Sample records for lhc injection tests

  1. Testing beam-induced quench levels of LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  2. Analysis of BSRT Profiles in the LHC at Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Papadopoulou, S.

    The beam synchrotron radiation telescope (BSRT) at the LHC allows to take profiles of the transverse beam distribution, which can provide useful additional insight in the evolution of the transverse beam distribution. A python class has been developed [1], which allows to read in the BSRT profiles, usually stored in binary format, run different analysis tools and generate plots of the statistical parameters and profiles as well as videos of the the profiles. The detailed analysis will be described in this note. The analysis is based on the data obtained at injection energy (450 GeV) during MD1217 [2] and MD1415more » [3] which will be also used as illustrative example. A similar approach is also taken with a MATLAB based analysis described in [4].« less

  3. Commissioning the cryogenic system of the first LHC sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millet, F.; Claudet, S.; Ferlin, G.

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less

  4. Challenges and Plans for Injection and Beam Dump

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Goddard, B.; Mertens, V.; Uythoven, J.

    The injection and beam dumping systems of the LHC will need to be upgraded to comply with the requirements of operation with the HL-LHC beams. The elements of the injection system concerned are the fixed and movable absorbers which protect the LHC in case of an injection kicker error and the injection kickers themselves. The beam dumping system elements under study are the absorbers which protect the aperture in case of an asynchronous beam dump and the beam absorber block. The operational limits of these elements and the new developments in the context of the HL-LHC project are described.

  5. The test facility for the short prototypes of the LHC superconducting magnets

    NASA Astrophysics Data System (ADS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  6. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  7. Testing the Muon g-2 Anomaly at the LHC

    DOE PAGES

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; ...

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  8. First experiences with the LHC BLM sanity checks

    NASA Astrophysics Data System (ADS)

    Emery, J.; Dehning, B.; Effinger, E.; Nordt, A.; Sapinski, M. G.; Zamantzas, C.

    2010-12-01

    The reliability concerns have driven the design of the Large Hardron Collider (LHC) Beam Loss Monitoring (BLM) system from the early stage of the studies up to the present commissioning and the latest development of diagnostic tools. To protect the system against non-conformities, new ways of automatic checking have been developed and implemented. These checks are regularly and systematically executed by the LHC operation team to ensure that the system status is after each test "as good as new". The sanity checks are part of this strategy. They are testing the electrical part of the detectors (ionisation chamber or secondary emission detector), their cable connections to the front-end electronics, further connections to the back-end electronics and their ability to request a beam abort. During the installation and in the early commissioning phase, these checks have shown their ability to find also non-conformities caused by unexpected failure event scenarios. In every day operation, a non-conformity discovered by this check inhibits any further injections into the LHC until the check confirms the absence of non-conformities.

  9. Hydrogeology and results of injection tests at waste-injection test sites in Pinellas County, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1982-01-01

    Potential benefits or hazards to freshwater resources could result from subsurface injection of treated wastewater. Recognizing this, the U.S. Geological Survey, in cooperation with Pinellas County and the city of St. Petersburg, undertook an evaluation of the hydrogeology and injection of wastewater at proposed test sites on the Pinellas peninsula. The injection sites are underlain by sedimentary rocks ranging in age from Cretaceous to Pleistocene. Lower Eocene carbonate rocks were penetrated to a maximum depth of 3,504 feet and were found to have relatively low water yields. The most permeable part of the investigated section was in rocks of middle Eocene age within the Floridan aquifer. At the injection sites, the Floridan aquifer was subdivided into four permeable zones and three semiconfining beds. The test injection zone is within the Avon Park Limestone, the most productive of the identified permeable zones, with a transmissivity of about 1,000,000 feet squared per day. Two semiconfining beds are above the injection zone in the Suwannee Limestone and Ocala Limestone and have vertical hydraulic conductivities estimated to range from about 0.1 to 1 foot per day where these beds do not contain clay. Limited fresh ground-water supplies exist in the Floridan aquifer within the Pinellas peninsula. At all test sites, chloride concentration in the injection zone ranged from 19,000 to 20,000 milligrams per liter. Injection tests ranging in duration from 3 to 91.1 days were run at three different sites. Pressure buildup occurred in permeable zones above and below the injection zone during these tests. Calculated pressure buildup in observation wells close to and at some distance from the test wells was typically less than 1 pound per square inch. Injection and formation water will probably move slowly through the semiconfining bed overlying the injection zone, and long-term injection tests will be needed to determine the effectiveness of these beds to retard flow. The

  10. Controlled Cold Helium Spill Test in the LHC Tunnel at CERN

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.

    The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.

  11. Testing the Technicolor Interpretation of CDF's Dijet Excess at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichten, Estia; Lane, Kenneth; Martin, Adam

    2012-01-01

    Under the assumption that the dijet excess seen by the CDF Collaboration near 150 Gev in Wjj production is due to the lightest technipion of the low-scale technicolor processmore » $$\\rho_T \\rightarrow W \\pi_T$$, we study its observability in LHC detectors with 1--20 inverse femtobarns of data. We describe interesting new kinematic tests that can provide independent confirmation of this LSTC hypothesis. We find that cuts similar to those employed by CDF, and recently by ATLAS, cannot confirm the dijet signal. We propose cuts tailored to the LSTC hypothesis and its backgrounds at the LHC that may reveal $$\\rho_T \\rightarrow \\ell\

  12. Loss Control and Collimation for the LHC

    NASA Astrophysics Data System (ADS)

    Burkhardt, H.

    2005-06-01

    The total energy stored in the LHC is expected to reach 360 Mega Joule, which is about two orders of magnitude higher than in HERA or the Tevatron. Damage and quench protection in the LHC require a highly efficient and at the same time very robust collimation system. The currently planned system, the status of the project and the expected performance of the collimation system from injection up to operation with colliding beams will be presented.

  13. Single-pass beam measurements for the verification of the LHC magnetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calaga, R.; Giovannozzi, M.; Redaelli, S.

    2010-05-23

    During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator controlmore » system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.« less

  14. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    NASA Astrophysics Data System (ADS)

    Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.

    2015-12-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.

  15. Injecting Errors for Testing Built-In Test Software

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K.; Chow, James

    2010-01-01

    Two algorithms have been conceived to enable automated, thorough testing of Built-in test (BIT) software. The first algorithm applies to BIT routines that define pass/fail criteria based on values of data read from such hardware devices as memories, input ports, or registers. This algorithm simulates effects of errors in a device under test by (1) intercepting data from the device and (2) performing AND operations between the data and the data mask specific to the device. This operation yields values not expected by the BIT routine. This algorithm entails very small, permanent instrumentation of the software under test (SUT) for performing the AND operations. The second algorithm applies to BIT programs that provide services to users application programs via commands or callable interfaces and requires a capability for test-driver software to read and write the memory used in execution of the SUT. This algorithm identifies all SUT code execution addresses where errors are to be injected, then temporarily replaces the code at those addresses with small test code sequences to inject latent severe errors, then determines whether, as desired, the SUT detects the errors and recovers

  16. The High Luminosity LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, Lucio

    The High Luminosity LHC is one of the major scientific project of the next decade. It aims at increasing the luminosity reach of LHC by a factor five for peak luminosity and a factor ten in integrated luminosity. The project, now fully approved and funded, will be finished in ten years and will prolong the life of LHC until 2035-2040. It implies deep modifications of the LHC for about 1.2 km around the high luminosity insertions of ATLAS and CMS and relies on new cutting edge technologies. We are developing new advanced superconducting magnets capable of reaching 12 T field; superconducting RF crab cavities capable to rotate the beams with great accuracy; 100 kA and hundred meter long superconducting links for removing the power converter out of the tunnel; new collimator concepts, etc... Beside the important physics goals, the High Luminosity LHC project is an ideal test bed for new technologies for the next hadron collider for the post-LHC era.

  17. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less

  18. Performance of the CMS precision electromagnetic calorimeter at LHC Run II and prospects for High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicai

    2018-04-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high-resolution electron and photon energy measurements. Following the excellent performance achieved during LHC Run I at center-of-mass energies of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) is operating at the LHC with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run II has achieved unprecedented levels. The average number of concurrent proton-proton collisions per bunch-crossing (pileup) has reached up to 40 interactions in 2016 and may increase further in 2017. These high pileup levels necessitate a retuning of the ECAL readout and trigger thresholds and reconstruction algorithms. In addition, the energy response of the detector must be precisely calibrated and monitored. We present new reconstruction algorithms and calibration strategies that were implemented to maintain the excellent performance of the CMS ECAL throughout Run II. We will show performance results from the 2015-2016 data taking periods and provide an outlook on the expected Run II performance in the years to come. Beyond the LHC, challenging running conditions for CMS are expected after the High-Luminosity upgrade of the LHC (HL-LHC) . We review the design and R&D studies for the CMS ECAL and present first test beam studies. Particular challenges at HL-LHC are the harsh radiation environment, the increasing data rates, and the extreme level of pile-up events, with up to 200 simultaneous proton-proton collisions. We present test beam results of hadron irradiated PbWO crystals up to fluences expected at the HL-LHC . We also report on the R&D for the new readout and trigger electronics, which must be upgraded due to the increased trigger and latency requirements at the HL-LHC.

  19. Testing the OPERA superluminal neutrino anomaly at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl H.; Rizzo, T.

    2011-11-28

    The OPERA Collaboration has reported the observation of superluminal muon neutrinos, whose speed v{sub v} exceeds that of light c, with (v{sub v}-c)/c {approx_equal} 2.5 x 10{sup -5}. In a recent work, Cohen and Glashow have refuted this claim by noting that such neutrinos will lose energy, by pair emission of particles, at unacceptable rates. Following the Cohen and Glashow arguments, we point out that pair emissions consistent with the OPERA anomaly can lead to detectable signals for neutrinos originating from decays of highly boosted top quarks at the LHC, allowing an independent test of the superluminal neutrino hypothesis.

  20. Testing the OPERA Superluminal Neutrino Anomaly at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman; /Brookhaven; Rizzo, Thomas G.

    2012-03-15

    The OPERA collaboration has reported the observation of superluminal muon neutrinos, whose speed v{sub {nu}} exceeds that of light c, with (v{sub {nu}}-c)/c {approx_equal} 2.5 x 10{sup -5}. In a recent work, Cohen and Glashow (CG) have refuted this claim by noting that such neutrinos will lose energy, by pair-emission of particles, at unacceptable rates. Following the CG arguments, we point out that pair-emissions consistent with the OPERA anomaly can lead to detectable signals for neutrinos originating from decays of highly boosted top quarks at the LHC, allowing an independent test of the superluminal neutrino hypothesis.

  1. Testing the OPERA superluminal neutrino anomaly at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman; Rizzo, Thomas G.

    2011-11-01

    The OPERA Collaboration has reported the observation of superluminal muon neutrinos, whose speed v{sub {nu}} exceeds that of light c, with (v{sub {nu}}-c)/c{approx_equal}2.5x10{sup -5}. In a recent work, Cohen and Glashow have refuted this claim by noting that such neutrinos will lose energy, by pair emission of particles, at unacceptable rates. Following the Cohen and Glashow arguments, we point out that pair emissions consistent with the OPERA anomaly can lead to detectable signals for neutrinos originating from decays of highly boosted top quarks at the LHC, allowing an independent test of the superluminal neutrino hypothesis.

  2. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    NASA Astrophysics Data System (ADS)

    Senkin, Sergey

    2018-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the frontend readout options, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. We describe the full characterisation of FATALIC and also the Optimal Filtering signal reconstruction method adapted to fully exploit the FATALIC three-range layout. Additionally we present the resolution performance of the whole chain measured using the charge injection system designed for calibration. Finally we discuss the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN.

  3. Testing the Technicolor Interpretation of the CDF Dijet Excess at the 8-TeV LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichten, Estia; Lane, Kenneth; Martin, Adam

    2012-10-01

    Under the assumption that the dijet excess seen by the CDF Collaboration near 150 Gev in Wjj production is due to the lightest technipion of the low-scale technicolor processmore » $$\\rho_T \\rightarrow W \\pi_T$$, we study its observability in LHC detectors for 8 TeV collisions and 20 inverse femtobarns of integrated luminosity. We describe interesting new kinematic tests that can provide independent confirmation of this LSTC hypothesis. We show that cuts similar to those employed by CDF, and recently by ATLAS, cannot confirm the dijet signal. We propose cuts tailored to the LSTC hypothesis and its backgrounds at the LHC that may reveal $$\\rho_T \\rightarrow \\ell\

  4. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  5. Hydrologic data for the southwest subsurface-injection test site, St. Petersburg, Florida

    USGS Publications Warehouse

    Hickey, John J.; Spechler, R.M.

    1978-01-01

    Three injection wells and nine observation wells were constructed at the Southwest St. Petersburg, Fla., site to determine feasibility of injecting wastewater treatment plant effluent into permeable zones containing saline water. Two withdrawal tests and one injection test were performed. Both withdrawal tests ran for about 3 days; one discharging 650 gallons per minute, and the other discharging 6,490 gallons per minute. The injection test was run in one well for 91.1 days at an average rate of 2,830 gallons per minute. Injection well pressure reached a maximum of 48.1 pounds per square inch near the end of the test. Rhodamine WT was used as a tracer during the injection test and was identified in three wells. Before the injection test, chloride concentration in a well 35 feet from the injection well, and in a well 733 feet distant, ranged from 19,000 to 21,000 milligrams per liter. At the end of the test, chloride concentration in one well was 1,800 milligrams per liter and 5,400 milligrams per liter in another. Eleven wells near the site were sampled before the test for water-quality analyses and chlorides ranged from 18 to 1,400 milligrams per liter. (Woodard-USGS)

  6. Lightning Pin Injection Test: MOSFETS in "ON" State

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Saha, Sankalita; Wysocki, Philip F.; Celaya, Jose R.

    2011-01-01

    The test objective was to evaluate MOSFETs for induced fault modes caused by pin-injecting a standard lightning waveform into them while operating. Lightning Pin-Injection testing was performed at NASA LaRC. Subsequent fault-mode and aging studies were performed by NASA ARC researchers using the Aging and Characterization Platform for semiconductor components. This report documents the test process and results, to provide a basis for subsequent lightning tests. The ultimate IVHM goal is to apply prognostic and health management algorithms using the features extracted during aging to allow calculation of expected remaining useful life. A survey of damage assessment techniques based upon inspection is provided, and includes data for optical microscope and X-ray inspection. Preliminary damage assessments based upon electrical parameters are also provided.

  7. Experiment data report for Semiscale Mod-1 Test S-05-1 (alternate ECC injection test)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, E. M.; Patton, Jr., M. L.; Sackett, K. E.

    Recorded test data are presented for Test S-05-1 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-1 was conducted from initial conditions of 2263 psia and 544/sup 0/F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the vessel lower plenum to simulatemore » emergency core coolant injection in a PWR, with the flow rate based on system volume scaling.« less

  8. High energy beam impact tests on a LHC tertiary collimator at the CERN high-radiation to materials facility

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Aberle, O.; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cornelis, K.; Dallocchio, A.; Deboy, D.; Lari, L.; Redaelli, S.; Rossi, A.; Salvachua, B.; Mollicone, P.; Sammut, N.

