rise of 100 cm, the mean salinity at the drinking-water intake 34 km upstream of the mouth would be about 3 ppt in a typical year and greater than 5 ppt in a dry year, both far in excess of the U.S. Environmental Protection Agency's secondary standard for total dissolved solids for drinking water. At the drinking-water intake, the number of days of salinity greater than 0.1 ppt increases with increasing sea-level rise; during a dry year, 0.1 ppt would be exceeded for more than 100 days with as small a rise as 30 cm.
Effect of σ2 on All Aspects of Failure in Rocks from Granite to Sandstone
NASA Astrophysics Data System (ADS)
Haimson, B. C.; Ma, X.
2014-12-01
We have studied the effect of σ2 on failure characteristics of two crystalline and three clastic rocks subjected to true triaxial stresses. Common to all rocks tested is the rise in both strain localization onset and σ1 at failure (σ1,peak) for a given σ3, as σ2 is elevated beyond its base level (σ2 = σ3). σ1,peak reaches a maximum at some level of σ2, beyond which it gradually declines, approaching its base magnitude when σ2 nears its own maximum. Failure-plane angle with respect to σ1 for a given σ3 also increases with σ2, at least until the maximum σ1,peak is reached. Westerly granite (Haimson and Chang, IJRMMS, 2000) and KTB amphibolite (Chang and Haimson, JGR, 2000), exhibited a dramatic σ2 effect: at low σ3 (20-30 MPa), higher σ2 lifted σ1,peak by up to 50% over its base level. At high σ3, the increase in σ1,peak was reduced, but even at σ3 = 100 MPa, maximum σ1,peak in both rocks was over 20% higher than its base level. Failure mode remained brittle throughout the stress range tested, but the onset of dilatancy rose with σ2, as did the failure-plane (shear-band) angle (by up to 20°). A gentler effect of σ2 on σ1, peak and failure-plane angle was observed in the clastics, and that effect subsided as porosity increased. In low porosity (φ = 7%) TCDP siltstone (Oku, et al, GRL, 2007), the maximum σ1,peak at σ3 = 25 MPa was about 30% larger than at σ2 = σ3 level, and only 12.5% larger at σ3 = 100 MPa. Failure mode stayed brittle throughout, but shear-band angle increase with σ2 was limited to about 10°, irrespective of σ3 level. An even smaller σ2 effect was observed in Coconino sandstone (φ = 17%) (Ma, PhD thesis, 2014). σ1,peak reached a maximum of about 10% higher than at σ2 = σ3 level; failure-plane angle rise with σ2 was less than 10°. The weakest σ2 effect was found in the high porosity (φ= 25%) Bentheim sandstone (Ma, PhD thesis, 2014). Here σ1, peak reached a maximum of well under 10% higher than its base magnitude, regardless of σ3 level; average failure-plane angle rise with σ2 was below 10°. Failure at σ3 = 150 MPa was along a compaction band(s) normal to σ1, regardless of σ2. Both Coconino and Bentheim underwent dilatant failure at low σ3, shifting to compactive failure at high σ3 levels. But σ2 also affected the failure mode: compactive failure at σ2 = σ3 gradually reverted to a dilatant mode as σ2 was raised.
Consequences of sea level variability and sea level rise for Cuban territory
NASA Astrophysics Data System (ADS)
Hernández, M.; Martínez, C. A.; Marzo, O.
2015-03-01
The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.
A Bayesian explanation of the "Uncanny Valley" effect and related psychological phenomena
NASA Astrophysics Data System (ADS)
Moore, Roger K.
2012-11-01
There are a number of psychological phenomena in which dramatic emotional responses are evoked by seemingly innocuous perceptual stimuli. A well known example is the `uncanny valley' effect whereby a near human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are reasonably well documented, there is no quantitative explanation for the findings and no mathematical model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give rise to a perceptual tension at category boundaries that could account for these phenomena. The model is not only the first quantitative explanation of the uncanny valley effect, but it may also provide a mathematical explanation for a range of social situations in which conflicting cues give rise to negative, fearful or even violent reactions.
A Bayesian explanation of the ‘Uncanny Valley’ effect and related psychological phenomena
Moore, Roger K.
2012-01-01
There are a number of psychological phenomena in which dramatic emotional responses are evoked by seemingly innocuous perceptual stimuli. A well known example is the ‘uncanny valley’ effect whereby a near human-looking artifact can trigger feelings of eeriness and repulsion. Although such phenomena are reasonably well documented, there is no quantitative explanation for the findings and no mathematical model that is capable of predicting such behavior. Here I show (using a Bayesian model of categorical perception) that differential perceptual distortion arising from stimuli containing conflicting cues can give rise to a perceptual tension at category boundaries that could account for these phenomena. The model is not only the first quantitative explanation of the uncanny valley effect, but it may also provide a mathematical explanation for a range of social situations in which conflicting cues give rise to negative, fearful or even violent reactions. PMID:23162690
On the design of high-rise buildings with a specified level of reliability
NASA Astrophysics Data System (ADS)
Dolganov, Andrey; Kagan, Pavel
2018-03-01
High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, G.; Liu, H.
2017-12-01
Rising sea level has important direct impacts on coastal and island regions such as the Caribbean where the influence of sea-level rise is becoming more apparent. The Caribbean Sea is a semi-enclosed sea adjacent to the landmasses of South and Central America to the south and west, and the Greater Antilles and the Lesser Antilles separate it from the Atlantic Ocean to the north and east. The work focus on studying the relative and absolute sea-level changes by integrating tide gauge, GPS, and satellite altimetry datasets (1955-2016) within the Caribbean Sea. Further, the two main components of absolute sea-level change, ocean mass and steric sea-level changes, are respectively studied using GRACE, temperature, and salinity datasets (1955-2016). According to the analysis conducted, the sea-level change rates have considerable temporal and spatial variations, and estimates may be subject to the techniques used and observation periods. The average absolute sea-level rise rate is 1.8±0.3 mm/year for the period from 1955 to 2015 according to the integrated tide gauge and GPS observations; the average absolute sea-level rise rate is 3.5±0.6 mm/year for the period from 1993 to 2016 according to the satellite altimetry observations. This study shows that the absolute sea-level change budget in the Caribbean Sea is closed in the periods from 1955 to 2016, in which ocean mass change dominates the absolute sea-level rise. The absolute sea-level change budget is also closed in the periods from 2004 to 2016, in which steric sea-level rise dominates the absolute sea-level rise.
NASA Astrophysics Data System (ADS)
Lotfata, A.; Ambinakudige, S.
2017-12-01
Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.
NASA Astrophysics Data System (ADS)
Tessler, Zachary D.; Vörösmarty, Charles J.; Overeem, Irina; Syvitski, James P. M.
2018-03-01
Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning and affect the long-term sustainability of these landscapes for human and for natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea level rise across 46 global deltas. We model scenarios of contemporary and future water resource management schemes and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea level rise in delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea level rise result in delta relative sea level rise rates that average 6.8 mm/y. Assessment of impacts of planned and under-construction dams on relative sea level rise rates suggests increases on the order of 1 mm/y in deltas with new upstream construction. Sediment fluxes are estimated to decrease by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Meghna if all currently planned dams are constructed. Reduced sediment retention on deltas caused by increased river channelization and management has a larger impact, increasing relative sea level rise on average by nearly 2 mm/y. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Local and regional strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea level rise.
Gulf of Mexico and Atlantic coast sea level change
NASA Astrophysics Data System (ADS)
Douglas, Bruce C.
Twentieth-century relative sea level rise shows considerable variability along the U.S. East and Gulf coasts. Local rates of rise lie in the range of about 1.5 to more than 4 mm per year for records from Key West, Florida, to New York City. Rates of sea level rise in the Gulf of Mexico can be much higher. In Texas and Louisiana, long-term water levels are rising up to about 10 mm per year. This is having disastrous consequences in the form of wetlands loss in the region, estimated to be as much as 65 km2 per year in the Mississippi Delta area of Louisiana alone. Beach erosion is also significant along both the Gulf and Atlantic coasts, resulting in ever-increasing exposure of fixed structures to the damaging impacts of storms. The especially high rates of sea level rise in Louisiana and Texas are a result of their particular geomorphology, and anthropogenic alterations in the form of sediment diversion and withdrawal of underground fluids. The average long-term local rate of sea level rise on the rest of the U.S. East and Gulf coasts when corrected for glacial isostatic adjustment is about 2 mm per year, in conformity with 20th century global sea level rise. U.S. East and Gulf coast tide gauge records also have regionally coherent low frequency (decadal and longer) variations that need to be understood because of their impact on wetlands loss, and to enable accurate determination of long-term trends of sea level rise.
Shope, James B.; Storlazzi, Curt; Hoeke, Ron
2017-01-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
NASA Astrophysics Data System (ADS)
Shope, James B.; Storlazzi, Curt D.; Hoeke, Ron K.
2017-10-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
Nanotechnology in Corneal Neovascularization Therapy—A Review
Gonzalez, Lilian; Loza, Raymond J.; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo
2013-01-01
Abstract Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1–100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels.1 The term “nanotechnology” was first coined in 1974.2 Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods.3 The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play. PMID:23425431
Sea-level rise and its possible impacts given a 'beyond 4°C world' in the twenty-first century.
Nicholls, Robert J; Marinova, Natasha; Lowe, Jason A; Brown, Sally; Vellinga, Pier; de Gusmão, Diogo; Hinkel, Jochen; Tol, Richard S J
2011-01-13
The range of future climate-induced sea-level rise remains highly uncertain with continued concern that large increases in the twenty-first century cannot be ruled out. The biggest source of uncertainty is the response of the large ice sheets of Greenland and west Antarctica. Based on our analysis, a pragmatic estimate of sea-level rise by 2100, for a temperature rise of 4°C or more over the same time frame, is between 0.5 m and 2 m--the probability of rises at the high end is judged to be very low, but of unquantifiable probability. However, if realized, an indicative analysis shows that the impact potential is severe, with the real risk of the forced displacement of up to 187 million people over the century (up to 2.4% of global population). This is potentially avoidable by widespread upgrade of protection, albeit rather costly with up to 0.02 per cent of global domestic product needed, and much higher in certain nations. The likelihood of protection being successfully implemented varies between regions, and is lowest in small islands, Africa and parts of Asia, and hence these regions are the most likely to see coastal abandonment. To respond to these challenges, a multi-track approach is required, which would also be appropriate if a temperature rise of less than 4°C was expected. Firstly, we should monitor sea level to detect any significant accelerations in the rate of rise in a timely manner. Secondly, we need to improve our understanding of the climate-induced processes that could contribute to rapid sea-level rise, especially the role of the two major ice sheets, to produce better models that quantify the likely future rise more precisely. Finally, responses need to be carefully considered via a combination of climate mitigation to reduce the rise and adaptation for the residual rise in sea level. In particular, long-term strategic adaptation plans for the full range of possible sea-level rise (and other change) need to be widely developed.
Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce
2003-09-15
Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.
Gender and migration from Albania.
Stecklov, Guy; Carletto, Calogero; Azzarri, Carlo; Davis, Benjamin
2010-11-01
This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women's access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system-a product of the Communist era-while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women's migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women.
Gender and Migration from Albania
STECKLOV, GUY; CARLETTO, CALOGERO; AZZARRI, CARLO; DAVIS, BENJAMIN
2010-01-01
This article examines the dynamics and causes of the shift in the gender composition of migration, and more particularly, in women’s access to migration opportunities and decision-making. Our analysis focuses on Albania, a natural laboratory for studying international migration where out-migration was essentially nonexistent from the end of World War II to the end of the 1980s. Interest in the Albanian case is heightened because of the complex layers of inequality existing at the time when migration began: relatively low levels of inequality within the labor market and educational system—a product of the Communist era—while household relations remained heavily steeped in tradition and patriarchy. We use micro-level data from the Albania 2005 Living Standards Measurement Study, including migration histories for family members since migration began. Based on discrete-time hazard models, the analysis shows a dramatic increase in male migration and a gradual and uneven expansion of the female proportion of this international migration. Female migration, which is shown to be strongly associated with education, wealth, and social capital, appears responsive to economic incentives and constraints. Using information on the dependency of female migration to the household demographic structure as well as the sensitivity of female migration to household-level shocks, we show how household-level constraints and incentives affect male and female migration differently. Throughout this period, however, women’s migration behavior appears more directly aligned with household-level factors, and there is little evidence to suggest that increased female migration signals rising behavioral independence among Albanian women. PMID:21308565
75 FR 1803 - Lower Florida Keys Refuges, Monroe County, FL
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-13
... fully assessed and the effect of climate change (e.g., sea level rise) is not known. We would protect... (e.g., hurricanes, wildfire) and global climate change, particularly sea level rise. Current ongoing... evaluate the potential impacts of sea level rise on the ecology of wading birds. Since a primary purpose of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
... Service (NPS) for the Florida leafwing and the pine rockland ecosystem, in general. Sea Level Rise... habitat. In the best case scenario, which assumes low sea level rise, high financial resources, proactive... human population. In the worst case scenario, which assumes high sea level rise, low financial resources...
Sea-level Rise Impacts on Oregon Estuaries: Biology and Hydrology - for posting on website
Estuaries are transitional ecosystems located at the margin of the land and ocean and as a result they are particularly sensitive to sea level rise and other climate drivers. In this presentation, we summarize the potential impacts of sea level rise on key estuarine habitats incl...
Sea-Level Rise and Flood Potential along the California Coast
NASA Astrophysics Data System (ADS)
Delepine, Q.; Leung, C.
2013-12-01
Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future. This would allow them to plan ahead to reduce the level of risk to homes, industry, and infrastructure San Francisco International Airport will be most likely be flooded in the next 30 years. Blue lines indicate current Mean High Water Levels. Yellow lines indicate the Mean High Water level combined with flood levels for 2030. Green, 2050, and Red lines, 2100
Salt marsh persistence is threatened by predicted sea-level rise
NASA Astrophysics Data System (ADS)
Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.
2016-11-01
Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.
Building more effective sea level rise models for coastal management
NASA Astrophysics Data System (ADS)
Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.
2017-12-01
For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Walters, D. C.; Reay, W.; Carr, J.
2016-12-01
Salt marsh ecosystem services depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here, we present a simple model of marsh migration into adjacent uplands, and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how connectivity between adjacent ecosystems influences marsh size and response to sea level rise. We find that ecogeomorphic feedbacks tend to stabilize soil elevations relative to sea level rise so that changes in marsh size are determined mostly by the competition between ecological transitions at the upland boundary, and physical erosion at the seaward boundary. Salt marsh loss and natural flood protection is nearly inevitable under rapid sea level rise rates where topographic and anthropogenic barriers limit marsh migration into uplands. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. Together, this behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise, and emphasizes the disparity between coastal response to climate change with and without human intervention. Analysis of 19th century maps and modern photographs from the Chesapeake Bay region confirm that migration rates are more sensitive to sea level rise than erosion rate, and indicate that transgression has thus far allowed marshes to survive the fastest rates of relative sea level rise on the Atlantic Coast. This work suggests that the flux of organisms and sediment across adjacent ecosystems leads to an increase in system resilience that could not be inferred from studies that consider individual components of landscape change.
Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209
Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.
Sea-Level Projections from the SeaRISE Initiative
NASA Technical Reports Server (NTRS)
Nowicki, Sophie; Bindschadler, Robert
2011-01-01
SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.
Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise.
Hatfield, Jeff S; Reynolds, Michelle H; Seavy, Nathaniel E; Krause, Crystal M
2012-08-01
Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds. Conservation Biology ©2012 Society for Conservation Biology. No claim to original US government works.
Increased Flooding Risk - Accelerating Threat and Stakeholder Response
NASA Astrophysics Data System (ADS)
Atkinson, L. P.; Ezer, T.; De Young, R.; McShane, M. K.; McFarlane, B.
2012-12-01
Coastal cities have been adapting to coastal flooding for centuries. Now, with increased population along the coast combined with increased flooding because of sea level rise (SLR) the vulnerability of coastal cities has increased significantly. In this paper we will discuss the physical threat of accelerating sea level rise and the response of stakeholders. Sallenger et al (2012) stated "... we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modeled fingerprint of dynamic SLR." In the Northeast Hotspot (NEH) dynamic processes such as Gulf Stream transport can cause local sea level differences (Ezer, 2001). Sweet et al (2009) attributed the anomalously high sea level along the mid-Atlantic in 2009 to dynamic SLR. A recent paper (Ezer and Corlett, 2012 submitted), focused on Chesapeake Bay, confirms Sallenger et al. These accelerations suggest that the higher estimates of SLR in IPCC reports may be better estimates. The combination of local sea level rise and acceleration, even with average coastal storm surge, results in increased vulnerability and economic losses. We will use three examples of stakeholder response to this threat: shipbuilding, cities and insurance. Nuclear aircraft carrier drydock in Newport News, VA - The only drydock where nuclear powered aircraft carriers are built flooded during Hurricane Isabel. A study showed that with a 1 meter sea level rise and no change in storm severity they would have 'Major Flooding' every 4 months rather than every 27 years. Cities infrastructure - In a recent report on sea level rise, the Hampton Roads Planning District Commission (representing nearly 2m people) found that "sea level rise will be a major issue", "there is not yet official state or federal guidance for addressing sea level rise", "…the "…U.S. Army Corps of Engineers has developed guidance…" for their projects, and "…subsidence …. is not well-documented". Studies sponsored by the City of Norfolk for example suggest massive tidal barriers. Flood insurance - Flood insurance is available only from the National Flood Insurance Program (NFIP), not from private insurers. NFIP has a current deficit of about 18B, which is estimated to increase by about 2B annually. The rates are subsidized and do not reflect the true risk of coastal flooding and do not incorporate the likelihood of future sea-level rise. In effect, the subsidy promotes increased building on the coast, leading to increased deficits in the tax-payer financed program. Risk-based flood insurance pricing would lead to less coastal development, therefore decreasing the tax base of the community. Stakeholder needs - Planning for increased flooding due to sea level rise extends 50 to 100 years given the lifetime of infrastructure. Planners need guidance and error estimates. To make adequate predictions for users we must understand the various components of sea level rise including subsidence, global sea level rise and regional and local dynamic sea level rise. Predictions of regional sea level rise will be presented in the context of existing infrastructure such as NASA research facilities and the city of Norfolk, Virginia.
Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.
Langevin, Christian D; Zygnerski, Michael
2013-01-01
A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Relative sea-level rise as indicated by gage data along the Mississippi and Alabama Gulf Coasts
Van Wilson, K.
