Science.gov

Sample records for lexbig property behavior

  1. Comparing and evaluating terminology services application programming interfaces: RxNav, UMLSKS and LexBIG.

    PubMed

    Pathak, Jyotishman; Peters, Lee; Chute, Christopher G; Bodenreider, Olivier

    2010-01-01

    To facilitate the integration of terminologies into applications, various terminology services application programming interfaces (API) have been developed in the recent past. In this study, three publicly available terminology services API, RxNav, UMLSKS and LexBIG, are compared and functionally evaluated with respect to the retrieval of information from one biomedical terminology, RxNorm, to which all three services provide access. A list of queries is established covering a wide spectrum of terminology services functionalities such as finding RxNorm concepts by their name, or navigating different types of relationships. Test data were generated from the RxNorm dataset to evaluate the implementation of the functionalities in the three API. The results revealed issues with various aspects of the API implementation (eg, handling of obsolete terms by LexBIG) and documentation (eg, navigational paths used in RxNav) that were subsequently addressed by the development teams of the three API investigated. Knowledge about such discrepancies helps inform the choice of an API for a given use case.

  2. Comparing and evaluating terminology services application programming interfaces: RxNav, UMLSKS and LexBIG

    PubMed Central

    Peters, Lee; Chute, Christopher G; Bodenreider, Olivier

    2010-01-01

    To facilitate the integration of terminologies into applications, various terminology services application programming interfaces (API) have been developed in the recent past. In this study, three publicly available terminology services API, RxNav, UMLSKS and LexBIG, are compared and functionally evaluated with respect to the retrieval of information from one biomedical terminology, RxNorm, to which all three services provide access. A list of queries is established covering a wide spectrum of terminology services functionalities such as finding RxNorm concepts by their name, or navigating different types of relationships. Test data were generated from the RxNorm dataset to evaluate the implementation of the functionalities in the three API. The results revealed issues with various aspects of the API implementation (eg, handling of obsolete terms by LexBIG) and documentation (eg, navigational paths used in RxNav) that were subsequently addressed by the development teams of the three API investigated. Knowledge about such discrepancies helps inform the choice of an API for a given use case. PMID:20962136

  3. Stimulus properties of conspecific behavior

    PubMed Central

    Millard, W. J.

    1979-01-01

    Two experiments identified the conditions in which the behavior of one bird acquired discriminative control of the behavior of a second bird. The schedule-controlled behaviors of the “stimulus” bird were differentially correlated with the components of a multiple schedule according to which the pecking of an “experimental” bird produced food. In Experiment 1, three pairs of pigeons acquired a successive discrimination and two reversals with the conspecific stimuli. Experiment 2 included a control condition in which no systematic relationship existed between the conspecific stimuli and the component schedules. While differential responding during the components of the multiple schedule was again found when the conspecific stimuli were available, differential responding did not occur in the control condition. Test conditions included in the experiments indicated that (a) the differential responding was not dependent on the discriminative properties of reinforcement, (b) the pecking of the stimulus and experimental birds was temporally interrelated, (c) the visual conspecific stimuli were critical to the maintenance of the discrimination, and (d) the observed stimulus control immediately generalized to an unfamiliar conspecific. PMID:16812151

  4. Psychometric Properties of the Brief Autism Mealtime Behaviors Inventory

    ERIC Educational Resources Information Center

    DeMand, Alexandra; Johnson, Cynthia; Foldes, Emily

    2015-01-01

    The purpose of this study was to explore the psychometric properties of the Brief Autism Mealtime Behaviors Inventory (BAMBI). In a sample of 273 well-characterized children with ASD, we explored the factor structure of the BAMBI, determined the internal consistency of a newly derived factor structure and provide an empirically derived cut-off for…

  5. Topographical and Functional Properties of Precursors to Severe Problem Behavior

    ERIC Educational Resources Information Center

    Fahmie, Tara A.; Iwata, Brian A.

    2011-01-01

    A literature search identified 17 articles reporting data on 34 subjects who engaged in precursors to severe problem behavior, which we examined to identify topographical and functional characteristics. Unintelligible vocalization was the most common precursor to aggression (27%) and property destruction (29%), whereas self- or nondirected…

  6. Psychometric Properties of the Behavioral Inhibition Questionnaire in Preschool Children

    PubMed Central

    Kim, Jiyon; Klein, Daniel N.; Olino, Thomas M.; Dyson, Margaret W.; Dougherty, Lea R.; Durbin, C. Emily

    2012-01-01

    We examined the psychometric properties of the Behavioral Inhibition Questionnaire (BIQ), a rating scale for children’s behavioral inhibition (BI). Parent and teacher ratings, parent interviews, and laboratory observations were obtained for 495 preschoolers. Confirmatory factor analysis yielded six factors, each reflecting the BIQ’s subscales, and all loading onto a second-order general dimension. Model fit was acceptable for parent ratings, but only marginal for teacher ratings. The convergent and discriminant validity of the BIQ was examined by using a multitrait multimethod approach. Results indicate that the BIQ displays evidence of reliability and validity that can complement observational paradigms. PMID:21999378

  7. Deformation behavior and mechanical properties of amyloid protein nanowires.

    PubMed

    Solar, Max; Buehler, Markus J

    2013-03-01

    Amyloid fibrils are most often associated with their pathological role in diseases like Alzheimer's disease and Parkinson's disease, but they are now increasingly being considered for uses in functional engineering materials. They are among the stiffest protein fibers known but they are also rather brittle, and it is unclear how this combination of properties affects the behavior of amyloid structures at larger length scales, such as in films, wires or plaques. Using a coarse-grained model for amyloid fibrils, we study the mechanical response of amyloid nanowires and examine fundamental mechanical properties, including mechanisms of deformation and failure under tensile loading. We also explore the effect of varying the breaking strain and adhesion strength of the constituent amyloid fibrils on the properties of the larger structure. We find that deformation in the nanowires is controlled by a combination of fibril sliding and fibril failure and that there exists a transition from brittle to ductile behavior by either increasing the fibril failure strain or decreasing the strength of adhesion between fibrils. Furthermore, our results reveal that the mechanical properties of the nanowires are quite sensitive to changes in the properties of the individual fibrils, and the larger scale structures are found to be more mechanically robust than the constituent fibrils, for all cases considered. More broadly, this work demonstrates the promise of utilizing self-assembled biological building blocks in the development of hierarchical nanomaterials. PMID:23290516

  8. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.

    PubMed

    Zhang, Shuping; Chen, Tao; Li, Wan; Dong, Qing; Xiong, Yuanquan

    2016-10-01

    Wet torrefaction of duckweed was carried out in the temperature range of 130-250°C to evaluate the effects on physicochemical properties and combustion behavior. The physicochemical properties of duckweed samples were investigated by ultimate analysis, proximate analysis, FTIR, XRD and SEM techniques. It was found that wet torrefaction improved the fuel characteristics of duckweed samples resulting from the increase in fixed carbon content, HHVs and the decrease in nitrogen and sulfur content and atomic ratios of O/C and H/C. It can be seen from the results of FTIR, XRD and SEM analyses that the dehydration, decarboxylation, solid-solid conversion, and condensation polymerization reactions were underwent during wet torrefaction. In addition, the results of thermogravimetric analysis (TGA) in air indicated that wet torrefaction resulted in significant changes on combustion behavior and combustion kinetics parameters. Duckweed samples after wet torrefaction behaved more char-like and gave better combustion characteristics than raw sample. PMID:27469097

  9. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.

    PubMed

    Zhang, Shuping; Chen, Tao; Li, Wan; Dong, Qing; Xiong, Yuanquan

    2016-10-01

    Wet torrefaction of duckweed was carried out in the temperature range of 130-250°C to evaluate the effects on physicochemical properties and combustion behavior. The physicochemical properties of duckweed samples were investigated by ultimate analysis, proximate analysis, FTIR, XRD and SEM techniques. It was found that wet torrefaction improved the fuel characteristics of duckweed samples resulting from the increase in fixed carbon content, HHVs and the decrease in nitrogen and sulfur content and atomic ratios of O/C and H/C. It can be seen from the results of FTIR, XRD and SEM analyses that the dehydration, decarboxylation, solid-solid conversion, and condensation polymerization reactions were underwent during wet torrefaction. In addition, the results of thermogravimetric analysis (TGA) in air indicated that wet torrefaction resulted in significant changes on combustion behavior and combustion kinetics parameters. Duckweed samples after wet torrefaction behaved more char-like and gave better combustion characteristics than raw sample.

  10. A Theoretical Analysis of Potential Extinction Properties of Behavior-Specific Manual Restraint

    ERIC Educational Resources Information Center

    Cipani, Ennio; Thomas, Melvin; Martin, Daniel

    2007-01-01

    This paper will examine possible extinction properties of behavior-specific manual restraint. It will analyze the possibility of extinction being produced via restraint with respect to the target behavior's possible environmental functions. The theoretical analysis will involve the analysis of behavioral properties of restraint during two temporal…

  11. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Gámez-Corrales, R.; Guirado-López, R. A.

    2014-11-01

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ˜2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ˜0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  12. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes

    SciTech Connect

    López-Oyama, A. B.; Silva-Molina, R. A.; Ruíz-García, J.; Guirado-López, R. A.; Gámez-Corrales, R.

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH–MWCNT). Our MWCNTs have average diameters of ∼2 nm, lengths of approximately 100–300 nm, and a hydroxyl surface coverage θ∼0.1. When deposited on the air/water interface the OH–MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO–LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH–MWCNTs might have promising applications.

  13. Phase behaviors and membrane properties of model liposomes: temperature effect.

    PubMed

    Wu, Hsing-Lun; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-09-28

    The phase behaviors and membrane properties of small unilamellar vesicles have been explored at different temperatures by dissipative particle dynamics simulations. The vesicles spontaneously formed by model lipids exhibit pre-transition from gel to ripple phase and main transition from ripple to liquid phase. The vesicle shape exhibits the faceted feature at low temperature, becomes more sphere-like with increasing temperature, but loses its sphericity at high temperature. As the temperature rises, the vesicle size grows but the membrane thickness declines. The main transition (Tm) can be identified by the inflection point. The membrane structural characteristics are analyzed. The inner and outer leaflets are asymmetric. The length of the lipid tail and area density of the lipid head in both leaflets decrease with increasing temperature. However, the mean lipid volume grows at low temperature but declines at high temperature. The membrane mechanical properties are also investigated. The water permeability grows exponentially with increasing T but the membrane tension peaks at Tm. Both the bending and stretching moduli have their minima near Tm. Those results are consistent with the experimental observations, indicating that the main signatures associated with phase transition are clearly observed in small unilamellar vesicles.

  14. Mechanical behavior and elastic properties of prestrained columnar ice

    NASA Astrophysics Data System (ADS)

    Snyder, Scott Aaron

    Experiments on columnar-grained ice at --10 °C reveal changes to its mechanical behavior and elastic properties due to compressive prestrain. Laboratory-grown (152-mm cube) specimens of freshwater and saline ice were prestrained under uniaxial across-column compression (to levels from epsilon p = 0.003 to epsilonp = 0.20, at constant strain rates in the ductile regime) and then reloaded, again under uniaxial across-column compression (at rates from 1x10--6 s--1 to 3 x 10--2s--1). Prestrain caused solid-state recrystallization as well as damage in the form of non-propagating microcracks. These microstructural changes were quantified by analysis of thin sections. Elastic properties in across-column directions, both parallel (x1) and perpendicular ( x2) to the initial loading direction, were obtained from P-wave and S-wave ultrasonic velocities. As a result (and depending on the level) of the prestrain imparted in both materials, Young's modulus E was reduced by as much as 30%; the ductile-to-brittle (D--B) transition strain rate epsilon D/B was increased up to a factor of 3 to 10; and the ductile behavior with respect to loading along a direction within the horizontal ( x1-x2) plane of the parent ice sheet changed from isotropic to anisotropic. As the prestrain rate approached the nominal D--B transition rate of initially undamaged material, the magnitudes of prestrain effects on elastic compliance increased. The shift in the D--B transition, on the other hand, was less sensitive to the prestrain rate. The results are interpreted within the framework of a recent model that predicts the transition strain rate based on the micromechanical boundary between creep and fracture processes. Prestrain primarily affected certain parameters in the model, specifically the power-law creep coefficient B (more so than the creep exponent n), Young's modulus E and, by extension, the fracture toughness KIc. The physical implications of these effects are discussed.

  15. Properties and Mechanobiological Behavior of Bovine Nasal Septum Cartilage.

    PubMed

    Correro-Shahgaldian, Maria Rita; Introvigne, Jasmin; Ghayor, Chafik; Weber, Franz E; Gallo, Luigi M; Colombo, Vera

    2016-05-01

    Bovine nasal septum (BNS) is a source of non-load bearing hyaline cartilage. Little information is available on its mechanical and biological properties. The aim of this work was to assess the characteristics of BNS cartilage and investigate its behavior in in vitro mechanobiological experiments. Mechanical tests, biochemical assays, and microscopic assessment were performed for tissue characterization. Compressions tests showed that the tissue is viscoelastic, although values of elastic moduli differ from the ones of other cartilaginous tissues. Water content was 78 ± 1.4%; glycosaminoglycans and collagen contents-measured by spectrophotometric assay and hydroxyproline assay-were 39 ± 5% and 25 ± 2.5% of dry weight, respectively. Goldner's Trichrome staining and transmission electron microscopy proved isotropic cells distribution and results of earlier cell division. Furthermore, gene expression was measured after uniaxial compression, showing variations depending on compression time as well as trends depending on equilibration time. In conclusion, BNS has been characterized at several levels, revealing that bovine nasal tissue is regionally homogeneous. Results suggest that, under certain conditions, BNS could be used to perform in vitro cartilage loading experiments.

  16. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Jeffrey Scott Leib

    2003-05-31

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and calculation

  17. Oscillatory Behavior in the Transport Properties of Transition Metal Superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Sihong

    Oscillations in the low temperature electrical resistivity, as a function of the individual layer thickness and/or superlattice period, have been recently observed in Co/Ni superlattices. This was believed to be a superlattice effect because the oscillations disappeared with decreasing number of bilayers. In this thesis, systematic studies have been made to understand the origin of this unusual behavior in the electrical transport of Co/Ni superlattices. First, Co/Ni was investigated extensively because Co and Ni have very similar material properties. They are both ferromagnetic, have fcc lattices in thin film form, and have almost identical electronic band structure. Superlattice films were grown by molecular beam epitaxy (MBE) and these structure was characterized by reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), Auger electron spectroscopy (AES), and X-ray diffraction (XRD). The measured residual resistivity, usually caused by impurity atoms, lattice defects, interfaces, or grain boundaries, is very small in Co/Ni superlattice films. Due to this small background resistivity, unusual intrinsic resistivity oscillations have been clearly observed in these films. The oscillation amplitude does not change with temperature. However, a small amount of random fluctuation in the superlattice period, artificially introduced during film growth, significantly increases the oscillation amplitude. The resistivity at a minimum rm( rho_{min}) and maximum rm(rho_{max}) of oscillations was also measured as a function of film thickness in order to study the evolution of this effect. rho_{min} increases monotonically with decreasing thickness due to surface scattering, which is well described by the quantum size effect theory. However, rho_{max} becomes nonmonotonic by proper choice of superlattice period, indicating the presence of an additional scattering mechanism associated with the superlattice structure. Similar resistivity

  18. Violence-Related Behaviors on School Property among Mississippi Public High School Students, 1993-2003

    ERIC Educational Resources Information Center

    Zhang, Lei; Johnson, William D.

    2005-01-01

    Researchers examined trends and compared subgroup differences in violence-related behaviors on school property among Mississippi public high school students from 1993 to 2003. Findings are based on data from the Mississippi Youth Risk Behavior Surveillance System (YRBSS), a representative sample (N = 9,058) of Mississippi high school students.…

  19. Psychometric Properties of the Disability Assessment Schedule (DAS) for Behavior Problems: An Independent Investigation

    ERIC Educational Resources Information Center

    Tsakanikos, Elias; Underwood, Lisa; Sturmey, Peter; Bouras, Nick; McCarthy, Jane

    2011-01-01

    The present study employed the Disability Assessment Schedule (DAS) to assess problem behaviors in a large sample of adults with ID (N = 568) and evaluate the psychometric properties of this instrument. Although the DAS problem behaviors were found to be internally consistent (Cronbach's [alpha] = 0.87), item analysis revealed one weak item…

  20. Metal matrix composite micromechanics: In-situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    Recent efforts in computational mechanics methods for simulating the nonlinear behavior of metal matrix composites have culminated in the implementation of the Metal Matrix Composite Analyzer (METCAN) computer code. In METCAN material nonlinearity is treated at the constituent (fiber, matrix, and interphase) level where the current material model describes a time-temperature-stress dependency of the constituent properties in a material behavior space. The composite properties are synthesized from the constituent instantaneous properties by virtue of composite micromechanics and macromechanics models. The behavior of metal matrix composites depends on fabrication process variables, in situ fiber and matrix properties, bonding between the fiber and matrix, and/or the properties of an interphase between the fiber and matrix. Specifically, the influence of in situ matrix strength and the interphase degradation on the unidirectional composite stress-strain behavior is examined. These types of studies provide insight into micromechanical behavior that may be helpful in resolving discrepancies between experimentally observed composite behavior and predicted response.

  1. Effect of suspension property on granule morphology and compaction behavior

    SciTech Connect

    Hae-Weon Lee, Guesup Song, In-Sik Suk

    1995-12-31

    Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.

  2. Ion plated gold films: Properties, tribological behavior and performance

    NASA Astrophysics Data System (ADS)

    Spalvins, Talivaldis

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  3. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  4. Theoretical behavior of microemulsions: geometrical aspects and dilution properties

    SciTech Connect

    Biais, J.; Bothorel, P.; Clin, B.; Lalanne, P.

    1981-03-01

    A very simple theoretical model for microemulsions is used; introducing the idea of pseudophases, and therefore equilibrium between them, one can account for many experimental properties of such systems. By using two partition coefficients respectively for alcohol and oil, the existence of dilution lines for microemulsions and of excluding domains for spherical objects is justified, and the evolution of some geometrical characteristics is predicted. 17 references.

  5. Detonation Properties and Thermal Behavior of FOX-7-Based Explosives

    NASA Astrophysics Data System (ADS)

    Trzciński, W. A.; Cudziło, S.; Chyłek, Z.; Szymańczyk, L.

    2013-01-01

    Phlegmatized FOX-7 (1,1-diamino-2,2-dinitroethylene, DADNE) and mixtures with cyclotetramethylene tetranitramine (HMX) were prepared and their detonation properties (the detonation velocity, detonation pressure, acceleration ability, and detonation energy) were investigated. The sensitivity of these compositions to mechanical stimuli (friction, impact, and shock wave) were determined, and the thermal stability and compatibility of the components were tested. This work furthers the investigation into new compositions for low vulnerability ammunition.

  6. Decoupling polymer properties to elucidate mechanisms governing cell behavior.

    PubMed

    Wang, Xintong; Boire, Timothy C; Bronikowski, Christine; Zachman, Angela L; Crowder, Spencer W; Sung, Hak-Joon

    2012-10-01

    Determining how a biomaterial interacts with cells ("structure-function relationship") reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977

  7. Decoupling Polymer Properties to Elucidate Mechanisms Governing Cell Behavior

    PubMed Central

    Wang, Xintong; Boire, Timothy C.; Bronikowski, Christine; Zachman, Angela L.; Crowder, Spencer W.

    2012-01-01

    Determining how a biomaterial interacts with cells (“structure-function relationship”) reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery. PMID:22536977

  8. How sensory properties of foods affect human feeding behavior.

    PubMed

    Rolls, B J; Rowe, E A; Rolls, E T

    1982-09-01

    The sensory properties of food which can lead to a decrease in the pleasantness of that food after it is eaten, and to enhanced food intake if that property of the food is changed by successive presentation of different foods, were investigated. After eating chocolates of one color the pleasantness of the taste of the eaten color declined more than of the non-eaten colors, although these chocolates differed only in appearance. The presentation of a variety of colors of chocolates, either simultaneously or successively, did not affect food intake compared with consumption of the subject's favorite color. Changes in the shape of food (which affects both appearance and mouth feel) were introduced by offering subjects three successive courses consisting of different shapes of pasta. Changes in shape led to a specific decrease in the pleasantness of the shape eaten and to a significant enhancement (14%) of food intake when three shapes were offered compared with intake of the subject's favorite shape. Changes in just the flavor of food (i.e., cream cheese sandwiches flavored with salt, or with the non-nutritive flavoring agents lemon and saccharin, or curry) led to a significant enhancement (15%) of food intake when all three flavors were presented successively compared with intake of the favorite. The experiments elucidate some of the properties of food which are involved in sensory specific satiety, and which determine the amount of food eaten. PMID:7178247

  9. Photophysical properties and photobiological behavior of amodiaquine, primaquine and chloroquine.

    PubMed

    Viola, Giampietro; Salvador, Alessia; Cecconet, Laura; Basso, Giuseppe; Vedaldi, Daniela; Dall'Acqua, Francesco; Aloisi, Gian Gaetano; Amelia, Matteo; Barbafina, Arianna; Latterini, Loredana; Elisei, Fausto

    2007-01-01

    This article describes the results of a coupled photophysical and photobiological study aimed at understanding the phototoxicity mechanism of the antimalarial drugs amodiaquine (AQ), primaquine (PQ) and chloroquine (CQ). Photophysical experiments were carried out in aqueous solutions by steady-state and time-resolved spectrometric techniques to obtain information on the different decay pathways of the excited states of the drugs and on the transient species formed upon laser irradiation. The results showed that all three drugs possess very low fluorescence quantum yields (10(-2)-10(-4)). Laser flash photolysis experiments proved the occurrence of photoionization processes leading to the formation of a radical cation in all three systems. In the case of AQ the lowest triplet state was also detected. Together with the photophysical properties the photobiological properties of the antimalarial drugs were investigated under UV irradiation, on various biological targets through a series of in vitro assays. Phototoxicity on mouse 3T3 fibroblast and human keratinocyte cell lines NCTC-2544 was detected for PQ and CQ but not for AQ. In particular, PQ- and CQ-induced apoptosis was revealed by the externalization of phosphatidylserine. Furthermore, upon UV irradiation, the drugs caused significant variations of the mitochondrial potential (Deltapsi(mt)) measured by flow cytometry. The photodamages produced by the drugs were also evaluated on proteins, lipids and DNA. The combined approaches were useful in understanding the mechanism of phototoxicity induced by these antimalarial drugs. PMID:18028216

  10. Mechanical properties and failure behavior of unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45–80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  11. Behavioral and neural properties of social reinforcement learning.

    PubMed

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Libby, Victoria; Glover, Gary; Voss, Henning U; Ballon, Douglas J; Casey, B J

    2011-09-14

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based on work in nonhuman primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging. Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis--social preferences, response latencies, and modeling neural responses--are consistent with reinforcement learning theory and nonhuman primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one's peers in altering subsequent behavior.

  12. Behavioral and neural properties of social reinforcement learning.

    PubMed

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Libby, Victoria; Glover, Gary; Voss, Henning U; Ballon, Douglas J; Casey, B J

    2011-09-14

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based on work in nonhuman primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging. Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis--social preferences, response latencies, and modeling neural responses--are consistent with reinforcement learning theory and nonhuman primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one's peers in altering subsequent behavior. PMID:21917787

  13. Mechanical properties and failure behavior of unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume. PMID:27075397

  14. Mechanical properties and failure behavior of unidirectional porous ceramics

    PubMed Central

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45–80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume. PMID:27075397

  15. Behavioral and neural properties of social reinforcement learning

    PubMed Central

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Libby, Victoria; Glover, Gary; Voss, Henning U.; Ballon, Douglas J.; Casey, BJ

    2011-01-01

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based upon work in non-human primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging (fMRI). Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis - social preferences, response latencies and modeling neural responses – are consistent with reinforcement learning theory and non-human primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one’s peers in altering subsequent behavior. PMID:21917787

  16. Properties of a Formal Method for Prediction of Emergent Behaviors in Swarm-based Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James

    2004-01-01

    Autonomous intelligent swarms of satellites are being proposed for NASA missions that have complex behaviors and interactions. The emergent properties of swarms make these missions powerful, but at the same time more difficult to design and assure that proper behaviors will emerge. This paper gives the results of research into formal methods techniques for verification and validation of NASA swarm-based missions. Multiple formal methods were evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of spacecraft. The NASA ANTS mission was used as an example of swarm intelligence for which to apply the formal methods. This paper will give the evaluation of these formal methods and give partial specifications of the ANTS mission using four selected methods. We then give an evaluation of the methods and the needed properties of a formal method for effective specification and prediction of emergent behavior in swarm-based systems.

  17. Properties of ferrites important to their friction and wear behavior

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Environmental, chemical and crystallographical effects on the fundamental nature on friction and wear of the ferrites in contact with metals, magnetic tapes and themselves are reviewed. The removal of adsorbed films from the surfaces of ferrites results in very strong interfacial adhesion and high friction in ferrite to metal and ferrite to magnetic tape contacts. The metal ferrite bond at the interface is primarily a chemical bond between the metal atoms and the large oxygen anions in the ferrite surface, and the strength of these bonds is related to the oxygen to metal bond strength in the metal oxide. The more active the metal, the higher is the coefficient of friction. Not only under adhesive conditions, but also under abrasive conditions the friction and wear properties of ferrites are related to the crystallographic orientation. With ferrite to ferrite contact the mating of highest atomic density (most closely packed) direction on matched crystallographic planes, that is, 110 directions on /110/planes, results in the lowest coefficient of friction.

  18. Psychometric Properties of a Youth Self-Report Measure of Neglectful Behavior by Parents

    ERIC Educational Resources Information Center

    Dubowitz, Howard; Villodas, Miguel T.; Litrownik, Alan J.; Pitts, Steven C.; Hussey, Jon M.; Thompson, Richard; Black, Maureen M.; Runyan, Desmond

    2011-01-01

    Objective: This study aimed to empirically assess psychometric properties of a multi-dimensional youth self-report measure of neglectful behavior by parents. Method: Data were gathered from 593 12-year-old youth participating in the Longitudinal Studies of Child Abuse and Neglect (LONGSCAN) consortium; 272 also had data at age 14. Youth responded…

  19. Argumentation and Students' Conceptual Understanding of Properties and Behaviors of Gases

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Pabuccu, Aybuke; Cetin, Pinar Seda; Kaya, Ebru

    2012-01-01

    The purpose of this study was to explore the impact of argumentation-based pedagogy on college students' conceptual understanding of properties and behaviors of gases. The sample consists of 108 students (52 in the control group and 56 in the intervention group) drawn from 2 general chemistry college courses taught by the same instructor. Data…

  20. Psychometric Properties of a Korean Translation of the "Scales of Independent Behavior--Revised"

    ERIC Educational Resources Information Center

    Cho, Su-Je; Paik, Eunhee; Lee, Byoung-In; Yi, Joonsuk

    2010-01-01

    This study explores the psychometric properties of data drawn from the Korean translation of the full "Scales of Independent Behavior--Revised" (SIB-R). In addition, semantic, content, conceptual, and technical equivalence are examined. The participants include 2,763 typically developing children and 406 children with intellectual disabilities…

  1. The Psychometric Properties of the Difficult Behavior Self-Efficacy Scale

    ERIC Educational Resources Information Center

    Oh, Hyun-Kyoung; Kozub, Francis M.

    2010-01-01

    The study was designed to estimate the psychometric properties of Hastings and Brown's (2002a) Difficult Behavior Self-efficacy Scale. Participants were two samples of physical educators teaching in Korea (n = 229) and the United States (U.S.; n = 139). An initial translation of the questionnaire to Korean and pilot study were conducted along with…

  2. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions

    PubMed Central

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-01-01

    ABSTRACT Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices. PMID:27134310

  3. Psychometric properties of a Dutch version of the behavior problems inventory-01 (BPI-01).

    PubMed

    Dumont, Eric; Kroes, Diana; Korzilius, Hubert; Didden, Robert; Rojahn, Johannes

    2014-03-01

    There are only a limited number of Dutch validated measurement instruments for measuring behavioral problems in people with a moderate to profound intellectual disability. In this study, the psychometric properties of a Dutch version of the behavior Problems Inventory-01 (BPI-01; Rojahn et al., 2001) have been investigated among 195 people with a moderate to profound intellectual disability who live in a residential facility. The BPI-01 was completed by 42 informants (staff members) of 23 care units. The inter-rater reliability, intra-rater reliability and internal consistency turned out to be good. Factor analysis confirmed two of the three a priori factors and the third factor was a mix of self-injurious (SIB) behavior and stereotypic behavior. The BPI-01 was compared to the Aberrant Behavior Checklist (Aman et al., 1985a) and showed a good convergent validity. This study shows that a Dutch version of the BPI-01 has good psychometric properties for measuring behavior problems in individuals with moderate to profound intellectual disability.

  4. Computing Legacy Software Behavior to Understand Functionality and Security Properties: An IBM/370 Demonstration

    SciTech Connect

    Linger, Richard C; Pleszkoch, Mark G; Prowell, Stacy J; Sayre, Kirk D; Ankrum, Scott

    2013-01-01

    Organizations maintaining mainframe legacy software can benefit from code modernization and incorporation of security capabilities to address the current threat environment. Oak Ridge National Laboratory is developing the Hyperion system to compute the behavior of software as a means to gain understanding of software functionality and security properties. Computation of functionality is critical to revealing security attributes, which are in fact specialized functional behaviors of software. Oak Ridge is collaborating with MITRE Corporation to conduct a demonstration project to compute behavior of legacy IBM Assembly Language code for a federal agency. The ultimate goal is to understand functionality and security vulnerabilities as a basis for code modernization. This paper reports on the first phase, to define functional semantics for IBM Assembly instructions and conduct behavior computation experiments.

  5. Effects of substrate properties on the hydraulic and thermal behavior of a green roof

    NASA Astrophysics Data System (ADS)

    Sandoval, V. P.; Suarez, F. I.; Victorero, F.; Bonilla, C.; Gironas, J. A.; Vera, S.; Bustamante, W.; Rojas, V.; Pasten, P.

    2014-12-01

    Green roofs are a sustainable urban development solution that incorporates a growing media (also known as substrate) and vegetation into infrastructures to reach additional benefits such as the reduction of: rooftop runoff peak flows, roof surface temperatures, energy utilized for cooling/heating buildings, and the heat island effect. The substrate is a key component of the green roof that allows achieving these benefits. It is an artificial soil that has an improved behavior compared to natural soils, facilitating vegetation growth, water storage and typically with smaller densities to reduce the loads over the structures. Therefore, it is important to study the effects of substrate properties on green roof performance. The objective of this study is to investigate the physical properties of four substrates designed to improve the behavior of a green roof, and to study their impact on the efficiency of a green roof. The substrates that were investigated are: organic soil; crushed bricks; a mixture of mineral soil with perlite; and a mixture of crushed bricks and organic soil. The thermal properties (thermal conductivity, volumetric heat capacity and thermal diffusivity) were measured using a dual needle probe (Decagon Devices, Inc.) at different saturation levels, and the hydraulic properties were measured with a constant head permeameter (hydraulic conductivity) and a pressure plate extractor (water retention curve). This characterization, combined with numerical models, allows understanding the effect of these properties on the hydraulic and thermal behavior of a green roof. Results show that substrates composed by crushed bricks improve the thermal insulation of infrastructures and at the same time, retain more water in their pores. Simulation results also show that the hydraulic and thermal behavior of a green roof strongly depends on the moisture content prior to a rainstorm.

  6. Physical properties and mechanical behavior of clays with saline pore fluid

    SciTech Connect

    Shimizu, Masayoshi

    1995-12-31

    The sample of which the pore fluid is the sea water was prepared by remolding a powdered clay soil with the natural sea water. Physical and mechanical properties of this sample were compared to those of the sample prepared with distilled water. Results of consistency limits tests, CIU triaxial compression tests and oedometer tests are shown. Effects of the salinity on the effective stress and strain behavior in the states of normal and over consolidation and on the compressibility and consolidation behavior are shown. Discussion is made on the basis of the concept of aggregates of soil grains.

  7. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    NASA Astrophysics Data System (ADS)

    Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Solanki, Sapana; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  8. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior. PMID:21711609

  9. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.

  10. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data. PMID:16434048

  11. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    PubMed

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  12. Chronic Alterations in Serotonin Function: Dynamic Neurochemical Properties in Agonistic Behavior of the Crayfish, Orconectes rusticus

    PubMed Central

    Panksepp, Jules B.; Huber, Robert

    2016-01-01

    The biogenic amine serotonin [5-hydroxytryptamine (5-HT)] has received considerable attention for its role in behavioral phenomena throughout a broad range of invertebrate and vertebrate taxa. Acute 5-HT infusion decreases the likelihood of crayfish to retreat from dominant opponents. The present study reports the biochemical and behavioral effects resulting from chronic treatment with 5-HT-modifying compounds delivered for up to 5 weeks via silastic tube implants. High performance liquid chromatography with electrochemical detection (HPLC-ED) confirmed that 5,7-dihydroxytryptamine (5,7-DHT) effectively reduced 5-HT in all central nervous system (CNS) areas, except brain, while a concurrent accumulation of the compound was observed in all tissues analyzed. Unexpectedly, two different rates of chronic 5-HT treatment did not increase levels of the amine in the CNS. Behaviorally, 5,7-DHT treated crayfish exhibited no significant differences in measures of aggression. Although treatment with 5-HT did not elevate 5-HT content in the CNS, infusion at a slow rate caused animals to escalate more quickly while 5-HT treatment at a faster rate resulted in slower escalation. 5,7-DHT is commonly used in behavioral pharmacology and the present findings suggest its biochemical properties should be more thoroughly examined. Moreover, the apparent presence of powerful compensatory mechanisms indicates our need to adopt an increasingly dynamic view of the serotonergic bases of behavior like crayfish aggression. PMID:11891663

  13. Mechanical Behavior of Agave Americana L. Fibres: Correlation Between Fine Structure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Msahli, S.; Chaabouni, Y.; Sakli, F.; Drean, J. Y.

    In this study, results of a mechanical behavior study of fibres extracted from the agave Americana L. plant, the most abundant variety in Tunisia, are presented. These results deal with the principal and mechanical characteristics of these fibres which are the elongation at break, the elasticity modulus and the rupture facture. These results permitted to situate these fibres, compared to the other textile fibres, as materials that can be used in technical applications such as reinforcing composites or geotextile. In order to understand the mechanical properties of these fibres, a correlation study between the properties already cited and the fine structure was done. The obtained results showed that the mechanical properties of agave Americana L. fibres are closely related to the individual fibers deformations and to the natural matrix (lignin and gums) that links these elementary fibres.

  14. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    Polymer nanocomposites continue to receive wide-spread acclaim for their potential to improve composite materials beyond conventional macroscale fillers. The improvement lies both in the altered properties of the particle itself and in the interaction region surrounding the filler. As the surface area of the filler increases, a greater volume fraction of this interphase region is present in the composite. However, simply minimizing the particle size to maximize surface area introduces additional problems; the larger specific surface area promotes aggregation to reduce the surface energy. Since the composite's properties are largely tied to the morphology, aggregation prevents control over the dispersion state of the filler, and thus the properties. Therefore, disaggregation and morphology control are vital to achieving designable nanocomposites. To accomplish both tasks, this thesis focuses on the behavior of grafted polymer coatings on nanoparticles and their in uence on the macroscopic properties. Grafted chains play an integral role in both morphology control and reinforcement. To investigate the behavior of polymer brushes on nanoparticles, polystyrene was grafted on 15 nm silica particles at varying graft densities and molecular weights. Dynamic light scattering studies in dilute solution were performed to obtain the brush height as a function of both graft density and molecular weight. Three distinct regimes of behavior exist, the "mushroom", the semi-dilute polymer brush (SDPB), and the concentrated polymer brush (CPB) regimes. In the CPB regime, which is an extraordinary configuration of highly-stretched chains on densely grafted surfaces, the brush height h was found to scale as h ∝ N4/5, where N is the degree of polymerization. This result is contrary to the observed scaling of the CPB in flat interface systems, where h ∝ N1. To explore the behavior of grafted chains in the melt, molecular dynamics simulations were performed on grafted nanoparticles

  15. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    PubMed

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways.

  16. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    PubMed

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  17. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    PubMed

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics. PMID:23553145

  18. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains.

    PubMed

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices.

  19. Flavin Derivatives with Tailored Redox Properties: Synthesis, Characterization, and Electrochemical Behavior.

    PubMed

    Kormányos, Attila; Hossain, Mohammad S; Ghadimkhani, Ghazaleh; Johnson, Joe J; Janáky, Csaba; de Tacconi, Norma R; Foss, Frank W; Paz, Yaron; Rajeshwar, Krishnan

    2016-06-27

    This study establishes structure-property relationships for four synthetic flavin molecules as bioinspired redox mediators in electro- and photocatalysis applications. The studied flavin compounds were disubstituted with polar substituents at the N1 and N3 positions (alloxazine) or at the N3 and N10 positions (isoalloxazines). The electrochemical behavior of one such synthetic flavin analogue was examined in detail in aqueous solutions of varying pH in the range from 1 to 10. Cyclic voltammetry, used in conjunction with hydrodynamic (rotating disk electrode) voltammetry, showed quasi-reversible behavior consistent with freely diffusing molecules and an overall global 2e(-) , 2H(+) proton-coupled electron transfer scheme. UV/Vis spectroelectrochemical data was also employed to study the pH-dependent electrochemical behavior of this derivative. Substituent effects on the redox behavior were compared and contrasted for all the four compounds, and visualized within a scatter plot framework to afford comparison with prior knowledge on mostly natural flavins in aqueous media. Finally, a preliminary assessment of one of the synthetic flavins was performed of its electrocatalytic activity toward dioxygen reduction as a prelude to further (quantitative) studies of both freely diffusing and tethered molecules on various electrode surfaces. PMID:27243969

  20. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains

    NASA Astrophysics Data System (ADS)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-01

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices.

  1. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains.

    PubMed

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices. PMID:27586938

  2. Metal matrix composite micromechanics - In situ behavior influence on composite properties

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The influence of in situ fiber and matrix properties (such as in situ matrix strength and the interphase degradation) of high-temperature metal matrix composites (HTMMCs) on the unidirectional stress-strain behavior of the composite is examined using results of a numerical investigation of a SiC/Ti-15-3-3-3 unidirectional composite. It is shown that a reduction of the in situ matrix strength substantially decreases the transverse and the longitudinal tensile/compressive strengths, as well as the in-plane shear strength, of the composite. The interphase degradation affects the behavior in transverse tension/compression drastically; both the ultimate strength and strain showed significant reductions. The higher use temperature results in a reduction in the ultimate strength and in the initial tangential modulus for compression and for in-plane shear loading.

  3. Effects of lightweight fly ash aggregate properties on the behavior of lightweight concretes.

    PubMed

    Kockal, Niyazi Ugur; Ozturan, Turan

    2010-07-15

    Influence of different lightweight fly ash aggregates on the behavior of concrete mixtures was discussed. The performance characteristics of lightweight concretes (LWCs) and normalweight concrete (NWC) were investigated through compressive strength, modulus of elasticity and splitting tensile strength representing the mechanical behavior; through rapid chloride permeability representing the transport properties and through rapid freezing and thawing cycling representing the durability of concrete. In order to investigate the aggregate-cement paste interfacial transition zone (ITZ), SEM observations were performed. Regression and graphical analysis of the experimental data obtained were also performed. An increase in compressive strength was observed with the increase in oven-dry density. The ratios of splitting tensile strength to compressive strength of lightweight aggregate concretes were found to be similar to that of normalweight concrete. All the 28- and 56-day concrete specimens had a durability factor greater than 85 and 90, respectively, which met the requirement for freezing and thawing durability. PMID:20399557

  4. Vocal behavior of black-fronted titi monkeys (Callicebus nigrifrons): acoustic properties and behavioral contexts of loud calls.

    PubMed

    Caselli, Christini B; Mennill, Daniel J; Bicca-Marques, Júlio César; Setz, Eleonore Z F

    2014-08-01

    Loud calls can be heard over long distances due to their high amplitude and low frequency. These calls are commonly used for both within- and between-group communication in many bird and primate species. In the Neotropics, mated pairs of socially monogamous titi monkeys (genus Callicebus) emit conspicuous, coordinated loud calls. These vocalizations appear to play a role in territorial defense, a hypothesis derived from studies of only three of the 31 recognized Callicebus species. Here, we describe the acoustic properties and organization of the loud calls of black-fronted titi monkeys (Callicebus nigrifrons). We compare the behavioral and ecological contexts associated with these vocalizations to investigate their role in within- and between-group communication, resource defense, and mate defense. Black-fronted titi monkeys create loud calls by combining a finite number of syllables to form more complex phrases, which are assembled to compose long sequences of loud calls. Bioacoustic features distinguish the loud calls used in different contexts, involving communication within- and between-groups. We found support for the hypothesis that vocalizations used for between-group communication are cooperative displays used by the mated pair and other group members to regulate access to important food resources, such as fruits. On the other hand, we only found weak support for the mate defense hypothesis.

  5. An unusual behavior on the electrical properties of various salts of chitosan

    NASA Astrophysics Data System (ADS)

    Mohan, C. Raja; Manikandan, R.; Jayakumar, K.

    2014-04-01

    The effect of ion sizes of various salts of Chitosan on the electrical properties of solid and liquid polymer electrolyte has been investigated by dissolving Chitosan in various acids like acetic, adipic, formic and succinic acids and for various concentration of acids. An unusual behavior on the electrical properties of the salts of has been observed for solid as compared with the liquid polymer electrolyte. In the liquid polymer electrolyte there is an increase in conductivity with decrease in ion size, which may be due Brownian motion of the ion. Where as in solid polymer electrolyte there is an increase in impedance with decrease in ion size, which may be due to the increase in amorphousity when the size of the salts of Chitosan ion increases.

  6. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    PubMed

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. PMID:27577902

  7. Synthesis, Sintering Behavior, Structure, and Electrical Properties of 5YSZ Electrolyte

    NASA Astrophysics Data System (ADS)

    Xia, Jinfeng; Nian, Hongqiang; Liu, Wei; Xu, Haifang; Jiang, Danyu

    2015-09-01

    In some applications, such as automotive oxygen sensors, 5 mol% Y2O3-stabilized zirconia (5YSZ) is generally used because its ionic conductivity and mechanical properties are excellent. In this study, fine 5YSZ powders, which contain only small aggregates with particle sizes in the 40-60 nm range, were prepared by a hydrolysis-hydrothermal method. Powder calcination behavior, ceramic sintering behavior, microstructure, and conductivity were studied. This research proved that the calcination temperature has a great influence on the size and phase composition of the powder. The sintering temperature of the 5YSZ ceramic significantly affected its final grain size and density. The results show that a powder pre-treatment temperature of 1100 °C and a sintering temperature of 1350 °C for 2 h can produce excellent 5YSZ ceramics. The grain size and microstructure of 5YSZ ceramics influence the bulk resistance, grain resistance, and grain boundary resistance; the value of grain resistance decreased and grain boundary resistance increased with increasing grain size and sintering temperature. Considering all aspects of the grain size, conductivity, density, and mechanical properties, the optimal sintering temperature was found to be 1350 °C. The highest value measured for conductivity was about 2.79 × 10-3 S/cm, measured at 700 °C.

  8. Properties of the Driving Behavior Survey among individuals with motor vehicle accident-related posttraumatic stress disorder.

    PubMed

    Clapp, Joshua D; Baker, Aaron S; Litwack, Scott D; Sloan, Denise M; Beck, J Gayle

    2014-01-01

    Data suggest anxious drivers may engage in problematic behaviors that place themselves and others at increased risk of negative traffic events. Three domains of problematic behavior--exaggerated safety/caution, performance deficits, and hostile/aggressive behaviors--previously were identified during development of the Driving Behavior Survey (DBS), a novel measure of anxiety-related behavior. Extending this research, the current study examined the psychometric properties of DBS scores among individuals with posttraumatic stress disorder (PTSD) subsequent to motor vehicle trauma (N=40). Internal consistencies and 12-week test-retest reliabilities for DBS scales ranged from good to excellent. Comparison of scores to normative student data indicated dose-response relationships for safety/caution and performance deficit subscales, with increased frequency of anxious behavior occurring within the PTSD sample. Associations with standard clinical measures provide additional evidence for anxiety-related driving behavior as a unique marker of functional impairment, distinct from both avoidance and disorder-specific symptoms.

  9. Electrical properties and degradation behavior of hydrogenated amorphous Si alloys for solar cells

    NASA Astrophysics Data System (ADS)

    Krühler, W.; Kusian, W.; Karg, F.; Pfleiderer, H.

    1986-12-01

    The electrical properties and the degradation behavior of hydrogenated amorphous silicon alloys (a-Si1- x A x : H, with A=C, Ge, B, P) in designs of pin, pip, nin, and MOS structures are investigated by measuring the dark and light I(V) characteristics and the spectral response as well as the space-charge-limited current (SCLC), the time of flight (TOF) of carriers and the field effect (FE). These investigations give an overview of our recent work combined with new results emphasizing the physics of the a-Si:H pin solar cells. We discuss the stabilizing influence on the degradation behavior achieved by profiling the i layers of the pin solar cells with P and B. Two kinds of pin solar cells, namely glass/SnO2/p(C)in/metal and glass/metal/pin/ITO, are investigated and an explanation of their different spectral response behavior is given. SCLC measurements lead to the conclusion that trapping is also involved in the degradation mechanism, as is recombination. TOF experiments on a-Si1- x Ge x : H pin diodes indicate that the incorporation of Ge widens the tail-state distribution below the conduction band. FE measurements showed densities of gap states of about 5×l016cm-3eV-1.

  10. Understanding about How Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties.

    PubMed

    Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying

    2016-08-01

    In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.

  11. Properties and corrosion resistance behavior of a new nitride-strengthened nickel-chromium superalloy

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1998-12-31

    The nitrogen content of Ni-base superalloys for high temperature service is generally kept below about 0.05 wt.% to avoid detrimental precipitation of nitrides. These nitrides are said to have a harmful influence on mechanical properties of these alloys. Some recent studies and research conducted with nitrogen strengthening of Ni-Cr-alloys have resulted in an alloy with excellent mechanical properties along with superior high temperature corrosion behavior. The applied PESR (Pressurized Electro-Slag Remelting) technology provided up to 1.0 wt.% nitrogen in a NiCr7030-alloy, having a typical chemistry of 2.5 wt.% silicon, 30 wt.% chromium, 0.2 wt.% yttrium, 0.8 wt.% nitrogen, balance nickel. The homogeneously distributed nitrides prevent the alloy from excessive grain growth thus providing stable mechanical properties. i.e. impact toughness even after long term exposure. The new alloy exceeds easily R{sub m/104} = 10 MPa (1.5 ksi) at 1000 C (1832 F) and has a metal loss less than 0.10 g/m{sup 2}h in cyclic oxidation tests performed at 1100 C (2012 F) over about 1000 hours duration. The evaluated properties so far make this alloy a very suitable and attractive candidate for aerospace applications such as flying gas turbine components. More data on various other high temperature degradation phenomena and fabricability are under development and will be presented in the future. This paper introduces this new alloy with some of its physical, mechanical and oxidation resistance properties.

  12. PDMS-based polyurethanes with MPEG grafts: mechanical properties, bacterial repellency, and release behavior of rifampicin.

    PubMed

    Park, J H; Lee, K B; Kwon, I C; Bae, Y H

    2001-01-01

    PDMS-based polyurethanes (PUs) grafted with monomethoxy poly(ethylene glycol) (MPEG) were synthesized to develop a coating material for urinary catheters with a silicone surface for minimizing urinary tract infections. MPEG was grafted on PDMS-based PUs by two methods depending on the PU synthetic routes: esterification and allophanate reactions. It was confirmed from mechanical characterization that an increase of the hard segment amount enhanced the ultimate strength and Young's modulus, while reducing elongation at the end-points. The incorporation of MPEG in PDMS-based PUs induced a decrease in tensile strength and Young's modulus, and increased elongation at the break point due to its high flexibility. When hydrated in distilled water, mechanical properties of all PUs synthesized in this study deteriorated due to water absorption. It was evident from the bacterial adhesion test that PDMS-based PUs showed moderate resistance to adhesion of E. coli on their surfaces compared to Pellethane, while the incorporation of MPEG significantly enhanced repellency to bacteria, including E. coli and S. epidermidis. We also studied the release behavior of an antibiotic drug, rifampicin, from the polymeric devices fabricated by solvent evaporation. Although rifampicin is hydrophilic and soluble in pH 7.4 phosphate buffer, it showed a sustained release over 45 days from PDMS-based PUs with MPEG that were grafted on ethylene glycol residues by allophanate reaction. This release characteristic was predominantly influenced by a hydrogen bond interaction between the polymers and rifampicin, which was confirmed through an ATR-IR study. This may imply that the specific interaction is responsible for the delayed release. Considering the mechanical properties, morphologies of drug-incorporated polymeric matrices, and drug release behaviors, PDMS-based PU with MPEG that were grafted on ethylene glycol (a chain extender) residues by allophanate reaction showed better material

  13. Development of Ti-C-N coatings with improved tribological behavior and antibacterial properties.

    PubMed

    Sáenz de Viteri, Virginia; Barandika, Gotzone; Bayón, Raquel; Fernández, Xana; Ciarsolo, Iñigo; Igartua, Amaya; Pérez Tanoira, Ramón; Moreno, Jaime Esteban; Peremarch, Conchita Pérez-Jorge

    2015-03-01

    In artificial metallic joint implants, the failure is provoked by two effects in most of the cases: mass loss and wear debris removed due to tribological-corrosive effects on the implant alloy, and infections due to the presence of bacteria. In this work, several Ti-C-N corrosion and wear protective coatings were developed by Physical Vapour Deposition technology, and deposited on Ti6Al4V alloy. In order to provide the implant antibacterial properties, an additional silver top coating has been deposited. Tribological behavior was characterized through tribocorrosion and fretting tests. On the other hand, wettability tests were performed to study the grade of hydrophilicity/hydrophobia. Additionally, antibacterial properties were evaluated by means of bacterial adhesion tests. As a result of these characterization studies, the coating with the best performance was selected. The as-coated material includes excellent protection against tribocorrosion and fretting effects (in relation to the uncoated one) and the silver layer has been confirmed to exhibit antibacterial properties.

  14. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

    PubMed Central

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2016-01-01

    Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young’s modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet. PMID:27527371

  15. Sintering behavior and mechanical properties of zirconia compacts fabricated by uniaxial press forming

    PubMed Central

    Oh, Gye-Jeong; Yun, Kwi-Dug; Lee, Kwang-Min; Lim, Hyun-Pil

    2010-01-01

    PURPOSE The purpose of this study was to compare the linear sintering behavior of presintered zirconia blocks of various densities. The mechanical properties of the resulting sintered zirconia blocks were then analyzed. MATERIALS AND METHODS Three experimental groups of dental zirconia blocks, with a different presintering density each, were designed in the present study. Kavo Everest® ZS blanks (Kavo, Biberach, Germany) were used as a control group. The experimental group blocks were fabricated from commercial yttria-stabilized tetragonal zirconia powder (KZ-3YF (SD) Type A, KCM. Corporation, Nagoya, Japan). The biaxial flexural strengths, microhardnesses, and microstructures of the sintered blocks were then investigated. The linear sintering shrinkages of blocks were calculated and compared. RESULTS Despite their different presintered densities, the sintered blocks of the control and experimental groups showed similar mechanical properties. However, the sintered block had different linear sintering shrinkage rate depending on the density of the presintered block. As the density of the presintered block increased, the linear sintering shrinkage decreased. In the experimental blocks, the three sectioned pieces of each block showed the different linear shrinkage depending on the area. The tops of the experimental blocks showed the lowest linear sintering shrinkage, whereas the bottoms of the experimental blocks showed the highest linear sintering shrinkage. CONCLUSION Within the limitations of this study, the density difference of the presintered zirconia block did not affect the mechanical properties of the sintered zirconia block, but affected the linear sintering shrinkage of the zirconia block. PMID:21165274

  16. Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2016-08-01

    Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young’s modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet.

  17. Characterization of filtration and regeneration behavior of rigid ceramic filters and particle properties at high temperatures

    SciTech Connect

    Pilz, T.

    1995-12-31

    For power generation with combined cycles or production of so called advanced materials by vapor phase synthesis particle separation at high temperatures is of crucial importance. There, systems working with rigid ceramic barrier filters are either of thermodynamical benefit to the process or essential for producing materials with certain properties. A hot gas filter test rig has been installed to investigate the influence of different parameters e.g. temperature, dust properties, filter media and filtration and regeneration conditions into particle separation at high temperatures. These tests were conducted both with commonly used filter candles and with filter discs made out of the same material. The filter disc is mounted at one side of the test rig. That is why both filters face the same raw gas conditions. The filter disc is flown through by a cross flow arrangement. This bases upon the conviction that for comparison of filtration characteristics of candles with filter discs or other model filters the structure of the dust cakes have to be equal. This way of conducting investigations into the influence of the above mentioned parameters on dust separation at high temperatures follows the new standard VDI 3926. There, test procedures for the characterization of filter media at ambient conditions are prescribed. The paper mainly focuses then on the influence of particle properties (e.g. stickiness etc.) upon the filtration and regeneration behavior of fly ashes with rigid ceramic filters.

  18. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  19. Examination of the Addictive and Behavioral Properties of Fatty Acid-Binding Protein Inhibitor SBFI26

    PubMed Central

    Thanos, Panayotis K.; Clavin, Brendan H.; Hamilton, John; O’Rourke, Joseph R.; Maher, Thomas; Koumas, Christopher; Miao, Erick; Lankop, Jessenia; Elhage, Aya; Haj-Dahmane, Samir; Deutsch, Dale; Kaczocha, Martin

    2016-01-01

    The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, has shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins (FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working/recognition memory, and propensity for sociability and preference for social novelty (SN) given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent a battery of behavioral tests [open field, novel object recognition (NOR), social interaction (SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did not produce CPP or conditioned place aversion regardless of dose and did not induce any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested. PMID:27092087

  20. Behaviorism

    ERIC Educational Resources Information Center

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  1. Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: Negative differential resistance behavior

    NASA Astrophysics Data System (ADS)

    Maity, Ajanta; Singh, Akansha; Sen, Prasenjit; Kibey, Aniruddha; Kshirsagar, Anjali; Kanhere, Dilip G.

    2016-08-01

    Structural, electronic, mechanical, and transport properties of two different types of phosphorene nanoribbons are calculated within the density functional theory and nonequilibrium Green's function formalisms. Armchair nanoribbons turn out to be semiconductors at all widths considered. Zigzag nanoribbons are metallic in their layer-terminated structure, but undergo Peierls-like transition at the edges. Armchair nanoribbons have smaller Young's modulus compared to a monolayer, while zigzag nanoribbons have larger Young's modulus. Edge reconstruction further increases the Young's modulus of zigzag nanoribbons. A two-terminal device made of zigzag nanoribbons show negative differential resistance behavior that is robust with respect to edge reconstruction. We have also calculated the I -V characteristics for two nonzero gate voltages. The results show that the zigzag nanoribbons display strong p -type character.

  2. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  3. Properties of amphoteric polyurethane waterborne dispersions. II. Macromolecular self-assembly behavior.

    PubMed

    Dong, Anjie; Hou, Guoling; Sun, Duoxian

    2003-10-15

    Amphoteric polyurethane (APU) samples used in this paper were composed of hydrophobic soft segments and pendent -COOH and -CH(2)N(CH(3))(2) groups on the hard segments, which present the properties of both amphoteric polyelectrolytes and amphiphilic block copolymers. APU macromolecules can self-assemble into micelles in acidic and basic aqueous media by hydrophobic/hydrophilic interaction. The self-assembly behavior of APU in acidic and basic media was studied by transmission electron microscopy and light scattering methods. The spherical and hollow micelles of APU were observed respectively in acidic and basic aqueous media. The results indicate that the size and size distribution of APU self-assembly micelles largely depend on the ratio of -COOH to -CH(2)N(CH(3))(2) groups, density of ionizable groups, concentration of APU, and types of acid and base in the media.

  4. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Li, L. F.; Li, J. W.; Huang, C. J.; Tan, R.; Tu, Y. P.

    2014-01-01

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  5. Magnetic property and possible half-metal behavior in Co-doped graphene

    SciTech Connect

    Li, Zhongyao Xie, Wenze; Liu, Xingen; Wu, Yong

    2015-02-28

    The magnetic property and band structures of Co-monolayer doped graphene were examined on the basis of density-functional theory. The magnetic moment of the system is closely related to the interfacial spacing. Magnetic-nonmagnetic transition would be produced by decreasing the layer distance. Although the magnetic moment can also be reduced by increasing the lattice constant, the ground states are magnetic states under tension. Besides, the increase of lattice constant greatly enlarges the direct and indirect gaps of spin-down bands near the Fermi level. With a little increase of the Fermi level or the electron density, half-metal behavior would be expectable in the Co-doped graphene under tension.