    2014-02-01

    The correct functioning of a collimation system is crucial to safely operate highly energetic particle accelerators, such as the Large Hadron Collider (LHC). The requirements to handle high intensity beams can be demanding. In this respect, investigating the consequences of LHC particle beams hitting tertiary collimators (TCTs) in the experimental regions is a fundamental issue for machine protection. An experimental test was designed to investigate the robustness and effects of beam accidents on a fully assembled collimator, based on accident scenarios in the LHC. This experiment, carried out at the CERN High-Radiation to Materials (HiRadMat) facility, involved 440 GeV proton beam impacts of different intensities on the jaws of a horizontal TCT. This paper presents the experimental setup and the preliminary results obtained, together with some first outcomes from visual inspection and a comparison of such results with numerical simulations.

  9. The development of diamond tracking detectors for the LHC

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; de Boer, W.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fischer, P.; Fizzotti, F.; Furetta, C.; Gan, K. K.; Ghodbane, N.; Grigoriev, E.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kaplon, J.; Karl, C.; Kass, R.; Keil, M.; Knöpfle, K. T.; Koeth, T.; Krammer, M.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Menichelli, D.; Meuser, S.; Mishina, M.; Moroni, L.; Noomen, J.; Oh, A.; Perera, L.; Pernegger, H.; Pernicka, M.; Polesello, P.; Potenza, R.; Riester, J. L.; Roe, S.; Rudge, A.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Sutera, C.; Trischuk, W.; Tromson, D.; Tuve, C.; Vincenzo, B.; Weilhammer, P.; Wermes, N.; Wetstein, M.; Zeuner, W.; Zoeller, M.; RD42 Collaboration

    2003-11-01

    Chemical vapor deposition diamond has been discussed extensively as an alternate sensor material for use very close to the interaction region of the LHC where extreme radiation conditions exist. During the last few years diamond devices have been manufactured and tested with LHC electronics with the goal of creating a detector usable by all LHC experiment. Extensive progress on diamond quality, on the development of diamond trackers and on radiation hardness studies has been made. Transforming the technology to the LHC specific requirements is now underway. In this paper we present the recent progress achieved.

  10. Test results for rotordynamic coefficients of anti-swirl self-injection seals

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; Lee, Y. B.

    1994-01-01

    Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.

  11. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  12. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  13. Aboveground Injection Sytem Construction and Mecahnical Integrity Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun

    An In-Situ Bioremediation (ISB) Pilot Test Treatability Study is planned at Sandia National Laboratories, New Mexico (SNL/NM) Technical Area-V (TA-V) Groundwater Area of Concern. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater using an injection well. The constituents of concern (COCs) are nitrate and trichloroethene (TCE). The Pilot Test Treatability Study will evaluate the effectiveness of bioremediation and COC treatment over a prescribed period of time. Results of the pilot test will provide data that will be used to evaluate the cost and effectiveness of a fullscale system.

  14. Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.

    This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the majormore » horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.« less

  15. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  16. LHC Abort Gap Cleaning Studies During Luminosity Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, E.; /Fermilab; Bartmann, W.

    2012-05-11

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  17. Experiments and Cycling at the LHC Prototype Half-Cell

    NASA Astrophysics Data System (ADS)

    Saban, R.; Casas-Cubillos, J.; Coull, L.; Cruikshank, P.; Dahlerup-Petersen, K.; Hilbert, B.; Krainz, G.; Kos, N.; Lebrun, P.; Momal, F.; Misiaen, D.; Parma, V.; Poncet, A.; Riddone, G.; Rijllart, A.; Rodriguez-Mateos, F.; Schmidt, R.; Serio, L.; Wallen, E.; van Weelderen, R.; Williams, L. R.

    1997-05-01

    The first version of the LHC prototype half-cell has been in operation since February 1995. It consists of one quadrupole and three 10-m twin aperture dipole magnets which operate at 1.8 K. This experimental set-up has been used to observe and study phenomena which appear when the systems are assembled in one unit and influence one another. The 18-month long experimental program has validated the cryogenic system and yielded a number of results on cryogenic instrumentation, magnet protection and vacuum in particular under non-standard operating conditions. The program was recently complemented by the cycling experiment: it consisted in powering the magnets following the ramp rates which will be experienced by the magnets during an LHC injection. In order to simulate 10 years of routine operation of LHC, more than 2000 1-hour cycles were performed interleaved with provoked quenches. The objective of this experiment was to reveal eventual flaws in the design of components. The prototype half-cell performed to expectations showing no sign of failure of fatigue of components for more than 2000 cycles until one of the dipoles started exhibiting an erratic quench behavior.

  18. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; ...

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  19. Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdú-Andrés, S.; et al.

    Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describesmore » a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.« less

  20. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  1. Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests

    USGS Publications Warehouse

    Lessoff, S.C.; Konikow, Leonard F.

    1997-01-01

    Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.

  2. Effect of injection screen slot geometry on hydraulic conductivity tests

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Nemer, Bassel; Hatfield, Kirk

    2014-04-01

    Hydraulic conductivity and its spatial variability are important hydrogeological parameters and are typically determined through injection tests at different scales. For injection test interpretation, shape factors are required to account for injection screen geometry. Shape factors act as proportionality constants between hydraulic conductivity and observed ratios of injection flow rate and injection head at steady-state. Existing results for such shape factors assume either an ideal screen (i.e., ignoring effects of screen slot geometry) or infinite screen length (i.e., ignoring effects of screen extremes). In the present work, we investigate the combined effects of circumferential screen slot geometry and finite screen length on injection shape factors. This is done in terms of a screen entrance resistance by solving a steady-state potential flow mixed type boundary value problem in a homogeneous axi-symmetric flow domain using a semi-analytical solution approach. Results are compared to existing analytical solutions for circumferential and longitudinal slots on infinite screens, which are found to be identical. Based on an existing approximation, an expression is developed for a dimensionless screen entrance resistance of infinite screens, which is a function of the relative slot area only. For anisotropic conditions, e.g., when conductivity is smaller in the vertical direction than in the horizontal, screen entrance losses for circumferential slots increase, while they remain unaffected for longitudinal slots. This work is not concerned with investigating the effects of (possibly turbulent) head losses inside the injection device including the passage through the injection slots prior to entering the porous aquifer.

  3. Precision searches in dijets at the HL-LHC and HE-LHC

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Childers, J. T.; Proudfoot, J.; Wang, R.; Frizzell, D.

    2018-05-01

    This paper explores the physics reach of the High-Luminosity Large Hadron Collider (HL-LHC) for searches of new particles decaying to two jets. We discuss inclusive searches in dijets and b-jets, as well as searches in semi-inclusive events by requiring an additional lepton that increases sensitivity to different aspects of the underlying processes. We discuss the expected exclusion limits for generic models predicting new massive particles that result in resonant structures in the dijet mass. Prospects of the Higher-Energy LHC (HE-LHC) collider are also discussed. The study is based on the Pythia8 Monte Carlo generator using representative event statistics for the HL-LHC and HE-LHC running conditions. The event samples were created using supercomputers at NERSC.

  4. Testing a fall risk model for injection drug users.

    PubMed

    Pieper, Barbara; Templin, Thomas N; Goldberg, Allon

    2012-01-01

    Fall risk is a critical component of clinical assessment and has not been examined for persons who have injected illicit drugs and are aging. The aim of this study was to test and develop the Fall Risk Model for Injection Drug Users by examining the relationships among injection drug use, chronic venous insufficiency, lower extremity impairments (i.e., decreased ankle range of motion, reduced calf muscle endurance, and leg pain), age and other covariates, and the Tinetti balance and gait total score as a measure of fall risk. A cross-sectional comparative design was used with four crossed factors. Standardized instruments were used to assess the variables. Moderated multiple regression with linear and quadratic trends in age was used to examine the nature of the relationship between the Tinetti balance and gait total and age and the potential moderating role of injection drug use. A prespecified series of models was tested. Participants (n = 713) were men (46.9%) and women with a mean age of 46.26 years and primarily African American (61.7%) in methadone treatment centers. The fall risk of a 48-year-old leg injector was comparable with the fall risk of a 69-year-old who had not injected drugs. Variables were added to the model sequentially, resulting in some lost significance of some when they were explained by subsequent variables. Final significant variables in the model were employment status, number of comorbidities, ankle range of motion, leg pain, and calf muscle endurance. Fall risk was associated with route of drug use. Lower extremity impairments accounted for the effects of injection drug use and chronic venous insufficiency on risk for falls. Further understanding of fall risk in injection users is necessary as they age, attempt to work, and participate in activities.

  5. Induced activation studies for the LHC upgrade to High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Adorisio, C.; Roesler, S.

    2018-06-01

    The Large Hadron Collider (LHC) will be upgraded in 2019/2020 to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor ten, in order to maintain scientific progress and exploit its full capacity. The novel machine configuration, called High Luminosity LHC (HL-LHC), will increase consequently the level of activation of its components. The evaluation of the radiological impact of the HL-LHC operation in the Long Straight Sections of the Insertion Region 1 (ATLAS) and Insertion Region 5 (CMS) is presented. Using the Monte Carlo code FLUKA, ambient dose equivalent rate estimations have been performed on the basis of two announced operating scenarios and using the latest available machine layout. The HL-LHC project requires new technical infrastructure with caverns and 300 m long tunnels along the Insertion Regions 1 and 5. The new underground service galleries will be accessible during the operation of the accelerator machine. The radiological risk assessment for the Civil Engineering work foreseen to start excavating the new galleries in the next LHC Long Shutdown and the radiological impact of the machine operation will be discussed.

  6. Millimeter-Visible Injection Locking and Testing.

    DTIC Science & Technology

    1985-12-01

    Fetterman , Chewlan Liew, & Wai-Leung Ngai 13a. TYPE OF REPORT 13b. TIME COVERED i 4. DATE OF REPORT (Year, Month, Day) I 5. PAGE COUNT FINAL FROM I Jan...HAROLD FETTERMAN > Accesior For NTIS CA&I DTIC TAB El Unr-no,: :ed [- SJ :st tt:C at i: .. ... ................... B y...Dist, 6btitior; I Av.-),! *j I Of Dist - -206 5 1 Millimeter-Visible Injection Locking and Testing Harold Fetterman , Chewlan Liew, and Wai-Leung

  7. Hydrogeologic data for the McKay Creek subsurface waste-injection test site, Pinellas County, Florida

    USGS Publications Warehouse

    Hickey, John D.

    1977-01-01

    Lithologic, hydraulic, geophysical, and water-quality data collected at the McKay Creek subsurface waste-injection test site in Pinellas County, Florida, are reported. Data were collected to determine the possibility of subsurface injection of waste-treatment plant effluent. One exploratory hole, one test injection well, and eight observation wells were constructed between May 1973 and February 1976. The exploratory hole was drilled to a depth of 1,750 feet below land surface; the test injection well is open in dolomite between 952 and 1 ,040 feet; and the observation wells are open to intervals above , in, and below the test injection zone. The lithology of the upper 100 feet is predominantly clay. From 100 to 1,750 feet below land surface, limestone and dolomite predominate. Gypsum is present 1,210 feet below land surface. Laboratory analyses of cores taken during drilling are given for vertical intrinsic permeability, porosity, interval transit time, and compressibility. Specific capacities tested during drilling range from 4 to 2,500 gallons per minute per foot of drawdown. An 83-hour withdrawal test at 4,180 gallons per minute and a 2-month injection test at 650 gallons per minute were run. Small water-quality changes were observed in one observation well immediately above the test injection zone during and after the injection test. Formation water in all of the wells with the exception of the shallowest observation wells is saline. The vertical position of saltwater is estimated to be at about 280 feet below land surface. Thirteen wells within a 1-mile radius of the test site were located and sampled for water quality. (USGS)

  8. Physics perspectives with AFTER@LHC (A Fixed Target ExpeRiment at LHC)

    NASA Astrophysics Data System (ADS)

    Massacrier, L.; Anselmino, M.; Arnaldi, R.; Brodsky, S. J.; Chambert, V.; Da Silva, C.; Didelez, J. P.; Echevarria, M. G.; Ferreiro, E. G.; Fleuret, F.; Gao, Y.; Genolini, B.; Hadjidakis, C.; Hřivnáčová, I.; Kikola, D.; Klein, A.; Kurepin, A.; Kusina, A.; Lansberg, J. P.; Lorcé, C.; Lyonnet, F.; Martinez, G.; Nass, A.; Pisano, C.; Robbe, P.; Schienbein, I.; Schlegel, M.; Scomparin, E.; Seixas, J.; Shao, H. S.; Signori, A.; Steffens, E.; Szymanowski, L.; Topilskaya, N.; Trzeciak, B.; Uggerhøj, U. I.; Uras, A.; Ulrich, R.; Wagner, J.; Yamanaka, N.; Yang, Z.

    2018-02-01

    AFTER@LHC is an ambitious fixed-target project in order to address open questions in the domain of proton and neutron spins, Quark Gluon Plasma and high-x physics, at the highest energy ever reached in the fixed-target mode. Indeed, thanks to the highly energetic 7 TeV proton and 2.76 A.TeV lead LHC beams, center-of-mass energies as large as = 115 GeV in pp/pA and = 72 GeV in AA can be reached, corresponding to an uncharted energy domain between SPS and RHIC. We report two main ways of performing fixed-target collisions at the LHC, both allowing for the usage of one of the existing LHC experiments. In these proceedings, after discussing the projected luminosities considered for one year of data taking at the LHC, we will present a selection of projections for light and heavy-flavour production.

  9. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm-2s-1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  10. Admissions of injection drug users to drug abuse treatment following HIV counseling and testing.

    PubMed

    McCusker, J; Willis, G; McDonald, M; Lewis, B F; Sereti, S M; Feldman, Z T

    1994-01-01

    The outcomes of counseling and testing programs related to human immunodeficiency virus (HIV) infection and risk of infection among injection drug users (IDUs) are not well known or understood. A counseling and testing outcome of potential public health importance is attaining admission to drug abuse treatment by those IDUs who are either infected or who are at high risk of becoming infected. The authors investigated factors related to admission to drug abuse treatment among 519 IDUs who received HIV counseling and testing from September 1987 through December 1990 at a men's prison and at community-based testing sites in Worcester, MA. By June 1991, 123 of the 519 IDUs (24 percent) had been admitted to treatment. Variables associated with their admission included a long history of drug injection, frequent recent drug injection, cleaning injection equipment using bleach, prior drug treatment, and a positive HIV test result. Logistic regression analyses, controlling for effects of recruitment site, year, sex, and area of residence, generally confirmed the associations. IDUs in the study population who were HIV-infected sought treatment or were admitted to treatment more frequently than those who were not infected. The results indicate that access to drug abuse treatment should be facilitated for high-risk IDUs and for those who have begun to inject drugs recently.