2004-01-01
Global warming, or the increasing of earth's temperatures, leads to rising sea level as polar ice caps and mountain glaciers melt and ocean water undergoes thermal expansion. Tidal records collected by the U.S. Army Corps of Engineers (COE), Mobile District, at Gulfport, Biloxi, and Pascagoula, Mississippi, and at Mobile, Alabama, indicate trends of water-surface elevations increasing with time (relative sea-level rise). The trends indicated by the COE data were compared to relative sea-level trends indicated by the National Ocean Survey gages in the Gulf of Mexico. The average global rate of sea level rise has been suggested to approach about 2 mm/yr (0.007 ft/yr). Some leading scientists have suggested rates of sea level rise that are greater than 2 mm/yr, when accounting for effects of greenhouse gas emissions. As the sea level rises and inundates the coastal plain, structures along the existing coast and structures located in the back bays of estuaries will be even more adversely affected by future flooding. Also, if the land surface adjacent to the water also sinks due to soil compaction and other geologic processes (collectively call subsidence), additional land will be inundated. Copyright ASCE 2004.
How will coastal sea level respond to changes in natural and anthropogenic forcings by 2100?
NASA Astrophysics Data System (ADS)
Jevrejeva, S.; Moore, J.; Grinsted, A.
2010-12-01
Sea level rise is perhaps the most damaging repercussion of global warming, as 150 million people live less than one meter above current high tides .Using an inverse statistical model we examine potential response in coastal sea level to the changes in natural and anthropogenic forcings by 2100. With six IPCC radiative forcing scenarios we estimate sea level rise of 0.6-1.6 m, with confidence limits of 0.59 m and 1.8 m. Projected impacts of solar and volcanic radiative forcings account only for, at maximum, 5% of total sea level rise, with anthropogenic greenhouse gasses being the dominant forcing. As alternatives to the IPCC projections, even the most intense century of volcanic forcing from the past 1000 years would result in 10-15 cm potential reduction of sea level rise. Stratospheric injections of SO2 equivalent to a Pinatubo eruption every 4 years would effectively just delay sea level rise by 12 -20 years.
Coralgal reef morphology records punctuated sea-level rise during the last deglaciation.
Khanna, Pankaj; Droxler, André W; Nittrouer, Jeffrey A; Tunnell, John W; Shirley, Thomas C
2017-10-19
Coralgal reefs preserve the signatures of sea-level fluctuations over Earth's history, in particular since the Last Glacial Maximum 20,000 years ago, and are used in this study to indicate that punctuated sea-level rise events are more common than previously observed during the last deglaciation. Recognizing the nature of past sea-level rises (i.e., gradual or stepwise) during deglaciation is critical for informing models that predict future vertical behavior of global oceans. Here we present high-resolution bathymetric and seismic sonar data sets of 10 morphologically similar drowned reefs that grew during the last deglaciation and spread 120 km apart along the south Texas shelf edge. Herein, six commonly observed terrace levels are interpreted to be generated by several punctuated sea-level rise events forcing the reefs to shrink and backstep through time. These systematic and common terraces are interpreted to record punctuated sea-level rise events over timescales of decades to centuries during the last deglaciation, previously recognized only during the late Holocene.
The moral failure of the patriarchy.
Watson, J
1990-01-01
The present health care system operates within a larger structure that now has to be openly acknowledged as patriarchal: Caring is viewed as women's work, which is not valued and which is considered less important than the work of men. The moral failure of this worldview is evident in such health care crises as care of the homelessness and those with AIDS, and dramatic rises in rates of infant mortality among the poor. This failure demands a health care revolution--a revolution in the sense that society must give up that which no longer works.
Wrinkle ridges in the floor material of Kasei Valles, Mars: Nature and origin
NASA Technical Reports Server (NTRS)
Watters, Thomas R.; Craddock, Robert A.
1991-01-01
Wrinkle ridges on Mars occur almost exclusively in smooth plains material referred to as ridged plains. One of the largest contiguous units of ridged plains occurs on Lunae Planum on the eastern flank of the Tharsis rise. The eastern, western, and northern margins of the ridged plains of Lunae Planum suffered extensive erosion in early Amazonian channel-forming events. The most dramatic example of erosion in early Amazonian plains is in Kasei Valles. The nature an origin of the wrinkle ridges in the floor material of Kasei Valles are discussed.
Sessler, Jonathan L; Cho, Dong-Gyu
2008-01-03
The isolation and characterization of an intermediate from the benzil-cyanide reaction is reported. The use of this trapping chemistry to produce a chemical indicator for the cyanide anion is described. It relies on the synthesis and reaction of a pi-extended analogue of benzil. Addition of tetrabutylammonium cyanide to organic solutions of this species, referred to as compound 3 in the text, gives rise to a dramatic change in both color and fluorescence properties.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... would work with the partners to establish benchmarks to record sea level rise and beach profiles and... partners to establish benchmarks to record sea level rise and beach profiles and shoreline changes, which... establish benchmarks to record sea level rise and beach profiles and shoreline changes, which could...
Shimada, Keisuke; Lo, Nathan; Kitade, Osamu; Wakui, Akane
2013-01-01
Among the best-known examples of mutualistic symbioses is that between lower termites and the cellulolytic flagellate protists in their hindguts. Although the symbiosis in worker termites has attracted much attention, there have been only a few studies of protists in other castes. We have performed the first examination of protist population dynamics in queens and kings during termite colony foundation. Protist numbers, as well as measurements of hindgut and reproductive tissue sizes, were undertaken at five time points over 400 days in incipient colonies of Reticulitermes speratus, as well as in other castes of mature colonies of this species. We found that protist numbers increased dramatically in both queens and kings during the first 50 days of colony foundation but began to decrease by day 100, eventually disappearing by day 400. Hindgut width followed a pattern similar to that of protist numbers, while ovary and testis widths increased significantly only at day 400. Kings were found to contain higher numbers of protists than queens in incipient colonies, which may be linked to higher levels of nutrient transfer from kings to queens than vice versa, as is known in some other termite species. Protists were found to be abundant in soldiers from mature colonies but absent in neotenics. This probably reflects feeding of soldiers by workers via proctodeal trophallaxis and of reproductives via stomodeal trophallaxis. The results reveal the dynamic nature of protist numbers during colony foundation and highlight the trade-offs that exist between reproduction and parental care during this critical phase of the termite life cycle. PMID:23376945
Coastal marsh response to historical and future sea-level acceleration
Kirwan, M.; Temmerman, S.
2009-01-01
We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium-SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6-14 cm of marsh submergence in response to historical sea-level acceleration, and 3-4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.
NASA Astrophysics Data System (ADS)
Vainu, M.
2012-04-01
Lakes form a highly important ecosystem in the glacial terrain of northern Europe and America, but their hydrology remains understudied. When the water-level of a lake drops significantly and rises again in a time span of half a century and the widespread explanation of the fluctuations seems insufficient, then it raises a question: how do different anthropogenic and natural processes actually affect the formation of a lakes' water body. The abovementioned scenario applies to three small closed-basin Estonian lakes (L. Ahnejärv, L. Kuradijärv and L. Martiska) analysed in the current study. These lakes suffered a major water-level drop (up to 3.8 m) between 1946 and 1987 and a major rise between 1987 and 2010, from 1 m (L. Ahnejärv) to 2.5 m (L. Kuradijärv). Decreasing and increasing groundwater abstraction near the lakes has been widely considered to be the only reason for the fluctuations. It is true that the most severe drop in the lake levels did occur after 1972 when groundwater abstraction for drinking water started in the vicinity of the lakes. However, the lake levels started to fall before the groundwater abstraction began and for the time being the lake levels have risen to a higher level than in the 1970s when the quantity of annually abstracted groundwater was similar to nowadays. Therefore the processes affecting the formation of the lakes' water body prove to be more complex than purely the hydrogeological change caused by groundwater abstraction. A new deterministic water balance model (where the evaporation from the lake surface was calculated by Penman equation and the catchment runoff by Thornthwaite-Mather soil-moisture model), compiled for the study, coupled with LiDAR-based GIS-modelling of the catchments was used to identify the different factors influencing the lakes' water level. The modelling results reveal that the moderate drop in lake water levels before the beginning of groundwater abstraction was probably caused by the growth of a coniferous forest on the lake catchments, due to which evapotranspiration and subsequently runoff from the catchment decreased. The forest had been destroyed by wildfires during World War II. The water-level rise that the lakes have gone through in the last 20 years has in the case of L. Ahnejärv been caused by changing meteorological conditions (precipitation, air temperature and wind speed). In the case of Lakes Kuradijärv and Martiska the change has been caused by both the raise of groundwater level (caused by the decreasing groundwater abstraction) and the change of meteorological conditions. Therefore the vegetation change on the catchment and changes in meteorological conditions have played as important or, at times, even more important role in the water-level fluctuations than changes in the hydrogeological conditions. Although concentrating on three specific lakes in a specific region, the result of the study indicate the complexity of factors influencing the amount of water stored in a lake at a certain moment. Therefore it manifests a need for improved models in order to improve lake management around the world.
Gesch, Dean B.
2013-01-01
The accuracy with which coastal topography has been mapped directly affects the reliability and usefulness of elevationbased sea-level rise vulnerability assessments. Recent research has shown that the qualities of the elevation data must be well understood to properly model potential impacts. The cumulative vertical uncertainty has contributions from elevation data error, water level data uncertainties, and vertical datum and transformation uncertainties. The concepts of minimum sealevel rise increment and minimum planning timeline, important parameters for an elevation-based sea-level rise assessment, are used in recognition of the inherent vertical uncertainty of the underlying data. These concepts were applied to conduct a sea-level rise vulnerability assessment of the Mobile Bay, Alabama, region based on high-quality lidar-derived elevation data. The results that detail the area and associated resources (land cover, population, and infrastructure) vulnerable to a 1.18-m sea-level rise by the year 2100 are reported as a range of values (at the 95% confidence level) to account for the vertical uncertainty in the base data. Examination of the tabulated statistics about land cover, population, and infrastructure in the minimum and maximum vulnerable areas shows that these resources are not uniformly distributed throughout the overall vulnerable zone. The methods demonstrated in the Mobile Bay analysis provide an example of how to consider and properly account for vertical uncertainty in elevation-based sea-level rise vulnerability assessments, and the advantages of doing so.
Flooded! An Investigation of Sea-Level Rise in a Changing Climate
ERIC Educational Resources Information Center
Gillette, Brandon; Hamilton, Cheri
2011-01-01
Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…
A Bayesian network to predict coastal vulnerability to sea level rise
Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.
2011-01-01
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.
Overestimation of marsh vulnerability to sea level rise
Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio
2016-01-01
Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.
The Climate Science Special Report: Rising Seas and Changing Oceans
NASA Astrophysics Data System (ADS)
Kopp, R. E.
2017-12-01
GMSL has risen by about 16-21 cm since 1900. Ocean heat content has increased at all depths since the 1960s, and global mean sea-surface temperature increased 0.7°C/century between 1900 to 2016. Human activity contributed substantially to generating a rate of GMSL rise since 1900 faster than during any preceding century in at least 2800 years. A new set of six sea-level rise scenarios, spanning a range from 30 cm to 250 cm of 21st century GMSL rise, were developed for the CSSR. The lower scenario is based on linearly extrapolating the past two decades' rate of rise. The upper scenario is informed by literature estimates of maximum physically plausible values, observations indicating the onset of marine ice sheet instability in parts of West Antarctica, and modeling of ice-cliff and ice-shelf instability mechanisms. The new scenarios include localized projections along US coastlines. There is significant variability around the US, with rates of rise likely greater than GMSL rise in the US Northeast and the western Gulf of Mexico. Under scenarios involving extreme Antarctic contributions, regional rise would be greater than GMSL rise along almost all US coastlines. Historical sea-level rise has already driven a 5- to 10-fold increase in minor tidal flooding in several US coastal cities since the 1960s. Under the CSSR's Intermediate sea-level rise scenario (1.0 m of GMSL rise in 2100) , a majority of NOAA tide gauge locations will by 2040 experience the historical 5-year coastal flood about 5 times per year. Ocean changes are not limited to rising sea levels. Ocean pH is decreasing at a rate that may be unparalleled in the last 66 million years. Along coastlines, ocean acidification can be enhanced by changes in the upwelling (particularly along the US Pacific Coast); by episodic, climate change-enhanced increases in freshwater input (particularly along the US Atlantic Coast); and by the enhancement of biological respiration by nutrient runoff. Climate models project a slowdown in the Atlantic Meridional Overturning Circulation (AMOC) under high-emissions scenarios. Any slowdown will reduce ocean heat and carbon absorption and raise sea levels off the northeastern US A full AMOC collapse, improbable in the current century, would lead to an additional 0.5 m of sea-level rise and offset 0-2°C of warming over the US.
Conti, Jennifer A; Brant, Ashley R; Shumaker, Heather D; Reeves, Matthew F
2016-12-01
To review the status of antiabortion restrictions enacted over the last 5 years in the United States and their impact on abortion services. In recent years, there has been an alarming rise in the number of antiabortion laws enacted across the United States. In total, various states in the union enacted 334 abortion restrictions from 2011 to July 2016, accounting for 30% of all abortion restrictions since the legalization of abortion in 1973. Data confirm, however, that more liberal abortion laws do not increase the number of abortions, but instead greatly decrease the number of abortion-related deaths. Several countries including Romania, South Africa and Nepal have seen dramatic decreases in maternal mortality after liberalization of abortion laws, without an increase in the total number of abortions. In the United States, abortions are incredibly safe with very low rates of complications and a mortality rate of 0.7 per 100 000 women. With increasing abortion restrictions, maternal mortality in the United States can be expected to rise over the coming years, as has been observed in Texas recently. Liberalization of abortion laws saves women's lives. The rising number of antiabortion restrictions will ultimately harm women and their families.
Kaplan, Gilaad G; Ng, Siew C
2016-12-01
The UK and China provide unique historical perspectives on the evolution of the incidence of inflammatory bowel disease, which might provide insight into its pathogenesis. Historical records from the UK document the emergence of ulcerative colitis during the mid-1800s, which was later followed by the recognition of Crohn's disease in 1932. During the second half of the 20th century, the incidence of inflammatory bowel disease rose dramatically in high-income countries. Globalisation at the turn of the 21st century led to rapid economic development of newly industrialised countries such as China. In China, the modernisation of society was accompanied by the recognition of a sharp rise in the incidence of inflammatory bowel disease. The prevalence of inflammatory bowel disease is expected to continue to rise in high-income countries and is also likely to accelerate in the developing world. An understanding of the shared and different environmental determinants underpinning the pathogenesis of inflammatory bowel disease in western and eastern countries is essential to implement interventions that will blunt the rising global burden of inflammatory bowel disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate
NASA Astrophysics Data System (ADS)
Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.
2015-12-01
ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.
Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.
2015-01-01
The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175
NASA Astrophysics Data System (ADS)
Dugar, S.; MacClune, K.; Venkateswaran, K.; Yadav, S.; Szoenyi, M.
2015-12-01
Implementing Community Based Flood Early Warning System (EWS) in developing countries like Nepal is challenging. Complex topography and geology combined with a sparse network of river and rainfall gauges and little predictive meteorological capacity both nationally and regionally dramatically constrain EWS options. This paper provides a synopsis of the hydrological and meteorological conditions that led to flooding in the Karnali River, West Nepal during mid-August 2014, and analyses the effectiveness of flood EWS in the region. On August 14-15, 2014, a large, slow moving weather system deposited record breaking rainfall in the foothills of the Karnali River catchment. Precipitation depths of 200 to 500 mm were recorded over a 24-hour period, which led to rapid rise of river heights. At the Chisapani river gauge station used for the existing EWS, where the Karnali River exits the Himalaya onto the Indo-Gangetic Plain, water levels rapidly exceeded the 11 meter danger level. Between 3 to 6 am, water levels rose from 11 to 16. 1 meters, well beyond the design height of 15 meters. Analysis suggests that 2014 floods may have been a one-in-1000 year event. Starting with the onset of intense rainfall, the Chisapani gauge reader was in regular communication with downstream stakeholders and communities providing them with timely information regarding rising water level. This provided people just enough time to move to safe places with their livestock and key assets. Though households still lost substantial assets, without the EWS, floodwaters would have caught communities completely unaware and damage would almost certainly have been much worse. In particular, despite the complications associated with access to the Chisapani gauge and failure of critical communication nodes during the floods, EWS was instrumental in saving lives. This study explores both the details of the flood event and performance of the early warning system, and identifies lessons learned to help strengthen flood response in Nepal other regions facing similar data and technology constraints. This research also underscores the need to move from observation to forecast based EWS, ideally coupled with hydrological and meteorological models that would provide flood estimates well in advance to vulnerable communities.
Using time lapse cameras to monitor shoreline changes due to sea level rise.
DOT National Transportation Integrated Search
2017-01-01
Shoreline habitats and infrastructure are currently being affected by sea level rise (SLR) and as : global temperatures continue to rise, will continue to get worse for millennia. Governments : and individuals decisions to adapt to SLR could ha...
A dramatic, objective antiandrogen withdrawal response: case report and review of the literature.
Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L
2008-11-05
Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation.
Developing a Learning Progression for Sea Level Rise, a Major Impact of Climate Change
ERIC Educational Resources Information Center
Breslyn, Wayne; McGinnis, J. Randy; McDonald, R. Christopher; Hestness, Emily
2016-01-01
We present research from an investigation on developing a learning progression (LP) for sea level rise (SLR), a major effect of global climate change. We began our research by drafting a hypothetical LP for sea level rise, informed by extant knowledge of the topic in the scientific community, in science education literature, and in science…
Coastal Impact Underestimated From Rapid Sea Level Rise
NASA Astrophysics Data System (ADS)
Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander
2010-06-01
A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).
Alrashidi, Monif; Shobrak, Mohammed; Al-Eissa, Mohammed S; Székely, Tamás
2012-07-01
One of the expected effects of the global warming is changing coastal habitats by accelerating the rate of sea level rise. Coastal habitats support large number of marine and wetland species including shorebirds (plovers, sandpipers and allies). In this study, we investigate how coastal habitats may be impacted by sea level rise in the Farasan Islands, Kingdom of Saudi Arabia. We use Kentish plover Charadrius alexandrinus - a common coastal breeding shorebird - as an ecological model species to predict the influence of sea level rise. We found that any rise of sea level is likely to inundate 11% of Kentish plover nests. In addition, 5% of the coastal areas of Farasan Islands, which support 26% of Kentish plover nests, will be flooded, if sea level rises by one metre. Our results are constrained by the availability of data on both elevation and bird populations. Therefore, we recommend follow-up studies to model the impacts of sea level rise using different elevation scenarios, and the establishment of a monitoring programme for breeding shorebirds and seabirds in Farasan Islands to assess the impact of climate change on their populations.