  6. The deposit stress behavior and magnetic properties of electrodeposited Ni-Co-Fe ternary alloy films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Kwak, Jun-Ho; Na, Seong-Hun; Lim, Seung-Kyu; Suh, Su-Jeong

    2012-08-01

    Ni-Co-Fe ternary alloy films were electrodeposited from a sulfate bath. The effects of the saccharin concentration on the deposit stress behavior of these films were investigated. When the saccharin concentration was 0.004 M, the deposit stress was the lowest (61 MPa, tensile stress mode). Then, the relation between the deposit stress and the magnetic properties was investigated. As the deposit stress of the Ni-Co-Fe thin films decreased from 307 to 61 MPa, the coercivity and the squareness decreased from 6.17 to 1.35 Oe and from 0.65 to 0.18, respectively. The dependence of the deposit stress on the temperature in the plating bath was investigated. As the temperature in the plating bath was increased from 25 to 50 °C the deposit stress of the Ni-Co-Fe alloy films decreased from 61 to 32 MPa.

  7. Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Manan, A.; Cooper, J. E.

    2012-10-01

    The effect of uncertain material properties and severity of damage on the aeroelastic behavior of a finite element composite wing model are predicted by applying the Polynomial Chaos Expansion method (PCE). Different damage modes, including the transverse matrix cracking and broken fibers, are induced into pre-defined locations in the laminates and the aeroelastic stability and dynamic response of the wing due to "1-cosine" vertical gusts are evaluated. For this purpose, PCE models that predict the variation due to uncertainty of the flutter speed and an "Interesting Quantity" (root shear force) of the wing box are developed based upon a small sample of observations, exploiting the efficient Latin Hypercube sampling technique. The uncertainty propagation on the output responses, in the form of probability density functions, is evaluated at low computational cost, implementing the PCE models and verified successfully against the actual results.

  8. Determination and correlation of phase behavior and physical properties for benign synthetic process of diphenylcarbonate

    NASA Astrophysics Data System (ADS)

    Park, So-Jin; Jeong, Inyong

    2013-10-01

    Polycarbonate (PC) over other types of plastic has unbeatable strength combined with light weight, temperature resistance, impact resistance, etc. The polycarbonate material is usually produced by the reaction of bisphenol A and toxic phosgene. Therefore, new non-phosgene polycarbonate production process, which started with diphenyl carbonate (DPC) without phosgene was developed. However, process design data for optimum design and operation of this benign process are still insufficient. In this work, to provide a green process design data for optimum separation of DPC, MPC, DMC, methanol and anisole that occurs in the synthetic process of DPC, phase behavior: VLE, LLE, SLE and physical properties for binary and ternary systems were determined and correlated with activity coefficient models and Redlich-Kister polynomials.

  9. Effect of filler surface properties on stress relaxation behavior of carbon nanofiber/polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Sedat Gunes, I.; Jimenez, Guillermo; Jana, Sadhan

    2009-03-01

    The effect of carbon nanofiber (CNF) surface properties on tensile stress relaxation behavior of CNF/polyurethane (PU) nanocomposites was analyzed. PU was synthesized from methylene diisocyanate, polypropylene glycol (PPG diol), and butanediol. CNF, oxidized CNF (ox-CNF), and PPG diol grafted CNF (ol-CNF) were selected as fillers. ol-CNF was obtained by grafting PPG diol onto ox-CNF by reacting it with the carboxyl groups present on ox-CNF surface. The atomic ratios of oxygen to carbon present on the filler surfaces were 0.13 and 0.18 on ox-CNF and on ol-CNF as compared to 0.015 on CNF, mostly due to the presence oxygen containing polar groups on the surfaces of the former. The composites were prepared by in-situ polymerization and melt mixing in a chaotic mixer. The stress relaxation behavior of composites was determined at room temperature after inducing a tensile strain of 100%. The presence of fillers augmented the rate of stress relaxation in composites which was highest in the presence of CNF. The results suggested that relatively weak polymer-filler interactions in composites of CNF promoted higher stress relaxation.

  10. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    PubMed

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough.

  11. Compressive Behavior and Damping Property of Mg Alloy/SiCp Composite Foams

    NASA Astrophysics Data System (ADS)

    Huang, Wenzhan; Luo, Hongjie; Lin, Hao; Mu, Yongliang; Ye, Bing

    2016-02-01

    The Mg alloy composite foams reinforced by SiC particles were fabricated by the melt foaming route. The composite foams exhibit uniform cell structure with a size of 0.6-0.8 mm and SiCp distribution. The compressive behavior and damping property of the composite foams were emphasized. It is shown that the yield stress and the plateau stress depend on both porosity and SiCp content of the composite foam, which decrease with the increasing porosity, while sharper fluctuation of flow stress in the plateau region appears under the higher SiCp content. Meanwhile, the SiCp addition elevates the ideal energy absorption efficiency of the Mg alloy foams, but decreases the total amount of energy absorption. Furthermore, the loss factor β is essentially independent of temperature below approximately 250 °C, then increases rapidly with the increasing temperature. It is concluded that the composite foams show typical brittle characteristic and better damping property compared to Mg alloy foams for the SiCp addition. The improvement is attributed to the increasing interfacial microslip and microplasticity deformation derived from the micro-crack between the SiCp-Mg alloy interfaces.

  12. Effect of Orimulsion{reg_sign} physical properties and chemical composition on its behavior in water

    SciTech Connect

    Ojeda, M. de; Chirinos, M.L.

    1995-12-31

    Orimulsion{reg_sign} is the trade name given to a bitumen in water, 70:30, emulsion stabilized by a nonionic surfactant and used in industrial burners and power plants as a fuel. This paper summarizes the physical properties and chemical composition of Orimulsion{reg_sign} and their effect on the self dispersing properties of the product and its behavior in water. Also, the solubility and evaporation of the light hydrocarbon fraction from the bitumen, and the toxicity and biodegradation of the fuel are discussed. Salinity of the water affects the HLB of the surfactant and the stability of the bitumen droplets making them susceptible to coalesce. BTEX content of the bitumen was determined to be relatively low, an advantage in terms of its contribution to toxicity, when compared to other similar fuels (i.e., Fuel Oil No. 6). Because of the nature of the hydrocarbons components in the bitumen, biodegradation is estimated to be around 10% of the total bitumen fraction of the formulation. Detailed chemical characterization of each one of the constituents of the Orimulsion{reg_sign} formulation will be presented.

  13. Mechanical Properties, Corrosion Behavior, and Microstructures of a MIG-Welded 7020 Al Alloy

    NASA Astrophysics Data System (ADS)

    Peng, Xiaoyan; Cao, Xiaowu; Xu, Guofu; Deng, Ying; Tang, Lei; Yin, Zhimin

    2016-03-01

    7020 aluminum alloy plates were welded by metal inert gas welding method, with the ER5183 welding wire containing Zr and ER5356 welding wire without Zr, respectively. The mechanical properties, corrosion behavior, and microstructures of these two welded joints were investigated. The tensile strength and ductilities of the joints are inferior to those of base alloy, and the lowest hardness is obtained in the welded zone, while the heat-affected zones are more sensitive to corrosion than the base metal and welded zones. The base metal shows a deformed subgrains microstructure, and the heat-affected zones still remain in elongated shape, where the soften zones form as a result of η' (MgZn2) coarsening. Two welded zones are mainly characterized by as-cast structure; however, grains are refined and a zone of equiaxed grains forms along the bonding boundary due to the Zr addition into ER5183 Al alloy. Accordingly, the mechanical properties and corrosion resistance in this zone of the joint with ER5183 exhibit better than those of the joint with ER5356.

  14. Damage formation, fatigue behavior and strength properties of ZrO2-based ceramics

    NASA Astrophysics Data System (ADS)

    Kozulin, A. A.; Narikovich, A. S.; Kulkov, S. N.; Leitsin, V. N.; Kulkov, S. S.

    2016-08-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91-0.98, 0.8-0.83, and 0.73-0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 105 stress cycles is in the range 33-34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  15. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties.

    PubMed

    Chen, Hsiu-Hung; Purtteman, Jester J P; Heimfeld, Shelly; Folch, Albert; Gao, Dayong

    2007-12-01

    An understanding of cell osmotic behavior and membrane transport properties is indispensable for cryobiology research and development of cell-type-specific, optimal cryopreservation conditions. A microfluidic perfusion system is developed here to measure the kinetic changes of cell volume under various extracellular conditions, in order to determine cell osmotic behavior and membrane transport properties. The system is fabricated using soft lithography and is comprised of microfluidic channels and a perfusion chamber for trapping cells. During experiments, rat basophilic leukemia (RBL-1 line) cells were injected into the inlet of the device, allowed to flow downstream, and were trapped within a perfusion chamber. The fluid continues to flow to the outlet due to suction produced by a Hamilton Syringe. Two sets of experiments have been performed: the cells were perfused by (1) hypertonic solutions with different concentrations of non-permeating solutes and (2) solutions containing a permeating cryoprotective agent (CPA), dimethylsulfoxide (Me(2)SO), plus non-permeating solute (sodium chloride (NaCl)), respectively. From experiment (1), cell osmotically inactive volume (V(b)) and the permeability coefficient of water (L(p)) for RBL cells are determined to be 41% [n=18, correlation coefficient (r(2)) of 0.903] of original/isotonic volume, and 0.32+/-0.05 microm/min/atm (n=8, r(2)>0.963), respectively, for room temperature (22 degrees C). From experiment (2), the permeability coefficient of water (L(p)) and of Me(2)SO (P(s)) for RBL cells are 0.38+/-0.09 microm/min/atm and (0.49+/-0.13) x 10(-3)cm/min (n=5, r(2)>0.86), respectively. We conclude that this device enables us to: (1) readily monitor the changes of extracellular conditions by perfusing single or a group of cells with prepared media; (2) confine cells (or a cell) within a monolayer chamber, which prevents imaging ambiguity, such as cells overlapping or moving out of the focus plane; (3) study individual cell

  16. The Effect of Cerium Oxide Addition on the Properties and Behavior of Y-TZP

    PubMed Central

    Ragurajan, D.; Satgunam, M.; Golieskardi, M.

    2014-01-01

    The effects of CeO2 addition on the sintering behavior and mechanical properties of Y-TZP have been investigated over a wide sintering regime by pressureless sintering. It has been revealed that small additions of CeO2 (0.3–1.0 wt%) to Y-TZP were beneficial in enhancing the mechanical properties and hydrothermal ageing resistance of Y-TZP. Sintered samples were used to evaluate the bulk density, Vickers's hardness, Young's modulus, and fracture toughness of the material. CeO2 doped Y-TZPs were sintered at relatively low temperatures (1250°C and 1350°C) retaining high bulk density (>97% of theoretical density) and high Young's modulus (>200 GPa) without sacrificing tetragonal phase stability. The optimum level of dopant was found to be at 0.5 wt% for sintering between 1250°C and 1450°C using the standard 2 h holding time cycle, with sintered body exhibiting excellent combination of properties when compared to the undoped ceramics. In this experiment, the addition of 0.5 wt% recorded a bulk density reading of 5.9 g/cm3, Vickers hardness value of 13.2 GPa, Young's modulus value of 211 GPa, and fracture toughness of 6.4 MPam1/2, respectively, in a temperature range of 1400–1450°C. PMID:27437471

  17. Stochastic modeling of structural behavior: Stability, effective properties and dynamic response

    NASA Astrophysics Data System (ADS)

    Tootkaboni, Mazdak P.

    This manuscript contains three main parts which address three different problems in the field of stochastic computational mechanics. Stochastic Galerkin projection, except in the third part where only the primary and necessary ingredient of this approach i.e. the representation of uncertainties in input parameters using (space/time dependent) Hermite Chaos expansions is employed, plays the central role in the propagation of uncertainties in inputs to the response of systems under consideration, In the first part that deals with geometrically non-linear behavior of structural systems with random material property, an asymptotic spectral stochastic paradigm is presented for computing the statistics of equilibrium path in the post-bifurcation regime. The approach combines numerical implementation of Koiter's asymptotic theory with Stochastic Galerkin projection and collocation in stochastic space to quantify uncertainties in the parametric representation of load-displacement relationship in the form of uncertain post-buckling slope and curvature, and a family of stochastic displacements fields. The second part concerns obtaining a probabilistic description for the effective elastic properties of multi-phase periodic composites. A spectral stochastic computational scheme is proposed that links the global elastic properties of the composite to the geometry and randomness in its constituents. The scheme benefits from a combination of homogenization theory built into a Finite Element framework and the Stochastic Galerkin projection where a probabilistic characterization of the solutions to a set of local problems defined on the period cell is first sought. A full stochastic description of the global properties is then obtained by averaging the strains that are associated to these solutions over the unit cell. The last part of this manuscript addresses response of linear dynamic systems to random excitations. In this part a stochastic version of direct integration schemes

  18. Predicting the Operating Behavior of Ceramic Filters from Thermo-Mechanical Ash Properties

    SciTech Connect

    Hemmer, G.; Kasper, G.

    2002-09-19

    Stable operation, in other words the achievement of a succession of uniform filtration cycles of reasonable length is a key issue in high-temperature gas filtration with ceramic media. Its importance has rather grown in recent years, as these media gain in acceptance due to their excellent particle retention capabilities. Ash properties have been known for some time to affect the maximum operating temperature of filters. However, softening and consequently ''stickiness'' of the ash particles generally depend on composition in a complex way. Simple and accurate prediction of critical temperature ranges from ash analysis--and even more so from coal analysis--is still difficult without practical and costly trials. In general, our understanding of what exactly happens during break-down of filtration stability is still rather crude and general. Early work was based on the concept that ash particles begin to soften and sinter near the melting temperatures of low-melting, often alkaline components. This softening coincides with a fairly abrupt increase of stickiness, that can be detected with powder mechanical methods in a Jenicke shear cell as first shown by Pilz (1996) and recently confirmed by others (Kamiya et al. 2001 and 2002, Kanaoka et al. 2001). However, recording {sigma}-{tau}-diagrams is very time consuming and not the only off-line method of analyzing or predicting changes in thermo-mechanical ash behavior. Pilz found that the increase in ash stickiness near melting was accompanied by shrinkage attributed to sintering. Recent work at the University of Karlsruhe has expanded the use of such thermo-analytical methods for predicting filtration behavior (Hemmer 2001). Demonstrating their effectiveness is one objective of this paper. Finally, our intent is to show that ash softening at near melting temperatures is apparently not the only phenomenon causing problems with filtration, although its impact is certainly the ''final catastrophe''. There are other

  19. Flex - rigid behavior of quartzite and its mineralogical, microstructural and textural properties from EBSD

    NASA Astrophysics Data System (ADS)

    Dorabiato Barbosa, Pamela; Ávila, Carlos Fernando; Evangelista Lagoeiro, Leonardo; Pinheiro Sampaio, Ney; Martins Graça, Leonardo

    2016-04-01

    It was investigated the mechanical properties of the quartzite found in the 'Moeda' Formation from the mineral province of the 'Quadrilátero Ferrífero', Brazil. Rocks with variations from flexible (in some portions) to completely rigid are rare and found only in some specific locations in the whole world. It's flexibility has been usually related to the presence of minerals with tabular habit, that act as structural support to the rock and regulates the flexibility. Besides, the intrinsic behavior of this type of rock is marked by their microstructures and the typical preferred crystallographic orientations. In order to characterize the causes of this unique mechanical property, oriented sections of these rocks with different behaviors, flexible and stiff, were prepared and investigated with EBSD. The results showed differences in grain sizes (with grain area as proxy) and grain boundary lengths for quartz grains, the spatial distribution of muscovite, as well as crystallographic fabrics. The boundaries of the quartz grains observed in the stiff sample are linear, while in the flexible sample they're irregular. Quartz grains with sizes smaller than 30 μm2 are 30% larger in the flexible quartzite than those of the rigid counterparts.. This relation reverses for grains with an area greater than 30,000 μm2. Muscovite occurs as isolated grains in the rigid samples while in the flexible ones grains more continuously distributed and interconnected.. When the directions of the samples are plotted in the crystal reference system a contrasting crystallographic texture arises. The X-directions of the sample concentrate in the axes of the quartz. For the rigid samples it is te Y-directions that show preference to align parallel to the poles of the positive rhomb ({01-12} = this is the acute rhomb; rhomb is {01-11]). The rigid quartzite showed a strong <21 ̅1 ̅0> () crystallographic fabric parallel to the macroscopic lineation, whereas for the flexible ones the

  20. Structures and Surface Properties of "Cyclic" Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water.

    PubMed

    Hirose, Yuki; Taira, Toshiaki; Sakai, Kenichi; Sakai, Hideki; Endo, Akira; Imura, Tomohiro

    2016-08-23

    The cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants. In contrast to the normal micelles seen in the case of the l-POEC12's (3.4-9.7 nm), the cyclization of the POEC12's resulted in the formation of large spherical structures 72.8-256.8 nm in size. It also led to a dramatic decrease of 28 °C in the cloud point temperature. Furthermore, the cyclization of the POEC12's markedly suppressed the rate of protease hydrolysis caused by the surfactants. The initial rate of reduction of a detergent enzyme from Bacillus licheniformis was increased by more than 40% in the case of c-POE600C12 and c-POE1000C12, even though they exhibited surface activities almost equal to or higher than those of their linear counterparts. These results suggest that cyclization induces unusual aqueous behaviors in POEC12, making the surfactant milder with respect to detergent enzymes while ensuring it exhibits increased surface activity. PMID:27462805

  1. Features of microbiological behavior and biocide properties of electrosynthesized polymethylolacrylamide films

    NASA Astrophysics Data System (ADS)

    Kolzunova, Lidia G.

    2016-05-01

    The biocide properties of an electrosynthesized of acrylamide, N,N'-methylene-bis-acrylamide and formaldehyde copolymer films against the Staphylococcus aureus and bacterial association extracted from seawater (marine biological organisms) were investigated. Copolymer films were stable in organic solvents, acids and alkali and insoluble in water, though capable to swelling ability. Besides, the polymer is thermally stable up to 237°C. It was established that the anti-bacterial effect of the films started to be expressed after two days and was maintained from 2 up to 45 days. It was established that the degree of polymer films toxicity depended on the polymer synthesis conditions, pre-treatment method and duration of the biological object exposure to the effect. It was shown that antiseptic properties of the polymer material under study were imparted by formaldehyde both as sorbed by the polymer and as included into the copolymer composition. The toxicological effect of the polymethylolacrylamide films under study on microorganisms can be applied as in medicine (antiseptic materials and implants) as for equipment protection from bio-fouling and bio-corrosion. Microbiological stability and sterilizing effect of electrosynthesized polymethylolacrylamide ultrafiltration membranes enables one not only to prolong the operation time of film membranes, but also to provide partial sterilization of organic solutions to be filtered. It was established that polymer waste can be utilized by means of microbial destruction. It was found that the washed out polymer induced a specific bacteria behavior consisting of a complex of reactions directed to search, capture and consume nutrients.

  2. Effect of cargo properties on in situ forming implant behavior determined by noninvasive ultrasound imaging

    PubMed Central

    Solorio, Luis; Olear, Alexander M.; Zhou, Haoyan; Beiswenger, Ashlei C.; Exner, Agata A.

    2012-01-01

    Diagnostic ultrasound has been shown to be an effective method for the noninvasive characterization of in situ forming implant behavior both in vivo and in vitro through the evaluation of the echogenic signal that forms as a consequence of the polymer phase transition from liquid to solid. The kinetics of this phase transition have a direct effect on drug release and can be altered through factors that change the mass transfer events of the solvent and aqueous environment, including properties of the entrapped active agent. This study examined the effect of payload properties on implant phase inversion, swelling, drug release, and polymer degradation. Poly(DL-lactide-co-gylcolide) implants were loaded with either: sodium fluorescein, bovine serum albumin (BSA), doxorubicin (Dox), or 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI). Fluorescein and Dox were released at near equivalent rates throughout the diffusion phase of release but due to differing drug–matrix interactions, Dox-loaded implants released a lower mass of drug during the degradation phase of release. DiI was not readily released, and due to increased depot hydrophobicity, resulted in significantly lower swelling than the other formulations. The initial echogenicity was higher in Dox-loaded implants than those loaded with fluorescein, but after the initial precipitation, phase inversion and drug release occurred at near equivalent rates for both Dox and fluorescein-loaded implants. Nonlinear mathematical fitting was used to correlate drug release and phase inversion, providing a noninvasive method for evaluating implant release (R2>0.97 for Dox, BSA, and fluorescein; DiI had a correlation coefficient of 0.56). PMID:22712054

  3. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  4. Initial Development and Psychometric Properties of the Adolescent Perceptions of Parental Pro-Educational Attitudes and Behaviors Scale

    ERIC Educational Resources Information Center

    Herlickson, Allison B.; Wettersten, Kara B.; Herrick, Christen G.; Kim, Grace Y.; Hunter, Patricia J.; Guilmino, Adam; Faul, Kiri; Jagow-France, Desiree; Mach, Barbara; Napton, Sean; Beecher, Timothy; Holzer, Kendra; Rudolph, Susan E.

    2009-01-01

    The Initial development and psychometric properties of the Adolescent Perceptions of Parental Pro-Educational Attitudes and Behaviors Scale (APPEABS) are reviewed. Evidence of content convergent, and construct validity are reported. The APPEABS demonstrated usefulness as a scale of predicting the role of adolescents' perceptions of parents'…

  5. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents.

  6. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility. PMID:25837343

  7. Corrosion sensitization behavior and mechanical properties of liquid-nitrogen-deformed austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Maldonado, Julio Gerardo

    Plastic deformation of 304 stainless steel at liquid nitrogen temperature ({-}196sp°C) produces an almost complete transformation to strain-induced alphasp'/-martensite which provides the necessary conditions for a pseudo-recrystallization of the microstructure. This "so-called" pseudo-recrystallization results directly from the martensitic reversion (i.e. martensite to austenite reverse transformation) upon the application of heat treatment within the sensitization temperature range. The very fine duplex (alpha/gamma) microstructure which results (after heat treatment-0.1h-670sp°C) is also accompanied by a very extensive and homogeneous precipitation of chromium-rich carbides. The concomitant pseudo-recrystallization and precipitation processes not only have a profound positive effect on the sensitization behavior, but also affect the mechanical properties of the material. This suggests that 304 stainless steel could be thermo-mechanically treated, to in essence, heal itself and simultaneously produce an extremely fine (≈0.1mum) duplex grain structure with intermixed carbides to form a very high strength product. This might have important practical implications since 304 stainless steel is the material of choice in many engineering applications. Electrochemical testing, transmission electron microscopy, scanning electron microscopy, optical microscopy, neutron diffraction, X-ray diffraction, and mechanical testing were some of the techniques employed in this work.

  8. Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles

    SciTech Connect

    Mahmoudi, A.; Ghavidel, M.R. Zamanzad; Nedjad, S. Hossein; Heidarzadeh, A.; Ahmadabadi, M. Nili

    2011-10-15

    Cold rolling and annealing of homogenized Fe-Ni-Mn-Mo-Ti-Cr maraging steels resulted in the formation of submicrocrystalline Fe{sub 2}(Mo,Ti) Laves phase particles. Optical and scanning electron microscopy, X-ray diffraction, tensile and hardness tests were used to study the microstructure, aging behavior and mechanical properties of the annealed steels. The annealed microstructures showed age hardenability during subsequent isothermal aging at 753 K. Ultrahigh fracture stress but poor tensile ductility was obtained after substantial age hardening in the specimens with 2% and 4% chromium. Increasing chromium addition up to 6% toughened the aged microstructure at the expense of the fracture stress by increasing the volume fraction of retained austenite. The Laves phase particles acted as crack nucleation sites during tensile deformation. - Highlights: {yields} Laves phases dispersed in a BCC iron matrix by annealing of cold rolled samples. {yields} The samples showed age hardenability during subsequent isothermal aging at 753 K. {yields} Ultrahigh fracture stress but poor ductility was obtained after age hardening. {yields} Increasing chromium addition toughened the aged microstructure. {yields} Laves phase particles acting as crack nucleation sites during tensile deformation.

  9. Mechanical Properties of Electroactive Polymer Gels and Their Behavior in DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Yao, Li; Krause, Sonja

    2000-03-01

    We have reported the bending deformation of swollen crosslinked partially sulfonated triblock copolymer poly(styrene-b-ethylene-co-butylene-b-styrene) (S-SEBS) hydrogels in DC electric fields in previous APS meetings(Bull. Am. Phys. Soc., 43 (1), 598, 1998 and 44 (1), 757, 1999). However, very little force was generated from the bending of the S-SEBS gel due to the low modulus of this highly elastic material. For the present study, partially sulfonated crosslinked polystyrene gels (XL-S-PS) were prepared. The gel bending behavior of XL-S-PS gels was studied in four different sulfonated solutions with varied cations including Na^+, Cs^+, (CH_3)_4NH^+ and (Bu)_4NH^+. Comparison of gel bending of S-SEBS and XL-S-PS gels indicated qualitative similarities and quantitative differences. The bending motion of the XL-S-PS gels in electric fields was slower than that of the S-SEBS gels but more force was generated in the XL-S-PS gel system. Nanoparticles were used as fillers in some of the XL-S-PS gels to modify their mechanical properties which will be discussed in the presentation.

  10. Investigation of Properties and Wear Behavior of HVOF Sprayed TiC-Strengthened Fe Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, Kirsten; Schlaefer, Thomas; Richardt, Katharina; Warda, Thomas; Reisel, Guido

    2009-12-01

    High-velocity oxyfuel (HVOF) sprayed carbide based coatings (such as Cr3C2/NiCr) are industrially well established for wear protection applications. Due to their high carbide content of typically 75 wt.% and more, they provide very high hardness and excellent wear resistance. Unfortunately, costs for matrix materials such as nickel underlie strong fluctuations and are normally well above the prices for iron. Therefore an alternative concept to conventional carbides is based on TiC-strengthened low-cost Fe-base materials, which are already used for sintering processes. Depending on the carbon content, the Fe-base material can additionally offer a temperable matrix for enhanced wear behavior. The sprayability of TiC-strengthened Fe-powders with a gaseous and a liquid fuel driven HVOF system was investigated in this study. The resulting coatings were analyzed with respect to microstructure, hardness, and phase composition and compared with galvanic hard chrome, NiCrBSi, and Cr3C2/NiCr (80/20) coatings as well as with sintered Fe/TiC reference materials. Furthermore, the Fe/TiC coatings were heat treated to proof the retained temperability of the Fe matrix after thermal spray process. Tribometer tests (pin-on-disk tests) were conducted to determine wear properties.

  11. Flexure-torsion behavior of prismatic beams. I - Section properties via power series

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1993-01-01

    The behavior of a tip-loaded cantilever beam with an arbitrary cross section is studied using Saint-Venant's semi-inverse method along with a power series solution for the out-of-plane flexure and torsion warping functions. The power series coefficients are determined by solving a set of variationally derived linear algebraic equations. For complex cross sections, the calculated coefficients represented a 'best-fit approximation' to the exact warping function. The resulting warping functions are used to determine the cross-sectional properties (torsion constant, shear correction factors, shear deformation coefficients, and shear center location). A new linear relation is developed for locating the shear center, where the twist rate is zero about the line of shear centers. Moreover, the kinematic relations for a new fully compatible one-dimensional beam theory are developed. Numerical results are presented first to verify the approach and second to provide section data on NACA four-series airfoils not currently found in the literature.

  12. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8 × ( W L ¯ ) n = 3 , 4 , 5 / POPE . The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  13. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT. PMID:26156492

  14. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Farabi, N.; Chen, D. L.; Zhou, Y.

    2012-02-01

    The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

  15. Psychometric Properties of the Formal Characteristics of Behavior-Temperament Inventory in Chinese Samples.

    PubMed

    Liu, Wen; Chen, Liang; Yang, Ying; Zhang, Shuai

    2015-10-12

    This paper presents a Chinese adaption of the Formal Characteristics of the Behavior-Temperament Inventory (FCB-TI), a self-report instrument that evaluates six temperamental scales, based on Strelau's concept of temperament. A first sample of 626 undergraduates completed the Chinese version of the Regulative Theory of Temperament Questionnaire (RTTQ), which is an initial pool of 381 items. Internal consistency suggests adequate reliability (.66 to .82), and an exploratory factor analysis revealed a six-factor solution consistent with the original instrument. A follow-up confirmatory factor analysis revealed good support for the temperament structure with a second sample of students (N = 2.980). Internal consistency and factorial structure were re-examined (Cronbach's alpha ranged .64 to .85), and test-retest correlations over a two-week period ranged from .82 to .96 with a third sample of adults (N = 2.265). Convergent and discriminant validity was explored in relation to the Eysenck Personality Questionnaire-Revision Short Scale for Chinese (EPQ-RSC) model dimensions. Results indicate that the Chinese version of the FCB-TI has similar psychometric properties and generally satisfactory reliability and validity.

  16. Tailoring Phase Behavior and Mechanical Properties in Thermoplastic Elastomers through Block Sequence and Macromolecular Architecture

    NASA Astrophysics Data System (ADS)

    Burns, Adam; Register, Richard

    2015-03-01

    Block copolymers exhibit unique properties which depend not only on the identities of the constituent blocks but also the block sequence and macromolecular architecture. Thermoplastic elastomers (TPEs) are a prime example. In TPEs the arrangement of glassy end blocks flanking a long rubbery midblock gives rise to a physically cross-linked, elastic solid. Exchanging the glassy blocks for crystalline blocks can improve the processability and solvent resistance, but adversely affects the mechanical performance. The block sequence crystalline-glassy-rubbery-glassy-crystalline has been developed to combine the advantages of both crystalline and glassy blocks. Careful selection of block lengths produces materials in which the order-disorder transition temperature lies below the melting point of the crystalline block, ensuring that the melt will be homogeneous above the melting point. Access to single-phase melts provides a large reduction in viscosity and elasticity over conventional TPEs, which remain microphase-separated in the melt. Inserting the glassy blocks between the crystalline and rubbery blocks produces a vitreous layer surrounding the crystalline domains, which improves the room-temperature mechanical performance. Incorporating the crystalline-glassy-rubbery motif into the arms of star block copolymers adds another level of control. The star architecture introduces a permanent cross-link at the center of the star without appreciably affecting the phase behavior.

  17. Mechanical properties and corrosion behavior of Mg-Gd-Ca-Zr alloys for medical applications.

    PubMed

    Shi, Ling-Ling; Huang, Yuanding; Yang, Lei; Feyerabend, Frank; Mendis, Chamini; Willumeit, Regine; Ulrich Kainer, Karl; Hort, Norbert

    2015-07-01

    Magnesium alloys are promising candidates for biomedical applications. In this work, influences of composition and heat treatment on the microstructure, the mechanical properties and the corrosion behavior of Mg-Gd-Ca-Zr alloys as potential biomedical implant candidates were investigated. Mg5Gd phase was observed at the grain boundaries of Mg-10Gd-xCa-0.5Zr (x=0, 0.3, 1.2wt%) alloys. Increase in the Ca content led to the formation of additional Mg2Ca phase. The Ca additions increased both the compressive and the tensile yield strengths, but reduced the ductility and the corrosion resistance in cell culture medium. After solution heat treatment, the Mg5Gd particles dissolved in the Mg matrix. The compressive strength decreased, while the corrosion resistance improved in the solution treated alloys. After ageing at 200°C, metastable β' phase formed on prismatic planes and a new type of basal precipitates have been observed, which improved the compressive and tensile ultimate strength, but decreased the ductility.

  18. Hygrothermal effects on the material properties and behavior of thermoplastic polyimide composites

    SciTech Connect

    VanLandingham, M.R.; Eduljee, R.F.; Gillespie, J.W. Jr.

    1995-12-31

    Thermoplastic polyimides are a relatively new class of polymers that exhibit high-temperature stability and are useful in composite applications. One such material is DuPont`s Avimid{reg_sign} K3B reinforced with Hercules` Magnamite{reg_sign} IM7 graphite fibers. This composite system exhibits excellent strength and toughness, as well as excellent retention of strength and toughness, after prolonged exposure to elevated temperatures. IM7/K3B also resists microcracking at extremely low (liquid nitrogen) temperatures. Further characterization of IM7/K3B thermoplastic composites is focused on evaluating hygrothermal effects on the material properties and behavior. Specifically, the dependencies of T{sub g}, G{sub Ic}, and microcrack resistance on the conditioning time, temperature, and humidity level are being explored. Observations and conclusions from these studies include (1) a reduction in glass transition temperature, T{sub g}, with moisture absorption that is recovered when the sample is redried, (2) development of microcracks in cross-ply and quasi-isotropic laminates conditioned for extended periods in steady-state hygrothermal environments, (3) indications of localized degradation of the material from studies using scanning electron microscopy and ultrasonic scanning on moisture-saturated laminates, and (4) non-Fickian anomalies in the moisture diffusion data that are related to the damage development.

  19. The effects of moisture on the material properties and behavior of thermoplastic polyimide composites

    SciTech Connect

    VanLandingham, M.R.; Eduljee, R.F.; Gillespie, J.W. Jr.

    1997-12-31

    Thermoplastic polyimides are a relatively new class of polymers that exhibit high-temperature stability and are useful in composite applications. One such material is Avimid{reg_sign} K3B reinforced with Magnamite{reg_sign} IM7 graphite fibers. This composite system exhibits excellent strength and toughness, retains its strength and toughness after prolonged exposure to elevated temperatures, and resists microcracking at extremely low (liquid nitrogen) temperatures. Further characterization of IM7/K3B thermoplastic composites is focused on evaluating hygrothermal effects on the material properties and behavior. The environmental conditioning test matrix includes three temperatures (20, 40, and 80 C) and four relative humidity levels (75, 85, 97, and 100%). Observations and conclusions from these studies include the following: (1) the moisture diffusivity of IM7/K3B has a classic Arrhenius dependence on temperature; (2) the moisture saturation level depends on the relative humidity level to the power of 1.34 with a maximum value of 0.55% by weight; (3) the glass transition temperature T{sub g} is lowered with moisture absorption but is recovered when the sample is redried; (4) the intralaminar fracture toughness G{sub lc} remains constant after extensive hygrothermal conditioning; (5) the diffusion kinetics are Fickian in general, except for a few non-Fickian anomalies that are related to development of transverse microcracks.

  20. Properties of the Driving Behavior Survey Among Individuals with Motor Vehicle Accident-Related Posttraumatic Stress Disorder

    PubMed Central

    Clapp, Joshua D.; Baker, Aaron S.; Litwack, Scott D.; Sloan, Denise M.; Beck, J. Gayle

    2014-01-01

    Data suggest anxious drivers may engage in problematic behaviors that place themselves and others at increased risk of negative traffic events. Three domains of problematic behavior – exaggerated safety/caution, performance deficits, and hostile/aggressive behaviors – previously were identified during development of the Driving Behavior Survey (DBS), a novel measure of anxiety-related behavior. Extending this research, the current study examined the psychometric properties of DBS scores among individuals with posttraumatic stress disorder (PTSD) subsequent to motor vehicle trauma (N = 40). Internal consistencies and 12-week test-retest reliabilities for DBS scales ranged from good to excellent. Comparison of scores to normative student data indicated dose-response relationships for safety/caution and performance deficit subscales, with increased frequency of anxious behavior occurring within the PTSD sample. Associations with standard clinical measures provide additional evidence for anxiety-related driving behavior as a unique marker of functional impairment, distinct from both avoidance and disorder-specific symptoms. PMID:24325891

  1. Data concerning the psychometric properties of the Behavioral Inhibition/Behavioral Activation Scales for the Portuguese population.

    PubMed

    Moreira, Diana; Almeida, Fernando; Pinto, Marta; Segarra, Pilar; Barbosa, Fernando

    2015-09-01

    The behavioral inhibition/behavioral activation (BIS/BAS) scales (Carver & White, 1994), which allow rating the Gray's motivational systems, were translated and adapted into Portuguese. In this study, the authors present the procedure and the psychometric analyses of the Portuguese version of the scales, which included basic item and scales psychometric characteristics, as well as confirmatory and exploratory factor analyses. After the psychometric analyses provided evidence for the quality of the Portuguese version of the scales, the normative data was provided by age and school grade. The confirmatory factor analysis of the BIS/BAS scales that the authors performed did not demonstrate satisfactory fit for the 2- or 4-factor solution. The authors also tested the more recent 5-factor model, but the fit indices remained inadequate. As fit indices were not satisfactory they proceeded with an exploratory factor analysis to examine the structure of the Portuguese scales. These psychometric analyses provided evidence of a successful translation of the original scales. Therefore these scales can now be used in future research with Portuguese or Brazilian population.

  2. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea.

    PubMed

    Bilston, Lynne E; Gandevia, Simon C

    2014-02-01

    The upper airway is a complex, multifunctional, dynamic neuromechanical system. Its patency during breathing requires moment-to-moment coordination of neural and mechanical behavior and varies with posture. Failure to continuously recruit and coordinate dilator muscles to counterbalance the forces that act to close the airway results in hypopneas or apneas. Repeated failures lead to obstructive sleep apnea (OSA). Obesity and anatomical variations, such as retrognathia, increase the likelihood of upper airway collapse by altering the passive mechanical behavior of the upper airway. This behavior depends on the mechanical properties of each upper airway tissue in isolation, their geometrical arrangements, and their physiological interactions. Recent measurements of respiratory-related deformation of the airway wall have shown that there are different patterns of airway soft tissue movement during the respiratory cycle. In OSA patients, airway dilation appears less coordinated compared with that in healthy subjects (matched for body mass index). Intrinsic mechanical properties of airway tissues are altered in OSA patients, but the factors underlying these changes have yet to be elucidated. How neural drive to the airway dilators relates to the biomechanical behavior of the upper airway (movement and stiffness) is still poorly understood. Recent studies have highlighted that the biomechanical behavior of the upper airway cannot be simply predicted from electromyographic activity (electromyogram) of its muscles. PMID:23823151

  3. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    SciTech Connect

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  4. Shape-memory properties and degradation behavior of multifunctional electro-spun scaffolds.

    PubMed

    Kratz, Karl; Habermann, Ronny; Becker, Tino; Richau, Klaus; Lendlein, Andreas

    2011-02-01

    Multifunctional polymer-based biomaterials, which combine degradability and shape-memory capability, are promising candidate materials for the realization of active self-anchoring implants. In this work we explored the shape-memory capability as well as the hydrolytic and enzymatic in vitro degradation behavior of electro-spun scaffolds prepared from a multiblock copolymer, containing hydrolytically degradable poly(p-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) segments, which we have named PDC. Electro-spun PDC scaffolds with an average deposit thickness of 80 ± 20 µm and a porosity in the range from 70% to 80% were prepared, where the single fiber diameter was around 3 µm. Excellent shape-memory properties were achieved with high recovery rate (Rr) values in the range of Rr = 92% to 98% and a recovery stress of smax = 4.6 MPa to 5.0 MPa. The switching temperature (Tsw) and the characteristic temperature obtained under constant strain recovery conditions (Ts,max) were found in the range from 32 °C to 35 °C, which was close to the melting temperature (Tm,PCL) associated to the poly(e-caprolactone) domains. A linear mass loss was observed in both hydrolytic and enzymatic degradation experiments. The mass loss was substantially accelerated, in enzymatic degradation when Pseudomonas cepacia lipase was added, which was reported to accelerate the degradation of PCL. During hydrolytic degradation a continuous decrease in elongation at break (eB) from eB = 800% to 15% was observed in a time period of 92 days, while in enzymatic degradation experiments a complete mechanical failure was obtained after 4 days.

  5. Tensile Properties and Fracture Behavior of Different Carbon Nanotube-Grafted Polyacrylonitrile-Based Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-11-01

    The tensile properties and fracture behavior of different carbon nanotube (CNT)-grafted polyacrylonitrile-based (T1000GB) single carbon fibers were investigated. Grafting of CNTs was achieved via chemical vapor deposition (CVD). When Fe(C5H5)2 (also applied via CVD) was used as the catalyst, the tensile strength and Weibull modulus of the carbon fibers were improved, possibly due to the growth of dense CNT networks on the carbon fibers, which may have led to a reduction in the number of strength-limiting defects. Separately, at lower concentrations of an Fe(NO3)3·9H2O catalyst in ethanol, which was applied via dipping, the tensile strength of CNT-grafted fibers was nearly identical to that of the as-received fibers, although the Weibull modulus was higher. For higher concentrations of the Fe(NO3)3·9H2O catalyst, however, the tensile strength and the Weibull modulus were lower than those for the as-received material. Although the density of the CNT network increased with the concentration of the Fe(NO3)3·9H2O catalyst in the ethanol solution, heating of the ethanolic Fe(NO3)3·9H2O catalyst solution generated nitric acid (HNO3) due to decomposition, which damaged the fiber surfaces, resulting in an increase in the number of flaws and consequently a reduction in the tensile strength. Therefore, the tensile strength and Weibull modulus of CNT-grafted carbon fibers vary due to the combination of these effects and as a function of the catalyst concentration.

  6. Lysozyme entrapped within reverse hexagonal mesophases: physical properties and structural behavior.

    PubMed

    Mishraki, Tehila; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-01-01

    A model protein (lysozyme) was incorporated into monoolein-based reverse hexagonal (H(II)) mesophase and its structure effects were characterized by small angle X-ray scattering, ATR-FTIR spectroscopy, and rheological measurements. Modifications in molecular organization of the H(II) mesophases as well as the conformational stability of lysozyme (LSZ) as a function of pH and denaturating agent (urea) were clarified. Up to 3 wt.% LSZ can be solubilized into the H(II). The vibration FTIR analysis revealed that LSZ interacted with OH groups of glycerol monooleate (GMO) in the outer interface region, resulting in strong hydrogen bonding between the surfactant and its environment. Simultaneously, the decrease in the hydrogen-bonded carbonyl population of GMO was monitored, indicating dehydration of the monoolein carbonyls. These molecular interactions yielded a minor decrease in the lattice parameter of the systems, as detected by small angle X-ray scattering. Furthermore, LSZ was crystallized within the medium of the hexagonal structures in a single crystal form. The alpha-helix conformation of lysozyme was stabilized at high pH conditions, demonstrating greater helical structure content, compared to D(2)O solution. Moreover, the hexagonal phase decreased the unfavorable alpha-->beta transition in lysozyme, thereby increasing the stability of the protein under chemical denaturation. The rheological behavior of the hexagonal structures varied with the incorporation of LSZ, reflected in stronger elastic properties and pronounced solid-like response of the systems. The hydrogen bonding enhancement in the interface region of the structures was most likely responsible for these phenomena. The results of this study provided valuable information on the use of hexagonal systems as a carrier for incorporation and stabilization of proteins for various applications.

  7. Relationship between crystallization behavior, microstructure, and macroscopic properties in trans containing and trans free coating fats and coatings.

    PubMed

    Foubert, Imogen; Vereecken, Jeroen; Smith, Kevin W; Dewettinck, Koen

    2006-09-20

    The objective of this study is to gain further understanding into the relationship between crystallization behavior, microstructure, and macroscopic properties in coating fats. The isothermal crystallization behavior of two coating fats (one trans containing and one trans free) was examined, both as pure fats and in coatings, by DSC and microscopy. Furthermore, the hardness of the samples was examined after cooling in a water bath at two different temperatures and at three different storage times. Both fats seemed to show an alpha-mediated beta' crystallization at lower temperatures and a direct beta' crystallization at higher temperatures. The trans free coating fat clearly crystallized faster and in smaller crystals. The hardness was governed not only by the amount of solid fat present in the network but also by the structure of this network. The coating matrix components seem to have a pronounced influence on the microstructure and thus on the macroscopic properties. PMID:16968091

  8. Elastic properties and buckling behavior of single-walled carbon nanotubes functionalized with diethyltoluenediamines using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Rouhi, S.

    2015-01-01

    Carbon nanotube (CNT) modification processes are of great importance for good dispersion of CNTs and load transfer issues in nanocomposites. Among these processes, polymer covalent functionalization is found to be an effective way to alter the mechanical properties and behavior of pristine CNTs. Therefore, the mechanical properties and buckling behavior of diethyltoluenediamines (DETDA) functionalized CNTs are investigated employing molecular dynamics (MD) simulations. The results demonstrate that as the polymer weight percentage increases, Young's modulus and critical buckling load increase almost linearly for both regular and random polymer distributions, whereas critical strain decreases with different trends depending on the type of polymer distribution. Finally, the buckling mode shapes of the presented models are illustrated and it was revealed that there are some differences between the mode shapes of functionalized CNTs and those of pristine CNTs.

  9. The Investigation of Electronic Properties and Microscopic Second-Order Nonlinear Optical Behavior of 1-SALICYLIDENE-3-THIO-SEMICARBAZONE

    NASA Astrophysics Data System (ADS)

    Karakas, Asli; Unver, Huseyin; Elmali, Ayhan

    To investigate the microscopic second-order nonlinear optical (NLO) behavior of the 1-salicylidene-3-thio-semicarbazone Schiff base compound, the electric dipole moments (μ), linear static polarizabilities (α) and first static hyperpolarizabilites (β) have been calculated using finite field second-order Møller-Plesset perturbation (FF MP2) theory. The ab-initio results on (hyper)polarizabilities show that the investigated molecule might have microscopic NLO properties with non-zero values. To understand the NLO behavior in the context of molecular orbital structure, we have also examined the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and the HOMO-LUMO gap in the same theoretical framework as the (hyper)polarizability calculations. In addition to the NLO properties, the electronic transition spectra have been computed using a semi-empirical method (ZINDO). ZINDO calculation results show that the electronic transition wavelengths have been estimated to be shorter than 400 nm.

  10. Improved prediction of rat cortical bone mechanical behavior using composite beam theory to integrate tissue level properties.

    PubMed

    Kim, Grace; Boskey, Adele L; Baker, Shefford P; van der Meulen, Marjolein C H

    2012-11-15

    Tissue level characteristics of bone can be measured by nanoindentation and microspectroscopy, but are challenging to translate to whole bone mechanical behavior in this hierarchically structured material. The current study calculated weighted section moduli from microCT attenuation values based on tissue level relationships (Z(lin,a) and Z(lin,b)) between mineralization and material properties to predict whole bone mechanical behavior. Z(lin,a) was determined using the equation of the best fit linear regression between indentation modulus from nanoindentation and mineral:matrix ratio from Raman spectroscopy. To better represent the modulus of unmineralized tissue, a second linear regression with the intercept fixed at 0 was used to calculate Z(lin,b). The predictive capability of the weighted section moduli calculated using a tissue level relationship was compared with average tissue level properties and weighted section moduli calculated using an apparent level relationship (Z(exp)) between Young's Modulus and mineralization. A range of bone mineralization was created using vitamin D deficiency in growing rats. After 10 weeks, left femurs were scanned using microCT and tested to failure in 3 point bending. Contralateral limbs were used for co-localized tissue level mechanical properties by nanoindentation and compositional measurements by Raman microspectroscopy. Vitamin D deficiency reduced whole bone stiffness and strength by ∼35% and ∼30%, respectively, but only reduced tissue mineral density by ∼10% compared with Controls. Average tissue level properties did not correlate with whole bone mechanical behavior while Z(lin,a), Z(lin,b), and Z(exp) predicted 54%, 66%, and 80% of the failure moment respectively. This study demonstrated that in a model for varying mineralization, the composite beam model in this paper is an improved method to extrapolate tissue level data to macro-scale mechanical behavior. PMID:23021607

  11. Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties.

    PubMed

    Yousefi, Ali R; Eivazlou, Razieh; Razavi, Seyed M A

    2016-10-01

    The rheological properties of food hydrocolloids are remarkably influenced by the quality of solvent/cosolutes in a food system. In this work, the steady shear flow behavior of sage seed gum (SSG, 0.5% w/w) at the presence of different levels of salts (KCl & MgCl2, 0-100mM) and sugars (sucrose, lactose & glucose, 0-6% w/w) was studied. It was found that the rheological properties of SSG were affected by the type of sugars and salts and their concentrations as well. Synergistic interaction was observed between SSG and sugars which enhanced the viscosity of gum solutions, while salts addition diminished the viscosity. SSG solutions exhibited a shear thinning behavior at all conditions tested. Various time-independent rheological models were used to fit the shear stress-shear rate data, although the Herschel-Bulkley (R(2)=0.994-0.999) and Sisko (R(2)=0.995-0.999) models showed the best results to describe the flow behavior of SSG. In the presence of salts, the yield stress (τ0), consistency coefficient (k), and flow behavior index (n) values decreased. The k and τ0 values enhanced and the n value lowered in the presence of sugars. Divalent cations of Mg(2+) and sucrose roughly showed more effect on rheological parameters than others.

  12. Physical properties and Consolidation behavior of sediments from the N. Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Valdez, R. D., II; Lauer, R. M.; Ikari, M.; Kitajima, H.; Saffer, D. M.

    2013-12-01

    Sediment hydraulic properties, consolidation state, and ambient pore pressure development are key parameters that affect fluid migration, deformation, and the slip behavior and mechanical strength of subduction zone megathrusts. In order to better understand the dynamics and mechanisms of large subduction earthquakes, Integrated Oceanic Drilling Program (IODP) Expedition 343, drilled into the toe of the Japan Trench subduction zone in a region of large shallow slip in the M 9.0 Tohoku earthquake, as part of the Japan Trench Fast Drilling Project (J-FAST). Here, we report on two constant rate of strain (CRS) uniaxial consolidation experiments and two triaxial deformation experiments on bedded claystone and clayey mudstone core samples collected from the frontal prism and subducted sediment section cored at Site C0019, 2.5 km landward of the Japan Trench, from depths of 697.18 and 831.45 mbsf. The goals of our experiments were: (1) to define the hydraulic and acoustic properties of sediments that host the subduction megathrust fault that slipped in the M 9.0 Tohoku earthquake; and (2) to constrain in-situ consolidation state and its implications for in-situ stress. The permeability-porosity trends are similar for the two samples, and both exhibit permeability that decreases systematically with increasing effective stress and decreasing porosity, and which varies log-linearly with porosity. Permeabilities of material from the frontal prism decrease from 5×10-18 m2 at 5 MPa effective stress, to 3.0×10-19 m2 at 70 MPa, and porosities decrease from 51% to 29%, while permeabilities of the subducted sediment sample decrease from 5×10-18 m2 at 5 MPa to 3.6×10-19 m2 at 90 MPa, and porosities decrease from 49% to 36%. In-situ permeabilities for the prism and underthrust sediment samples, estimated using laboratory defined permeability-porosity relationships, are 4.9×10-18 m2 and 3.7×10-18 m2, respectively. Elastic wavespeeds increase systematically with increasing

  13. [Nitrilotriacetic acid (NTA)--properties, distribution and behavior in the environment. I. Chemical and toxicological properties of NTA].

    PubMed

    Jedra, M; Malanowska, M

    1995-01-01

    The reason of the interest shown in the properties of NTA is the possibility of its use for the replacement of polyphosphates in washing powders which are the cause of water eutrophization. In the light of literature data the chemical properties of NTA and the conditions influencing the course of the reaction of complex formation with metal ions in aqueous solutions are discussed Equilibrium constants of these reactions are presented, with diagrams obtained in computer assisted analysis of the conditions of equilibrium of NTA reaction with metal ions in the solutions occurring in physiological conditions and in the environment. On the basis of the opinions of expert committees the toxicity of NTA for mammalian organisms are described. It has been shown that NTA has no teratogenic or mutagenic action, however, in 2-year observations of mice and rats the intake of NTA produced lesions of uroepithelium with development of tumours. This effect of NTA has been demonstrated to be closely connected with its property of complex formation with metal ions. Experiments are described in which confirmation was obtained of the hypothesis that pathological lesions of renal tabules are caused by accumulation of zinc and bladder tumours are caused by binding by NTA of calcium from epithelial cells.

  14. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    NASA Astrophysics Data System (ADS)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  15. An evaluation of the properties of attention as reinforcement for destructive and appropriate behavior.

    PubMed Central

    Piazza, C C; Bowman, L G; Contrucci, S A; Delia, M D; Adelinis, J D; Goh, H L

    1999-01-01

    The analogue functional analysis described by Iwata, Dorsey, Slifer, Bauman, and Richman (1982/1994) identifies broad classes of variables (e.g., positive reinforcement) that maintain destructive behavior (Fisher, Ninness, Piazza, & Owen-DeSchryver, 1996). However, it is likely that some types of stimuli may be more effective reinforcers than others. In the current investigation, we identified 2 participants whose destructive behavior was maintained by attention. We used concurrent schedules of reinforcement to evaluate how different types of attention affected both destructive and appropriate behavior. We showed that for 1 participant praise was not an effective reinforcer when verbal reprimands were available; however, praise was an effective reinforcer when verbal reprimands were unavailable. For the 2nd participant, we identified a type of attention that effectively competed with verbal reprimands as reinforcement. We then used the information obtained from the assessments to develop effective treatments to reduce destructive behavior and increase an alternative communicative response. PMID:10641299

  16. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    SciTech Connect

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-15

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  17. Evaluation of seawater exposure on mechanical properties and failure behavior of E-Glass/BMI composite for marine use

    NASA Astrophysics Data System (ADS)

    Zhao, Yian; Wang, Zhiying; Seah, Leong Keey; Chai, Gin Boay

    2015-03-01

    Since composite material is playing an increasingly important role in the marine and offshore drilling industry, it is essential to have a good understanding on degradation of the material in the seawater environment. This study investigates the influence of seawater exposure on the mechanical and failure behavior of E-Glass/BMI composite. The water diffusion behavior in the composite has been studied through immersing the specimens in seawater under different conditions. The diffusion rate accelerates with increase of temperature, and the material shows irreversible damage due to seawater absorption at the temperature of 80°C. It is also found that external stress would significantly increase the water absorption. The water uptake in the specimen at 50°C showed a two stage behavior dominated by Fickian law and polymeric relaxation respectively, and saturation was not achieved in 8 months. After diffusion, the Tg of the material is considerably lowered due to plasticization effect. However the effect was found to be reversible after drying the specimen. Based on the testing results of tensile, flexure and fatigue properties of the composites, it is concluded that seawater exposure especially at elevated temperature leads to significant degradation on mechanical properties of the composite. However, the flexural strength of BMI composite with seawater absorption becomes less susceptible to temperature change. It is also found that the seawater absorption doesn't show significant effect on the stiffness of the material.

  18. Behavior of adsorbed and fluid phases versus retention properties of amino acids on the teicoplanin chiral selector.

    PubMed

    Poplewska, Izabela; Kramarz, Renata; Piatkowski, Wojciech; Seidel-Morgenstern, Andreas; Antos, Dorota

    2008-05-23

    The relationship between adsorption equilibria of two amino acids, i.e., l,d-threonine and l,d-methionine on the teicoplanin chiral selector and their phase behavior has been analyzed. The experimental and numerical methods have been proposed to determine activity coefficients of amino acids in different solvent systems. The procedure was based on the analysis of solubility properties of the amino acids in aqueous solutions of methanol, ethanol and propanol-2-ol used as the mobile phases in chromatographic elution. The solubility measured in mixed alcohol-water solutions was correlated with the non-random-two-liquid (NRTL) model for the activity coefficients. The values of activity coefficients were incorporated into the adsorption isotherm equation, which allowed the analysis of retention properties of the amino acids versus their fluid phase behavior. For the investigation the experimental data of adsorption equilibria of amino acids as well as of the mobile phase constituents acquired in a previous work were exploited. The composition of both the mobile and the adsorbed phases was found to affect the retention properties of the amino acids. For water-rich mobile phases the activity in the adsorbed phase determined the retention mechanism, while for the alcohol-rich systems activity in the mobile phase was predominant.

  19. Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature

    NASA Astrophysics Data System (ADS)

    Bai, Qing-ling; Li, Hong-xiang; Du, Qiang; Zhang, Ji-shan; Zhuang, Lin-zhong

    2016-08-01

    The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress-strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter f GBWL, i.e., the fraction of grain boundaries covered by liquid phase.

  20. Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Wilson, D. W.

    1984-01-01

    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.