  11. Tests for injecting, storing, and recovering freshwater in a saline artesian aquifer, Lee County, Florida

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    An investigation was made of the suitability of a saline, artesian limestone aquifer for the injection, storage, and recovery of freshwater from the Caloosahatchee River. The tests were conducted on a well tapping a leaky artesian system that has a transmissivity of 800 square feet per day, a storage of 1 x 10-4, and a leakance of 0.01 per day. The specific capacity of the injection well was increased through acidizing and was decreased as a result of well clogging during injection. Three injection tests were made wherein the amounts of freshwater injected, the storage duration, and the quality of water injected varied. Analysis of the test data showed that freshwater recoverability ranged from 9.7 to 38.7 percent of the total injected. Differences were attributed principally to differences in the quality of water injected and storage duration. Repeated injection-recovery cycles probably would result in greater recoverability. Head buildup, nearly 200 feet in one test, was a prime problem related chiefly to clogging from suspended material in the injected water and to bacterial growth at the wellbore-limestone interface. Regular backflushing was required. Total head buildup decreased as a result of acidizing the injection well. No coliforms or fecal streptococcus were noted in the recovered water. Growth of anaerobic bacteria occurred. Changes in the quality of the recovered water included decreases in concentration of dissolved organic carbon by as much as 15 mg/L (milligrams per liter), organic nitrogen by as much as 0.80 mg/L, and nitrate by as much as 0.50 mg/L. Increases were noted in ammonia by 0.40 mg/L, and iron by as much as 0.60 mg/L. These changes are consistent with the presence of an anaerobic bacterial ecosystem.

  12. EZVI Injection Field Test Leads to Pilot-Scale Application

    EPA Science Inventory

    Testing and monitoring of emulsified zero-valent ironTM (EZVI) injections was conducted at Cape Canaveral Air Force Station’s Launch Complex 34, FL, in 2002 to 2005 to evaluate the technology’s efficacy in enhancing in situ dehalogenation of dense nonaqueous-phase liquid (DNAPL) ...

  13. The LHCb Detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.

    2008-08-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

  14. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less

  15. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  16. CVD diamond pixel detectors for LHC experiments

    NASA Astrophysics Data System (ADS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A. M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J. C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.; RD42 Collaboration

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  17. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  18. EMISSION TEST REPORT- FIELD TEST OF CARBON INJECTION FOR MERCURY CONTROL, CAMDEN COUNTY MUNICIPAL WASTE COMBUSTOR

    EPA Science Inventory

    The report gives results of parametric test to evaluate the injection powdered activated carbon to control volatile pollutants in municipal waste combustor (MWC) flue gas. he tests were conducted at a spray dryer absorber/electrostatic precipitator (SD/ESP)-equipped MWC in Camden...

  19. Preoperative botulinum toxin test injections before muscle lengthening in cerebral palsy.

    PubMed

    Rutz, Erich; Hofmann, Eva; Brunner, Reinald

    2010-09-01

    Muscle weakening is a well-known side effect of muscle-tendon lengthening. Botulinum toxin A (BTX-A) weakens the muscle temporarily by blocking the neuromuscular junction. Hence application of the drug is a logical step to test whether weakness deteriorates function prior to an operation. In the present study, BTX-A application is used to test preoperatively whether the gait pattern depends on the strength of the tested muscle. Since 1999, instrumented gait analysis, including kinematic, kinetic, and dynamic electromyographic data, is routinely used to define the individual surgical program. In our series of 110 consecutive patients with cerebral palsy (CP) considered for surgical muscle lengthening from 1999 to 2008, BTX-A was applied to identify patients at risk for functional deterioration. Gait analysis was repeated 6 weeks (maximum effect of BTX-A) and 12 weeks (follow-up) after the test injection to check for loss of joint control (excessive ankle dorsiflexion, knee flexion, increased anterior pelvic tilt). In all, 20.9% (n = 23) showed deterioration in gait after preoperative BTX-A test injections (n = 112, two patients had two test trials) in all muscles considered for lengthening. As a consequence, their lengthening surgery was canceled. A total of 68 patients underwent surgery as planned, and in none of them did gait function deteriorate. These clinical data were compared to those of a historical group (n = 105) before this test, where 18% showed functional deterioration after surgery. The similar percentage of patients filtered out by the test suggests that there could be a context to the number of poor results in the historical group. We conclude that preoperative BTX-A test injection is a reliable tool for filtering out patients with risk of deterioration after muscle lengthening surgery in patients with CP and can be helpful to avoid poor outcomes.

  20. On the Design and Test of a Liquid Injection Electric Thruster

    NASA Technical Reports Server (NTRS)

    Jones, T. A.; Kenney, J. T.; Youmans, E. H.

    1973-01-01

    A liquid injection electric thruster (LINJET) was designed and tested. The results of the tests were very encouraging with thruster performance levels well in excess of design goals. Supporting activities to the engine design and test included a five-million pulse life test on the main capacitor, a 46-million pulse test on the trigger electronics, design and fabrication of a zero resistance torque connector for use with the torsional pendulum thrust stand, design and fabrication of a logic box for control of engine firing, and a physical and chemical properties characterization of the perfluorocarbon propellant. While the results were encouraging, testing was limited, as many problems existed with the design. The most significant problem was involved with excessive propellant flow which contributed to false triggering and shorting. Low power active thermal control of the propellant storage cavity, coupled with a re-evaluation of the injection ring pore size and area exposed to the main capacitor discharge are areas that should be investigated should this design be carried forward.

  1. Multiboson interactions at the LHC

    DOE PAGES

    Green, D. R.; Meade, P.; Pleier, M. -A.

    2017-09-20

    This paper covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center of mass energy of 7 and 8 TeV. The data were taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which have both reported limits on aTGCs and aQGCs which aremore » herein summarized. Finally, the interpretation of these limits in terms of an effective field theory is reviewed, and recommendations are made for testing other types of new physics using multigauge boson production.« less

  2. Large Scale Beam-Tests of the Silicon and Scintillator-SiPM Modules for the CMS High Granularity Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, Shilpi

    The High Granularity Calorimeter (HGCAL) will replace the existing CMS endcap calorimeters during the High Luminosity run of the LHC (HL-LHC) era. The electromagnetic part, as well as the first layers of the hadronic part, foresees around 600 square metres of silicon sensors as the active material. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillators with on-tile silicon photomultiplier (SiPM) readout. Prototype hexagonal silicon modules, featuring a new ASIC (Skiroc2-CMS), together with a modified version of the scintillator-SiPM CALICE AHCAL, have been tested in beams at CERN. This setup represents a full slice through HGCAL. Results from MIP calibration, energy resolution, electromagnetic and hadronic shower-shapes are presented using electrons, pions and muons.

  3. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    DOE PAGES

    Pan, H.; Felice, H.; Cheng, D. W.; ...

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less

  4. FDDI network test adaptor error injection circuit

    NASA Technical Reports Server (NTRS)

    Eckenrode, Thomas (Inventor); Stauffer, David R. (Inventor); Stempski, Rebecca (Inventor)

    1994-01-01

    An apparatus for injecting errors into a FDDI token ring network is disclosed. The error injection scheme operates by fooling a FORMAC into thinking it sent a real frame of data. This is done by using two RAM buffers. The RAM buffer normally accessed by the RBC/DPC becomes a SHADOW RAM during error injection operation. A dummy frame is loaded into the shadow RAM in order to fool the FORMAC. This data is just like the data that would be used if sending a normal frame, with the restriction that it must be shorter than the error injection data. The other buffer, the error injection RAM, contains the error injection frame. The error injection data is sent out to the media by switching a multiplexor. When the FORMAC is done transmitting the data, the multiplexor is switched back to the normal mode. Thus, the FORMAC is unaware of what happened and the token ring remains operational.

  5. Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Hare, Richard J.

    2009-01-01

    This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.

  6. Singlet-triplet fermionic dark matter and LHC phenomenology

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya; Khan, Sarif; Mitra, Manimala; Mondal, Subhadeep

    2018-04-01

    It is well known that for the pure standard model triplet fermionic WIMP-type dark matter (DM), the relic density is satisfied around 2 TeV. For such a heavy mass particle, the production cross-section at 13 TeV run of LHC will be very small. Extending the model further with a singlet fermion and a triplet scalar, DM relic density can be satisfied for even much lower masses. The lower mass DM can be copiously produced at LHC and hence the model can be tested at collider. For the present model we have studied the multi jet (≥ 2 j) + missing energy ([InlineEquation not available: see fulltext.]) signal and show that this can be detected in the near future of the LHC 13 TeV run. We also predict that the present model is testable by the earth based DM direct detection experiments like Xenon-1T and in future by Darwin.

  7. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  8. Cryogenic Testing of High Current By-Pass Diode Stacks for the Protection of the Superconducting Magnets in the LHC

    NASA Astrophysics Data System (ADS)

    Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.

    2004-06-01

    For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.

  9. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  10. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  11. LHC Inauguration and LHCFest

    ScienceCinema

    None

    2018-06-26

    The LHC official inauguration will take place from 14h00 to 18h00, at Point 18 of the Laboratory, in the presence of the highest representatives from the member states of CERN and representatives from the other communities and authorities of the countries participating in the LHC adventure. 300 members from the international press are also expected, giving a total of 1500 guests. The ceremony will be broadcast live in the Laboratory’s main conference rooms, via webcast and satellite TV (Eurovision). The LHC-fest will follow in the evening in the same place. Its purpose is to, "thank all the actors – physicists, engineers, technicians and administrators – who took part in the design, construction, implementation and commissioning of this great enterprise." For obvious logistical reasons, it has been necessary to limit the number of invited guests to 3000, to include all members of personnel (blue badge holders), representatives of the LHC experiments and other users, as well as representatives from retired staff and industrial support.

  12. Introduction to the HL-LHC Project

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Brüning, O.

    The Large Hadron Collider (LHC) is one of largest scientific instruments ever built. It has been exploring the new energy frontier since 2010, gathering a global user community of 7,000 scientists. To extend its discovery potential, the LHC will need a major upgrade in the 2020s to increase its luminosity (rate of collisions) by a factor of five beyond its design value and the integrated luminosity by a factor of ten. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about ten years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 11-12 tesla superconducting magnets, very compact superconducting cavities for beam rotation with ultra-precise phase control, new technology for beam collimation and 300-meter-long high-power superconducting links with negligible energy dissipation. HL-LHC federates efforts and R&D of a large community in Europe, in the US and in Japan, which will facilitate the implementation of the construction phase as a global project.

  13. Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC

    NASA Astrophysics Data System (ADS)

    Pattalwar, Shrikant; Jones, Thomas; Templeton, Niklas; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom

    2014-01-01

    A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the "Hi-Lumi LHC", a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.

  14. A HWIL test facility of infrared imaging laser radar using direct signal injection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  15. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N

    2013-02-01

    Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.

  16. Le LHC, un tunnel cosmique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binetruy, Pierre

    2009-09-17

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERNmore » a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76« less

  17. First Attempts at using Active Halo Control at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Joschka; Bruce, Roderik; Garcia Morales, Hector

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At anmore » energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.« less

  18. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  19. What are the factors associated with HIV testing among male injecting and non-injecting drug users in Lashio, Myanmar: a cross-sectional study.

    PubMed

    Saw, Yu Mon; Yasuoka, Junko; Saw, Thu Nandar; Poudel, Krishna C; Tun, Soe; Jimba, Masamine

    2013-06-20

    HIV testing is an effective intervention for reducing HIV risk and providing information on HIV status. However, uptake of HIV testing is a major challenge within the drug-using population due to the stigma and discrimination associated with their illegal drug use behaviours. This study thus aimed to identify factors associated with HIV testing among injecting drug users (IDUs) and non-injecting drug users (NIDUs) in Lashio, Myanmar. A cross-sectional study was conducted from January 2010 to February 2010. This study was carried out in Lashio city, Northern Shan State, Myanmar. In total, 158 male IDUs and 210 male NIDUs were recruited using a respondent-driven sampling method. Proportion of both drug users who were ever tested for HIV and factors associated with HIV testing. Approximately 77% of IDUs and 46% of NIDUs were ever tested for HIV. The multivariate analysis revealed that having ever received drug treatment was positively associated with HIV testing among both IDUs (adjusted OR (AOR) 13.07; 95% CI 3.38 to 50.53) and NIDUs (AOR 3.58; 95% CI 1.38 to 9.24). IDUs who were married (AOR 0.24; 95% CI 0.06 to 0.94) and who injected at least twice daily (AOR 0.30; 95% CI 0.09 to 0.97) were less likely to undergo HIV testing. Among NIDUs, those who belonged to Shan (AOR 0.30; 95% CI 0.11 to 0.84) or Kachin (AOR 0.30; 95% CI 0.10 to 0.87) ethnicities were less likely to test for HIV. IDUs and NIDUs who have received drug treatment are more likely to test for HIV. Integrating HIV testing into drug treatment programmes alongside general expansion of HIV testing services may be effective in increasing HIV testing uptake among both IDUs and NIDUs in the Northern Shan State of Myanmar.

  20. Performance of the first short model 150 mm aperture Nb$$_3$$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less

  1. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  2. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  3. The operation of the LHC accelerator complex (2/2)

    ScienceCinema

    Redaelli, Stefano

    2018-05-23

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages

  4. The operation of the LHC accelerator complex (1/2)

    ScienceCinema

    Redaelli, Stefano

    2018-05-23

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages.

  5. Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Ferracin, P.

    2010-04-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.

  6. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  7. Volunteer Clouds and Citizen Cyberscience for LHC Physics

    NASA Astrophysics Data System (ADS)

    Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit

    2011-12-01

    Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.

  8. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    PubMed Central

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  9. Physics opportunities with a fixed target experiment at the LHC (AFTER@LHC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjidakis, Cynthia; Anselmino, Mauro; Arnaldi, R.

    By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton and lead LHC beams allow one to perform the most energetic fixed-target experiments (AFTER@LHC) and to study p+p and p+A collisions at \\sqrt{s_NN}=115 GeV and Pb+p and Pb+A collisions at \\sqrt{s_NN}=72 GeV. Such studies would address open questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper, we discuss the physics opportunities of a fixed-target experiment at the LHC and we report on themore » possible technical implementations of a high-luminosity experiment. We finally present feasibility studies for Drell-Yan, open heavy-flavour and quarkonium production, with an emphasis on high-x and spin physics.« less

  10. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2017-12-09

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  11. SUSY, the Third Generation and the LHC

    NASA Astrophysics Data System (ADS)

    Brust, Christopher; Katz, Andrey; Lawrence, Scott; Sundrum, Raman

    2012-03-01

    We develop a bottom-up approach to studying SUSY with light stops and sbottoms, but with other squarks and sleptons heavy and beyond reach of the LHC. We discuss the range of squark, gaugino and Higgsino masses for which the electroweak scale is radiatively stable over the "little hierarchy" below 10TeV. We review and expand on indirect constraints on this scenario, in particular from flavor and CP tests. We emphasize that in this context, R-parity violation is very well motivated. The phenomenological differences between Majorana and Dirac gauginos are also discussed. Finally, we focus on the light subsystem of stops, sbottom and neutralino with R-parity, in order to probe the current collider bounds. We find that 1/fb LHC bounds are mild and large parts of the motivated parameter space remain open, while the 10/fb data can be much more decisive.

  12. Abort Gap Cleaning for LHC Run 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to themore » applied cleaning algorithms.« less

  13. Dark gauge bosons: LHC signatures of non-abelian kinetic mixing

    DOE PAGES

    Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...