NASA Astrophysics Data System (ADS)
Neves, M. C.; Roque, C.; Luttrell, K. M.; Vázquez, J. T.; Alonso, B.
2016-12-01
Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE-SW trending thrusts and WNW-ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.
Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.
2011-01-01
The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.
Global Coastal Exposure due to Sea-level Rise beyond Tipping Points with Multiple Warming Pathways
NASA Astrophysics Data System (ADS)
Tawatari, R.; Iseri, Y.; Kiguchi, M.; Kanae, S.
2016-12-01
Sea-level is observed and estimated to continue rising. In the future, the rise could be abrupt and irreversible in century to millennial timescale even if we conduct strong reduction of greenhouse gas emission. Greenland ice sheet and West Antarctic ice sheet are considered as attributable climate systems which would significantly enhance presently-projected sea-level rise by several meters if global mean temperature passes certain "Tipping points" which would exist around +1-5 degree Celsius above present temperature (1980-1999 average). Therefore, vulnerable coastal low-lying area, especially small islands, deltas or poor developing countries, would suffer from semi-permanent inundation and forced to counteract due to the enhanced sea-level rise. This study estimate range of sea-level rise until the year 2300 and 3000 considering excess of tipping points with using multiple levels of temperature scenarios which consist of excess tipping points and non-excess tipping points pathways. We extract state-of-the-art knowledge of tipping elements from paper reviewing to express reasonable relationship between temperature and abruptly-changing sea-level transition across the ages. This study also calculate coastal exposure globally as affected population, area and asset below the estimated sea-level for each countries with overlaying 30 arc-second gridded topography, population distribution and the sea-level. The result indicates which country would be critically affected if we follow overshooting pathways. Furthermore, this study visualize uncertain coastal exposure due to sea-level rise in the future from the multiple warming pathways. This estimation of possible future beyond tipping point would be useful information for decision-makers to establish new planning of defense, migration or mitigation for the future societies.
Timescales for detecting a significant acceleration in sea level rise
Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke
2014-01-01
There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012
Model projections of rapid sea-level rise on the northeast coast of the United States
NASA Astrophysics Data System (ADS)
Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.
2009-04-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States
NASA Astrophysics Data System (ADS)
Yin, J.; Schlesinger, M.; Stouffer, R. J.
2009-12-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
Processes contributing to resilience of coastal wetlands to sea-level rise
Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.
2016-01-01
The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.
Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change
Pendleton, E.A.; Barras, J.A.; Williams, S.J.; Twichell, D.C.
2010-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise along the Northern Gulf of Mexico from Galveston, TX, to Panama City, FL. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rate, mean tidal range, and mean significant wave height. The rankings for each variable are combined and an index value is calculated for 1-kilometer grid cells along the coast. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. The CVI assessment presented here builds on an earlier assessment conducted for the Gulf of Mexico. Recent higher resolution shoreline change, land loss, elevation, and subsidence data provide the foundation for a better assessment for the Northern Gulf of Mexico. The areas along the Northern Gulf of Mexico that are likely to be most vulnerable to sea-level rise are parts of the Louisiana Chenier Plain, Teche-Vermillion Basin, and the Mississippi barrier islands, as well as most of the Terrebonne and Barataria Bay region and the Chandeleur Islands. These very high vulnerability areas have the highest rates of relative sea-level rise and the highest rates of shoreline change or land area loss. The information provided by coastal vulnerability assessments can be used in long-term coastal management and policy decision making.
Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter
NASA Astrophysics Data System (ADS)
Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.
2016-09-01
Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.
Asugeni, James; MacLaren, David; Massey, Peter D; Speare, Rick
2015-12-01
There is little published research about mental health and climate change in the Pacific, including Solomon Islands. Solomon Islands has one of the highest rates of sea-level rise globally. The aim of this research was to document mental health issues related to sea-level rise for people in East Malaita, Solomon Islands. A cross-sectional study was carried out in six low-lying villages in East Malaita, Solomon Islands. The researcher travelled to villages by dugout canoe. In addition to quantitative, closed-ended questions, open-ended questions with villagers explored individual and community responses to rising sea level. Of 60 people asked, 57 completed the questionnaire. Of these, 90% reported having seen a change in the weather patterns. Nearly all participants reported that sea-level rise is affecting them and their family and is causing fear and worry on a personal and community level. Four themes emerged from the qualitative analysis: experience of physical impacts of climate change; worry about the future; adaptation to climate change; government response needed. Given predictions of ongoing sea-level rise in the Pacific it is essential that more research is conducted to further understand the human impact of climate change for small island states which will inform local, provincial and national-level mental health responses. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi
2014-01-01
Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.
Ice2sea - the future glacial contribution to sea-level rise
NASA Astrophysics Data System (ADS)
Vaughan, D. G.; Ice2sea Consortium
2009-04-01
The melting of continental ice (glaciers, ice caps and ice sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental ice, and that understanding of the key processes that will lead to loss of continental ice must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. Ice2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and ice caps (e.g. Svalbard), and in ice sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and ice-sheet model. Ice2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. Ice2sea will provide exciting opportunities for many early-career glaciologists and ice-modellers in a variety of host institutes.
NASA Astrophysics Data System (ADS)
Sampath, D. M. R.; Boski, T.
2016-12-01
In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year 2100, a multi-dimensional approach should be adopted to mitigate the consequences of sea-level rise and strong flow regulations on the ecosystem of the Guadiana Estuary.
Considerations for an Obesity Policy Research Agenda
McKinnon, Robin A.; Orleans, C. Tracy; Kumanyika, Shiriki K.; Haire-Joshu, Debra; Krebs-Smith, Susan M.; Finkelstein, Eric A.; Brownell, Kelly D.; Thompson, Joseph W.; Ballard-Barbash, Rachel
2010-01-01
The rise in obesity levels in the U.S. in the past several decades has been dramatic, with serious implications for public health and the economy. Experiences in tobacco control and other public health initiatives have shown that public policy may be a powerful tool to effect structural change to alter population-level behavior. In 2007, the National Cancer Institute convened a meeting to discuss priorities for a research agenda to inform obesity policy. Issues considered were how to define obesity policy research, key challenges and key partners in formulating/implementing an obesity policy research agenda, criteria by which to set research priorities, and specific research needs and questions. Themes that emerged were: (1) the embryonic nature of obesity policy research, (2) the need to study “natural experiments” resulting from policy-based efforts to address the obesity epidemic, (3) the importance of research focused beyond individual-level behavior change, (4) the need for economic research across several relevant policy areas, and (5) the overall urgency of taking action in the policy arena. Moving forward, timely evaluation of natural experiments is of especially high priority. A variety of policies intended to promote healthy weight in children and adults are being implemented in communities and at the state and national levels. Although some of these policies are supported by the findings of intervention research, additional research is needed to evaluate the implementation and quantify the impact of new policies designed to address obesity. PMID:19211215
Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana
Glick, Patty; Clough, Jonathan; Polaczyk, Amy; Couvillion, Brady R.; Nunley, Brad
2013-01-01
Coastal Louisiana wetlands contain about 37% of the estuarine herbaceous marshes in the conterminous United States. The long-term stability of coastal wetlands is often a function of a wetland's ability to maintain elevation equilibrium with mean sea level through processes such as primary production and sediment accretion. However, Louisiana has sustained more coastal wetland loss than all other states in the continental United States combined due to a combination of natural and anthropogenic factors, including sea-level rise. This study investigates the potential impact of current and accelerating sea-level rise rates on key coastal wetland habitats in southeastern Louisiana using the Sea Level Affecting Marshes Model (SLAMM). Model calibration was conducted using a 1956–2007 observation period and hindcasting results predicted 35% versus observed 39% total marsh loss. Multiple sea-level-rise scenarios were then simulated for the period of 2007–2100. Results indicate a range of potential wetland losses by 2100, from an additional 2,188.97 km2 (218,897 ha, 9% of the 2007 wetland area) under the lowest sea-level-rise scenario (0.34 m), to a potential loss of 5,875.27 km2 (587,527 ha, 24% of the 2007 wetland area) in the highest sea-level-rise scenario (1.9 m). Model results suggest that one area of particular concern is the potential vulnerability of the region's baldcypress-water tupelo (Taxodium distichum-Nyssa aquatica) swamp habitat, much of which is projected to become permanently flooded (affecting regeneration) under all modeled scenarios for sea-level rise. These findings will aid in the development of ecosystem management plans that support the processes and conditions that result in sustainable coastal ecosystems.
A dramatic, objective antiandrogen withdrawal response: case report and review of the literature
Lau, Yiu-Keung; Chadha, Manpreet K; Litwin, Alan; Trump, Donald L
2008-01-01
Antiandrogen withdrawal response is an increasingly recognized entity in patients with metastatic prostate cancer. To our knowledge, there have been no reports describing a durable radiologic improvement along with prostate-specific antigen (PSA) with discontinuation of the antiandrogen agent bicalutamide. We report a case in which a dramatic decline of serum PSA levels associated with a dramatic improvement in radiologic disease was achieved with bicalutamide discontinuation. PMID:18986533
Do we have to take an acceleration of sea level rise into account?
NASA Astrophysics Data System (ADS)
Dillingh, D.; Baart, F.; de Ronde, J.
2012-04-01
In view of preservation of safety against inundation and of the many values and functions of the coastal zone, coastal retreat is no longer acceptable. That is why it was decided to maintain the Dutch coastline on its position in 1990. Later the preservation concept was extended to the Dutch coastal foundation, which is the area that encompasses all dune area's and hard sea defences and reaches seawards until the 20m depth contour line. Present Dutch coastal policy is to grow with sea level by means of sand nourishments. A main issue for the planning of sand nourishments is the rate of sea level rise, because that is the main parameter for the volume of the sand needed. The question is than relevant if we already have to take into account an acceleration of sea level rise. Six stations with long water level records, well spread along the Dutch coast, were analysed. Correction of the measured data was considered necessary for an adaptation of the NAP in 2005 as a consequence of movements of the top of the pleistoceen, on which the NAP bench marks have been founded, and for the 18.6 year (nodal) cycle in the time series of yearly mean sea levels. It has been concluded that along the Dutch coast no significant acceleration of sea level rise could be detected yet. Over the last 120 years sea level rose with an average speed of 19 cm per century relative to NAP (the Dutch ordnance datum). Time series shorter than about 50 years showed less robust estimates of sea level rise. Future sea level rise also needs consideration in view of the estimate of future sand nourishment volumes. Scenario's for sea level rise have been derived for the years 2050 and 2100 relative to 1990 by the KNMI (Dutch Met Office) in 2006 for the Dutch situation. Plausible curves have been drawn from 1990 tangent to the linear regression line in 1990 and forced through the high and low scenario projections for 2050 and 2100. These curves show discrepancies with measurements of the last decade, particularly for the high scenario. Dutch design levels for coastal water defence structures (dikes and dunes) are based on extreme value statistics of long time series of high water levels. These design levels have typically return periods of 2000, 4000 and 10.000 years, depending on the importance of the protected dike ring. The last statistical analysis for the update of the design levels refers to the sea level situation of 1985. According to the Water Act Dutch design levels must be tested periodically (every 6 years). Due to sea level rise and tidal changes the design levels are corrected for the rise of the mean high waters from 1985 until the end of the testing period under consideration. This demands a tailoring approach for different regions or locations instead of a national average as for coastal preservation. Runs with climate models and coupled hydrodynamic models in the framework of the Essence project and the Delta Committee 2008 showed no indication for a change in the statistics of extreme storm surge levels. For the estimation of sea level rise over the last 120 years a linear regression gives the most robust estimate. Showing decadal variability needs more sophisticated models. For the last update of the design levels the elegant Whittaker smoother has been applied. Dutch policy prescribes to account for a future sea level rise of 60 cm per century for the design of new dikes or dike reinforcements and 85 cm per century for the long term (200 years) allocation of space for future reinforcements, in agreement with the KNMI'06 scenario's for sea level rise (central value and upper limit).
The contribution of sea-level rise to flooding in large river catchments
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.
2012-12-01
Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.
Trends in overweight and obese adults in Malaysia (1996-2009): a systematic review.
Khambalia, A Z; Seen, L S
2010-06-01
Like other nations experiencing rapid industrialization, urbanization and a nutrition transition, there is concern in Malaysia of a possible escalation in the prevalence of overweight and obesity. In 1996, the National Health and Morbidity Survey reported a 16.6% and 4.4% prevalence of overweight and obesity, respectively. In the following decade, there have been several national and community surveys on overweight and obesity in Malaysia. The objective of this systematic review is to describe the trend from 1996 to 2009 in the prevalence of overweight and obesity in adults in Malaysia nationally and by gender, age and race. Results indicate that there has been a small rise in overweight adults in the years 1996, 2003 and 2006 (20.7%, 26.7% and 29.1%) and a much more dramatic increase in obesity in 1996, 2003, 2004 and 2006 (5.5%, 12.2%, 12.3% and 14.0%). Evidence showed a greater risk for overweight and obesity among women compared with men. Based on the highest-quality studies, overweight and obesity levels were highest among adults 40-59 years old. Overweight levels were highest among Indians, followed by Malays, Chinese and Aboriginals, with less consistency across studies on the order of risk or obesity by ethnicity.
Pregnancy, the postpartum, and steroid hormones: effects on cognition and mood.
Buckwalter, J G; Stanczyk, F Z; McCleary, C A; Bluestein, B W; Buckwalter, D K; Rankin, K P; Chang, L; Goodwin, T M
1999-01-01
The effects of pregnancy on cognition and mood were examined using a repeated-measures design. Nineteen women, average age 33, were tested with a comprehensive neuropsychological battery during their last 2 months of pregnancy and again within 2 months of delivery. Blood samples were obtained from all subjects and assayed for a variety of steroid hormones implicated in cognitive and mood functioning. Most participants also completed several self-report measures of mood. In comparison with performance after delivery, women showed significantly more impairment in aspects of verbal memory during pregnancy and also tended to report more negative mood states. Memory deficits were not explained by mood disturbances. No hormone assayed consistently related to cognitive performance during pregnancy. During pregnancy, higher levels of progesterone (P) were associated with greater mood disturbances and higher levels of dehydroepiandrosterone (DHEA) with better mood. After delivery, testosterone (T) was strongly and consistently associated with greater reported mood disturbances. Our results confirm a peripartal memory deficit, which cannot be explained by the dramatic rise in circulating steroid hormones, or by mood status during pregnancy. Steroidal hormones, namely P, DHEA and T, appear to play a role in mood disturbances during, and after, pregnancy. Studies beginning earlier in pregnancy and continuing for an extended period of time after delivery are needed to confirm and expand these observations.
Ackley, Sarah F.; Liu, Fengchen; Porco, Travis C.
2015-01-01
Late 19th century epidemics of tuberculosis (TB) in Western Canadian First Nations resulted in peak TB mortality rates more than six times the highest rates recorded in Europe. Using a mathematical modeling approach and historical TB mortality time series, we investigate potential causes of high TB mortality and rapid epidemic decline in First Nations from 1885 to 1940. We explore two potential causes of dramatic epidemic dynamics observed in this setting: first, we explore effects of famine prior to 1900 on both TB and population dynamics. Malnutrition is recognized as an individual-level risk factor for TB progression and mortality; its population-level effects on TB epidemics have not been explored previously. Second, we explore effects of heterogeneity in susceptibility to TB in two ways: modeling heterogeneity in susceptibility to infection, and heterogeneity in risk of developing disease once infected. Our results indicate that models lacking famine-related changes in TB parameters or heterogeneity result in an implausibly poor fit to both the TB mortality time series and census data; the inclusion of these features allows for the characteristic decline and rise in population observed in First Nations during this time period and confers improved fits to TB mortality data. PMID:26421237
NASA Astrophysics Data System (ADS)
Clinton, J.
2017-12-01
Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.
A Phase-Locked Loop Epilepsy Network Emulator
Watson, P.D.; Horecka, K. M.; Cohen, N.J.; Ratnam, R.
2015-01-01
Most seizure forecasting employs statistical learning techniques that lack a representation of the network interactions that give rise to seizures. We present an epilepsy network emulator (ENE) that uses a network of interconnected phase-locked loops (PLLs) to model synchronous, circuit-level oscillations between electrocorticography (ECoG) electrodes. Using ECoG data from a canine-epilepsy model (Davis et al. 2011) and a physiological entropy measure (approximate entropy or ApEn, Pincus 1995), we demonstrate the entropy of the emulator phases increases dramatically during ictal periods across all ECoG recording sites and across all animals in the sample. Further, this increase precedes the observable voltage spikes that characterize seizure activity in the ECoG data. These results suggest that the ENE is sensitive to phase-domain information in the neural circuits measured by ECoG and that an increase in the entropy of this measure coincides with increasing likelihood of seizure activity. Understanding this unpredictable phase-domain electrical activity present in ECoG recordings may provide a target for seizure detection and feedback control. PMID:26664133
Assessing hazards along our Nation's coasts
Hapke, Cheryl J.; Brenner, Owen; Henderson, Rachel E.; Reynolds, B.J.
2013-01-01
Coastal areas are essential to the economic, cultural, and environmental health of the Nation, yet by nature coastal areas are constantly changing due to a variety of events and processes. Extreme storms can cause dramatic changes to our shorelines in a matter of hours, while sea-level rise can profoundly alter coastal environments over decades. These changes can have a devastating impact on coastal communities, such as the loss of homes built on retreating sea cliffs or protective dunes eroded by storm waves. Sometimes, however, the changes can be positive, such as new habitat created by storm deposits. The U.S. Geological Survey (USGS) is meeting the need for scientific understanding of how our coasts respond to different hazards with continued assessments of current and future changes along U.S. coastlines. Through the National Assessment of Coastal Change Hazards (NACCH), the USGS carries out the unique task of quantifying coastal change hazards along open-ocean coasts in the United States and its territories. Residents of coastal communities, emergency managers, and other stakeholders can use science-based data, tools, models, and other products to improve planning and enhance resilience.
De Nobrega, Aliza K.
2017-01-01
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals. PMID:29391952
NASA Astrophysics Data System (ADS)
Saleh, F.; Garambois, P. A.; Biancamaria, S.