  1. Subtask 12F4: Effects of neutron irradiation on the impact properties and fracture behavior of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    Up-to-date results on the effects of neutron irradiation on the impact properties and fracture behavior of V, V-Ti, V-Cr-Ti and V-Ti-Si alloys are presented in this paper, with an emphasis on the behavior of the U.S. reference alloys V-4Cr-4Ti containing 500-1000 wppm Si. Database on impact energy and cluctile-brittle transition temperature (DBTT) has been established from Charpy impact tests of one-third-size specimens irradiated at 420{degrees}C-600{degrees}C up to {approx}50 dpa in lithium environment in fast fission reactors. To supplement the Charpy impact tests fracture behavior was also characterized by quantitative SEM fractography on miniature tensile and disk specimens that were irradiated to similar conditions and fractured at -196{degrees}C to 200{degrees}C by multiple bending. For similar irradiation conditions irradiation-induced increase in DBTT was influenced most significantly by Cr content, indicating that irradiation-induced clustering of Cr atoms takes place in high-Cr (Cr {ge} 7 wt.%) alloys. When combined contents of Cr and Ti were {le}10 wt.%, effects of neutron irradiation on impact properties and fracture behavior were negligible. For example, from the Charpy-impact and multiple-bend tests there was no indication of irradiation-induced embrittlement for V-5Ti, V-3Ti-1Si and the U.S. reference alloy V-4Cr-4Ti after irradiation to {approx}34 dpa at 420{degrees}C to 600{degrees}C, and only ductile fracture was observed for temperatures as low as -196{degrees}C. 14 refs., 8 figs., 1 tab.

  2. Psychometric Properties of the Portuguese Version of the Adaptive Behavior Scale

    ERIC Educational Resources Information Center

    Santos, Sofia; Morato, Pedro; Luckasson, Ruth

    2014-01-01

    The adaptive behavior construct has gained prominent attention in human services over the last several years in Portugal, and its measurement has become an integral part of the assessment of populations with intellectual disability. In Portugal, diagnosis remains exclusively based on IQ measures, although some attention recently has been given to…

  3. Dynamic mechanical behavior of human dentin and collagen: Methods and properties

    NASA Astrophysics Data System (ADS)

    Ryou, Heonjune

    Experimental evaluations of human coronal dentin and its collagen fibrils were performed by Dynamic Mechanical Analysis (DMA) using nanoindentation and Atomic Force Microscopy (AFM). The primary objectives were to quantify the changes in mechanical behavior of intertubular and peritubular dentin with age, and to evaluate the nanostructure and mechanical behavior of the collagen fibrils. Specimens of coronal dentin were evaluated by nanoDMA using single indents and in scanning mode via scanning probe microscopy. Collagen fibrils from coronal dentin were evaluated using Pulse-Force Mode (PFM) AFM (Peakforce QNM). Nanoindentation results showed that there were no significant differences in the storage modulus or complex modulus between the two age groups (18-25 versus 54-83 yrs) for either the intertubular or peritubular dentin. However, there were significant differences in the dampening behavior between the young and old tissues, as represented in the loss modulus and tanϕ responses. For both the intertubular and peritubular components, the capacity for dampening was significantly lower in the old group. Scanning based nanoDMA showed that the tubules of old dentin exhibit a gradient in elastic behavior, with decrease in elastic modulus from the cuff to the center of tubules filled with newly deposited mineral. AFM results showed that the stiffness of the old dentin fibrils in the peak and trough regions were greater than the young dentin fibrils. In addition, there were significant differences in the dampening behavior between the young and old dentin fibrils, as represented in the energy dissipation, phase angle and loss modulus responses. For both the peak and trough regions, the dissipative capacity was significantly lower in the old dentin fibrils.

  4. Is Substance Use Associated with Perpetration and Victimization of Physically Violent Behavior and Property Offences among Homeless Youth? A Systematic Review of International Studies

    ERIC Educational Resources Information Center

    Heerde, Jessica A.; Hemphill, Sheryl A.

    2015-01-01

    Background: Substance use is a commonly reported problem associated with numerous adverse outcomes among homeless youth. Homelessness is reportedly a covariate to perpetration of, and victimization from, physically violent behavior and property offences. Of particular importance in both the perpetration of, and victimization from these behaviors,…

  5. Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2009-12-01

    The preparation of thin oxide films on metal supports is a versatile approach to explore the properties of oxide materials that are otherwise inaccessible to most surface science techniques due to their insulating nature. Although substantial progress has been made in the characterization of oxide surfaces with spatially averaging techniques, a local view is often essential to provide comprehensive understanding of such systems. The scanning tunneling microscope (STM) is a powerful tool to obtain atomic-scale information on the growth behavior of oxide films, the resulting surface morphology and defect structure. Furthermore, the binding configuration and spatial distribution of adsorbates on the oxide surface, as well as their electronic and optical properties can be probed with the STM and embedded spectroscopic techniques. This article surveys state-of-the-art STM experiments aiming for an investigation of surface properties of oxide materials as well as their interaction with individual adatoms, molecules and metal particles. It provides an introduction into the nucleation and growth of oxide layers on single-crystalline metal substrates, putting special emphasis on the various relaxation mechanisms of the oxide lattice to release the misfit strain with the support. Additionally, the peculiarities of polar oxide films are discussed. In the second part, the different interaction schemes between oxide surfaces and adsorbates are presented from the theoretical point of view as well as on the basis of the key experiment performed with the STM. The focus lies hereby on charge-mediated binding schemes, leading to the formation of cationic or anionic species on the oxide surface. Furthermore, the role of point and line defects in the oxide adsorption behavior is inferred. The potential of thin oxide films as systems with tunable physical and chemical properties is highlighted at the end of this review.

  6. Behavioral phenotypic properties of a natural occurring rat model of congenital stationary night blindness with Cacna1f mutation.

    PubMed

    An, Jing; Wang, Li; Guo, Qun; Li, Li; Xia, Feng; Zhang, Zuoming

    2012-09-01

    Cacna1f gene mutation could lead to incomplete congenital stationary night blindness (iCSNB) disease. The CSNB-like phenotype rat is a spontaneous rat model caused by Cacna1f gene mutation. The present study explored the phenotypic properties of behavior performance in CSNB rats further. The vision-related behaviors of CSNB rats were assessed with a Morris water maze (MWM), passive avoidance tests, and open-field test. Motor ability was evaluated with a rotarod test and a wire hang test, and mechanical pain and thermalgia were used to evaluate sensory system function. Electroretinograms (ERGs) were recorded to evaluate the function of the retina. The vision-related results showed that longer latencies of escape and reduced probe trial in MWM for CSNB rats. There were more errors in avoidance test; CSNB rats were more active in the open field and presented a different pattern of exploration. The locomotor-related behaviors showed shorter falling latencies in the rotarod test and shorter gripping time in CSNB rats. And mechanical thresholds of pain increased in CSNB rats. The ERGs indicated that both the amplitude and latency of rod and cone systems were impaired in the CSNB rats. In summary, Cacna1f gene mutation changed the performance of various behaviors in the CSNB rat aside from vision-related phenotype. Cacna1f gene might play a role in a wide range of responses in the organism. These results confirm the importance of a comprehensive profile for understanding the behavior phenotype of Cacna1f gene mutation in CSNB rat. PMID:22800190

  7. Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys

    SciTech Connect

    Moraes, Paulo E.L.; Contieri, Rodrigo J.; Lopes, Eder S.N.; Robin, Alain; Caram, Rubens

    2014-10-15

    Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aim of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.

  8. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application

    PubMed Central

    Obayi, Camillus Sunday; Tolouei, Ranna; Mostavan, Afghany; Paternoster, Carlo; Turgeon, Stephane; Okorie, Boniface Adeleh; Obikwelu, Daniel Oray; Mantovani, Diego

    2016-01-01

    Abstract Pure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of arteries. Being a micrometre-scale biomedical device, the mentioned variables have been found to be governed by the average grain size of the bulk material. Thermo-mechanical processing techniques of the cold rolling and annealing were used to grain-refine the pure iron. Pure Fe samples were unidirectionally cold rolled and then isochronally annealed at different temperatures with the intention of inducing different ranges of grain size. The effect of thermo-mechanical treatment on mechanical properties and corrosion rates of the samples were investigated, correspondingly. Mechanical properties of pure Fe samples improved significantly with decrease in grain size while the corrosion rate decreased marginally with decrease in the average grain sizes. These findings could lead to the optimization of the properties to attain an adequate biodegradation-strength-ductility balance. PMID:25482336

  9. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application.

    PubMed

    Obayi, Camillus Sunday; Tolouei, Ranna; Mostavan, Afghany; Paternoster, Carlo; Turgeon, Stephane; Okorie, Boniface Adeleh; Obikwelu, Daniel Oray; Mantovani, Diego

    2016-01-01

    Pure iron has been demonstrated as a potential candidate for biodegradable metal stents due to its appropriate biocompatibility, suitable mechanical properties and uniform biodegradation behavior. The competing parameters that control the safety and the performance of BMS include proper strength-ductility combination, biocompatibility along with matching rate of corrosion with healing rate of arteries. Being a micrometre-scale biomedical device, the mentioned variables have been found to be governed by the average grain size of the bulk material. Thermo-mechanical processing techniques of the cold rolling and annealing were used to grain-refine the pure iron. Pure Fe samples were unidirectionally cold rolled and then isochronally annealed at different temperatures with the intention of inducing different ranges of grain size. The effect of thermo-mechanical treatment on mechanical properties and corrosion rates of the samples were investigated, correspondingly. Mechanical properties of pure Fe samples improved significantly with decrease in grain size while the corrosion rate decreased marginally with decrease in the average grain sizes. These findings could lead to the optimization of the properties to attain an adequate biodegradation-strength-ductility balance.

  10. Mechanical behavior, properties and reliability of tin-modified lead zirconate titanate.

    SciTech Connect

    Watson, Chad Samuel

    2003-08-01

    The influences of temperature and processing conditions (unpoled or poled-depoled) on strength, fracture toughness and the stress-strain behavior of tin-modified lead zirconate titanate (PSZT) were evaluated in four-point bending. PSZT exhibits temperature-dependent non-linear and non-symmetric stress-strain behavior. A consequence of temperature dependent non-linearity is an apparent reduction in the flexural strength of PSZT as temperature increases. At room temperature the average stress in the outer-fiber of bend bars was 84 MPa, whereas, for specimens tested at 120 C the average failure stress was only 64 MPa. The load-carrying capacity, however, does not change with temperature, but the degree of deformation tolerated by PSZT prior to failure increased with temperature.

  11. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  12. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish.

    PubMed

    Guggiana-Nilo, Drago A; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish. PMID:27594828

  13. Properties of the Visible Light Phototaxis and UV Avoidance Behaviors in the Larval Zebrafish

    PubMed Central

    Guggiana-Nilo, Drago A.; Engert, Florian

    2016-01-01

    For many organisms, color is an essential source of information from visual scenes. The larval zebrafish has the potential to be a model for the study of this topic, given its tetrachromatic retina and high dependence on vision. In this study we took a step toward understanding how the larval zebrafish might use color sensing. To this end, we used a projector-based paradigm to force a choice of a color stimulus at every turn of the larva. The stimuli used spanned most of the larval spectral range, including activation of its Ultraviolet (UV) cone, which has not been described behaviorally before. We found that zebrafish larvae swim toward visible wavelengths (>400 nm) when choosing between them and darkness, as has been reported with white light. However, when presented with UV light and darkness zebrafish show an intensity dependent avoidance behavior. This UV avoidance does not interact cooperatively with phototaxis toward longer wavelengths, but can compete against it in an intensity dependent manner. Finally, we show that the avoidance behavior depends on the presence of eyes with functional UV cones. These findings open future avenues for studying the neural circuits that underlie color sensing in the larval zebrafish.

  14. Schools, Taxes, and Voter Behavior: An Analysis of School District Property Tax Elections.

    ERIC Educational Resources Information Center

    Alexander, Arthur J.; Bass, Gail V.

    This research is based on more than 1,600 school district property tax elections in California from the mid-1950s to 1972. Population, housing, social, demographic, and economic information by school district was available. This large, comprehensive, and consistent data base permitted investigation of the choices of the electorate with respect to…

  15. Community and School Characteristics and Voter Behavior in Ohio Rural School District Property Tax Elections.

    ERIC Educational Resources Information Center

    Baker, Matt; McCracken, J. David

    This study explores the relationships between the percentage of successful property tax issues and community and school characteristics in rural school districts in Ohio. Data were obtained for 74 rural school districts between 1984 and 1988; sources were government statistics and a questionnaire survey of school principals. The dependent variable…

  16. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  17. Photophysical Properties and Adsorption Behaviors of Novel Tri-Cationic Boron(III) Subporphyrin on Anionic Clay Surface.

    PubMed

    Tsukamoto, Takamasa; Shimada, Tetsuya; Takagi, Shinsuke

    2016-03-23

    Two types of +3-charged subporphyrin derivatives with m- and p-methylpyridinium as the meso-aryl substituents were designed and synthesized. Their photophysical properties with and without anionic saponite clay were investigated. These cationic subporphyrins were suitably designed for adsorption on the saponite nanosheet surface with their photoactivity. Absorption and emission spectra of these subporphyrin-saponite complexes exhibited strong bathochromic shifts due to the flattening of the molecules on the nanosheet. This behavior was observed as drastic visual changes in their luminescence colors. Additionally, aggregation behaviors were not observed in the saponite complexes even at high dye loading levels for both subporphyrins. Moreover, under such condition, their fluorescence properties on the saponite surface were not only maintained but also enhanced without unexpected deactivations despite the dye molecules are densely introduced on the solid surface. These findings are beneficial for applications of the dye-clay complexes to photofunctional materials such as strongly luminescent materials, highly sensitive clay sensors and artificial photosynthesis systems.

  18. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  19. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    PubMed

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior.

  20. Monoacylglycerol Lipase Inhibitor JZL184 Improves Behavior and Neural Properties in Ts65Dn Mice, a Model of Down Syndrome

    PubMed Central

    Lysenko, Larisa V.; Kim, Jeesun; Henry, Cassandra; Tyrtyshnaia, Anna; Kohnz, Rebecca A.; Madamba, Francisco; Simon, Gabriel M.; Kleschevnikova, Natalia E.; Nomura, Daniel K.; Ezekowitz, R . Alan B.; Kleschevnikov, Alexander M.

    2014-01-01

    Genetic alterations or pharmacological treatments affecting endocannabinoid signaling have profound effects on synaptic and neuronal properties and, under certain conditions, may improve higher brain functions. Down syndrome (DS), a developmental disorder caused by triplication of chromosome 21, is characterized by deficient cognition and inevitable development of the Alzheimer disease (AD) type pathology during aging. Here we used JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL), to examine the effects of chronic MAGL inhibition on the behavioral, biochemical, and synaptic properties of aged Ts65Dn mice, a genetic model of DS. In both Ts65Dn mice and their normosomic (2N) controls, JZL184-treatment increased brain levels of 2-arachidonoylglycerol (2-AG) and decreased levels of its metabolites such as arachidonic acid, prostaglandins PGD2, PGE2, PGFα, and PGJ2. Enhanced spontaneous locomotor activity of Ts65Dn mice was reduced by the JZL184-treatement to the levels observed in 2N animals. Deficient long-term memory was also improved, while short-term and working types of memory were unaffected. Furthermore, reduced hippocampal long-term potentiation (LTP) was increased in the JZL184-treated Ts65Dn mice to the levels observed in 2N mice. Interestingly, changes in synaptic plasticity and behavior were not observed in the JZL184-treated 2N mice suggesting that the treatment specifically attenuated the defects in the trisomic animals. The JZL184-treatment also reduced the levels of Aβ40 and Aβ42, but had no effect on the levels of full length APP and BACE1 in both Ts65Dn and 2N mice. These data show that chronic MAGL inhibition improves the behavior and brain functions in a DS model suggesting that pharmacological targeting of MAGL may be considered as a perspective new approach for improving cognition in DS. PMID:25474204

  1. Different behavioral effect dose-response profiles in mice exposed to two-carbon chlorinated hydrocarbons: influence of structural and physical properties.

    PubMed

    Umezu, Toyoshi; Shibata, Yasuyuki

    2014-09-01

    The present study aimed to clarify whether dose-response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose-response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose-response profiles and structural and physical properties of the compounds. Dose-response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose-response profiles.

  2. Design, Properties, and In Vivo Behavior of Super-paramagnetic Persistent Luminescence Nanohybrids.

    PubMed

    Teston, Eliott; Lalatonne, Yoann; Elgrabli, Dan; Autret, Gwennhael; Motte, Laurence; Gazeau, Florence; Scherman, Daniel; Clément, Olivier; Richard, Cyrille; Maldiney, Thomas

    2015-06-10

    With the fast development of noninvasive diagnosis, the design of multimodal imaging probes has become a promising challenge. If many monofunctional nanocarriers have already proven their efficiency, only few multifunctional nanoprobes have been able to combine the advantages of diverse imaging modalities. An innovative nanoprobe called mesoporous persistent luminescence magnetic nanohybrids (MPNHs) is described that shows both optical and magnetic resonance imaging (MRI) properties intended for in vivo multimodal imaging in small animals. MPNHs are based on the assembly of chromium-doped zinc gallate oxide and ultrasmall superparamagnetic iron oxide nanoparticles embedded in a mesoporous silica shell. MPNHs combine the optical advantages of persistent luminescence, such as real time imaging with highly sensitive and photostable detection, and MRI negative contrast properties that ensure in vivo imaging with rather high spatial resolution. In addition to their imaging capabilities, these MPNHs can be motioned in vitro with a magnet, which opens multiple perspectives in magnetic vectorization and cell therapy research. PMID:25653090

  3. Relaxation behavior and nonlinear properties of thermally stable polymers based on glycidyl derivatives of quercetin

    NASA Astrophysics Data System (ADS)

    Mishurov, Dmytro; Voronkin, Andrii; Roshal, Alexander; Brovko, Oleksandr

    2016-07-01

    Cross-linked polymers on the basis of di-, tri and tetraglycidyl ethers of quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) were synthesized, and then, poled in electrical field of corona discharge. Investigations of structural, thermal and optical parameters of the polymer films were carried out. It was found that the polymers obtained from di- and triglycidyl quercetin ethers had high values of macroscopic quadratic susceptibilities and substantial stability of nonlinear optical (NLO) properties after the poling. Tetraglycidyl ether of quercetin forms the polymer of lower quadratic susceptibility, which demonstrates noticeable relaxation process resulting in decrease of the NLO effect. It is supposed that the difference of the NLO properties is due to peculiarities of physical network of the polymers, namely to the ratio between numbers of hydrogen bonds formed by hydroxyl groups of chromophore fragments and by the ones of interfragmental parts of the polymeric chains.

  4. Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks.

    PubMed

    Khalid, M N; Agnely, F; Yagoubi, N; Grossiord, J L; Couarraze, G

    2002-06-01

    Two kinds of chitosan-based hydrogels, a crosslinked chitosan reference gel and a chitosan-poly(ethylene oxide) semi-interpenetrating network (semi-IPN), with potential pH-sensitive swelling and drug delivery properties are characterized. Swelling studies were performed on the two kinds of hydrogels by differential scanning calorimetry (DSC) at pH 1.2 and by the gravimetric method at pH 1.2 and pH 7.2. Both methods lead to similar results. If pH-dependent swelling properties were observed with both hydrogels, they were however improved for the semi-IPN. The amount of bound water in the xerogels could be determined from DSC measurements and a thermogravimetric analysis. The results obtained by both techniques were in good agreement and indicated that the semi-IPN contained more bound water than the reference gel probably due to the presence of the hydrophilic poly(ethylene oxide) chains. Young modulus of the swollen hydrogels was determined by indentation analysis. The semi-IPN displayed improved mechanical properties compared to the reference gel.

  5. Behavior of optical properties of coagulated blood sample at 633 nm wavelength

    NASA Astrophysics Data System (ADS)

    Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto

    2011-03-01

    Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.

  6. Evaluating the effects of local floodplain management policies on property owner behavior

    NASA Astrophysics Data System (ADS)

    Bollens, Scott A.; Kaiser, Edward J.; Burby, Raymond J.

    1988-05-01

    Floodplain management programs have been adopted by more than 85% of local governments in the nation with designated flood hazard areas. Yet, there has been little evaluation of the influence of floodplain policies on private sector decisions. This article examines the degree to which riverine floodplain management affects purchase and mitigation decisions made by owners of developed floodplain property in ten selected cities in the United States. We find that the stringency of such policies does not lessen floodplain property buying because of the overriding importance of site amenity factors. Indeed, flood protection measures incorporated into development projects appear to add to the attractiveness of floodplain location by increasing the perceived safety from the hazard. Property owner responses to the flood hazard after occupancy involve political action more often than individual on-site mitigation. Floodplain programs only minimally encourage on-site mitigation by the owner because most owners have not experienced a flood and many are unaware of the flood threat. It is suggested that floodplain programs will be more effective in meeting their objectives if they are directed at intervention points earlier in the land conversion process.

  7. [Behavioral pharmacological properties of the novel antidepressant paroxetine, a selective 5-HT uptake inhibitor].

    PubMed

    Yamamoto, T; Shibata, S; Shimazoe, T; Iwasaki, K; Ohno, M; Minamoto, Y; Furuya, Y; Miyamoto, K; Watanabe, S; Ueki, S

    1989-09-01

    The behavioral effects of paroxetine were investigated in mice and rats in comparison with imipramine and amitriptyline. 1) Locomotor activities were decreased by imipramine and amitriptyline but not by paroxetine in both animal species. 2) Paroxetine antagonized methamphetamine-induced hyperactivity in mice as did imipramine and amitriptyline. 3) Paroxetine showed a more potent antimuricidal effect in raphe-lesioned rats than imipramine and amitriptyline, and it also inhibited muricide in olfactory bulbectomized rats. 4) The immobility of rats in the forced swimming test was markedly decreased by imipramine and amitriptyline, but only slightly by paroxetine. 5) Like imipramine and amitriptyline, paroxetine potentiated the methamphetamine- or L-DOPA-induced stereotyped sniffing, and it inhibited oxotremorine-induced tremor. 6) Paroxetine antagonized reserpine-induced hypothermia, tetrabenazine-induced ptosis, and enhanced ether-induced anesthesia, all less potently than imipramine and amitriptyline. 7) The analgesic action of paroxetine was stronger than that of imipramine and amitriptyline. 8) Paroxetine did not antagonize maximal electroshock- or pentetrazol-induced convulsions and haloperidol- or THC-induced catalepsy in rats. In addition, paroxetine neither exerted muscle relaxation nor affected the shuttle-box type conditioned avoidance in rats. From these results, the behavioral effects of paroxetine, as compared with imipramine and amitriptyline, were characterized by its potent antimuricidal action in raphe-lesioned rats and its weak effect in the forced swimming test and by its less potent muscle relaxant, anticonvulsant, anticataleptic and anesthesia-potentiating actions.

  8. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, V.; Maheswar Repaka, D. V.; Chaturvedi, A.; Sridhar, I.; Ramanujan, R. V.

    2014-10-01

    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640 J kg-1 for a field change of 1 and 5 T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (TC), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of β = 0.364, γ = 1.319, δ = 4.623, and α = -0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  9. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    SciTech Connect

    Chaudhary, V.; Maheswar Repaka, D. V.; Chaturvedi, A.; Ramanujan, R. V.; Sridhar, I.

    2014-10-28

    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640 J kg{sup −1} for a field change of 1 and 5 T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T{sub C}), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of β = 0.364, γ = 1.319, δ = 4.623, and α = −0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  10. Properties and behavior of superconductors exhibiting a Fulde-Ferrell-Larkin-Ovchinnikov phase

    NASA Astrophysics Data System (ADS)

    Coniglio, William A.; Agosta, Charles C.

    2011-03-01

    The body of data on the Ful-de--Fer-rell--Lar-kin--Ov-chin-ni-kov (FFLO) state in 2d organic superconductors has grown to a critical mass where we may begin studying the boundaries of the FFLO phase in detail. In some very clean layered superconductors, when a magnetic field is aligned exactly parallel to the conducting layers, a superconducting phase develops at fields above the Pauli paramagnetic limit Hp and temperatures below about Tc / 3 . The phase is widely ascribed to FFLO behavior. We focus on the superconductors κ -(ET)2 Cu(NCS)2 , β'' -(ET)2 SF5 CH2 CF2 SO3 , and λ -(BETS)2 GaCl 4 , which have been studied by rf penetration depth and other techniques. We have probed the boundaries of the FFLO phase using alignment angle to tune the amount of spin-orbit scattering and temperature to control the degree of Pauli paramagnetic limiting. Using our data collected in pulsed magnetic fields at low temperature, we have gained new understanding about the behavior of the state and the conditions necessary for it to develop. We acknowledge Department of Energy support from ER46214.

  11. Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers.

    PubMed

    Koosha, Mojtaba; Mirzadeh, Hamid

    2015-09-01

    Electrospinning process has been widely used to produce nanofibers from polymer blends. Poly(vinyl alcohol) (PVA) and chitosan (CS) have numerous biomedical applications such as wound healing and tissue engineering. Nanofibers of CS/PVA have been prepared by many works, however, a complete physicochemical and mechanical characterization as well as cell behavior has not been reported. In this study, PVA and CS/PVA blend solutions in acetic acid 70% with different volume ratios (30/70, 50/50, and 70/30) were electrospun in constant electrospinning process parameters. The structure and morphology of nanofibrous mats were characterized by SEM, FTIR, and XRD methods. The best nanofibrous mat was achieved from the CS/PVA 30/70 blend solution regarding the electrospinning throughput. The dynamic mechanical thermal analysis (DMTA) of PVA and CS/PVA 30/70 nanofibrous mats were measured which were not considered in the previous studies. DMTA results in accordance to the DSC analysis approved the partial compatibility between the two polymers, while a single glass transition temperature was not observed for the blend. The tensile strength of PVA and CS/PVA nanofibers were also reported. Results of cell behavior study indicated that the heat stabilized nanofibrous mat CS/PVA 30/70 was able to support the attachment and proliferation of the fibroblast cells.

  12. The aging behavior of types 308 and 308CRE stainless steels and its effect on mechanical properties

    SciTech Connect

    Vitek, J.M.; David, S.A.

    1987-01-01

    Aging of 308 and 308CRE SS was studied at 475 to 850/sup 0/C for aging times up to 10,000 hours. Above 550/sup 0/C, aging of 308 steel resulted in precipitation of carbides and the transformation of ferrite to sigma phase or the formation of sigma phase in initially ferrite-free material. The elevated-temperature aging of 308CRE steel resulted in the precipitation of titanium-rich carbides, nitrides, and sulfides, and the transformation of ferrite to sigma phase. The distribution of precipitates was affected by the initial condition of the materials. The elevated-temperature creep properties, and in particular the improved properties of 308CRE, were related to the precipitate distribution. Below 550/sup 0/C, aging of welded type 308 steel, precipitation of G-phase within the ferrite was observed, as well as the decomposition of ferrite into alpha and alpha prime. With the help of a novel mechanical properties microprobe, which was capable of determining the hardness of the minor constituent ferrite phase, the hardness behavior as a function of aging could be related to the microstructures. These results are interpreted in terms of the potential susceptibility of these alloys to 475/sup 0/C embrittlement.

  13. Laboratory and Numerical Observations of the Spectrum of Fault Slip Behaviors: Implications for Fault Zone Properties

    NASA Astrophysics Data System (ADS)

    Marone, C.

    2015-12-01

    Slow earthquakes, tectonic fault tremor and other modes of quasi-dynamic slip represent an important enigma. In the standard earthquake model, elastic energy is released catastrophically as the fault weakens and dynamic rupture expands at speeds measured in km/s. The spectral content of the resulting seismic waves is understood in terms of a source model based on elastodynamic rupture propagation. However, faults also fail in slow earthquakes and there is no such understanding of rupture dynamics, seismic spectra, or source scaling relations in these cases. The mechanics of slow earthquakes are poorly understood in part because there are few systematic laboratory observations that can be used to identify the underlying mechanics. Here, I summarize and discuss results from numerical models of slow slip using rate/state friction laws and recent lab studies showing slow slip and the full spectrum of stick-slip behaviors. Early lab studies saw slow slip during frictional sliding or in association with dehydration or ductile flow; however, they did not include systematic measurements that could be used to isolate the underlying mechanics. Numerical studies based on rate/state friction also document slow slip and chaotic forms of stick-slip, however they require special conditions including two state variable frictional behavior. Recent lab work sheds new light on slow earthquakes by showing: 1) that repetitive, slow stick-slip can occur if the fault friction-velocity relation becomes positive during slip acceleration, and 2) that slow slip and the full spectrum of fault slip modes can occur if loading stiffness k matches the fault zone critical rheologic stiffness kc given by the frictional weakening rate and the critical frictional distance. These data show that the key control parameter for stress drop, slip speed, and slip duration is the non dimensional stiffness k' = k/kc, with the spectrum of fast to slow slip mode occurring in a narrow range around k'=1. I

  14. Tensile Properties and Swelling Behavior of Sealing Rubber Materials Exposed to High-Pressure Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Yamabe, Junichiro; Nishimura, Shin

    Rubber O-rings exposed to high-pressure hydrogen gas swell, and the volume increase induced by swelling influences tensile properties of the O-rings. Samples of nonfilled (NF), carbon black-filled (CB), and silica-filled (SC) sulfur-vulcanized acrylonitrile-butadiene rubber were exposed to hydrogen at 30 °C and pressures of up to 100 MPa, and the effect of hydrogen exposure on the volume increase, hydrogen content, and tensile properties was investigated. The residual hydrogen content, measured 35 minutes after decompression, increased with increasing hydrogen pressure in the range 0.7-100 MPa for all three samples. In contrast, the volumes of NF, CB, and SC barely changed at pressures below 10 MPa, whereas they increased at pressures above 10 MPa. This nonlinear volume increase is probably related to the free volume of the rubber structure. The volume increase of the CB and SC samples was smaller than that of the NF samples, possibly because of the superior tensile properties of CB and SC. As the volumes of the NF, CB, and SC samples increased, their tensile elastic moduli decreased as a result of a decrease in crosslink density and elongation by volume increase. Although the true fracture stress of NF was barely dependent on the volume of the specimen, those of CB and SC clearly decreased as the volume increased. The decrease in the true fracture stress of CB and SC was related to the volume increase by swelling, showing that the boundary structure between the filler and the rubber matrix was changed by the volume increase.

  15. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Kai, Dan; Prabhakaran, Molamma P.; Stahl, Benjamin; Eblenkamp, Markus; Wintermantel, Erich; Ramakrishna, Seeram

    2012-03-01

    Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ɛ-caprolactone) (PCL)/gelatin ‘blend’ or ‘coaxial’ nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young’s modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml-1 PCL/gelatin ‘blend’ nanofibers (PGB25) was found to enhance cell proliferation, indicating that the ‘nanocomposite hydrogels’ might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.

  16. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.

    PubMed

    Kai, Dan; Prabhakaran, Molamma P; Stahl, Benjamin; Eblenkamp, Markus; Wintermantel, Erich; Ramakrishna, Seeram

    2012-03-01

    Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.

  17. Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Biswal, M.; Rathore, D. K.; Prusty, R. K.; Dutta, K.; Ray, B. C.

    2016-02-01

    Fibre reinforced polymeric (FRP) composite materials are subjected to different range of loading rates during their service life. Present investigation is focused on to study the effects of variation of loading rates on mechanical behavior and various dominating failure modes of these potential materials when subjected to tensile loading. The results revealed that on the variation of loading rates the ultimate tensile strength varies but the tensile modulus is mostly unaffected. Furthermore, the strain to failure is also increasing with increase in loading rates. Different failure patterns of glass/epoxy composite tested at 1, 10,100, 500 and 1000 mm/min loading rates are identified. Scanning electron micrographs shows various dominating failures modes in the glass/epoxy composite.

  18. Scaling Behavior and Strain Dependence of In-Plane Elastic Properties of Graphene.

    PubMed

    Los, J H; Fasolino, A; Katsnelson, M I

    2016-01-01

    We show by atomistic simulations that, in the thermodynamic limit, the in-plane elastic moduli of graphene at finite temperature vanish with system size L as a power law L(-η(u)) with η(u)≃0.325, in agreement with the membrane theory. We provide explicit expressions for the size and strain dependence of graphene's elastic moduli, allowing comparison to experimental data. Our results explain the recently experimentally observed increase of the Young modulus by more than a factor of 2 for a tensile strain of only a few per mill. The difference of a factor of 2 between the measured asymptotic value of the Young modulus for tensilely strained systems and the value from ab initio calculations remains, however, unsolved. We also discuss the asymptotic behavior of the Poisson ratio, for which our simulations disagree with the predictions of the self-consistent screening approximation.

  19. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    SciTech Connect

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar . sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  20. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  1. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    NASA Astrophysics Data System (ADS)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  2. Atomic-scale simulations of material behaviors and tribology properties for BCC metal film

    NASA Astrophysics Data System (ADS)

    H, D. Aristizabal; P, A. Parra; P, López; E, Restrepo-Parra

    2016-01-01

    This work has two main purposes: (i) introducing the basic concepts of molecular dynamics analysis to material scientists and engineers, and (ii) providing a better understanding of instrumented indentation measurements, presenting an example of nanoindentation and scratch test simulations. To reach these purposes, three-dimensional molecular dynamics (MD) simulations of nanoindentation and scratch test technique were carried out for generic thin films that present BCC crystalline structures. Structures were oriented in the plane (100) and placed on FCC diamond substrates. A pair wise potential was employed to simulate the interaction between atoms of each layer and a repulsive radial potential was used to represent a spherical tip indenting the sample. Mechanical properties of this generic material were obtained by varying the indentation depth and dissociation energy. The load-unload curves and coefficient of friction were found for each test; on the other hand, dissociation energy was varied showing a better mechanical response for films that present grater dissociation energy. Structural change evolution was observed presenting vacancies and slips as the depth was varied. Project supported by la DirecciónNacional de Investigación of the Universidad Nacional de Colombia, “the Theoretical Study of Physical Properties of Hard Materials for Technological Applications” (Grant No. 20101007903).

  3. Well shaped Mn₃O₄ nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties.

    PubMed

    Li, Yu; Tan, Haiyan; Yang, Xiao-Yu; Goris, Bart; Verbeeck, Jo; Bals, Sara; Colson, Pierre; Cloots, Rudi; Van Tendeloo, Gustaaf; Su, Bao-Lian

    2011-02-18

    Very uniform and well shaped Mn₃O₄ nano-octahedra are synthesized using a simple hydrothermal method under the help of polyethylene glycol (PEG200) as a reductant and shape-directing agent. The nano-octahedra formation mechanism is monitored. The shape and crystal orientation of the nanoparticles is reconstructed by scanning electron microscopy and electron tomography, which reveals that the nano-octahedra only selectively expose {101} facets at the external surfaces. The magnetic testing demonstrates that the Mn₃O₄ nano-octahedra exhibit anomalous magnetic properties: the Mn₃O₄ nano-octahedra around 150 nm show a similar Curie temperature and blocking temperature to Mn₃O₄ nanoparticles with 10 nm size because of the vertical axis of [001] plane and the exposed {101} facets. With these Mn₃O₄ nano-octahedra as a catalyst, the photodecomposition of rhodamine B is evaluated and it is found that the photodecomposition activity of Mn₃O₄ nano-octahedra is much superior to that of commercial Mn₃O₄ powders. The anomalous magnetic properties and high superior photodecomposition activity of well shaped Mn₃O₄ nano-octahedra should be related to the special shape of the nanoparticles and the abundantly exposed {101} facets at the external surfaces. Therefore, the shape preference can largely broaden the application of the Mn₃O₄ nano-octahedra. PMID:21254396

  4. Different behavioral effect dose–response profiles in mice exposed to two-carbon chlorinated hydrocarbons: Influence of structural and physical properties

    SciTech Connect

    Umezu, Toyoshi Shibata, Yasuyuki

    2014-09-01

    The present study aimed to clarify whether dose–response profiles of acute behavioral effects of 1,2-dichloroethane (DCE), 1,1,1-trichloroethane (TCE), trichloroethylene (TRIC), and tetrachloroethylene (PERC) differ. A test battery involving 6 behavioral endpoints was applied to evaluate the effects of DCE, TCE, TRIC, and PERC in male ICR strain mice under the same experimental conditions. The behavioral effect dose–response profiles of these compounds differed. Regression analysis was used to evaluate the relationship between the dose–response profiles and structural and physical properties of the compounds. Dose–response profile differences correlated significantly with differences in specific structural and physical properties. These results suggest that differences in specific structural and physical properties of DCE, TCE, TRIC, and PERC are responsible for differences in behavioral effects that lead to a variety of dose–response profiles. - Highlights: • We examine effects of 4 chlorinated hydrocarbons on 6 behavioral endpoints in mice. • The behavioral effect dose–response profiles for the 4 compounds are different. • We utilize regression analysis to clarify probable causes of the different profiles. • The compound's physicochemical properties probably produce the different profiles.

  5. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    Several court cases involving acquisition, use, and disposal of property by institutions of higher education are briefly summarized in this chapter. Cases discussed touch on such topics as municipal annexation of university property; repurchase of properties temporarily allocated to faculty members; implications of zoning laws and zoning board…

  6. Synthesis, physical properties and self-assembly behavior of azole-fused pyrene derivatives

    NASA Astrophysics Data System (ADS)

    Xiao, Jinchong; Xiao, Xuyu; Zhao, Yanlei; Wu, Bo; Liu, Zhenying; Zhang, Xuemin; Wang, Sujuan; Zhao, Xiaohui; Liu, Lei; Jiang, Li

    2013-05-01

    A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent.A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent. Electronic supplementary information (ESI) available: TGA analysis, spectra characterization data for compound 1, 2, 3 and X-ray crystallographic data for compound PySe (2, CIF). CCDC 917821. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr00523b

  7. Strain-controlled electronic properties and magnetorelaxor behaviors in electron-doped CaMnO3 thin films

    NASA Astrophysics Data System (ADS)

    Xiang, P.-H.; Yamada, H.; Sawa, A.; Akoh, H.

    2009-02-01

    We have fabricated epitaxial thin films of electron-doped manganite Ca1-xCexMnO3 (CCMO) with 0≤x≤0.08. The transport properties of CCMO films are very sensitive to substrate-controlled epitaxial strain. For the CCMO(x =0.05) film, the metallic transport characteristic is observed only on a nearly lattice-matched NdAlO3 (NAO) substrate, while tensilely and compressively stressed films are insulating. The CCMO(x =0.06) film on the NAO substrate shows a large magnetoresistance characteristic of a magnetorelaxor. This behavior can be explained in terms of the phase separation and the irreversible growth of the metallic domain in antiferromagnetic insulating matrix.

  8. Biomechanics of chiasmal compression: Sensitivity of the mechanical behaviors of nerve fibers to variations in material property and geometry

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Neely, Andrew J.; McIlwaine, Gawn G.; Lueck, Christian J.

    2016-05-01

    The mechanism of bitemporal hemianopia is still unclear. Previous research suggested that the nerve fiber packing pattern may contribute to the selective damage of nasal (crossed) nerve fibers. Numerical models were built using finite element modeling to study the biomechanics of optic nerve fibers. The sensitivity of the mechanical behaviors of the nerve fibers to variations of five parameters in the nerve fiber model were investigated using design of experiments (DOE). Results show that the crossing angle is a very significant factor that affects a wide range of responses of the model. The strain difference between the crossed and the uncrossed nerve fibers may account for the phenomenon of bitemporal hemianopia. This work also highlights the need for more accurate material properties of the tissues in the model and an improved understanding of the microstructure of the optic chiasm.

  9. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Sathyajith, S.; Swaroop, S.

    2012-12-01

    This paper discusses the results of laser peening without coating on low carbon austenitic stainless steel 316L. Unlike typical experiments on laser peening without coating (LPwC) performed with frequency doubled (green) laser and underwater irradiation, the present study reports LPwC with infrared radiation using thin layer of water as confinement medium. The dependence of laser pulse density on properties such as surface roughness, surface residual stress, microhardness, and corrosion behavior of LPwC specimen were investigated. The magnitude of surface compressive residual stress on laser peened specimen showed appreciable improvement compared to unpeened base material. Microhardness of the specimen improved by 30-40% after LPwC. However, the potentiodynamic polarization study indicated that though there is an enhancement of corrosion potential (Ecorr), the corrosion current density (Icorr) increased with increase in laser pulse density.

  10. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs.

    PubMed

    Borschevsky, A; Pershina, V; Eliav, E; Kaldor, U

    2013-03-28

    Static dipole polarizabilities of element 119 and its singly charged cation are calculated, along with those of its lighter homologs, Cs and Fr. Relativity is treated within the 4-component Dirac-Coulomb formalism and electron correlation is included by the single reference coupled cluster approach with single, double, and perturbative triple excitations (CCSD(T)). Very good agreement with available experimental values is obtained for Cs, lending credence to the predictions for Fr and element 119. The atomic properties in group-1 are largely determined by the valence ns orbital, which experiences relativistic stabilization and contraction in the heavier elements. As a result, element 119 is predicted to have a relatively low polarizability (169.7 a.u.), comparable to that of Na. The adsorption enthalpy of element 119 on Teflon, which is important for possible future experimental studies of this element, is estimated as 17.6 kJ/mol, the lowest among the atoms considered here. PMID:23556718

  11. Ab initio studies of atomic properties and experimental behavior of element 119 and its lighter homologs

    NASA Astrophysics Data System (ADS)

    Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U.

    2013-03-01

    Static dipole polarizabilities of element 119 and its singly charged cation are calculated, along with those of its lighter homologs, Cs and Fr. Relativity is treated within the 4-component Dirac-Coulomb formalism and electron correlation is included by the single reference coupled cluster approach with single, double, and perturbative triple excitations (CCSD(T)). Very good agreement with available experimental values is obtained for Cs, lending credence to the predictions for Fr and element 119. The atomic properties in group-1 are largely determined by the valence ns orbital, which experiences relativistic stabilization and contraction in the heavier elements. As a result, element 119 is predicted to have a relatively low polarizability (169.7 a.u.), comparable to that of Na. The adsorption enthalpy of element 119 on Teflon, which is important for possible future experimental studies of this element, is estimated as 17.6 kJ/mol, the lowest among the atoms considered here.

  12. Residual stress, mechanical behavior and electrical properties of Cu/Nb thin-film multilayers

    SciTech Connect

    Griffin, A.J. Jr.; Hundley, M.F.; Jervis, T.R.; Kung, H.H.; Scarborough, W.K.; Walter, K.C.; Nastasi, M.; Embury, J.D.

    1995-09-01

    Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.

  13. Statistical Properties and Multifractal Behaviors of Market Returns by Ising Dynamic Systems

    NASA Astrophysics Data System (ADS)

    Fang, Wen; Wang, Jun

    An interacting-agent model of speculative activity explaining price formation in financial markets is considered in the present paper, which based on the stochastic Ising model and the mean field theory. The model describes the interaction strength among the agents as well as an external field, and the corresponding random logarithmic price return process is investigated. According to the empirical research of the model, the time series formed by this Ising model exhibits the bursting typical of volatility clustering, the fat-tail phenomenon, the power-law distribution tails and the long-time memory. The statistical properties of the returns of Hushen 300 Index, Shanghai Stock Exchange (SSE) Composite Index and Shenzhen Stock Exchange (SZSE) Component Index are also studied for comparison between the real time series and the simulated ones. Further, the multifractal detrended fluctuation analysis is applied to investigate the time series returns simulated by Ising model have the distribution multifractality as well as the correlation multifractality.

  14. Corrosion behavior and mechanical properties of a new nitrogen strengthened Fe-Mn-Cr alloy

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1999-07-01

    Nitrogen alloyed, Ni-free, austenitic stainless steels with more than 1 wt.% nitrogen are a new group of alloys with promising properties. They exhibit a very interesting combination of high strength and toughness with a high corrosion resistance in various environments. This work shows the influence of chromium, molybdenum and nitrogen on the corrosion resistance of Fe25Mn-alloys. According to these results Fe25Mn-alloys with approximately 20 wt.% chromium about 3 wt.% molybdenum and approximately 1.3 wt.% nitrogen have an excellent corrosion resistance. The critical pitting temperature (CPT) of 61 C and the critical crevice temperature (CCT) of 37 C when tested according to ASTM G-48 A were significantly higher than the well established AISI 316 L stainless steel.

  15. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.

    PubMed

    Boere, Kristel W M; van den Dikkenberg, Joep; Gao, Yuan; Visser, Jetze; Hennink, Wim E; Vermonden, Tina

    2015-09-14

    Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be

  16. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    PubMed

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  17. Competence and Adherence Scale for Cognitive Behavioral Therapy (CAS-CBT) for anxiety disorders in youth: Psychometric properties.

    PubMed

    Bjaastad, Jon Fauskanger; Haugland, Bente Storm Mowatt; Fjermestad, Krister W; Torsheim, Torbjørn; Havik, Odd E; Heiervang, Einar R; Öst, Lars-Göran

    2016-08-01

    The aim of the present study was to evaluate the psychometric properties of the Competence and Adherence Scale for Cognitive Behavioral Therapy (CAS-CBT). The CAS-CBT is an 11-item scale developed to measure adherence and competence in cognitive-behavioral therapy (CBT) for anxiety disorders in youth. A total of 181 videotapes from the treatment sessions in a randomized controlled effectiveness trial (Wergeland et al., 2014) comprising youth (N = 182, M age = 11.5 years, SD = 2.1, range 8-15 years, 53% girls, 90.7% Caucasian) with mixed anxiety disorders were assessed with the CAS-CBT to investigate interitem correlations, internal consistency, and factor structure. Internal consistency was good (Cronbach's alpha = .87). Factor analysis suggested a 2-factor solution with Factor 1 representing CBT structure and session goals (explaining 46.9% of the variance) and Factor 2 representing process and relational skills (explaining 19.7% of the variance). The sum-score for adherence and competence was strongly intercorrelated, r = .79, p < .001. Novice raters (graduate psychology students) obtained satisfactory accuracy (ICC > .40, n = 10 videotapes) and also good to excellent interrater reliability when compared to expert raters (ICC = .83 for adherence and .64 for competence, n = 26 videotapes). High rater stability was also found (n = 15 videotapes). The findings suggest that the CAS-CBT is a reliable measure of adherence and competence in manualized CBT for anxiety disorders in youth. Further research is needed to investigate the validity of the scale and psychometric properties when used with other treatment programs, disorders and treatment formats. (PsycINFO Database Record

  18. Structure-mediated transition in the behavior of elastic and inelastic properties of beach tree bio-carbon

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; Gutierrez, A.; Ramirez-Rico, J.

    2013-09-01

    Microstructural characteristics and amplitude dependences of the Young modulus E and of internal friction (logarithmic decrement δ) of bio-carbon matrices prepared from beech tree wood at different carbonization temperatures T carb ranging from 600 to 1600°C have been studied. The dependences E( T carb) and δ( T carb) thus obtained revealed two linear regions of increase of the Young modulus and of decrease of the decrement with increasing carbonization temperature, namely, Δ E ˜ AΔ T carb and Δδ ˜ BΔ T carb, with A ≈ 13.4 MPa/K and B ≈ -2.2 × 10-6 K-1 for T carb < 1000°C and A ≈ 2.5 MPa/K and B ≈ -3.0 × 10-7 K-1 for T carb > 1000°C. The transition observed in the behavior of E( T carb) and δ( T carb) at T carb = 900-1000°C can be assigned to a change of sample microstructure, more specifically, a change in the ratio of the fractions of the amorphous matrix and of the nanocrystalline phase. For T carb < 1000°C, the elastic properties are governed primarily by the amorphous matrix, whereas for T carb > 1000°C the nanocrystalline phase plays the dominant part. The structurally induced transition in the behavior of the elastic and microplastic characteristics at a temperature close to 1000°C correlates with the variation of the physical properties, such as electrical conductivity, thermal conductivity, and thermopower, reported in the literature.

  19. Optical properties and switching behavior in Gd2O3:Er3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Kumar, K.; Rai, S. B.

    2009-11-01

    The upconversion (UC) efficient Gd2O3:Er3+ nanophosphor powder has been synthesized through the combustion route using urea as a reducing agent. The UC studies have been carried out using 532 nm excitation, and the samples show intense emission bands in ultraviolet (340 and 383 nm), blue (411, 458, 472, and 491 nm), and green (523 nm) regions of spectrum. Downconversion emission bands are also observed in green (550 nm) and red (672 nm) regions. The pump power dependence of the emission intensity shows that two photons are involved in creating one upconverted photon and that excited state absorption is the excitation mechanism. The excitation intensity stimulated switchinglike behavior has been observed in the intensities of some emission bands. Phonon assisted energy migration from the H211/2 (S43/2) level to the upper F45/2 and F47/2 levels, opening up a new channel for emission at a certain level of input power, is thought to be the probable cause of a switchinglike mechanism. The plasmalike continuum emission has also been observed at elevated excitation powers.

  20. Hygroscopic Properties and Respiratory System Deposition Behavior of Particulate Matter Emitted By Mining and Smelting Operations

    PubMed Central

    Youn, Jong-sang; Csavina, Janae; Rine, Kyle P.; Shingler, Taylor; Taylor, Mark Patrick; Sáez, A. Eduardo; Betterton, Eric A.; Sorooshian, Armin

    2016-01-01

    This study examines size-resolved physicochemical data for particles sampled near mining and smelting operations and a background urban site in Arizona with a focus on how hygroscopic growth impacts particle deposition behavior. Particles with aerodynamic diameters between 0.056 – 18 μm were collected at three sites: (i) an active smelter operation in Hayden, AZ, (ii) a legacy mining site with extensive mine tailings in Iron King, AZ, and (iii) an urban site, inner-city Tucson, AZ. Mass size distributions of As and Pb exhibit bimodal profiles with a dominant peak between 0.32-0.56 μm and a smaller mode in the coarse range (> 3 μm). The hygroscopicity profile did not exhibit the same peaks owing to dependence on other chemical constituents. Sub-micrometer particles were generally more hygroscopic than super-micrometer ones at all three sites with finite water-uptake ability at all sites and particle sizes examined. Model calculations at a relative humidity of 99.5% reveal significant respiratory system particle deposition enhancements at sizes with the largest concentrations of toxic contaminants. Between dry diameters of 0.32 and 0.56 μm, for instance, ICRP and MPPD models predict deposition fraction enhancements of 171%-261% and 33%-63%, respectively, at the three sites. PMID:27700056

  1. Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior

    NASA Astrophysics Data System (ADS)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    In this work, we explore the basic static and dynamic behavior of a hydraulically actuated Peano muscle and how its geometry affects key static and dynamic performance metrics. The Peano muscle, or pouch motor is a fluid powered artificial muscle. Similar to McKibben pneumatic artificial muscles (PAMs), it has the ability to generate the high forces of biological muscles with the low threshold pressure of pleated PAMs, but in a slim, easily distributed form. We found that Peano muscles have similar characteristics to other PAMs, but produce lower free-strains. A test rig capable of measuring high-speed flow rates with a Venturi tube revealed that their efficiency peaks at about 40% during highly dynamic movements. Peano muscles with more tubes and of a greater size do not move faster. Also, their muscle tubes should have an aspect ratio of at least 1:3 and channel width greater than 20% to maximize performance. These findings suggest that finite element modeling be used to optimize more complex Peano muscle geometries.

  2. Effect of food preservatives on the hydration properties and taste behavior of amino acids: a volumetric and viscometric approach.

    PubMed

    Banipal, Tarlok S; Kaur, Navalpreet; Kaur, Amanpreet; Gupta, Mehak; Banipal, Parampaul K

    2015-08-15

    Thermodynamic and transport properties of aqueous solutions are very useful in the elucidation of solute-solvent and solute-solute interactions, which help to understand the hydration and taste behavior of solutes. The densities and viscosities of L-glycine, β-alanine and L-leucine have been determined in water and in aqueous solutions of sodium propionate (NaP) and calcium propionate (CaP) at temperatures 298.15 and 308.15K. From these data, apparent molar volumes (V2,ϕ), viscosity B-coefficients and corresponding transfer parameters (ΔtrV2,ϕo and ΔtrB) have been calculated. The dB/dT values suggest that L-glycine and β-alanine act as structure-breaker, while L-leucine acts as structure-maker both in water and in aqueous solutions of NaP and CaP. The decrease in hydration number and change in taste behavior have also been observed with increasing concentration of the cosolute.

  3. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  4. Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Panicker, Sudhy S.; Singh, Har Govind; Panda, Sushanta Kumar; Dashwood, Richard

    2015-11-01

    Automotive industries are very much interested in characterization of formability improvement of aluminum alloys at elevated temperatures before designing tools, heating systems, and processing sequences for fabrication of auto-body panels by warm forming technology. In this study, tensile tests of AA5754-H22 aluminum alloy were carried out at five different temperatures and three different strain rates to investigate the deformation behavior correlating with Cowper-Symonds constitutive equation. Laboratory scale warm forming facilities were designed and fabricated to perform limiting dome height and deep drawing tests to evaluate forming limit strains and drawability of sheet metal at different tool temperatures. The forming limit strain and dome height improved significantly when both the die and punch were heated to 200 °C. Remarkable improvement in deep drawn cup depth was observed when die and punch temperatures were maintained at 200 and 30 °C, respectively, producing a non-isothermal temperature gradient of approximately 93 °C across the blank from flange to center. The forming behavior at different isothermal and non-isothermal conditions were predicted successfully using a thermo-mechanical FE model incorporating temperature-dependent properties in Barlat-89 yield criterion coupled with Cowper-Symonds hardening model, and the thinning/failure location in deformed cups were validated implementing the experimental limiting strains as damage model.

  5. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    NASA Astrophysics Data System (ADS)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  6. Behavior and Properties of Mature Lytic Granules at the Immunological Synapse of Human Cytotoxic T Lymphocytes

    PubMed Central

    Ming, Min; Schirra, Claudia; Becherer, Ute; Stevens, David R.; Rettig, Jens

    2015-01-01

    Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting. PMID:26296096

  7. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance. PMID:27519472

  8. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance.

  9. Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties

    NASA Technical Reports Server (NTRS)

    Fette, Russell B.; Sovinski, Marjorie F.

    2004-01-01

    Vectran HS appears from literature and testing to date to be an ideal upgrade from Kevlar braided cords for many long-term, static-loading applications such as tie-downs on solar arrays. Vectran is a liquid crystalline polymer and exhibits excellent tensile properties. The material has been touted as a zero creep product. Testing discussed in this report does not support this statement, though the creep is on the order of four times slower than with similar Kevlar 49 products. Previous work with Kevlar and new analysis of Vectran testing has led to a simple predictive model for Vectran at ambient conditions. The mean coefficient of thermal expansion (negative in this case) is similar to Kevlar 49, but is not linear. A positive transition in the curve occurs near 100 C. Out-gassing tests show that the material performs well within parameters for most space flight applications. Vectran also offers increased abrasion resistance, minimal moisture regain, and similar UV degradation. The effects of material construction appear to have a dramatic effect in stress relaxation for braided Vectran. To achieve the improved relaxation rate, upgrades must also examine alternate construction or preconditioning methods. This report recommends Vectran HS as a greatly improved replacement material for applications where time-dependent relaxation is a major factor.

  10. PROPERTIES AND BALLISTIC BEHAVIOR OF PRESSURELESS SINTERED SIC/TIB2 COMPOSITES

    SciTech Connect

    T.M. Lillo; H.S. Chu; B.Merkle; D. Bailey; W.M. Harrison

    2005-01-01

    Pressureless sintering of ceramics for armor applications offers the potential of greatly reduced cost and increased production volume. Previously it was shown that pure SiC could be made by pressureless sintering while achieving a ballistic performance slightly less than commercial SiC made by pressure-assisted densification (PAD). Additions of titanium diboride were made to pin the SiC grain size during pressureless sintering to achieve a final grain size closer to that found in PAD SiC and achieve improved ballistic performance. Silicon carbide/titanium diboride composites of various compositions were blended by various means, consolidated and pressureless sintered to near theoretical density. Additions of TiB2 were <10% by volume and increased the density of the material by less than 3% over that of pure SiC. Variations in the mixing techniques yielded composites with a range of TiB2 particle sizes. TiB2 additions hindered SiC grain growth and the formation of elongated grains during high temperature pressureless sintering. The microstructure of the composites is documented and compared to commercially available SiC material. The SiC/TiB2 composites demonstrated improved ballistic properties in Depth-of-Penetration (DOP) tests over pure, pressureless-sintered SiC material and approach that of SiC made by hot pressing.

  11. The cleavage and surface properties of wet and dry ground spodumene and their flotation behavior

    NASA Astrophysics Data System (ADS)

    Zhu, Guangli; Wang, Yuhua; Liu, Xiaowen; Yu, Fushun; Lu, Dongfang

    2015-12-01

    The flotability of wet and dry ground spodumene was found different when sodium oleate was used as a collector, and the flotation recovery of wet ground spodumene was higher than that of dry ground spodumene. It is well known that the flotability of minerals is closely related with their crystal structures and surface properties, therefore morphology and structure examinations on wet and dry ground spodumene were performed by SEM and XRD. It was confirmed that wet ground spodumene had smoother surface and more exposed {1 1 0} and {1 0 0} planes, while more exposed {0 1 0} planes were found on dry ground spodumene surface. The specific surface areas of wet and dry ground spodumene in size fraction of -105 + 38 μm were determined to be 0.252 m2/g and 0.382 m2/g, respectively. However, the maximum adsorption densities of sodium oleate on wet and dry ground spodumene were 21.5 × 10-6 mol/m2 and 12.5 × 10-6 mol/m2, respectively. The densities of surface Alsbnd O broken bonds were calculated to be 6.376 × 1018, 4.351 × 1018 and 14.057 × 1018/m2 for {1 1 0}, {0 1 0} and {1 0 0}, respectively. The result indicated that {1 0 0} and {1 1 0} planes were more favorable for the adsorption of oleic acid ion than {0 1 0} plane.