    2017-04-20

    We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less

  14. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb 3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  15. The HL-LHC Accelerator Physics Challenges

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Zimmermann, F.

    The conceptual baseline of the HL-LHC project is reviewed, putting into perspective the main beam physics challenges of this new collider in comparison with the existing LHC, and the series of solutions and possible mitigation measures presently envisaged.

  16. Kepler Planet Detection Metrics: Per-Target Flux-Level Transit Injection Tests of TPS for Data Release 25

    NASA Technical Reports Server (NTRS)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    Quantifying the ability of a transiting planet survey to recover transit signals has commonly been accomplished through Monte-Carlo injection of transit signals into the observed data and subsequent running of the signal search algorithm (Gilliland et al., 2000; Weldrake et al., 2005; Burke et al., 2006). In order to characterize the performance of the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017) on a sample of over 200,000 stars, two complementary injection and recovery tests are utilized:1. Injection of a single transit signal per target into the image or pixel-level data, hereafter referred to as pixel-level transit injection (PLTI), with subsequent processing through the Photometric Analysis (PA), Presearch Data Conditioning (PDC), Transiting Planet Search (TPS), and Data Validation (DV) modules of the Kepler pipeline. The PLTI quantification of the Kepler pipeline's completeness has been described previously by Christiansen et al. (2015, 2016); the completeness of the final SOC 9.3 Kepler pipeline acting on the Data Release 25 (DR25) light curves is described by Christiansen (2017).2. Injection of multiple transit signals per target into the normalized flux time series data with a subsequent transit search using a stream-lined version of the Transiting Planet Search (TPS) module. This test, hereafter referred to as flux-level transit injection (FLTI), is the subject of this document. By running a heavily modified version of TPS, FLTI is able to perform many injections on selected targets and determine in some detail which injected signals are recoverable. Significant numerical efficiency gains are enabled by precomputing the data conditioning steps at the onset of TPS and limiting the search parameter space (i.e., orbital period, transit duration, and ephemeris zero-point) to a small region around each injected transit signal.The PLTI test has the advantage that it follows transit signals through all processing steps of the Kepler pipeline, and

  17. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  18. Anatomy of the inert two-Higgs-doublet model in the light of the LHC and non-LHC dark matter searches

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Cacciapaglia, Giacomo; Ivanov, Igor P.; Rojas-Abatte, Felipe; Thomas, Marc

    2018-02-01

    The inert two-Higgs-doublet model (i2HDM) is a theoretically well-motivated example of a minimal consistent dark matter (DM) model which provides monojet, mono-Z , mono-Higgs, and vector-boson-fusion +ETmiss signatures at the LHC, complemented by signals in direct and indirect DM search experiments. In this paper we have performed a detailed analysis of the constraints in the full five-dimensional parameter space of the i2HDM, coming from perturbativity, unitarity, electroweak precision data, Higgs data from the LHC, DM relic density, direct/indirect DM detection, and LHC monojet analysis, as well as implications of experimental LHC studies on disappearing charged tracks relevant to a high DM mass region. We demonstrate the complementarity of the above constraints and present projections for future LHC data and direct DM detection experiments to probe further i2HDM parameter space. The model is implemented into the CalcHEP and micrOMEGAs packages, which are publicly available at the HEPMDB database, and it is ready for a further exploration in the context of the LHC, relic density, and DM direct detection.

  19. A longitudinal study of hepatitis C virus testing and infection status notification on behaviour change in people who inject drugs.

    PubMed

    Spelman, T; Morris, M D; Zang, G; Rice, T; Page, K; Maher, L; Lloyd, A; Grebely, J; Dore, G J; Kim, A Y; Shoukry, N H; Hellard, M; Bruneau, J

    2015-08-01

    Hepatitis C virus (HCV) testing and counselling have the potential to impact individual behaviour and transmission dynamics at the population level. Evidence of the impact of an HCV-positive status notification on injection risk reduction is limited. The objective of our study was to (1) assess drug and alcohol use and injection risk behaviours following notification; (2) to compare behaviour change in people who inject drugs (PWID) who received a positive test result and those who remained negative; and (3) to assess the effect of age on risk behaviour. Data from the International Collaboration of Incident HIV and HCV Infection in Injecting Cohorts (InC3 Study) were analysed. Participants who were initially HCV seronegative were followed prospectively with periodic HCV blood testing and post-test disclosure and interview-administered questionnaires assessing drug use and injection behaviours. Multivariable generalised estimating equations were used to assess behavioural changes over time. Notification of an HCV-positive test was independently associated with a small increase in alcohol use relative to notification of a negative test. No significant differences in postnotification injection drug use, receptive sharing of ancillary injecting equipment and syringe borrowing postnotification were observed between diagnosis groups. Younger PWID receiving a positive HCV test notification demonstrated a significant increase in subsequent alcohol use compared with younger HCV negative. The proportion of PWID reporting alcohol use increased among those receiving an HCV-positive notification, increased the frequency of alcohol use postnotification, while no reduction in injection drug use behaviours was observed between notification groups. These findings underscore the need to develop novel communication strategies during post-test notification to improve their impact on subsequent alcohol use and risk behaviours. Published by the BMJ Publishing Group Limited. For

  20. Multicore job scheduling in the Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Forti, A.; Pérez-Calero Yzquierdo, A.; Hartmann, T.; Alef, M.; Lahiff, A.; Templon, J.; Dal Pra, S.; Gila, M.; Skipsey, S.; Acosta-Silva, C.; Filipcic, A.; Walker, R.; Walker, C. J.; Traynor, D.; Gadrat, S.

    2015-12-01

    After the successful first run of the LHC, data taking is scheduled to restart in Summer 2015 with experimental conditions leading to increased data volumes and event complexity. In order to process the data generated in such scenario and exploit the multicore architectures of current CPUs, the LHC experiments have developed parallelized software for data reconstruction and simulation. However, a good fraction of their computing effort is still expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore Deployment Task Force has been created in order to coordinate the joint effort from experiments and WLCG sites. The main objective is to ensure the convergence of approaches from the different LHC Virtual Organizations (VOs) to make the best use of the shared resources in order to satisfy their new computing needs, minimizing any inefficiency originated from the scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage their resources. This paper describes the activities and progress of the Task Force related to the aforementioned topics, including experiences from key sites on how to best use different batch system technologies, the evolution of workload submission tools by the experiments and the knowledge gained from scale tests of the different proposed job submission strategies.

  1. From the CMS Computing Experience in the WLCG STEP'09 Challenge to the First Data Taking of the LHC Era

    NASA Astrophysics Data System (ADS)

    Bonacorsi, D.; Gutsche, O.

    The Worldwide LHC Computing Grid (WLCG) project decided in March 2009 to perform scale tests of parts of its overall Grid infrastructure before the start of the LHC data taking. The "Scale Test for the Experiment Program" (STEP'09) was performed mainly in June 2009 -with more selected tests in September- October 2009 -and emphasized the simultaneous test of the computing systems of all 4 LHC experiments. CMS tested its Tier-0 tape writing and processing capabilities. The Tier-1 tape systems were stress tested using the complete range of Tier-1 work-flows: transfer from Tier-0 and custody of data on tape, processing and subsequent archival, redistribution of datasets amongst all Tier-1 sites as well as burst transfers of datasets to Tier-2 sites. The Tier-2 analysis capacity was tested using bulk analysis job submissions to backfill normal user activity. In this talk, we will report on the different performed tests and present their post-mortem analysis.

  2. Considerations on Energy Frontier Colliders after LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here wemore » overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].« less

  3. Characterizing Mechanical and Flow Properties using Injection Falloff Tests, March 28, 2011

    EPA Pesticide Factsheets

    This presentation asserts that Injection Fall-off Testing is an efficient way to derive in-situ information on most rock types, after-closure analysis can derive rock transmissibility and pore fluid pressure, and this is used to assist in the HF process.

  4. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2017-12-09

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  5. Current Lead Design for the Accelerator Project for Upgrade of LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchangemore » section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.« less

  6. Production and decays of W{sub R} bosons at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Mariana; Hayreter, Alper; Turan, Ismail

    2011-02-01

    With the advent of the LHC, it is important to devise clear tests for physics beyond the standard model. Such physics could manifest itself in the form of new charged bosons, whose presence is most naturally occurring in left-right symmetric models. We analyze the single W{sub R} boson production in an asymmetric left-right model, where the left and right quark mixing matrices are not constrained to be equal. We investigate the cross sections as well as branching ratios of W{sub R} bosons at the LHC, including constraints from low energy phenomenology. We then look for most likely signals in pp{yields}W{submore » R}t{yields}t(dijet) production. Including the background, we find that the LHC could show significant signals for the new charged bosons. We compare our results throughout with the manifest left-right symmetric model and comment on similarities and differences.« less

  7. Supersymmetry Breaking, Gauge Mediation, and the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, David

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB atmore » the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.« less

  8. Run II of the LHC: The Accelerator Science

    NASA Astrophysics Data System (ADS)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  9. Will there be energy frontier colliders after LHC?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC collidersmore » from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.« less

  10. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  11. L'Aventure du LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  12. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    NASA Astrophysics Data System (ADS)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  13. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  14. Overview of LHC physics results at ICHEP

    ScienceCinema

    Mangano, Michelangelo

    2018-06-20

    This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar). For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  15. The CMS Tier0 goes cloud and grid for LHC Run 2

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less

  16. Remanent dose rates around the collimators of the LHC beam cleaning insertions.

    PubMed

    Brugger, M; Roesler, S

    2005-01-01

    The LHC will require an extremely powerful and unprecedented collimation system. As approximately 30% of the LHC beam is lost in the cleaning insertions, these will become some of the most radioactive locations around the entire LHC ring. Thus, remanent dose rates to be expected during later repair or maintenance interventions must be considered in the design phase itself. As a consequence, the beam cleaning insertions form a unique test bed for a recently developed approach to calculate remanent dose rates. A set of simulations, different in complexity, is used in order to evaluate methods for the estimation of remanent dose rates. The scope, as well as the restrictions, of the omega-factor method are shown and compared with the explicit simulation approach. The latter is then used to calculate remanent dose rates in the beam cleaning insertions. Furthermore, a detailed example for maintenance dose planning is given.

  17. The CMS TierO goes Cloud and Grid for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Hufnagel, Dirk

    2015-12-01

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threaded framework to deal with the increased event complexity and to ensure efficient use of the resources. This contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.

  18. LHC: The Emptiest Space in the Solar System

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2011-01-01

    Proton beams have been colliding at 7 TeV in the Large Hadron Collider (LHC) since 30 March 2010, meaning that the LHC research programme is underway. Particle physicists around the world are looking forward to using the data from these collisions, as the LHC is running at an energy three and a half times higher than previously achieved at any…

  19. Overview of LHC physics results at ICHEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  20. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  1. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  2. Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations

    NASA Astrophysics Data System (ADS)

    Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.

    2017-12-01

    The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.

  3. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less

  4. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  5. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    NASA Astrophysics Data System (ADS)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  6. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  7. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimatemore » plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.« less

  8. Multi-Boson Interactions at the Run 1 LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel R.; Meade, Patrick; Pleier, Marc-Andre

    2016-10-24

    This review article covers results on the production of all possible electroweak boson pairs and 2-to-1 vector boson fusion (VBF) at the CERN Large Hadron Collider (LHC) in proton-proton collisions at a center-of-mass energy of 7 TeV and 8 TeV. The data was taken between 2010 and 2012. Limits on anomalous triple gauge couplings (aTGCs) then follow. In addition, data on electroweak triple gauge boson production and 2-to-2 vector boson scattering (VBS) yield limits on anomalous quartic gauge boson couplings (aQGCs). The LHC hosts two general purpose experiments, ATLAS and CMS, which both have reported limits on aTGCs and aQGCsmore » which are herein summarized. The interpretation of these limits in terms of an effective field theory (EFT) is reviewed, and recommendations are made for testing other types of new physics using multi-gauge boson production.« less

  9. Single-dose Intramuscular-injection Toxicology Test of Water-soluble Carthami-flos and Cervi cornu parvum Pharmacopuncture in a Rat Model.

    PubMed

    Park, Sunju; Sun, Seung-Ho

    2015-09-01

    The aim of the study is to investigate both the single-dose intramuscular injection toxicity and the approximate lethal dose of water-soluble Carthami-flos and Cervi cornu parvum pharmacopuncture (WCFC) in male and female Sprague-Dawley (SD) rats. The study was conducted at Biotoxtech Co. according to the Good Laboratory Practice (GLP) regulation and the toxicity test guidelines of the Ministry of Food and Drug Safety (MFDS) after approval of the Institutional Animal Care and Use Committee. Dosages for the control, high dose, middle dose and low dose groups were 0.5 mL/animal of saline and 0.5, 0.25 and 0.125 mL/animal of WCFC, respectively. WCFC was injected into the muscle of the left femoral region by using a disposable syringe (1 mL, 26 gauge). The general symptoms and mortality were observed 30 minutes, 1, 2, 4, and 6 hours after the first injection and then daily for 14 days after the injection. The body weights of the SD rats were measured on the day of the injection (before injection) and on the third, seventh, and fourteenth days after the injection. Serum biochemical and hematologic tests, necropsy examinations, and histopathologic examinations at the injection site were performed after the observation period. No deaths, abnormal clinical symptoms, or significant weight changes were observed in either male or female SD rats in the control or the test (0.125, 0.25, and 0.5 mL/animal) groups during the observation period. No significant differences in hematology and serum biochemistry and no macroscopic abnormalities at necropsy were found. No abnormal reactions at injection sites were noted on the topical tolerance tests. The results of this single-dose toxicity study show that WCFC is safe, its lethal doses in male and female SD rats being estimated to be higher than 0.5 mL/animal.

  10. Seesaw at Lhc Through Left-Right Symmetry

    NASA Astrophysics Data System (ADS)

    Senjanović, Goran

    I argue that LHC may shed light on the nature of neutrino mass through the probe of the seesaw mechanism. The smoking gun signature is lepton number violation through the production of same sign lepton pairs, a collider analogy of the neutrinoless double beta decay. I discuss this in the context of left-right symmetric theories, which led originally to neutrino mass and the seesaw mechanism. A WR gauge boson with a mass in a few TeV region could easily dominate neutrinoless double beta decay, and its discovery at LHC would have spectacular signatures of parity restoration and lepton number violation. Moreover, LHC can measure the masses of the right-handed neutrinos and the right-handed leptonic mixing matrix, which could in turn be used to predict the rates for neutrinoless double decay and lepton flavor violating violating processes. The LR scale at the LHC energies offers great hope of observing these low energy processes in the present and upcoming experiments.

  11. Stepping outside the neighborhood of T at LHC

    NASA Astrophysics Data System (ADS)

    Wiedemann, Urs Achim

    2009-11-01

    “ As you are well aware, many in the RHIC community are interested in the LHC heavy-ion program, but have several questions: What can we learn at the LHC that is qualitatively new? Are collisions at LHC similar to RHIC ones, just with a somewhat hotter/denser initial state? If not, why not? These questions are asked in good faith, and this talk is an opportunity to answer them directly to much of the RHIC community.” With these words, the organizers of Quark Matter 2009 in Knoxville invited me to discuss the physics opportunities for heavy ion collisions at the LHC without recalling the standard arguments, which are mainly based on the extended kinematic reach of the machine. In response, I emphasize here that lattice QCD indicates characteristic qualitative differences between thermal physics in the neighborhood of the critical temperature (T400-500MeV), for which the relevant energy densities will be solely attainable at the LHC.