2017-12-01
Floods are considered the major natural threats to human societies across all continents. Consequences of floods in highly populated areas are more dramatic with losses of human lives and substantial property damage. This risk is projected to increase with the effects of climate change, particularly sea-level rise, increasing storm frequencies and intensities and increasing population and economic assets in such urban watersheds. Despite the advances in computational resources and modeling techniques, significant gaps exist in predicting complex processes and accurately representing the initial state of the system. Improving flood prediction models and data assimilation chains through satellite has become an absolute priority to produce accurate flood forecasts with sufficient lead times. The overarching goal of this work is to assess the benefits of the Surface Water Ocean Topography SWOT satellite data from a flood prediction perspective. The near real time methodology is based on combining satellite data from a simulator that mimics the future SWOT data, numerical models, high resolution elevation data and real-time local measurement in the New York/New Jersey area.
[Clinical nursing manpower: development and future prospects].
Lin, Chiou-Fen; Kao, Ching-Chiu
2014-04-01
The significant changes in nursing manpower utilization in Taiwan over the past two decades are due in large part to the implementation of the National Health Insurance program and the rising need for long-term care. The changes have impacted clinical nursing manpower utilization in two important ways. Firstly, there has been a substantial increase in overall demand for nursing manpower. In particular, the need for clinical nurses has nearly quadrupled during this time period. Secondly, the level of difficulty involved in patient care has risen dramatically, with factors including increased disease severity and increased care quality expectations, among others. These changes, coupled with demands on nursing manpower imposed from other sectors, underpin and further exacerbate the problem of nursing manpower shortages throughout the healthcare system. To raise the quality of the nursing work environment, the Ministry of Health and Welfare (MOHW) brought together Taiwan's key professional nursing organizations to promote 10 care-reform strategies, establish the nursing-aid manpower system, and create the nursing classification system as an approach to effectively attract nurses to take positions in the medical system.
Zheng, Hui; George, Linda K
2012-12-01
This study examines the interactive contextual effect of income inequality on health. Specifically, we hypothesize that income inequality will moderate the relationships between individual-level risk factors and health. Using National Health Interview Survey data 1984-2007 (n = 607,959) and U.S. Census data, this paper estimates the effect of the dramatic increase in income inequality in the U.S. over the past two decades on the gradient of socioeconomic status on two measures of health (i.e., physical functioning and activity limitations). Results indicate that increasing income inequality strengthens the protective effects of family income, employment, college education, and marriage on these two measures of health. In contrast, high school education's protective effect (relative to less than a high school education) weakens in the context of increasing income inequality. In addition, we find that increasing income inequality exacerbates men's disadvantages in physical functioning and activity limitations. These findings shed light on research about growing health disparities in the U.S. in the last several decades. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rubinstein, Justin L.; Mahani, Alireza Babaie
2015-01-01
The central United States has undergone a dramatic increase in seismicity over the past 6 years (Fig. 1), rising from an average of 24 M≥3 earthquakes per year in the years 1973–2008 to an average of 193 M≥3 earthquakes in 2009–2014, with 688 occurring in 2014 alone. Multiple damaging earthquakes have occurred during this increase including the 2011 M 5.6 Prague, Oklahoma, earthquake; the 2011 M 5.3 Trinidad, Colorado, earthquake; and the 2011M 4.7 Guy‐Greenbrier, Arkansas, earthquake. The increased seismicity is limited to a few areas and the evidence is mounting that the seismicity in many of these locations is induced by the deep injection of fluids from nearby oil and gas operations. Earthquakes that are caused by human activities are known as induced earthquakes. Most injection operations, though, do not appear to induce earthquakes. Although the message that these earthquakes are induced by fluid injection related to oil and gas production has been communicated clearly, there remains confusion in the popular press beyond this basic level of understanding.
The urban poor in Dhaka City: their struggles and coping strategies during the floods of 1998.
Rashid, S F
2000-09-01
Bangladesh experienced one of the worst floods in recorded history in 1998. This paper focuses on the needs and coping strategies of the urban poor in Dhaka City, which had been very badly affected. The city's roads were completely under water, and most areas were water-logged with drainage and sewage systems blocked. Rising water levels compelled many slum dwellers to move to temporary shelters and relief camps. Women and children were the worst affected. The lack of sanitation facilities and privacy forced women and children to defecate in their own homes. There was an acute scarcity of safe drinking-water, and food prices rose dramatically. Diarrhoea, fever and colds were the most common illnesses affecting the poor. The floods left many of them unemployed, and in some families, the result was increased tension and incidents of domestic violence. In some areas, members felt pressured to repay micro-credit loans. Most NGOs, however, suspended loan repayments. During this period, a committee was set up to co-ordinate and work towards addressing some of the main post-flood problems.
Improvement of information fusion-based audio steganalysis
NASA Astrophysics Data System (ADS)
Kraetzer, Christian; Dittmann, Jana
2010-01-01
In the paper we extend an existing information fusion based audio steganalysis approach by three different kinds of evaluations: The first evaluation addresses the so far neglected evaluations on sensor level fusion. Our results show that this fusion removes content dependability while being capable of achieving similar classification rates (especially for the considered global features) if compared to single classifiers on the three exemplarily tested audio data hiding algorithms. The second evaluation enhances the observations on fusion from considering only segmental features to combinations of segmental and global features, with the result of a reduction of the required computational complexity for testing by about two magnitudes while maintaining the same degree of accuracy. The third evaluation tries to build a basis for estimating the plausibility of the introduced steganalysis approach by measuring the sensibility of the models used in supervised classification of steganographic material against typical signal modification operations like de-noising or 128kBit/s MP3 encoding. Our results show that for some of the tested classifiers the probability of false alarms rises dramatically after such modifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Tetsuya; Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566; Ueyama, Tomomi
2008-01-25
The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-{beta} family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activinmore » A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.« less
Environmental threats to tidal-marsh vertebrates of the San Francisco Bay estuary
Takekawa, John Y.; Woo, I.; Spautz, Hildie; Nur, N.; Letitia, Grenier J.; Malamud-Roam, K.; Cully, Nordby J.; Cohen, A.N.; Malamud-Roam, F.; Wainwright-De La Cruz, S.E.; ,
2006-01-01
The San Francisco Bay and delta system comprises the largest estuary along the Pacific Coast of the Americas and the largest remaining area for tidal-marsh vertebrates, yet tidal marshes have been dramatically altered since the middle of the 19th century. Although recent efforts to restore ecological functions are notable, numerous threats to both endemic and widespread marsh organisms, including habitat loss, are still present. The historic extent of wetlands in the estuary included 2,200 km2 of tidal marshes, of which only 21% remain, but these tidal marshes comprise >90% of all remaining tidal marshes in California. In this paper, we present the most prominent environmental threats to tidal-marsh vertebrates including habitat loss (fragmentation, reductions in available sediment, and sea-level rise), habitat deterioration (contaminants, water quality, and human disturbance), and competitive interactions (invasive species, predation, mosquito and other vector control, and disease). We discuss these threats in light of the hundreds of proposed and ongoing projects to restore wetlands in the estuary and suggest research needs to support future decisions on restoration planning.
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
The vulnerability of Indo-Pacific mangrove forests to sea-level rise
Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran
2015-01-01
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.
The vulnerability of Indo-Pacific mangrove forests to sea-level rise.
Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran
2015-10-22
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.
Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands
NASA Astrophysics Data System (ADS)
Albert, Simon; Leon, Javier X.; Grinham, Alistair R.; Church, John A.; Gibbes, Badin R.; Woodroffe, Colin D.
2016-05-01
Low-lying reef islands in the Solomon Islands provide a valuable window into the future impacts of global sea-level rise. Sea-level rise has been predicted to cause widespread erosion and inundation of low-lying atolls in the central Pacific. However, the limited research on reef islands in the western Pacific indicates the majority of shoreline changes and inundation to date result from extreme events, seawalls and inappropriate development rather than sea-level rise alone. Here, we present the first analysis of coastal dynamics from a sea-level rise hotspot in the Solomon Islands. Using time series aerial and satellite imagery from 1947 to 2014 of 33 islands, along with historical insight from local knowledge, we have identified five vegetated reef islands that have vanished over this time period and a further six islands experiencing severe shoreline recession. Shoreline recession at two sites has destroyed villages that have existed since at least 1935, leading to community relocations. Rates of shoreline recession are substantially higher in areas exposed to high wave energy, indicating a synergistic interaction between sea-level rise and waves. Understanding these local factors that increase the susceptibility of islands to coastal erosion is critical to guide adaptation responses for these remote Pacific communities.
Rising sea level may cause decline of fringing coral reefs
Field, Michael E.; Ogston, Andrea S.; Storlazzi, Curt D.
2011-01-01
Coral reefs are major marine ecosystems and critical resources for marine diversity and fisheries. These ecosystems are widely recognized to be at risk from a number of stressors, and added to those in the past several decades is climate change due to anthropogenically driven increases in atmospheric concentrations of greenhouse gases. Most threatening to most coral reefs are elevated sea surface temperatures and increased ocean acidity [e.g., Kleypas et al., 1999; Hoegh-Guldberg et al., 2007], but sea level rise, another consequence of climate change, is also likely to increase sedimentary processes that potentially interfere with photosynthesis, feeding, recruitment, and other key physiological processes (Figure 1). Anderson et al. [2010] argue compellingly that potential hazardous impacts to coastlines from 21st-century sea level rise are greatly underestimated, particularly because of the rapid rate of rise. The Intergovernmental Panel on Climate Change estimates that sea level will rise in the coming century (1990–2090) by 2.2–4.4 millimeters per year, when projected with little contribution from melting ice [Meehl et al., 2007]. New studies indicate that rapid melting of land ice could substantially increase the rate of sea level rise [Grinsted et al., 2009; Milne et al., 2009].
Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise
Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.
2016-01-01
In the 21st century, accelerated sea-level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea-level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood-prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea-level rise sensitive and wetland-rich regions of the world. Our findings can be used to identify migration corridors and develop sea-level rise adaptation strategies to help ensure the continued availability of wetland-associated ecosystem goods and services.
NASA Astrophysics Data System (ADS)
Plach, Andreas; Hestnes Nisancioglu, Kerim
2016-04-01
The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.
NASA Astrophysics Data System (ADS)
Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.
2015-12-01
During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.
Shen, Megan Johnson; Nelson, Christian J; Peters, Ellen; Slovin, Susan F; Hall, Simon J; Hall, Matt; Herrera, Phapichaya Chaoprang; Leventhal, Elaine A; Leventhal, Howard; Diefenbach, Michael A
2015-05-01
Prostate cancer survivors with a rising prostate-specific antigen (PSA) level have few treatment options, experience a heightened state of uncertainty about their disease trajectory that might include the possibility of cancer metastasis and death, and often experience elevated levels of distress as they have to deal with a disease they thought they had conquered. Guided by self-regulation theory, the present study examined the cognitive and affective processes involved in shared decision making between physicians and patients who experience a rising PSA after definitive treatment for prostate cancer. In-depth interviews were conducted with 34 prostate cancer survivors who had been diagnosed with a rising PSA (i.e., biochemical failure) within the past 12 months. Survivors were asked about their experiences and affective responses after being diagnosed with a rising PSA and while weighing potential treatment options. In addition, patients were asked about their decision-making process for the initial prostate cancer treatment. Compared with the initial diagnosis, survivors with a rising PSA reported increased negative affect following their diagnosis, concern about the treatability of their disease, increased planning and health behavior change, heightened levels of worry preceding doctor appointments (especially prior to the discussion of PSA testing results), and a strong reliance on physicians' treatment recommendations. Prostate cancer survivors' decision-making processes for the treatment of a rising PSA are markedly different from those of the initial diagnosis of prostate cancer. Because patients experience heightened distress and rely more heavily on their physicians' recommendations with a rising PSA, interactions with the health care provider provide an excellent opportunity to address and assist patients with managing the uncertainty and distress inherent with rising PSA levels. © The Author(s) 2014.
Experimental investigation of channel avulsion frequency on river deltas under rising sea levels
NASA Astrophysics Data System (ADS)
Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.
2017-12-01
River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.
NASA Astrophysics Data System (ADS)
Applegate, Patrick J.; Keller, Klaus
2015-08-01
Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫103 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<103 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Leung, Lai-Yung R.
The northern coasts of the Gulf of Mexico are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks can be potentially exacerbated by land subsidence and global sea level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea level rise in the northern Gulf coast. An unstructured-grid Finite Volume Coastal Ocean Model was used to simulate tides and hurricane-induced storm surges in the Gulf of Mexico.more » Simulated distributions of co-amplitude and co-phase of semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea level rise on coastal inundation in the Louisiana coast were evaluated using a parameter “change of inundation depth” through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.« less
Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply
Ganju, N.K.; Schoellhamer, D.H.
2010-01-01
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.
NASA Astrophysics Data System (ADS)
Xu, A. A.
2016-12-01
Existing research has shown consistent increase in global sea levels due to warming of the climate; since 1870, average global sea level has risen by about 20 cm. There are processes that scientists and coastal engineers can follow to estimate the erosion and flooding risk impacts for specific locations based on historical data. However, there are no methods available to assess the risk impacts for locations where little research has been conducted. In this study, we introduce a prototype to better predict sea level change and land loss using big data technology. Our approach combines cluster analysis and artificial intelligence to classify and calculate impacts for locations worldwide. Data from 235 locations (89 countries) on sea level change was gathered from NOAA data investigations and other research organizations, including beach profile data, shoreline length data, and GDP data. The rate of sea level rise varies from -18 to 21 mm/yr. We divide the data into 4 groups (Group A: +0 to 9mm, Group B: +10 to +20mm, Group C: -0 to -9mm, and Group D:-10 to -20mm). Our research focuses on types A and B only since both reflect increase on sea level rise. We find the correlation between the sea level rise and factors such as the economic parameter (α), sea level rise height (h), beach breaker wave (Hb), gravitational constant (g), period of wave (T), foreshore slope (i), and sand sizes (D). We conclude the sea level rise impact ($ lost) can be more scientifically and precisely predicted using our model.
Simulating reef response to sea-level rise at Lizard Island: A geospatial approach
NASA Astrophysics Data System (ADS)
Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.
2014-10-01
Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.
Sea level rise and the ability of marshes to keep up with this rise have been extensively studied on the Atlantic and Gulf coasts of the US; however, there is limited information available for marshes in the Pacific Northwest. Our research focuses on measuring marsh sediment acc...
Sturm, A; Chrispeels, M J
1990-11-01
We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose.
Sturm, A; Chrispeels, M J
1990-01-01
We isolated a full-length cDNA for apoplastic (extracellular or cell wall-bound) beta-fructosidase (invertase), determined its nucleotide sequence, and used it as a probe to measure changes in mRNA as a result of wounding of carrot storage roots and infection of carrot plants with the bacterial pathogen Erwinia carotovora. The derived amino acid sequence of extracellular beta-fructosidase shows that it is a basic protein (pl 9.9) with a signal sequence for entry into the endoplasmic reticulum and a propeptide at the N terminus that is not present in the mature protein. Amino acid sequence comparison with yeast and bacterial invertases shows that the overall homology is only about 28%, but that there are short conserved motifs, one of which is at the active site. Maturing carrot storage roots contain barely detectable levels of mRNA for extracellular beta-fructosidase and these levels rise slowly but dramatically after wounding with maximal expression after 12 hours. Infection of roots and leaves of carrot plants with E. carotovora results in a very fast increase in the mRNA levels with maximal expression after 1 hour. These results indicate that apoplastic beta-fructosidase is probably a new and hitherto unrecognized pathogenesis-related protein [Van Loon, L.C. (1985). Plant Mol. Biol. 4, 111-116]. Suspension-cultured carrot cells contain high levels of mRNA for extracellular beta-fructosidase and these levels remain the same whether the cells are grown on sucrose, glucose, or fructose. PMID:2152110
Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes
Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.
2013-01-01
The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.
Sea Level Rise Impacts On Infrastructure Vulnerability
NASA Astrophysics Data System (ADS)
Pasqualini, D.; Mccown, A. W.; Backhaus, S.; Urban, N. M.
2015-12-01
Increase of global sea level is one of the potential consequences of climate change and represents a threat for the U.S.A coastal regions, which are highly populated and home of critical infrastructures. The potential danger caused by sea level rise may escalate if sea level rise is coupled with an increase in frequency and intensity of storms that may strike these regions. These coupled threats present a clear risk to population and critical infrastructure and are concerns for Federal, State, and particularly local response and recovery planners. Understanding the effect of sea level rise on the risk to critical infrastructure is crucial for long planning and for mitigating potential damages. In this work we quantify how infrastructure vulnerability to a range of storms changes due to an increase of sea level. Our study focuses on the Norfolk area of the U.S.A. We assess the direct damage of drinking water and wastewater facilities and the power sector caused by a distribution of synthetic hurricanes. In addition, our analysis estimates indirect consequences of these damages on population and economic activities accounting also for interdependencies across infrastructures. While projections unanimously indicate an increase in the rate of sea level rise, the scientific community does not agree on the size of this rate. Our risk assessment accounts for this uncertainty simulating a distribution of sea level rise for a specific climate scenario. Using our impact assessment results and assuming an increase of future hurricanes frequencies and intensities, we also estimate the expected benefits for critical infrastructure.
Jezova, D; Hlavacova, N; Dicko, I; Solarikova, P; Brezina, I
2016-07-01
Repeated or chronic exposure to stressors is associated with changes in neuroendocrine responses depending on the type, intensity, number and frequency of stress exposure as well as previous stress experience. The aim of the study was to test the hypothesis that salivary cortisol and cardiovascular responses to real-life psychosocial stressors related to public performance can cross-adapt with responses to psychosocial stress induced by public speech under laboratory setting. The sample consisted of 22 healthy male volunteers, which were either actors, more precisely students of dramatic arts or non-actors, students of other fields. The stress task consisted of 15 min anticipatory preparation phase and 15 min of public speech on an emotionally charged topic. The actors, who were accustomed to public speaking, responded with a rise in salivary cortisol as well as blood pressure to laboratory public speech. The values of salivary cortisol, systolic blood pressure and state anxiety were lower in actors compared to non-actors. Unlike non-actors, subjects with experience in public speaking did not show stress-induced rise in the heart rate. Evaluation of personality traits revealed that actors scored significantly higher in extraversion than the subjects in the non-actor group. In conclusion, neuroendocrine responses to real-life stressors in actors can partially cross-adapt with responses to psychosocial stress under laboratory setting. The most evident adaptation was at the level of heart rate responses. The public speech tasks may be of help in evaluation of the ability to cope with stress in real life in artists by simple laboratory testing.