  12. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol)-polylactide conjugate

    PubMed Central

    Chen, Wei-Lin; Peng, Yun-Fen; Chiang, Sheng-Kuo; Huang, Ming-Hsi

    2015-01-01

    A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol)-polylactide (PEG-PLA) with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt) as a coupling agent and 4-dimethylaminopyridine (DMAP) as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), proton nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA) did not alter the crystallization ability of the poly(ethylene glycol) (PEG) blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis) absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles. PMID:25914532

  13. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.

    PubMed

    Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun

    2016-03-15

    In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices. PMID:26794756

  14. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior.

    PubMed

    Rui-Hong, Xie; Peng-Gang, Ren; Jian, Hui; Fang, Ren; Lian-Zhen, Ren; Zhen-Feng, Sun

    2016-03-15

    In this study, graphene oxide reinforced regenerated cellulose/polyvinyl alcohol (GO-RCE/PVA) ternary hydrogels were successfully prepared via a repeated freezing and thawing method in NaOH/urea aqueous solution. The effect of GO content on the mechanical properties, swelling behavior, water content of composite hydrogels was investigated. It was found that the mechanical properties of GO-RCE/PVA ternary hydrogels were largely enhanced relative to RCE/PVA hydrogels. With the addition of 1.0wt% GO, the tensile strength was increased by 40.4% from 0.52MPa to 0.73MPa, accompanied by the increase of the elongation at break (from 103% to 238%). Meanwhile, GO-RCE/PVA ternary hydrogels performed the excellent pH-sensitivity, and the higher pH leaded to higher swelling ratio. With 0.8wt% GO loading, the swelling ratio of GO-RCE/PVA ternary hydrogel was improved from 150% (pH=2) to 310% (pH=14). In addition, a slight increase in the water content of the ternary hydrogel was achieved with increasing concentrations of GO. It is believed that this novel ternary hydrogels is a promising material in the application of biomedical engineering and intelligent devices.

  15. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks.

    PubMed

    Wang, X; Li, J T; Xie, M Y; Qu, L J; Zhang, P; Li, X L

    2015-11-01

    In this paper, a novel (Hydroxyapatite+β-tricalcium phosphate)/Mg-5Sn ((HA+β-TCP)/Mg-5Sn) composite with interpenetrating networks was fabricated by infiltrating Mg-5Sn alloy into porous HA+β-TCP using suction casting technique. The structure, mechanical property and corrosion behaviors of the composite have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion test. It is shown that the molten Mg-5Sn alloy has infiltrated not only into the pores but also into the struts of the HA+β-TCP scaffold to forming a compact composite. The microstructure observation also shows that the Mg alloy contacts to the HA+β-TCP closely, and no reaction layer can be found between Mg-5Sn alloy and scaffold. The ultimate compressive strength of the composite is as high as 176MPa, which is about four fifths of the strength of the Mg-5Sn bulk alloy. The electrochemical and immersion tests indicate that the corrosion resistance of the composite is better than that of the Mg-5Sn bulk alloy. The corrosion products on the composite surface are mainly Mg(OH)2, Ca3(PO4)2 and HA. Appropriate mechanical and corrosion properties of the (HA+β-TCP)/Mg-5Sn composite indicate its possibility for new bone tissue implant materials. PMID:26249605

  16. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. PMID:22341919

  17. Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Strain, R.V.; Tsai, H.C.; Park, J.H.; Smith, D.L.

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

  18. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability.

  19. Microstructure, mechanical properties, corrosion behavior and hemolysis of as-extruded biodegradable Mg-Sn-Zn alloy

    NASA Astrophysics Data System (ADS)

    Hou, L.; Li, Z.; Pan, Y.; Du, L.; Li, X.; Zheng, Y.; Li, L.

    2016-04-01

    As biodegradable biomaterials, magnesium alloys have favorable physical, chemical and mechanical properties, as well as good biocompatibility, and are expected to totally biodegrade in the body environment. The microstructure, mechanical properties, corrosion behaviors and hemolysis of biodegradable Mg-Sn-Zn alloy were investigated under three extrusion ratios in the present work. It is revealed that the as-extruded microstructure is obviously refined with smaller grains compared with the as-cast structure while some twins form simultaneously. The tensile strengths of the as-extruded alloys fabricated with the higher extrusion ratio is 249MPa, and elongations is 16.3% respectively. Besides, the corrosion rate of as-extruded magnesium alloys increases with the increasing extrusion ratio. The hemolysis test result shows that the hemolysis rate of biodegradable magnesium alloys fabricated with the higher extrusion ratio is 4.8%, when hemolysis rate lower than 5% has been demonstrated safe according to ISO 10993-4. In conclusion, the as-extruded biodegradable Mg-Sn-Zn alloy shows great potential as a novel medical implant material.

  20. Thermal properties and nanodispersion behavior of synthesized β-sitosteryl acyl esters: a structure-activity relationship study.

    PubMed

    Panpipat, Worawan; Dong, Mingdong; Xu, Xuebing; Guo, Zheng

    2013-10-01

    The efficiency (dose response) of cholesterol-lowering effect of phytosterols in humans depends on their chemical forms (derived or non-derived) and formulation methods in a delivery system. With a series of synthesized β-sitosteryl fatty acid esters (C2:0-C18:0 and C18:1-C18:3), this work examined their thermal properties and applications in preparation of nanodispersion with β-sitosterol as a comparison. Inspection of the melting point (Tm) and the heat of fusion (ΔH) of β-sitosteryl fatty acid esters and the chain length and unsaturation degree of fatty acyl moiety revealed a pronounced structure-property relationship. The nanodispersions prepared with β-sitosterol and β-sitosteryl saturated fatty acid (SFA) esters displayed different particle size distribution patterns (polymodal vs bimodal), mean diameter (115 nm vs less than 100 nm), and polydispersity index (PDI) (0.50 vs 0.23-0.38). β-sitosteryl unsaturated fatty acid (USFA) esters showed a distinctly different dispersion behavior to form nanoemulsions, rather than nanodispersions, with more homogeneous particle size distribution (monomodal, mean diameter 27-63 nm and PDI 0.18-0.25). The nanodispersion of β-sitosteryl medium chain SFA ester (C14:0) demonstrated a best storage stability.

  1. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks.

    PubMed

    Wang, X; Li, J T; Xie, M Y; Qu, L J; Zhang, P; Li, X L

    2015-11-01

    In this paper, a novel (Hydroxyapatite+β-tricalcium phosphate)/Mg-5Sn ((HA+β-TCP)/Mg-5Sn) composite with interpenetrating networks was fabricated by infiltrating Mg-5Sn alloy into porous HA+β-TCP using suction casting technique. The structure, mechanical property and corrosion behaviors of the composite have been evaluated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical testing, electrochemical and immersion test. It is shown that the molten Mg-5Sn alloy has infiltrated not only into the pores but also into the struts of the HA+β-TCP scaffold to forming a compact composite. The microstructure observation also shows that the Mg alloy contacts to the HA+β-TCP closely, and no reaction layer can be found between Mg-5Sn alloy and scaffold. The ultimate compressive strength of the composite is as high as 176MPa, which is about four fifths of the strength of the Mg-5Sn bulk alloy. The electrochemical and immersion tests indicate that the corrosion resistance of the composite is better than that of the Mg-5Sn bulk alloy. The corrosion products on the composite surface are mainly Mg(OH)2, Ca3(PO4)2 and HA. Appropriate mechanical and corrosion properties of the (HA+β-TCP)/Mg-5Sn composite indicate its possibility for new bone tissue implant materials.

  2. Effect of nitriding time on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Chih; Hou, Chun-Kan

    2010-02-01

    The effect on secondary recrystallization behaviors and magnetic properties of grain-oriented electrical steel of nitriding time from 0 to 240 s in the acquired-inhibitor method has been studied. It was found that the volume fraction of nitride precipitates increased with increasing nitriding time. However, the average diameter of the nitride precipitates decreased with increasing nitriding time. Two kinds of nitride precipitates were found to have formed after primary recrystallization annealing. A fine rod-shaped precipitate was found to be Si 3N 4 and and a coarse, lozenge-shaped precipitate was MnSiN 2. Moreover, primary grain size decreased with increasing nitriding time due to retarding of the grain growth by precipitates. After secondary recrystallization annealing, the specimen that was nitrided for 30 s obtained the largest volume fraction of abnormal growth grains and largest area percentage of Goss grains. Conversely, specimens that were nitrided more or less than 30 s demonstrated poor secondary recrystallization and obtained low area percentage of Goss grains. Furthermore, the optimum nitriding time to obtain the best magnetic properties was 30 s. In addition, the optimum nitrogen content was 150 ppm.

  3. Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors.

    PubMed Central

    Piazza, P V; Deroche, V; Deminière, J M; Maccari, S; Le Moal, M; Simon, H

    1993-01-01

    In both humans and animals certain individuals seek stimuli or situations that are considered stressful and consequently avoided by others. A common feature of such situations is an activation of the hypothalamo-pituitary-adrenal axis leading to secretion of glucocorticoids. Since glucocorticoids have euphoric effects in some individuals and have been shown to potentiate the reinforcing properties of drugs of abuse in animals, we hypothesized that corticosterone secretion during stress-like situations may have reinforcing effects and that a higher sensitivity to the reinforcing effects of glucocorticoids might be a biological basis of sensation seeking. In this report we show that (i) corticosterone has reinforcing properties, as evidenced by the development of intravenous self-administration, (ii) self-administration of corticosterone is observed at plasma levels that are comparable to those induced by stress, and (iii) there are individual differences in corticosterone self-administration, which are related to individual reactivity to novelty and sensitivity to drugs of abuse, behavioral features akin to certain traits of high-sensation seekers. These findings provide insight into the physiological role of glucocorticoids and the biology of sensation seeking and may have clinical implications. PMID:8265619

  4. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon

    2016-10-01

    The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.

  5. Soil and biosolid nano- and macro-colloid properties and contaminant transport behavior

    NASA Astrophysics Data System (ADS)

    Ghezzi, Jessique L.

    Despite indications that they are potential contaminant transport systems and threats to groundwater quality, very little effort has been invested in comparing contaminant transport behavior of natural environmental nanocolloids and their corresponding macrocolloid fractions in the presence of As, Se, Pb, and Cu contaminants. This study involved physico-chemical, mineralogical, stability and contaminant-transport characterizations of nano- (< 100 nm) and macro-colloids (100-2000 nm) fractionated from three Kentucky soils and one biosolid waste. Particle size was investigated with SEM/TEM and dynamic light scattering. Surface reactivity was estimated using CEC and zeta potential. Mineralogical composition was determined by XRD, FTIR, and thermogravimetric analyses. Sorption isotherms assessed affinities for Cu2+, Pb2+, AsO3-, and SeO4 -2 contaminants, while settling kinetics experiments of suspensions at 0, 2 and 10 mg/L contaminants determined stability and transportability potential. Undisturbed 18x30 cm KY Ashton Loam soil monoliths were also used for transport experiments, involving infusion of 50 mg L-1 colloid suspensions spiked with 2 mg L-1 mixed contaminant loads in unsaturated, steady state, unit gradient downward percolation experiments. Overall, nanocolloids exhibited greater stability over corresponding macrocolloids in the presence and absence of contaminants following specific mineralogy trends. Physicochemical characterizations indicated that extensive organic carbon surface coatings and higher Al/Fe:Si ratios may have induced higher stability in the nanocolloid fractions, in spite of some hindrance by nano-aggregation phenomena. In the transport experiments, nanocolloids eluted significantly higher concentrations of colloids, total, and colloid-bound metals than corresponding macrocolloids. Contaminant elutions varied by colloid type, mineralogy and contaminant, with the following sequences: soil-colloids>bio-colloids, smectitic

  6. Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Wan, G. J.; Huang, N.

    2003-05-01

    Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy. The Raman spectroscopy results showed a decreasing sp 3 fraction (an increasing trend in ID/ IG ratio) with increasing argon flow from 0 to 13 sccm. The sp 3:sp 2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp 3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp 3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp 3:sp 2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.

  7. Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xingye; Lu, Zhe; Jung, Yeon-Gil; Li, Li; Knapp, James; Zhang, Jing

    2016-06-01

    Lanthanum zirconate (La2Zr2O7) coatings are newly proposed thermal barrier coating (TBC) systems which exhibit lower thermal conductivity and potentially higher thermal stability compared to other traditional thermal barrier systems. In this work, La2Zr2O7 and 8 wt pct yttria stabilized zirconia (8YSZ) single-layer and double-layer TBC systems were deposited using the air plasma spray technique. Thermal properties of the coatings were measured. Furnace heat treatment and jet engine thermal shock tests were implemented to evaluate coating performance during thermal cycling. The measured average thermal conductivity of porous La2Zr2O7 coating ranged from 0.59 to 0.68 W/m/K in the temperature range of 297 K to 1172 K (24 °C to 899 °C), which was approximately 25 pct lower than that of porous 8YSZ (0.84 to 0.87 W/m/K) in the same temperature range. The coefficients of thermal expansion values of La2Zr2O7 were approximately 9 to 10 × 10-6/K from 400 K to 1600 K (127 °C to 1327 °C), which were about 10 pct lower than those of porous 8YSZ. The double-layer coating system consisting of the porous 8YSZ and La2Zr2O7 layers had better thermal shock resistance and thermal cycling performance than those of single-layer La2Zr2O7 coating and double-layer coating with dense 8YSZ and La2Zr2O7 coatings. This study suggests that porous 8YSZ coating can be employed as a buffer layer in La2Zr2O7-based TBC systems to improve the overall coating durability during service.

  8. Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Mahamuda, Sk.; Swapna, K.; Srinivasa Rao, A.; Jayasimhadri, M.; Sasikala, T.; Pavani, K.; Rama Moorthy, L.

    2013-09-01

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of neodymium are prepared by using the melt quenching technique to study their physical, absorption and luminescence properties to understand the lasing potentialities of these glasses. From the absorption spectra various spectroscopic parameters and Judd-Ofelt (JO) parameters are evaluated. These JO parameters are used to calculate the transition probability (A), radiative lifetime (τR), and branching ratios (βR) for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses gives three prominent transitions 4F3/2→4I9/2, 4F3/2→4I11/2 and 4F3/2→4I13/2 for which effective band widths (ΔλP) and stimulated emission cross-sections (σse) are evaluated. Branching ratios and stimulated emission cross-sections measured for all these glasses show that the 4F3/2→4I11/2 transition under investigation has the potential for laser applications. The intensity of Nd3+ emission spectra increases with increasing concentrations of Nd3+ up to 1 mol% and beyond 1 mol% the concentration quenching is observed. The high stimulated emission cross-section and branching ratios from the present glasses suggests their potential for infrared lasers. From the absorption and emission spectral studies it was found that, 1 mol% of Nd3+ ion concentration is optimum for Zinc Alumino Bismuth Borate glasses to generate a strong laser emission at 1060 nm.

  9. Physical and chemical modifications of surface properties lead to alterations in osteoblast behavior

    NASA Astrophysics Data System (ADS)

    Dorst, Kathryn Elizabeth

    Proper formation of the bone extracellular matrix (ECM), or osteoid, depends on the surface properties of pre-existing tissue and the aqueous chemical environment. Both of these factors greatly influence osteoblast migration, cytoskeletal organization, and calcium nodule production, important aspects when considering the biocompatibility of bone implants. By perturbing the physical and/or chemical micro-environment, it may be possible to elucidate effects on cellular function. To examine these factors, murine pre-osteoblasts (MC3T3-E1 subclones 4 and 24) were seeded on polydimethylsiloxane (PDMS) substrates containing "wide" micro-patterned ridges (20 mum width, 30 mum pitch, & 2 mum height), "narrow" micro-patterned ridges (2 mum width, 10 mum pitch, 2 mum height), no patterns (flat PDMS), and standard tissue culture (TC) polystyrene as a control. Zinc concentration was adjusted to mimic deficient (0.23 muM), serum-level (3.6 muM), and zinc-rich (50 muM) conditions. It was found that cells exhibited distinct anisotropic migration in serum-level zinc and zinc-deficient media on the wide PDMS patterns, however this was disrupted under zinc-rich conditions. Production of differentiation effectors, activated metalloproteinase-2 (MMP-2) and transforming growth factor - beta 1 (TGF-beta1), was increased with the addition of exogenous zinc. Early stage differentiation, via alkaline phosphatase, was modified by zinc levels on patterned polydimethylsiloxane (PDMS) surfaces, but not on flat PDMS or tissue culture polystyrene (TC). Late stage differentiation, visualized through calcium phosphate nodules, was markedly different at various zinc levels when the cells were cultured on TC substrates. This susceptibility to zinc content can lead to differences in bone mineral production on certain substrates if osteoblasts are not able to maintain and remodel bone effectively, a process vital to successful biomaterial integration.

  10. Property.

    ERIC Educational Resources Information Center

    Piele, Philip K.; Johnson, Margaret M.

    This chapter deals with 1981 cases involving disputes over property. Cases involving the detachment and attachment of land continue to dominate the property chapter with 11 cases reported, the same number summarized in last year's chapter. One case involving school board referenda raised the interesting question of whether or not a state could…

  11. Property.

    ERIC Educational Resources Information Center

    Bickel, Robert D.; Zeller, Trisha A.

    A number of cases related to property issues involving institutions of higher education are examined in this chapter. Cases discussed touch on such topics as funding for property and equipment acquisition; opposition to building construction or demolition; zoning issues; building construction and equipment contracts; and lease agreements. Current…

  12. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.

    PubMed

    Georgiopoulos, P; Kontou, E; Meristoudi, A; Pispas, S; Chatzinikolaidou, M

    2014-11-01

    In this work a series of polylactic acid/SiO2 nanocomposites have been prepared by a melt mixing procedure. The dispersion quality was examined by scanning electron microscopy. To study the degradation behavior of the polylactic acid/nanocomposites prepared, the samples were immersed in a buffer solution at a temperature of 37℃ with a pH of 7.4 for a time period of up to 23 weeks. These conditions simulate those in the human body, appropriate in medical applications. In order to assess their suitability in biomedical applications, we investigated the biocompatibility of these materials in terms of cell viability, growth, and morphology. A good initial cell adhesion has been detected, supporting their potential use in bone tissue engineering applications. The hydrolytic degradation of polylactic acid, under the prescribed conditions, was studied by the molecular weight reduction in terms of size exclusion chromatography, whereas the progress of thermal stability of polylactic acid and polylactic acid/nanocomposites during aging was tested by thermogravimetric analysis. The evolution of the materials' thermomechanical properties during aging was studied by differential scanning calorimetry, dynamic mechanical analysis, and tensile testing. The crystallization behavior in polylactic acid and the way it is affected by the presence of nanofillers during degradation procedure has been studied and values of 44% crystallinity increment have been found. At the specific aging conditions studied, silica nanoparticles accelerate the degradability of polylactic acid, having a higher impact on Young's modulus, under the specified aging conditions, for 7 weeks and hereafter this acceleration is retarded, due to the crystallinity increment, as a result of the molecular weight reduction.

  13. Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects that Evoke Avoidance Behaviors

    PubMed Central

    McMillan, Glyn A.; Gray, John R.

    2015-01-01

    The locust visual system contains a well-defined motion-sensitive pathway that transfers visual input to motor centers involved in predator evasion and collision avoidance. One interneuron in this pathway, the descending contralateral movement detector (DCMD), is typically described as using rate coding; edge expansion of approaching objects causes an increased rate of neuronal firing that peaks after a certain retinal threshold angle is exceeded. However, evidence of intrinsic DCMD bursting properties combined with observable oscillations in mean firing rates and tight clustering of spikes in raw traces, suggest that bursting may be important for motion detection. Sensory neuron bursting provides important timing information about dynamic stimuli in many model systems, yet no studies have rigorously investigated if bursting occurs in the locust DCMD during object approach. We presented repetitions of 30 looming stimuli known to generate behavioral responses to each of 20 locusts in order to identify and quantify putative bursting activity in the DCMD. Overall, we found a bimodal distribution of inter-spike intervals (ISI) with peaks of more frequent and shorter ISIs occurring from 1–8 ms and longer less frequent ISIs occurring from 40–50 ms. Subsequent analysis identified bursts and isolated single spikes from the responses. Bursting frequency increased in the latter phase of an approach and peaked at the time of collision, while isolated spiking was predominant during the beginning of stimulus approach. We also found that the majority of inter-burst intervals (IBIs) occurred at 40–50 ms (or 20–25 bursts/s). Bursting also occurred across varied stimulus parameters and suggests that burst timing may be a key component of looming detection. Our findings suggest that the DCMD uses two modes of coding to transmit information about looming stimuli and that these modes change dynamically with a changing stimulus at a behaviorally-relevant time. PMID:26696845

  14. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.

    PubMed

    Lu, Jinwen; Zhao, Yongqing; Niu, Hongzhi; Zhang, Yusheng; Du, Yuzhou; Zhang, Wei; Huo, Wangtu

    2016-05-01

    The present study is to investigate the microstructural characteristics, electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys with Fe addition for biomedical application, and Ti-6Al-4V alloy with two-phase (α+β) microstructure is also studied as a comparison. Microstructural characterization reveals that the phase and crystal structure are sensitive to the Fe content. Ti-6Al alloy displays feather-like hexagonal α phase, and Ti-6Al-1Fe exhibits coarse lath structure of hexagonal α phase and a small amount of β phase. Ti-6Al-2Fe and Ti-6Al-4Fe alloys are dominated by elongated, equiaxed α phase and retained β phase, but the size of α phase particle in Ti-6Al-4Fe alloy is much smaller than that in Ti-6Al-2Fe alloy. The corrosion resistance of these alloys is determined in SBF solution at 37 °C. It is found that the alloys spontaneously form a passive oxide film on their surface after immersion for 500 s, and then they are stable for polarizations up to 0 VSCE. In comparison with Ti-6Al and Ti-6Al-4V alloys, Ti-6Al-xFe alloys exhibit better corrosion resistance with lower anodic current densities, larger polarization resistances and higher open-circuit potentials. The passive layers show stable characteristics, and the wide frequency ranges displaying capacitive characteristics occur for high iron contents. Elasticity experiments are performed to evaluate the elasticity property at room temperature. Ti-6Al-4Fe alloy has the lowest Young's modulus (112 GPa) and exhibits the highest strength/modulus ratios as large as 8.6, which is similar to that of c.p. Ti (8.5). These characteristics of Ti-6Al-xFe alloys form the basis of a great potential to be used as biomedical implantation materials. PMID:26952395

  15. Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate.

    PubMed

    Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui

    2016-07-01

    Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment. PMID:27372115

  16. Effects of Al(3+) doping on the structure and properties of goethite and its adsorption behavior towards phosphate.

    PubMed

    Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui

    2016-07-01

    Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment.

  17. Mechanical properties of the cuticles of three cockroach species that differ in their wind-evoked escape behavior

    PubMed Central

    Clark, Andrew J.

    2014-01-01

    The structural and material properties of insect cuticle remain largely unexplored, even though they comprise the majority (approximately 80%) of animals. Insect cuticle serves many functions, including protection against predatory attacks, which is especially beneficial to species failing to employ effective running escape responses. Despite recent advances in our understanding of insect escape behaviors and the biomechanics of insect cuticle, there are limited studies on the protective qualities of cuticle to extreme mechanical stresses and strains imposed by predatory attacks, and how these qualities vary between species employing different escape responses. Blattarians (cockroaches) provide an appropriate model system for such studies. Wind-evoked running escape responses are strong in Periplaneta americana, weak in Blaberus craniifer and absent in Gromphodorhina portentosa, putting the latter two species at greater risk of being struck by a predator. We hypothesized that the exoskeletons in these two larger species could provide more protection from predatory strikes relative to the exoskeleton of P. americana. We quantified the protective qualities of the exoskeletons by measuring the puncture resistance, tensile strength, strain energy storage, and peak strain in fresh samples of thoracic and abdominal cuticles from these three species. We found a continuum in puncture resistance, tensile strength, and strain energy storage between the three species, which were greatest in G. portentosa, moderate in B. craniifer, and smallest in P. americana. Histological measurements of total cuticle thickness followed this same pattern. However, peak strain followed a different trend between species. The comparisons in the material properties drawn between the cuticles of G. portentosa, B. craniifer, and P. americana demonstrate parallels between cuticular biomechanics and predator running escape responses. PMID:25101230

  18. Single-Molecule-Magnet Behavior and Fluorescence Properties of 8-Hydroxyquinolinate Derivative-Based Rare-Earth Complexes.

    PubMed

    Gao, Hong-Ling; Jiang, Li; Wang, Wen-Min; Wang, Shi-Yu; Zhang, Hong-Xia; Cui, Jian-Zhong

    2016-09-01

    Five tetranuclear rare-earth complexes, [RE4(dbm)4L6(μ3-OH)2] [HL = 5- (4-fluorobenzylidene)-8-hydroxylquinoline; dbm = 1,3-diphenyl-1,3-propanedione; RE = Y (1), Eu (2), Tb (3), Dy (4), Lu (5)], have been synthesized and completely characterized. The X-ray structural analyses show that each [RE4] complex is of typical butterfly or rhombus topology. Each RE(III) center exists in an eight-coordinated square-antiprism environment. Magnetic studies reveal that complex 4 displays single-molecule-magnet behavior below 10 K under a zero direct-current field, with an effective anisotropy barrier (ΔE/kB = 56 K). The fluorescence properties of complexes 1-5 were also investigated. Complexes 2-4 showed their characteristic peaks for the corresponding RE(III) center, while complexes 1 and 5 showed the same emission peaks with the ligand when they were excited at the same wavelength. PMID:27560459

  19. Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice

    PubMed Central

    Pristerà, Alessandro; Lin, Wei; Kaufmann, Anna-Kristin; Brimblecombe, Katherine R.; Threlfell, Sarah; Dodson, Paul D.; Magill, Peter J.; Fernandes, Cathy; Cragg, Stephanie J.; Ang, Siew-Lan

    2015-01-01

    Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by l-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice. PMID:26283356

  20. Dynamic Mechanical Properties, Crystallization Behavior and Morphology of Nanoscale Tin Fluorophosphate Glass/Polyamide 66 Hybrid Materials.

    PubMed

    Liu, Huiwen; Yang, Jing; Yu, Honglin; Zou, Xiaoxuan; Jing, Bo; Dai, Wenli

    2016-04-01

    The dynamic mechanical properties, crystallization behavior and morphology of nanoscale Tg tin fluorophosphate glass (TFP glass)/polyamide 66 (PA66) hybrid materials were investigated by XRD, DSC and SEM. The experimental results showed that the Tg of TFP/PA66 hybrid decreased and the third relaxation in the highly filled hybrid appeared due to the interaction between the TFP glass and amide groups of PA66. The storage modulus of the hybrid materials increased with increase in the content of TFP at low temperatures but had little effect at high temperatures. This result was attributed to the stiffness depression of the TFP glass when the temperature rose above its Tg and the similar elasticity of the two phases because of the interaction between the components. The degree of crystallinity and a, y crystal content of PA66 both decreased due to the interaction between the two phases. In addition, the phase defect, the size distribution and the compatibility of TFP in the PA66 matrix were discussed by SEM, the results showed that the TFP appeared aggregation partly, but had the favorable compatibility in the PA66 matrix. PMID:27451779

  1. Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis

    PubMed Central

    2013-01-01

    Nano/micro-manufacturing under wet condition is an important consideration for various tool-based processes such as indentation, scratching, and machining. The existence of liquids adds complexity to the system, changes the tool/work interfacial condition, and affects material behaviors. For indentation, it may also affect material property measurements. However, little effort has been made to study this challenging issue at nano- or atomistic scale. In this study, we tackle this challenge by investigating nano-indentation processes submerged in water using the molecular dynamics (MD) simulation approach. Compared with dry indentation in which no water molecules are present, the existence of water molecules causes the increase of indentation force in initial penetration, but the decrease of indentation force in full penetration. It also reduces the sticking phenomenon between the work and tool atoms during indenter retraction, such that the indentation geometry can be better retained. Meanwhile, nano-indentation under wet condition exhibits the indentation size effect, while dry nano-indentation exhibits the reverse indentation size effect. The existence of water leads to higher computed hardness values at low indentation loads and a smaller value of Young's modulus. In addition, the friction along the tool/work interface is significantly reduced under wet indentation. PMID:24044504

  2. Precipitation Behavior and Mechanical Properties of Ti-Mo Medium-Carbon Steel During Austenite to Bainite Transformation

    NASA Astrophysics Data System (ADS)

    Deng, Xiangtao; Wang, Zhaodong; Misra, R. D. K.; Han, Jie; Wang, Guodong

    2015-02-01

    The precipitation behavior and evolution of mechanical properties of Ti-Mo-bearing microalloyed medium-carbon steel during austenite to bainite transformation were studied, and two different cooling rates including ultrafast cooling (~80 °C/s) and accelerated cooling (~15 °C/s) during transformation were also investigated. The results suggest that Ti-Mo-bearing medium-carbon steel yield finer microstructure and nano-precipitates during austenite to bainite transformation during both ultrafast cooling and accelerated cooling processes. Yield strength and tensile strength obtained by ultrafast cooling process were higher than the accelerated cooling process, while the elongation was slightly reduced. Microstructural characterization indicated that grain refinement and precipitation hardening were the primary reasons for the increase in strength. Ultrafast cooling increased the density of dislocations and refined the grain size. Average size of precipitates containing Ti and Mo was 3-6 nm by ultrafast cooling process, while average precipitate size obtained by accelerated cooling process was 6-9 nm.

  3. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior

    PubMed Central

    Muessig, L.; Hauser, J.; Wills, T. J.; Cacucci, F.

    2016-01-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input (“remapping”) and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues (“pattern completion”). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. PMID:27282394

  4. Place Cell Networks in Pre-weanling Rats Show Associative Memory Properties from the Onset of Exploratory Behavior.

    PubMed

    Muessig, L; Hauser, J; Wills, T J; Cacucci, F

    2016-08-01

    Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. PMID:27282394

  5. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.

    PubMed

    Kubásek, J; Vojtěch, D; Lipov, J; Ruml, T

    2013-05-01

    As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In.

  6. Comparison of Elevated Temperature Tensile Properties and Fatigue Behavior of Two Variants of a Woven SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Brewer, David N.; Sreeramesh, Kalluri

    2005-01-01

    Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength, and strain at failure) of two variants of a woven SiC/SiC composite, manufactured during two separate time periods (9/99 and 1/01), were determined at 1038 and 1204 C by conducting tensile tests on specimens machined from plates. Continuous cycling fatigue tests (R = 0.05) and 20 cpm) were also conducted at the same two temperatures on specimens from both composites. In this study, average tensile properties, 95% confidence intervals associated with the tensile properties, and geometric mean fatigue lives of both composite materials are compared. The observed similarities and differences in the tensile properties are highlighted and an attempt is made to understand the relationship, if any, between the tensile properties and the fatigue behaviors of the two woven composites.

  7. Effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial SrTiO3 thin films on DyScO3 substrates

    SciTech Connect

    Lee, Che-Hui; Skoromets, Volodymyr; Biegalski, Michael D; Lei, Shiming; Haislmaier, Ryan; Uecker, Reinhard; Bernhagen, Margitta; Xi, Xiaoxing; Gopalan, Venkatraman; Marti, Xavier; Kamba, Stanislav; Kuzel, Petr; Schlom, Darrell

    2013-01-01

    The effect of stoichiometry on the dielectric properties and soft mode behavior of strained epitaxial Sr1-xTiO3 films grown on DyScO3 substrates is reported. Direct comparisons between nominally stoichiometric and non-stoichiometric films have been performed through measurements of lattice parameters, temperature-dependent permittivities, second harmonic generation, and terahertz dielectric spectra. The nominally stoichiometric film shows dispersion-free low-frequency permittivity with a 23 sharp maximum and pronounced soft mode behavior. Our results suggest that strained perfectlystoichiometric SrTiO3 films should not show relaxor behavior and that relaxor behavior emergesfrom defect dipoles that arise from non-stoichiometry in the highly polarizable strained SrTiO3 matrix

  8. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    PubMed Central

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2012-01-01

    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed. PMID:23203099

  9. The German Version of the Dutch Eating Behavior Questionnaire: Psychometric Properties, Measurement Invariance, and Population-Based Norms

    PubMed Central

    Hilbert, Anja; de Zwaan, Martina; Braehler, Elmar; Kersting, Anette

    2016-01-01

    The Dutch Eating Behavior Questionnaire is an internationally widely used instrument assessing different eating styles that may contribute to weight gain and overweight: emotional eating, external eating, and restraint. This study aimed to evaluate the psychometric properties of the 30-item German version of the DEBQ including its measurement invariance across gender, age, and BMI-status in a representative German population sample. Furthermore, we examined the distribution of eating styles in the general population and provide population-based norms for DEBQ scales. A representative sample of the German general population (N = 2513, age ≥ 14 years) was assessed with the German version of the DEBQ along with information on sociodemographic characteristics and body weight and height. The German version of the DEQB demonstrates good item characteristics and reliability (restraint: α = .92, emotional eating: α = .94, external eating: α = .89). The 3-factor structure of the DEBQ could be replicated in exploratory and confirmatory factor analyses and results of multi-group confirmatory factor analyses supported its metric and scalar measurement invariance across gender, age, and BMI-status. External eating was the most prevalent eating style in the German general population. Women scored higher on emotional and restrained eating scales than men, and overweight individuals scored higher in all three eating styles compared to normal weight individuals. Small differences across age were found for external eating. Norms were provided according to gender, age, and BMI-status. Our findings suggest that the German version of the DEBQ has good reliability and construct validity, and is suitable to reliably measure eating styles across age, gender, and BMI-status. Furthermore, the results demonstrate a considerable variation of eating styles across gender and BMI-status. PMID:27656879

  10. Thickness-dependent retention behaviors and ferroelectric properties of BiFeO3 thin films on BaPbO3 electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Ching; Wu, Jenn-Ming

    2007-09-01

    BiFeO3 (BFO) thin films produced with varied film thicknesses ranging from 100to230nm were fabricated on BaPbO3(BPO )/Pt/Ti/SiOx/Si substrates by rf-magnetron sputtering. Saturated polarization-electrical field hysteresis loops, polarization response by pulse measurement, and retention properties were obtained for BFO films with various thicknesses on BPO. The retention behaviors of BFO demonstrate logarithmic time dependence and stretched exponential law. When the thicknesses of BFO films increase, the contribution of logarithmic time dependence to retention, the stretched exponential law becomes dominant. BFO films with thinner thickness exhibit better retention properties but possess smaller remnant polarization.

  11. Preliminary Psychometric Properties of an Observation System to Assess Teachers' Use of Effective Behavior Support Strategies in Preschool Classrooms

    ERIC Educational Resources Information Center

    Vujnovic, Rebecca K.; Fabiano, Gregory A.; Waschbusch, Daniel A.; Pelham, William E.; Greiner, Andrew; Gera, Shradha; Linke, Stuart; Gormley, Matt; Buck, Melina

    2014-01-01

    Challenging behaviors are one of the most common concerns of early educators, and preschool teachers continue to report feeling unprepared to meet the needs of children displaying challenging behaviors. Overall, traditional standardized classroom assessments have evaluated global classroom quality, but they may not capture the reciprocal and…

  12. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  13. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  14. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing

    PubMed Central

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C–1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C–1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds

  15. The effect of friction stir processing on the microstructure, mechanical properties and fracture behavior of investment cast titanium aluminum vanadium

    NASA Astrophysics Data System (ADS)

    Pilchak, Adam L.

    . Thus, the mechanical properties were investigated using micropillar compression and microtensile specimens. The effect of friction stir processing on crack initiation resistance was assessed using high cycle fatigue tests conducted in four-point bend which put only the stir zone in maximum tension. The results indicated that at constant stress amplitude, there was greater than an order of magnitude increase in fatigue life after friction stir processing. In addition, the fatigue strength of the investment cast material was improved between 20 pct. and 60 pct. by friction stir processing. These improvements have been verified with a statistically significant number of tests. Finally, the wide range of microstructures created by friction stir processing provided an opportunity to study the effect of underlying microstructure on the fracture behavior of alpha + beta titanium alloys. For this purpose, high resolution fractography coupled with quantitative tilt fractography and electron backscatter diffraction was used to provide a direct link between microstructure, crystallography and fracture topography. These techniques have been used extensively to study the early stages of post-initiation crack growth in Ti-6Al-4V, especially at low stress intensity ranges (DeltaK) in the as-cast material. A limited number of experiments were also performed on Ti-6Al-4V specimens in other microstructural conditions to assess the generality of the detailed results obtained for the fully lamellar material. The results show that fracture topography depends strongly on DeltaK and microstructural length scale. In addition, many of the features observed on the fracture surface were directly related to the underlying crystallographic orientation.

  16. DIRAC: A new version of computer algebra tools for studying the properties and behavior of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    McConnell, Sean; Fritzsche, Stephan; Surzhykov, Andrey

    2010-03-01

    During recent years, the DIRAC package has proved to be an efficient tool for studying the structural properties and dynamic behavior of hydrogen-like ions. Originally designed as a set of MAPLE procedures, this package provides interactive access to the wave and Green's functions in the non-relativistic and relativistic frameworks and supports analytical evaluation of a large number of radial integrals that are required for the construction of transition amplitudes and interaction cross sections. We provide here a new version of the DIRAC program which is developed within the framework of MATHEMATICA (version 6.0). This new version aims to cater to a wider community of researchers that use the MATHEMATICA platform and to take advantage of the generally faster processing times therein. Moreover, the addition of new procedures, a more convenient and detailed help system, as well as source code revisions to overcome identified shortcomings should ensure expanded use of the new DIRAC program over its predecessor. New version program summaryProgram title: DIRAC Catalogue identifier: ADUQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 45 073 No. of bytes in distributed program, including test data, etc.: 285 828 Distribution format: tar.gz Programming language: Mathematica 6.0 or higher Computer: All computers with a license for the computer algebra package Mathematica (version 6.0 or higher) Operating system: Mathematica is O/S independent Classification: 2.1 Catalogue identifier of previous version: ADUQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 165 (2005) 139 Does the new version supersede the previous version?: Yes Nature of problem: Since the early days of quantum mechanics, the

  17. Testing Students with Special Educational Needs in Large-Scale Assessments - Psychometric Properties of Test Scores and Associations with Test Taking Behavior.

    PubMed

    Pohl, Steffi; Südkamp, Anna; Hardt, Katinka; Carstensen, Claus H; Weinert, Sabine

    2016-01-01

    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are-at the same time-measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L.

  18. Testing Students with Special Educational Needs in Large-Scale Assessments - Psychometric Properties of Test Scores and Associations with Test Taking Behavior.

    PubMed

    Pohl, Steffi; Südkamp, Anna; Hardt, Katinka; Carstensen, Claus H; Weinert, Sabine

    2016-01-01

    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are-at the same time-measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L. PMID:26941665

  19. Testing Students with Special Educational Needs in Large-Scale Assessments – Psychometric Properties of Test Scores and Associations with Test Taking Behavior

    PubMed Central

    Pohl, Steffi; Südkamp, Anna; Hardt, Katinka; Carstensen, Claus H.; Weinert, Sabine

    2016-01-01

    Assessing competencies of students with special educational needs in learning (SEN-L) poses a challenge for large-scale assessments (LSAs). For students with SEN-L, the available competence tests may fail to yield test scores of high psychometric quality, which are—at the same time—measurement invariant to test scores of general education students. We investigated whether we can identify a subgroup of students with SEN-L, for which measurement invariant competence measures of adequate psychometric quality may be obtained with tests available in LSAs. We furthermore investigated whether differences in test-taking behavior may explain dissatisfying psychometric properties and measurement non-invariance of test scores within LSAs. We relied on person fit indices and mixture distribution models to identify students with SEN-L for whom test scores with satisfactory psychometric properties and measurement invariance may be obtained. We also captured differences in test-taking behavior related to guessing and missing responses. As a result we identified a subgroup of students with SEN-L for whom competence scores of adequate psychometric quality that are measurement invariant to those of general education students were obtained. Concerning test taking behavior, there was a small number of students who unsystematically picked response options. Removing these students from the sample slightly improved item fit. Furthermore, two different patterns of missing responses were identified that explain to some extent problems in the assessments of students with SEN-L. PMID:26941665

  20. Effect of V(2)O(5) on the sintering behavior, microstructure, and electrical properties of (Na(0.5)K(0.5))NbO(3) ceramics.

    PubMed

    Pan, H; Jin, D; Wu, W; Cheng, J; Meng, Z

    2008-05-01

    Well-sintered (Na(0.5)K(0.5))NbO(3)-x mol% V(2)O(5) ceramics (abbreviated as NKN-V) with fine electrical properties were successfully prepared by conventional solid-state reaction through the careful control of processing conditions. The sintering behavior, phase structure, and electrical properties of the V(2)O(5)-doped NKN ceramics were investigated. Results show that when the V(2)O(5) content is 0.6 mol%, the NKN ceramics attained the maximum density of 4.46 g/cm(3) (about 98.9% of the theoretical density) at 1060 degrees C, and therefore possessed enhanced electrical properties. But when the V(2)O(5) content continued increasing, the density decreased. The secondary phase (Na(2)V (6)O(16)) could be detected by XRD analysis in all samples except x = 0 mol%. The Curie temperature of the NKN-based materials was found to decrease with the increase of V(2)O(5). The dielectric properties of NKN ceramics doped with 0.6 and 0.9 mol% V(2)O(5) were better than that of pure NKN ceramics. In addition, annealing treatment was proved to be an effective technique for improving dielectric properties and reducing the leakage current density.

  1. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Mao, Lin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-03-01

    Mechanical properties at room temperature and biocorrosion behaviors in simulated body fluid (SBF) at 37 °C of a new type of patented Mg-3Nd-0.2Zn-0.4Zr (hereafter, denoted as JDBM) alloy prepared at different extrusion temperatures, as well as heat treatment, were studied. The mechanical properties of this magnesium alloy at room temperature were improved significantly after extrusion and heat treatment compared to an as-cast alloy. The results of mechanical properties show that the yield strength (YS) decreases with increasing extrusion temperature. The tensile elongation decreases a little while the ultimate tensile strength (UTS) has no obvious difference. The yield strength and ultimate tensile strength were improved clearly after heat treatment at 200 °C for 10 h compared with that at the extrusion state, which can be mainly contributed to the precipitation strengthening. The biocorrosion behaviors of the JDBM alloy were studied using immersion tests and electrochemical tests. The results reveal that the extruded JDBM alloy and the aging treatment on the extruded alloy show much better biocorrosion resistance than that at solid solution state (T4 treatment), and the JDBM exhibited favorable uniform corrosion mode in SBF.

  2. The Children's Behavior Questionnaire very short scale: psychometric properties and development of a one-item temperament scale.

    PubMed

    Sleddens, Ester F C; Hughes, Sheryl O; O'Connor, Teresia M; Beltran, Alicia; Baranowski, Janice C; Nicklas, Theresa A; Baranowski, Tom

    2012-02-01

    Little research has been conducted on the psychometrics of the very short scale (36 items) of the Children's Behavior Questionnaire, and no one-item temperament scale has been tested for use in applied work. In this study, 237 United States caregivers completed a survey to define their child's behavioral patterns (i.e., Surgency, Negative Affectivity Effortful Control) using both scales. Psychometrics of the 36-item Children's Behavior Questionnaire were examined using classical test theory, principal factor analysis, and item response modeling. Classical test theory analysis demonstrated adequate internal consistency and factor analysis confirmed a three-factor structure. Potential improvements to the measure were identified using item response modeling. A one-item (three response categories) temperament scale was validated against the three temperament factors of the 36-item scale. The temperament response categories correlated with the temperament factors of the 36-item scale, as expected. The one-item temperament scale may be applicable for clinical use.

  3. Validating the Children's Behavior Questionnaire in Dutch Children: Psychometric Properties and a Cross-Cultural Comparison of Factor Structures

    ERIC Educational Resources Information Center

    Sleddens, Ester F. C.; Kremers, Stef P. J.; Candel, Math J. J. M.; De Vries, Nanne N. K.; Thijs, Carel

    2011-01-01

    In this article, we examined the factorial validity of the Dutch translation of the Children's Behavior Questionnaire (CBQ) and the Very Short Form scores. In addition, we conducted cross-cultural comparisons of temperament structure. In total, 353 parents of 6- to 8-year-olds completed the instrument. The original higher order factor structure of…

  4. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  5. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound. PMID:27433675

  6. Investigation into the phenomena affecting the retention behavior of basic analytes in chaotropic chromatography: Joint effects of the most relevant chromatographic factors and analytes' molecular properties.

    PubMed

    Čolović, Jelena; Kalinić, Marko; Vemić, Ana; Erić, Slavica; Malenović, Anđelija

    2015-12-18

    The aim of this study was to systematically investigate the phenomena affecting the retention behavior of structurally diverse basic drugs in ion-interaction chromatographic systems with chaotropic additives. To this end, the influence of three factors was studied: pH value of the aqueous phase, concentration of sodium hexafluorophosphate, and content of acetonitrile in the mobile phase. Mobile phase pH was found to affect the thermodynamic equilibria in the studied system beyond its effects on the analytes' ionization state. Specifically, increasing pH from 2 to 4 led to longer retention times, even with analytes which remain completely protonated. An explanation for this phenomenon was sought by studying the adsorption behavior of acetonitrile and chaotropic additive onto stationary phase. It was shown that the magnitude of the developed surface potential, which significantly affects retention - increases with pH, and that this can be attributed to the larger surface excess of acetonitrile. To study how analytes' structural properties influence their retention, quantitative structure-retention modeling was performed next. A support vector machine regression model was developed, relating mobile phase constituents and structural descriptors with retention data. While the ETA_EtaP_B_RC and XlogP can be considered as molecular descriptors which describe factors affecting retention in any RP-HPLC system, TDB9p and RDF45p are molecular descriptors which account for spatial arrangement of polarizable atoms and they can clearly relate to analytes' behavior on the stationary phase surface, where the electrostatic potential develops. Complementarity of analytes' structure with that of the electric double layer can be seen as a key factor influencing their retention behavior. Structural diversity of analytes and good predictive capabilities over a range of experimental conditions make the established model a useful tool in predicting retention behavior in the studied

  7. Effect of variable physical properties on the thermal behavior of thin metallic wires under a DC field

    NASA Astrophysics Data System (ADS)

    Dey, Avishek Kumar; Ghosh, Abhishek Kumar; Ahmed, S. Reaz

    2016-07-01

    The effect of variable physical properties on the electro-thermal response of a thin metallic wire is investigated under a uniform direct current field. A general governing differential equation is derived for steady-state heat conduction in conductive wires with surface convection and Joule heating, in which the associated material as well as physical properties of the thermal and electrical problems are modeled as a function of temperature. The resulting nonlinear boundary-value problem is then solved by converting into an equivalent initial-value problem through a trial-and-error based numerical scheme. The electro-thermal characteristics of the wire are realized to be affected significantly when the physical properties are expressed as appropriate functions of temperature.

  8. Studies on tensile properties and fracture behavior of Al-6Si-0.5Mg (-Cu or/and Ni) alloys at various strain rates

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Gulshan, F.; Kurny, A. S. W.

    2016-07-01

    The aim of this paper is to evaluate the effects of various strain rates on the tensile properties of Al-6Si-0.5Mg cast alloys with Cu or/and Ni additions and to establish data on the stress-strain behavior of the alloys with applications in automotive engineering. Experimental alloys of the following composition were prepared by melt processing technique. Both microstructure and the mechanical properties were investigated. The uniaxial tension test was carried out at strain rates ranging from 10-4s-1 to 10-2s-1. Tensile strengths were found to increase with ageing temperature and the maximum being attained at peak age condition (1hr at 225°C). The additions of Cu or/and Ni resulted in an increase in tensile strength and 2wt% Cu content alloy (Al-6Si-0.5Mg-2Cu) showed maximum strength. Evaluation of tensile properties at three strain rates (10-4, 10-3 and 10-2s-1) showed that strain rates affected the tensile properties significantly. At higher strain rates the strength was better but ductility was poor.

  9. Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    PubMed

    Fereshteh, Zeinab; Nooeaid, Patcharakamon; Fathi, Mohammadhossein; Bagri, Akbar; Boccaccini, Aldo R

    2015-09-01

    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research.

  10. Mechanical Properties and High Temperature Oxidation Behavior of Ti-Al Coating Reinforced by Nitrides on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Dai, Jingjie; Yu, Huijun; Zhu, Jiyun; Weng, Fei; Chen, Chuanzhong

    2016-05-01

    Ti-Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti-6Al-4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800∘C for 1000h in static air was 5.16×10-3mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti-6Al-4V titanium alloy significantly.

  11. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-01

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  12. Swallow-tailed alkyl and linear alkoxy-substituted dibenzocoronene tetracarboxdiimide derivatives: synthesis, photophysical properties, and thermotropic behaviors.

    PubMed

    Yang, Tengzhou; Pu, Jialing; Zhang, Jun; Wang, Wenguang

    2013-05-17

    A series of dibenzocoronene tetracarboxdiimide derivatives decorated with alkyl swallow-tail and alkoxy moieties were synthesized, and their structures were characterized. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an effective oxidant was first used in the benzannulation of perylene diimides with the almost quantitative yield. The thermotropic behavior was investigated using differential scanning calorimetry (DSC) and polarization optical microscopy (POM). The introduction of alkyl swallow-tail and alkoxy substituents facilitates thermotropic liquid crystalline behavior. The branching site of alkyl swallow-tail units at the α position and the longer alkoxy chains played a similar role in lowering the mesophase transition as well as isotropization transition temperatures. The UV-vis absorption spectra of all compounds appeared as absorption in 425-600 nm region, and POM images of certain compounds exhibited characteristic columnar hexagonal (Col(h)) packing and readily self-assembled into a homeotropic alignment toward the substrate. PMID:23600443

  13. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs

    PubMed Central

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg−1 twice a day for 5 days) but not by haloperidol (1 mg kg−1 twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  14. The properties and fracture behavior of ion plasma sprayed TiN coating on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Orlova, Dina V.; Goncharenko, Igor M.; Danilov, Vladimir I.; Lobach, Maxim I.; Danilova, Lidiya V.; Shlyakhova, Galina V.

    2015-10-01

    The wear resistance and fracture behavior of ion plasma sprayed TiN coating were studied; the results are presented. The coating was applied to the stainless steel substrate using a vacuum arc method. The samples were tested by active loading. With varying coating thickness, its characteristics were found to change. Multiple cracking would occur in the deformed sample, with fragment borders aligned normal to the extension axis.

  15. Factor analysis and psychometric properties of the Mother-Adolescent Sexual Communication (MASC) instrument for sexual risk behavior.

    PubMed

    Cox, Mary Foster; Fasolino, Tracy K; Tavakoli, Abbas S

    2008-01-01

    Sexual risk behavior is a public health problem among adolescents living at or below poverty level. Approximately 1 million pregnancies and 3 million cases of sexually transmitted infections (STIs) are reported yearly. Parenting plays a significant role in adolescent behavior, with mother-adolescent sexual communication correlated with absent or delayed sexual behavior. This study developed an instrument examining constructs of mother-adolescent communication, the Mother-Adolescent Sexual Communication (MASC) instrument. A convenience sample of 99 mothers of middle school children completed the self-administered questionnaires. The original 34-item MASC was reduced to 18 items. Exploratory factor analysis was conducted on the 18-item scale, which resulted in four factors explaining 84.63% of the total variance. Internal consistency analysis produced Cronbach alpha coefficients of .87, .90, .82, and .71 for the four factors, respectively. Convergent validity via hypothesis testing was supported by significant correlations with several subscales of the Parent-Child Relationship Questionnaire (PCRQ) with MASC factors, that is, content and style factors with warmth, personal relationships and disciplinary warmth subscales of the PCRQ, the context factor with personal relationships, and the timing factor with warmth. In light of these findings, the psychometric characteristics and multidimensional perspective of the MASC instrument show evidence of usefulness for measuring and advancing knowledge of mother and adolescent sexual communication techniques. PMID:19886470

  16. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. PMID:24709542

  17. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed.

  18. Effect of blending and emulsification on thermal behavior, solid fat content, and microstructure properties of palm oil-based margarine fats.

    PubMed

    Saadi, S; Ariffin, A A; Ghazali, H M; Miskandar, M S; Abdulkarim, S M; Boo, H C

    2011-01-01

    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine

  19. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber - extracellular matrix hydrogel biohybrid scaffold

    PubMed Central

    Hong, Yi; Huber, Alexander; Takanari, Keisuke; Amoroso, Nicholas J.; Hashizume, Ryotaro; Badylak, Stephen F.; Wagner, William R.

    2011-01-01

    A biohybrid composite consisting of extracellular matrix (ECM) gel from porcine dermal tissue and biodegradable elastomeric fibers was generated and evaluated for soft tissue applications. ECM gel possesses attractive biocompatibility and bioactivity with weak mechanical properties and rapid degradation, while electrospun biodegradable poly(ester urethane)urea (PEUU) has good mechanical properties but limited cellular infiltration and tissue integration. A concurrent gel electrospray/polymer electrospinning method was employed to create ECM gel/PEUU fiber composites with attractive mechanical properties, including high flexibility and strength. Electron microscopy revealed a structure of interconnected fibrous layers embedded in ECM gel. Tensile mechanical properties could be tuned by altering the PEUU/ECM weight ratio. Scaffold tensile strengths for PEUU/ECM ratios of 67/33, 72/28 and 80/20 ranged from 80–187 kPa in the longitudinal axis (parallel to the collecting mandrel axis) and 41–91 kPa in the circumferential axis with 645–938% breaking strains. The 72/28 biohybrid composite and a control scaffold generated from electrospun PEUU alone were implanted into Lewis rats, replacing a full-thickness abdominal wall defect. At 4 wk, no infection or herniation was found at the implant site. Histological staining showed extensive cellular infiltration into the biohybrid scaffold with the newly developed tissue well integrated with the native periphery, while minimal cellular ingress into the electrospun PEUU scaffold was observed. Mechanical testing of explanted constructs showed evidence of substantial remodeling, with composite scaffolds adopting properties more comparable to the native abdominal wall. The described elastic biohybrid material imparts features of ECM gel bioactivity with PEUU strength and handling to provide a promising composite biomaterial for soft tissue repair and replacement. PMID:21303718

  20. Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti-6Al-4V alloy.

    PubMed

    Ye, Xiaoxin; Wang, Lingsheng; Tse, Zion T H; Tang, Guoyi; Song, Guolin

    2015-04-01

    The effect of electro-pulsing treatment (EPT) on the microstructure, mechanical properties and corrosion behavior of cold-rolled Ti-6Al-4V alloy strips was investigated in this paper. It was found that the elongation to failure of materials obtains a noticeable enhancement with increased EPT processing time while slightly sacrificing strength. Fine recrystallized grains and the relative highest elongation to failure (32.5%) appear in the 11second-EPT samples. Grain coarsening and decreased ductility were brought in with longer EPT duration time. Fracture surface analysis shows that transition from intergranular brittle facture to transgranular dimple fracture takes place with an increase in processing time of EPT. Meanwhile, corrosion behavior of titanium alloys is greatly improved with increased EPT processing time, which is presented by polarization test and surface observation with the beneficial effect of forming a protective anatase-TiO2 film on the surface of alloys. The rapid recrystallization behavior and oxide formation of the titanium alloy strip under EPTs are attributed to the enhancement of nucleation rate, atomic diffusion and oxygen migration resulting from the coupling of the thermal and athermal effects. PMID:25687017

  1. Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Ahmed, Aymen A.; Mhaede, Mansour; Wollmann, Manfred; Wagner, Lothar

    2016-02-01

    Titanium alloys continue to be used extensively for the fabrication of surgical implants due to their excellent mechanical, physical and biological performance. The surface modification is the main technique to maintain a relatively good mechanical properties and biocompatibility. In this study, a surface modification through micro shot peening (SP) using different ceramic shot (850, 450 and 125-250 μm) at 0.22 mmA have been done on two microstructures Ti-6Al-4V alloy. The effect of this treatment on the corrosion behavior, surface roughness, microhardness profiles, and residual stresses were investigated. In addition, the corrosion behavior of the ultra-fine grain of Ti-6Al-4V materials produced by rotary swaging (RS) deformation has been investigated and compared with the duplex (DU) and globular (GL) microstructures. The corrosion behavior was studied using potentiodynamic polarization and electro impedance spectroscopy techniques. The electrochemical tests were performed in Ringer's solution at 37 °C. The results show that shot peening resulted in near-surface maximum hardness and residual stresses values. Increasing the shot size led to a lower surface roughness and an improved corrosion resistance. However, SP reduces the corrosion resistance compared with the untreated materials. The globular microstructure shows high corrosion rate compared with the duplex and nanostructured materials.