  12. Relevant climate response tests for stratospheric aerosol injection: A combined ethical and scientific analysis

    NASA Astrophysics Data System (ADS)

    Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.

    2017-06-01

    In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.

  13. Production of stoponium at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Idilbi, Ahmad; Mehen, Thomas; Yoon, Yeo Woong

    2014-04-01

    Although the Large Hadron Collider (LHC) has not observed supersymmetric (SUSY) partners of the Standard Model particles, their existence is not ruled out yet. One recently explored scenario in which there are light SUSY partners that have evaded current bounds from the LHC is that of a light long-lived stop quark. In this paper we consider light stop pair production at the LHC when the stop mass is between 200 and 400 GeV. If the stops are long-lived they can form a bound state, stoponium, which then undergoes two-body decays to Standard Model particles. By considering the near-threshold production of such a pair through the gluon-gluon fusion process and taking into account the strong Coulombic interactions responsible for the formation of this bound state, we obtain factorization theorems for the stop pair inclusive and differential production cross sections. We also perform a resummation of large threshold logarithms up to next-to-next-to-leading logarithmic accuracy using well-established renormalization group equations in an effective field theory methodology. These results are used to calculate the invariant mass distributions of two photons or two Z bosons coming from the decay of the stoponium at the LHC. For our choices of SUSY model parameters, the stoponium is not detectable above Standard Model backgrounds in γγ or ZZ at 8 TeV, but will be visible with 400 fb-1 of accumulated data if its mass is below 500 GeV when the LHC runs at 14 TeV.

  14. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.

    2015-09-16

    The accurate determination of Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided somore » far, and review the prospects for further constraining PDFs with data from the recently started Run II. As a result, this document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.« less

  15. The Large Hadron Collider (LHC): The Energy Frontier

    NASA Astrophysics Data System (ADS)

    Brianti, Giorgio; Jenni, Peter

    The following sections are included: * Introduction * Superconducting Magnets: Powerful, Precise, Plentiful * LHC Cryogenics: Quantum Fluids at Work * Current Leads: High Temperature Superconductors to the Fore * A Pumping Vacuum Chamber: Ultimate Simplicity * Vertex Detectors at LHC: In Search of Beauty * Large Silicon Trackers: Fast, Precise, Efficient * Two Approaches to High Resolution Electromagnetic Calorimetry * Multigap Resistive Plate Chamber: Chronometry of Particles * The LHCb RICH: The Lord of the Cherenkov Rings * Signal Processing: Taming the LHC Data Avalanche * Giant Magnets for Giant Detectors

  16. LHC magnet quench protection system

    NASA Astrophysics Data System (ADS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  17. [Application of injection test in confirming the ideal position of esophageal balloon catheter].

    PubMed

    Chen, Han; Xu, Ming; Yang, Yanlin; He, Xuan; Zhou, Jianxin

    2017-09-01

    To evaluate the safety and feasibility of injection test which is used to locate esophageal balloon catheter. A prospective study was conducted. The patients undergoing invasive mechanical ventilation (MV) admitted to general intensive care unit (ICU) of Beijing Tiantan Hospital Affiliated to Capital Medical University from May 2015 and March 2017 were enrolled. The commercially available esophageal balloon catheter was modified to perform injection test. The catheter was withdrawn step by step and the injection test was repeated until the presence disturbance wave presented, which indicated that the balloon had just entered the esophagus. The position where disturbance wave appears was named 0 cm. End-expiratory occlusions were performed at the positions of +15, +10, +5, 0, -5, -10 and -15 cm, respectively, and the changes of esophageal pressure (Pes) and airway pressures (Paw) were measured in the spontaneous breathing and passive ventilation, and the ratio between the changes (ΔPes/ΔPaw) was calculated. A total of 20 patients were enrolled, of which 15 patients finished both the spontaneous and the passive ventilation parts, and 2 patients finished only the spontaneous part and 3 patients finished only passive part. (1) Disturbance waves could be induced by injection test in all patients. The average depth of disturbance wave in spontaneous breathing was deeper than that in passive ventilation (cm: 42.4±3.8 vs. 41.8±3.3), but there was no significant difference between the two ventilation settings (P = 0.132). No adverse events occurred during the study period. (2) Pes increased with the stepwise withdraw of esophageal catheter, reached the maximal value at +5 cm, and then decreased when the catheter was further withdrawn, no matter in the spontaneous or the passive ventilation. In spontaneous breathing, the ΔPes/ΔPaw was within the ideal range (0.8-1.2) at the positions of 0, -5 and -10 cm. The ΔPes/ΔPaw was closest to unity at the positions of 0 cm (0

  18. Readout systems for inner detectors at the LHC and SLHC

    NASA Astrophysics Data System (ADS)

    Issever, Cigdem

    2006-12-01

    A general overview of the optoelectronic readout and control systems of the ATLAS and CMS inner detectors is given. The talk will also cover challenges and issues of future optoelectronic readout systems at the upgraded LHC (SLHC). First results of radiation tests of VCSELs and optical fibres which were irradiated up to SLHC fluences will be presented.

  19. L'Aventure du LHC

    ScienceCinema

    None

    2018-05-16

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  20. Radiation Resistance and Life Time Estimates at Cryogenic Temperatures of Series Produced By-Pass Diodes for the LHC Magnet Protection

    NASA Astrophysics Data System (ADS)

    Denz, R.; Gharib, A.; Hagedorn, D.

    2004-06-01

    For the protection of the LHC superconducting magnets about 2100 specially developed by-pass diodes have been manufactured in industry and more than one thousand of these diodes have been mounted into stacks and tested in liquid helium. By-pass diode samples, taken from the series production, have been submitted to irradiation tests at cryogenic temperatures together with some prototype diodes up to an accumulated dose of about 2 kGy and neutron fluences up to about 3.0 1013 n cm-2 with and without intermediate warm up to 300 K. The device characteristics of the diodes under forward bias and reverse bias have been measured at 77 K and ambient versus dose and the results are presented. Using a thermo-electrical model and new estimates for the expected dose in the LHC, the expected lifetime of the by-pass diodes has been estimated for various positions in the LHC arcs. It turns out that for all of the by-pass diodes across the arc elements the radiation resistance is largely sufficient. In the dispersion suppresser regions of the LHC, on a few diodes annual annealing during the shut down of the LHC must be applied or those diodes may need to be replaced after some time.

  1. Microbial Stimulation and Succession following a Test Well Injection Simulating CO₂ Leakage into a Shallow Newark Basin Aquifer

    PubMed Central

    O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David

    2015-01-01

    In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface

  2. Turning the LHC ring into a new physics search machine

    NASA Astrophysics Data System (ADS)

    Orava, Risto

    2017-03-01

    The LHC Collider Ring is proposed to be turned into an ultimate automatic search engine for new physics in four consecutive phases: (1) Searches for heavy particles produced in Central Exclusive Process (CEP): pp → p + X + p based on the existing Beam Loss Monitoring (BLM) system of the LHC; (2) Feasibility study of using the LHC Ring as a gravitation wave antenna; (3) Extensions to the current BLM system to facilitate precise registration of the selected CEP proton exit points from the LHC beam vacuum chamber; (4) Integration of the BLM based event tagging system together with the trigger/data acquisition systems of the LHC experiments to facilitate an on-line automatic search machine for the physics of tomorrow.

  3. Experimental validation of the Achromatic Telescopic Squeezing (ATS) scheme at the LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, S.; Bruce, R.; Carlier, F.; Coello De Portugal, J.; Garcia-Tabares, A.; Maclean, E.; Malina, L.; Mereghetti, A.; Mirarchi, D.; Persson, T.; Pojer, M.; Ponce, L.; Redaelli, S.; Salvachua, B.; Skowronski, P.; Solfaroli, M.; Tomas, R.; Valuch, D.; Wegscheider, A.; Wenninger, J.

    2017-07-01

    The Achromatic Telescopic Squeezing scheme offers new techniques to deliver unprecedentedly small beam spot size at the interaction points of the ATLAS and CMS experiments of the LHC, while perfectly controlling the chromatic properties of the corresponding optics (linear and non-linear chromaticities, off-momentum beta-beating, spurious dispersion induced by the crossing bumps). The first series of beam tests with ATS optics were achieved during the LHC Run I (2011/2012) for a first validation of the basics of the scheme at small intensity. In 2016, a new generation of more performing ATS optics was developed and more extensively tested in the machine, still with probe beams for optics measurement and correction at β* = 10 cm, but also with a few nominal bunches to establish first collisions at nominal β* (40 cm) and beyond (33 cm), and to analysis the robustness of these optics in terms of collimation and machine protection. The paper will highlight the most relevant and conclusive results which were obtained during this second series of ATS tests.

  4. Mechanical Design of the LHC Standard Half-Cell

    NASA Astrophysics Data System (ADS)

    Poncet, A.; Brunet, J. C.; Cruikshank, P.; Genet, M.; Parma, V.; Rohmig, P.; Saban, R.; Tavian, L.; Veness, R.; Vlogaert, J.; Williams, L. R.

    1997-05-01

    The LHC Conceptual Design Report issued on 20th October 1995 (CERN/AC/95-05 (LHC) - nicknamed "Yellow Book") introduced significant changes to some fundamental features of the LHC standard half-cell, composed of one quadrupole, 3 dipoles and a set of corrector magnets. A separate cryogenic distribution line was introduced, which was previously inside the main cryostat. The dipole length has been increased from 10 to 15 m and independent powering of the focusing and defocusing quadrupole magnets was chosen. Individual quench protection diodes were introduced in magnets interconnects and many auxiliary bus bars were added to feed in series the various families of correcting superconducting magnets. The various highly intricate basic systems such as: cryostats and cryogenics feeders, superconducting magnets and their electrical feeding and protection, vacuum beam screen and its cooling, support and alignment devices have been redesigned, taking into account the very tight space available. These space constraints are given by the necessity to have maximum integral bending field strength for maximum LHC energy, and the existing LHC tunnel. Finally, cryogenic and vacuum sectorisation have been introduced to reduce downtimes and facilitate commissioning.

  5. LHC forward physics

    DOE PAGES

    Akiba, K.; Akbiyik, M.; Albrow, M.; ...

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  6. LHC forward physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cartiglia, N.; Royon, C.

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  7. Antigen injection (image)

    MedlinePlus

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  8. LHC signals of radiatively-induced neutrino masses and implications for the Zee-Babu model

    NASA Astrophysics Data System (ADS)

    Alcaide, Julien; Chala, Mikael; Santamaria, Arcadi

    2018-04-01

    Contrary to the see-saw models, extended Higgs sectors leading to radiatively-induced neutrino masses do require the extra particles to be at the TeV scale. However, these new states have often exotic decays, to which experimental LHC searches performed so far, focused on scalars decaying into pairs of same-sign leptons, are not sensitive. In this paper we show that their experimental signatures can start to be tested with current LHC data if dedicated multi-region analyses correlating different observables are used. We also provide high-accuracy estimations of the complicated Standard Model backgrounds involved. For the case of the Zee-Babu model, we show that regions not yet constrained by neutrino data and low-energy experiments can be already probed, while most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC.

  9. Strong tW scattering at the LHC

    DOE PAGES

    Dror, Jeff Asaf; Farina, Marco; Salvioni, Ennio; ...

    2016-01-13

    Deviations of the top electroweak couplings from their Standard Model values imply that certain amplitudes for the scattering of third generation fermions and longitudinally polarized vector bosons or Higgses diverge quadratically with momenta. This high-energy growth is a genuine signal of models where the top quark is strongly coupled to the sector responsible for electroweak symmetry breaking. We propose to profit from the high energies accessible at the LHC to enhance the sensitivity to non-standard top-Z couplings, which are currently very weakly constrained. To demonstrate the effectiveness of the approach, we perform a detailed analysis of tW → tW scattering, which can be probed at the LHC via pp→more » $$t\\bar{t}$$Wj. By recasting a CMS analysis at 8 TeV, we derive the strongest direct bounds to date on the Ztt couplings. We also design a dedicated search at 13 TeV that exploits the distinctive features of the $$t\\bar{t}$$Wj signal. Lastly, we present other scattering processes in the same class that could provide further tests of the top-Higgs sector.« less

  10. 125 GeV Higgs signal at the LHC in the CP-violating MSSM

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amit; Das, Biswaranjan; Diaz-Cruz, J. Lorenzo; Ghosh, Dilip Kumar; Moretti, Stefano; Poulose, P.

    2014-09-01

    The ATLAS and CMS Collaborations have observed independently at the LHC a new Higgs-like particle with a mass Mh˜125 GeV and properties similar to that predicted by the Standard Model (SM). Although the measurements indicate that this Higgs-like boson is compatible with the SM hypothesis, due to large uncertainties in some of the Higgs detection channels, one still has the possibility of testing this object as being a candidate for some beyond the SM physics scenarios, for example, the minimal supersymmetric Standard Model (MSSM), in the CP-conserving version (CPC-MSSM). In this paper, we evaluate the modifications of these CPC-MSSM results when CP-violating (CPV) phases are turned on explicitly, leading to the CP-violating MSSM (CPV-MSSM). We investigate the effect of the CPV phases in (some of) the soft supersymmetry (SUSY) terms on both the mass of the lightest Higgs boson h1, and the rates for the processes gg→h1→γγ, gg→h1→ZZ *→4l/, gg→h1→WW*→lνlν, pp→Vh1→Vbb¯ and pp→Vh1→Vτ+τ-, (V≡W±,Z) at the LHC, considering the impact of the flavor constraints as well as the constraints coming from the electric dipole moment measurements. We find that it is possible to have a Higgs mass of about 125 GeV with relatively small tanβ, large At and a light top squark, which is consistent with the current SUSY particle searches at the LHC. We obtain that the imaginary part of the top and bottom Yukawa couplings can take very small but nonzero values even after satisfying the recent updates from both the ATLAS and CMS Collaborations within 1-2σ uncertainties which might be an interesting signature to look for at the future run of the LHC. Our study shows that the CPV-MSSM provides an equally possible solution (like its CP-conserving counterpart) to the recent LHC Higgs data, in fact offering very little in the way of distinction between these two SUSY models (CPC-MSSM and CPV-MSSM) at the 7 and 8 TeV runs of the LHC. Improvement in different

  11. R-axion detection at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Hock-Seng; /UC, Berkeley /LBL, Berkeley; Ibe, Masahiro

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  12. HIV Testing in Non-Injection Drug Users: Prevalence and Associated Factors.