Rising utilization of inpatient pediatric asthma pathways.
Kaiser, Sunitha V; Rodean, Jonathan; Bekmezian, Arpi; Hall, Matt; Shah, Samir S; Mahant, Sanjay; Parikh, Kavita; Morse, Rustin; Puls, Henry; Cabana, Michael D
2018-02-01
Clinical pathways are detailed care plans that operationalize evidence-based guidelines into an accessible format for health providers. Their goal is to link evidence to practice to optimize patient outcomes and delivery efficiency. It is unknown to what extent inpatient pediatric asthma pathways are being utilized nationally. (1) Describe inpatient pediatric asthma pathway design and implementation across a large hospital network. (2) Compare characteristics of hospitals with and without pathways. We conducted a descriptive, cross-sectional, survey study of hospitals in the Pediatric Research in Inpatient Settings Network (75% children's hospitals, 25% community hospitals). Our survey determined if each hospital used a pathway and pathway characteristics (e.g. pathway elements, implementation methods). Hospitals with and without pathways were compared using Chi-square tests (categorical variables) and Student's t-tests (continuous variables). Surveys were distributed to 3-5 potential participants from each hospital and 302 (74%) participants responded, representing 86% (106/123) of surveyed hospitals. From 2005-2015, the proportion of hospitals utilizing inpatient asthma pathways increased from 27% to 86%. We found variation in pathway elements, implementation strategies, electronic medical record integration, and compliance monitoring across hospitals. Hospitals with pathways had larger inpatient pediatric programs [mean 12.1 versus 6.1 full-time equivalents, p = 0.04] and were more commonly free-standing children's hospitals (52% versus 23%, p = 0.05). From 2005-2015, there was a dramatic rise in implementation of inpatient pediatric asthma pathways. We found variation in many aspects of pathway design and implementation. Future studies should determine optimal implementation strategies to better support hospital-level efforts in improving pediatric asthma care and outcomes.
Environmental effects on long term behavior of composite laminates
NASA Astrophysics Data System (ADS)
Singhal, S. N.; Chamis, C. C.
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Environmental effects on long term behavior of composite laminates
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Chamis, C. C.
1992-01-01
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Isolated Hepatic Metastasis from Prostate Carcinoma.
Wang, Stephani C; McCarthy, Lezah P; Mehdi, Syed
2017-01-01
Worldwide, prostate cancer is considered the second most common cancer in men. Most common sites for metastatic disease are lymph nodes and bones. However, isolated liver metastasis from prostate cancer is rare. We present a 75 year-old male with prostate adenocarcinoma diagnosed 7 years ago. With rising PSA, he underwent imaging and found to have isolated hepatic metastasis. After left hepatic lobectomy, his PSA dramatically decreased to < 0.01. Physicians should be aware of isolated hepatic metastasis in patients with prostate cancer. Metastasectomy should be considered in such case, and combined medical and surgical approach may prolong the overall survival.
The evolving high: new designer drugs of abuse.
Pourmand, A; Armstrong, P; Mazer-Amirshahi, M; Shokoohi, H
2014-10-01
Over the past decade, emerging drugs of abuse and synthetic derivatives of more traditional agents have flooded the market. While Europe was the first to experience a surge in the use of drugs such as synthetic cathinones and cannabinoids, poison centers throughout the United States have seen a dramatic rise in calls related to these new designer drugs of abuse. In the majority of cases, care is largely supportive but significant medical and traumatic complications may occur. Providers must be aware of the ever-changing trends in abuse, so that they may optimally care for poisoned patients. © The Author(s) 2014.
2001-12-01
Recently, there has been a dramatic rise in the drug trade, as Skopje is on the heroin route from Turkey to the Adriatic coast and Italian mafia cartels...links. Most of them went along the old traditional route of Nis- Skopje - Thessaloniki. It is by now very obvious to observers that the geopolitics of...the New Post-Cold War State in the Balkans 6 . AUTHOR(S) Charalampos Lekkas 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS
2017-04-26
Although Mars is known for having the largest volcano in our solar system, Olympus Mons, we also find small-scale volcanic features on its surface, as shown in this image from HiRISE onboard NASA's Mars Reconnaissance Orbiter (MRO). This fissure, less than 500 meters across at its widest point, lies in the Tharsis region and is believed to be a vent from which lava flowed in ancient eruptions. The total volume of lava released from this fissure is much less than what would erupt from nearby volcanoes, but the mark left on the landscape is dramatic nonetheless. https://photojournal.jpl.nasa.gov/catalog/PIA21601
The effect of price increases on contraceptive sales in Bangladesh.
Ciszewski, R L; Harvey, P D
1994-01-01
In April 1990, the prices of five brands of contraceptives in the Bangladesh social marketing project were increased, by an average of 60%. The impact on condom sales was immediate and severe, with sales for the following 12 months dropping by 46% from the average during the preceding 12 months. The effect on oral contraceptive sales was less dramatic: average sales in the year following the increases dropped slightly despite a previously established pattern of rapidly rising sales. There appears no reasonable combination of events other than the price increase itself to explain most of the difference.
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
Chung, Karine; Fogle, Robin; Bendikson, Kristin; Christenson, Kamilee; Paulson, Richard
2011-01-01
Because the effectiveness of the "microdose flare" stimulation protocol often is attributed to the dramatic endogenous gonadotropin release induced by the GnRH agonist, the aim of this study was to determine whether use of microdose GnRH agonist alone could induce multiple ovarian follicle development in normal responders. Based on these data, the duration of gonadotropin rise is approximately 24 to 48 hours and is too brief to sustain continued multiple follicle growth. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Horton, B.; Corbett, D. R.; Donnelly, J. P.; Kemp, A.; Lin, N.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.
2013-12-01
Future inundation of the U.S. Atlantic and Gulf coasts will depend upon sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. Through ongoing, collaborative research we are employing new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea level rise along the U.S. Atlantic and Gulf coasts increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic variability. Key uncertainties include the role of continental ice sheets, mountain glaciers, and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. We produced new, high-resolution proxy sea-level reconstructions to provide crucial additional constraints to such semi-empirical models. Our dataset spans the alternation between the 'Medieval Climate Anomaly' and 'Little Ice Age'. Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from four study areas (Connecticut, New Jersey, North Carolina and Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, future storm surges will be superimposed on background sea-level rise. To overcome these problems, we coupled regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. With agency, NGO, and business partners, we have integrated these findings into coastal policy initiatives, including the first ever adoption of sea level Adaptation Action Areas in a Florida city land use plan.
NASA Astrophysics Data System (ADS)
Keeler, A. G.; McNamara, D. E.; Irish, J. L.
2018-04-01
Most existing coastal climate-adaptation planning processes, and the research supporting them, tightly focus on how to use land use planning, policy tools, and infrastructure spending to reduce risks from rising seas and changing storm conditions. While central to community response to sea level rise, we argue that the exclusive nature of this focus biases against and delays decisions to take more discontinuous, yet proactive, actions to adapt—for example, relocation and aggressive individual protection investments. Public policies should anticipate real estate market responses to risk reduction to avoid large costs—social and financial—when and if sea level rise and other climate-related factors elevate the risks to such high levels that discontinuous responses become the least bad alternative.
Comment [on “Sea level rise shown to drive coastal erosion”
Sallenger,, Asbury H.; Morton, Robert; Fletcher, Charles; Thieler, E. Robert; Howd, Peter
2000-01-01
In a recent article (Eos, Trans., AGU, February 8, 2000, p.55), Leatherman et al. [2000] state that they have confirmed an association between sea-level rise and coastal erosion. Applying their results to the New Jersey, Delaware, and Maryland coasts and using a projected sea-level rise, the authors predict that by 2050 the shoreline will recede 60 m, about two times the average beach width. However, Leatherman et al. [2000] have not convincingly quantified a relationship between sea-level rise and shoreline erosion.We do not agree with their rationale for subsetting their data, and they have not considered other explanations for a background erosion along the U.S. east coast. Furthermore, their future projections are not supported by their analyses.
Sea Level Rise in Santa Clara County
NASA Technical Reports Server (NTRS)
Milesi, Cristina
2005-01-01
Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.
Method for Assessing Impacts of Global Sea Level Rise on Navigation Gate Operations
NASA Astrophysics Data System (ADS)
Obrien, P. S.; White, K. D.; Friedman, D.
2015-12-01
Coastal navigation infrastructure may be highly vulnerable to changing climate, including increasing sea levels and altered frequency and intensity of coastal storms. Future gate operations impacted by global sea level rise will pose unique challenges, especially for structures 50 years and older. Our approach is to estimate future changes in gate operational frequency based on a bootstrapping method to forecast future water levels. A case study will be presented to determine future changes in frequency of operations over the next 100 years. A statistical model in the R programming language was developed to apply future sea level rise projections using the three sea level rise scenarios prescribed by USACE Engineer Regulation ER 1100-2-8162. Information derived from the case study will help forecast changes in operational costs caused by increased gate operations and inform timing of decisions on adaptation measures.
Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L.
Pimenta Lange, Maria João; Knop, Nicole; Lange, Theo
2012-01-01
Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L. (pumpkin). Expression patterns for these GA-oxidase-encoding genes were examined by competitive reverse transcription-PCR (RT-PCR) and endogenous GA levels were determined during pumpkin male flower development. In young flowers, GA20ox3 transcript levels are high in stamens, followed by high levels of the GA precursor GA9. Later, just before flower opening, transcript levels for GA3ox3 and GA3ox4 increase in the hypanthium and stamens, respectively. In the stamen, following GA3ox4 expression, bioactive GA4 levels rise dramatically. Accordingly, catabolic GA2ox2 and GA2ox3 transcript levels are low in developing flowers, and increase in mature flowers. Putative GA receptor GID1b and DELLA repressor GAIPb transcript levels do not change in developing flowers, but increase sharply in mature flowers. Emasculation arrests floral development completely and leads to abscission of premature flowers. Application of GA4 (but not of its precursors GA12-aldehyde or GA9) restores normal growth of emasculated flowers. These results indicate that de novo GA4 synthesis in the stamen is under control of GA20ox3 and GA3ox4 genes just before the rapid flower growth phase. Stamen-derived bioactive GA is essential and sufficient for male flower development, including the petal and the pedicel growth. PMID:22268154
Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity
NASA Technical Reports Server (NTRS)
Hammerton, P. W.; Kerschen, E. J.
1998-01-01
An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.
Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Gornitz, Vivien; Miller, James R.
1999-01-01
Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
Allowances for evolving coastal flood risk under uncertain local sea-level rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
Allowances for evolving coastal flood risk under uncertain local sea-level rise
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael; ...
2016-06-03
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
The Chinese Experience of Rapid Modernization: Sociocultural Changes, Psychological Consequences?
Sun, Jiahong; Ryder, Andrew G.
2016-01-01
Mainland China has undergone profound changes dating back to the nineteenth century, including a contemporary period of rapid modernization that began in the 1980s. The result has been dramatic social, cultural, and economic shifts impacting the daily lives of Chinese people. In this paper, we explore the psychological implications of sociocultural transformation in China, emphasizing two central themes. First, rising individualism: findings from social and developmental psychology suggest that China’s rapid development has been accompanied by ever-increasing adherence to individualistic values. Second, rising rates of depression: findings from psychiatric epidemiology point to increasing prevalence of depression over this same time period, particularly in rural settings. We argue that links between sociocultural and psychological shifts in China can be usefully studied through a cultural psychology lens, emphasizing the mutual constitution of culture, mind, and brain. In particular, we note that the link between social change, individualism, and rising mental illness deserves careful attention. Our review suggests that shifting values and socialization practices shape emotion norms of concealment and display, with implications for depressive symptom presentation. The challenge comes with interpretation. Increasing prevalence rates of depression may indeed be a general response to the rapidity of sociocultural change, or a specific consequence of rising individualism—but may also result from increasingly ‘Western’ patterns of symptom presentation, or improvements in diagnostic practice. We conclude by considering the challenges posed to standard universal models of psychological phenomena. PMID:27092093
Lamacchia, Carmela; Camarca, Alessandra; Picascia, Stefania; Di Luccia, Aldo; Gianfrani, Carmen
2014-01-01
The gluten-free diet is, to date, the only efficacious treatment for patients with Celiac Disease. In recent years, the impressive rise of Celiac Disease incidence, dramatically prompted changes in the dietary habit of an increasingly large population, with a rise in demand of gluten-free products. The formulation of gluten-free bakery products presents a formidable challenge to cereal technologists. As wheat gluten contributes to the formation of a strong protein network, that confers visco-elasticity to the dough and allows the wheat flour to be processed into a wide range of products, the preparation of cereal-based gluten-free products is a somehow difficult process. This review focuses on nutritional and technological quality of products made with gluten-free cereals available on the market. The possibility of using flour from naturally low toxic ancient wheat species or detoxified wheat for the diet of celiacs is also discussed. PMID:24481131
Long-term climate and competition explain forest mortality patterns under extreme drought.
Young, Derek J N; Stevens, Jens T; Earles, J Mason; Moore, Jeffrey; Ellis, Adam; Jirka, Amy L; Latimer, Andrew M
2017-01-01
Rising temperatures are amplifying drought-induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought-stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long-term average climate [i.e. 35-year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4-year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km 2 , rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy-makers in identifying the most drought-vulnerable forests across broad geographic areas. © 2016 John Wiley & Sons Ltd/CNRS.
NASA Technical Reports Server (NTRS)
2007-01-01
New Horizons took this image of the icy moon Europa rising above Jupiter's cloud tops with its Long Range Reconnaissance Imager (LORRI) at 11:48 Universal Time on February 28, 2007, six hours after the spacecraft's closest approach to Jupiter. The picture was one of a handful of the Jupiter system that New Horizons took primarily for artistic, rather than scientific, value. This particular scene was suggested by space enthusiast Richard Hendricks of Austin, Texas, in response to an Internet request by New Horizons scientists for evocative, artistic imaging opportunities at Jupiter. The spacecraft was 2.3 million kilometers (1.4 million miles) from Jupiter and 3 million kilometers (1.8 million miles) from Europa when the picture was taken. Europa's diameter is 3,120 kilometers (1,939 miles). The image is centered on Europa coordinates 5 degrees south, 6 degrees west. In keeping with its artistic intent - and to provide a more dramatic perspective - the image has been rotated so south is at the top.Antimicrobial-resistant Invasive Escherichia coli, Spain
Oteo, Jesús; Lázaro, Edurne; de Abajo, Francisco J.; Baquero, Fernando; Campos, José
2005-01-01
To address the public health problem of antimicrobial resistance, the European Union founded the European Antimicrobial Resistance Surveillance System. A network of 32 Spanish hospitals, serving ≈9.6 million persons, submitted antimicrobial-susceptibility data on 7,098 invasive Escherichia coli species (2001–2003). Resistance to ampicillin, cotrimoxazole, ciprofloxacin, gentamicin, and tobramycin was found at rates of 59.9%, 32.6%, 19.3%, 6.8%, and 5.3%, respectively. Resistance to multiple drugs increased from 13.8% in 2001 to 20.6% in 2003 (p <0.0001). Antimicrobial consumption data were obtained from the Spanish National Health System. In spite of decreased cephalosporin and β-lactam use, overall extended-spectrum β-lactamase production increased from 1.6% (2001) to 4.1% (2003) (p <0.0001), mainly due to the rising prevalence of cefotaximases. Resistance to ciprofloxacin significantly increased, mostly in community-onset infections, which coincided with a rise in community quinolone use. Cotrimoxazole resistance remained stable at ≈30%, even though its use was dramatically reduced. PMID:15829192
NASA Technical Reports Server (NTRS)
1979-01-01
This dramatic view of Jupiter's satellite Io shows two simultaneously occurring volcanic eruptions. One can be seen on the limb, (at lower right) in which ash clouds are rising more than 150 miles (260 kilometers) above the satellite's surface. The second can be seen on the terminator (shadow between day and night) where the volcanic cloud is catching the rays of the rising sun. The dark hemisphere of Io is made visible by light reflected from Jupiter. Seen in Io's night sky, Jupiter looms almost 40 times larger and 200 times brighter than our own full Moon. This photo was taken by Voyager 1 on March 8, 1979, looking back 2.6 million miles (4.5 million kilometers) at Io, three days after its historic encounter. This is the same image in which Linda A. Morabito, a JPL engineer, discovered the first extraterrestrial volcanic eruption (the bright curved volcanic cloud on the limb). Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science.
Medical malpractice in perspective. I--The American experience.
Quam, L; Dingwall, R; Fenn, P
1987-01-01
Concern over the possibility of an American style medical malpractice "crisis" in the United Kingdom has recently been voiced by members of both medical and legal professions. The validity of such fears is examined by reviewing the conditions that have given rise to the current American difficulties. It is argued that the rise in malpractice insurance premiums and associated restrictions in availability should be seen against the background of underwriting problems specific to medical liability in conjunction with a general decline in reinsurance cover. The evidence in relation to the clinical and resource implications of malpractice is analysed. In particular, arguments that increased litigation has influenced the practice of "defensive" medicine and the choice of specialty are critically examined. Medical malpractice claims and insurance are only part of a professional environment which is undergoing dramatic social and economic changes, many of which seem more plausible candidates to be treated as important influences on the nature and organisation of health care in the United States. Images p1532-a PMID:3111624
NASA Technical Reports Server (NTRS)
Sweet, W. V.; Horton, R.; Kopp, R. E.; LeGrande, A. N.; Romanou, A.