  2. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.

    PubMed

    Li, Xiang; Qin, Aiwen; Zhao, Xinzhen; Liu, Dapeng; Wang, Haiye; He, Chunju

    2015-09-14

    Drawing to change the structural properties and cyclization behaviors of the polyacrylonitrile (PAN) chains in crystalline and amorphous regions is carried out on PAN and PAN/carbon nanotube (CNT) composite fibers. Various characterization methods including Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and thermal gravimetric analysis are used to monitor the structural evolution and cyclization behaviors of the fibers. With an increase of the draw ratio during the plasticized spinning process, the structural parameters of the fibers, i.e. crystallinity and planar zigzag conformation, are decreased at first, and then increased, which are associated with the heat exchange rate and the oriented-crystallization rate. A possible mechanism for plasticized spinning is proposed to explain the changing trends of crystallinity and planar zigzag conformation. PAN and PAN/CNT fibers exhibit various cyclization behaviors induced by drawing, e.g., the initiation temperature for the cyclization (Ti) of PAN fibers is increased with increasing draw ratio, while Ti of PAN/CNT fibers is decreased. Drawing also facilitates cyclization and lowers the percentage of β-amino nitrile for PAN/CNT fibers during the stabilization.

  3. Influence of the sputtering flow regime on the structural properties and magnetic behavior of Fe-Ga thin films (Ga ˜ 30 at.%)

    NASA Astrophysics Data System (ADS)

    Muñoz-Noval, A.; Ordóñez-Fontes, A.; Ranchal, R.

    2016-06-01

    In this paper we analyze the structure of Fe-Ga layers with a Ga content of ˜30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A 2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D 03/B 2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.

  4. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.

    PubMed

    Li, Xiang; Qin, Aiwen; Zhao, Xinzhen; Liu, Dapeng; Wang, Haiye; He, Chunju

    2015-09-14

    Drawing to change the structural properties and cyclization behaviors of the polyacrylonitrile (PAN) chains in crystalline and amorphous regions is carried out on PAN and PAN/carbon nanotube (CNT) composite fibers. Various characterization methods including Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and thermal gravimetric analysis are used to monitor the structural evolution and cyclization behaviors of the fibers. With an increase of the draw ratio during the plasticized spinning process, the structural parameters of the fibers, i.e. crystallinity and planar zigzag conformation, are decreased at first, and then increased, which are associated with the heat exchange rate and the oriented-crystallization rate. A possible mechanism for plasticized spinning is proposed to explain the changing trends of crystallinity and planar zigzag conformation. PAN and PAN/CNT fibers exhibit various cyclization behaviors induced by drawing, e.g., the initiation temperature for the cyclization (Ti) of PAN fibers is increased with increasing draw ratio, while Ti of PAN/CNT fibers is decreased. Drawing also facilitates cyclization and lowers the percentage of β-amino nitrile for PAN/CNT fibers during the stabilization. PMID:26235219

  5. Effects of high-energy electro-pulsing treatment on microstructure, mechanical properties and corrosion behavior of Ti-6Al-4V alloy.

    PubMed

    Ye, Xiaoxin; Wang, Lingsheng; Tse, Zion T H; Tang, Guoyi; Song, Guolin

    2015-04-01

    The effect of electro-pulsing treatment (EPT) on the microstructure, mechanical properties and corrosion behavior of cold-rolled Ti-6Al-4V alloy strips was investigated in this paper. It was found that the elongation to failure of materials obtains a noticeable enhancement with increased EPT processing time while slightly sacrificing strength. Fine recrystallized grains and the relative highest elongation to failure (32.5%) appear in the 11second-EPT samples. Grain coarsening and decreased ductility were brought in with longer EPT duration time. Fracture surface analysis shows that transition from intergranular brittle facture to transgranular dimple fracture takes place with an increase in processing time of EPT. Meanwhile, corrosion behavior of titanium alloys is greatly improved with increased EPT processing time, which is presented by polarization test and surface observation with the beneficial effect of forming a protective anatase-TiO2 film on the surface of alloys. The rapid recrystallization behavior and oxide formation of the titanium alloy strip under EPTs are attributed to the enhancement of nucleation rate, atomic diffusion and oxygen migration resulting from the coupling of the thermal and athermal effects.

  6. Effect of counterion on the mesomorphic behavior and optical properties of columnar pyridinium ionic liquid crystals derived from 4-hydroxypyridine

    NASA Astrophysics Data System (ADS)

    Pană, Amalia; Badea, Florentina L.; Iliş, Monica; Staicu, Teodora; Micutz, Marin; Pasuk, Iuliana; Cîrcu, Viorel

    2015-03-01

    A series of 3,4,5-tridodecyloxybenzyl pyridinium salts derived from 4-hydroxypyridine has been designed and prepared. The liquid crystalline properties of these compounds were investigated by polarized optical microscopy, differential scanning calorimetry and powder X-ray diffraction while their thermal stability was studied by thermogravimetric analysis. The N-3,4,5-tridodecyloxybenzyl-4-pyridone intermediate shows a monotropic columnar hexagonal mesophase ranging from 56 °C down to room temperature while the corresponding bromide dodecyl O-alkylated pyridinium salt shows one enantiotropic columnar mesophase and one additional monotropic columnar phase at lower temperatures. Replacing bromide ion (Br-) with other counterions (NO3-, BF4- and PF6-) resulted in mesophase suppression. These luminescent pyridinium salts show weak emission in dichloromethane solutions at room temperature and a pronounced red-shifted emission in solid state. Photoluminescent properties of the pyridinium salts do not depend significantly on the nature of counterion employed.

  7. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.

    PubMed

    Chiu, Chung-Hua; Huang, Chun-Wei; Chen, Jui-Yuan; Huang, Yu-Ting; Hu, Jung-Chih; Chen, Lien-Tai; Hsin, Cheng-Lun; Wu, Wen-Wei

    2013-06-01

    Copper silicide has been studied in the applications of electronic devices and catalysts. In this study, Cu3Si/Si nanowire heterostructures were fabricated through solid state reaction in an in situ transmission electron microscope (TEM). The dynamic diffusion of the copper atoms in the growth process and the formation mechanism are characterized. We found that two dimensional stacking faults (SF) may retard the growth of Cu3Si. Due to the evidence of the block of edge-nucleation (heterogeneous) by the surface oxide, center-nucleation (homogeneous) is suggested to dominate the silicidation. Furthermore, the electrical transport properties of various silicon channel length with Cu3Si/Si heterostructure interfaces and metallic Cu3Si NWs have been investigated. The observations not only provided an alternative pathway to explore the formation mechanisms and interface properties of Cu3Si/Si, but also suggested the potential application of Cu3Si at nanoscale for future processing in nanotechnology.

  8. The origin of the curing behavior, mechanical and thermal properties of surface functionalized attapulgite/bismaleimide/diallylbisphenol composites

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Liu, Ping; Liang, Guozheng; Gu, Aijuan; Yuan, Li; Guan, Qingbao

    2014-01-01

    High curing temperature and big brittleness are two disadvantages of heat resistant thermosetting resins. To simultaneously resolve these problems, surface functionalized fibrous attapulgite (N-ATT) was used to modify 4,4‧-bismaleimidodiphenylmethane (BDM)/2,2‧-diallyl bisphenol A (DBA) resin, and then a new kind of high performance nanocomposites (BD/N-ATT) were developed. The structure and properties of BD/N-ATT nanocomposites with different loadings of N-ATT were intensively studied. Results prove that the surface functionalization of attapulgite endows N-ATT has multi-effects with BD resin, and thus change the chemical and aggregation state (including crosslinking density and free volume) structures of the crosslinked network, and consequently, the composites have obviously different properties from BD resin. For the composite with only 0.5 wt% N-ATT, its impact strength is about 1.6 times the value of BD resin, while the glass transition temperature and initial degradation temperature are about 25 and 20 °C higher than those of BD resin, respectively. The attractive properties of BD/N-ATT composites with a small loading of N-ATTs suggest that the composites have great potential in many cutting-edge fields; besides, interestingly, the method developed herein suggests a new way to develop high performance resins and related composites with simultaneously improved curing feature, toughness and thermal resistance.

  9. Viscoelastic properties of self-assembled type I collagen fibers: molecular basis of elastic and viscous behaviors.

    PubMed

    Silver, Frederick H; Ebrahimi, Ali; Snowhill, Patrick B

    2002-01-01

    We have studied the strain rate dependence of incremental stress-strain curves of self-assembled type I collagen fibers in an effort to understand the molecular phenomena that contribute to the macroscopic mechanical behavior of tendons. Results of viscoelastic tests at strain rates between 10% and 1000% per min suggest that the slope of the elastic stress-strain curve is to a first approximation independent of strain rate while the slope of the viscous stress-strain curve increases with increased strain rate. After correction of the slope of the viscous stress-strain curve for the changes in strain rate, it is observed that the apparent viscosity decreases with increased strain rate. It is concluded that the approximate strain rate independence of the elastic spring constant of collagen is consistent with the spring-like behavior of the 12 flexible regions that make up the collagen D-period. These regions are poor in the rigid amino acid residues proline and hydroxyproline. In contrast, the thixotropy of collagen is consistent with the slippage of subfibrillar subunits during tensile deformation. It is hypothesized that at high strain rates subfibrillar subunits appear to "hydroplane" by each other on a layer of loosely bound water. PMID:12685863

  10. Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit.

    PubMed

    Adeli, Mostafa; Samavati, Vahid

    2015-01-01

    The extraction of water-soluble polysaccharide from Ziziphus lotus fruit (WPZL) was performed by ultrasonic-assisted extraction method. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (ultrasonic power (X1: 70-100 W), extraction time (X2: 10-30 min), extraction temperature (X3: 55-95 °C), and water to raw material ratio (X4: 5-25)) on the extraction yield of APH. The effect of temperature and concentration on flow behavior of gum solution was studied. WPZL solutions exhibited shear-thinning non-Newtonian flow behavior for concentrations above 0.5% (w/v). The viscosity of fully hydrated gum solutions decreased as temperature increase. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the extraction of WPZL. The optimal conditions to obtain the highest extraction of WPZL (13.398 ± 0.019%) were as follows: ultrasonic power, 88.77 W; extraction time, 29.96 min, extraction temperature, 77.73 °C and water to raw material ratio 24.44 mL/g.

  11. Modeling the Peano fluidic muscle and the effects of its material properties on its static and dynamic behavior

    NASA Astrophysics Data System (ADS)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    The promise of wearable assistive robotics cannot be realized without the development of actuators that mimic the behavior and form of biological muscles. Planar fluidic muscles known as Peano muscles or pouch motors have the potential to provide the high force and compliance of McKibben pneumatic artificial muscles with the low threshold pressure of pleated pneumatic artificial muscles. Yet they do so in a soft and slim form that can be discreetly distributed over the human body. This work is an investigation into the empirical modeling of the Peano muscle, the effect of its material on its performance, and its capabilities and limitations. We discovered that the Peano muscle could provide responsive and discreet actuation of soft and rigid bodies requiring strains between 15% and 30%. Ideally, they are made of non-viscoelastic materials with high tensile and low bending stiffnesses. While Sarosi et al’s empirical model accurately captures its static behavior with an root mean square error of 10.2 N, their dynamic model overestimates oscillation frequency and damping. We propose that the Peano muscle be modeled by a parallel ideal contractile unit and viscoelastic element, both in series with another viscoelastic element.

  12. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    PubMed

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging.

  13. Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit.

    PubMed

    Adeli, Mostafa; Samavati, Vahid

    2015-01-01

    The extraction of water-soluble polysaccharide from Ziziphus lotus fruit (WPZL) was performed by ultrasonic-assisted extraction method. A Box-Behnken design (BBD) was applied to evaluate the effects of three independent variables (ultrasonic power (X1: 70-100 W), extraction time (X2: 10-30 min), extraction temperature (X3: 55-95 °C), and water to raw material ratio (X4: 5-25)) on the extraction yield of APH. The effect of temperature and concentration on flow behavior of gum solution was studied. WPZL solutions exhibited shear-thinning non-Newtonian flow behavior for concentrations above 0.5% (w/v). The viscosity of fully hydrated gum solutions decreased as temperature increase. The correlation analysis of the mathematical-regression model indicated that quadratic polynomial model could be employed to optimize the extraction of WPZL. The optimal conditions to obtain the highest extraction of WPZL (13.398 ± 0.019%) were as follows: ultrasonic power, 88.77 W; extraction time, 29.96 min, extraction temperature, 77.73 °C and water to raw material ratio 24.44 mL/g. PMID:25195543

  14. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application.

    PubMed

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Li, Junlei; Zhao, Chaoqian; Zhuo, Dongxian; Lin, Jinxin

    2015-04-01

    In this study, an experimental investigation on fabricating Ni-free CoCrW alloys by selective laser melting (SLM) for dental application was conducted in terms of microstructure, hardness, mechanical property, electrochemical behavior, and metal release; and line and island scanning strategy were applied to determine whether these strategies are able to obtain expected CoCrW parts. The XRD revealed that the γ-phase and ε-phase coexisted in the as-SLM CoCrW alloys; The OM and SEM images showed that the microstructure of CoCrW alloys appeared square-like pattern with the fine cellular dendrites at the borders; tensile test suggested that the difference of mechanical properties of line- and island-formed specimens was very small; whilst the outcomes from the electrochemical and metal release tests indicated that the island-formed alloys showed slightly better corrosion resistance than line-formed ones in PBS and Hanks solutions. Considering that the mechanical properties and corrosion resistance of line-formed and island-formed specimens meet the standards of ISO 22674:2006 and EN ISO 10271, CoCrW dental alloys can be successfully fabricated by line and island scanning strategies in the SLM process.

  15. High-Tc ferromagnetic semiconductor-like behavior and unusual electrical properties in compounds with a 2×2×2 superstructure of the half-Heusler phase.

    PubMed

    Xiong, Ding-Bang; Okamoto, Norihiko L; Waki, Takeshi; Zhao, Yufeng; Kishida, Kyosuke; Inui, Haruyuki

    2012-02-27

    Heusler phases, including the full- and half-Heusler families, represent an outstanding class of multifunctional materials on account of their great tunability in compositions, valence electron counts (VEC), and properties. Here we demonstrate a systematic design of a series of new compounds with a 2×2×2 superstructure of the half-Heusler unit cell in X-Y-Z (X=Fe, Ru, Co, Rh, Ir; Y=Zn, Mn; Z=Sn, Sb) systems. Their structures were solved by using both powder and single-crystal X-ray diffraction, and also directly observed by using high-angle annular dark-field imaging in a scanning transmission electron microscope (HAADF-STEM). The VEC values of these new compounds span a wide and continuous range comparable to those for the full- and half-Heusler families, thereby implying tunability in compositions and physical properties in the superstructure. In fact, we observed abnormal electrical properties and a ferromagnetic semiconductor-like behavior with a high and tunable Curie temperature in these superstructures.

  16. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application.

    PubMed

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Li, Junlei; Zhao, Chaoqian; Zhuo, Dongxian; Lin, Jinxin

    2015-04-01

    In this study, an experimental investigation on fabricating Ni-free CoCrW alloys by selective laser melting (SLM) for dental application was conducted in terms of microstructure, hardness, mechanical property, electrochemical behavior, and metal release; and line and island scanning strategy were applied to determine whether these strategies are able to obtain expected CoCrW parts. The XRD revealed that the γ-phase and ε-phase coexisted in the as-SLM CoCrW alloys; The OM and SEM images showed that the microstructure of CoCrW alloys appeared square-like pattern with the fine cellular dendrites at the borders; tensile test suggested that the difference of mechanical properties of line- and island-formed specimens was very small; whilst the outcomes from the electrochemical and metal release tests indicated that the island-formed alloys showed slightly better corrosion resistance than line-formed ones in PBS and Hanks solutions. Considering that the mechanical properties and corrosion resistance of line-formed and island-formed specimens meet the standards of ISO 22674:2006 and EN ISO 10271, CoCrW dental alloys can be successfully fabricated by line and island scanning strategies in the SLM process. PMID:25686979

  17. Psychometric properties of the Spanish version of the UPPS-P Impulsive Behavior Scale: A Rasch rating scale analysis and confirmatory factor analysis.

    PubMed

    Pilatti, Angelina; Lozano, Oscar M; Cyders, Melissa A

    2015-12-01

    The present study was aimed at determining the psychometric properties of the Spanish version of the UPPS-P Impulsive Behavior Scale in a sample of college students. Participants were 318 college students (36.2% men; mean age = 20.9 years, SD = 6.4 years). The psychometric properties of this Spanish version were analyzed using the Rasch model, and the factor structure was examined using confirmatory factor analysis. The verification of the global fit of the data showed adequate indexes for persons and items. The reliability estimates were high for both items and persons. Differential item functioning across gender was found for 23 items, which likely reflects known differences in impulsivity levels between men and women. The factor structure of the Spanish version of the UPPS-P replicates previous work with the original UPPS-P Scale. Overall, results suggest that test scores from the Spanish version of the UPPS-P show adequate psychometric properties to accurately assess the multidimensional model of impulsivity, which represents the most exhaustive measure of this construct. PMID:26280489

  18. Understanding the NMR properties and conformational behavior of indole vs. azaindole group in protoberberines: NICS and NCS analysis

    NASA Astrophysics Data System (ADS)

    Kadam, Shivaji S.; Toušek, Jaromír; Maier, Lukáš; Pipíška, Matej; Sklenář, Vladimír; Marek, Radek

    2012-11-01

    We report here the preparation and the structural investigation into a series of 8-(indol-1-yl)-7,8-dihydroprotoberberine derivatives derived from berberine, palmatine, and coptisine. Structures of these new compounds were characterized mainly by 2D NMR spectroscopy and the conformational behavior was investigated by using methods of density-functional theory (DFT). PBE0/6-311+G** calculated NMR chemical shifts for selected derivatives correlate excellently with the experimental NMR data and support the structural conclusions drawn from the NMR experiments. An interesting role of the nitrogen atom in position N7' of the indole moiety in 8-(7-azaindol-1-yl)-7,8-dihydroprotoberberines as compared to other 8-indolyl derivatives is investigated in detail. The experimentally observed trends in NMR chemical shifts are rationalized by DFT calculations and analysis based on the nucleus-independent chemical shifts (NICS) and natural localized molecular orbitals (NLMOs).

  19. Stimulating property of Turnera diffusa and Pfaffia paniculata extracts on the sexual-behavior of male rats.

    PubMed

    Arletti, R; Benelli, A; Cavazzuti, E; Scarpetta, G; Bertolini, A

    1999-03-01

    Sexually potent and sexually sluggish/impotent male rats were treated orally with different amounts of Turnera diffusa and Pfaffia paniculata fluid extracts (0.25, 0.50, 1.0 ml/kg). While having no effect on the copulatory behavior of sexually potent rats, both plant extracts--singly or in combination--improved the copulatory performance of sexually sluggish/impotent rats. The highest dose of either extract (1 ml/kg) (as well as the combination of 0.5 ml/kg of each extract) increased the percentage of rats achieving ejaculation and significantly reduced mount, intromission and ejaculation latencies, post-ejaculatory interval and intercopulatory interval. Neither extract affected locomotor activity. These results seem to support the folk reputation of Turnera diffusa and Pfaffia paniculata as sexual stimulants. PMID:10227074

  20. A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks.

    PubMed

    Hobday, Claire L; Marshall, Ross J; Murphie, Colin F; Sotelo, Jorge; Richards, Tom; Allan, David R; Düren, Tina; Coudert, François-Xavier; Forgan, Ross S; Morrison, Carole A; Moggach, Stephen A; Bennett, Thomas D

    2016-02-12

    Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range. PMID:26797762

  1. A Computational and Experimental Approach Linking Disorder, High‐Pressure Behavior, and Mechanical Properties in UiO Frameworks

    PubMed Central

    Hobday, Claire L.; Marshall, Ross J.; Murphie, Colin F.; Sotelo, Jorge; Richards, Tom; Allan, David R.; Düren, Tina; Coudert, François‐Xavier

    2016-01-01

    Abstract Whilst many metal–organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO‐topology Zr‐MOFs, the planar UiO‐67 ([Zr6O4(OH)4(bpdc)6], bpdc: 4,4′‐biphenyl dicarboxylate) and UiO‐abdc ([Zr6O4(OH)4(abdc)6], abdc: 4,4′‐azobenzene dicarboxylate) by single‐crystal nanoindentation, high‐pressure X‐ray diffraction, density functional theory calculations, and first‐principles molecular dynamics. On increasing pressure, both UiO‐67 and UiO‐abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo‐linker of UiO‐abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO‐67, characterized by a large elastic modulus. The use of non‐linear linkers in the synthesis of UiO‐MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range. PMID:26797762

  2. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.

  3. A Computational and Experimental Approach Linking Disorder, High-Pressure Behavior, and Mechanical Properties in UiO Frameworks.

    PubMed

    Hobday, Claire L; Marshall, Ross J; Murphie, Colin F; Sotelo, Jorge; Richards, Tom; Allan, David R; Düren, Tina; Coudert, François-Xavier; Forgan, Ross S; Morrison, Carole A; Moggach, Stephen A; Bennett, Thomas D

    2016-02-12

    Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.

  4. Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior.

    PubMed

    Cacciotti, Ilaria; Fortunati, Elena; Puglia, Debora; Kenny, Josè Maria; Nanni, Francesca

    2014-03-15

    The fabrication of ternary fibrous mats based on poly(lactic) acid (PLA), cellulose nanocrystals (CNCs, both pristine (p-CNCs) and modified with a commercial surfactant (s-CNCs)) and silver (Ag) nanoparticles by electrospinning is reported. Amounts of 1 and 5 wt.% were selected for Ag and CNCs, respectively. Neat PLA and binary PLA/Ag, PLA/p-CNCs and PLA/s-CNCs were produced as references. The CNCs and Ag influence on the microstructural, thermal and mechanical properties was investigated. The Ag and/or p-CNCs addition did not remarkably affect fiber morphology and average size dimension (between (468 ± 111) and (551 ± 122)nm), whereas the s-CNCs presence led to the deposition of a honeycomb-like network on a underneath layer of randomly oriented fibers. The efficiency of the surfactant use in promoting the CNC dispersion was demonstrated. A slight enhancement (e.g. around 25%, in terms of strength) of the mechanical properties of p-CNCs loaded fibers, particularly for PLA/Ag/p-CNCs, was revealed, whereas mats with s-CNCs showed a decrement (e.g. around 35-45%, in terms of strength), mainly imputable to the delamination between the upper honeycomb-like layer and the lower conventional fibrous mat. PMID:24528696

  5. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    PubMed Central

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  6. Structural evolution, sintering behavior and microwave dielectric properties of (1−x)Li{sub 2}TiO{sub 3} + xLiF ceramics

    SciTech Connect

    Ding, Yaomin; Bian, Jianjiang

    2013-08-01

    Graphical abstract: - Highlights: • Structure, sinterability and dielectric properties of LiF-doped Li{sub 2}TiO{sub 3} were studied. • Li{sub 2}TiO{sub 3} can be densitied (TD 98%) at lower sintering temperature by LiF additions. • Excellent microwave dielectric properties could be obtained. - Abstract: Structural evolution, sintering behavior, and microwave dielectric properties of (1−x)Li{sub 2}TiO{sub 3} + xLiF (0.05 ≤ x ≤ 0.70) ceramics have been studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman spectra, thermal dilatometry and microwave resonant measurement at the frequency of about 7–11 GHz. The results show that Li{sub 2}TiO{sub 3} can form limited solid solution with LiF (x ≤ 0.4) and LiF second phase appeared when x{sup 3}0.5. The structure of the solid solution transformed from ordered monoclinic phase (β-Li{sub 2}TiO{sub 3} (ss)) to disordered cubic rock salt (α-Li{sub 2}TiO{sub 3} (ss)) when x{sup 3}0.15. The presence of short range ordering was confirmed for the cubic phase. The sinterability was considerably improved by doping with LiF. Densified ceramics with about 95–98% theoretical density could be obtained for the doped compositions after sintering at 900–1150 °C/2 h. An optimized microwave dielectric properties with ε{sub r} of ∼23.6, Q × f of ∼108,000 GHz and τ{sub f} of ∼4.2 ppm/°C could be obtained for the x = 0.1 composition after sintering at 1100 °C/2 h.

  7. Hygroscopicity Behavior, Activation Properties and Chemical Composition of Atmospheric Aerosol at a Background Site in the Megacity Region of Peking

    NASA Astrophysics Data System (ADS)

    Henning, Silvia; Nowak, Andreas; Mildenberger, Katrin; Göbel, Tina; Nekat, Bettina; van Pinxteren, Dominik; Herrmann, Hartmut; Zhao, Chunsheng; Wiedensohler, Alfred; Stratmann, Frank

    2010-05-01

    Large areas of China suffer from heavy air pollution (both gaseous and particulate) caused by strong economic growth in the last two decades. However, knowledge concerning the physical and chemical properties of the resulting aerosol particles populations, and their effects on the optical properties of the atmosphere, is still sparse. In the framework of the investigations presented here, comprehensive measurements concerning aerosol particle hygroscopicity, CCN ability, composition, and optical properties were performed. The investigations are part of the DFG-funded project HaChi (Haze in China) and are conducted in collaboration with the Peking University. A conclusive parameterization of aerosol hygroscopicity and activation data is aimed for, which will then be implemented in a meso-scale model to investigate aerosol-cloud-radiation and precipitation interactions. During two intensive measurements campaigns (March 2009 and July/ August 2009), in-situ aerosol measurements have been performed in an air-conditioned mobile laboratory next to the Wuqing Meteorological Station (39°23'8.53"N, 117°1'25.88"E), which is located between Bejing and Tijanjin and is thereby an ideal background site in a megacity region. The particle number size distribution (TDMPS), the particle optical properties (MAAP and nephelometer) and their hygroscopic properties at high RH (HH-TDMA, LACIS-mobile) were characterized as well as their cloud nucleating properties above supersaturation (DMT-CCNC). 24 h PM1 particle samples were continuously collected over the two campaigns in winter and summer using a DIGITEL high volume sampler (DHA-80). Additionally two 6h size-resolved samples (daytime and night-time) were collected each day applying an 11-stage Berner impactor. The size-selection of HH-TDMA, LACIS and the CCNC was synchronized with the Berner stages. Opening analysis of the winter campaign data showed that the HH-TDMA usually detected a hydrophobic and a hygroscopic mode, i.e., the

  8. Coagulation behavior and floc properties of compound bioflocculant-polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment.

    PubMed

    Huang, Xin; Sun, Shenglei; Gao, Baoyu; Yue, Qinyan; Wang, Yan; Li, Qian

    2015-04-01

    This study was intended to compare coagulation behavior and floc properties of two dual-coagulants polyaluminum chloride-compound bioflocculant (PAC-CBF) (PAC dose first) and compound bioflocculant-polyaluminum chloride (CBF-PAC) (CBF dose first) with those of PAC alone in low temperature drinking water treatment. Results showed that dual-coagulants could improve DOC removal efficiency from 30% up to 34%. Moreover, CBF contributed to the increase of floc size and growth rate, especially those of PAC-CBF were almost twice bigger than those of PAC. However, dual-coagulants formed looser and weaker flocs with lower breakage factors in which fractal dimension of PAC-CBF flocs was low which indicates a looser floc structure. The floc recovery ability was in the following order: PAC-CBF>PAC alone>CBF-PAC. The flocculation mechanism of PAC was charge neutralization and enmeshment, meanwhile the negatively charged CBF added absorption and bridging effect.

  9. Electrical transport properties and modulus behavior of the organic-inorganic [N(C3H7)4]2SnCl6 compound

    NASA Astrophysics Data System (ADS)

    Hajlaoui, Sondes; Chaabane, Iskandar; Oueslati, Abderrazak; Guidara, Kamel

    2015-10-01

    In this paper we report the study of electric properties of bis-tetrapropylammoniumhexchlorostannte compound. The plots of -Zʺ versus Z‧ obtained in a range of temperature (343-393 K) and frequency (209 Hz to 5 MHz) were well fitted to an equivalent circuit formed by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). The frequency dependence of A.C. conductivity has been fitted using Jonscher relation at different temperatures σ (ω) =σdc + Aωs . The variation of the exponent s with temperature indicates that the CBH model is the probable mechanism for the A.C. conduction behavior. The theoretical study of A.C. electrical conduction using single polaron model has been reported. The study of the activation energy obtained from the electric modulus matches well with that obtained from conduction.

  10. Synthesis, properties, and redox behavior of 1,1,4,4-tetracyano-2-ferrocenyl-1,3-butadienes connected by aryl, biaryl, and teraryl spacers.

    PubMed

    Shoji, Taku; Maruyama, Akifumi; Yaku, Chisa; Kamata, Natsumi; Ito, Shunji; Okujima, Tetsuo; Toyota, Kozo

    2015-01-01

    Aryl-substituted 1,1,4,4-tetracyano-1,3-butadienes (FcTCBDs) and bis(1,1,4,4-tetracyanobutadiene)s (bis-FcTCBDs), possessing a ferrocenyl group on each terminal, were prepared by the reaction of a variety of alkynes with tetracyanoethylene (TCNE) in a [2+2] cycloaddition reaction, followed by retro-electrocyclization of the initially formed [2+2] cycloadducts (i.e., cyclobutene derivatives). The characteristic intramolecular charge transfer (ICT) between the donor (ferrocene) and acceptor (TCBD) moieties were investigated by using UV/Vis spectroscopy. The redox behaviors of FcTCBDs and bis-FcTCBDs were examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their properties of multi-electron transfer depending on the number of ferrocene and TCBD moieties. Moreover, significant color changes were observed by visible spectroscopy under the electrochemical reduction conditions.

  11. Development of the novel ferrous-based stainless steel for biomedical applications, part I: high-temperature microstructure, mechanical properties and damping behavior.

    PubMed

    Wu, Ching-Zong; Chen, Shih-Chung; Shih, Yung-Hsun; Hung, Jing-Ming; Lin, Chia-Cheng; Lin, Li-Hsiang; Ou, Keng-Liang

    2011-10-01

    This research investigated the high-temperature microstructure, mechanical properties, and damping behavior of Fe-9 Al-30 Mn-1C-5 Co (wt.%) alloy by means of electron microscopy, experimental model analysis, and hardness and tensile testing. Subsequent microstructural transformation occurred when the alloy under consideration was subjected to heat treatment in the temperature range of 1000-1150 °C: γ → (γ+κ). The κ-phase carbides had an ordered L'1(2)-type structure with lattice parameter a = 0.385 nm. The maximum yield strength (σ(y)), hardness, elongation, and damping coefficient of this alloy are 645 MPa, Hv 292, ~54%, and 178.5 × 10(-4), respectively. These features could be useful in further understanding the relationship between the biocompatibility and the wear and corrosion resistance of the alloy, so as to allow the development of a promising biomedical material.

  12. Novel 1D coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n}: Synthesis, structure, magnetic properties and thermal behavior

    SciTech Connect

    Fomina, Irina; Dobrokhotova, Zhanna; Aleksandrov, Grygory; Emelina, Anna; Bykov, Mikhail; Bogomyakov, Artem; Puntus, Lada; Novotortsev, Vladimir; Eremenko, Igor

    2012-01-15

    The new 1D coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n} (1), where Piv=OOCBu{sup t-}, was synthesized in high yield (>95%) by the reaction of thulium acetate with pivalic acid in air at 100 Degree-Sign S. According to the X-ray diffraction data, the metal atoms in compound 1 are in an octahedral ligand environment unusual for lanthanides. The magnetic and luminescence properties of polymer 1, it's the solid-phase thermal decomposition in air and under argon, and the thermal behavior in the temperature range of -50 Horizontal-Ellipsis +50 Degree-Sign S were investigated. The vaporization process of complex 1 was studied by the Knudsen effusion method combined with mass-spectrometric analysis of the gas-phase composition in the temperature range of 570-680 K. - Graphical Abstract: Novel 1D coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n} was synthesized and studied by X-ray diffraction. The magnetic, luminescence properties, the thermal behavior and the volatility for the compound {l_brace}Tm(Piv){sub 3{r_brace}n} were investigated. Black-Small-Square Highlights: Black-Right-Pointing-Pointer We synthesized the coordination polymer {l_brace}Tm(Piv){sub 3{r_brace}n}. Black-Right-Pointing-Pointer Tm atoms in polymer have the coordination number 6. Black-Right-Pointing-Pointer Polymer exhibits blue-color emission at room temperature. Black-Right-Pointing-Pointer Polymer shows high thermal stability and volatility. Black-Right-Pointing-Pointer Polymer has no phase transitions in the range of -50 Horizontal-Ellipsis +50 Degree-Sign S.

  13. Forecasting the In Vivo Behavior of Radiocontaminants of Unknown Physicochemical Properties Using a Simple In Vitro Test.

    PubMed

    Griffiths, N M; Coudert, S; Moureau, A; Laroche, P; Angulo, J F; Van der Meeren, A

    2016-08-01

    An understanding of the "bioavailability" of disseminated radiocontaminants is a necessary adjunct in order to tailor treatment and to calculate dose. A simple test has been designed to predict the bioavailability of different actinide forms likely to be found after dissemination of radioactive elements by dispersal devices or nuclear reactor incidents. Plutonium (Pu) or Americium (Am) nitrate or MOX (U,PuO2) are immobilized in culture wells using a static gel phase simulating biological compartments (lung, wound, etc.). Gels are incubated in a fluid phase representing physiological media (plasma, sweat, etc.). Transfer of radionuclide from static to fluid phase reflects contaminant bioavailability. After 48 h of incubation in physiological saline, Am transfer from static to fluid phase was greater than for Pu (70% vs. 15% of initial activity). Transfer of Pu or Am was markedly less from the oxide form of the two elements (1% Am and 0.05% Pu transferred). Medium representing intracellular lysosomal fluid (pH 4) increased transfer of Pu and Am, whereas culture medium including serum reduced actinide transfer. Actinide transfer was also reduced by elements of the extracellular matrix present in the static gel phase. Increasing DTPA concentrations (5 to 500 μM) to the fluid phase significantly enhanced transfer of Pu and Am. Although this agarose gel cannot fully represent in vivo complexity, this simple test can be used to investigate and predict the behavior in vivo of radiocontaminants to support medical treatments and medical forensic investigations. PMID:27356051

  14. Decanuclear Ln10 Wheels and Vertex-Shared Spirocyclic Ln5 Cores: Synthesis, Structure, SMM Behavior, and MCE Properties.

    PubMed

    Das, Sourav; Dey, Atanu; Kundu, Subrata; Biswas, Sourav; Narayanan, Ramakirushnan Suriya; Titos-Padilla, Silvia; Lorusso, Giulia; Evangelisti, Marco; Colacio, Enrique; Chandrasekhar, Vadapalli

    2015-11-16

    The reaction of a Schiff base ligand (LH3) with lanthanide salts, pivalic acid and triethylamine in 1:1:1:3 and 4:5:8:20 stoichiometric ratios results in the formation of decanuclear Ln10 (Ln = Dy (1), Tb (2), and Gd (3)) and pentanuclear Ln5 complexes (Ln = Gd (4), Tb (5), and Dy (6)), respectively. The formation of Ln10 and Ln5 complexes are fully governed by the stoichiometry of the reagents used. Detailed magnetic studies on these complexes (1-6) have been carried out. Complex 1 shows a SMM behavior with an effective energy barrier for the reversal of the magnetization (Ueff) = 16.12(8) K and relaxation time (τo) = 3.3×10(-5) s under 4000 Oe direct current (dc) field. Complex 6 shows the frequency dependent maxima in the out-of-phase signal under zero dc field, without achieving maxima above 2 K. Complexes 3 and 4 show a large magnetocaloric effect with the following characteristic values: -ΔSm = 26.6 J kg(-1) K(-1) at T = 2.2 K for 3 and -ΔSm = 27.1 J kg(-1) K(-1) at T = 2.4 K for 4, both for an applied field change of 7 T. PMID:26420030

  15. Study of particle rearrangement, compression behavior and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil

    PubMed Central

    Mallick, Subrata; Kumar Pradhan, Saroj; Chandran, Muronia; Acharya, Manoj; Digdarsini, Tanmayee; Mohapatra, Rajaram

    2011-01-01

    Particle rearrangements, compaction under pressure and in vitro dissolution have been evaluated after melt dispersion of ibuprofen, Avicel and Aerosil. The Cooper–Eaton and Kuno equations were utilized for the determination of particle rearrangement and compression behavior from tap density and compact data. Particle rearrangement could be divided into two stages as primary and secondary rearrangement. Transitional tapping between the stages was found to be 20–25 taps in ibuprofen crystalline powder, which was increased up to 45 taps with all formulated powders. Compaction in the rearrangement stages was increased in all the formulations with respect to pure ibuprofen. Significantly increased compaction of ibuprofen under pressure can be achieved using Avicel by melt dispersion technique, which could be beneficial in ibuprofen tablet manufacturing by direct compression. SEM, FTIR and DSC have been utilized for physicochemical characterization of the melt dispersion powder materials. Dissolution of ibuprofen from compacted tablet of physical mixture and melt dispersion particles has also been improved greatly in the following order: Ibc

  16. Critical behavior of phase interfaces in porous media: Analysis of scaling properties with the use of noncoherent and coherent light

    SciTech Connect

    Zimnyakov, D. A. Sadovoi, A. V.; Vilenskii, M. A.; Zakharov, P. V.; Myllylae, R.

    2009-02-15

    Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance rate of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.

  17. Corrosion behavior and tensile properties of AISI 316LN stainless steel exposed to flowing sodium at 823 K

    SciTech Connect

    Pillai, S.R.; Barasi, N.S.; Khatak, H.S.; Terrance, A.L.E.; Kale, R.D.; Rajan, M.; Rajan, K.K.

    2000-02-01

    Austenitic stainless steel of the grade AISI 316 LN was exposed to flowing sodium in a loop at 823 K for 6,000 h to examine the corrosion and mass-transfer behavior. The specimens were incorporated in specially designed sample holders in the loop. These were retrieved and examined by various metallurgical techniques. Specimens were also subjected to thermal aging in the same sample holder to aid in separating the consequences of exposure to sodium from those cause by mere thermal effects. Microstructural investigations have revealed that thermal aging caused the precipitation of carbides at the grain boundaries. Exposure to sodium caused the leaching of elements such as chromium and nickel from the specimen. Loss of nickel from the austenite phase promoted the generation of ferrite phase. Microhardness investigation revealed the hardening of the sodium-exposed surface. Analysis using an electron Probe Microanalyzer revealed that the surface of the steel was both carburized and nitrided. Tensile tests indicated that there is no appreciable difference in the yield strength (YS) and ultimate tensile strength (UTS) of the thermally aged and sodium-exposed specimens when compared with the material in the as-received condition. However, the thermally aged and sodium-exposed specimens showed a decrease in the uniform elongation and total elongation at rupture, perhaps due to carburization and nitridation.

  18. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    PubMed

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. PMID:27283672

  19. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties.

    PubMed

    Mathews, Eleanor A; García, Esperanza; Santi, Celia M; Mullen, Gregory P; Thacker, Colin; Moerman, Donald G; Snutch, Terrance P

    2003-07-23

    The Caenorhabditis elegans unc-2 gene encodes a voltage-gated calcium channel alpha1 subunit structurally related to mammalian dihydropyridine-insensitive high-threshold channels. In the present paper we describe the characterization of seven alleles of unc-2. Using an unc-2 promoter-tagged green fluorescent protein construct, we show that unc-2 is primarily expressed in motor neurons, several subsets of sensory neurons, and the HSN and VC neurons that control egg laying. Examination of behavioral phenotypes, including defecation, thrashing, and sensitivities to aldicarb and nicotine suggests that UNC-2 acts presynaptically to mediate both cholinergic and GABAergic neurotransmission. Sequence analysis of the unc-2 alleles shows that e55, ra605, ra606, ra609, and ra610 all are predicted to prematurely terminate and greatly reduce or eliminate unc-2 function. In contrast, the ra612 and ra614 alleles are missense mutations resulting in the substitution of highly conserved residues in the C terminus and the domain IVS4-IVS5 linker, respectively. Heterologous expression of a rat brain P/Q-type channel containing the ra612 mutation shows that the glycine to arginine substitution affects a variety of channel characteristics, including the voltage dependence of activation, steady-state inactivation, as well as channel kinetics. Overall, our findings suggest that UNC-2 plays a pivotal role in mediating a number of physiological processes in the nematode and also defines a number of critical residues important for calcium channel function in vivo. PMID:12878695

  20. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios.

    PubMed

    Zhang, Xiaobo; Yuan, Guangyin; Niu, Jialin; Fu, Penghuai; Ding, Wenjiang

    2012-05-01

    Recently, commercial magnesium (Mg) alloys containing Al (such as AZ31 and AZ91) or Y (such as WE43) have been studied extensively for biomedical applications. However, these Mg alloys were developed as structural materials, not as biomaterials. In this study, a patented Mg-Nd-Zn-Zr (denoted as JDBM) alloy was investigated as a biomedical material. The microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of the alloy extruded at 320 °C with extrusion ratios of 8 and 25 were studied. The results show that the lower extrusion ratio results in finer grains and higher strength, but lower elongation, while the higher extrusion ratio results in coarser grains and lower strength, but higher elongation. The biocorrosion behavior of the alloy was investigated by hydrogen evolution and mass loss tests in simulated body fluid (SBF). The results show that the alloy extruded with lower extrusion ratio exhibits better corrosion resistance. The corrosion mode of the alloy is uniform corrosion, which is favorable for biomedical applications. Aging treatment on the as-extruded alloy improves the strength and decreases the elongation at room temperature, and has a small positive influence on the corrosion resistance in SBF. The cytotoxicity test indicates that the as-extruded JDBM alloy meets the requirement of cell toxicity.

  1. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takehiro; Suga, Takanori; Mori, Noriyasu

    2005-08-01

    Brownian dynamics (BD) simulations were carried out for suspensions of oblate spheroid particles interacting via the Gay-Berne (GB) potential. The oblate spheroid particles were applied as a model of disc-like particles and the system of suspension of the particles was considered. Numerically analyzed were both the change in phase with the number density of the particles at equilibrium state and the behavior of the particles in simple shear flows. The system changed from isotropic phase to nematic one with increasing the particle concentration. In the simulation of shear flows, the shear was imposed upon the systems in nematic phase at equilibrium. The systems exhibited various motions of the director depending on the shear rate, e.g. the continuous rotation of director at low shear rates, the wagging at moderate shear rates, and the flow aligning at high shear rates. Temporal change in inner structure of suspensions was also analyzed and collapse of initial particle configurations due to shear was found. Moreover, rheological properties of the suspension were investigated. The numerical simulation predicted the shear-thinning in viscosity, negative first normal stress difference, and positive second normal stress difference, and these results qualitatively agreed with the predictions using a constitutive equation for discotic nematics. The present study proved that the BD simulation using spheroid particles interacting via the GB potential is an effective approach for investigating the flow behavior and flow-induced structure of suspensions of disklike particles at a particulate level.

  2. Particle-size dependent melt viscosity behavior and the properties of three-arm star polystyrene-Fe3O4 composites.

    PubMed

    Tan, Haiying; Lin, Yichao; Zheng, Jun; Gong, Jiang; Qiu, Jian; Xing, Haiping; Tang, Tao

    2015-05-28

    The melt viscosity of three-arm star polystyrene (S3PS)-Fe(3)O(4) nanoparticle composites was studied by means of rheological measurements. The arm molecular weight (M(a)) of S3PS (or radius gyration) and the particle size of Fe(3)O(4) (radius (R(p)): 3 nm and 44 nm) showed a strong influence on the melt viscosity behavior (at low shear frequencies) of S3PS-Fe(3)O(4) composites. The reinforcement (viscosity increase) was observed in the composites where the M(a) was higher than the M(c) of PS (M(c): the critical molecular weight for chain entanglement). For M(a) < M(c), when the size of Fe(3)O(4) nanoparticles was changed, the melt viscosity of the composites exhibited either plasticization (melt viscosity reduction) or reinforcement. When the content of Fe(3)O(4) was low (1 wt%), the transformation from plasticization to reinforcement behavior could be observed, which strongly depended on the size ratio of the radius of gyration (R(g)) of S3PS to the size of nanoparticles (R(p)). In addition, the magnetic properties and thermal stability of S3PS-Fe(3)O(4) composites were studied. PMID:25892158

  3. Preparation, crystal structure, dielectric properties, and magnetic behavior of Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13}

    SciTech Connect

    Vanderah, T.A.; Wong-Ng, W.; Santoro, A.

    1995-11-15

    The preparation, crystal structure, dielectric properties, and magnetic behavior of the new compound Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13} are reported. Structural studies carried out by single-crystal X-ray diffraction and neutron powder diffraction show that this phase is isostructural with K{sub 2}Ti{sub 6}O{sub 13} and Ba{sub 2}ZnTi{sub 5}O{sub 13} (C2/m (No. 12); a = 15.21691), b = 3.8979(3), c = 9.1350(6) {angstrom}, {beta} = 98.460(7){degrees}; V = 535.90(8) {angstrom}{sup 3}; Z = 2. The cations Fe{sup 3+} and Ti{sup 4+} are partially ordered among distorted octahedral sites with Ba{sup 2+} occupying eleven-coordinated polyhedra. Ba{sub 2}Fe{sub 2}Ti{sub 4}O{sub 13} exhibits TE{sub 0} resonance near 10 GHz with a dielectric constant of {approximately}28 and a dielectric loss tangent of 2 x 10{sup -3}. The compound displays complex paramagnetic behavior with marked field dependence; the magnetization at 80 kA/m is several orders of magnitude smaller than that of most ferrites. Spin-glass effects have not been observed; however, weak collective interactions are clearly present. No magnetic ordering has been detected by neutron diffraction down to 13 K.

  4. Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential

    PubMed Central

    2014-01-01

    Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features. In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels. The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no

  5. Structural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential

    NASA Astrophysics Data System (ADS)

    Ludwig, Robert; Stapf, Marcus; Dutz, Silvio; Müller, Robert; Teichgräber, Ulf; Hilger, Ingrid

    2014-11-01

    Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features. In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels. The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no

  6. Optical behavior and structural property of CuAlS₂ and AgAlS₂ wide-bandgap chalcopyrites.

    PubMed

    Ho, Ching-Hwa; Pan, Chia-Chi

    2014-08-01

    Single crystals of CuAlS₂ and AgAlS₂ were grown by chemical vapor transport method using ICl₃ as the transport. The as-grown CuAlS₂ crystals reveal transparent and light-green color. Most of them possess a well-defined (112) surface. The AgAlS₂ crystals essentially show transparent and white color in vacuum. As the AgAlS₂ was put into the atmosphere, the crystal surface gradually darkened and became brownish because of the surface reaction with humidity or hydrogen gas. After a long-term chemical reaction process, the AgAlS₂ will transform into a AgAlO₂ oxide with yellow color. From x-ray diffraction measurements, both CuAlS₂ and AgAlS₂ as-grown crystals show single-phase and isostructural to a chalcopyrite structure. The (112) face is more preferable for the formation of the chalcopyrite crystals. The energies of interband transitions of the CuAlS₂ and AgAlS₂ were determined accurately by thermoreflectance measurements in a wide energy range of 2-6 eV. The valence-band electronic structures of CuAlS₂ and AgAlS₂ have been detailed and characterized using polarized-thermoreflectance measurements in the temperature range between 30 and 300 K. The band-edge transitions belonging to the E(∥) and E(⊥) polarizations have been, respectively, identified. The band edge of AgAlS₂ is near 3.2 eV while that of AgAlS₂ is about 3.5 eV. On the basis of the experimental analyses, optical and sensing behaviors of the chalcopyrite crystals have been realized.

  7. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  8. Quasi-static Tensile and Compressive Behavior of Nanocrystalline Tantalum Based on Miniature Specimen Testing—Part II: Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Ligda, J.; D'Antuono, D. Scotto; Taheri, M. L.; Schuster, B. E.; Wei, Q.

    2016-09-01

    In Part I of this work (this issue), we presented the microstructure of tantalum processed by high-pressure torsion (HPT). In this part, we will present results based on site-specific micro-mechanical testing. The experimental techniques were used due to the intrinsic microstructure gradient associated with HPT processing. The primary objective is to explore the grain size effect on the quasi-static mechanical properties of HPT processed tantalum with ultrafine grained (UFG, grain size d < 1000 nm and d > 100 nm) and nanocrystalline (NC, d < 100 nm) microstructure. Two distinct deformation modes are observed, i.e. a homogeneous (non-shearing) region and a localized (shear banding) region. Transmission electron microscopy (TEM) and orientation imaging microscopy (OIM) show that the shear bands form by grain rotation. Comparing d in these two regions to the mechanism proposed in the literature shows that reduced d in the shear banding region is more susceptible to localized shearing via grain rotation. This work unifies, or at least further substantiates, the notion that body-centered cubic metals with UFG/NC microstructure tend to have localized shear band even under quasi-static uniaxial compression.

  9. Electric properties and phase transition behavior in lead lanthanum zirconate stannate titanate ceramics with low zirconate content

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Lou, Qi-Wei; Chen, Xue-Feng; Zhang, Hong-Ling; Dong, Xian-Lin; Wang, Gen-Shui

    2015-11-01

    The phase transitions, dielectric properties, and polarization versus electric field (P-E) hysteresis loops of Pb0.97La0.02(Zr0.42Sn0.58-xTix)O3 (0.13≤ x ≤0.18) (PLZST) bulk ceramics were systematically investigated. This study exhibited a sequence of phase transitions by analyzing the change of the P-E hysteresis loops with increasing temperature. The antiferroelectric (AFE) to ferroelectric (FE) phase boundary of PLZST with the Zr content of 0.42 was found to locate at the Ti content between 0.14 and 0.15. This work is aimed to improve the ternary phase diagram of lanthanum-doped PZST with the Zr content of 0.42 and will be a good reference for seeking high energy storage density in the PLZST system with low-Zr content. Project supported by the National Natural Science Foundation of China (Grant Nos. 51202273, 11204304, and 11304334) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2261000).

  10. Effects of surface and structural properties of carbons on the behavior of carbon-supported molybdenum catalysts

    SciTech Connect

    Solar, J.M.; Debryshire, F.J.; De Beer, V.H.J.; Radovic, L.R. Eindhoven Univ. of Technology )

    1991-06-01

    Previous work on carbon-supported hydrodesulfurization (HDS) catalysts has led to the general realization that the nature of the support has a very significant influence on catalytic activity. A commercial carbon black was subjected to oxidative and/or thermal treatment to modify its surface and structural properties. These were thoroughly examined using temperature-programmed desorption, X-ray diffraction, titrations, and electrophoresis. The various carbon-supported molybdenum catalysts were prepared by equilibrium adsorption and incipient wetness impregnation using four different catalyst precursors. The catalytic activity in thiophene HDS and Fischer-Tropsch synthesis was determined in fixed-bed flow reactors connected on-line to gas chromatographs. The catalysts were characterized by X-ray photoelectron spectroscopy. It is concluded that two conflicting requirements complicate the preparation of highly active (i.e., highly dispersed) molybdenum species on carbon surfaces. On one hand, the introduction of oxygen functional groups provides anchoring sites for catalyst precursor adsorption and thus the potential for its high initial dispersion. On the other hand, this also renders the support surface negatively charged over a wide range of pH conditions. At very low pH conditions, below the isoelectric point of the support, when the attractive forces prevail between the Mo anions and the positively charged carbon surface. Mo polymerization is thought to contribute to catalyst agglomeration. No significant correlation between structural parameters of the support and catalytic activity was found.

  11. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  12. Structure−Property Correlations in Hybrid Polymer−Nanoparticle Electrospun Fibers and Plasmonic Control over their Dichroic Behavior

    SciTech Connect

    Sharma, Nikhil; McKeown, Steven J.; Ma, Xin; Pochan, Darrin J.; Cloutier, Sylvain G.

    2010-12-07

    Electrospinning constitutes a simple and versatile approach of fabricating polymer heterostructures composed of nanofibers. A preferred alignment of polymer crystallites stems from complex shear elongational forces and generates a strong intrinsic optical anisotropy in typical electrospun fibers of semicrystalline polymers. While it can prove useful for certain devices, this intrinsic anisotropy can be extremely detrimental for other key applications such as high-performance polymer-based lighting and solar-energy harvesting platforms. We report a dramatic reduction in the intrinsic dichroism of electrospun poly(ethylene oxide) fibers resulting from the incorporation of inorganic nanoparticles in the polymer matrix. This effect is shown to originate from a controllable randomization of the orientational ordering of the crystalline domains in the hybrid nanofibers and not merely from a reduction in crystallinity. This improved understanding of the crystalline structure-optical property correlation then leads to a better control over the intrinsic anisotropy of electrospun fibers using localized surface-plasmon enhancement effects around metallic nanoparticles.

  13. Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures.

    PubMed

    Gwak, Geonhui; Ko, Johan; Ju, Hyunchul

    2014-01-01

    In this investigation, a parametric study was performed using the transient cold-start model presented in our previous paper, in which the ice melting process and additional constitutive relations were newly included for transient cold-start simulations of polymer electrolyte fuel cells (PEFCs) from a sub-zero temperature (-20°C) to a normal operating temperature (80°C). The focus is placed on exploring the transient cold-start behavior of a PEFC for different porous properties of the catalyst layer (CL) and gas diffusion layer (GDL). This work elucidates the detailed effects of these properties on key cold-start phenomena such as ice freezing/melting and membrane hydration/dehydration processes. In particular, the simulation results highlight that designing a cathode CL with a high ionomer fraction helps to retard the rate of ice growth whereas a high ionomer fraction in the anode CL is not effective to mitigate the anode dry-out and membrane dehydration issues during PEFC cold-start. PMID:25712425

  14. Crystallization behaviors and electric properties of (Pb0.8Ca0.2)TiO3 thin films prepared by a sol-gel route

    NASA Astrophysics Data System (ADS)

    Chi, Q. G.; Zhu, H. F.; Lin, J. Q.; Chen, C. T.; Wang, X.; Chen, Y.; Lei, Q. Q.

    2013-05-01

    The pure tetragonal perovskite (Pb0.8Ca0.2)TiO3 (PCT) thin films deposited on (1 1 1)Pt/Ti/SiO2/Si substrate were successfully achieved by a sol-gel route, and the influence of pyrolysis temperature on crystallization behaviors and electric properties of the PCT films was investigated. It was found that the film pyrolyzed at 450 °C could be crystallized at temperature as low as 450 °C, while the film pyrolyzed at 350 °C is amorphous under the same crystallization temperature. It was also found that the PCT films pyrolyzed at different temperatures could be fully crystallized when the crystallization temperature was raised to 600 °C, and compared to the film pyrolyzed at 350 °C, the film pyrolyzed at 450 °C exhibited higher (1 0 0) orientation and possessed enhanced electric properties (remanent polarization ∼19.5 μC/cm2, piezoelectric constant ∼125 pm/v, pyroelectric coefficient ∼310 μC/m2K).

  15. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties.

  16. Effect of Eu ion incorporation on the emission behavior of Y2O3 nanophosphors: A detailed study of structural and optical properties

    NASA Astrophysics Data System (ADS)

    Kumar, Y.; Pal, Mou; Herrera, M.; Mathew, X.

    2016-10-01

    In order to investigate the effect of doping concentration on the luminescence behavior of yttrium oxide (Y2O3) europium (Eu) doped nanoparticles were prepared by co-precipitation method. Incorporation of Eu ion in Y2O3 matrix is clearly reflected in structural and optical properties of the doped Y2O3 phosphor. Cathodoluminescence (CL) spectroscopy proves the presence of strong Eu3+ emissions along with the presence of an additional weak band corresponding to electronic transitions 4f65d1 (7FJ) - 4f7 (8S7/2) of the Eu2+. The presence of Eu3+ and Eu2+ ions in Y2O3 nanoparticles have been additionally confirmed by XPS analysis. Luminescence band corresponding to Eu3+ ions appears in both CL and photoluminescence (PL) spectra, covering the orange-red emissions from 580 to 710 nm. Vibrational properties analyzed through Raman spectroscopy have revealed the evolution of different peaks associated with Eu emission in the doped Y2O3 nanocrystals.

  17. Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties.