    PubMed

    Alves Guimarães, Rafael; Lucchese, Roselma; Lara Fernandes, Inaina; Vera, Ivânia; Goulart Rodovalho, Aurélio; Alves Guimarães, Vanessa; Cristina Silva, Graciele; Lopes de Felipe, Rodrigo; Alexandre de Castro, Paulo; Martins Ferreira, Priscilla

    2017-05-24

    The objective of this study was to estimate the prevalence of and identify factors associated with lifetime testing for the human immunodeficiency virus (HIV) in non-injection drug users (NIDU). A cross-sectional study was conducted with 323 individuals in clinics for chemical dependency in the state of Goiás in the Central-West region of Brazil. Logistic regression analysis was used to identify factors associated with lifetime HIV testing. Testing for HIV was associated with age, female gender, crack use, history of sexually transmitted infections, acquaintance with people living with HIV/AIDS and/or who had died from AIDS, and history of having received some instruction on HIV/AIDS prevention methods. It was found that only 26.6% reported having access to the HIV rapid test. We concluded determinants for HIV testing must be taken into account when planning prevention and programming strategies. These include the widening of testing coverage among NIDU, educational health actions, establishment of links between sexually transmitted infection prevention services and addiction treatment services, and the use of rapid tests to help people who are in contact with the virus learn about their HIV status, enter treatment, and improve their quality of life.

  13. Processing LHC data in the UK

    PubMed Central

    Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.

    2013-01-01

    The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163

  14. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This

  15. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  16. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  17. Accidental Beam Losses and Protection in the LHC

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  18. The ATLAS tile calorimeter performance at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calkins, R.

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. Due to the very good muon signal to noise ratio it assists the spectrometer in the identification and reconstruction of muons. TileCal is built of steel and scintillating tiles coupled to optical fibers and read out by photomultipliers. The calorimeter is equipped with systems that allow to monitor and to calibrate each stage of the read out system exploiting different signal sources: laser light, charge injection andmore » a radioactive source. The performance of the calorimeter has been measured and monitored using calibration data, random triggered data, cosmic muons and more importantly LHC collision events. The results presented here assess the absolute energy scale calibration precision, the energy and timing uniformity and the synchronization precision. The ensemble of the results demonstrates a very good understanding of the performance of the Tile Calorimeter that is proved to be well within the design expectations. (authors)« less

  19. LHC collider phenomenology of minimal universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  20. BPM CALIBRATION INDEPENDENT LHC OPTICS CORRECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CALAGA,R.; TOMAS, R.; GIOVANNOZZI, M.

    2007-06-25

    The tight mechanical aperture for the LHC imposes severe constraints on both the beta and dispersion beating. Robust techniques to compensate these errors are critical for operation of high intensity beams in the LHC. We present simulations using realistic errors from magnet measurements and alignment tolerances in the presence of BPM noise. Correction reveals that the use of BPM calibration and model independent observables are key ingredients to accomplish optics correction. Experiments at RHIC to verify the algorithms for optics correction are also presented.

  1. What we can expect from the first year of the LHC

    NASA Astrophysics Data System (ADS)

    Trigger, Isabel

    2009-05-01

    The ATLAS and CMS experiments at the CERN Large Hadron Collider have been built and commissioned over more than a decade. They are the most complex experiments ever assembled, but were completed in time for the first beams in the LHC in September 2008. The accident which interrupted the LHC startup did not interrupt the commissioning of the detectors with cosmic ray events, and the small amount of single-beam data collected in September was invaluable for timing in the detector. ATLAS and CMS will therefore be unusually well calibrated and understood by the time collision data become available in Fall 2009. The first part of the talk will discuss the expected performance of the detectors (with some bias towards ATLAS). The rest of the talk will discuss physics analyses which should be possible with the first year's running at the LHC. Roughly 100-200 pb-1 at a 10 TeV centre-of-mass energy are needed to match the Tevatron's Standard Model Higgs sensitivity around 160 GeV - if all goes according to plan, the LHC may collect this by Fall 2010. About 100 pb-1 at 10 TeV would match the full Tevatron sample of top quarks; roughly twice as much data would be needed if the run were mainly at 8 TeV. Sensitivity to W' or Z' resonances would match the Tevatron's with less than 100 pb-1 at 8 TeV. Prospects for discovering supersymmetry are even more promising: in some models as little as 10 pb-1 at 8 TeV could yield a 5 σ discovery. The next year is expected to be a critical period in defining the future of high energy physics, as the actual performance of the LHC and its detectors is tested with collision data. Discoveries of physics beyond the Standard Model could potentially be made by the end of the first year's running, especially if the start-up progresses smoothly.

  2. LHC accessible second Higgs boson in the left-right model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Rabindra N.; Zhang, Yongchao

    2014-03-01

    A second Higgs doublet arises naturally as a parity partner of the standard model (SM) Higgs, once the SM is extended to its left-right symmetric version (LRSM) to understand the origin of parity violation in weak interactions, as well as to accommodate small neutrino masses via the seesaw mechanism. The flavor-changing neutral Higgs (FCNH) effects in the minimal version of this model (LRSM), however, push the second Higgs mass to more than 15 TeV, making it inaccessible at the LHC. Furthermore, since the second Higgs mass is directly linked to the WR mass, discovery of a "low" mass WR (MWR≤5-6 TeV) at the LHC would require values for some Higgs self-couplings larger than 1. In this paper we present an extension of LRSM by adding a vectorlike SU(2)R quark doublet which weakens the FCNH constraints, allowing the second Higgs mass to be near or below the TeV range and a third neutral Higgs below 3 TeV for a WR mass below 5 TeV. It is then possible to search for these heavier Higgs bosons at the LHC without conflicting with FCNH constraints. A right-handed WR mass in the few TeV range is quite natural in this class of models without having to resort to large scalar coupling parameters. The CKM mixings are intimately linked to the vectorlike quark mixings with the known quarks, which is the main reason why the constraints on the second Higgs mass are relaxed. We present a detailed theoretical and phenomenological analysis of this extended left-right model and point out some tests as well as its potential for discovery of a second Higgs at the LHC. Two additional features of the model are a 5/3-charged quark and a fermionic top partner with masses in the TeV range.

  3. Distribution and regularity of injection from a multicylinder fuel-injection pump

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1936-01-01

    This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.

  4. Design of superconducting corrector magnets for LHC

    NASA Astrophysics Data System (ADS)

    Baynham, D. E.; Coombs, R. C.; Ijspeert, A.; Perin, R.

    1994-07-01

    The Large Hadron Collider (LHC) will require a range of superconducting corrector magnets. This paper presents the design of sextupole and decapole corrector coils which will be included as spool pieces adjacent to each main ring dipole. The paper gives detailed 3D field computations of the coil configurations to meet LHC beam dynamics requirements. Coil protection within a long string environment is addressed and mechanical design outlines are presented.

  5. On the LHC sensitivity for non-thermalised hidden sectors

    NASA Astrophysics Data System (ADS)

    Kahlhoefer, Felix

    2018-04-01

    We show under rather general assumptions that hidden sectors that never reach thermal equilibrium in the early Universe are also inaccessible for the LHC. In other words, any particle that can be produced at the LHC must either have been in thermal equilibrium with the Standard Model at some point or must be produced via the decays of another hidden sector particle that has been in thermal equilibrium. To reach this conclusion, we parametrise the cross section connecting the Standard Model to the hidden sector in a very general way and use methods from linear programming to calculate the largest possible number of LHC events compatible with the requirement of non-thermalisation. We find that even the HL-LHC cannot possibly produce more than a few events with energy above 10 GeV involving states from a non-thermalised hidden sector.

  6. Charged-particle multiplicity at LHC energies

    ScienceCinema

    Grosse-Oetringhaus, Jan Fiete

    2018-05-24

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  7. Preparations for Physics Studies with ATLAS During the First Years of the LHC

    ScienceCinema

    Fabiola Gianotti

    2018-04-18

    I will review the status of the ATLAS detector installation and commissioning, and discuss the preparation for physics with test-beam studies, detailed simulations, and runs with cosmics. I will then show examples of physics opportunities with the first LHC data.   

  8. TEST DESIGN FOR ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) OF ADD-ON NOX CONTROL UTILIZING OZONE INJECTION

    EPA Science Inventory

    The paper discusses the test design for environmental technology verification (ETV) of add-0n nitrogen oxides (NOx) control utilizing ozone injection. (NOTE: ETV is an EPA-established program to enhance domestic and international market acceptance of new or improved commercially...

  9. Particle production at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Gamal, E.; Shalaby, A. G.

    2015-07-01

    The production of pion, kaon and proton was measured in Pb-Pb collisions at nucleus-nucleus center-of-mass energy sNN = 2.76TeV by the ALICE experiment at Large Hadron Collider (LHC). The particle ratios of these species compared to the RHIC measurements are confronted to the hadron resonance gas (HRG) model and to simulations based on the event generators PYTHIA 6.4.21 and HIJING 1.36. It is found that the homogeneous particle-antiparticle ratios (same species) are fully reproducible by means of HRG and partly by PYTHIA 6.4.21 and HIJING 1.36. The mixed kaon-pion and proton-pion ratios measured at RHIC and LHC energies seem to be reproducible by the HRG model. On the other hand, the strange abundances are underestimated in both event generators. This might be originated to strangeness suppression in the event generators and/or possible strangeness enhancement in the experimental data. It is apparent that the values of kaon-pion ratios are not sensitive to the huge increase of sNN from 200 (RHIC) to 2760 GeV (LHC). We conclude that the ratios of produced particle at LHC seem not depending on the system size.

  10. Use of remifentanil to reduce propofol injection pain and the required propofol dose in upper digestive tract endoscopy diagnostic tests.

    PubMed

    Uliana, Gustavo Nadal; Tambara, Elizabeth Milla; Baretta, Giorgio Alfredo Pedroso

    2015-01-01

    The introduction of propofol (2,6-diisopropylphenol) as a sedative agent has transformed the area of sedation for endoscopic procedures. However, a major drawback of sedation with the use of propofol is its high incidence of injection pain. The most widely used technique in reducing propofol injection pain is through the association of other drugs. The aim of this study was to evaluate the effect of remifentanil-propofol combination on the incidence of propofol injection pain and its influence on the total dose of propofol required for sedation in upper digestive tract endoscopy (UDE) diagnostic tests. One hundred and five patients undergoing upper digestive tract endoscopy were evaluated and randomly divided into 3 groups of 35 patients each. The Control Group received propofol alone; Study-group 1 received remifentanil at a fixed dose of 0.2mg/kg combined with propofol; Study-group 2 received remifentanil at a fixed dose of 0.3mg/kg combined with propofol. The incidence of propofol injection pain and the total dose of propofol required for the test were evaluated. The sample was very similar regarding age, weight, height, sex, and physical status. Statistical analysis was performed according to the nature of the evaluated data. Student's t-test was used to compare the mean of age, weight, height (cm), and dose (mg/kg) variables between groups. The χ(2) test was used to compare sex, physical status, and propofol injection pain between groups. The significance level was α<0.05. There was significant statistical difference between the study groups and the control group regarding the parameters of propofol injection pain and total dose of propofol (mg/kg) used. However, there were no statistical differences between the two study groups for these parameters. We conclude that the use of remifentanil at doses of 0.2mg/kg and 0.3mg/kg was effective for reducing both the propofol injection pain and the total dose of propofol used. Copyright © 2015 Sociedade Brasileira

  11. hhjj production at the LHC

    DOE PAGES

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; ...

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab -1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  12. Transverse emittance growth due to rf noise in the high-luminosity LHC crab cavities

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2015-10-01

    The high-luminosity LHC (HiLumi LHC) upgrade with planned operation from 2025 onward has a goal of achieving a tenfold increase in the number of recorded collisions thanks to a doubling of the intensity per bunch (2.2e11 protons) and a reduction of β* to 15 cm. Such an increase would significantly expedite new discoveries and exploration. To avoid detrimental effects from long-range beam-beam interactions, the half crossing angle must be increased to 295 microrad. Without bunch crabbing, this large crossing angle and small transverse beam size would result in a luminosity reduction factor of 0.3 (Piwinski angle). Therefore, crab cavities are an important component of the LHC upgrade, and will contribute strongly to achieving an increase in the number of recorded collisions. The proposed crab cavities are electromagnetic devices with a resonance in the radio frequency (rf) region of the spectrum (400.789 MHz). They cause a kick perpendicular to the direction of motion (transverse kick) to restore an effective head-on collision between the particle beams, thereby restoring the geometric factor to 0.8 [K. Oide and K. Yokoya, Phys. Rev. A 40, 315 (1989).]. Noise injected through the rf/low level rf (llrf) system could cause significant transverse emittance growth and limit luminosity lifetime. In this work, a theoretical relationship between the phase and amplitude rf noise spectrum and the transverse emittance growth rate is derived, for a hadron machine assuming zero synchrotron radiation damping and broadband rf noise, excluding infinitely narrow spectral lines. This derivation is for a single beam. Both amplitude and phase noise are investigated. The potential improvement in the presence of the transverse damper is also investigated.

  13. On the search for the electric dipole moment of strange and charm baryons at LHC

    NASA Astrophysics Data System (ADS)

    Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.

    2017-03-01

    Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.

  14. LHC searches for dark sector showers

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong; Mishra-Sharma, Siddharth

    2017-11-01

    This paper proposes a new search program for dark sector parton showers at the Large Hadron Collider (LHC). These signatures arise in theories characterized by strong dynamics in a hidden sector, such as Hidden Valley models. A dark parton shower can be composed of both invisible dark matter particles as well as dark sector states that decay to Standard Model particles via a portal. The focus here is on the specific case of `semi-visible jets,' jet-like collider objects where the visible states in the shower are Standard Model hadrons. We present a Simplified Model-like parametrization for the LHC observables and propose targeted search strategies for regions of parameter space that are not covered by existing analyses. Following the `mono- X' literature, the portal is modeled using either an effective field theoretic contact operator approach or with one of two ultraviolet completions; sensitivity projections are provided for all three cases. We additionally highlight that the LHC has a unique advantage over direct detection experiments in the search for this class of dark matter theories.

  15. Digging deeper for new physics in the LHC data

    NASA Astrophysics Data System (ADS)

    Asadi, Pouya; Buckley, Matthew R.; DiFranzo, Anthony; Monteux, Angelo; Shih, David

    2017-11-01

    In this paper, we describe a novel, model-independent technique of "rectangular aggregations" for mining the LHC data for hints of new physics. A typical (CMS) search now has hundreds of signal regions, which can obscure potentially interesting anomalies. Applying our technique to the two CMS jets+MET SUSY searches, we identify a set of previously overlooked ˜ 3 σ excesses. Among these, four excesses survive tests of inter-and intra-search compatibility, and two are especially interesting: they are largely overlappingbetween the jets+MET searches and are characterized by low jet multiplicity, zero b-jets, and low MET and H T . We find that resonant color-triplet production decaying to a quark plus an invisible particle provides an excellent fit to these two excesses and all other data — including the ATLAS jets+MET search, which actually sees a correlated excess. We discuss the additional constraints coming from dijet resonance searches, monojet searches and pair production. Based on these results, we believe the wide-spread view that the LHC data contains no interesting excesses is greatly exaggerated.