2017-01-01
Global mean sea level (GMSL) has risen by about 7-8 inches (about 16-21 cm) since 1900, with about 3 of those inches (about 7 cm) occurring since 1993. Human-caused climate change has made a substantial contribution to GMSL rise since 1900, contributing to a rate of rise that is greater than during any preceding century in at least 2,800 years. Relative to the year 2000, GMSL is very likely to rise by 0.3-0.6 feet (9-18 cm) by 2030, 0.5-1.2 feet (15-38 cm) by 2050, and 1.0-4.3 feet (30-130 cm) by 2100. Future pathways have little effect on projected GMSL rise in the first half of the century, but significantly affect projections for the second half of the century. Emerging science regarding Antarctic ice sheet stability suggests that, for high emission scenarios, a GMSL rise exceeding 8 feet (2.4 m) by 2100 is physically possible, although the probability of such an extreme outcome cannot currently be assessed. Regardless of pathway, it is extremely likely that GMSL rise will continue beyond 2100. Relative sea level (RSL) rise in this century will vary along U.S. coastlines due, in part, to changes in Earth's gravitational field and rotation from melting of land ice, changes in ocean circulation, and vertical land motion (very high confidence). For almost all future GMSL rise scenarios, RSL rise is likely to be greater than the global average in the U.S. Northeast and the western Gulf of Mexico. In intermediate and low GMSL rise scenarios, RSL rise is likely to be less than the global average in much of the Pacific Northwest and Alaska. For high GMSL rise scenarios, RSL rise is likely to be higher than the global average along all U.S. coastlines outside Alaska. Almost all U.S. coastlines experience more than global mean sea level rise in response to Antarctic ice loss, and thus would be particularly affected under extreme GMSL rise scenarios involving substantial Antarctic mass loss. As sea levels have risen, the number of tidal floods each year that cause minor impacts (also called "nuisance floods") have increased 5- to 10-fold since the 1960s in several U.S. coastal cities. Rates of increase are accelerating in over 25 Atlantic and Gulf Coast cities. Tidal flooding will continue increasing in depth, frequency, and extent this century. Assuming storm characteristics do not change, sea level rise will increase the frequency and extent of extreme flooding associated with coastal storms, such as hurricanes and nor'easters. A projected increase in the intensity of hurricanes in the North Atlantic could increase the probability of extreme flooding along most of the U.S. Atlantic and Gulf Coast states beyond what would be projected based solely on RSL rise. However, there is low confidence in the projected increase in frequency of intense Atlantic hurricanes, and the associated flood risk amplification and flood effects could be offset or amplified by such factors as changes in overall storm frequency or tracks.
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Zhang, Bing; Chen, Hua
2016-04-01
The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more dramatic lowering in AI than the latter. Bax, caspase-8, and CHOP showed reduced expression, and Bcl-2 and p-AKT levels were upregulated in recombinant HMGB1 A-box pretreatment group. Thus, recombinant HMGB1 A-box treatment protects against I/R injury and the mechanisms may involve inhibition of miR-21 expression.
Can human activities alter the drowning fate of barrier islands?
NASA Astrophysics Data System (ADS)
Lorenzo-Trueba, J.; Ashton, A. D.; Jin, D.; Hoagland, P.; Kite-Powell, H.
2012-12-01
Low-lying coastal barriers face an uncertain future over the coming century and beyond as sea levels rise, with many projections suggesting end-of-century rates of sea-level rise as high or higher than 1 cm/yr. Geologically, such rates of sea-level rise have been experienced several thousand years ago and we can use our understanding of geological processes and sedimentary evidence to help unravel the dynamics of natural barriers experiencing sea-level rise. Along many modern coastal barriers, however, anthropic change, such as beach nourishment, dune construction, and emplacement of hard structures, plays a dominant role in coastline dynamics. A fundamental question to be addressed is whether human activities intended to preserve infrastructure and beach recreation may make wholesale collapse, or 'drowning,' of barrier systems more likely. Here we present a numerical modeling tool that couples natural processes and the human responses to these changes (and the subsequent of human responses on natural processes). Recent theoretical model development suggests that barriers are intrinsically morphodynamic features, responding to sea-level rise in complex ways through the interactions of marine processes and barrier overwash. Undeveloped coastal barriers would therefore respond to an accelerated sea-level rise in complex, less predictable manners than suggested by existing long-term models. We have developed a model that examines non-equilibrium cross-shore evolution of barrier systems at decadal to centennial temporal scales, focusing on the interactions between processes of shoreface evolution and overwash deposition. Model responses demonstrate two means of barrier collapse during sea-level rise: 'height drowning', which occurs when overwash fluxes are insufficient to maintain the landward migration rate required to keep in pace with sea-level rise, and 'width drowning', which occurs when the shoreface response is insufficient to maintain the barrier geometry during landward migration. The model also demonstrates the potential for discontinuous shoreline retreat, with alternating periods of barrier stability and rapid migration, even for constant rates of sea-level rise. Anthropic activities can strongly interact with these behaviors. In particular, considering only cross-shore processes, beach nourishment activities widen the beach and can affect shoreface fluxes, and dune building, which curtails the overwash process, can potentially enhance barrier drowning by reducing overwash fluxes. Furthermore, coastal protection activities of adjacent communities or even individual property holders can be uncoordinated or coordinated, with their effects coupled along the coast through coastal reorientation and gradients in alongshore sediment transport. In the coordinated framework, owners act in concert to alter the barrier based upon community benefits, whereas in the non-coordinated framework owners alter only their own property. Another important role in management is the perception of future sea-level-rise-associated losses—communities manage their coast differently depending on their adopted forecast for sea-level rise. We find that coordinated behavior coupled with natural processes can substantially affect the drowning scenarios from the individual decision-making process.
Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment.
Swiercz, Radosław; Lutz, Piotr; Gralewicz, Sławomir; Grzelińska, Zofia; Piasecka-Zelga, Joanna; Wąsowicz, Wojciech
2013-08-01
Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentration (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks CORT synthesis by inhibiting steroid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl) ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. The purpose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. The following was observed in the MET-treated rats: i) no rise in plasma CORT concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.
NASA Astrophysics Data System (ADS)
Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel
2017-05-01
Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss—with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.
Kassakian, Jennifer; Jones, Ann; Martinich, Jeremy; Hudgens, Daniel
2017-05-01
Sea level rise has the potential to substantially alter the extent and nature of coastal wetlands and the critical ecological services they provide. In making choices about how to respond to rising sea level, planners are challenged with weighing easily quantified risks (e.g., loss of property value due to inundation) against those that are more difficult to quantify (e.g., loss of primary production or carbon sequestration services provided by wetlands due to inundation). Our goal was to develop a cost-effective, appropriately-scaled, model-based approach that allows planners to predict, under various sea level rise and response scenarios, the economic cost of wetland loss-with the estimates proxied by the costs of future restoration required to maintain the existing level of wetland habitat services. Our approach applies the Sea Level Affecting Marshes Model to predict changes in wetland habitats over the next century, and then applies Habitat Equivalency Analysis to predict the cost of restoration projects required to maintain ecological services at their present, pre-sea level rise level. We demonstrate the application of this approach in the Delaware Bay estuary and in the Indian River Lagoon (Florida), and discuss how this approach can support future coastal decision-making.
ERIC Educational Resources Information Center
Battino, Rubin; Letcher, Trevor M.
2008-01-01
The cryophorus dramatically demonstrates the cooling effect of evaporation. This article describes some simple and easy-to-make cryophoruses, ideal for demonstrating evaporative cooling to students at all levels. The most dramatic effects occurred with cyclohexane and benzene, with water generally freezing more slowly. (Contains 4 notes, 2 tables,…
Lester, Lori A; Gutierrez Ramirez, Mariamar; Kneidel, Alan H; Heckscher, Christopher M
2016-01-01
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species' populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise.
Predicting tidal marsh survival or submergence to sea-level rise using Holocene data
NASA Astrophysics Data System (ADS)
Horton, B.; Shennan, I.; Bradley, S.; Cahill, N.; Kirwan, M. L.; Kopp, R. E.; Shaw, T.
2017-12-01
Rising sea level threatens to permanently submerge tidal marsh environments if they cannot accrete faster than the rate of relative sea-level rise (RSLR). But regional and global model simulations of the future ability of marshes to maintain their elevation with respect to the tidal frame are uncertain. The compilation of empirical data for tidal marsh vulnerability is, therefore, essential to address disparities across these simulations. A hitherto unexplored source of empirical data are Holocene records of tidal marsh evolution. In particular, the marshes of Great Britain have survived and submerged while RSLR varied between -7.7 and 15.2 mm/yr, primarily because of the interplay between global ice-volume changes and regional isostatic processes. Here, we reveal the limits to marsh vulnerability are revealed through the analysis of over 400 reconstructions of tidal marsh submergence and conversion to tidal mud flat or open water from 54 regions in Great Britain during the Holocene. Holocene records indicate a 90% probability of tidal marsh submergence at sites with RSLR exceeding 7.3 mm/yr (95% CI: 6.6-8.6 mm/yr). Although most modern tidal marshes in Great Britain have not yet reached these sea-level rise limits, our empirical data suggest widespread concern over their ability to survive rates of sea-level rise in the 21st century under high emission scenarios. Integrating over the uncertainties in both sea-level rise predictions and the response of tidal marshes to sea-level rise, all of Great Britain has a >80% probability of marsh submergence under RCP 8.5 by 2100, with areas of south and eastern England, where the rate of RSLR is increased by glacio-isostatic subsidence, achieving this probability by 2040.
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Saco, P. M.; Sandi, S. G.; Saintilan, N.; Riccardi, G.
2017-12-01
Even though on a large scale the sustainability and resilience of coastal wetlands to sea-level rise depends on the slope of the landscape and a balance between the rates of soil accretion and the sea-level rise, local man-made flow disturbances can have comparable effects. Coastal infrastructure controlling flow in the wetlands can pose an additional constraint on the adaptive capacity of these ecosystems, but can also present opportunities for targeted flow management to increase their resilience. Coastal wetlands in SE Australia are heavily managed and typically present infrastructure including flow control devices. How these flow control structures are operated respond to different ecological conservation objectives (i.e. bird, frog or fish habitat) that can sometimes be mutually exclusive. For example, promoting mangrove establishment to enhance fish habitat results in saltmarsh decline thus affecting bird habitat. Moreover, sea-level rise will change hydraulic conditions in wetlands and may result in some flow control structures and strategies becoming obsolete or even counterproductive. In order to address these problems and in support of future management of flows in coastal wetlands, we have developed a predictive tool for long-term wetland evolution that incorporates the effects of infrastructure and other perturbations to the tidal flow within the wetland (i.e. vegetation resistance) and determines how these flow conditions affect vegetation establishment and survival. We use the model to support management and analyse different scenarios of sea-level rise and flow control measures aimed at preserving bird habitat. Our results show that sea-level rise affects the efficiency of management measures and in some cases may completely override their effect. It also shows the potential of targeted flow management to compensate for the effects of sea-level rise.
NASA Astrophysics Data System (ADS)
Young, C. R.; Martin, J. B.
2016-02-01
Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
Economic vulnerability to sea-level rise along the northern U.S. Gulf Coast
Thatcher, Cindy A.; Brock, John C.; Pendleton, Elizabeth A.
2013-01-01
The northern Gulf of Mexico coast of the United States has been identified as highly vulnerable to sea-level rise, based on a combination of physical and societal factors. Vulnerability of human populations and infrastructure to projected increases in sea level is a critical area of uncertainty for communities in the extremely low-lying and flat northern gulf coastal zone. A rapidly growing population along some parts of the northern Gulf of Mexico coastline is further increasing the potential societal and economic impacts of projected sea-level rise in the region, where observed relative rise rates range from 0.75 to 9.95 mm per year on the Gulf coasts of Texas, Louisiana, Mississippi, Alabama, and Florida. A 1-m elevation threshold was chosen as an inclusive designation of the coastal zone vulnerable to relative sea-level rise, because of uncertainty associated with sea-level rise projections. This study applies a Coastal Economic Vulnerability Index (CEVI) to the northern Gulf of Mexico region, which includes both physical and economic factors that contribute to societal risk of impacts from rising sea level. The economic variables incorporated in the CEVI include human population, urban land cover, economic value of key types of infrastructure, and residential and commercial building values. The variables are standardized and combined to produce a quantitative index value for each 1-km coastal segment, highlighting areas where human populations and the built environment are most at risk. This information can be used by coastal managers as they allocate limited resources for ecosystem restoration, beach nourishment, and coastal-protection infrastructure. The study indicates a large amount of variability in index values along the northern Gulf of Mexico coastline, and highlights areas where long-term planning to enhance resiliency is particularly needed.
Lester, Lori A.; Gutierrez Ramirez, Mariamar; Kneidel, Alan H.; Heckscher, Christopher M.
2016-01-01
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species’ populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise. PMID:26934343
Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming
NASA Astrophysics Data System (ADS)
Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.
2017-08-01
The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.
Abrupt increase in rat carotid blood flow induces rapid alteration of artery mechanical properties
Monson, Kenneth L.; Matsumoto, Melissa M.; Young, William L.; Manley, Geoffrey T.; Hashimoto, Tomoki
2010-01-01
Vascular remodeling is essential to proper vessel function. Dramatic changes in mechanical environment, however, may initiate pathophysiological vascular remodeling processes that lead to vascular disease. Previous work by some of our group has demonstrated a dramatic rise in matrix metalloproteinase (MMP) expression shortly following an abrupt increase in carotid blood flow. We hypothesized that there would be a corresponding change in carotid mechanical properties. Unilateral carotid ligation surgery was performed to produce an abrupt, sustained increase in blood flow through the contralateral carotid artery of rats. The flow-augmented artery was harvested after sham surgery or 1, 2, or 6 days after flow augmentation. Vessel mechanical response in the circumferential direction was then evaluated through a series of pressure-diameter tests. Results show that the extent of circumferential stretch (normalized change in diameter) at in vivo pressure levels was significantly different (p<0.05) from normo-flow controls at 1 and 2 days following flow augmentation. Measurements at 1, 2, and 6 days were not significantly different from one another, but a trend in the data suggested that circumferential stretch was largest 1 day following surgery and subsequently decreased toward baseline values. Because previous work with this model indicated a similar temporal pattern for MMP-9 expression, an exploratory set of experiments was conducted where vessels were tested 1 day following surgery in animals treated with broad spectrum MMP inhibitors (either doxycycline or GM6001). Results showed a trend for the inhibitors to minimize changes in mechanical properties. Observations demonstrate that vessel mechanical properties change rapidly following flow augmentation and that alterations may be linked to expression of MMPs. PMID:21094476
[Psychoactive drugs and costs in the Madrid III (Valdemoro) prison].
Algora-Donoso, I; Varela-González, O
2008-01-01
Annual pharmaceutical expenditures in prisons increases dramatically and the rising costs of psychoactive drugs have especially contributed to this. These drugs are often prescribed in order to find therapeutic uses in the field of personality disorders, addictions, and dysfunctional behaviours that are not included in the authorized indications (compassionate use). This study has enabled a detailed description of the use of psychoactive drugs at the Madrid III prison, a centre with one of the lowest levels of pharmaceutical expenditure in this autonomous community. During a two-week period, all prescriptions of psychoactive drugs were collected and registered along with data of several possible conditioning factors. 20.5% of the population was receiving some kind of psychoactive drug; 76% of those inmates undergoing treatment were receiving one or two substances; 65% were taking anxiolytics, 38% antidepressants and 27% antipsychotics. The total amount of psychoactive drugs consumed was 9,840 defined daily doses, 46% of which were anxiolytics, 17% antidepressants and 14% antipsychotics. The total cost of the fortnight's treatment was euros 5,379 with a saving of euro 611 due to requesting and selecting offers carried out by the pharmacist. 72% of the costs were spent on anti-psychotics and the newer psychoactive drugs, representing 66% of the prescriptions, accounted for 98% of expenditure. The prescriber was one of the key influential factors over the amount, type and cost of the treatments. There are signs that compassionate use of current antipsychotics and antiepileptics, and newer antidepressants are a main cause of the dramatic increase in the costs, with cost-efficiency not always clearly demonstrated. These results are not an isolated fact restricted only to prisons, as demonstrated by consumption data published by the National Health System in the same year.
Tsumori, Yoko; Ndounga, Mathieu; Sunahara, Toshihiko; Hayashida, Nozomi; Inoue, Megumi; Nakazawa, Shusuke; Casimiro, Prisca; Isozumi, Rie; Uemura, Haruki; Tanabe, Kazuyuki; Kaneko, Osamu; Culleton, Richard
2011-01-01
The African continent is currently experiencing rapid population growth, with rising urbanization increasing the percentage of the population living in large towns and cities. We studied the impact of the degree of urbanization on the population genetics of Plasmodium falciparum in urban and peri-urban areas in and around the city of Brazzaville, Republic of Congo. This field setting, which incorporates local health centers situated in areas of varying urbanization, is of interest as it allows the characterization of malaria parasites from areas where the human, parasite, and mosquito populations are shared, but where differences in the degree of urbanization (leading to dramatic differences in transmission intensity) cause the pattern of malaria transmission to differ greatly. We have investigated how these differences in transmission intensity affect parasite genetic diversity, including the amount of genetic polymorphism in each area, the degree of linkage disequilibrium within the populations, and the prevalence and frequency of drug resistance markers. To determine parasite population structure, heterozygosity and linkage disequilibrium, we typed eight microsatellite markers and performed haplotype analysis of the msp1 gene by PCR. Mutations known to be associated with resistance to the antimalarial drugs chloroquine and pyrimethamine were determined by sequencing the relevant portions of the crt and dhfr genes, respectively. We found that parasite genetic diversity was comparable between the two sites, with high levels of polymorphism being maintained in both areas despite dramatic differences in transmission intensity. Crucially, we found that the frequencies of genetic markers of drug resistance against pyrimethamine and chloroquine differed significantly between the sites, indicative of differing selection pressures in the two areas. PMID:21858115
Global Warming and Energy Transition: A Public Policy Imperative
NASA Astrophysics Data System (ADS)
Stone, G. T.
2006-12-01
The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of institutional commitment to energy conservation, energy efficiency, and renewable energy resources, colleges and universities must focus public and professional attention on the imperative for action and the means of reducing greenhouse gas emissions and countering global warming.
NASA Astrophysics Data System (ADS)
Treuer, G.
2017-12-01
Sea level rise threatens coastal communities around the world, including South Florida which may be the most financially vulnerable region in the world. Proactive investments in sea level rise adaptive flood protections could reduce South Florida's financial vulnerability. However, it is unclear if local governments and homeowners will be willing to make those investments before it is too late. Our research explores this issue by reporting the results of a novel online simulation that accelerates 348 South Florida homeowners thirty-five years into the future so that they can `live' the effects of sea level rise. The results contain a mix of optimism and caution for the prospects of future adaptation. On the positive side over 75% of participants indicated a willingness to support bond issues to pay for adaptation, even as the costs of the measures and effects of sea level rise increased over the years. Likewise, we find little evidence that politically conservative residents who normally have more skeptical views about climate change would be any less inclined to support adaptation, or only look to information sources that downplay the threat. On the negative side, homeowner interest in moving out of the region increases steadily over time as the sea level rises. This is driven by an increase in worry associated with viewing more information within the simulation.