    PubMed

    Xu, Hua-Neng; Liu, Yang; Zhang, Lianfu

    2015-08-01

    Emulsions stabilized by protein particles have gained increasing research attention due to their combined advantages of biocompatibility and superior stability. In this study, colloidal particles consisting of soy protein isolates (SPIs) prepared through a heat-treatment procedure are used to make oil-in-water emulsions at a protein concentration of 10 g L(-1) and a pH of 5.91. We investigate parallelly the effects of NaCl on the stability and rheological properties of the particle suspensions and their stabilized emulsions at salt concentrations of 0, 100 and 400 mM. The aggregation behavior of the particles is strongly dependent on the NaCl concentration, showing signs of sedimentation at low NaCl concentration (100 mM) but redispersion again at high NaCl concentration (400 mM). The extensive particle aggregation is beneficial to the formation of a continuous interfacial film for the emulsions, and hence results in a remarkable increase of creaming stability and interfacial viscoelastic moduli. The results can be explained in terms of two competitive effects of NaCl: salting-out and salting-in, which are attributed to complex electrostatic interactions between the particles as a function of NaCl concentration. The delicate balance between salting-out and salting-in provides an interesting insight into the nature of underlying protein particle interactions in aqueous suspensions and a possible mechanism for tailoring their emulsifying properties via salt effects.

  18. Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application

    NASA Astrophysics Data System (ADS)

    Zhu, Shi-Jie; Liu, Qian; Qian, Ya-Feng; Sun, Bin; Wang, Li-Guo; Wu, Jing-Min; Guan, Shao-Kang

    2014-09-01

    The biomagnesium alloys have been considered to be one of the most potential biodegradable metal materials due to its good mechanical compatibility, biological compatibility, biological security and biodegradable characteristics. However, the two major problems of high degradation rates in physiological environment and low mechanical properties prevent the development of biomagnesium alloys. In the present work, the samples of Mg-Zn-Y-Nd alloy were prepared by cyclic extrusion compression (CEC) and equal channel angular pressing (ECAP). The microstructures, mechanical properties of alloy and its corrosion behavior in simulated body fluid (SBF) were evaluated. The results reveal that Mg-Zn-Y-Nd alloy consists of equiaxial fine grain structure with the homogeneous distribution of micrometer size and nano-sized second phase, which was caused by the dynamic recrystallization during the ECAP and CEC. The corrosion resistance of alloy was improved. The tensile and corrosion resistance were improved, especially the processed alloy exhibit uniform corrosion performances and decreased corrosion rate. This will provide theoretical ground for Mg-Zn-Y-Nd alloy as vascular stent application.

  19. Psychometric properties of a Spanish version of the UPPS-P impulsive behavior scale: reliability, validity and association with trait and cognitive impulsivity.

    PubMed

    Verdejo-García, Antonio; Lozano, Oscar; Moya, Maribel; Alcázar, Miguel Angel; Pérez-García, Miguel

    2010-01-01

    Impulsivity is a multifaceted construct central to several forms of psychopathology. Recently, Lynam, Smith, Whiteside, and Cyders (2006) developed the UPPS-P scale, a multidimensional inventory that assesses 5 personality pathways contributing to impulsive behavior: negative urgency, lack of perseverance, lack of premeditation, sensation seeking, and positive urgency. In this study, we aimed (a) to analyze the psychometric properties of a Spanish version of the UPPS-P scale and (b) to explore the relationship between the different dimensions of the UPPS-P scale and conceptually related constructs including trait measures derived from different models of impulsive personality (the Gray's [1987] and Plutchik's [1984] models) and a state measure of cognitive impulsivity, the Delay-Discounting Test (Kirby, Petry, & Bickel, 1999). We administered the UPPS-P scale along with the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (Torrubia, Avila, Molto, & Caseras, 2001), the Plutchik Impulsivity Scale (Plutchik & Van Praag, 1989), and the Delay-Discounting Test to a sample of 150 undergraduate students. Results showed that the Spanish adaptation of the UPPS-P scale have appropriate psychometric properties. Different dimensions of the UPPS-P were differentially associated with predicted conceptually related constructs. We conclude that the Spanish adaptation of the UPPS-P scale is a useful instrument for fine-grained assessment of impulsivity in Spanish-speaking adult population. PMID:20013458

  20. Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures

    PubMed Central

    Gwak, Geonhui; Ko, Johan; Ju, Hyunchul

    2014-01-01

    In this investigation, a parametric study was performed using the transient cold-start model presented in our previous paper, in which the ice melting process and additional constitutive relations were newly included for transient cold-start simulations of polymer electrolyte fuel cells (PEFCs) from a sub-zero temperature (−20°C) to a normal operating temperature (80°C). The focus is placed on exploring the transient cold-start behavior of a PEFC for different porous properties of the catalyst layer (CL) and gas diffusion layer (GDL). This work elucidates the detailed effects of these properties on key cold-start phenomena such as ice freezing/melting and membrane hydration/dehydration processes. In particular, the simulation results highlight that designing a cathode CL with a high ionomer fraction helps to retard the rate of ice growth whereas a high ionomer fraction in the anode CL is not effective to mitigate the anode dry-out and membrane dehydration issues during PEFC cold-start. PMID:25712425

  1. High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction

    SciTech Connect

    Zou, Yongtao E-mail: yongtaozou6@gmail.com; Li, Baosheng; Qi, Xintong; Wang, Xuebing; Chen, Ting; Li, Xuefei; Welch, David

    2014-07-07

    In situ synchrotron energy dispersive x-ray diffraction (XRD) experiments on Nb have been conducted at pressures up to 6.4 GPa and temperatures up to 1073 K. From the pressure-volume-temperature measurements, thermoelastic parameters were derived for the first time for Nb based on the thermal pressure (ΔP{sub th}) equation of state (EOS), modified high-T Birch-Murnaghan EOS, and Mie-Grüneisen-Debye EOS. With the pressure derivative of the bulk modulus K{sub T}{sup ´} fixed at 4.0, we obtained the ambient isothermal bulk modulus K{sub T0}=174(5) GPa, the temperature derivative of bulk modulus at constant pressure (∂K{sub T}/∂T){sub P}=-0.060(8) GPa K⁻¹ and at constant volume (∂K{sub T}/∂T){sub V}=-0.046(8) GPa K⁻¹, the volumetric thermal expansivity α{sub T}(T)=2.3(3)×10⁻⁵+0.3(2)×10⁻⁸T (K⁻¹), as well as the pressure dependence of thermal expansion (∂α/∂P){sub T}=(₋2.0±0.4)×10⁻⁶ K⁻¹ GPa⁻¹. Fitting the present data to the Mie-Grüneisen-Debye EOS with Debye temperature Θ₀=276.6 K gives γ₀=1.27(8) and K{sub T0}=171(3) GPa at a fixed value of q=3.0. The ambient isothermal bulk modulus and Grüneisen parameter derived from this work are comparable to previously reported values from both experimental and theoretical studies. An in situ high-resolution, angle dispersive XRD study on Nb did not indicate any anomalous behavior related to pressure-induced electronic topological transitions at ~5 GPa as has been reported previously.

  2. A metallographic study of porosity and fracture behavior in relation to the tensile properties in 319.2 end chill castings

    SciTech Connect

    Samuel, A.M.; Samuel, F.H.

    1995-09-01

    A metallographic study of the porosity and fracture behavior in unidirectionally solidified end chill castings of 319.2 aluminum alloy (Al-6.2 pct Si-3.8 pct Cu-0.5 pct Fe-0.14 pct Mn-0.06 pct Mg-0.073 pct Ti) was carried out using optical microscopy and scanning electron microscopy (SEM) to determine their relationship with the tensile properties. The parameters varied in the production of these castings were the hydrogen ({approximately}0.1 and {approximately}0.37 mL/100 g Al), modifier (0 and 300 ppm Sr), and grain refiner (0 and 0.03 wt pct Ti) concentrations, as well as the solidification time, which increased with decreasing distance from the end chill bottom of the casting, giving dendrite arm spacings (DASs) ranging from {approximately}15 to {approximately}95 {micro}m. Image analysis and energy dispersive X-ray (EDX) analysis were employed for quantification of porosity/microstructural constituents and fracture surface analysis (phase identification), respectively. The results showed that the local solidification time (viz. DAS) significantly influences the ductility at low hydrogen levels; at higher levels, however, hydrogen has a more pronounced effect (porosity related) on the drop in ductility. Porosity is mainly observed in the form of elongated pores along the grain boundaries, with Sr increasing the porosity volume percent and grain refining increasing the probability for pore branching. The beneficial effect of Sr modification, however, improves the alloy ductility. Fracture of the Si, {beta}-Al{sub 5}FeSi, {alpha}-Al{sub 15}(Fe,Mn){sub 3}Si{sub 2}, and Al{sub 2}Cu phases takes place within the phase particles rather than at the particle/Al matrix interface. Sensitivity of tensile properties to DAS allows for the use of the latter as an indicator of the expected properties of the alloy.

  3. Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol

    PubMed Central

    García-Hernández, Celia; Medina-Plaza, Cristina; Martín-Pedrosa, Fernando; Blanco, Yolanda; de Saja, José Antonio

    2015-01-01

    Summary Two different methods were used to obtain polypyrrole/AuNP (Ppy/AuNP) composites. One through the electrooxidation of the pyrrole monomer in the presence of colloidal gold nanoparticles, referred to as trapping method (T), and the second one by electrodeposition of both components from one solution containing the monomer and a gold salt, referred to as cogeneration method (C). In both cases, electrodeposition was carried out through galvanostatic and potentiostatic methods and using platinum (Pt) or stainless steel (SS) as substrates. Scanning electron microscopy (SEM) demonstrated that in all cases gold nanoparticles of similar size were uniformly dispersed in the Ppy matrix. The amount of AuNPs incorporated in the Ppy films was higher when electropolymerization was carried out by chronopotentiometry (CP). Besides, cogeneration method allowed for the incorporation of a higher number of AuNPs than trapping. Impedance experiments demonstrated that the insertion of AuNPs increased the conductivity. As an electrochemical sensor, the Ppy/AuNp deposited on platinum exhibited a strong electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than in films obtained by chronoamperometry (CA). The influence of the method used to introduce the AuNPs (trapping or cogeneration) was not so important. The limits of detection (LOD) were in the range from 10−5 to 10−6 mol/L. LODs attained using films deposited on platinum were lower due to a synergy between AuNPs and platinum that facilitates the electron transfer, improving the electrocatalytic properties. Such synergistic effects are not so pronounced on stainless steel, but acceptable LOD are attained with lower price sensors. PMID:26665076

  4. Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol.

    PubMed

    García-Hernández, Celia; García-Cabezón, Cristina; Medina-Plaza, Cristina; Martín-Pedrosa, Fernando; Blanco, Yolanda; de Saja, José Antonio; Rodríguez-Méndez, María Luz

    2015-01-01

    Two different methods were used to obtain polypyrrole/AuNP (Ppy/AuNP) composites. One through the electrooxidation of the pyrrole monomer in the presence of colloidal gold nanoparticles, referred to as trapping method (T), and the second one by electrodeposition of both components from one solution containing the monomer and a gold salt, referred to as cogeneration method (C). In both cases, electrodeposition was carried out through galvanostatic and potentiostatic methods and using platinum (Pt) or stainless steel (SS) as substrates. Scanning electron microscopy (SEM) demonstrated that in all cases gold nanoparticles of similar size were uniformly dispersed in the Ppy matrix. The amount of AuNPs incorporated in the Ppy films was higher when electropolymerization was carried out by chronopotentiometry (CP). Besides, cogeneration method allowed for the incorporation of a higher number of AuNPs than trapping. Impedance experiments demonstrated that the insertion of AuNPs increased the conductivity. As an electrochemical sensor, the Ppy/AuNp deposited on platinum exhibited a strong electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than in films obtained by chronoamperometry (CA). The influence of the method used to introduce the AuNPs (trapping or cogeneration) was not so important. The limits of detection (LOD) were in the range from 10(-5) to 10(-6) mol/L. LODs attained using films deposited on platinum were lower due to a synergy between AuNPs and platinum that facilitates the electron transfer, improving the electrocatalytic properties. Such synergistic effects are not so pronounced on stainless steel, but acceptable LOD are attained with lower price sensors.

  5. Aggregation behavior and electrical properties of amphiphilic pyrrole-tailed ionic liquids in water, from the viewpoint of dielectric relaxation spectroscopy.

    PubMed

    Fan, Xiaoqing; Zhao, Kongshuang

    2014-05-14

    The self-aggregation behavior of amphiphilic pyrrole-tailed imidazolium ionic liquids (Py(CH₂)₁₂mim⁺Br⁻: Py = pyrrole, mim = methylimidazolium) in water is investigated by dielectric spectroscopy from 40 Hz to 110 MHz. Dielectric determination shows that the critical micelle concentration (CMC) is 8.5 mM, which is lower than that for traditional ionic surfactants. The thermodynamic parameter of the micellization, the Gibbs free energy ΔG, was calculated for Py(CH₂)₁₂mim⁺Br⁻ and compared to those of the corresponding C(n)mim⁺Br⁻ (n = 12, 14). It was found that the main driven forces of the Py(CH₂)₁₂mim⁺Br⁻ aggregation were hydrophobic interaction and π-π interactions among the adjacent Py groups. Further, the structure of aggregation was speculated theoretically that Py groups partially insert into the alkyl chains and the staggered arrangement in micelles is formed. When the concentration of Py(CH₂)₁₂mim⁺Br⁻ is higher than CMC, two remarkable relaxations which originated from diffusion of counterions and interfacial polarization between the micelles and solution, were observed at about 1.3 MHz and 55 MHz. The relaxation parameters representing the real properties of the whole system were obtained by fitting the experimental data with Cole-Cole equation. A dielectric model characterizing the structure and electrical properties of spherical micelles was proposed by which the conductivity, permittivity and the volume fraction of micelles as well as electrical properties of solution were calculated from the relaxation parameters. An intriguingly high permittivity of about 150 for the micelle was found to be a direct consequence of the strong orientational order of water molecules inside the core of micelle, and essentially is attributed to the special structure of the micelle. Furthermore, the calculation of the interfacial electrokinetic parameters of the micelles, i.e., the surface conductivity, surface charge density

  6. The Behavior of IAPWS-95 from 250 to 300 K and Pressures up to 400 MPa: Evaluation Based on Recently Derived Property Data

    SciTech Connect

    Wagner, Wolfgang Thol, Monika

    2015-12-15

    Over the past several years, considerable scientific and technical interest has been focused on accurate thermodynamic properties of fluid water covering part of the subcooled (metastable) region and the stable liquid from the melting line up to about 300 K and pressures up to several hundred MPa. Between 2000 and 2010, experimental density data were published whose accuracy was not completely clear. The scientific standard equation of state for fluid water, the IAPWS-95 formulation, was developed on the basis of experimental data for thermodynamic properties that were available by 1995. In this work, it is examined how IAPWS-95 behaves with respect to the experimental data published after 1995. This investigation is carried out for temperatures from 250 to 300 K and pressures up to 400 MPa. The starting point is the assessment of the current data situation. This was mainly performed on the basis of data for the density, expansivity, compressibility, and isobaric heat capacity, which were derived in 2015 from very accurate speed-of-sound data. Apart from experimental data and these derived data, property values calculated from the recently published equation of state for this region of Holten et al. (2014) were also used. As a result, the unclear data situation could be clarified, and uncertainty values could be estimated for the investigated properties. In the region described above, detailed comparisons show that IAPWS-95 is able to represent the latest experimental data for the density, expansivity, compressibility, speed of sound, and isobaric heat capacity to within the uncertainties given in the release on IAPWS-95. Since the release does not contain uncertainty estimates for expansivities and compressibilities, the statement relates to the error propagation of the given uncertainty in density. Due to the lack of experimental data for the isobaric heat capacity for pressures above 100 MPa, no uncertainty estimates are given in the release for this pressure

  7. The Behavior of IAPWS-95 from 250 to 300 K and Pressures up to 400 MPa: Evaluation Based on Recently Derived Property Data

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Thol, Monika

    2015-12-01

    Over the past several years, considerable scientific and technical interest has been focused on accurate thermodynamic properties of fluid water covering part of the subcooled (metastable) region and the stable liquid from the melting line up to about 300 K and pressures up to several hundred MPa. Between 2000 and 2010, experimental density data were published whose accuracy was not completely clear. The scientific standard equation of state for fluid water, the IAPWS-95 formulation, was developed on the basis of experimental data for thermodynamic properties that were available by 1995. In this work, it is examined how IAPWS-95 behaves with respect to the experimental data published after 1995. This investigation is carried out for temperatures from 250 to 300 K and pressures up to 400 MPa. The starting point is the assessment of the current data situation. This was mainly performed on the basis of data for the density, expansivity, compressibility, and isobaric heat capacity, which were derived in 2015 from very accurate speed-of-sound data. Apart from experimental data and these derived data, property values calculated from the recently published equation of state for this region of Holten et al. (2014) were also used. As a result, the unclear data situation could be clarified, and uncertainty values could be estimated for the investigated properties. In the region described above, detailed comparisons show that IAPWS-95 is able to represent the latest experimental data for the density, expansivity, compressibility, speed of sound, and isobaric heat capacity to within the uncertainties given in the release on IAPWS-95. Since the release does not contain uncertainty estimates for expansivities and compressibilities, the statement relates to the error propagation of the given uncertainty in density. Due to the lack of experimental data for the isobaric heat capacity for pressures above 100 MPa, no uncertainty estimates are given in the release for this pressure

  8. Features and regularities in behavior of thermoelectric properties of rare-earth, transition, and other metals under high pressure up to 20 GPa

    SciTech Connect

    Morozova, Natalia V.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V. E-mail: sergey2503@gmail.com

    2015-12-14

    We report results of systematic investigations of the thermoelectric properties of a number of rare-earth metals, transition metals, and other metals under high pressure up to 20 GPa at room temperature. We studied an effect of applied pressure on the Seebeck effect of scandium (Sc), yttrium (Y), lanthanum (La), europium (Eu), ytterbium (Yb), iron (Fe), manganese (Mn), chromium (Cr), gold (Au), tin (Sn), and CeNi alloy. We found that the high-pressure behavior of the thermopower of three rare-earth metals, namely, Sc, Y, and La, follows a general trend that has been established earlier in lanthanides, and addressed to a s → d electron transfer. Europium and ytterbium, on the contrary, showed a peculiar high-pressure behavior of the thermopower with peaks at near 0.7–1 GPa for Eu and 1.7–2.5 GPa for Yb. Chromium, manganese, and tin demonstrated a gradual and pronounced lowering of the absolute value of the thermopower with pressure. Above 9–11 GPa, the Seebeck coefficients of Mn and Sn were inverted, from n- to p-type for Mn and from p- to n-type for Sn. The Seebeck effect in iron was rather high as ∼16 μV/K and weakly varied with pressure up to ∼11 GPa. Above ∼11 GPa, it started to drop dramatically with pressure to highest pressure achieved 18 GPa. Upon decompression cycle the thermopower of iron returned to the original high values but demonstrated a wide hysteresis loop. We related this behavior in iron to the known bcc (α-Fe) → hcp (ε-Fe) phase transition, and proposed that the thermoelectricity of the α-Fe phase is mainly contributed by the spin Seebeck effect, likewise, the thermoelectricity of the ε-Fe phase—by the conventional diffusion thermopower. We compare the pressure dependencies of the thermopower for different groups of metals and figure out some general trends in the thermoelectricity of metals under applied stress.

  9. Behavior of Aging, Micro-Void, and Self-Healing of Glass/Ceramic Materials and Its Effect on Mechanical Properties

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-30

    This chapter first describes tests to investigate the temporal evolution of the volume fraction of ceramic phases, the evolution of micro-damage, and the self-healing behavior of the glass ceramic sealant used in SOFCs, then a phenomenological model based on mechanical analogs is developed to describe the temperature dependent Young’s modulus of glass ceramic seal materials. It was found that after the initial sintering process, further crystallization of the glass ceramic sealant does not stop, but slows down and reduces the residual glass content while boosting the ceramic crystalline content. Under the long-term operating environment, distinct fibrous and needle-like crystals in the amorphous phase disappeared, and smeared/diffused phase boundaries between the glass phase and ceramic phase were observed. Meanwhile, the micro-damage was induced by the cooling-down process from the operating temperature to the room temperature, which can potentially degrade the mechanical properties of the glass/ceramic sealant. The glass/ceramic sealant self-healed upon reheating to the SOFC operating temperature, which can restore the mechanical performance of the glass/ceramic sealant. The phenomenological model developed here includes the effects of continuing aging and devitrification on the ceramic phase volume fraction and the resulted mechanical properties of glass ceramic seal material are considered. The effects of micro-voids and self-healing are also considered using a continuum damage mechanics (CDM) model. The formulation is for glass/ceramic seal in general, and it can be further developed to account for effects of various processing parameters. This model was applied to G18, and the temperature-dependent experimental measurements were used to calibrate the modeling parameters and to validate the model prediction.

  10. Ground state properties and thermoelectric behavior of Ru2VZ (Z=Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal Gazi

    2016-06-01

    The ground state properties namely structural, mechanical, electronic and magnetic properties and thermoelectric behavior of Ru2VZ (Z=Si, Ge and Sn) half-metallic ferromagnetic full-Heusler compounds are systematically investigated. These compounds are ferromagnetic and crystallize in the Heusler type L21 structure (prototype: Cu2MnAl, Fm-3m 225). This result is confirmed for Ru2VSi and Ru2VSn by experimental work reported by Yin and Nash using high temperature direct reaction calorimetry. The studied materials are half-metallic ferromagnets with a narrow direct band gap in the minority spin channel that amounts to 31 meV, 66 meV and 14 meV for Ru2VSi, Ru2VGe, and Ru2VSn, respectively. The total spin magnetic moment (Mtot) of the considered compounds satisfies a Slater-Pauling type rule for localized magnetic moment systems (Mtot=(NV-24)μB), where NV=25 is the number of valence electrons in the primitive cell. The Curie temperature within the random phase approximation (RPA) is found to be 23 K, 126 K and 447 K for Ru2VSi, Ru2VGe and Ru2VSn, respectively. Semi-classical Boltzmann transport theories have been used to obtain thermoelectric constants, such as Seebeck coefficient (S), electrical (σ/τ) and thermal conductivity (κ/τ), power factor (PF) and the Pauli magnetic susceptibility (χ). ZTMAX values of 0.016 (350 K), 0.033 (380 K) and 0.063 (315 K) are achieved for Ru2VSi, Ru2VGe and Ru2VSn, respectively. It is expected that the obtained results might be a trigger in future experimentally interest in this type of full-Heusler compounds.

  11. Psychometric Properties of the "Aberrant Behavior Checklist," the "Anxiety, Depression and Mood Scale," the "Assessment of Dual Diagnosis" and the "Social Performance Survey Schedule" in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Rojahn, Johannes; Rowe, Ellen W.; Kasdan, Shana; Moore, Linda; van Ingen, Daniel J.

    2011-01-01

    Progress in clinical research and in empirically supported interventions in the area of psychopathology in intellectual disabilities (ID) depends on high-quality assessment instruments. To this end, psychometric properties of four instruments were examined: the "Aberrant Behavior Checklist" (ABC), the "Assessment of Dual Diagnosis" (ADD), the…

  12. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates

    SciTech Connect

    Erdem, Savas Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The influence of the microscale local mechanical properties of the interfacial transition zone (ITZ) on macro-level mechanical response and impact behavior is studied for concretes made with copper slag and gravel aggregates. 3D nanotech vertical scanning interferometry, scanning electron microscopy coupled with energy dispersive X-ray micro-analysis, digital image analysis, and 3D X-ray computed tomography were used to characterize the microstructures and the ITZs. It was deduced that a stronger and denser ITZ in the copper slag specimen would reduce its vulnerability to stiffness loss and contribute to its elastic and more ductile response under impact loading. The analysis also indicated that a significant degeneration in the pore structure of the gravel specimen associated with a relatively weaker and non-homogeneous ITZ occurred under impact. Finally, it was also concluded that increased roughness of ITZ may contribute to the load-carrying capacity of concrete under impact by improving contact point interactions and energy dissipation.

  13. Effect of Chain-Extenders on the Properties and Hydrolytic Degradation Behavior of the Poly(lactide)/Poly(butylene adipate-co-terephthalate) Blends

    PubMed Central

    Dong, Weifu; Zou, Benshu; Yan, Yangyang; Ma, Piming; Chen, Mingqing

    2013-01-01

    Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC) results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium. PMID:24152436

  14. The effects of peroxide content on the wear behavior, microstructure and mechanical properties of peroxide crosslinked ultra-high molecular weight polyethylene used in total hip replacement.

    PubMed

    Gul, Rizwan M

    2008-06-01

    The wear of the ultra-high molecular weight polyethylene (UHMWPE) acetabular components and wear debris induced osteolysis are the major causes of failure in total hip replacements. Crosslinking has been shown to improve the wear resistance of UHMWPE by producing a network structure, resisting the plastic deformation of the surface layer. In this study organic peroxides were used to crosslink two different types of UHMWPE resins, using hot isostatic pressing as the processing method. The effects of peroxide content on the different properties were investigated, along with the effect of the crosslink density on the wear behavior. An increase in peroxide content decreases the melting point and the degree of crystallinity, which results in a decrease in the yield strength. The ultimate tensile strength remains essentially unchanged. The molecular weight between crosslinks decreases with an increase in the peroxide content and reaches a saturation limit at around 0.3-0.5 weight percent peroxide, its value at the saturation limit is a function of the virgin resin used for processing. The wear rate decreases linearly with the increase in crosslink density. PMID:18219557

  15. Micro-scale measurement of the mechanical properties of compressed pharmaceutical powders. 1: The elasticity and fracture behavior of microcrystalline cellulose.

    PubMed

    Hancock, B C; Clas, S D; Christensen, K

    2000-11-19

    The feasibility of using very small compacts ( approximately 8.0 x 4.5 x 0.4 mm; approximately 20 mg) to determine the elasticity and fracture behavior of compressed pharmaceutical powders using the three-point beam-bending technique was evaluated. Compacts of microcrystalline cellulose with a range of porosities were tested using a thermomechanical analyzer and values for the Young's modulus and critical stress intensity factor at zero porosity (E(0) and K(IC0)) were determined by extrapolation. The value of E(0) measured at ambient relative humidity on un-notched beams was found to be in close agreement with that reported for much larger samples, and the value of K(IC0) for the small notched compacts was at the lower limit of the accepted range of values for microcrystalline cellulose. The fracture toughness (R) and total energy of fracture (U) for the notched specimens were also determined and used to estimate the apparent surface energies for crack initiation (gamma(i)) and for total fracture (gamma(f)). To further probe the utility of the micro-scale mechanical testing techniques, the effects of humidity on the various mechanical properties of the small microcrystalline compacts were examined and it was found that E(0), K(IC0), R(0), gamma(i0) and gamma(f0) each decreased as the surrounding humidity (and water content of the samples) increased.

  16. High pressure sintering behavior and mechanical properties of cBN-Ti3Al and cBN-Ti3Al-Al composite materials

    NASA Astrophysics Data System (ADS)

    Li, Yu; Kou, Zili; Wang, Haikuo; Wang, Kaixue; Tang, Hongchang; Wang, Yanfei; Liu, Shenzhuo; Ren, Xiangting; Meng, Chuanming; Wang, Zhigang

    2012-12-01

    The sintering behavior and mechanical properties of cubic boron nitride (cBN) composites, using the mixture of cBN-Ti3Al and cBN-Ti3Al-Al as the starting material respectively, were investigated under high pressure and high temperature (HPHT) conditions. The results show that the samples of cBN-Ti3Al-Al sintering system have more homogeneous microstructures. Young's modulus, shear modulus, and bulk modulus of samples measured by ultrasonic measurements can reach to 782±3 GPa, 344±1 GPa, and 348±2 GPa, respectively. The hardness increases remarkably with the sintering temperature rising, and reaches to the highest value of 35.04±0.51 GPa. For the cBN-Ti3Al sintering system, the X-ray diffraction patterns of composites reveal that the chemical reactions between cBN and Ti3Al occurred at 5.0 GPa and 1300°C. The reaction mechanisms of both cBN-Ti3Al and cBN-Ti3Al-Al sintering systems are discussed in this paper.

  17. Effect of chain-extenders on the properties and hydrolytic degradation behavior of the poly(lactide)/poly(butylene adipate-co-terephthalate) blends.

    PubMed

    Dong, Weifu; Zou, Benshu; Yan, Yangyang; Ma, Piming; Chen, Mingqing

    2013-10-10

    Biodegradable poly(lactide)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) blends were prepared by reactive blending in the presence of chain-extenders. Two chain-extenders with multi-epoxy groups were studied. The effect of chain-extenders on the morphology, mechanical properties, thermal behavior, and hydrolytic degradation of the blends was investigated. The compatibility between the PLA and PBAT was significantly improved by in situ formation of PLA-co-PBAT copolymers in the presence of the chain-extenders, results in an enhanced ductility of the blends, e.g., the elongation at break was increased to 500% without any decrease in the tensile strength. The differential scanning calorimeter (DSC) results reveal that cold crystallization of PLA was enhanced due to heterogeneous nucleation effect of the in situ compatibilized PBAT domains. As known before, PLA is sensitive to hydrolysis and in the presence of PBAT and the chain-extenders, the hydrolytic degradation of the blend was evident. A three-stage hydrolysis mechanism for the system is proposed based on a study of weight loss and molecular weight reduction of the samples and the pH variation of the degradation medium.

  18. The Monoglyceride Content Affects the Self-Assembly Behavior, Rheological Properties, Syringeability, and Mucoadhesion of In Situ-Gelling Liquid Crystalline Phase.

    PubMed

    Nunes, Kariane M; Teixeira, Cristian C C; Kaminski, Renata C K; Sarmento, Victor H V; Couto, Renê O; Pulcinelli, Sandra H; Freitas, Osvaldo

    2016-08-01

    This article reports the development of a precursor liquid crystalline system based on a mixture of monoglycerides (MO) and Cremophor(®) (CREM) that exhibits in situ gelation to a liquid crystalline phase. The effects of different MO/CREM ratios and the water content (WC) on several performance characteristics were investigated with a full factorial design. The formulations were characterized by polarized light microscopy, small-angle X-ray scattering, and water uptake assays. Rheological, syringeability, and mucoadhesion evaluation were also performed. The polarized light microscopy and small-angle X-ray scattering results for average and high MO/CREM ratios (2.1 and 4.0, respectively) indicated the coexistence of phases in transition to the liquid crystalline phase, independently of the WC. These systems became more viscous after taking up water, showing peaks characteristic of a cubic phase. Systems that had average and high MO/CREM ratios also exhibited shear-thinning behavior and high elasticity. Most systems showed suitable mucoadhesion for buccal purposes. Response surface methodology results demonstrated that the relative contribution of MO was the principal factor that affected the performance of the system. Accordingly, these precursor systems with average to high MO/CREM ratios and an average WC (10% w/w) demonstrated physicochemical and mucoadhesive properties that could enable them to be used as an in situ-gelling controlled drug delivery platform.

  19. Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams.

    PubMed

    Chen, Yunshen; Elhag, Amro S; Reddy, Prathima P; Chen, Hao; Cui, Leyu; Worthen, Andrew J; Ma, Kun; Quintanilla, Heriberto; Noguera, Jose A; Hirasaki, George J; Nguyen, Quoc P; Biswal, Sibani L; Johnston, Keith P

    2016-05-15

    The interfacial properties for surfactants at the supercritical CO2-water (C-W) interface at temperatures above 80°C have very rarely been reported given limitations in surfactant solubility and chemical stability. These limitations, along with the weak solvent strength of CO2, make it challenging to design surfactants that adsorb at the C-W interface, despite the interest in CO2-in-water (C/W) foams (also referred to as macroemulsions). Herein, we examine the thermodynamic, interfacial and rheological properties of the surfactant C12-14N(EO)2 in systems containing brine and/or supercritical CO2 at elevated temperatures and pressures. Because the surfactant is switchable from the nonionic state to the protonated cationic state as the pH is lowered over a wide range in temperature, it is readily soluble in brine in the cationic state below pH 5.5, even up to 120°C, and also in supercritical CO2 in the nonionic state. As a consequence of the affinity for both phases, the surfactant adsorption at the CO2-water interface was high, with an area of 207Å(2)/molecule. Remarkably, the surfactant lowered the interfacial tension (IFT) down to ∼5mN/m at 120°C and 3400 psia (23MPa), despite the low CO2 density of 0.48g/ml, indicating sufficient solvation of the surfactant tails. The phase behavior and interfacial properties of the surfactant in the cationic form were favorable for the formation and stabilization of bulk C/W foam at high temperature and high salinity. Additionally, in a 1.2 Darcy glass bead pack at 120°C, a very high foam apparent viscosity of 146 cP was observed at low interstitial velocities given the low degree of shear thinning. For a calcium carbonate pack, C/W foam was formed upon addition of Ca(2+) and Mg(2+) in the feed brine to keep the pH below 4, by the common ion effect, in order to sufficiently protonate the surfactant. The ability to form C/W foams at high temperatures is of interest for a variety of applications in chemical synthesis

  20. Curing behavior and properties of 4,4'-bismaleimidodiphenylmethane and o,o'-diallyl bisphenol a: Effect of peroxides and hybrid silsesquioxane addition

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    The aim of this work is to provide a better understanding on the use of common organic free radical initiator and hybrid silsesquioxane on curing behavior, corresponding cured structures and thermal mechanical properties of organic bismaleimide (BMI) network consisted by 4,4'-bismaleimidodiphenylmethane (BMPM) and O, O'-diallyl bisphenol A (DABPA). Three kinds of peroxide, Dicumyl Peroxide (DCP), 2,5-Dimethyl-2,5-di(tert-butylperoxyl) hexane (Trigonox RTM101), 3,6,9-Triethyl-3,6,9,-trimethyl-1,4,7-triperoxonane (Trigonox RTM301) and two types of silsesquioxane, Octastyrenyl (OSTS) and N-Phenylaminopropyl cage mixture (APS) were investigated with BMI system. Specifically, onset of cure reaction and evolution of exothermic heat flow by the differential scanning calorimetry were used to study changes in the reaction mechanism when different initiators and/or silsesquioxane was added. Thermal mechanical properties of cured network, glass transition temperature and degradation kinetics were investigated as a function of additive types and concentration. The result of this work showed that TrigonoxRTM 101 was the most suitable initiator for BMPM/DABPA system due to its low onset curing temperature, around 130oC and mild initiation step which did not result in high homopolymerization rate of BMPM as compared to DCP. Glass transition temperature of BMPM/DABPA with 0.3wt% TrigonoxRTM 101 was significantly improved, 90oC higher than the systems without addition of peroxide additive. To improve thermal stability of BMI thermoset network, hybrid silsesquioxanes were added into the system. OSTS is a cage (SiO1.5)8 containing eight styrenyl functional groups surrounding the SiO core. The styrenyl functional groups of OSTS can react with BMPM through the free radicals formed by BMPM when heated to around 200oC. APS is a cage mixture of (SiO1.5)n, where n is equal to 8, 10 or 12, with N-aminopropyl groups surrounding the SiO core. APS will react with BMPM at around 150oC through

  1. A Factor Analytic Investigation of the BASC-2 Behavioral and Emotional Screening System Parent Form: Psychometric Properties, Practical Implications, and Future Directions

    ERIC Educational Resources Information Center

    Dowdy, Erin; Chin, Jenna K.; Twyford, Jennifer M.; Dever, Bridget V.

    2011-01-01

    The Behavior Assessment System for Children, Second Edition (BASC-2) Behavioral and Emotional Screening System Parent Form (BESS Parent; Kamphaus & Reynolds, 2007) is a recently developed instrument designed to identify behavioral and emotional risk in students. To describe the underlying factor structure for this instrument, exploratory (EFA) and…

  2. Surface properties and dye loading behavior of Zn{sub 2}SnO{sub 4} nanoparticles hydrothermally synthesized using different mineralizers

    SciTech Connect

    Annamalai, Alagappan; Eo, Yang Dam; Im, Chan; Lee, Man-Jong

    2011-10-15

    We present for the first time the influence of different mineralizers on the isoelectric point (IEP) of zinc stannate (Zn{sub 2}SnO{sub 4}) nanoparticles hydrothermally prepared using three different mineralizers, viz., Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, and the effect of the IEPs on the dye loading behavior of Zn{sub 2}SnO{sub 4} based photoelectrodes in dye sensitized solar cells (DSSCs). To produce highly crystalline, uniform sized Zn{sub 2}SnO{sub 4} nanoparticles, hydrothermal processing parameters, such as reaction temperature, time, and the mineralizers used have been critically adjusted. The structural and morphological features of the as-synthesized Zn{sub 2}SnO{sub 4} nanoparticles have been observed using both scanning and transmission electron microscopy. For the surface state characterization of shape- and size-controlled Zn{sub 2}SnO{sub 4} nanoparticles, the IEPs of Zn{sub 2}SnO{sub 4} surfaces were determined through zeta potential measurements. The IEPs were found to be 5.7, 7.4 and 8.1 for Zn{sub 2}SnO{sub 4} nanoparticles formed using Na{sub 2}CO{sub 3}, KOH and tert-butyl amine, respectively, suggesting that the surface properties of Zn{sub 2}SnO{sub 4} nanoparticles can be manipulated through the choice of the mineralizers used during the hydrothermal reaction. The amount of N719 dye loading on the surfaces of Zn{sub 2}SnO{sub 4} electrodes having different IEPs was also evaluated. It was revealed that the higher the IEP, the higher the dye loading amount, which means that the IEP mainly affects the dye loading at the dye-metal oxide interface. - Highlights: {yields} The effect of various mineralizers on the isoelectric point of Zn{sub 2}SnO{sub 4} was discussed. {yields} The IEP of Zn{sub 2}SnO{sub 4} can be modified by the choice of mineralizer. {yields} Change in IEP affects the surface properties and the morphology of Zn{sub 2}SnO{sub 4} particles. {yields} Modified surface affects the N719 dye loading behaviour of the Zn{sub 2

  3. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants

    PubMed Central

    Sul, Young-Taeg

    2010-01-01

    TiO2 nanotubes are fabricated on TiO2 grit-blasted, screw-shaped rough titanium (ASTM grade 4) implants (3.75 × 7 mm) using potentiostatic anodization at 20 V in 1 M H3PO4 + 0.4 wt.% HF. The growth behavior and surface properties of the nanotubes are investigated as a function of the reaction time. The results show that vertically aligned nanotubes of ≈700 nm in length, with highly ordered structures of ≈40 nm spacing and ≈15 nm wall thickness may be grown independent of reaction time. The geometrical properties of nanotubes increase with reaction time (mean pore size, pore size distribution [PSD], and porosity ≈90 nm, ≈40–127 nm and 45%, respectively for 30 minutes; ≈107 nm, ≈63–140 nm and 56% for one hour; ≈108 nm, ≈58–150 nm and 60% for three hours). It is found that the fluorinated chemistry of the nanotubes of F-TiO2, TiOF2, and F-Ti-O with F ion incorporation of ≈5 at.%, and their amorphous structure is the same regardless of the reaction time, while the average roughness (Sa) gradually decreases and the developed surface area (Sdr) slightly increases with reaction time. The results of studies on animals show that, despite their low roughness values, after six weeks the fluorinated TiO2 nanotube implants in rabbit femurs demonstrate significantly increased osseointegration strengths (41 vs 29 Ncm; P = 0.008) and new bone formation (57.5% vs 65.5%; P = 0.008) (n = 8), and reveal more frequently direct bone/cell contact at the bone–implant interface by high-resolution scanning electron microscope observations as compared with the blasted, moderately rough implants that have hitherto been widely used for clinically favorable performance. The results of the animal studies constitute significant evidence that the presence of the nanotubes and the resulting fluorinated surface chemistry determine the nature of the bone responses to the implants. The present in vivo results point to potential applications of the TiO2 nanotubes in the

  4. Seismic velocity constraints on the material properties that control earthquake behavior at the Quebrada-Discovery-Gofar transform faults, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Roland, Emily; Lizarralde, Dan; McGuire, Jeffrey J.; Collins, John A.

    2012-11-01

    Mid-ocean ridge transform faults (RTFs) vary strongly along strike in their ability to generate large earthquakes. This general observation suggests that local variations in material properties along RTFs exert a primary control on earthquake rupture dynamics. We explore these relationships by examining the seismic structure of two RTFs that have distinctly different seismic coupling. We determine the seismic velocity structure at the Gofar and Quebrada faults on the East Pacific Rise (EPR) using P wave traveltime tomography with data from two active-source wide-angle refraction lines crossing the faults. We image low-velocity zones (LVZs) at both faults, where P wave velocities are reduced by as much as 0.5-1.0 km/s (˜10-20%) within a several kilometer wide region. At the Gofar fault, the LVZ extends through the entire crust, into the seismogenic zone. We rule out widespread serpentinization as an explanation for the low velocities, owing to the lack of a corresponding signal in the locally measured gravity field. The reduced velocities can be explained if the plate boundary region is composed of fault material with enhanced fluid-filled porosity (1.5-8%). Local seismic observations indicate that the high-porosity region lies within a ˜10 km long portion of the fault that fails in large swarms of microearthquakes and acts as a barrier to the propagation of large (M ˜ 6.0) earthquakes. Tomographic images of fault structure combined with observed earthquake behavior suggest that EPR transform segments capable of generating large earthquakes have relatively intact gabbro within the seismogenic zone, whereas segments that slip aseismically or via earthquake swarms are composed of highly fractured, ≥2 km wide damage zones that extend throughout the crust.

  5. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

    PubMed Central

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Muhialdin, Belal J.; Alhelli, Amaal M.

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE. PMID:27642353

  6. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

    PubMed Central

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Muhialdin, Belal J.; Alhelli, Amaal M.

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

  7. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil.

    PubMed

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Tan, Chin Ping; Muhialdin, Belal J; Alhelli, Amaal M; Meor Hussin, Anis Shobirin

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE. PMID:27642353

  8. Structural behavior and thermoelectric properties of the brownmillerite system Ca{sub 2}(Zn{sub x}Fe{sub 2-x})O{sub 5}

    SciTech Connect

    Asenath-Smith, Emily; Misture, Scott T.; Edwards, Doreen D.

    2011-08-15

    The Ca{sub 2}(Zn{sub x}Fe{sub 2-x})O{sub 5} series was synthesized and characterized to determine the influence of zinc dopant on the brownmillerite structure for thermoelectric applications. All single-phase compounds exhibited Pnma symmetry at room temperature up to the solubility limit at x=0.10. High-temperature X-ray powder diffraction was used to show that the nature of the Pnma-Imma(0 0 {gamma})s00 transition in Ca{sub 2}Fe{sub 2}O{sub 5} is modified by the presence of zinc. While the Zn-free composition transitions to an incommensurate phase, the Zn-containing phases transition instead to a commensurate phase, Imma(0 0 {gamma})s00 with {gamma}=1/2. Both the Neel temperature and the onset temperature of the Pnma-Imma(0 0 {gamma})s00 phase transition decreased with increasing zinc concentration. Rietveld analysis of the in situ diffraction pattern for the x=0 sample at 1300 deg. C demonstrates that the structure contains statistically disordered chain orientations as described by space group Imma. Thermoelectric properties were analyzed in air from 100 to 800 deg. C. The positive Seebeck coefficient revealed hole-type conduction for all compositions. Doped samples exhibited electrical conductivities up to 3.4 S/cm and thermal conductivity of 1.5 W/mK. Transport analysis revealed thermally activated mobility consistent with polaron conduction behavior for all compositions. - Graphical Abstract: Preferential substitution by zinc for iron at the tetrahedral sites of brownmillerite dicalcium ferrite modifies the high temperature Imma(0 0 {gamma})s00 phase from incommensurate to commensurate. Highlights: > Preferential tetrahedral occupancy by zinc in brownmillerite dicalcium ferrite. > Ca{sub 2}Fe{sub 2}O{sub 5} exhibits two additional phase transitions above 1000 deg. C: a commensurately modulated Imma(0 0 {gamma})s00 phase and a statistically disordered Imma phase. > Thermal hysteresis in phase transition increased with increasing zinc. > Electrical

  9. Micromechanics-based modelling of post-yield behavior of porous materials and its effect on hardness properties from conical indentation

    NASA Astrophysics Data System (ADS)

    Traxl, Roland; Lackner, Roman

    2013-08-01

    Based on a multi-scale approach comprising a multi-scale material model, on the one hand, and a respective finite-element (FE) model, on the other hand, the indentation response of porous materials is examined. The considered material is assumed to consist of a homogeneous Drucker-Prager-type matrix-phase containing spherical pores, where the macroscopic strength criterion is obtained from nonlinear homogenization as proposed by Barthélémy and Dormieux. As regards modeling of the material behavior after onset of yielding, two types of behavior originating from different post-yield characteristics of the matrix material (ductile and quasi-brittle) are considered. The material model is implemented in a FE program within the framework of elastoplasticity and applied to the analysis of indentation experiments. The so-obtained relations provide first insight into the influence of the post-yield behavior of the matrix material on the hardness of porous materials.

  10. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.

    PubMed

    Girard, Etienne; Tassaing, Thierry; Marty, Jean-Daniel; Destarac, Mathias

    2016-04-13

    This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.

  11. Behavior subtraction.

    PubMed

    Jodoin, Pierre-Marc; Saligrama, Venkatesh; Konrad, Janusz

    2012-09-01

    Background subtraction has been a driving engine for many computer vision and video analytics tasks. Although its many variants exist, they all share the underlying assumption that photometric scene properties are either static or exhibit temporal stationarity. While this works in many applications, the model fails when one is interested in discovering changes in scene dynamics instead of changes in scene's photometric properties; the detection of unusual pedestrian or motor traffic patterns are but two examples. We propose a new model and computational framework that assume the dynamics of a scene, not its photometry, to be stationary, i.e., a dynamic background serves as the reference for the dynamics of an observed scene. Central to our approach is the concept of an event, which we define as short-term scene dynamics captured over a time window at a specific spatial location in the camera field of view. Unlike in our earlier work, we compute events by time-aggregating vector object descriptors that can combine multiple features, such as object size, direction of movement, speed, etc. We characterize events probabilistically, but use low-memory, low-complexity surrogates in a practical implementation. Using these surrogates amounts to behavior subtraction, a new algorithm for effective and efficient temporal anomaly detection and localization. Behavior subtraction is resilient to spurious background motion, such as due to camera jitter, and is content-blind, i.e., it works equally well on humans, cars, animals, and other objects in both uncluttered and highly cluttered scenes. Clearly, treating video as a collection of events rather than colored pixels opens new possibilities for video analytics.

  12. Behavior dynamics: One perspective

    PubMed Central

    Marr, M. Jackson

    1992-01-01

    Behavior dynamics is a field devoted to analytic descriptions of behavior change. A principal source of both models and methods for these descriptions is found in physics. This approach is an extension of a long conceptual association between behavior analysis and physics. A theme common to both is the role of molar versus molecular events in description and prediction. Similarities and differences in how these events are treated are discussed. Two examples are presented that illustrate possible correspondence between mechanical and behavioral systems. The first demonstrates the use of a mechanical model to describe the molar properties of behavior under changing reinforcement conditions. The second, dealing with some features of concurrent schedules, focuses on the possible utility of nonlinear dynamical systems to the description of both molar and molecular behavioral events as the outcome of a deterministic, but chaotic, process. PMID:16812655

  13. Psychometric Properties of the Lithuanian Adlerian Parental Assessment of Child Behavior Scale (LAPACBS) in Parents of 6- to 12-Year-Olds

    ERIC Educational Resources Information Center

    Kern, Roy M.; Jonyniene, Jolita

    2012-01-01

    The structure-related validity and internal consistency reliability of the translated version of the Adlerian Parental Assessment of the Child Behavior Scale (APACBS) which would be referred to as the Lithuanian APACBS (LAPACBS) was the focus of the research study. A factor analysis was performed using a sample of 246 Lithuanian parents. It…

  14. A New Data-Mining Method to Search for Behavioral Properties That Induce Alignment and Their Involvement in Social Learning in Medaka Fish (Oryzias Latipes)

    PubMed Central

    Ochiai, Takashi; Suehiro, Yuji; Nishinari, Katsuhiro; Kubo, Takeo; Takeuchi, Hideaki

    2013-01-01

    Background Coordinated movement in social animal groups via social learning facilitates foraging activity. Few studies have examined the behavioral cause-and-effect between group members that mediates this social learning. Methodology/Principal Findings We first established a behavioral paradigm for visual food learning using medaka fish and demonstrated that a single fish can learn to associate a visual cue with a food reward. Grouped medaka fish (6 fish) learn to respond to the visual cue more rapidly than a single fish, indicating that medaka fish undergo social learning. We then established a data-mining method based on Kullback-Leibler divergence (KLD) to search for candidate behaviors that induce alignment and found that high-speed movement of a focal fish tended to induce alignment of the other members locally and transiently under free-swimming conditions without presentation of a visual cue. The high-speed movement of the informed and trained fish during visual cue presentation appeared to facilitate the alignment of naïve fish in response to some visual cues, thereby mediating social learning. Compared with naïve fish, the informed fish had a higher tendency to induce alignment of other naïve fish under free-swimming conditions without visual cue presentation, suggesting the involvement of individual recognition in social learning. Conclusions/Significance Behavioral cause-and-effect studies of the high-speed movement between fish group members will contribute to our understanding of the dynamics of social behaviors. The data-mining method used in the present study is a powerful method to search for candidates factors associated with inter-individual interactions using a dataset for time-series coordinate data of individuals. PMID:24039720

  15. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    NASA Astrophysics Data System (ADS)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  16. Property in Nonhuman Primates

    ERIC Educational Resources Information Center

    Brosnan, Sarah F.

    2011-01-01

    Property is rare in most nonhuman primates, most likely because their lifestyles are not conducive to it. Nonetheless, just because these species do not frequently maintain property does not mean that they lack the propensity to do so. Primates show respect for possession, as well as behaviors related to property, such as irrational decision…

  17. A comparison study on the densification behavior and mechanical properties of gelcast vs conventionally formed B{sub 4}C sintered conventionally and by microwaves

    SciTech Connect

    Menchhofer, P.A.; Kiggans, J.O.; Morrow, M.S.; Schechter, D.E.

    1996-06-01

    The utilization of microwave energy for reaching high temperatures necessary to densify B{sub 4}C powder is compared with conventional means of sintering by evaluating the mechanical properties after densification. Microwave energy has been shown to be an effective means for achieving high sintered densities, even though temperatures of {approximately} 2,250 C are required. In this study, green preforms of B{sub 4}C specimens were sintered by both conventional and microwave heating. This study also utilized an advanced forming method called ``Gelcasting`` developed at ORNL. Gelcasting is a fluid forming process whereby high solids suspensions of powders containing dissolved monomers are cast into a mold, then polymerized or ``gelled`` in situ. This investigation compares microstructures and mechanical properties of both Gelcast B{sub 4}C and ``conventionally`` die-pressed B{sub 4}C. The microstructures and final mechanical properties of B{sub 4}C specimens are discussed.

  18. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer.

  19. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer. PMID:26987760

  20. Studies on the influence of Be content on the corrosion behavior and mechanical properties of Ni-25Cr-10Mo alloys.

    PubMed

    Geis-Gerstorfer, J; Pässler, K

    1993-05-01

    The influence of Be content on the corrosion behavior and strength of dental alloys was examined using experimental Ni-25Cr-10Mo-xBe alloys with graduated Be contents of 0, 0.6, 1.1, 1.6, and 2.1 wt.%. It became evident that the corrosion resistance is reduced even by a 0.6 wt.% Be content. Strength increases by 51% with increasing Be content, while ductility is reduced by 84%. The results revealed that, from the stand-point of corrosion resistance, Be-free Ni-Cr-Mo alloys should be preferred in clinical use.

  1. Functions of maladaptive behavior in intellectual and developmental disabilities: behavior categories and topographies.

    PubMed

    Rojahn, Johannes; Zaja, Rebecca H; Turygin, Nicole; Moore, Linda; van Ingen, Daniel J

    2012-01-01

    Research has shown that different maladaptive behavior categories may be maintained by different contingencies. We examined whether behavior categories or behavior topographies determine functional properties. The Questions about Behavioral Function with its five subscales (Attention, Escape, Nonsocial, Physical, and Tangible) was completed by direct care staff for one target behavior for each of 115 adults with varying degrees of intellectual disabilities. In the first step we examined the functional properties of three broad behavior categories (self-injurious behavior [SIB], stereotypic behavior, and aggressive/destructive behavior). Consistent with previous research stereotyped behaviors and SIB had significantly higher QABF Nonsocial (i.e., automatic positive reinforcement or self-stimulation) subscale scores than aggressive behavior, while none of the other subscales showed differences across the three behavior categories. Contrary to earlier studies, escape (or negative social reinforcement) was an important function not only for aggressive behavior, but also for SIB and stereotypies. A second analysis examined functional properties depending on two factors: the behavior topography (hitting vs. non-hitting behaviors) and their respective behavior category (SIB vs. aggression). SIB topographies had higher ratings than aggressive behavior on the QABF Nonsocial subscale. Of the five QABF subscales, only the subscale Nonsocial differed between categories of maladaptive behavior. Furthermore it was the behavior categories rather than the topographies that determined functional properties.

  2. Functions of maladaptive behavior in intellectual and developmental disabilities: behavior categories and topographies.

    PubMed

    Rojahn, Johannes; Zaja, Rebecca H; Turygin, Nicole; Moore, Linda; van Ingen, Daniel J

    2012-01-01

    Research has shown that different maladaptive behavior categories may be maintained by different contingencies. We examined whether behavior categories or behavior topographies determine functional properties. The Questions about Behavioral Function with its five subscales (Attention, Escape, Nonsocial, Physical, and Tangible) was completed by direct care staff for one target behavior for each of 115 adults with varying degrees of intellectual disabilities. In the first step we examined the functional properties of three broad behavior categories (self-injurious behavior [SIB], stereotypic behavior, and aggressive/destructive behavior). Consistent with previous research stereotyped behaviors and SIB had significantly higher QABF Nonsocial (i.e., automatic positive reinforcement or self-stimulation) subscale scores than aggressive behavior, while none of the other subscales showed differences across the three behavior categories. Contrary to earlier studies, escape (or negative social reinforcement) was an important function not only for aggressive behavior, but also for SIB and stereotypies. A second analysis examined functional properties depending on two factors: the behavior topography (hitting vs. non-hitting behaviors) and their respective behavior category (SIB vs. aggression). SIB topographies had higher ratings than aggressive behavior on the QABF Nonsocial subscale. Of the five QABF subscales, only the subscale Nonsocial differed between categories of maladaptive behavior. Furthermore it was the behavior categories rather than the topographies that determined functional properties. PMID:22750358

  3. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2013-03-01

    The ring tensile test method was optimized and successfully used to obtain precise data for specimens of the cladding tubes of AISI type 316 austenitic stainless steels and ferritic-martensitic stainless steel. The positive modifications in the tensile properties of the stainless steel cladding tubes fabricated by powder metallurgy and hot isostatic pressing of melt atomized powders (PM HIP) when compared with the cladding tubes produced by traditional technology were found. Presently, PM HIP is also used in the fabrication of oxide dispersion strengthened (ODS) ferritic-martensitic steels. The high degree of homogeneity of the distribution of carbon and boron as well the high dispersivity of the phase-structure elements in the specimens manufactured via PM HIP were determined by direct autoradiography methods. These results correlate well with the increase of the tensile properties of the specimens produced by PM HIP technology.

  4. Influence of CuO addition to BaSm{sub 2}Ti{sub 4}O{sub 12} microwave ceramics on sintering behavior and dielectric properties

    SciTech Connect

    Zuo Mingwen; Li Wei . E-mail: liwei@mail.sic.ac.cn; Shi Jianlin; Zeng Qun

    2006-06-15

    Microwave dielectric ceramics of tungsten-bronze-type BaSm{sub 2}Ti{sub 4}O{sub 12} were prepared by doping CuO (up to 2 wt.%) as the liquid-phase sintering aid. The effects of CuO additive on the densification, micro structure and dielectric properties were investigated. Due to the liquid-phase effect, the sintering temperature of BaSm{sub 2}Ti{sub 4}O{sub 12} ceramics with 1 wt.% CuO addition can be effectively reduced to 1160 deg. C, about 200 deg. C lower than that of pure BaSm{sub 2}Ti{sub 4}O{sub 12} ceramics, while good microwave dielectric properties of {epsilon} {sub r} = 75.8, Q*f = 4914.6 GHz and {tau} {sub f} = -7.65 ppm/deg. C were still achieved.

  5. Thermophysical properties

    SciTech Connect

    Kayser, R.F.

    1993-01-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for Refrigerants 32, 123, 124, and 125, and to use these data to fit simple and complex equations of state and detailed transport property models. The new data will fill gaps in the existing data sets and resolve the problems and uncertainties that exist in and between the data sets. This report describes the progress made during the fourth quarter of this fifteen-month project, which was initiated in late January, 1992.