  16. Statistics and Discoveries at the LHC (1/4)

    ScienceCinema

    Cowan, Glen

    2018-02-09

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  17. Statistics and Discoveries at the LHC (3/4)

    ScienceCinema

    Cowan, Glen

    2018-02-19

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  18. Statistics and Discoveries at the LHC (4/4)

    ScienceCinema

    Cowan, Glen

    2018-05-22

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  19. Statistics and Discoveries at the LHC (2/4)

    ScienceCinema

    Cowan, Glen

    2018-04-26

    The lectures will give an introduction to statistics as applied in particle physics and will provide all the necessary basics for data analysis at the LHC. Special emphasis will be placed on the the problems and questions that arise when searching for new phenomena, including p-values, discovery significance, limit setting procedures, treatment of small signals in the presence of large backgrounds. Specific issues that will be addressed include the advantages and drawbacks of different statistical test procedures (cut-based, likelihood-ratio, etc.), the look-elsewhere effect and treatment of systematic uncertainties.

  20. LHC Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  1. The surprisingly transparent sQGP at LHC

    NASA Astrophysics Data System (ADS)

    Horowitz, W. A.; Gyulassy, Miklos

    2011-12-01

    We present parameter-free predictions of the nuclear modification factor, RAAπ(p,s), of high p pions produced in Pb + Pb collisions at s=2.76 and 5.5 ATeV based on the WHDG/DGLV (radiative + elastic + geometric fluctuation) jet energy loss model. The initial quark gluon plasma (QGP) density at LHC is constrained from a rigorous statistical analysis of PHENIX/RHIC π quenching data at s=0.2 ATeV and the charged particle multiplicity at ALICE/LHC at 2.76 ATeV. Our perturbative QCD tomographic theory predicts significant differences between jet quenching at RHIC and LHC energies, which are qualitatively consistent with the p-dependence and normalization—within the large systematic uncertainty—of the first charged hadron nuclear modification factor, RAAch, data measured by ALICE. However, our constrained prediction of the central to peripheral pion modification, Rcpπ(p), for which large systematic uncertainties associated with unmeasured p + p reference data cancel, is found to be over-quenched relative to the charged hadron ALICE Rcpch data in the range 5LHC identified (h=π,K,p) hadron RAAh data (together with precise p + p, p + Pb, and Z boson and direct photon Pb + Pb control data) are needed to assess if the QGP produced at LHC is indeed less opaque to jets than predicted by constrained extrapolations from RHIC.

  2. Analysis of tests of subsurface injection, storage, and recovery of freshwater in the lower Floridan aquifer, Okeechobee County, Florida

    USGS Publications Warehouse

    Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.

    1996-01-01

    A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the

  3. Impact of a CP-violating Higgs sector: from LHC to baryogenesis.

    PubMed

    Shu, Jing; Zhang, Yue

    2013-08-30

    We observe a generic connection between LHC Higgs data and electroweak baryogenesis: the particle that contributes to the CP-odd hgg or hγγ vertex would provide the CP-violating source during a first-order phase transition. It is illustrated in the two Higgs doublet model that a common complex phase controls the lightest Higgs properties at the LHC, electric dipole moments, and the CP-violating source for electroweak baryogenesis. We perform a general parametrization of Higgs effective couplings and a global fit to the LHC Higgs data. Current LHC measurements prefer a nonzero phase for tanβ≲1 and electric dipole moment constraints still allow an order-one phase for tanβ∼1, which gives sufficient room to generate the correct cosmic baryon asymmetry. We also give some prospects in the direct measurements of CP violation in the Higgs sector at the LHC.

  4. The evaluation of the optimization design and application effect of same-well-injection-production technique’s injection-production circulatory system

    NASA Astrophysics Data System (ADS)

    Guoxing, Zheng; Minghu, Jiang; Hongliang, Gong; Nannan, Zhang; Jianguang, Wei

    2018-02-01

    According to basic principles of combining series of strata and demands of same-well injection-production technique, the optimization designing method of same-well injection-production technique’s injection-production circulatory system is given. Based on oil-water two-phase model with condition of arbitrarily well network, a dynamic forecast method for the application of same-well injection-production reservoir is established with considering the demands and capacity of same-well injection-production technique, sample wells are selected to launch the forecast evaluation and analysis of same-well injection-production reservoir application’s effect. Results show: single-test-well composite water cut decreases by 4.7% and test-well-group composite water cut decreases by 1.56% under the condition of basically invariant ground water injection rate. The method provides theoretical support for the proof of same-well injection-production technique’s reservoir development improving effect and further tests.

  5. Torsion limits from t t macr production at the LHC

    NASA Astrophysics Data System (ADS)

    de Almeida, F. M. L.; de Andrade, F. R.; do Vale, M. A. B.; Nepomuceno, A. A.

    2018-04-01

    Torsion models constitute a well-known class of extended quantum gravity models. In this work, one investigates the phenomenological consequences of a torsion field interacting with top quarks at the LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top antitop pair. The latest ATLAS t t ¯ production results from LHC 13 TeV data are used to set limits on torsion parameters. The integrated luminosity needed to observe torsion resonance at the next LHC upgrades are also evaluated, considering different values for the torsion mass and its couplings to Standard Model fermions. Finally, prospects for torsion exclusion at the future LHC phases II and III are obtained using fast detector simulations.

  6. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  7. Microbial succession and stimulation following a test well injection simulating CO2 leakage into shallow Newark Basin aquifers

    NASA Astrophysics Data System (ADS)

    Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.

    2012-12-01

    Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy

  8. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, T.; Apollinari, G.; Apollinari, G.

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  9. Anesthetic efficacy of a repeated intraosseous injection following a primary intraosseous injection.

    PubMed

    Jensen, Joanne; Nusstein, John; Drum, Melissa; Reader, Al; Beck, Mike

    2008-02-01

    The purpose of this prospective, randomized, single-blinded study was to determine the anesthetic efficacy of a repeated intraosseous injection given 30 minutes after a primary intraosseous injection. Using a crossover design, 55 subjects randomly received a primary X-tip intraosseous injection (Dentsply Inc, York, PA) of 1.4 mL of 2% lidocaine with epinephrine (using the Wand; Milestone Scientific, Deerfield, IL) and a repeated intraosseous or mock injection at 30 minutes in two appointments. The first molar and adjacent teeth were pulp tested every 2 minutes for a total of 120 minutes. Success was defined as obtaining two consecutive 80 readings with the electric pulp tester. Success of the initial intraosseous injection was 100% for the first molar. The repeated intraosseous injection mimicked the initial intraosseous injection in terms of pulpal anesthesia and statistically provided another 15 minutes of pulpal anesthesia. In conclusion, using the methodology presented, repeating the intraosseous injection 30 minutes after an initial intraosseous injection will provide an additional 15 minutes of pulpal anesthesia.

  10. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Baxter, Van D.; Abdelaziz, Omar

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  11. Commissioning of the cryogenics of the LHC long straight sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, A.; Casas-Cubillos, J.; Claudet, S.

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  12. Least supersymmetric signals at the LHC

    NASA Astrophysics Data System (ADS)

    de Blas, J.; Delgado, A.; Ostdiek, B.

    2013-06-01

    We study the implications at the LHC for the minimal (least) version of the supersymmetric standard model. In this model, supersymmetry is broken by gravity and extra gauge interaction effects, providing a spectrum similar in several aspects to that in natural supersymmetric scenarios. Having the first two generations of sparticles partially decoupled means that any significant signal can only involve gauginos and the third family of sfermions. In practice, the signals are dominated by gluino production with subsequent decays into the stop sector. As we show, for gluino masses below 2300 GeV, a discovery at the LHC is possible at s=14TeV, but will require large integrated luminosities.

  13. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    Straessner, Arno

    2018-04-27

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  14. Heavy color-octet particles at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; Lee, Keith S. M.

    2015-05-01

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The "naturalness" argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a general categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. We review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet's mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.

  15. Heavy color-octet particles at the LHC

    DOE PAGES

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; ...

    2015-05-26

    Many new-physics models, especially those with a color-triplet top-quark partner, contain a heavy color-octet state. The “naturalness” argument for a light Higgs boson requires that the color-octet state be not much heavier than a TeV, and thus it can be pair-produced with large cross sections at high-energy hadron colliders. It may decay preferentially to a top quark plus a top partner, which subsequently decays to a top quark plus a color-singlet state. This singlet can serve as a WIMP dark-matter candidate. Such decay chains lead to a spectacular signal of four top quarks plus missing energy. We pursue a generalmore » categorization of the color-octet states and their decay products according to their spin and gauge quantum numbers. Here, we review the current bounds on the new states at the LHC and study the expected discovery reach at the 8-TeV and 14-TeV runs. We also present the production rates at a future 100-TeV hadron collider, where the cross sections will be many orders of magnitude greater than at the 14-TeV LHC. Furthermore, we explore the extent to which one can determine the color octet’s mass, spin, and chiral couplings. Finally, we propose a test to determine whether the fermionic color octet is a Majorana particle.« less

  16. LHC Computing

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  17. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  18. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  19. The MQXA quadrupoles for the LHC low-beta insertions

    NASA Astrophysics Data System (ADS)

    Ajima, Y.; Higashi, N.; Iida, M.; Kimura, N.; Nakamoto, T.; Ogitsu, T.; Ohhata, H.; Ohuchi, N.; Shintomi, T.; Sugawara, S.; Sugita, K.; Tanaka, K.; Taylor, T.; Terashima, A.; Tsuchiya, K.; Yamamoto, A.

    2005-09-01

    High-performance superconducting quadrupole magnets, MQXA, for the LHC low-beta insertions have been designed, manufactured in series and tested. The design field gradient of the quadrupole, which has a coil aperture of diameter 70 mm, was 240 T/m at 1.9 K; its effective length is 6.37 m, and it is required to operate reliably at up to 215 T/m when subjected to radiation heat deposit in the coils of up to 5 W/m. The series of 20 magnets has been produced in industry, and tested at KEK. The magnet design is explained, and the construction and performance of the series units, in terms of training, field quality and geometry, are presented.

  20. Injection molding lens metrology using software configurable optical test system

    NASA Astrophysics Data System (ADS)

    Zhan, Cheng; Cheng, Dewen; Wang, Shanshan; Wang, Yongtian

    2016-10-01

    Optical plastic lens produced by injection molding machine possesses numerous advantages of light quality, impact resistance, low cost, etc. The measuring methods in the optical shop are mainly interferometry, profile meter. However, these instruments are not only expensive, but also difficult to alignment. The software configurable optical test system (SCOTS) is based on the geometry of the fringe refection and phase measuring deflectometry method (PMD), which can be used to measure large diameter mirror, aspheric and freeform surface rapidly, robustly, and accurately. In addition to the conventional phase shifting method, we propose another data collection method called as dots matrix projection. We also use the Zernike polynomials to correct the camera distortion. This polynomials fitting mapping distortion method has not only simple operation, but also high conversion precision. We simulate this test system to measure the concave surface using CODE V and MATLAB. The simulation results show that the dots matrix projection method has high accuracy and SCOTS has important significance for on-line detection in optical shop.

  1. Measurements of jet-related observables at the LHC

    NASA Astrophysics Data System (ADS)

    Kokkas, P.

    2015-11-01

    During the first years of the LHC operation a large amount of jet data was recorded by the ATLAS and CMS experiments. In this review several measurements of jet-related observables are presented, such as multi-jet rates and cross sections, ratios of jet cross sections, jet shapes and event shape observables. All results presented here are based on jet data collected at a centre-of-mass energy of 7 TeV. Data are compared to various Monte Carlo generators, as well as to theoretical next-to-leading-order calculations allowing a test of perturbative Quantum Chromodynamics in a previously unexplored energy region.

  2. Spectrum-doubled heavy vector bosons at the LHC

    DOE PAGES

    Appelquist, Thomas; Bai, Yang; Ingoldby, James; ...

    2016-01-19

    We study a simple effective field theory incorporating six heavy vector bosons together with the standard-model field content. The new particles preserve custodial symmetry as well as an approximate left-right parity symmetry. The enhanced symmetry of the model allows it to satisfy precision electroweak constraints and bounds from Higgs physics in a regime where all the couplings are perturbative and where the amount of fine-tuning is comparable to that in the standard model itself. We find that the model could explain the recently observed excesses in di-boson processes at invariant mass close to 2TeV from LHC Run 1 for amore » range of allowed parameter space. The masses of all the particles differ by no more than roughly 10%. In a portion of the allowed parameter space only one of the new particles has a production cross section large enough to be detectable with the energy and luminosity of Run 1, both via its decay to WZ and to Wh, while the others have suppressed production rates. Furthermore, the model can be tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale of the new particles higher than 3TeV.« less

  3. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  4. The Lhc Collider:. Status and Outlook to Operation

    NASA Astrophysics Data System (ADS)

    Schmidt, Rüdiger

    2006-04-01

    For the LHC to provide particle physics with proton-proton collisions at the centre of mass energy of 14 TeV with a luminosity of 1034 cm-2s-1, the machine will operate with high-field dipole magnets using NbTi superconductors cooled to below the lambda point of helium. In order to reach design performance, the LHC requires both, the use of existing technologies pushed to the limits as well as the application of novel technologies. The construction follows a decade of intensive R&D and technical validation of major collider sub-systems. This paper will focus on the required LHC performance, and on the implications on the used technologies. The consequences of the unprecedented quantity of energy stored in both magnets and beams will be discussed. A brief outlook to operation and its consequences for machine protection will be given.

  5. The GridPP DIRAC project - DIRAC for non-LHC communities

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Colling, D.; Currie, R.; Fayer, S.; Huffman, A.; Martyniak, J.; Rand, D.; Richards, A.

    2015-12-01

    The GridPP consortium in the UK is currently testing a multi-VO DIRAC service aimed at non-LHC VOs. These VOs (Virtual Organisations) are typically small and generally do not have a dedicated computing support post. The majority of these represent particle physics experiments (e.g. NA62 and COMET), although the scope of the DIRAC service is not limited to this field. A few VOs have designed bespoke tools around the EMI-WMS & LFC, while others have so far eschewed distributed resources as they perceive the overhead for accessing them to be too high. The aim of the GridPP DIRAC project is to provide an easily adaptable toolkit for such VOs in order to lower the threshold for access to distributed resources such as Grid and cloud computing. As well as hosting a centrally run DIRAC service, we will also publish our changes and additions to the upstream DIRAC codebase under an open-source license. We report on the current status of this project and show increasing adoption of DIRAC within the non-LHC communities.

  6. One-family walking technicolor in light of LHC Run II

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya

    2017-12-01

    The LHC Higgs can be identified as the technidilaton, a composite scalar, arising as a pseudo Nambu-Goldstone boson for the spontaneous breaking of scale symmetry in walking technicolor. One interesting candidate for the walking technicolor is the QCD with the large number of fermion flavors, involving the one-family model having the eight-fermion flavors. The smallness of the technidilaton mass can be ensured by the generic walking feature, Miransky scaling, and the presence of the “anti-Veneziano limit” characteristic to the large-flavor walking scenario. To tell the standard-model Higgs from the technidilaton, one needs to wait for the precise estimate of the Higgs couplings to the standard model particles, which is expected at the ongoing LHC Run II. In this talk the technidilaton phenomenology in comparison with the LHC Run-I data is summarized with the special emphasis placed on the presence of the anti-Veneziano limit supporting the lightness of technidilaton. Besides the technidilaton, the walking technicolor predicts the rich particle spectrum such as technipions and technirho mesons, arising as composite particles formed by technifermions. The LHC phenomenology of those technihadrons and the discovery channels are also discussed, which are smoking-guns of the walking technicolor, to be accessible at the LHC Run II.