NASA Astrophysics Data System (ADS)
Rose, S. A.; Wrathall, D.
2017-12-01
Over the coming centuries and millennia, sea level rise will greatly redistribute global human population through displacement and migration. Sudden, large-scale displacement is extremely disruptive to society both for migrants and host communities, and there is a great scientific and policy need to anticipate where, when and how this could happen around sea level rise. We can meet these needs by examining how long-term coastal inundation of settlements has already occurred. Using two global geospatial data sets, the Global Human Settlement Layer and the Global Surface Water Layer, we examine the global spatial concentration of settlement inundation that occurred between 1990 and 2015. We focus on the eight sea level rise hotspots identified in Clark et al (2016), which include Bangladesh, Mekong Delta, Indonesia, Japan, Nile Delta, Philippines, and the US Mid-Atlantic and Gulf of Mexico, and examine areas of convergence between settlement loss density and negative population change. This analysis reveals specific areas of concern within vulnerable countries, and forms the basis for focused investigations of the long-term impact of coastal inundation on various migration systems. This analysis shows us how long-term sets of satellite derived data on human population can help anticipate how sea level rise will alter future patterns of human settlement and migration into the 21st century and beyond.
Warming Seas and Melting Ice Sheets
2017-12-08
Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E
2017-04-21
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.
2017-01-01
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
Dahl, Kristina A; Fitzpatrick, Melanie F; Spanger-Siegfried, Erika
2017-01-01
Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001-2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years.
Fitzpatrick, Melanie F.; Spanger-Siegfried, Erika
2017-01-01
Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001–2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years. PMID:28158209
Kirwan, M.L.; Blum, L.K.
2011-01-01
Coastal wetlands are responsible for about half of all carbon burial in oceans, and their persistence as a valuable ecosystem depends largely on the ability to accumulate organic material at rates equivalent to relative sea level rise. Recent work suggests that elevated CO2 and temperature warming will increase organic matter productivity and the ability of marshes to survive sea level rise. However, we find that organic decomposition rates increase by about 12% per degree of warming. Our measured temperature sensitivity is similar to studies from terrestrial systems, twice as high as the response of salt marsh productivity to temperature warming, and roughly equivalent to the productivity response associated with elevated CO2 in C3 marsh plants. Therefore, enhanced CO2 and warmer temperatures may actually make marshes less resilient to sea level rise, and tend to promote a release of soil carbon. Simple projections indicate that elevated temperatures will increase rates of sea level rise more than any acceleration in organic matter accumulation, suggesting the possibility of a positive feedback between climate, sea level rise, and carbon emissions in coastal environments.
Soil organic matter decomposition follows plant productivity response to sea-level rise
NASA Astrophysics Data System (ADS)
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2015-04-01
The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.
Late Holocene sea- and land-level change on the U.S. southeastern Atlantic Coast
Kemp, Andrew C.; Bernhardt, Christopher E.; Horton, Benjamin P.; Kopp, Robert E.; Vane, Christopher H.; Peltier, W. Richard; Hawkes, Andrea D.; Donnelly, Jeffrey P.; Parnell, Andrew C.; Cahill, Niamh
2015-01-01
Late Holocene relative sea-level (RSL) reconstructions can be used to estimate rates of land-level (subsidence or uplift) change and therefore to modify global sea-level projections for regional conditions. These reconstructions also provide the long-term benchmark against which modern trends are compared and an opportunity to understand the response of sea level to past climate variability. To address a spatial absence of late Holocene data in Florida and Georgia, we reconstructed ~ 1.3 m of RSL rise in northeastern Florida (USA) during the past ~ 2600 years using plant remains and foraminifera in a dated core of high salt-marsh sediment. The reconstruction was fused with tide-gauge data from nearby Fernandina Beach, which measured 1.91 ± 0.26 mm/year of RSL rise since 1900 CE. The average rate of RSL rise prior to 1800 CE was 0.41 ± 0.08 mm/year. Assuming negligible change in global mean sea level from meltwater input/removal and thermal expansion/contraction, this sea-level history approximates net land-level (subsidence and geoid) change, principally from glacio-isostatic adjustment. Historic rates of rise commenced at 1850–1890 CE and it is virtually certain (P = 0.99) that the average rate of 20th century RSL rise in northeastern Florida was faster than during any of the preceding 26 centuries. The linearity of RSL rise in Florida is in contrast to the variability reconstructed at sites further north on the U.S. Atlantic coast and may suggest a role for ocean dynamic effects in explaining these more variable RSL reconstructions. Comparison of the difference between reconstructed rates of late Holocene RSL rise and historic trends measured by tide gauges indicates that 20th century sea-level trends along the U.S. Atlantic coast were not dominated by the characteristic spatial fingerprint of melting of the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.
2002-12-01
Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world's oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.
Bratton, John F.; Colman, Steven M.; Thieler, E. Robert; Seal, Robert R.
2003-01-01
Two major pulses of sea-level rise are thought to have taken place since the last glacial maximum — meltwater pulses (mwp) 1A (12 cal ka) and 1B (9.5 cal ka). Between mwp 1B and about 6 cal ka, many of the complex coastal ecosystems which ring the world’s oceans began to form. Here we report data for rhenium, carbon isotopes, total organic carbon, and fossil oysters from Chesapeake Bay which span the transition from fresh to brackish water conditions in the bay in the mid-Holocene. These data constrain sea-level change and resulting environmental change in the bay. They indicate that the transition was rapid, and that it was produced by (1) a third pulse of rapid eustatic sea-level rise, or (2) a geometry of the prehistoric Chesapeake Bay basin which predisposed it to a nonlinear response to a steadily rising sea level. Similar nonlinear changes in vulnerable coastal environments are likely to take place in the future due to polar warming, regardless of the timing or rate of sea-level rise.
A simple model to estimate the impact of sea-level rise on platform beaches
NASA Astrophysics Data System (ADS)
Taborda, Rui; Ribeiro, Mónica Afonso
2015-04-01
Estimates of future beach evolution in response to sea-level rise are needed to assess coastal vulnerability. A research gap is identified in providing adequate predictive methods to use for platform beaches. This work describes a simple model to evaluate the effects of sea-level rise on platform beaches that relies on the conservation of beach sand volume and assumes an invariant beach profile shape. In closed systems, when compared with the Inundation Model, results show larger retreats; the differences are higher for beaches with wide berms and when the shore platform develops at shallow depths. The application of the proposed model to Cascais (Portugal) beaches, using 21st century sea-level rise scenarios, shows that there will be a significant reduction in beach width.
Studying the impact of climate change on flooding in 12 river basins using CCSM4 output
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.
2011-12-01
The goal of this study is to analyze the impact of climate change on flood frequency changes in twelve large river basins by assessing the changes in upper catchment precipitation as well as the impact of sea-level rise at the river mouths. Using the recently released model output of the CCSM4 for upper catchment precipitation in twelve large river basins as well as the sea-level rise anomalies at the respective river mouths, we assess the impact of climate change on the return periods of flooding in the individual basins. Upper catchment precipitation, discharge as well as annual mean thermosteric sea-level rise are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. In a next step, return levels are compared from both 20th century and future model simulations for time slices at 2030, 2050, 2070 and 2090. It can be seen that what is e.g. a 20 year flood in present-day climate has a return period of ~15/10 years (RCP 2.6/8.5) in 2070. This effect strengthens as time progresses in the 21st century. Especially in low-lying countries such as Bangladesh, changes in sea-level rise can be expected to influence present-day flood characteristics. Sea-level rise anomalies for the 21st century are taken from CCSM4 model output at each of the river mouths. The backwater effect of sea-level rise can be estimated by referring to the geometry of the river channel and calculating an effective additional discharge both at the river mouth and inland. Judging from our work, the increase in effective discharge due to sea-level rise cannot be neglected when discussing flooding in the respective river basins. Impact of sea-level rise on changes in return levels will be investigated further. To blend both precipitation and sea-level effects together, we use extreme-value theory to calculate how the tails of the current river discharge distribution in both the lower and middle reaches of the river basins will be impacted by changing climate.
Low GI Food with Barley in Space Foods
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Sugimoto, Manabu; Hashimoto, Hirofumi; Kihara, Makoto; Yamashita, Masamichi; Space Agriculture Task Force
The construction of the life-support system to perform space, moon base, Mars emigration is demanded. The space foods will play a very important role of life support on this occasion. Particularly, in environment of the microgravity, our metabolism becomes less than the face of the Earth. The management of the blood sugar level is very important. We need to eat the meal which will be rise in blood sugar level slowly. The barley which includes much water-soluble dietary fibers is helpful to make low GI space food. After eating 30% barley with unpolished rice, blood sugar level was rise slowly. The cooking process is very important to our body in thinking about digestion and absorption. Soft foods, long-heated foods and grind-foods are easy to digest. After eating these-foods, our blood sugar level will rise, easily. We introduce the space foods with 30% wheat that the blood sugar level is hard to rising.
Sea level driven marsh expansion in a coupled model of marsh erosion and migration
Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel
2016-01-01
Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.
Tidal marsh susceptibility to sea-level rise: importance of local-scale models
Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.
2015-01-01
Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.
Chaudhari, Nilima; Mandal, Lily; Game, Onkar; Warule, Sambhaji; Phase, Deodatta; Jadkar, Sandesh; Ogale, Satishchandra
2015-08-19
We report on the synthesis of dense and faceted indium sulfide (β-In2S3) nano-octahedron films on fluorine-doped tin oxide-coated glass by the hydrothermal method and their photoresponse properties in a flip chip device configuration. We have examined the temporal evolution of the phase constitution, morphology, and optoelectronic properties for films obtained after growth interruption at specific intervals. It is noted that, initially, an In(OH)3 film forms, which is gradually transformed to the β-In2S3 phase over time. In the case of the film wherein most, but not all, of In(OH)3 is consumed, an exceptionally large photoresponse (light to dark current ratio) of ∼10(4) and response time(s) (rise/fall) of ∼88/280 ms are realized. This superior performance is attributed to nearly complete carrier compensation achievable in the system under high pressure growth leading to dramatic reduction of dark conductivity. It is argued that the temporally growth-controlled equilibrium between quasi-In interstitials and cation vacancies dictates the optoelectronic properties.
78 FR 36753 - North Atlantic Coast Comprehensive Study
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... landscape system, considering future sea-level rise and climate change scenarios. In addition, the... management and climate change and sea-level rise considerations. Additional information and a study area map...
Doyle, Thomas W.
2015-01-01
Coastal wetlands of the Southeastern United States are undergoing retreat and migration from increasing tidal inundation and saltwater intrusion attributed to climate variability and sea-level rise. Much of the literature describing potential sea-level rise projections and modeling predictions are found in peer-reviewed academic journals or government technical reports largely suited to reading by other Ph.D. scientists who are more familiar or engaged in the climate change debate. Various sea-level rise and coastal wetland models have been developed and applied of different designs and scales of spatial and temporal complexity for predicting habitat and environmental change that have not heretofore been synthesized to aid natural resource managers of their utility and limitations. Training sessions were conducted with Federal land managers with U.S. Fish and Wildlife Service, National Park Service, and NOAA National Estuarine Research Reserves as well as state partners and nongovernmental organizations across the northern Gulf Coast from Florida to Texas to educate and to evaluate user needs and understanding of concepts, data, and modeling tools for projecting sea-level rise and its impact on coastal habitats and wildlife. As a result, this handbook was constructed from these training and feedback sessions with coastal managers and biologists of published decision-support tools and simulation models for sea-level rise and climate change assessments. A simplified tabular context was developed listing the various kinds of decision-support tools and ecological models along with criteria to distinguish the source, scale, and quality of information input and geographic data sets, physical and biological constraints and relationships, datum characteristics of water and land elevation components, utility options for setting sea-level rise and climate change scenarios, and ease or difficulty of storing, displaying, or interpreting model output. The handbook is designed to be a primer to understanding sea-level rise and a practical synthesis of the current state of knowledge and modeling tools as a resource guide for DOl land management needs and facilitating Landscape Conservation Cooperative (LCC) research and conservation initiatives.
NASA Astrophysics Data System (ADS)
Tewari, S.; Palmer, W.; Manning, F.
2017-12-01
Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the general public on issues related to transportation infrastructure in coastal areas while increasing overall public awareness. Also, the outcomes of the project will serve as an educational and research tool to convey to undergraduate and graduate students on how climate changes affect the transportation infrastructure safety/stability in the coastal region of the state.
Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens.
Leza, Mar; Watrous, Kristal M; Bratu, Jade; Woodard, S Hollis
2018-06-13
Bumblebees are among the world's most important groups of pollinating insects in natural and agricultural ecosystems. Each spring, queen bumblebees emerge from overwintering and initiate new nests, which ultimately give rise to workers and new reproductives later in the season. Nest initiation and survival are thus key drivers of both bumblebee pollination services and population dynamics. We performed the first laboratory experiment with the model bumblebee species Bombus impatiens that explores how early nesting success is impacted by the effects of temporary or more sustained exposure to sublethal levels of a neonicotinoid-type insecticide (imidacloprid at 5 ppb in nectar) and by reliance on a monofloral pollen diet, two factors that have been previously implicated in bumblebee decline. We found that queens exhibited increased mortality and dramatically reduced activity levels when exposed to imidacloprid, as well as delayed nest initiation and lower brood numbers in the nest, but partially recovered from these effects when they only received early, temporary exposure. The effects of pollen diet on individual queen- and colony-level responses were overshadowed by effects of the insecticide, although a monofloral pollen diet alone was sufficient to negatively impact brood production. These findings speak to the sensitivity of queen bumblebees during the nest initiation phase of the colony cycle, with implications for how queens and their young nests are uniquely impacted by exposure to threats such as pesticide exposure and foraging habitat unsuitability. © 2018 The Author(s).
Shiba, Hajime; Yabu, Takeshi; Sudayama, Makoto; Mano, Nobuhiro; Arai, Naoto; Nakanishi, Teruyuki; Hosono, Kuniaki
2016-04-15
To elucidate the degradation process of the posterior silk gland during metamorphosis of the silkworm ITALIC! Bombyx mori, tissues collected on the 6th day after entering the 5th instar (V6), prior to spinning (PS), during spinning (SP) and after cocoon formation (CO) were used to analyze macroautophagy, chaperone-mediated autophagy (CMA) and the adenosine triphosphate (ATP)-dependent ubiquitin proteasome. Immediately after entering metamorphosis stage PS, the levels of ATP and phosphorylated p70S6 kinase protein decreased spontaneously and continued to decline at SP, followed by a notable restoration at CO. In contrast, phosphorylated AMP-activated protein kinase α (AMPKα) showed increases at SP and CO. Most of the Atg8 protein was converted to form II at all stages. The levels of ubiquitinated proteins were high at SP and CO, and low at PS. The proteasome activity was high at V6 and PS but low at SP and CO. In the isolated lysosome fractions, levels of Hsc70/Hsp70 protein began to increase at PS and continued to rise at SP and CO. The lysosomal cathepsin B/L activity showed a dramatic increase at CO. Our results clearly demonstrate that macroautophagy occurs before entering the metamorphosis stage and strongly suggest that the CMA pathway may play an important role in the histolysis of the posterior silk gland during metamorphosis. © 2016. Published by The Company of Biologists Ltd.
Basu, Sanjay; Stuckler, David; McKee, Martin; Galea, Gauden
2013-01-01
Ageing and urbanization leading to sedentary lifestyles have been the major explanations proposed for a dramatic rise in diabetes worldwide and have been the variables used to predict future diabetes rates. However, a transition to Western diets has been suggested as an alternative driver. We sought to determine what socio-economic and dietary factors are the most significant population-level contributors to diabetes prevalence rates internationally. Multivariate regression models were used to study how market sizes of major food products (sugars, cereals, vegetable oils, meats, total joules) corresponded to diabetes prevalence, incorporating lagged and cumulative effects. The underlying social determinants of food market sizes and diabetes prevalence rates were also studied, including ageing, income, urbanization, overweight prevalence and imports of foodstuffs. Data were obtained from 173 countries. Population-based survey recipients were the basis for diabetes prevalence and food market data. We found that increased income tends to increase overall food market size among low- and middle-income countries, but the level of food importation significantly shifts the content of markets such that a greater proportion of available joules is composed of sugar and related sweeteners. Sugar exposure statistically explained why urbanization and income have been correlated with diabetes rates. Current diabetes projection methods may estimate future diabetes rates poorly if they fail to incorporate the impact of nutritional factors. Imported sugars deserve further investigation as a potential population-level driver of global diabetes.
Modeling the Effects of Sea-Level Rise on Groundwater Levels in Coastal New Hampshire
NASA Astrophysics Data System (ADS)
Jacobs, J. M.; Knott, J. F.; Daniel, J.; Kirshen, P. H.
2017-12-01
Coastal communities with high population density and low topography are vulnerable from sea-level rise (SLR) caused by climate change. Groundwater in coastal communities will rise with sea level impacting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in areas of high aquifer transmissivity and in low-lying areas immediately along the coast. In this regional study, we investigate SLR-induced groundwater rise in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated northeast United States. MODFLOW, a numerical groundwater-flow model, is used with groundwater observations, lidar topography, surface-water hydrology, and groundwater withdrawals to investigate SLR-induced changes in groundwater levels and vadose-zone thickness in New Hampshire's Seacoast. The SLR groundwater signal is detected up to 5 km from the coast, more than 3 times farther inland than projected surface-water flooding associated with SLR. Relative groundwater rise ranges from 38 to 98% of SLR within 1 km of the shoreline and drops below 4% between 4 and 5 km from the coast. The largest magnitude of SLR-induced groundwater rise occurs in the marine and estuarine deposits and land areas with tidal water bodies on three sides. In contrast, groundwater rise is dampened near streams. Groundwater inundation caused by 2 m of SLR is projected to contribute 48% of the total land inundation area in the City of Portsmouth with consequences for built and natural resources. Freshwater wetlands are projected to expand 3% by year 2030 increasing to 25% by year 2100 coupled with water-depth increases. These results imply that underground infrastructure and natural resources in coastal communities will be impacted by rising groundwater much farther inland than previously thought when considering only surface-water flooding from SLR.
Sea-level rise and shoreline retreat: time to abandon the Bruun Rule
NASA Astrophysics Data System (ADS)
Cooper, J. Andrew G.; Pilkey, Orrin H.