  6. Structures, electrical properties, and leakage current behaviors of un-doped and Mn-doped lead-free ferroelectric K{sub 0.5}Na{sub 0.5}NbO{sub 3} films

    SciTech Connect

    Wang, Lingyan E-mail: wren@mail.xjtu.edu.cn; Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Shi, Peng; Wu, Xiaoqing

    2014-01-21

    Lead-free ferroelectric un-doped and doped K{sub 0.5}Na{sub 0.5}NbO{sub 3} (KNN) films with different amounts of manganese (Mn) were prepared by a chemical solution deposition method. The thicknesses of all films are about 1.6 μm. Their phase, microstructure, leakage current behavior, and electrical properties were investigated. With increasing the amounts of Mn, the crystallinity became worse. Fortunately, the electrical properties were improved due to the decreased leakage current density after Mn-doping. The study on leakage behaviors shows that the dominant conduction mechanism at low electric field in the un-doped KNN film is ohmic mode and that at high electric field is space-charge-limited and Pool-Frenkel emission. After Mn doping, the dominant conduction mechanism at high electric field of KNN films changed single space-charge-limited. However, the introduction of higher amount of Mn into the KNN film would lead to a changed conduction mechanism from space-charge-limited to ohmic mode. Consequently, there exists an optimal amount of Mn doping of 2.0 mol. %. The 2.0 mol. % Mn doped KNN film shows the lowest leakage current density and the best electrical properties. With the secondary ion mass spectroscopies and x-ray photoelectron spectroscopy analyses, the homogeneous distribution in the KNN films and entrance of Mn element in the lattice of KNN perovskite structure were also confirmed.

  7. Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors.

    PubMed

    Shen, Yun-Dun; Lin, Li-Hsiang; Chiang, Hsi-Jen; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-01

    The objective of this study was to use surface functionalization to evaluate the antiadhesion property and thermal injury effects on the liver when using a novel electrosurgical unit with nanostructured-doped diamond-like carbon (DLC-Cu) thin films for tumor ablations. The physical and chemical properties of DLC-Cu thin films were characterized by contact angle goniometer, scanning electron microscope, and transmission electron microscope. Three-dimensional (3D) hepatic models were reconstructed using magnetic resonance imaging to simulate a clinical electrosurgical operation. The results indicated a significant increase of the contact angle on the nanostructured DLC-Cu thin films, and the antiadhesion properties were also observed in an animal model. Furthermore, the surgical temperature in the DLC-Cu electrosurgical unit was found to be significantly lower than the untreated unit when analyzed using 3D models and thermal images. In addition, DLC-Cu electrodes caused a relatively small injury area and lateral thermal effect. The results indicated that the nanostructured DLC-Cu thin film coating reduced excessive thermal injury and tissue adherence effect in the liver.

  8. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  9. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.

    PubMed

    Kumar, G Sudheer; Vishnupriya, D; Chary, K Suresh; Patro, T Umasankar

    2016-09-23

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c  = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼10(5). We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  10. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.

    PubMed

    Kumar, G Sudheer; Vishnupriya, D; Chary, K Suresh; Patro, T Umasankar

    2016-09-23

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c  = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼10(5). We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  11. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties

    NASA Astrophysics Data System (ADS)

    Sudheer Kumar, G.; Vishnupriya, D.; Chary, K. Suresh; Umasankar Patro, T.

    2016-09-01

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ˜217 and capacitance of ˜5430 pF, loss tangent of ˜0.4 at 1 kHz and an unprecedented figure of merit of ˜105. We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal properties

  12. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties

    NASA Astrophysics Data System (ADS)

    Sudheer Kumar, G.; Vishnupriya, D.; Chary, K. Suresh; Umasankar Patro, T.

    2016-09-01

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer–CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼105. We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  13. Cortical Neuron Response Properties Are Related to Lesion Extent and Behavioral Recovery after Sensory Loss from Spinal Cord Injury in Monkeys

    PubMed Central

    Reed, Jamie L.; Gharbawie, Omar A.; Burish, Mark J.; Kaas, Jon H.

    2014-01-01

    Lesions of the dorsal columns at a mid-cervical level render the hand representation of the contralateral primary somatosensory cortex (area 3b) unresponsive. Over weeks of recovery, most of this cortex becomes responsive to touch on the hand. Determining functional properties of neurons within the hand representation is critical to understanding the neural basis of this adaptive plasticity. Here, we recorded neural activity across the hand representation of area 3b with a 100-electrode array and compared results from owl monkeys and squirrel monkeys 5–10 weeks after lesions with controls. Even after extensive lesions, performance on reach-to-grasp tasks returned to prelesion levels, and hand touches activated territories mainly within expected cortical locations. However, some digit representations were abnormal, such that receptive fields of presumably reactivated neurons were larger and more often involved discontinuous parts of the hand compared with controls. Hand stimulation evoked similar neuronal firing rates in lesion and control monkeys. By assessing the same monkeys with multiple measures, we determined that properties of neurons in area 3b were highly correlated with both the lesion severity and the impairment of hand use. We propose that the reactivation of neurons with near-normal response properties and the recovery of near-normal somatotopy likely supported the recovery of hand use. Given the near-completeness of the more extensive dorsal column lesions we studied, we suggest that alternate spinal afferents, in addition to the few spared primary axon afferents in the dorsal columns, likely have a major role in the reactivation pattern and return of function. PMID:24647955

  14. Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al{sub 2}O{sub 3} nanocomposites

    SciTech Connect

    Guo Yan; Cho, Hoonsung; Shi Donglu; Lian Jie; Song Yi; Abot, Jandro; Poudel, Bed; Ren Zhifeng; Wang Lumin; Ewing, Rodney C.

    2007-12-24

    The effects of plasma surface modification on interfacial behaviors in carbon nanotube (CNT) reinforced alumina (Al{sub 2}O{sub 3}) nanocomposites were studied. A unique plasma polymerization method was used to modify the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. The CNT-Al{sub 2}O{sub 3} nanocomposites were processed by both ambient pressure and hot-press sintering. The electron microscopy results showed ultrathin polymer coating on the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. A distinctive stress-strain curve difference related to the structural interfaces and plasma coating was observed from the nanocomposites. The mechanical performance and thermal stability of CNT-Al{sub 2}O{sub 3} nanocomposites were found to be significantly enhanced by the plasma-polymerized coating.

  15. Electron Emission Properties and Surface Atom Behavior of an Impregnated Cathode Coated with Tungsten Thin Film Containing Sc2O3

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiko; Taguchi, Sadanori; Watanabe, Isato; Kawase, Susumu

    1986-07-01

    A new cathode has been developed which shows similar electron emission characteristics as a previously reported Sc2O3 mixed matrix impregnated cathode (Sc2O3 MM Cathode). Contrary to the Sc2O3 MM cathode, the new cathode is resistive to prolonged heating at high temperatures and to ion bombardment. This has been made possible by applying to a standard impregnated cathode a tungsten thin-film containing about 5 weight percent Sc2O3. The electron-emission property is found to be strongly linked to the surface atom composition as well as to the distribution of surface atoms.

  16. Structural and magnetic properties and evidence of spin-glass behavior induced by Fe-doping in perovskite manganites B-site

    SciTech Connect

    Tlili, M.T.; Bejar, M.; Dhahri, E.; Sajieddine, M.; Valente, M.A.; Hlil, E.K.

    2011-02-15

    AMn{sub 1-x}Fe{sub x}O{sub 3} (A = La{sub 0.75}Ca{sub 0.08}Sr{sub 0.17} and x = 0-0.23) compounds, sintered at 700 deg. C, were characterized by X-ray diffraction (XRD) at room temperature. Rietveld refinement has shown that samples can be indexed in the orthorhombic (Pnma) structure for low Fe-content (x {<=} 0.046) and rhombohedral (R-3c) structure for high Fe-content (x {>=} 0.115). The transmission Moessbauer spectra have revealed the same isomer shift {delta} value assigned to Fe{sup 3+} ion for all compounds. The magnetization behavior and the Curie temperature T{sub C} have shown a large dependence on the fractional composition x. In fact, the M(T) curves have revealed the presence of a long-range ferromagnetic state below T{sub C} for compounds with x {<=} 0.115, and a spin-glass state (SGS) at low temperature for high Fe-content (x {>=} 0.177). Research Highlights: {yields} La{sub 0.75}Ca{sub 0.08}Sr{sub 0.17}Mn{sub 1-x}Fe{sub x}O{sub 3} compounds undergo a transition ortho-rhombo at x=0.046. {yields} On the rhombohedral phase, the magnetization is governed by the DE interaction {yields} The magnetization undergoes a strong decrease at high x-values (x{>=}0.115). {yields} Compounds show a strong AFM interaction with a spin-glass state at high Fe-content {yields} Hysteresis loops, M(H) confirm this behavior.

  17. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  18. Phosphorescent platinum(II) complexes bearing 2-vinylpyridine-type ligands: synthesis, electrochemical and photophysical properties, and tuning of electrophosphorescent behavior by main-group moieties.

    PubMed

    Yang, Xiaolong; Xu, Xianbin; Zhao, Jiang; Dang, Jing-shuang; Huang, Zuan; Yan, Xiaogang; Zhou, Guijiang; Wang, Dongdong

    2014-12-15

    A series of 2-vinylpyridine-type platinum(II) complexes bearing different main-group blocks (B(Mes)2, SiPh3, GePh3, NPh2, POPh2, OPh, SPh, and SO2Ph, where Mes = 2-morpholinoethanesulfonic acid) were successfully prepared. As indicated by the X-ray single-crystal diffraction, the concerned phosphorescent platinum(II) complexes exhibit distinct molecular packing patterns in the solid state to bring forth different interactions between individual molecules. The photophysical characterizations showed that the emission maxima together with phosphorescent quantum yield of these complexes can also be affected by introducing distinct main-group moieties with electron-donating or electron-withdrawing characters. Furthermore, these 2-vinylpyridine-type platinum(II) complexes exhibit markedly different photophysical and electrochemical properties compared with their 2-phenylpyridine-type analogues, such as higher-lying highest occupied molecular orbital levels and lower-energy phosphorescent emissions. Importantly, these complexes can show good potential as deep red phosphorescent emitters to bring attractive electroluminescent performances with Commission Internationale de L'Eclairage (CIE) coordinates very close to the standard red CIE coordinates of (0.67, 0.33) recommended by the National Television Standards Committee. Hence, these results successfully established structure-property relationship concerning photophysics, electrochemistry, and electroluminescence, which will not only provide important information about the optoelectronic features of these novel complexes but also give valuable clues for developing novel platinum(II) phosphorescent complexes. PMID:25474209

  19. Theoretical survey on M@C80 (M = Ca, Sr, and Ba): Behavior of different alkaline earth metal impacting the chemical stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Cui, Jin-Bo; Guo, Yi-Jun; Li, Qiao-Zhi; Zhao, Pei; Zhao, Xiang

    2016-08-01

    Structures of mono-metallofullerenes M@C80 (M = Ca, Sr, and Ba) that separated in early experiment are determined owning the C2v(31920)-C80 cage. The change rule of properties for M@C80 (M = Ca, Sr, and Ba) influenced by different inner metal are discussed. As the trapped metal changes from calcium to barium, performance of thermodynamic stabilities for M@C2v(31920)-C80, M@C2v(31922)-C80, and M@D5h(31923)-C80 are significantly different. Orbital analysis suggests that the lowest unoccupied molecular orbitals (LUMOs) of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 are mostly located on the trapped metal, whereas reduction reactions of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 occur on the fullerene cage. Natural electron configuration analyses demonstrates that the decentralized electron back-donation of Ba@C2v(31920)-C80 would take responsible for the instability of itself. Electronic properties such as electron affinities and ionization potentials are significantly affected by encapsulated metal are also found. Computational UV-visible-NIR spectra for M@C2v(31920)-C80 (M = Ca, Sr, Ba) are in perfect accord with the spectra obtained experimentally.

  20. Effects of Al3(Sc,Zr) and Shear Band Formation on the Tensile Properties and Fracture Behavior of Al-Mg-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Hongfeng; Jiang, Feng; Zhou, Jiang; Wei, Lili; Qu, Jiping; Liu, Lele

    2015-11-01

    The mechanical properties and microstructures of Al-6Mg-0.25Sc-0.1Zr alloy (wt.%) during annealing were investigated by means of uniaxial tensile testing, optical microscope, scanning electron microscope, transmission electron microscope, and high-resolution transmission electron microscope. The results show that a large number of micro and grain-scale shear bands form in this alloy after cold rolling. As the tensile-loading force rises, strain softening would generate in shear bands, resulting in the occurrence of shear banding fracture in cold-rolled Al-Mg-Sc-Zr alloys. Recrystallization takes place preferentially in shear bands during annealing. Due to the formation of coarse-grain bands constructed by new subgrains, recrystallization softening tends to occur in these regions. During low-temperature annealing, recrystallization is inhibited by nano-scale Al3(Sc,Zr) precipitates which exert significant coherency strengthening and modulus hardening. However, the strengthening effect of Al3(Sc,Zr) decreases with the increasing of particle diameter at elevated annealing temperature. The mechanical properties of the recrystallized Al-Mg-Sc-Zr alloy decrease to a minimum level, and the fracture plane exhibits pure ductile fracture characteristics.

  1. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  2. The influence of starch oxidization and aluminate coupling agent on interfacial interaction, rheological behavior, mechanical and thermal properties of poly(propylene carbonate)/starch blends

    NASA Astrophysics Data System (ADS)

    Jiang, Guo; Zhang, Shui-Dong; Huang, Han-Xiong; The Key Laboratory of Polymer Processing Engineering of the Ministry of Education Team

    Poly(propylene carbonate) (PPC) is a kind of new biodegradable polymer that is synthesized by copolymerization of propylene oxide and carbon dioxide. In this work, PPC end-capped with maleic anhydride (PPCMA)/thermoplastic starch (TPS), PPCMA/thermoplastic oxidized starch (TPOS) and PPCMA/AL-TPOS (TPOS modified by aluminate coupling agent) blends were prepared by melt blending to improve its thermal and mechanical properties. FTIR results showed that there existed hydrogen-bonding interaction between PPCMA and starch. SEM observation revealed that the compatibility between PPCMA and TPOS was improved by the oxidation of starch. The enhanced interfacial interactions between PPCMA and TPOS led to a better performance of PPC blends such as storage modulus (G'), loss modulus (G''), complex viscosity (η*), tensile strength and thermal properties. Furthermore, the modification of TPOS by aluminate coupling agent (AL) facilitated the dispersion of oxidized starch in PPC matrix, and resulted in increasing the tensile strength and thermal stability. National Natural Science Foundation of China, National Science Fund of Guangdong Province.

  3. Rat calvaria osteoblast behavior and antibacterial properties of O(2) and N(2) plasma-implanted biodegradable poly(butylene succinate).

    PubMed

    Wang, Huaiyu; Ji, Junhui; Zhang, Wei; Wang, Wei; Zhang, Yihe; Wu, Zhengwei; Zhang, Yumei; Chu, Paul K

    2010-01-01

    Poly(butylene succinate), a novel biodegradable aliphatic polyester with excellent processability and mechanical properties, was modified by O(2) or N(2) plasma immersion ion implantation (PIII). X-ray photoelectron spectroscopy and contact angle measurements were carried out to reveal the surface characteristics of the treated and control specimens. The in vitro effects of the materials on seeded osteoblasts were detected by cell viability assay, alkaline phosphatase activity test, and real-time polymerase chain reaction analysis. Plate counting was performed to investigate the antibacterial properties. Our results show that both PIII treatments significantly improve the hydrophilicity of PBSu, and CO and nitrogen groups (CNH and CNH(2)) can be detected on the PBSu after O(2) and N(2) PIII, respectively. The modified samples exhibit similar compatibility to osteoblasts, which is better than that of the control, but O(2) PIII and N(2) PIII produce different effects according to the osteogenic gene expressions of seeded osteoblasts on the materials. Moreover, the N(2) plasma-modified PBSu exhibits anti-infection effects against Staphylococcus aureus and Escherichia coli but no such effects can be achieved after O(2) PIII.

  4. Dielectric Properties and Depoling Characteristics of Pb(Zr(0.95)Ti(0.05))O(3) Based Ceramics: Near-Critical Grain Size Behavior

    SciTech Connect

    RODRIGUEZ,MARK A.; SCOFIELD,TIMOTHY W.; TUTTLE,BRUCE A.; VOIGT,JAMES A.; YANG,PIN; ZEUCH,DAVID H.

    1999-09-30

    Chemically prepared Pb(Zr{sub 0.951}Ti{sub 0.949}){sub 0.982}Nb{sub 0.018}O{sub 3} ceramics were fabricated that were greater than 95% dense for sintering temperatures as low as 925 C. Achieving high density at low firing temperatures permitted isolation of the effects of grain size, from those due to porosity, on both dielectric and pressure induced transformation properties. Specifically, two samples of similar high density, but with grain sizes of 0.7 {micro}m and 8.5 {micro}m, respectively, were characterized. The hydrostatic ferroelectric (FE) to antiferroelectric (AFE) transformation pressure was substantially less (150 MPa) for the lower grain size material than for the larger grain size material. In addition, the dielectric constant increased and the Curie temperature decreased for the sample with lower grain size. All three properties: dielectric constant magnitude, Curie point shift, and FE to AFE phase transformation pressure were shown to be semi-quantitatively consistent with internal stress levels on the order of 100 MPa.

  5. An investigation on the effect of surface morphology and crystalline texture on corrosion behavior, structural and magnetic properties of electrodeposited nanocrystalline nickel films

    NASA Astrophysics Data System (ADS)

    Nasirpouri, F.; Sanaeian, M. R.; Samardak, A. S.; Sukovatitsina, E. V.; Ognev, A. V.; Chebotkevich, L. A.; Hosseini, M.-G.; Abdolmaleki, M.

    2014-02-01

    In this work, nanocrystalline nickel films with different surface morphologies were electrodeposited from Watts bath using direct (DC), pulsed (PC), and pulsed reverse (PRC) current techniques. The effect of electrodeposition conditions on the evolution of microstructure, cathodic efficiency, crystallographic micro-texture, micro-hardness, magnetic and corrosion properties of nickel films were investigated. Ni films electrodeposited by PC method revealed the highest cathodic efficiency due to minimum amount of hydrogen evolution. All films electrodeposited by PC and PRC methods making the films nanocrystalline (NC) exhibited greater hardness values and smaller crystallite size compared to those deposited by DC method. A preferential crystallographic orientation or texture was found in Ni films depending upon the electrodeposition pulse shape, as the microstructure is polycrystalline in the DC electrodeposited films, while exhibits <1 1 1> and <1 0 0> crystallographic growth directions for PC and PRC methods, respectively. Magnetic properties of the nanocrystalline Ni films indicate the existence of strong magnetocrystalline anisotropy depending on the microstructure of the films. Corrosion evaluation results showed that the PC electrodeposited NC-Ni films are more corrosion resistive in 2 mol/l NaOH solution, compared to those electrodeposited by PRC and DC methods. In contrast, in 0.5 mol/l H2SO4 solution, corrosion resistance of the films is in descending order from PC to PRC and DC.

  6. Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability.

    PubMed

    Kakroodi, Adel Ramezani; Kazemi, Yasamin; Ding, WeiDan; Ameli, Aboutaleb; Park, Chul B

    2015-12-14

    Melt blending is one of the most promising techniques for eliminating poly(lactic acid)'s (PLA) numerous drawbacks. However, success in a typical melt blending process is usually achieved through the inclusion of high concentrations of a second polymeric phase which can compromise PLA's green nature. In a pioneering study, we introduce the production of in situ microfibrillar PLA/polyamide-6 (PA6) blends as a cost-effective and efficient technique for improving PLA's properties while minimizing the required PA6 content. Predominantly biobased products, with only 3 wt % of in situ generated PA6 microfibrils (diameter ≈200 nm), were shown to have dramatically improved crystallization kinetics, mechanical properties, melt elasticity and strength, and foaming-ability compared with PLA. Crucially, the microfibrillar blends were produced using an environmentally friendly and cost-effective process. Both of these qualities are essential in guarantying the viability of the proposed technique for overcoming the obstacles associated with the vast commercialization of PLA.

  7. Tuning thermoresponsive behavior of diblock copolymers and their gold core hybrids. Part 2. How properties change depending on block attachment to gold nanoparticles.

    PubMed

    Chen, Ning; Xiang, Xu; Heiden, Patricia A

    2013-04-15

    Thermoresponsive diblock copolymers of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo(ethylene glycol) methyl ether acrylate (OEGA) were synthesized by reversible addition-fragmentation chain transfer polymerization, allowing us to prepare diblocks with a thiol group at the desired chain end, and bond that block to a ~20 nm gold nanoparticle core. The cloud point and coil-globule transition window were measured by UV-vis spectroscopy. The gold core lowered the cloud point and narrowed the coil-globule transition window of all the diblock hybrids, but raised the cloud point of statistical copolymer hybrids that had similar cloud points. The extent of the change in the thermo-response properties of the hybrid diblock copolymers was more significant when the gold was bonded to the DEGMA block than the OEGA block. This block is less hydrophilic and sterically hindered than OEGA and may adsorb more effectively to the gold so that the hydration of the outer OEGA block is relatively unaffected by the Au core. This work indicates that diblock copolymers allow factors such as steric bulk and the effects on arrangement around a metal core to be effective tools for manipulating thermo-responsive properties that are not as significant with statistical copolymers.

  8. Structure, sintering behavior, and microwave dielectric properties of (1 − x) CaWO{sub 4}–xYLiF{sub 4} (0.02 ≤ x ≤ 0.10) ceramics

    SciTech Connect

    Bian, Jian Jiang Ding, Yao Min

    2015-07-15

    Highlights: • Structure, sinterability, and dielectric properties of CaWO{sub 4}–YLiF{sub 4} were studied. • CaWO{sub 4} can be densified (TD 97%) at 750 °C/2 h by YLiF{sub 4} doping. • Excellent microwave dielectric properties could be obtained. - Abstract: Structures and sintering behaviors of (1 − x) CaWO{sub 4}–xYLiF{sub 4} (0.02 ≤ x ≤ 0.10) ceramic have been investigated by X-ray powder diffraction (XRD), dilatometry, scanning electron microscopy (SEM) in this work. The microwave dielectric properties were measured with a network analyzer at the frequency of about 8–15 GHz. Limited solid solution could be formed within the compositional range of x < 0.1. The sintering temperature of CaWO{sub 4} could successfully be reduced to ∼750 °C/2 h by doping with small amount of YLiF{sub 4}. An optimized microwave dielectric properties with ϵ{sub r} = 10.5, Q × f = 73 000 GHz and τ{sub f} = −37.7 ppm/°C could be obtained after sintered at the 750 °C for 2 h for x = 0.04 compositions. XRD and back scattering SEM analysis indicated that the (1 − x) CaWO{sub 4}–xYLiF{sub 4} (x = 0.04) ceramic could be chemically compatible with Ag after sintering at 750 °C/2 h.

  9. Behavioral Coaching

    PubMed Central

    Seniuk, Holly A.; Witts, Benjamin N.; Williams, W. Larry.; Ghezzi, Patrick M.

    2013-01-01

    The term behavioral coaching has been used inconsistently in and outside the field of behavior analysis. In the sports literature, the term has been used to describe various intervention strategies, and in the organizational behavior management literature it has been used to describe an approach to training management personnel and staff. This inconsistency is problematic in terms of the replication of behavioral coaching across studies and aligning with Baer, Wolf, and Risley's (1968) technological dimension of applied behavior analysis. The current paper will outline and critique the discrepancies in the use of the term and suggest how Martin and Hrycaiko's (1983) characteristics of behavioral coaching in sports may be used to bring us closer to establishing a consistent definition of the term. In addition, we will suggest how these characteristics can also be applicable to the use of the term behavioral coaching in other domains of behavior analysis. PMID:25729141

  10. Antecedent influences on behavior disorders.

    PubMed Central

    Smith, R G; Iwata, B A

    1997-01-01

    The influence of antecedent events on behavior disorders has been relatively understudied by applied behavior analysts. This lack of research may be due to a focus on consequences as determinants of behavior and a historical disagreement on a conceptual framework for describing and interpreting antecedent variables. We suggest that antecedent influences can be described using terms derived from basic behavioral principles and that their functional properties can be adequately interpreted as discriminative and establishing operations. A set of studies on assessment and treatment of behavior disorders was selected for review based on their relevance to the topic of antecedent events. These studies were categorized as focusing on assessment of antecedent events, antecedent treatments for behavior disorders maintained by either positive or negative reinforcement, and special cases of antecedent events in behavior disorders. Some directions for future research on antecedent influences in the analysis and treatment of behavior disorders are discussed. PMID:9210312

  11. Effects of hypophysectomy and recombinant human growth hormone on material and geometric properties and the pre- and post-yield behavior of femurs in young rats.

    PubMed

    Feldman, Sara; Cointry, Gustavo R; Leite Duarte, María E; Sarrió, Leandro; Ferretti, José L; Capozza, Ricardo F

    2004-01-01

    To study the musculoskeletal effects of hypophysectomy (Hx) and a partial replacement treatment with recombinant human growth hormone (rhGH) in rats, we determined the stiffness (elastic modulus, E) and volumetric BMD (vBMD) of cortical bone; the periosteal and endosteal perimeters, area and bending moment of inertia (xCSMI) of the cross sections, and the structural stiffness and pre- and post-yield strength of the femur diaphyses by pQCT and mechanical tests, and the gastrocnemius weight of rats that were either intact (n = 9) or Hx at 15 days of age (20). The latter were otherwise untreated (Hx controls, 4) or given 0.4 (8) or 2.0 (8) IU kg(-1) day(-1), s.c., of rhGH for 45 days starting 15 days after surgery. Hx delayed musculoskeletal development (gastrocnemius weight, bone geometric properties), thus affecting the diaphyseal stiffness and strength. It also reduced the cortical vBMD through an undefined mechanism, and increased the elastic modulus of cortical bone. The Hx also affected the correlation between bone geometric and material properties (xCSMI vs. E), suggesting an antianabolic interaction with the biomechanical control of bone modeling in response to strains caused by mechanical usage. As a result, Hx reduced the stiffness, post-yield, and ultimate strength of the diaphyses. These effects should reflect changes in bone tissue microstructure, perhaps associated with crack generation and progress, but unrelated to bone mineral mass. They are compatible with the induction of a delay in collagen turnover with associated increases in fibers' diameter and crystals' size that may have resulted from the suppression of some other hormones, such as thyroid, prolactin, or other hormones regulated by ACTH. The above doses of rhGH significantly but incompletely prevented the negative Hx effects on bone and muscle development (bone geometric properties, muscle mass). However, rhGH treatment failed to prevent the demineralizing and stiffening effect of Hx on bone

  12. Verbal behavior

    PubMed Central

    Michael, Jack

    1984-01-01

    The recent history and current status of the area of verbal behavior are considered in terms of three major thematic lines: the operant conditioning of adult verbal behavior, learning to be an effective speaker and listener, and developments directly related to Skinner's Verbal Behavior. Other topics not directly related to the main themes are also considered: the work of Kurt Salzinger, ape-language research, and human operant research related to rule-governed behavior. PMID:16812395

  13. Behavioral Economics

    PubMed Central

    Reed, Derek D.; Niileksela, Christopher R.; Kaplan, Brent A.

    2013-01-01

    In recent years, behavioral economics has gained much attention in psychology and public policy. Despite increased interest and continued basic experimental studies, the application of behavioral economics to therapeutic settings remains relatively sparse. Using examples from both basic and applied studies, we provide an overview of the principles comprising behavioral economic perspectives and discuss implications for behavior analysts in practice. A call for further translational research is provided. PMID:25729506

  14. Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Pan, Chia-Chi

    2012-06-01

    Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR) spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT) method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ˜2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of E{}_{OX}^1 detected for AgAlO2. The energy was determined to be E{}_{OX}^1=2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR) measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity sensor has

  15. Behaviorally Speaking.

    ERIC Educational Resources Information Center

    Porter, Elias H.; Dutton, Darell W. J.

    1987-01-01

    Consists of two articles focusing on (1) a modern behavioral model that takes cues from Hippocrates' Four Temperaments and (2) use of a behavioral approach to improve the effectiveness of meetings. Lists positive and negative behaviors within the meeting context. (CH)

  16. Behavioral Medicine.

    ERIC Educational Resources Information Center

    Garfield, Sol L., Ed.

    1982-01-01

    Contains 18 articles discussing the uses of behavioral medicine in such areas as obesity, smoking, hypertension, and headache. Reviews include discussions of behavioral medicine and insomnia, chronic pain, asthma, peripheral vascular disease, and coronary-prone behavior. Newly emerging topics include gastrointestinal disorders, arthritis,…

  17. Excellent soft-magnetic properties of (Fe,Co)-Mo-(P,C,B,Si) bulk glassy alloys with ductile deformation behavior

    NASA Astrophysics Data System (ADS)

    Li, Fushan; Shen, Baolong; Makino, Akihiro; Inoue, Akihisa

    2007-12-01

    High glass-forming ability and excellent soft-magnetic and mechanical properties were simultaneously achieved in (Fe,Co)-Mo-(P,C,B,Si) bulk glassy alloys (BGAs). The large BGA with a maximal diameter up to 6mm was formed by copper mold casting in the alloys, which is the largest size in FePC BGA system. The BGA with a proper content of Co exhibits superhigh initial effective permeability of over 360 90 at 1kHz and saturation magnetization of over 1.0T. The fracture strength of the BGA reaches 3370MPa. This bulk specimen undergoes a plastic strain exceeding 1%, which is the largest for such large ferromagnetic BGAs.

  18. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-01

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  19. Properties of V1 neurons tuned to conjunctions of visual features: application of the V1 saliency hypothesis to visual search behavior.

    PubMed

    Zhaoping, Li; Zhe, Li

    2012-01-01

    From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target. PMID:22719829

  20. Characterization of structure, physico-chemical properties and diffusion behavior of Ca-Alginate gel beads prepared by different gelation methods.

    PubMed

    Puguan, John Marc C; Yu, Xiaohong; Kim, Hern

    2014-10-15

    Ca-Alginate beads were prepared with either external or internal calcium sources by dripping technique. It was found that beads synthesized with internal calcium source had a looser structure and bigger pore size than those produced with external calcium source. Consequently, a faster diffusion rate of Vitamin B12 (VB12) within the beads with an internal calcium source was observed. Furthermore, the concentration of calcium ion, ionic strength and pH of the external gel beads formation solution were investigated. Results showed that (a) the concentration of the calcium ion was found to be the determining factor in the gel formation phenomenon; (b) the weight and volume losses are in effect due to water removal; (c) NaCl acts as a competitor with calcium and a screen in the electrostatic repulsion; and (d) the pH controls the gel formation process by regulating the dissociation of alginate and the complexation of the calcium cations. These results are keys to understanding the behavior and performance of beads in their utilization medium.

  1. Supramolecular Assembly of Molecular Rare-Earth-3,5-Dichlorobenzoic Acid-2,2':6',2″-Terpyridine Materials: Structural Systematics, Luminescence Properties, and Magnetic Behavior.

    PubMed

    Carter, Korey P; Thomas, Kara E; Pope, Simon J A; Holmberg, Rebecca J; Butcher, Ray J; Murugesu, Muralee; Cahill, Christopher L

    2016-07-18

    The syntheses and crystal structures of 16 new rare-earth (RE = La(3+)-Y(3+))-3,5-dichlorobenzoic acid-terpyridine molecular materials characterized via single-crystal and powder X-ray diffraction are reported. These 16 complexes consist of four unique structure types ranging from molecular dimers (La(3+) and Ce(3+)) to tetramers (Pr(3+)-Y(3+)) as one moves across the RE(3+) series. This structural evolution is accompanied by subsequent changes in modes of supramolecular assembly (halogen bonding, halogen-π, halogen-halogen, and π-π interactions). Solid-state visible and near-infrared lifetime measurements were performed on complexes 6 (Sm(3+)), 7 (Eu(3+)), 9 (Tb(3+)), 10 (Dy(3+)), 11 (Ho(3+)), 12 (Er(3+)), and 14 (Yb(3+)), and characteristic emission was observed for all complexes except 11. Lifetime data for 11, 12, and 14 suggest sensitization by the terpy antenna does occur in near-infrared systems, although not as efficiently as in the visible region. Additionally, direct current magnetic susceptibility measurements were taken for complexes 10 (Dy(3+)) and 12 (Er(3+)) and showed dominant ferromagnetic behavior. PMID:27347607

  2. The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds.

    PubMed

    Ding, Yaping; Yao, Qingqing; Li, Wei; Schubert, Dirk W; Boccaccini, Aldo R; Roether, Judith A

    2015-12-01

    PHB/PCL/sol-gel derived silica hybrid scaffolds (P5S1S) and PHB/PCL/fumed silica composite scaffolds (P5S1N) with a 5:1 organic/inorganic ratio were fabricated through a combination of electrospinning and sol-gel methods and dispersion electrospinning, respectively. In contrast to the silica nanoparticle aggregates appearing on the fiber surface of P5S1N, smooth and uniform fibers were obtained for P5S1S. The fiber diameter distribution, tensile strength, thermal gravimetric analysis (TGA), and cellular behavior of both types of scaffolds were characterized and studied. The tensile strength results and TGA indicated that the interfacial interaction between the organic and the inorganic phase was enhanced in P5S1S over the nanocomposite scaffolds, and cells exhibited significantly higher alkaline phosphate activity (ALP) for P5S1S, which makes P5S1S hybrid scaffolds candidate materials for bone tissue engineering applications. PMID:26364089

  3. Synthesis, crystal structure, high-temperature behavior and magnetic properties of CoBiO(AsO4), a Co analogue of paganoite

    NASA Astrophysics Data System (ADS)

    Aliev, Almaz; Kozin, Michael S.; Colmont, Marie; Siidra, Oleg I.; Krivovichev, Sergey V.; Mentré, Olivier

    2015-09-01

    Single crystals and powder samples of Co analogue of paganoite CoBiO(AsO4) have been obtained by high-temperature solid-state reactions. Crystal structure [triclinic, , a = 5.2380(3), b = 6.8286(4), c = 7.6150(4) Å, α = 111.631(2), β = 108.376(2), γ = 108.388(2)°, V = 209.55(2) Å3] has been refined to R 1 = 0.018 on the basis of 1524 unique observed reflections. CoBiO(AsO4) is isotypic to paganoite, NiBiO(AsO4). The crystal structure can be described as based upon [OCoBi]3+ chains of edge-sharing (OBi2Co2) tetrahedra linked via (AsO4) groups. Differential thermal analysis reveals no phase decomposition till 850 °C, when the compound starts to melt. A small endothermic peak is observed near 330 °C. Thermal expansion has been studied by high-temperature powder X-ray diffraction. Thermal expansion coefficients ( α a = 10.1 × 10-6, α b = 12.6 × 10-6, α c = 10.5 × 10-6 K-1) indicate a relatively isotropic behavior with the less intense expansion direction parallel to the direction of the chains of oxocentered tetrahedra. Magnetic susceptibility of CoBiO(AsO4) reveals the presence of an antiferromagnetic ordering at T N = 15.4 K.

  4. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    PubMed Central

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A and encodes a signal scaffold protein (Savelyeva et al., 2006). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. (Medrihan et al., 2009; Savelyeva, Sagulenko, Schmitt, & Schwab, 2006). rugose (rg) is the Drosophila homologue of the mammalian and human neurobeachin. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the EGFR and Notch mediated signaling pathways, facilitating cross-talk between these and other pathways (Shamloula et al., 2002). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion and hyperactivity. These results demonstrate that Drosophila neurobeachin (rugose) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying autism spectrum disorders. PMID:26100104

  5. Relation of exploratory behavior of rats in elevated plus-maze to brain receptor binding properties and serum growth hormone levels.

    PubMed

    Kõks, S; Vasar, E; Soosaar, A; Lang, A; Volke, V; Võikar, V; Bourin, M; Männistö, P T

    1997-11-01

    Forty-five male Wistar rats were selected according to their behavior in the elevated plus-maze. They were separated as follows: animals with low exploratory activity ('anxious'), an 'intermediate' group and animals having high exploratory activity ('non-anxious'). Various receptor binding studies and hormonal assays were also performed in these selected rats. The affinity of 5-hydroxytryptamine 5-HT2A receptors in the frontal cortex was lower in the 'anxious' rats compared to home-cage controls and 'non-anxious' animals. Moreover, the number of cholecystokinin (CCK) receptors in the hippocampus was significantly elevated in the 'anxious' group compared to home-cage control animals. The blood levels of growth hormone (GH) were significantly lower in the 'non-anxious' rats compared to 'anxious' counterparts. In conclusion, it seems likely that the decreased exploratory activity of rats is related to the increased 5-hydroxytryptamine (5-HT) and CCK mediated neurotransmission in the brain. The different serum levels of GH in the selected rats probably reflect alterations in the activity of 5-HT and CCK.

  6. Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni-20Cr coating on boiler steels

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Kumar, Manoj; Sharma, Sanjeev K.; Kim, Deuk Young; Kumar, S.; Chavan, N. M.; Joshi, S. V.; Singh, Narinder; Singh, Harpreet

    2015-02-01

    In the current investigation, high temperature oxidation behavior of a novel cold-spray Ni-20Cr nanostructured coating was studied. The nanocrystalline Ni-20Cr powder was synthesized by the investigators using ball milling, which was deposited on T22 and SA 516 steels by cold spraying. The crystallite size based upon Scherrer's formula for the developed coatings was found to be in nano-range for both the substrates. The accelerated oxidation testing was performed in a laboratory tube furnace at a temperature 900 °C under thermal cyclic conditions. Each cycle comprised heating for one hour at 900 °C followed by cooling for 20 min in ambient air. The kinetics of oxidation was established using weight change measurements for the bare and the coated steels. The oxidation products were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS) and X-ray mapping techniques. It was found from the results that the coating was successful in reducing the weight gain of SA213-T22 and SA 516-Grade 70 steel by 71% and 94%, respectively. This may be attributed to relatively denser structure, lower porosity and lower oxide content of the coating. Moreover, the developed nano-structured Ni-20Cr powder coating was found to perform better than its counterpart micron-sized Ni-20Cr powder coating, in terms of offering higher oxidation resistance and hardness.

  7. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, T. F.; Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Huang, X. X.; Zhou, Q. F.

    2016-03-01

    (1  -  x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x  =  0, 5, and 10 mol%) ceramics were prepared using a conventional mixed oxide solid state reaction method. The low-temperature relaxor behavior of (1  -  x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics were examined in the temperature range from 120 to 523 K. A broad dielectric maximum that shifted to higher temperatures with increasing frequency, signified the relaxor-type behavior of these ceramics. The value of the relaxation parameter γ  =  1.61-1.94 estimated from the linear fit of the modified Curie-Weiss law indicated the relaxor nature. High-temperature dielectric relaxation phenomena were found in the temperature region 600-850 K. Energy-storage properties were also analyzed, and the energy-storage density calculated from hysteresis loops reached about 0.47 J cm-3 at room temperature.

  8. Neuroscientific Measures of Covert Behavior

    ERIC Educational Resources Information Center

    Ortu, Daniele

    2012-01-01

    In radical behaviorism, the difference between overt and covert responses does not depend on properties of the behavior but on the sensitivity of the measurement tools employed by the experimenter. Current neuroscientific research utilizes technologies that allow measurement of variables that are undetected by the tools typically used by behavior…

  9. Mechanical properties and in vitro cellular behavior of zinc-containing nano-bioactive glass doped biphasic calcium phosphate bone substitutes.

    PubMed

    Badr-Mohammadi, Mohammad-Reza; Hesaraki, Saeed; Zamanian, Ali

    2014-01-01

    In the present study, different amounts (0.5-5 wt%) of a sol gel-derived zinc-containing nano-bioactive glass (NBG-Zn) powder were added to biphasic calcium phosphate (BCP). The mixtures were sintered at 1,100-1,300 °C and physical characteristics, mechanical properties, phase composition and morphology of them were studied. The samples were also soaked in human blood plasma for 15 days to evaluate variations in their surface morphologies. Rat calvarium-derived osteoblastic cells were seeded on tops of various samples and cell adhesion, proliferation, and alkaline phosphatase activity were evaluated at different culturing periods. The maximum bending strength (62 MPa) was obtained for BCP containing 0.5 wt% NBG-Zn at temperature 1,200 °C. This value was approximately 80% higher than that of pure BCP. The bending strength failed when both sintering temperature and amount of added NBG-Zn increased. At 1,100 °C, NBG-Zn additive did not change the phase composition of BCP. At temperatures 1,200 and 1,300 °C, both alpha-tricalcium calcium phosphate (α-TCP) and beta-tricalcium phosphate (β-TCP and) phases were detected. However, adding higher amount of NBG-Zn to BCP resulted in elevation of β-TCP at 1,200 °C and progression of α-TCP at 1,300 °C. Based on the microscopic observations, adding 0.5 wt% NBG-Zn to BCP led to disappearance of grain boundaries, reduction of micropores and formation of a monolithic microstructure. No calcium phosphate precipitation was observed on sample surfaces after soaking in blood plasma, but some pores were produced by phase dissolution. The size and volume of these pores were directly proportional to NBG-Zn content. Based on the cell studies, both BCP and NBG-Zn-added BCP samples supported attachment and proliferation of osteoblasts, but higher alkaline phosphatase enzyme was synthesized within the cells cultured on NBG-Zn-added BCP. Overall, biphasic calcium phosphate materials with improved mechanical and biological properties

  10. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.

    PubMed

    Muehlhausen, M-P; Janoske, U; Oertel, H

    2015-03-01

    Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects.

  11. Immobilized Multifunctional Polymersomes on Solid Surfaces: Infrared Light-Induced Selective Photochemical Reactions, pH Responsive Behavior, and Probing Mechanical Properties under Liquid Phase.

    PubMed

    Iyisan, Banu; Janke, Andreas; Reichenbach, Philipp; Eng, Lukas M; Appelhans, Dietmar; Voit, Brigitte

    2016-06-22

    Fixing polymersomes onto surfaces is in high demand not only for the characterization with advanced microscopy techniques but also for designing specific compartments in microsystem devices in the scope of nanobiotechnology. For this purpose, this study reports the immobilization of multifunctional, responsive, and photo-cross-linked polymersomes on solid substrates by utilizing strong adamantane-β-cyclodextrin host-guest interactions. To reduce nonspecific binding and retain better spherical shape, the level of attractive forces acting on the immobilized polymersomes was tuned through poly(ethylene glycol) passivation as well as decreased β-cyclodextrin content on the corresponding substrates. One significant feature of this system is the pH responsivity of the polymersomes which has been demonstrated by swelling of the immobilized vesicles at acidic condition through in situ AFM measurements. Also, light responsivity has been provided by introducing nitroveratryloxycarbonyl (NVOC) protected amine molecules as photocleavable groups to the polymersome surface before immobilization. The subsequent low-energy femtosecond pulsed laser irradiation resulted in the cleavage of NVOC groups on immobilized polymersomes which in turn led to free amino groups as an additional functionality. The freed amines were further conjugated with a fluorescent dye having an activated ester that illustrates the concept of bio/chemo recognition for a potential binding of biological compounds. In addition to the responsive nature, the mechanical stability of the analyzed polymersomes was supported by computing Young's modulus and bending modulus of the membrane through force curves obtained by atomic force microscopy measurements. Overall, polymersomes with a robust and pH-swellable membrane combined with effective light responsive behavior are promising tools to design smart and stable compartments on surfaces for the development of microsystem devices such as chemo/biosensors.

  12. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  13. Correlations of Different Surface Tests: Tire Behavior Math Model for the High Speed Civil Transport (HSCT) and Michelin Tire Properties Tests for Boeing 777

    NASA Technical Reports Server (NTRS)

    Roman, Ivan

    1995-01-01

    In the surfaces correlation study, several different volumetric and drainage measurement techniques for classifying surface texture were evaluated as part of a major study to develop and improve methods for predicting tire friction performance on all types of pavement. The objective of the evaluation was to seek relationships between the different techniques, and to relate those results to surface frictional characteristics. We needed to know how each of the tests could be related to each other. Another of my assigned projects was to make a tire behavior math model for the High Speed Civil Transport (HSCT) using the same methods used for the space shuttle a few years ago. A provided third order equation with two variables was used. This model will also be used for studies with the Boeing 777. Only a few changes will be necessary to adapt it for this other aircraft, which is the newest offered by Boeing. In my final project I was involved with testing the tires for this new aircraft using the Aircraft Landing Dynamics Facility (ALDF) test carriage within the carriage house at LaRC. A 50 inch diameter radial tire manufactured by Michelin Aircraft Tire Corporation had to be tested to double overload of 114,000 pounds. The rated load of each tire is 57,000 pounds, but Boeing required tests assuming failure of a companion tire that could have cost Michelin approximately $12 million to build a facility to provide the required test capability. Here at LaRC, only minimum modifications to the facility were required to perform this specific test.

  14. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.

    PubMed

    Muehlhausen, M-P; Janoske, U; Oertel, H

    2015-03-01

    Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects. PMID:26577098

  15. Making Behavioral Activation More Behavioral

    ERIC Educational Resources Information Center

    Kanter, Jonathan W.; Manos, Rachel C.; Busch, Andrew M.; Rusch, Laura C.

    2008-01-01

    Behavioral Activation, an efficacious treatment for depression, presents a behavioral theory of depression--emphasizing the need for clients to contact positive reinforcement--and a set of therapeutic techniques--emphasizing provision of instructions rather than therapeutic provision of reinforcement. An integration of Behavioral Activation with…

  16. Francis Bacon's behavioral psychology.

    PubMed

    MacDonald, Paul S

    2007-01-01

    Francis Bacon offers two accounts of the nature and function of the human mind: one is a medical-physical account of the composition and operation of spirits specific to human beings, the other is a behavioral account of the character and activities of individual persons. The medical-physical account is a run-of-the-mill version of the late Renaissance model of elemental constituents and humoral temperaments. The other, less well-known, behavioral account represents an unusual position in early modern philosophy. This theory espouses a form of behavioral psychology according to which (a) supposed mental properties are "hidden forms" best described in dispositional terms, (b) the true character of an individual can be discovered in his observable behavior, and (c) an "informed" understanding of these properties permits the prediction and control of human behavior. Both of Bacon's theories of human nature fall under his general notion of systematic science: his medical-physical theory of vital spirits is theoretical natural philosophy and his behavioral theory of disposition and expression is operative natural philosophy. Because natural philosophy as a whole is "the inquiry of causes and the production of effects," knowledge of human nature falls under the same two-part definition. It is an inquisition of forms that pertains to the patterns of minute motions in the vital spirits and the production of effects that pertains both to the way these hidden motions produce behavioral effects and to the way in which a skillful agent is able to produce desired effects in other persons' behavior. PMID:17623872

  17. Francis Bacon's behavioral psychology.

    PubMed

    MacDonald, Paul S

    2007-01-01

    Francis Bacon offers two accounts of the nature and function of the human mind: one is a medical-physical account of the composition and operation of spirits specific to human beings, the other is a behavioral account of the character and activities of individual persons. The medical-physical account is a run-of-the-mill version of the late Renaissance model of elemental constituents and humoral temperaments. The other, less well-known, behavioral account represents an unusual position in early modern philosophy. This theory espouses a form of behavioral psychology according to which (a) supposed mental properties are "hidden forms" best described in dispositional terms, (b) the true character of an individual can be discovered in his observable behavior, and (c) an "informed" understanding of these properties permits the prediction and control of human behavior. Both of Bacon's theories of human nature fall under his general notion of systematic science: his medical-physical theory of vital spirits is theoretical natural philosophy and his behavioral theory of disposition and expression is operative natural philosophy. Because natural philosophy as a whole is "the inquiry of causes and the production of effects," knowledge of human nature falls under the same two-part definition. It is an inquisition of forms that pertains to the patterns of minute motions in the vital spirits and the production of effects that pertains both to the way these hidden motions produce behavioral effects and to the way in which a skillful agent is able to produce desired effects in other persons' behavior.

  18. An unexpected cobalt(III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Huang, Jiao-Jiao; Zhang, Hong-Song; Zhang, Yu-Li; Zhang, Jian-Yu; Li, Yao-Xin

    2014-10-01

    An unexpected mononuclear Co(III) complex, [Co(L2)2·(CH3COO)]·CH3OH (HL2 = 1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 originally. The plausible reaction mechanism for the formation of quinazoline-type ligand was proposed. HL1 and its corresponding Co(III) complex were characterized by IR, as well as by elemental analysis and UV-vis spectroscopy. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical properties of the cobalt(III) complex were studied by cyclic voltammetry and X-ray photoelectron spectrum (XPS). In addition, superoxide dismutase-like activities of HL1 and Co(III) complex were also investigated.

  19. Effects of particle size of fiberglass-resin powder from PCBs on the properties and volatile behavior of phenolic molding compound.

    PubMed

    Guo, Jie; Rao, Qunli; Xu, Zhenming

    2010-03-15

    Fiberglass-resin powder (FR powder), a mixture of resin powder and glass fibers reclaimed from pulverized waste printed circuit boards (PCBs), is used as a partial substitute of wood flour in the production of modified phenolic molding compound (MPMC). The results show that incorporation of FR powder into MPMC as a filler enhances the thermal stability represented by heat deflection temperature (HDT). MPMC with FR powder smaller than 0.07 mm shows better properties, with a flexural strength of 73 MPa, a charpy notched impact strength of 3.0 kJ/m(2), a HDT of 167 degrees C, and a dielectric strength of 3.7 MV/m, all of which meet the standard data. Thermogravimetric analysis shows that thermal degradation of MPMC mainly includes three steps, and over 55% weight loss of MPMC occurs between temperatures of 370 degrees C and 575 degrees C. Phenol is the main volatile compound released from molding powder during the production of molding product. After molding powder cures to molding product, low level of residual phenol is detected. All the results indicate that the MPMC can be used as a new type of molding compound.

  20. Investigations on the electronic, structural, magnetic properties related to shape-memory behavior in Ti{sub 2}CoX (X=Al, Ga, In)

    SciTech Connect

    Wei, Xiao-Ping; Chu, Yan-Dong; Sun, Xiao-Wei; E, Yan; Deng, Jian-Bo; Xing, Yong-Zhong

    2015-02-15

    Highlights: • The analysis of phase stability trend is studied for Ti{sub 2}CoX(X = Al, Ga, In). • Ti{sub 2}CoGa is more suitable as shape memory alloy. • Total magnetic moments disappear with a increase of c/a ratio for all systems. • Density of states at the Fermi level are also shown. - Abstract: Using the full-potential local orbital minimum-basis method, we have performed a systematic investigations on the electronic, structural, and magnetic properties related to shape memory applications for Ti{sub 2}CoX (X=Al, Ga, In) alloys. Our results confirm that these alloys are half-metallic ferromagnets with total magnetic moment of 2μ{sub B} per formula unit in austenite phase, and undergo a martensitic transformation at low temperatures. The relative stabilities of the martensitic phases differ considerably between Ti{sub 2}CoX (X=Al, Ga, In). Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for trends of phase. Quantitative estimates for the energetics and the magnetizations indicate that Ti{sub 2}CoGa is a promising candidate for shape memory applications.

  1. The Effect of Friction Stir Processing by Stepped Tools on the Microstructure, Mechanical Properties and Wear Behavior of a Mg-Al-Zn Alloy

    NASA Astrophysics Data System (ADS)

    Arab, Seyed Mohammad; Jahromi, Seyed Ahmad Jenabali; Zebarjad, Seyed Mojtaba

    2016-10-01

    Friction stir processing (FSP) which imposes severe plastic strains has been used as a solid-state process to refine the grain structure of a Mg-Al-Zn alloy and therefore to enhance the strength and wear resistance without significant reduction of ductility. The introduced stepped tools result in more uniform microstructure, and therefore higher mechanical properties, as well as enhanced wear resistance. More passes of FSP could lead to more uniform microstructure and finer grains. The grain size was reduced from above 40 µm to below 4 µm. The pin root hole defect is also reduced during FSP by the stepped tools especially by cylindrical one. Microhardness was increased more than two times compared with the as-received sample. The tensile strength and elongation are almost doubled after different conditions of FSP. Coefficient of friction is reduced to 1/13.3, and weight loss has been reduced to about 50% of initial values after friction stir processing. The obtained results also demonstrated the successful dynamic recrystallization during FSP.

  2. Sensing Properties of Multiwalled Carbon Nanotubes Grown in MW Plasma Torch: Electronic and Electrochemical Behavior, Gas Sensing, Field Emission, IR Absorption

    PubMed Central

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G.; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír

    2015-01-01

    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 μm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‐modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702

  3. Sensing properties of multiwalled carbon nanotubes grown in MW plasma torch: electronic and electrochemical behavior, gas sensing, field emission, IR absorption.

    PubMed

    Majzlíková, Petra; Sedláček, Jiří; Prášek, Jan; Pekárek, Jan; Svatoš, Vojtěch; Bannov, Alexander G; Jašek, Ondřej; Synek, Petr; Eliáš, Marek; Zajíčková, Lenka; Hubálek, Jaromír

    2015-01-01

    Vertically aligned multi-walled carbon nanotubes (VA-MWCNTs) with an average diameter below 80 nm and a thickness of the uniform VA-MWCNT layer of about 16 µm were grown in microwave plasma torch and tested for selected functional properties. IR absorption important for a construction of bolometers was studied by Fourier transform infrared spectroscopy. Basic electrochemical characterization was performed by cyclic voltammetry. Comparing the obtained results with the standard or MWCNT‑modified screen-printed electrodes, the prepared VA-MWCNT electrodes indicated their high potential for the construction of electrochemical sensors. Resistive CNT gas sensor revealed a good sensitivity to ammonia taking into account room temperature operation. Field emission detected from CNTs was suitable for the pressure sensing application based on the measurement of emission current in the diode structure with bending diaphragm. The advantages of microwave plasma torch growth of CNTs, i.e., fast processing and versatility of the process, can be therefore fully exploited for the integration of surface-bound grown CNTs into various sensing structures. PMID:25629702

  4. Structure and optical properties of polycrystalline NiO films and its resistive switching behavior in Au/NiO/Pt structures

    NASA Astrophysics Data System (ADS)

    Lai, J. C.; Wang, X. C.; Mi, W. B.; Ding, Y. H.; Yang, B. H.

    2015-12-01

    Structure and optical of polycrystalline NiO films fabricated by reactive sputtering and its resistive switching properties in Au/NiO/Pt structures are investigated. The size of surface uniform pyramid-like islands and average surface roughness increase with the increase of NiO film thickness (t). The NiO films grow with the preferred (111) orientation at 400 °C, but both (100) and (110)-oriented grains exist in the films fabricated at room temperature. Raman results reveal that the crystallinity of the films fabricated at 400 °C becomes good by comparing with that at room temperature. The optical band gap monotonically decreases from 4.44 eV at t=22 nm to 3.55 eV at t=800 nm. The resistance of the Au/NiO/Pt/Ti/glass structures could be switched between two stable states including low and high resistance states. The bipolar endurance performance of the resistive switching remains nondegradable after 200 cycles. The resistive switching can be ascribed to the carrier trapping and detrapping induced by the electric field, which can change the thickness of the depletion layer at Au/NiO interface.

  5. An unexpected cobalt(III) complex containing a Schiff base ligand: Synthesis, crystal structure, spectroscopic behavior, electrochemical property and SOD-like activity.

    PubMed

    Chai, Lan-Qin; Huang, Jiao-Jiao; Zhang, Hong-Song; Zhang, Yu-Li; Zhang, Jian-Yu; Li, Yao-Xin

    2014-10-15

    An unexpected mononuclear Co(III) complex, [Co(L2)2·(CH3COO)]·CH3OH (HL2=1-(2-{[(E)-3,5-dichloro-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Co(II) acetate tetrahydrate with HL1 originally. The plausible reaction mechanism for the formation of quinazoline-type ligand was proposed. HL1 and its corresponding Co(III) complex were characterized by IR, as well as by elemental analysis and UV-vis spectroscopy. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical properties of the cobalt(III) complex were studied by cyclic voltammetry and X-ray photoelectron spectrum (XPS). In addition, superoxide dismutase-like activities of HL1 and Co(III) complex were also investigated.

  6. The Effect of Friction Stir Processing by Stepped Tools on the Microstructure, Mechanical Properties and Wear Behavior of a Mg-Al-Zn Alloy

    NASA Astrophysics Data System (ADS)

    Arab, Seyed Mohammad; Jahromi, Seyed Ahmad Jenabali; Zebarjad, Seyed Mojtaba

    2016-08-01

    Friction stir processing (FSP) which imposes severe plastic strains has been used as a solid-state process to refine the grain structure of a Mg-Al-Zn alloy and therefore to enhance the strength and wear resistance without significant reduction of ductility. The introduced stepped tools result in more uniform microstructure, and therefore higher mechanical properties, as well as enhanced wear resistance. More passes of FSP could lead to more uniform microstructure and finer grains. The grain size was reduced from above 40 µm to below 4 µm. The pin root hole defect is also reduced during FSP by the stepped tools especially by cylindrical one. Microhardness was increased more than two times compared with the as-received sample. The tensile strength and elongation are almost doubled after different conditions of FSP. Coefficient of friction is reduced to 1/13.3, and weight loss has been reduced to about 50% of initial values after friction stir processing. The obtained results also demonstrated the successful dynamic recrystallization during FSP.