2004-11-01
In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the "Bruun Rule". This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed. Despite this, the Bruun Rule is in widespread contemporary use at a global scale both as a management tool and as a scientific concept. The persistence of this concept beyond its original assumption base is attributed to the following factors: Appeal of a simple, easy to use analytical model that is in widespread use. Difficulty of determining the relative validity of 'proofs' and 'disproofs'. Ease of application. Positive advocacy by some scientists. Application by other scientists without critical appraisal. The simple numerical expression of the model. Lack of easy alternatives. The Bruun Rule has no power for predicting shoreline behaviour under rising sea level and should be abandoned. It is a concept whose time has passed. The belief by policy makers that it offers a prediction of future shoreline position may well have stifled much-needed research into the coastal response to sea-level rise.
Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.
2011-01-01
Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.
Encoding of sound envelope transients in the auditory cortex of juvenile rats and adult rats.
Lu, Qi; Jiang, Cuiping; Zhang, Jiping
2016-02-01
Accurate neural processing of time-varying sound amplitude and spectral information is vital for species-specific communication. During postnatal development, cortical processing of sound frequency undergoes progressive refinement; however, it is not clear whether cortical processing of sound envelope transients also undergoes age-related changes. We determined the dependence of neural response strength and first-spike latency on sound rise-fall time across sound levels in the primary auditory cortex (A1) of juvenile (P20-P30) rats and adult (8-10 weeks) rats. A1 neurons were categorized as "all-pass", "short-pass", or "mixed" ("all-pass" at high sound levels to "short-pass" at lower sound levels) based on the normalized response strength vs. rise-fall time functions across sound levels. The proportions of A1 neurons within each of the three categories in juvenile rats were similar to that in adult rats. In general, with increasing rise-fall time, the average response strength decreased and the average first-spike latency increased in A1 neurons of both groups. At a given sound level and rise-fall time, the average normalized neural response strength did not differ significantly between the two age groups. However, the A1 neurons in juvenile rats showed greater absolute response strength, longer first-spike latency compared to those in adult rats. In addition, at a constant sound level, the average first-spike latency of juvenile A1 neurons was more sensitive to changes in rise-fall time. Our results demonstrate the dependence of the responses of rat A1 neurons on sound rise-fall time, and suggest that the response latency exhibit some age-related changes in cortical representation of sound envelope rise time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of Sea Level Rise in Singapore Strait
NASA Astrophysics Data System (ADS)
Tkalich, Pavel; Luu, Quang-Hung
2013-04-01
Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.
Special Issue: Response of Microbial Communities to Environmental Changes.
Stingl, Ulrich
2018-03-30
Environmental issues such as eutrophication, ocean acidification, sea level rise, saltwater intrusion, increase in carbon dioxide levels, or rise of average global temperatures, among many others, are impacting and changing whole ecosystems [...].
Renal ischemia induces an increase in nitric oxide levels from tissue stores.
Salom, Miguel G; Arregui, Begoña; Carbonell, Luis F; Ruiz, Fernando; González-Mora, José Luis; Fenoy, Francisco J
2005-11-01
Tissue nitric oxide (NO) levels increase dramatically during ischemia, an effect that has been shown to be partially independent from NO synthases. Because NO is stored in tissues as S-nitrosothiols and because these compounds could release NO during ischemia, we evaluated the effects of buthionine sulfoximine (BSO; an intracellular glutathione depletor), light stimulation (which releases NO, decomposing S-nitrosothiols), and N-acetyl-L-cysteine (a sulfhydryl group donor that repletes S-nitrosothiols stores) on the changes in outer medullary NO concentration produced during 45 min of renal artery occlusion in anesthetized rats. Renal ischemia increased renal tissue NO concentration (+223%), and this effect was maintained along 45 min of renal arterial blockade. After reperfusion, NO concentration fell below preischemic values and remained stable for the remainder of the experiment. Pretreatment with 10 mg/kg nitro-L-arginine methyl ester (L-NAME) decreased significantly basal NO concentration before ischemia, but it did not modify the rise in NO levels observed during ischemia. In rats pretreated with 4 mmol/kg BSO and L-NAME, ischemia was followed by a transient increase in renal NO concentration that fell to preischemic values 20 min before reperfusion. A similar response was observed when the kidney was illuminated 40 min before the ischemia. The coadministration of 10 mg/kg iv N-acetyl-L-cysteine with BSO + L-NAME restored the increase in NO levels observed during renal ischemia and prevented the depletion of renal thiol groups. These results demonstrate that the increase in renal NO concentration observed during ischemia originates from thiol-dependent tissue stores.
Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert
2008-03-01
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Building a Community Framework for Adaptation to Sea Level Rise and Inundation
NASA Astrophysics Data System (ADS)
Culver, M. E.; Schubel, J.; Davidson, M. A.; Haines, J.
2010-12-01
Sea level rise and inundation pose a substantial risk to many coastal communities, and the risk is projected to increase because of continued development, changes in the frequency and intensity of inundation events, and acceleration in the rate of sea-level rise. Calls for action at all levels acknowledge that a viable response must engage federal, state and local expertise, perspectives, and resources in a coordinated and collaborative effort. Representatives from a variety of these agencies and organizations have developed a shared framework to help coastal communities structure and facilitate community-wide adaptation processes and to help agencies determine where investments should be made to enable states and local governments to assess impacts and initiate adaptation strategies over the next decade. For sea level rise planning and implementation, the requirements for high-quality data and information are vast and the availability is limited. Participants stressed the importance of data interoperability to ensure that users are able to apply data from a variety of sources and to improve availability and confidence in the data. Participants were able to prioritize the following six categories of data needed to support future sea level rise planning and implementation: - Data to understand land forms and where and how water will flow - Monitoring data and environmental drivers - Consistent sea level rise scenarios and projections across agencies to support local planning - Data to characterize vulnerabilities and impacts of sea level rise - Community characteristics - Legal frameworks and administrative structure. To develop a meaningful and effective sea level rise adaptation plan, state and local planners must understand how the availability, scale, and uncertainty of these types of data will impact new guidelines or adaptation measures. The tools necessary to carry-out the adaptation planning process need to be understood in terms of data requirements, assumptions of the method, and the reliability and utility of the outputs. This type of information will assist the community in choosing among the available options. Communities have experience with storm and hazardous events, and the response typically is to return to pre-event conditions. With sea level rise, there will need to be a shift in perception and response from storm events, and the people must collectively arrive at a new vision for their community in light of a changing environment. Understanding the possible scenarios and the uncertainty or probability of those scenarios is a critical component in the adaptation process. Although there is a broad constituency that does not know the issue well, many communities are savvy about the impacts of sea level rise. Armed with the available information and resources and an understanding of the uncertainties, many communities are ready to take action. Successful adaptation planning will require that all sectors — local, state, federal, academic, nongovernmental, and the private sector — work together throughout the process to provide local communities with resources, scientific and political support.
Rising Sea Levels: Truth or Scare?
ERIC Educational Resources Information Center
Peacock, Alan
2007-01-01
When "ITV News" ran an item that shocked the author, about rising sea levels that will have caused the entire evacuation of the islands by the end of this year, he began to wonder whether the Pacific Ocean is really rising as fast as this. The media reporting of such things can be a double-edged sword. On the one hand, it brought to the author's…
Preparing Norfolk Area Students for America's Second Highest Sea Level Rise
NASA Astrophysics Data System (ADS)
Dunbar, R. R.
2017-12-01
The nonprofit Elizabeth River Project located in Hampton Roads, Virginia was awarded a 3-year national NOAA Environmental Literacy award 2016-2019 to teach 21,000 K-12 youth how to help restore one of the most polluted rivers on the Chesapeake Bay and to help create a resilient community that is facing impacts from the rising seas and changing climate. Through a community collaboration, partners are also creating perhaps the nation's first Youth Resilience Strategy with a vision, goals, best practices and resources on engaging youth to help create resilient cities facing environmental and economic changes. During Year 1, 7,000 elementary students held field investigations aboard the floating classroom Learning Barge and at Paradise Creek Nature Park and helped restore wetland restoration sites. Students performed inquiry based investigations, learned stewardship actions to help create resilience and showed a 40% increase in knowledge. Year 1 best practices in teaching resilience include youth: getting out of the classroom, discovering how rain water travels, performing bioblitzes and water quality testing, engaging in hands-on GreenSTEM activities, using investigation tools, creating innovative solutions to retain and reuse rain water, creating art and voicing their opinions on creating a resilient community.Lessons learned include developing engaging inquiry questions based on creating a resilient community. These included: "What are the impact of rising tides?", "How can sea level rise affect river animals?", "How can we be safe and prepare for extreme weather and flooding as the sea level rises?", "How has the way people worked with the Elizabeth River changed?", "How could sea level rise affect the Elizabeth River's water quality?", "How hot might the air temperature get by 2050 and what can we do to keep it cooler?", "What does this park show us about sea level rise and other ways our climate is changing?", "How do trees help make our park and community resilient?", "How will the rising sea and climate change impact the water quality and river animals?", and "How will sea level rise affect our wetlands and our communities?"
NASA Astrophysics Data System (ADS)
Kidwell, David M.; Dietrich, J. Casey; Hagen, Scott C.; Medeiros, Stephen C.
2017-01-01
Rising sea level represents a significant threat to coastal communities and ecosystems, including altered habitats and increased vulnerability to coastal storms and recurrent inundation. This threat is exemplified in the northern Gulf of Mexico, where low topography, marshes, and a prevalence of tropical storms have resulted in extensive coastal impacts. The ability to facilitate adaptation and mitigation measures relies, in part, on the development of robust predictive capabilities that incorporate complex biological processes with physical dynamics. Initiated in 2010, the 6-year Ecological Effects of Sea Level Rise—Northern Gulf of Mexico project applied a transdisciplinary science approach to develop a suite of integrated modeling platforms informed by empirical data that are capable of evaluating a range of climate change scenarios. This special issue highlights resultant integrated models focused on tidal hydrodynamics, shoreline morphology, oyster ecology, coastal wetland vulnerability, and storm surges that demonstrate the need for dynamic models to incorporate feedbacks among physical and biological processes in assessments of sea level rise effects on coastal systems. Effects are projected to be significant, spatially variable and nonlinear relative to sea level rise rates. Scenarios of higher sea level rise rates are projected to exceed thresholds of wetland sustainability, and many regions will experience enhanced storm surges. Influenced by an extensive collaborative stakeholder engagement process, these assessments on the coastal dynamics of sea level rise provide a strong foundation for resilience measures in the northern Gulf of Mexico and a transferable approach for application to other coastal regions throughout the world.
Sea Level Rise in the 21st Century: Will projections ever become reliable?
NASA Astrophysics Data System (ADS)
Willis, J. K.
2014-12-01
Global sea level rise has the potential to become one of the most costly and least well predicted impacts of human caused climate change. Unlike global surface temperature, the spread of possible scenarios (as little as 1 foot and as much as 6 feet by 2100) is not due to uncertainty about future rates of greenhouse gas emissions, but rather by a fundamental lack of knowledge about how the major ice sheets will behave in a warming climate. Clearly improved projections of sea level rise should become a major research priority in the next decade. At present, controversial techniques based on comparison with historical analogs and rates of recent warming and sea level rise are often used to create projections for the 21st Century. However, many in the scientific community feel that reliable projections must be based on a sound knowledge of the physics governing sea level rise, and particularly ice sheet behavior. In particular, large portions of the West Antarctic Ice Sheet and parts of the Greenland Ice Sheet rest on solid earth that sits below sea level. These regions may be threatened, not by atmospheric warming or changes in precipitation, but rather by direct forcing from the ocean. Fledgling efforts to understand these ocean ice interactions are already underway, as are efforts to make improved models of ice sheet behavior. However a great deal of work is still needed before widely accepted projections of sea level rise become a reality. This paper will highlight the hurdles to making such projections today and suggest ways forward in this critical area of research.
Fulcrum of Change: Leveraging 50 States to Turn around 5000 Schools
ERIC Educational Resources Information Center
Rhim, Lauren Morando; Redding, Sam
2011-01-01
In 2010, unprecedented levels of resources began to flow through state education agencies (SEAs) to support dramatic change in persistently low-performing schools under the expanded federal School Improvement Grant (SIG) program. The challenge for states is to leverage the federal investment to drive dramatic and sustainable change efforts in…
NASA Astrophysics Data System (ADS)
Sikes, K.; Chadwick, A. J.; Lamb, M. P.; Fuller, B. M.
2016-12-01
Predicting the frequency of river channel avulsions and the rate of land-loss on deltas is important for hazard mitigation, ecological protection, and coastal sustainability, especially given modern rates of relative sea level rise. Previous work has investigated the effect of hydrodynamic backwater in mediating sedimentation patterns and channel avulsions on deltas, but the effect of sea-level rise on backwater-influenced deltas has yet to be explored in experiments. We will present preliminary results from a flume experiment designed to explore the role of sea-level rise on the evolution of a backwater-mediated delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin under subcritical flow conditions. We used periodic flood events with different discharges to produce persistent non-uniform flow with a backwater length of 1m. Using a combination of image processing and topographic scans, we will characterize the frequency of backwater-mediated avulsions and the evolution of discrete deltaic lobes under a series of steady sea-level rise rates of different magnitude. We predict that, under moderate rise rates, enhanced aggradation will cause channels to avulse at an accelerated pace, replenishing inactive lobes more quickly and naturally acting to mitigate the extent of drowning along the delta shoreline. However, for higher rise rates, we hypothesize that rapid shoreline retreat may shift the backwater zone upstream, leading to the complete abandonment of deltaic lobes.
Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks
NASA Astrophysics Data System (ADS)
Caffrey, M.; Beavers, R. L.; Slayton, I. A.
2013-12-01
The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.
Roeloffs, E.; Quilty, E.
1997-01-01
Two of the four wells monitored near Parkfield, California, during 1985 showed water level rises beginning three days before the M4 6.1 Kettleman Hills earthquake. In one of these wells, the 3.0 cm rise was nearly unique in five years of water level data. However, in the other well, which showed a 3.8 cm rise, many other changes of comparable size have been observed. Both wells that did not display pre-earthquake rises tap partially confined aquifers that cannot sustain pressure changes due to tectonic strain having periods longer than several days. We evaluate the effect of partial aquifer confinement on the ability of these four wells to display water level changes in response to aquifer strain. Although the vertical hydraulic diffusivities cannot be determined uniquely, we can find a value of diffusivity for each site that is consistent with the site's tidal and barometric responses as well as with the rate of partial recovery of the coseismic water level drops. Furthermore, the diffusivity for one well is high enough to explain why the preseismic rise could not have been detected there. For the fourth well, the diffusivity is high enough to have reduced the size of the preseismic signal as much as 50%, although it should still have been detectable. Imperfect confinement cannot explain the persistent water level changes in the two partially confined aquifers, but it does show that they were not due to volume strain. The pre-earthquake water level rises may have been precursors to the Kettleman Hills earthquake. If so, they probably were not caused by accelerating slip over the part of the fault plane that ruptured in that earthquake because they are of opposite sign to the observed coseismic water level drops.
Black Sea outflow response to Holocene meltwater events.
Herrle, Jens O; Bollmann, Jörg; Gebühr, Christina; Schulz, Hartmut; Sheward, Rosie M; Giesenberg, Annika
2018-03-06
During the Holocene, North American ice sheet collapse and rapid sea-level rise reconnected the Black Sea with the global ocean. Rapid meltwater releases into the North Atlantic and associated climate change arguably slowed the pace of Neolithisation across southeastern Europe, originally hypothesized as a catastrophic flooding that fueled culturally-widespread deluge myths. However, we currently lack an independent record linking the timing of meltwater events, sea-level rise and environmental change with the timing of Neolithisation in southeastern Europe. Here, we present a sea surface salinity record from the Northern Aegean Sea indicative of two meltwater events at ~8.4 and ~7.6 kiloyears that can be directly linked to rapid declines in the establishment of Neolithic sites in southeast Europe. The meltwater events point to an increased outflow of low salinity water from the Black Sea driven by rapid sea level rise >1.4 m following freshwater outbursts from Lake Agassiz and the final decay of the Laurentide ice sheet. Our results shed new light on the link between catastrophic sea-level rise and the Neolithisation of southeastern Europe, and present a historical example of how coastal populations could have been impacted by future rapid sea-level rise.
Dvorak, Ana C; Solo-Gabriele, Helena M; Galletti, Andrea; Benzecry, Bernardo; Malone, Hannah; Boguszewski, Vicki; Bird, Jason
2018-07-01
Sea levels are projected to rise in response to climate change, causing the intrusion of sea water into land. In flat coastal regions, this would generate an increase in shallow water covered areas with limited circulation. This scenario raises a concern about the consequences it could have on human health, specifically the possible impacts on disease transmission. In this review paper we identified three categories of diseases which are associated with water and whose transmission can be affected by sea level rise. These categories include: mosquitoborne diseases, naturalized organisms (Vibrio spp. and toxic algae), and fecal-oral diseases. For each disease category, we propose comprehensive adaptation strategies that would help minimize possible health risks. Finally, the City of Key West, Florida is analyzed as a case study, due to its inherent vulnerability to sea level rise. Current and projected adaptation techniques are discussed as well as the integration of additional recommendations, focused on disease transmission control. Given that sea level rise will likely continue into the future, the promotion and implementation of positive adaptation strategies is necessary to ensure community resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Insulin secretion at high altitude in man
NASA Astrophysics Data System (ADS)
Sawhney, R. C.; Malhotra, A. S.; Singh, T.; Rai, R. M.; Sinha, K. C.
1986-09-01
The effect of hypoxia on circulatory levels of insulin, its response to oral glucose administration (100 g) and changes in circadian rhythms of glucose as well as insulin were evaluated in euglycemic males at sea level (SL, 220 m) during their stay at high altitude (3500 m, SJ) and in high altitude natives (HAN). Basal glucose levels were not altered at high altitude but the rise in glucose (δ glucose) after glucose load was significantly higher in SJ and HAN (p<0.01) as compared to SL values. An increase (p<0.01) both in basal as well as glucose induced rise in insulin secretion (δ insulin) was observed at HA. The rise in insulin in SJ was significantly higher (p<0.01) than in HAN. This elevation in glucose and insulin levels was also evident at different times of the day. The circadian rhythmicity of glucose as well as insulin was altered by the altitude stress. The findings of the study show a rise in insulin level at HA but the hyperglycemia in the face of hyper-insulinism require the presumption of a simultaneous and dispropotionate rise of insulin antagonistic hormones upsetting the effect of insulin on glucose metabolism.
Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.
Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E
2017-09-11
Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.