  7. Property development for biaxial drawing of ethylene-tetrafluoroehtylene copolymer films and resultant fractural behavior analyzed by in situ X-ray measurements.

    PubMed

    Uehara, Hiroki; Ono, Yasunori; Kakiage, Masaki; Sakamura, Takumi; Masunaga, Hiroyasu; Yukawa, Yasumasa; Higuchi, Yoshiaki; Kamiya, Hiroki; Yamanobe, Takeshi

    2015-03-19

    The property development of the ethylene-tetrafluoroethylene copolymer (ETFE) membrane induced by simultaneous biaxial drawing was investigated. Commonly, tensile strength can be increased by drawing; conversely, tear resistance decreases. In this study, the balance between tensile strength and tear resistance for the resultant ETFE membrane was optimized achieved by a combination of lamination of low molecular weight (LMW) and high molecular weight (HMW) layers and subsequent biaxial drawing. The structural factor determining tear resistance of these biaxially drawn membranes was determined based on in situ small-angle X-ray scattering (SAXS) measurement during tensile deformation simulating tearing tests. Lozenge shaped scattering, which indicated inclined lamellae, was observed during such tensile deformation of the resultant membranes. Remarkably, this inclined lamellar structure was observed for the pure LMW membrane; however, it also appeared at the interface between LMW and HMW layers within biaxially drawn membranes. For the membrane exhibiting the highest tearing strength, the fraction of such inclined lamella increased up to the critical strain corresponding to the actual sample breaking. These results confirm that the inclined lamellar structure absorbed strain during membrane tearing. PMID:25697812

  8. Emissive behavior, cytotoxic activity, cellular uptake, and PEGylation properties of new luminescent rhenium(I) polypyridine poly(ethylene glycol) complexes.

    PubMed

    Choi, Alex Wing-Tat; Louie, Man-Wai; Li, Steve Po-Yam; Liu, Hua-Wei; Chan, Bruce Ting-Ngok; Lam, Tonlex Chun-Ying; Lin, Alex Chun-Chi; Cheng, Shuk-Han; Lo, Kenneth Kam-Wing

    2012-12-17

    We report here a new class of biological reagents derived from luminescent rhenium(I) polypyridine complexes modified with a poly(ethylene glycol) (PEG) pendant. The PEG-amine complexes [Re(N(^)N)(CO)(3)(py-PEG-NH(2))](PF(6)) (py-PEG-NH(2) = 3-amino-5-(N-(2-(ω-methoxypoly(1-oxapropyl))ethyl)aminocarbonyl)pyridine, MW(PEG) = 5000 Da, PDI(PEG) < 1.08; N(^)N = 1,10-phenanthroline (phen) (1-PEG-NH(2)), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me(4)-phen) (2-PEG-NH(2)), 4,7-diphenyl-1,10-phenanthroline (Ph(2)-phen) (3-PEG-NH(2))) and [Re(bpy-PEG)(CO)(3)(py-NH(2))](PF(6)) (bpy-PEG = 4-(N-(2-(ω-methoxypoly(1-oxapropyl))ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine; py-NH(2) = 3-aminopyridine) (4-PEG-NH(2)) have been synthesized and characterized. The photophysical properties, lipophilicity, water solubility, cytotoxic activity, and cellular uptake properties of these complexes have been compared to those of their PEG-free counterparts [Re(N(^)N)(CO)(3)(py-Et-NH(2))](PF(6)) (py-Et-NH(2) = 3-amino-5-(N-(ethyl)aminocarbonyl)pyridine; N(^)N = phen (1-Et-NH(2)), Me(4)-phen (2-Et-NH(2)), Ph(2)-phen (3-Et-NH(2))) and [Re(bpy-Et)(CO)(3)(py-NH(2))](PF(6)) (bpy-Et = 4-(N-(ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine) (4-Et-NH(2)). The PEG complexes exhibited significantly higher water solubility and lower cytotoxicity (IC(50) = 6.6 to 1152 μM) than their PEG-free counterparts (IC(50) = 3.6 to 159 μM), indicating that the covalent attachment of a PEG pendant to rhenium(I) polypyridine complexes is an effective way to increase their biocompatibility. The amine complexes 1-PEG-NH(2)-4-PEG-NH(2) have been activated with thiophosgene to yield the isothiocyanate complexes [Re(N(^)N)(CO)(3)(py-PEG-NCS)](PF(6)) (py-PEG-NCS = 3-isothiocyanato-5-(N-(2-(ω-methoxypoly(1-oxapropyl))ethyl)aminocarbonyl)pyridine; N(^)N = phen (1-PEG-NCS), Me(4)-phen (2-PEG-NCS), Ph(2)-phen (3-PEG-NCS)), and [Re(bpy-PEG)(CO)(3)(py-NCS)](PF(6)) (py-NCS = 3-isothiocyanatopyridine) (4-PEG-NCS) as a new class

  9. Microstructure, Mechanical Properties, and Age-Hardening Behavior of an Al-Si-Fe-Mn-Cu-Mg Alloy Produced by Spray Deposition

    NASA Astrophysics Data System (ADS)

    Feng, Wang; Jishan, Zhang; Baiqing, Xiong; Yongan, Zhang

    2011-02-01

    It has been recognized generally that the spray-deposited process is an innovative technique of rapid solidification. In this paper, Al-20Si-5Fe-3Mn-3Cu-1Mg alloy was synthesized by the spray atomization and deposition technique. The microstructure and mechanical properties of the spray-deposited alloy were studied using x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and tensile tests. It is observed that the microstructure of spray-deposited Al-20Si-5Fe-3Mn-3Cu-1Mg alloy is composed of the α-Al,Si and the particle-like Al15(FeMn)3Si2 compounds. The aging process of the alloy was investigated by microhardness measurement, differential scanning calorimetry analysis, and TEM observations. The results indicate that the two types of precipitates, S-Al2CuMg and σ-Al5Cu6Mg2 precipitate from matrix and improve the tensile strength of the alloy efficiently at both the ambient and elevated temperatures (300 °C).

  10. Incoherence-coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A  =  K, Rb, Cs): evidence from electrical transport properties.

    PubMed

    Xiang, Z J; Wang, N Z; Wang, A F; Zhao, D; Sun, Z L; Luo, X G; Wu, T; Chen, X H

    2016-10-26

    We study the normal-state transport properties of AFe2As2 (A  =  K, Rb and Cs) single crystals using Hall coefficient, resistivity and magnetoresistance (MR) measurements. In all three materials, the Hall coefficient R H shows a strong temperature dependence, which is typical for multi-band systems. In particular, R H develops an upturn below a characteristic temperature [Formula: see text], which is in agreement with the incoherence-coherence crossover reported in recent nuclear magnetic resonance studies. A Fermi-liquid-like state, characterized by T (2) behavior of the resistivity and a positive orbital MR obeying Kohler's rule, emerges below T FL  ∼0.4 [Formula: see text]. The superconducting transition temperature T c experiences a simultaneous suppression with [Formula: see text] and T FL as the alkali ion's radius increases from A  =  K to A  =  Cs, suggesting that the unconventional superconductivity in the AFe2As2 series is related to the strength of the electronic coherence. A phase diagram, similar to that in the heavy fermion Kondo lattice system, is obtained. Based on all the experimental evidence, we argue that the physical properties of this family of heavily hole-doped Fe-based superconductors are controlled by the hybridization between itinerant carriers and localized orbitals, and the Kondo scenario could be effective in such a case.

  11. Incoherence-coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A  =  K, Rb, Cs): evidence from electrical transport properties

    NASA Astrophysics Data System (ADS)

    Xiang, Z. J.; Wang, N. Z.; Wang, A. F.; Zhao, D.; Sun, Z. L.; Luo, X. G.; Wu, T.; Chen, X. H.

    2016-10-01

    We study the normal-state transport properties of AFe2As2 (A  =  K, Rb and Cs) single crystals using Hall coefficient, resistivity and magnetoresistance (MR) measurements. In all three materials, the Hall coefficient R H shows a strong temperature dependence, which is typical for multi-band systems. In particular, R H develops an upturn below a characteristic temperature {{T}\\ast} , which is in agreement with the incoherence-coherence crossover reported in recent nuclear magnetic resonance studies. A Fermi-liquid-like state, characterized by T 2 behavior of the resistivity and a positive orbital MR obeying Kohler’s rule, emerges below T FL  ˜0.4 ~{{T}\\ast} . The superconducting transition temperature T c experiences a simultaneous suppression with {{T}\\ast} and T FL as the alkali ion’s radius increases from A  =  K to A  =  Cs, suggesting that the unconventional superconductivity in the AFe2As2 series is related to the strength of the electronic coherence. A phase diagram, similar to that in the heavy fermion Kondo lattice system, is obtained. Based on all the experimental evidence, we argue that the physical properties of this family of heavily hole-doped Fe-based superconductors are controlled by the hybridization between itinerant carriers and localized orbitals, and the Kondo scenario could be effective in such a case.

  12. Incoherence-coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A  =  K, Rb, Cs): evidence from electrical transport properties.

    PubMed

    Xiang, Z J; Wang, N Z; Wang, A F; Zhao, D; Sun, Z L; Luo, X G; Wu, T; Chen, X H

    2016-10-26

    We study the normal-state transport properties of AFe2As2 (A  =  K, Rb and Cs) single crystals using Hall coefficient, resistivity and magnetoresistance (MR) measurements. In all three materials, the Hall coefficient R H shows a strong temperature dependence, which is typical for multi-band systems. In particular, R H develops an upturn below a characteristic temperature [Formula: see text], which is in agreement with the incoherence-coherence crossover reported in recent nuclear magnetic resonance studies. A Fermi-liquid-like state, characterized by T (2) behavior of the resistivity and a positive orbital MR obeying Kohler's rule, emerges below T FL  ∼0.4 [Formula: see text]. The superconducting transition temperature T c experiences a simultaneous suppression with [Formula: see text] and T FL as the alkali ion's radius increases from A  =  K to A  =  Cs, suggesting that the unconventional superconductivity in the AFe2As2 series is related to the strength of the electronic coherence. A phase diagram, similar to that in the heavy fermion Kondo lattice system, is obtained. Based on all the experimental evidence, we argue that the physical properties of this family of heavily hole-doped Fe-based superconductors are controlled by the hybridization between itinerant carriers and localized orbitals, and the Kondo scenario could be effective in such a case. PMID:27589485

  13. Towards Behavioral Reflexion Models

    NASA Technical Reports Server (NTRS)

    Ackermann, Christopher; Lindvall, Mikael; Cleaveland, Rance

    2009-01-01

    Software architecture has become essential in the struggle to manage today s increasingly large and complex systems. Software architecture views are created to capture important system characteristics on an abstract and, thus, comprehensible level. As the system is implemented and later maintained, it often deviates from the original design specification. Such deviations can have implication for the quality of the system, such as reliability, security, and maintainability. Software architecture compliance checking approaches, such as the reflexion model technique, have been proposed to address this issue by comparing the implementation to a model of the systems architecture design. However, architecture compliance checking approaches focus solely on structural characteristics and ignore behavioral conformance. This is especially an issue in Systems-of- Systems. Systems-of-Systems (SoS) are decompositions of large systems, into smaller systems for the sake of flexibility. Deviations of the implementation to its behavioral design often reduce the reliability of the entire SoS. An approach is needed that supports the reasoning about behavioral conformance on architecture level. In order to address this issue, we have developed an approach for comparing the implementation of a SoS to an architecture model of its behavioral design. The approach follows the idea of reflexion models and adopts it to support the compliance checking of behaviors. In this paper, we focus on sequencing properties as they play an important role in many SoS. Sequencing deviations potentially have a severe impact on the SoS correctness and qualities. The desired behavioral specification is defined in UML sequence diagram notation and behaviors are extracted from the SoS implementation. The behaviors are then mapped to the model of the desired behavior and the two are compared. Finally, a reflexion model is constructed that shows the deviations between behavioral design and implementation. This

  14. Behavioral effects of microwaves

    SciTech Connect

    Stern, S.

    1980-01-01

    Microwaves can produce sensations of warmth and sound in humans. In other species, they also can serve as cues, they may be avoided, and they can disrupt ongoing behavior. These actions appear to be due to heat produced by energy absorption. The rate of absorption depends on the microwave parameters and the electrical and geometric properties of the subject. We therefore, cannot predict the human response to microwaves based on data from other animals without appropriate scaling considerations. At low levels of exposure, microwaves can produce changes in behavior without large, or even measureable, changes in body temperature. Thermoregulatory behavior may respond to those low levels of heat, and thereby affect other behavior occurring concurrently. There are no data that demonstrate that behavioral effects of microwaves depend on any mechanism other than reactions to heat. Our interpretation of whether a reported behavioral effect indicates that microwaves may be hazardous depends on our having a complete description of the experiment and on our criteria of behavioral toxicity.

  15. Functions of Maladaptive Behavior in Intellectual and Developmental Disabilities: Behavior Categories and Topographies

    ERIC Educational Resources Information Center

    Rojahn, Johannes; Zaja, Rebecca H.; Turygin, Nicole; Moore, Linda; van Ingen, Daniel J.

    2012-01-01

    Research has shown that different maladaptive behavior categories may be maintained by different contingencies. We examined whether behavior categories or behavior topographies determine functional properties. The "Questions about Behavioral Function" with its five subscales ("Attention", "Escape", "Nonsocial", "Physical", and "Tangible") was…

  16. Psychological behaviorism and behaviorizing psychology

    PubMed Central

    Staats, Arthur W.

    1994-01-01

    Paradigmatic or psychological behaviorism (PB), in a four-decade history of development, has been shaped by its goal, the establishment of a behaviorism that can also serve as the approach in psychology (Watson's original goal). In the process, PB has become a new generation of behaviorism with abundant heuristic avenues for development in theory, philosophy, methodology, and research. Psychology has resources, purview and problem areas, and nascent developments of many kinds, gathered in chaotic diversity, needing unification (and other things) that cognitivism cannot provide. Behaviorism can, within PB's multilevel framework for connecting and advancing both psychology and behaviorism. PMID:22478175

  17. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio

    2016-08-01

    The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups.

  18. [ASRS v.1.1., a tool for attention-deficit/hyperactivity disorder screening in adults treated for addictive behaviors: psychometric properties and estimated prevalence].

    PubMed

    Pedrero Pérez, Eduardo J; Puerta García, Carmen

    2007-01-01

    ASRS v.1.1. is a self-applied brief instrument for the screening of individuals presenting symptoms of attention-deficit/hyperactivity disorder (ADHD), and proposed by the WHO. The purpose of the present work was to test the instrument and examine the results of its application to a sample of 280 individuals in treatment for substance-related disorders (cross-sectional descriptive study). We administered simultaneously in the initial phases of treatment the ASRS v.1.1. (short form) and the MCMI-II to the full sample and the Wender Utah Rating Scale (WURS), ADHD-Rating Scale-IV and ASRS v.1.1. (complete form) to various sub-samples. Diagnostic interviews were also carried out and the psychometric properties and factorial structure of ASRS v.1.1. were explored. Good convergent validity, sensitivity, specificity and diagnostic capability were obtained for the six-item version of ASRS v.1.1., even though 4 out of 6 items did not discriminate between Axis I and II disorders assessed through the MCMI-II and diagnostic interviews. According to DSM-IV-TR criteria the estimated prevalence of ADHD in the sample of addicts was 8.2%. ASRS v.1.1. is criticized as a specific instrument for ADHD detection, since most of its items appear to measure a non-specific dimension of compulsiveness/impulsiveness, common to Axis-I and Axis-II disorders. Other criticisms made in the discussion concern the lack of specificity of DSM criteria and the confusion they generate among the concepts of symptom, sign and trait (including the impact on study results), the general use of the A criterion but the omission of the B, C, D and E criteria of the DSM category, differences in samples (with regard to both severity and selection criteria), and the artifactual increases in prevalence found in many studies. PMID:18173102

  19. [ASRS v.1.1., a tool for attention-deficit/hyperactivity disorder screening in adults treated for addictive behaviors: psychometric properties and estimated prevalence].

    PubMed

    Pedrero Pérez, Eduardo J; Puerta García, Carmen

    2007-01-01

    ASRS v.1.1. is a self-applied brief instrument for the screening of individuals presenting symptoms of attention-deficit/hyperactivity disorder (ADHD), and proposed by the WHO. The purpose of the present work was to test the instrument and examine the results of its application to a sample of 280 individuals in treatment for substance-related disorders (cross-sectional descriptive study). We administered simultaneously in the initial phases of treatment the ASRS v.1.1. (short form) and the MCMI-II to the full sample and the Wender Utah Rating Scale (WURS), ADHD-Rating Scale-IV and ASRS v.1.1. (complete form) to various sub-samples. Diagnostic interviews were also carried out and the psychometric properties and factorial structure of ASRS v.1.1. were explored. Good convergent validity, sensitivity, specificity and diagnostic capability were obtained for the six-item version of ASRS v.1.1., even though 4 out of 6 items did not discriminate between Axis I and II disorders assessed through the MCMI-II and diagnostic interviews. According to DSM-IV-TR criteria the estimated prevalence of ADHD in the sample of addicts was 8.2%. ASRS v.1.1. is criticized as a specific instrument for ADHD detection, since most of its items appear to measure a non-specific dimension of compulsiveness/impulsiveness, common to Axis-I and Axis-II disorders. Other criticisms made in the discussion concern the lack of specificity of DSM criteria and the confusion they generate among the concepts of symptom, sign and trait (including the impact on study results), the general use of the A criterion but the omission of the B, C, D and E criteria of the DSM category, differences in samples (with regard to both severity and selection criteria), and the artifactual increases in prevalence found in many studies.

  20. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability.

    PubMed

    Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio

    2016-08-01

    The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups. PMID:27184413

  1. Behavioral toxicology

    SciTech Connect

    Needleman, H.L.

    1995-09-01

    The new fields of behavioral toxicology and behavioral teratology investigate the outcome of specific toxic exposures in humans and animals on learning, memory, and behavioral characteristics. Three important classes of behavioral neurotoxicants are metals, solvents, and pesticides. The clearest data on the deleterious effects of prenatal exposure to toxicants comes from the study of two metals, lead and mercury, and form epidemiological investigations of the effects of alcohol taken during pregnancy. Less complete data are available for two other groups of agents, solvents, and pesticides. What we do know about their effects on the fetal brain is convincing enough to make us demand caution in their distribution. 15 refs.

  2. Behavior Matters

    PubMed Central

    Fisher, Edwin B.; Fitzgibbon, Marian L.; Glasgow, Russell E.; Haire-Joshu, Debra; Hayman, Laura L.; Kaplan, Robert M.; Nanney, Marilyn S.; Ockene, Judith K.

    2011-01-01

    Behavior has a broad and central role in health. Behavioral interventions can be effectively used to prevent disease, improve management of existing disease, increase quality of life, and reduce healthcare costs. A summary is presented of evidence for these conclusions in cardiovascular disease/diabetes, cancer, and HIV/AIDS as well as with key risk factors: tobacco use, poor diet, physical inactivity, and excessive alcohol consumption. For each, documentation is made of (1) moderation of genetic and other fundamental biological influences by behaviors and social–environmental factors, (2) impacts of behaviors on health, (3) success of behavioral interventions in prevention, (4) disease management, (5) and quality of life, and (6) improvements in the health of populations through behavioral health promotion programs. Evidence indicates the cost effectiveness and value of behavioral interventions, especially relative to other common health services, as well as the value they add in terms of quality of life. Pertinent to clinicians and their patients as well as to health policy and population health, the benefits of behavioral interventions extend beyond impacts on a particular disease or risk factor. Rather, they include broad effects and benefits on prevention, disease management, and well-being across the life span. Among priorities for dissemination research, the application of behavioral approaches is challenged by diverse barriers, including socioeconomic barriers linked to health disparities. However, behavioral approaches including those emphasizing community and social influences appear to be useful in addressing such challenges. In sum, behavioral approaches should have a central place in prevention and health care of the 21st century. PMID:21496745

  3. Behavioral economics.

    PubMed

    Hursh, S R

    1984-11-01

    Economics, like behavioral psychology, is a science of behavior, albeit highly organized human behavior. The value of economic concepts for behavioral psychology rests on (1) their empirical validity when tested in the laboratory with individual subjects and (2) their uniqueness when compared to established behavioral concepts. Several fundamental concepts are introduced and illustrated by reference to experimental data: open and closed economies, elastic and inelastic demand, and substitution versus complementarity. Changes in absolute response rate are analyzed in relation to elasticity and intensity of demand. The economic concepts of substitution and complementarity are related to traditional behavioral studies of choice and to the matching relation. The economic approach has many implications for the future of behavioral research and theory. In general, economic concepts are grounded on a dynamic view of reinforcement. The closed-economy methodology extends the generality of behavioral principles to situations in which response rate and obtained rate of reinforcement are interdependent. Analysis of results in terms of elasticity and intensity of demand promises to provide a more direct method for characterizing the effects of "motivational" variables. Future studies of choice should arrange heterogeneous reinforcers with varying elasticities, use closed economies, and modulate scarcity or income. The economic analysis can be extended to the study of performances that involve subtle discriminations or skilled movements that vary in accuracy or quality as opposed to rate or quantity, and thus permit examination of time/accuracy trade-offs.

  4. Behavioral economics.

    PubMed

    Camerer, Colin F

    2014-09-22

    Behavioral economics uses evidence from psychology and other social sciences to create a precise and fruitful alternative to traditional economic theories, which are based on optimization. Behavioral economics may interest some biologists, as it shifts the basis for theories of economic choice away from logical calculation and maximization and toward biologically plausible mechanisms.

  5. Changing Behavior.

    ERIC Educational Resources Information Center

    Taylor, Peter W.

    1993-01-01

    Provides a framework for examining problems where the solution involves changing human behavior. Topics addressed include the perspective of content versus the perspective of process; force field analysis; problems of omission and commission; and determinants of behavior, i.e., perceived effects and consequences. (LRW)

  6. Tensile properties and fracture behavior of Ti[sub 52]Al[sub 48] and Ti[sub 50]Al[sub 48]Cr[sub 2] prepared from elemental powders

    SciTech Connect

    Dogan, B.; Wang, G.X.; Dahms, M. )

    1993-10-01

    Titanium aluminide alloys, based on gamma TiAl, are currently of interest because of potential applications in high performance airframe and gas turbines. Their low densities, high melting temperatures, good elevated temperature strength and modulus retention, and environmental resistance favors them for these applications. However, their practical use are largely limited by their poor workability and ductility at temperatures lower than 700 C. Although the ductility has been improved in two phase TiAl alloys by adding alloying elements such as Cr, Mn, Nb and V, and by microstructural control in recent years, the ability to manufacture them still remains a problem. The reactive powder processing method offers a promising alternative to overcome this problem. This method involves cold-extrusion of an elemental powder mixture and reactive sintering. The as-extruded material can easily be machined or reformed into different shapes, since titanium aluminides are not present at this stage. The reactive sintering is conducted as the last step to form the desired titanium aluminides in the finished products. By this route, the poor workability of titanium aluminides can be avoided. In the present paper, a binary alloy Ti[sub 52]Al[sub 48](TiAl) and a ternary alloy Ti[sub 50]Al[sub 48]Cr[sub 2](TiAlCr), prepared in the same way from elemental powders, are investigated. The tensile tests were carried out at room temperature to 900 C in air. The influence of 2 at.% Cr addition on the tensile properties and fracture behavior of the alloys are reported. An emphasis is placed on the correlation between microstructure and deformation, and fracture behavior of the alloys.

  7. Making behavioral activation more behavioral.

    PubMed

    Kanter, Jonathan W; Manos, Rachel C; Busch, Andrew M; Rusch, Laura C

    2008-11-01

    Behavioral Activation, an efficacious treatment for depression, presents a behavioral theory of depression--emphasizing the need for clients to contact positive reinforcement--and a set of therapeutic techniques--emphasizing provision of instructions rather than therapeutic provision of reinforcement. An integration of Behavioral Activation with another behavioral treatment, Functional Analytic Psychotherapy, addresses this mismatch. Functional Analytic Psychotherapy provides a process for the therapeutic provision of immediate and natural reinforcement. This article presents this integration and offers theoretical and practical therapist guidelines on its application. Although the integration is largely theoretical, empirical data are presented in its support when available. The article ends with a discussion of future research directions.

  8. Behavioral diagnostics.

    PubMed

    Bailey, J S; Pyles, D A

    1989-01-01

    The contemporary behavior analyst, to operate ethically and effectively, must be aware of many more factors affecting behavior than simple consequences. Although the literature demonstrating the effectiveness of active behavior management is impressive, a compelling argument can be made that a great number of behavior problem seen in individuals with developmental disabilities may be attributable to factors other than consequences. Our experience has been more often than not that physiological, organic, medication, or situational variables are the actual culprits in maladaptive behavior. Individuals with severe or profound retardation may respond to aversive features of their environment by displaying noncompliance, tantrums, aggression, or self-injurious behavior. These antecedents can affect their behavior just as powerfully as can the consequences of their behavior. Behavior analysts must become sensitive to these potential factors and be prepared to employ behavioral diagnostic strategies in the search for the causes of maladaptive behavior. Finally, they must be prepared to design rather unconventional passive behavior management treatment programs involving the manipulation of the antecedent environment. In the case of Carrie, from the example at the beginning of this paper, the analysis yielded the hypothesis that her face scratching was a reaction to sinus blockage caused by seasonal allergies. Her treatment involved daily dosages of antihistamines administered by our nurses and subsequent elimination of the scratching. Tom was found to be suffering from "wheelchair fatigue." When he was allowed to recline on other surfaces (e.g., bean bag chair, mat, bolster) on a regular basis, he did not attempt any form of self-injury. Melissa was found to have a severe case of Pre Menstrual Syndrome as well as seizure disorder, and was treated with the appropriate medications. Her headbanging was reduced to a few minor incidents per month. Walter's tantrums on closer

  9. Behavioral addictions.

    PubMed

    Robbins, T W; Clark, L

    2015-02-01

    Behavioral addictions are slowly becoming recognized as a valid category of psychiatric disorder as shown by the recent allocation of pathological gambling to this category in DSM-5. However, several other types of psychiatric disorder proposed to be examples of behavioral addictions have yet to be accorded this formal acknowledgment and are dispersed across other sections of the DSM-5. This brief review marks this important point in the evolution of this concept and looks to future investigation of behavioral addictions with the theoretical frameworks currently being used successfully to investigate substance addiction and obsessive-compulsive disorder, in a potentially new spectrum of impulsive-compulsive disorders.

  10. Psychometric properties of the Aberrant Behavior Checklist, the Anxiety, Depression and Mood Scale, the Assessment of Dual Diagnosis and the Social Performance Survey Schedule in adults with intellectual disabilities.

    PubMed

    Rojahn, Johannes; Rowe, Ellen W; Kasdan, Shana; Moore, Linda; van Ingen, Daniel J

    2011-01-01

    Progress in clinical research and in empirically supported interventions in the area of psychopathology in intellectual disabilities (ID) depends on high-quality assessment instruments. To this end, psychometric properties of four instruments were examined: the Aberrant Behavior Checklist (ABC), the Assessment of Dual Diagnosis (ADD), the Anxiety, Depression and Mood Scale (ADAMS), and the Social Performance Survey Schedule (SPSS). Data were collected in two community-based groups of adults with mild to profound ID (n = 263). Subscale reliability (internal consistency) ranged from fair to excellent for the ABC, the ADAMS, and the SPSS (mean coefficient α across ABC subscales was .87 (ranging from fair to excellent), the ADAMS subscales .83 (ranging from fair to good), and the SPSS subscales .91 (range from good to excellent). The ADD subscales had generally lower reliability scores with a mean of .59 (ranging from unacceptable to good). Convergent and discriminant validity was determined by bivariate Spearman ρ correlations between subscales of one instrument and the subscales of the other three instruments. For the most part, all four instruments showed solid convergent and discriminant validity. To examine the factorial validity, Confirmatory Factor Analyses (CFA) were attempted with the inter-item covariance matrix of each instrument. Generally, the data did not show good fits with the measurement models for the SPSS, ABC, or the ADAMS (CFA analyses with the ADD would not converge). However, most of the items on these three instruments had significant loadings on their respective factors.

  11. Phase behaviors and self-assembly properties of two catanionic surfactant systems: C(8)F(17)COOH/TTAOH/H(2)O and C(8)H(17)COOH/TTAOH/H(2)O.

    PubMed

    Zhang, Juan; Song, Aixin; Li, Zhibo; Xu, Guiying; Hao, Jingcheng

    2010-10-21

    Two fatty acids, perfluorononanoic acid (C(8)F(17)COOH) and nonanoic acid (C(8)H(17)COOH), were mixed with a cationic hydrocarbon surfactant, tetradecyltrimethylammonium hydroxide (TTAOH), in aqueous solutions for comparative investigation. Phase behaviors of the two systems are quite different because of the special properties of the fluorocarbon chains. For the C(8)H(17)COOH/TTAOH/H(2)O system, a single L(α) phase region with phase transition from planar lamellar phase (L(αl) phase) to vesicle phase (L(αv) phase) was observed. For the C(8)F(17)COOH/TTAOH/H(2)O system, two single phases consisting of vesicles were obtained at room temperature. One is a high viscoelastic gel phase consisting of vesicles with crystalline state bialyers at the C(8)F(17)COOH-rich side, which was confirmed by freeze-fracture transmission electron microscope (FF-TEM) and differential scanning calorimetry (DSC) measurements. With the increase of TTAOH proportion, another vesicle phase consisting of liquid state bilayers was observed after the two-phase region. The fluorosurfactant systems prefer to form vesicle bilayers than the corresponding hydrocarbon ones because of the rigid structure, the stronger hydrophobicity, and the larger volume of fluorocarbon chains.

  12. Property Differencing for Incremental Checking

    NASA Technical Reports Server (NTRS)

    Yang, Guowei; Khurshid, Sarfraz; Person, Suzette; Rungta, Neha

    2014-01-01

    This paper introduces iProperty, a novel approach that facilitates incremental checking of programs based on a property di erencing technique. Speci cally, iProperty aims to reduce the cost of checking properties as they are initially developed and as they co-evolve with the program. The key novelty of iProperty is to compute the di erences between the new and old versions of expected properties to reduce the number and size of the properties that need to be checked during the initial development of the properties. Furthermore, property di erencing is used in synergy with program behavior di erencing techniques to optimize common regression scenarios, such as detecting regression errors or checking feature additions for conformance to new expected properties. Experimental results in the context of symbolic execution of Java programs annotated with properties written as assertions show the e ectiveness of iProperty in utilizing change information to enable more ecient checking.

  13. Properties and behavior of diamond ablators

    NASA Astrophysics Data System (ADS)

    Fratanduono, D.; Swift, D. C.; Braun, D. G.; Prisbrey, S.; Barton, N. R.; Marinak, M.; Kraus, R.; Arsenlis, A.

    2015-06-01

    Diamond is an attractive ablator for laser loading experiments as it is efficient in converting laser energy to pressure, it transmits multi-kV x-rays such as are used for in-situ diffraction measurements, and it is readily available as single crystals, which do not produce diffraction rings that could obscure signals from a polycrystalline sample. However, radiation hydrodynamics simulations with standard models do not match the detailed velocity histories in ramp-loading experiments. Experimental measurements at the Omega laser showed that the (110) orientation exhibits much less elastic relaxation following the initial yield than did (100). Stress-density relations deduced from these experiments were consistent with the results obtained previously on thinner samples by Bradley et al., indicating that time-dependence in plastic flow had little effect on these time scales. The effect of dissipation, ignored in the characteristics analysis of ramp experiments, was assessed by analyzing simulated data, and was found to be negligible for diamond. Significant differences were found between equations of state in the several-megabar pressure regime, requiring quite different strength models to reproduce the stress-density relation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Fracture properties and behavior of transparent ceramics

    NASA Astrophysics Data System (ADS)

    Patel, Parimal J.; Swab, Jeffrey J.; Gilde, Gary A.

    2000-10-01

    For the past several decades, the Army has been interested in materials transparent to visible and infrared wavelengths for use in armor, IR windows and sensor windows. Future requirements for transparent armor are systems that can defeat greater threats without increased weight and thickness and minimal optical distortion. The Army Research Laboratory is developing transparent armor systems to increase the performance of new windows. Aluminum oxynitride spinel and single-crystal sapphire are two of the ceramic candidates for advanced transparent armor applications.

  15. Discrimination theory of rule-governed behavior

    PubMed Central

    Cerutti, Daniel T.

    1989-01-01

    In rule-governed behavior, previously established elementary discriminations are combined in complex instructions and thus result in complex behavior. Discriminative combining and recombining of responses produce behavior with characteristics differing from those of behavior that is established through the effects of its direct consequences. For example, responding in instructed discrimination may be occasioned by discriminative stimuli that are temporally and situationally removed from the circumstances under which the discrimination is instructed. The present account illustrates properties of rule-governed behavior with examples from research in instructional control and imitation learning. Units of instructed behavior, circumstances controlling compliance with instructions, and rule-governed problem solving are considered. PMID:16812579

  16. A Study on the Passivation Behavior and Semiconducting Properties of Gamma Titanium Aluminide in 0.1 N H2SO4, HNO3, and HClO4 Acidic Solutions

    NASA Astrophysics Data System (ADS)

    Memarbashi, S.; Saebnoori, E.; Shahrabi, T.

    2014-03-01

    The study focuses on the passivation behavior of single-gamma-phase titanium aluminide in acidic solutions with a particular emphasis on the role of oxidizing strength in characteristics of passive layer. The report includes potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies along with Mott-Schottky analysis in order to determine the corrosion behavior of the alloy and the semiconducting properties of the scale formed during exposure to acidic environment. Passive current density measured from potentiodynamic polarization curve, polarization resistance ( R p) estimated by EIS, defect density, and flatband potential drawn from Mott-Schottky analysis are mainly used in estimating the ability of passive film formed on alloy in protecting it against high corrosion rates in Sulfuric acid (a non-oxidizing acid), perchloric acid, and nitric acid (oxidizing acid with different oxidizing strength). The results show that passive current density ( i pass) in Sulfuric acid is 2.67 × 10-5 A cm-2, which is 2.5 and 3 times greater than the values obtained in perchloric acid ( i pass = 9.91 × 10-6) and nitric acid ( i pass = 7.98 × 10-6), respectively. EIS data reveal that the value of R p in sulfuric acid (20 kΩ cm2) is about three and five times smaller than that its value in perchloric acid and Nitric acid, respectively. Mott-Schottky analysis shows that the passive layer exhibits an n-type semiconducting characteristics irrespective of acidic environment. The greatest and the smallest values of donor density ( N D) are obtained for the passive scale formed in sulfuric acid ( N D, H2SO4 = 18.36 × 1019) and nitric acid ( N D, HNO3 = 13.13 × 1019), respectively. The report concludes that characteristics of the passive scale are directly affected by reduction potential of the acid, which is the criterion of its oxidizing strength. An increase in the oxidizing strength of the acidic solution results in formation of more protective and less

  17. Disregulated Alcohol-Related Behavior among College Drinkers: Associations with Protective Behaviors, Personality, and Drinking Motives

    ERIC Educational Resources Information Center

    Isaak, Matthew I.; Perkins, David R.; Labatut, Tiffany R.

    2011-01-01

    Objective: This study investigated the psychometric properties of the Disregulated Alcohol-Related Behaviors Inventory (DARBI), a measure of harmful alcohol-related behavior, and the relationship between protective behavior use and scores on the DARBI and several other measures. Participants: Participants were 281 undergraduate volunteers (60%…

  18. Unique influence of cholesterol on modifying the aggregation behavior of surfactant assemblies: investigation of photophysical and dynamical properties of 2,2'-bipyridine-3,3'-diol, BP(OH)2 in surfactant micelles, and surfactant/cholesterol forming vesicles.

    PubMed

    Ghosh, Surajit; Kuchlyan, Jagannath; Roychowdhury, Subhajit; Banik, Debasis; Kundu, Niloy; Roy, Arpita; Sarkar, Nilmoni

    2014-08-01

    The binding and rotational properties of an excited-state intramolecular proton transfer (ESIPT) fluorophore, 2,2'-bipyridine-3,3'-diol, BP(OH)2 has been investigated in alkyltrimethylammonium bromide containing (CnTAB, n = 12, 14, and 16) micelles and alkyltrimethylammonium bromide/cholesterol (CnTAB (n = 14 and 16)/cholesterol) forming vesicles using fluorescence-based spectroscopy techniques. The formation of thermodynamically stable unilamellar self-assemblies of alkyltrimethylammonium bromide/cholesterol are characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. Individually, aqueous solutions of all these alkyltrimethylammonium bromide form micelles after certain surfactant concentration (critical micelle concentration, cmc) of surfactant, whereas cholesterol molecules are insoluble in water. But with the variation of the cholesterol-to-surfactant molar ratio (Q = [cholesterol]/[surfactant]), uniform distribution of vesicular aggregates in aqueous solution can be obtained. The micelle-to-vesicle transition of surfactant solution upon addition of cholesterol also influences the steady state emission profile, fluorescence lifetime, and rotational dynamics of BP(OH)2 molecule. The diketo tautomer of BP(OH)2 molecule gets stabilized as the concentration of surfactant increases in aqueous solution. Fluorescence lifetime and rotational time constant of the BP(OH)2 molecule are also influenced by the variation of alkyl chain length of surfactant molecule. The emission quantum yield (Φ) is also found to be sensitive with surfactant concentration, variation in chain length of surfactants, and it saturates after the cmc of surfactants. The rigid and restricted microenvironment of vesicle bilayer enhance the lifetime and also rotational relaxation of BP(OH)2 significantly. The rotational behavior of BP(OH)2 in surfactant/cholesterol self-assemblies is also explained by using analytical parameters related to time

  19. Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior.

    PubMed

    Feltham, Humphrey L C; Clérac, Rodolphe; Ungur, Liviu; Vieru, Veacheslav; Chibotaru, Liviu F; Powell, Annie K; Brooker, Sally

    2012-10-15

    Thirteen tetranuclear mixed-metal complexes of the hexaimine macrocycle (L(Pr))(6-) have been prepared in a one-pot 3:1:3:3 reaction of copper(II) acetate hydrate, the appropriate lanthanide(III) nitrate hydrate, 1,4-diformyl-2,3-dihydroxybenzene (1), and 1,3-diaminopropane. The resulting family of copper(II)-lanthanide(III) macrocyclic complexes has the general formula Cu(II)(3)Ln(III)(L(Pr))(NO(3))(3)·solvents (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, Ho, Er, Tm, or Yb). X-ray crystal structure determinations carried out on [Cu(3)Ce(L(Pr))(NO(3))(3)(MeOH)(3)] and [Cu(3)Dy(L(Pr))(NO(3))(3)(MeOH)(3)] confirmed that the large Ln(III) ion is bound in the central O(6) site and the three square pyramidal Cu(II) ions in the outer N(2)O(2) sites (apical donor either nitrate anion or methanol molecule) of the Schiff base macrocycle. Only the structurally characterized Cu(3)Tb complex, reported earlier, is a single-molecule magnet (SMM): the other 12 complexes do not exhibit an out-of-phase ac susceptibility signal or hysteresis of magnetization in a dc field. Ab initio calculations allowed us to rationalize the observed magnetic properties, including the significant impact of subtle chemical modification on SMM behavior. Broken-symmetry density functional theory (BS-DFT) calculations show there is a subtle structural balance as to whether the Cu···Cu exchange coupling is ferro- or antiferromagnetic. Of the family of 13 magnetically characterized tetranuclear Cu(II)(3)Ln(III) macrocyclic complexes prepared, only the Tb(III) complex is an SMM: the theoretical reasons for this are discussed.

  20. Behavior Modification

    ERIC Educational Resources Information Center

    Boardman, Randolph M.

    2010-01-01

    In a perfect world, students would never talk back to school staff and never argue or fight with each other. They would complete all their assigned tasks, and disciplinary actions never would be needed. Unfortunately, people don't live in a perfect world. Student behavior is a daily concern. Teachers continue to refer students to the office as a…

  1. Developmental behavior.

    PubMed

    Crowell-Davis, S L

    1986-12-01

    Examination of the developmental changes that occur in the behavior of foals reveals three major periods that can be characterized by certain types of behavior. Although the beginnings and endings of these periods are not definitive, these periods may be conceptually useful in evaluating a foal's behavior. Period of Dependence. During the first 4 weeks of life, a foal is maximally dependent on its mother for sustenance, remains near her, and has little contact with other horses or ponies of any age. Period of Socialization. During the second and third months of life, foals have rapidly increasing contact with ponies and horses other than their mother, especially with other foals. Mutual-grooming peaks during this period, as does snapping, which is probably being carried out as a displacement activity during the stressful period of initial contact with non-mother horses. Period of Stabilization and Developing Independence. From the fourth month onward, foals gradually become more independent, both from their mother and from other herd members as they progress toward adult patterns of spatial relationships, social interactions, and maintenance behaviors. PMID:3492246

  2. Behavior Therapy

    MedlinePlus

    ... and consequences. Give your child a specified reward (positive reinforcement) every time she shows the desired behavior. Give your child a consequence (unwanted result or punishment) consistently when she has ... in a positive way. Most experts recommend using both medication and ...

  3. Mathematics as verbal behavior.

    PubMed

    Marr, M Jackson

    2015-04-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk. PMID:25595115

  4. Mathematics as verbal behavior.

    PubMed

    Marr, M Jackson

    2015-04-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk.

  5. [Behavior therapy and neurotic behavior].

    PubMed

    Ylieff, M

    1977-01-01

    The first part of the lecture presents three classical aspects of behavior therapy: therapeutic efficiency, utilisation of well defined methods, rapidity of treatment. Emphasis is brought to the importance of behavior analysis and to the dangers arisen from insufficient knowledge or ignorance of learning theories and fundamental principles of behavior analysis. One insists on experimental analysis which is the basis for methods of action having as consequence for the therapeut: controlling strategy of treatment and direct responsibility concerning success and failure. Then, actual limitations of behaviour therapy are described. The second part deals with one of the most important working hypothesis on human neurosis originating from laboratory and clinical research. Behavior therapy refuses to elaborate hypothetical deductive constructions, unless working hypotheses to be verified. Then the four essential clues to behavioural psychotherapy are formulated. The main methods of action presently utilized are presented: aversive methods, operational and systematic desensitization technics through reciprocal inhibition. Finally, some of the main criticism usually made on behaviour therapy are being discussed.

  6. The Devron property

    NASA Astrophysics Data System (ADS)

    Glick, Max

    2015-01-01

    We introduce a criterion called the Devron property that a discrete dynamical system can possess. The Devron property is said to occur when a class of highly singular inputs of a mapping F are carried by some iterate of F-1 to a class of highly singular inputs of F-1. The inspiration for this definition is the discovery by R. Schwartz that the pentagram map exhibits this kind of behavior. We investigate occurrences of the Devron property in a number of different dynamical systems.

  7. Crisis behavior

    SciTech Connect

    Grinspoon, L.

    1984-04-01

    The Department of Defense has rules and procedures to minimize the opportunity for error and improper behavior among those with access to strategic weapons, but no psychiatric screening system can predict with assurance who will or will not behave rationally during a crisis. Personal problems and institutional decision-making pressures may destroy nuclear deterrence. Certain features of military life, including drug and alcohol abuse, heavy responsibility, tension, and group decision making, can destreoy rationality. 12 references.

  8. OPEC behavior

    NASA Astrophysics Data System (ADS)

    Yang, Bo

    This thesis aims to contribute to a further understanding of the real dynamics of OPEC production behavior and its impacts on the world oil market. A literature review in this area shows that the existing studies on OPEC still have some major deficiencies in theoretical interpretation and empirical estimation technique. After a brief background review in chapter 1, chapter 2 tests Griffin's market-sharing cartel model on the post-Griffin time horizon with a simultaneous system of equations, and an innovative hypothesis of OPEC's behavior (Saudi Arabia in particular) is then proposed based on the estimation results. Chapter 3 first provides a conceptual analysis of OPEC behavior under the framework of non-cooperative collusion with imperfect information. An empirical model is then constructed and estimated. The results of the empirical studies in this thesis strongly support the hypothesis that OPEC has operated as a market-sharing cartel since the early 1980s. In addition, the results also provide some support of the theory of non-cooperative collusion under imperfect information. OPEC members collude under normal circumstances and behave competitively at times in response to imperfect market signals of cartel compliance and some internal attributes. Periodic joint competition conduct plays an important role in sustaining the collusion in the long run. Saudi Arabia acts as the leader of the cartel, accommodating intermediate unfavorable market development and punishing others with a tit-for-tat strategy in extreme circumstances.

  9. Bi2Sr2CaCu2O8 + x round wires with Ag/Al oxide dispersion strengthened sheaths: microstructure-properties relationships, enhanced mechanical behavior and reduced Cu depletion

    NASA Astrophysics Data System (ADS)

    Kajbafvala, Amir; Nachtrab, William; Wong, Terence; Schwartz, Justin

    2014-09-01

    Ag/Al alloys with various Al content (0.50 wt%, 0.75 wt%, 1.00 wt%, and 1.25 wt%) are made by powder metallurgy and used as the outer sheath material for Bi2Sr2CaCu2O8 + x (Bi2212)/Ag/AgAl multifilamentary round wires (RW). Bi2212/Ag/AgAl RW microstructural, mechanical and electrical properties are studied in various conditions, including as-drawn, after internal oxidation, and after partial melt processing (PMP). The results are compared with the behavior of a Bi2212/Ag/Ag0.20Mg wire of the same geometry. The grains in as-drawn Ag/Al alloys are found to be ˜25% smaller than those in the corresponding Ag/0.20 wt%Mg, but after PMP, the Ag/Al and Ag/0.20 wt%Mg grain sizes are comparable. Tensile tests show that Bi2212/Ag/AgAl green wires have yield strength (YS) of ˜115 MPa, nearly 65% higher than that of Bi2212/Ag/Ag0.20Mg. After PMP, the Bi2212/Ag/AgAl YS is about 35% greater than that of Bi2212/Ag/Ag0.20Mg. Furthermore, Bi2212/Ag/AgAl wires exhibit higher ultimate tensile strength and modulus and twice the elongation-to-failure. Atomic resolution high-angle annular dark-field scanning transmission electron microscopy, high resolution transmission electron microscopy and energy dispersive spectroscopy demonstrate the formation of nanosize MgO and Al2O3 precipitates via internal oxidation. Large spherical MgO precipitates are observed on the Ag grain boundaries of Ag/0.20 wt%Mg alloy, whereas the Al2O3 precipitates are distributed homogenously in the dispersion-strengthened (DS) Ag/Al alloy. Furthermore, it is found that less Cu diffused from the Bi2212 filaments in the Bi2212/Ag/Ag0.75Al wire during PMP than from the filaments in the Bi2212/Ag/Ag0.20Mg wire. These results show that DS Ag/Al alloy is a strong candidate for improved Bi2212 wire.

  10. Behavioral dimensions of food security.

    PubMed

    Timmer, C Peter

    2012-07-31

    The empirical regularities of behavioral economics, especially loss aversion, time inconsistency, other-regarding preferences, herd behavior, and framing of decisions, present significant challenges to traditional approaches to food security. The formation of price expectations, hoarding behavior, and welfare losses from highly unstable food prices all depends on these behavioral regularities. At least when they are driven by speculative bubbles, market prices for food staples (and especially for rice, the staple food of over 2 billion people) often lose their efficiency properties and the normative implications assigned by trade theory. Theoretical objections to government efforts to stabilize food prices, thus, have reduced saliency, although operational, financing, and implementation problems remain important, even critical. The experience of many Asian governments in stabilizing their rice prices over the past half century is drawn on in this paper to illuminate both the political mandates stemming from behavioral responses of citizens and operational problems facing efforts to stabilize food prices. Despite the theoretical problems with free markets, the institutional role of markets in economic development remains. All policy instruments must operate compatibly with prices in markets. During policy design, especially for policies designed to alter market prices, incentive structures need to be compatible with respect to both government capacity (bureaucratic and budgetary) and empirical behavior on the part of market participants who will respond to planned policy changes. A new theoretical underpinning to political economy analysis is needed that incorporates this behavioral perspective, with psychology, sociology, and anthropology all likely to make significant contributions.

  11. Behavioral dimensions of food security

    PubMed Central

    Timmer, C. Peter

    2012-01-01

    The empirical regularities of behavioral economics, especially loss aversion, time inconsistency, other-regarding preferences, herd behavior, and framing of decisions, present significant challenges to traditional approaches to food security. The formation of price expectations, hoarding behavior, and welfare losses from highly unstable food prices all depends on these behavioral regularities. At least when they are driven by speculative bubbles, market prices for food staples (and especially for rice, the staple food of over 2 billion people) often lose their efficiency properties and the normative implications assigned by trade theory. Theoretical objections to government efforts to stabilize food prices, thus, have reduced saliency, although operational, financing, and implementation problems remain important, even critical. The experience of many Asian governments in stabilizing their rice prices over the past half century is drawn on in this paper to illuminate both the political mandates stemming from behavioral responses of citizens and operational problems facing efforts to stabilize food prices. Despite the theoretical problems with free markets, the institutional role of markets in economic development remains. All policy instruments must operate compatibly with prices in markets. During policy design, especially for policies designed to alter market prices, incentive structures need to be compatible with respect to both government capacity (bureaucratic and budgetary) and empirical behavior on the part of market participants who will respond to planned policy changes. A new theoretical underpinning to political economy analysis is needed that incorporates this behavioral perspective, with psychology, sociology, and anthropology all likely to make significant contributions. PMID:20855628

  12. Role of behavior theory in behavioral medicine.

    PubMed

    Epstein, L H

    1992-08-01

    Behavioral medicine is a multidisciplinary field that combines research methods and findings from behavioral and biomedical sciences. Many investigators in the field have tended to emphasize the contribution of the biomedical more than the behavioral sciences. This is evident in the emphasis on biological rather than behavioral outcomes and on the reductionist approach within the field to reduce mechanisms responsible for behavioral effects and disease to biological influences. There has been a similar shift in psychology toward mechanistic, bottom-up approaches to understanding mechanisms responsible for integrated and dynamic behavior. These shifts in emphasis have stimulated investigators to examine the use of biomedical methods and findings as causes and explanations for behavior, rather than to utilize newer findings in behavioral sciences. New advances in basic research on learning are used to illustrate that findings from behavioral science have implications for the field of contemporary behavioral medicine. Finally, the importance of developing new technologies for measuring behavior is presented.

  13. Tribological properties of surfaces

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    The real area of contact between two solid surfaces is only a small portion of the apparent area. Deformation of these areas can result in solid state contact through surface films. For clean solid to solid contact strong adhesive bonding occurs across the interface. Under these conditions many properties of the solid such as the metallurgical and chemical nature of metals can influence adhesion, friction, and wear behavior. The presence of gases, liquids, and solid films on the surface of solids alter markedly tribological characteristics. These surface films can also considerably change the mechanical effects of solid state contact on bulk material behavior.

  14. Some verbal behavior about verbal behavior

    PubMed Central

    Salzinger, Kurt

    2003-01-01

    Beginning with behavior analysts' tendency to characterize verbal behavior as “mere” verbal behavior, the author reviews his own attempt to employ it to influence both his staff and policies of our government. He then describes its role in psychopathology, its effect on speakers in healing themselves and on engendering creativity. The paper ends by calling to our attention the role of verbal behavior in the construction of behavior analysis. PMID:22478393

  15. Behavioral economics.

    PubMed

    Chambers, David W

    2009-01-01

    It is human nature to overestimate how rational we are, both in general and even when we are trying to be. Such irrationality is not random, and the search for and explanation of patterns of fuzzy thinking is the basis for a new academic discipline known as behavioral economics. Examples are given of some of the best understood of our foibles, including prospect theory, framing, anchoring, salience, confirmation bias, superstition, and ownership. Humans have two cognitive systems: one conscious, deliberate, slow, and rational; the other fast, pattern-based, emotionally tinged, and intuitive. Each is subject to its own kind of error. In the case of rational thought, we tend to exaggerate our capacity; for intuition, we fail to train it or recognize contexts where it is inappropriate. Humans are especially poor at estimating probabilities, or even understanding what they are. It is a common human failing to reason backwards from random outcomes that are favorable to beliefs about our power to predict the future. Five suggestions are offered for thinking within our means.

  16. Rate dependency, behavioral mechanisms, and behavioral pharmacology.

    PubMed

    Branch, M N

    1984-11-01

    Behavioral pharmacology has become increasingly independent of the experimental analysis of behavior. At its beginning, behavioral pharmacology was closely related to the experimental analysis of behavior, with developments in each field aiding the other. Early attempts to systematize data in behavioral pharmacology culminated with the development of the rate-dependency concept, but as this principle was found to have more limited generality than originally was hoped, a theoretical void developed. This circumstance was followed by increased reliance on pharmacological theory as a basis for experimentation and interpretation, with an attendant decrease in emphasis on environmental variables and behavioral interpretations. Lack of interplay between behavioral pharmacology and the experimental analysis of behavior is detrimental to both disciplines because each could contribute significantly to the other. The current trend might be reversed if more research were directed at elucidating behavioral mechanisms of drug action.

  17. Dynamic behaviors in directed networks

    SciTech Connect

    Park, Sung Min; Kim, Beom Jun

    2006-08-15

    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks.

  18. Tribological behavior of nanocrystalline nickel.

    PubMed

    Guidry, D J; Lian, K; Jiang, J C; Meletis, E I

    2009-07-01

    During the last decade, an intensive investigative effort around the globe has been devoted to the understanding of scale effects on materials properties. In spite of their importance, nanoscale effects on tribological properties have attracted little attention. Such effects are of utmost importance to small scale devices such as nano and micro electromechanical systems that contain nanostructured dynamic components that would be difficult to replace or repair. The significant increase in strength arising from the grain size reduction in the nano domain is expected to impact on mechanical processes at asperity contacts that are dominating wear behavior. In the present work, nanocrystalline Ni produced by electroplating was used as a model system to study scale effects on tribological behavior. It was found that compared to bulk (microcrystalline), nanocrystalline Ni can cause a significant reduction in both, the coefficient of friction and wear rate. A consistent relationship was found between grain size, hardness and tribological behavior. It is suggested that the improved tribological behavior of the nanocrystalline Ni is due to the refinement of mechanical processes inhibiting plastic deformation by extensive dislocation motion leading to fracture events. PMID:19916423

  19. From Behaviorism to Selectionism.

    ERIC Educational Resources Information Center

    Vargas, Ernest A.

    1993-01-01

    Discusses behaviorism and the gradual shift to a theory of selectionism. Highlights include the development of behaviorism as a part of psychology, including Skinner's theories; varieties of behaviorism, including behavioral analysis; behaviorology in other disciplinary settings; effects of contingencies upon behavior; and the prospects for…

  20. The behavioral economics of violence.

    PubMed

    Rachlin, Howard

    2004-12-01

    From the viewpoint of teleological behaviorism the first question to ask in attempting to understand any behavior, including violent behavior, is: What are its contingencies of reward and punishment? Or, to put the question in economic terms: What are the short-term and long-term costs and benefits that such behavior entails? Let us therefore consider the costs and benefits of youth violence. Among the short-term costs of violent behavior are the physical effort of the act, the possibility of immediate physical retaliation, immediate social disapproval, and the opportunity cost of other social acts that the violent behavior takes the place of (you can't be affectionate and violent at the same time, for instance). Among the immediate benefits of violent behavior are the intrinsic satisfaction of the violent act itself and any extrinsic benefit; if A violently appropriates B's new sneakers then obtaining the sneakers reinforces A's violence. These immediate benefits may well outweigh the costs in many contexts. Among the long-term costs of violent behavior are delayed retaliation, possible social disapproval and loss of social support, rejection from a social group, job loss, and health risks associated with a violent lifestyle. Among the long-term benefits are long-term intimidation of others (your neighbor is less likely to build a fence on your property if you have a reputation for violence), and a possibly exciting lifestyle. These long-term benefits may well be outweighed by the long-term costs. Opposition of long-term net costs to short-term net benefits, where it exists, creates a personal self-control trap: Overall satisfaction may decrease monotonically with rate of the target behavior but, regardless of its rate, the immediate satisfaction of doing it is always higher than that of not doing it. In the case of violent behavior, this trap is exacerbated by the fact that as a person's violence increases, net immediate reinforcement also increases (due to