  7. CMS tracker towards the HL-LHC

    NASA Astrophysics Data System (ADS)

    Alunni Solestizi, L.

    2015-01-01

    In sight of the incoming new LHC era (High Luminosity - LHC), characterized by a jump forward in the precision boundary and in the event rate, all the CMS sub-detector are developing and studying innovative strategies of trigger, pattern recognition, event timing and so on. A crucial aspect will be the online event selection: a totally new paradigm is needed, given the huge amount of events. In this picture the most granular and innermost sub-detector, the tracker, will play a decisive role. The phase-2 tracker will be involved in the L1 Trigger and, taking advantage of both the Associative Memories and the FPGA, it can ensure a trigger decision in proper time and with satisfactory performances.

  8. Injectable barriers for waste isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persoff, P.; Finsterle, S.; Moridis, G.J.

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less

  9. Introducing the LHC in the classroom: an overview of education resources available

    NASA Astrophysics Data System (ADS)

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-05-01

    In the context of the recent re-start of CERN’s Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and linking principal components of the LHC to topics in physics curricula.

  10. Theoretical aspects for estimating anisotropic saturated hydraulic conductivity from in-well or direct-push probe injection tests in uniform media

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana

    2017-06-01

    Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.

  11. Searching for supersymmetry at the LHC: Studies of sleptons and stops

    NASA Astrophysics Data System (ADS)

    Eckel, Jonathan Daniel

    Searches of supersymmetry at the LHC have put stringent constraints on the strong production of squarks and gluinos. Current results exclude colored particles with masses up to roughly 1 TeV. To fully explore the discovery potential of the LHC, we study the challenging signals that are hidden by Standard Model backgrounds but with masses accessible by the LHC. These particles include the sleptons with a weak production cross section, and stops that are hidden by large top-antitop backgrounds. In this dissertation, I explore the collider phenomenology of sleptons and stops at the LHC. Sleptons can be produced at the LHC either through cascade decay or via Drell-Yan pair production. For the cascade decay, we studied neutralino-chargino associated production, with the subsequent decay through on shell sleptons resulting in a trilepton plus missing transverse energy signal. The invariant mass from the neutralino decay has a distinctive triangle shape with a sharp kinematic cutoff. We utilized this feature and obtained the effective cross section that is needed for a 5-sigma discovery of sleptons. We apply these results to the MSSM and find a discovery reach for left-handed sleptons which extends beyond the reach expected in usual Drell-Yan studies. Slepton pair production searches on the other hand, have limited reach at the LHC. The slepton decay branching fractions, however, depend on the composition of the lightest supersymmetric particle (LSP). We extend the experimental analysis for data collected thus far to include different scenarios for the composition of the LSP. We find that the LHC slepton reach is enhanced up to a factor of 2 for a non-Bino-LSP. We present the 95% C.L. exclusion limits and 5-sigma discovery reach for sleptons at the 8 and 14 TeV LHC considering Bino-, Wino-, or Higgsino-like LSPs. Current stop searches at the LHC focus on signals with top-antitop plus missing transverse energy. However, in many regions of SUSY parameter space, these decay

  12. The LHCf experiment at the LHC: Physics Goals and Status

    NASA Astrophysics Data System (ADS)

    Tricomi, A.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Faus, A.; Fukui, K.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Macina, D.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Mizuishi, M.; Muraki, Y.; Papini, P.; Perrot, A. L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Taki, K.; Tamura, T.; Torii, S.; Turner, W. C.; Velasco, J.; Viciani, A.; Yoshida, K.

    2009-12-01

    The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the "knee".

  13. General NMSSM signatures at the LHC

    NASA Astrophysics Data System (ADS)

    Dreiner, H. K.; Staub, F.; Vicente, A.

    2013-02-01

    We study the possible LHC collider signatures in the next-to-minimal supersymmetric standard model. The general next-to-minimal supersymmetric standard model consists of 29 supersymmetric particles which can be mass ordered in 29!≃9×1030 ways. To reduce the number of hierarchies to a more manageable amount we assume a degeneracy of the sfermions of the first two generations with the same quantum numbers. Further assumptions about the neutralino and chargino masses leave 15 unrelated parameters. We check all 15!≈1012 relevant mass orderings for the dominant decay chains and the corresponding collider signatures at the LHC. As preferred signatures, we consider charged leptons, missing transverse momentum, jets, and W, Z or Higgs bosons. We present the results for three different choices of the singlet to Higgs coupling λ: (a) small, O(λ)O(Ytop). We compare these three scenarios with the MSSM expectations as well as among each other. We also mention a possible mass hierarchy leading to seven jets plus one lepton signatures at the LHC and comment briefly on the consequence of possible R-parity violation.

  14. LHC interaction region quadrupole cryostat design

    NASA Astrophysics Data System (ADS)

    Nicol, T. H.; Darve, Ch.; Huang, Y.; Page, T. M.

    2002-05-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  15. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  16. Experiences with urine drug testing by police among people who inject drugs in Bangkok, Thailand.

    PubMed

    Hayashi, Kanna; Ti, Lianping; Buxton, Jane A; Kaplan, Karyn; Suwannawong, Paisan; Wood, Evan; Kerr, Thomas

    2014-03-01

    Thailand has relied on drug law enforcement in an effort to curb illicit drug use. While anecdotal reports suggest that Thai police frequently use urine toxicology to identify drug users, little is known about the prevalence or impacts of this practice among people who inject drugs (IDU). Therefore, we sought to examine experiences with urine drug testing by police among IDU in Bangkok. Data were derived from a community-recruited sample of IDU in Bangkok participating in the Mitsampan Community Research Project between July and October 2011. We assessed the prevalence and correlates of being subjected to urine toxicology testing by police using multivariate Poisson regression. In total, 438 IDU participated in this study, with 293 (66.9%) participants reporting having been tested for illicit drugs by police. In multivariate analyses, reports of drug testing by police were independently and positively associated with younger age (adjusted prevalence ratio [APR]: 1.28), a history of methamphetamine injection (APR: 1.22), a history of incarceration (APR: 1.21), having been in compulsory drug detention (APR: 1.43), avoiding healthcare (APR: 1.15), and HIV seropositivity (APR: 1.19), and negatively associated with access to voluntary drug treatment (APR: 0.82) (all p<0.05). A high proportion of IDU in Bangkok were subjected to drug testing by police. Young people and methamphetamine injectors were more likely to have been tested. The findings indicate that drug testing by police is associated with the compulsory drug detention system and may be interfering with IDU's access to healthcare and voluntary drug treatment. These findings raise concern about the widespread practice of drug testing by police and its associated impacts. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls.

    PubMed

    Bassi, R; Caffarri, S

    2000-01-01

    Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light.

  18. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  19. Hydrogeochemical alteration of groundwater due to a CO2 injection test into a shallow aquifer in Northeast Germany

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Frank; Peter, Anita; Hornbruch, Götz; Lamert, Hendrik; Garbe-Schönberg, Dieter; Beyer, Matthias; Dietrich, Peter; Dahmke, Andreas

    2014-05-01

    The accidental release of CO2 into potable aquifers, for instance as a consequence of a leakage out of a CO2 store site, can endanger drinking water resources due to the induced geochemical processes. A 10-day CO2 injection experiment into a shallow aquifer was carried out in Wittstock (Northeast Germany) in order to investigate the geochemical impact of a CO2 influx into such an aquifer and to test different monitoring methods. Information regarding the site investigation, the injection procedure monitoring setup, and first geochemical monitoring results are described in [1]. Apart from the utilization of the test results to evaluate monitoring approaches [2], further findings are presented on the evaluation of the geophysical monitoring [3], and the monitoring of stable carbon isotopes [4]. This part of the study focuses of the hydrogeochemical alteration of groundwater due to the CO2 injection test. As a consequence of the CO2 injection, major cations were released, i.e. concentrations increased, whereas major anion concentrations - beside bicarbonate - decreased, probably due to increased anion sorption capacity at variably charged exchange sites of minerals. Trace element concentrations increased as well significantly, whereas the relative concentration increase was far larger than the relative concentration increase of major cations. Furthermore, geochemical reactions show significant spatial heterogeneity, i.e. some elements such as Cr, Cu, Pb either increased in concentration or remained at stable concentrations with increasing TIC at different wells. Statistical analyses of regression coefficients confirm the different spatial reaction patterns at different wells. Concentration time series at single wells give evidence, that the trace element release is pH dependent, i.e. trace elements such as Zn, Ni, Co are released at pH of around 6.2-6.6, whereas other trace elements like As, Cd, Cu are released at pH of 5.6-6.4. [1] Peter, A., et al., Investigation of

  20. Detector Developments for the High Luminosity LHC Era (4/4)

    ScienceCinema

    Bortoletto, Daniela

    2018-02-09

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  1. Detector Developments for the High Luminosity LHC Era (3/4)

    ScienceCinema

    Bortoletto, Daniela

    2018-01-23

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  2. SUSY searches at the LHC with the ATLAS experiment

    ScienceCinema

    D' Onofrio, Monica

    2017-12-18

    First ATLAS searches for signals of Supersymmetry in proton-proton collisions at the LHC are presented. These searches are performed in various channels containing different lepton and jet multiplicities in the final states; the full data sample recorded in the 2010 LHC run, corresponding to an integrated luminosity of 35 pb-1, has been analysed. Limits on squarks and gluins are the most stringent to date.

  3. Accuracy and Injection Force of the Gla-300 Injection Device Compared With Other Commercialized Disposable Insulin Pens.

    PubMed

    Klonoff, David; Nayberg, Irina; Thonius, Marissa; See, Florian; Abdel-Tawab, Mona; Erbstein, Frank; Haak, Thomas

    2015-08-26

    To deliver insulin glargine 300 U/mL (Gla-300), the widely used SoloSTAR(®) pen has been modified to allow for accurate and precise delivery of required insulin units in one-third of the volume compared with insulin glargine 100 U/mL, while improving usability. Here we compare the accuracy and injection force of 3 disposable insulin pens: Gla-300 SoloSTAR(®), FlexPen(®), and KwikPen™. For the accuracy assessment, 60 of each of the 3 tested devices were used for the delivery of 3 different doses (1 U, half-maximal dose, and maximal dose), which were measured gravimetrically. For the injection force assessment, 20 pens of each of the 3 types were tested twice at half-maximal and once at maximal dose, at an injection speed of 6 U/s. All tested pens met the International Organization for Standardization (ISO) requirements for dosing accuracy, with Gla-300 SoloSTAR showing the lowest between-dose variation (greatest reproducibility) at all dose levels. Mean injection force was significantly lower for Gla-300 SoloSTAR than for the other 2 pens at both half maximal and maximal doses (P < .0271). All tested pens were accurate according to ISO criteria, and the Gla-300 SoloSTAR pen displayed the greatest reproducibility and lowest injection force of any of the 3 tested devices. © 2015 Diabetes Technology Society.

  4. High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apollinari, G.; Béjar Alonso, I.; Brüning, O.

    2015-12-17

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHCmore » is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.« less

  5. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  6. Federated software defined network operations for LHC experiments

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Byeon, Okhwan; Cho, Kihyeon

    2013-09-01

    The most well-known high-energy physics collaboration, the Large Hadron Collider (LHC), which is based on e-Science, has been facing several challenges presented by its extraordinary instruments in terms of the generation, distribution, and analysis of large amounts of scientific data. Currently, data distribution issues are being resolved by adopting an advanced Internet technology called software defined networking (SDN). Stability of the SDN operations and management is demanded to keep the federated LHC data distribution networks reliable. Therefore, in this paper, an SDN operation architecture based on the distributed virtual network operations center (DvNOC) is proposed to enable LHC researchers to assume full control of their own global end-to-end data dissemination. This may achieve an enhanced data delivery performance based on data traffic offloading with delay variation. The evaluation results indicate that the overall end-to-end data delivery performance can be improved over multi-domain SDN environments based on the proposed federated SDN/DvNOC operation framework.

  7. One-side forward-backward asymmetry at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Youkai; Xiao Bo; Zhu Shouhua

    2011-01-01

    Forward-backward asymmetry A{sub FB} is an essential observable to study the nature of coupling in the standard model and physics beyond the standard model, as shown at LEP and Tevatron. As a proton-proton collider, the LHC does not have the preferred direction contrary to her counterparts, namely, LEP and Tevatron. Therefore, A{sub FB} is not applicable at the LHC. However, for the proton the momentum of the valence quark is usually larger than that of the sea quark. Utilizing this feature we have defined a so-called one-side forward-backward asymmetry A{sub OFB} for the top quark pair production at the LHCmore » in the previous work. In this paper we extend our studies to the charged leptons and bottom quarks as the final states. Our numerical results show that at the LHC A{sub OFB} can be utilized to study the nature of the couplings once enough events are collected.« less

  8. The CREAM-CE: First experiences, results and requirements of the four LHC experiments

    NASA Astrophysics Data System (ADS)

    Mendez Lorenzo, Patricia; Santinelli, Roberto; Sciaba, Andrea; Thackray, Nick; Shiers, Jamie; Renshall, Harry; Sgaravatto, Massimo; Padhi, Sanjay

    2010-04-01

    In terms of the gLite middleware, the current LCG-CE used by the four LHC experiments is about to be deprecated. The new CREAM-CE service (Computing Resource Execution And Management) has been approved to replace the previous service. CREAM-CE is a lightweight service created to handle job management operations at the CE level. It is able to accept requests both via the gLite WMS service and also via direct submission for transmission to the local batch system. This flexible duality provides the experiments with a large level of freedom to adapt the service to their own computing models, but at the same time it requires a careful follow up of the requirements and tests of the experiments to ensure that their needs are fulfilled before real data taking. In this paper we present the current testing results of the four LHC experiments concerning this new service. The operations procedures, which have been elaborated together with the experiment support teams will be discussed. Finally, the experiments requirements and the expectations for both the sites and the service itself are exposed in detail.

  9. The CMS High Granularity Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  10. Exotic lepton searches via bound state production at the LHC

    NASA Astrophysics Data System (ADS)

    Barrie, Neil D.; Kobakhidze, Archil; Liang, Shelley; Talia, Matthew; Wu, Lei

    2018-06-01

    Heavy long-lived multi-charged leptons (MCLs) are predicted by various new physics models. These hypothetical MCLs can form bound states, due to their high electric charges and long life times. In this work, we propose a novel strategy of searching for MCLs through their bound state productions and decays. By utilising LHC-8 TeV data in searching for resonances in the diphoton channel, we exclude the masses of isospin singlet heavy leptons with electric charge | q | ≥ 6 (in units of electron charge) lower than ∼1.2 TeV, which are much stronger than the corresponding 8 TeV LHC bounds from analysing the high ionisation and the long time-of-flight of MCLs. By utilising the current 13 TeV LHC diphoton channel measurements the bound can further exclude MCL masses up to ∼1.6 TeV for | q | ≥ 6. Also, we demonstrate that the conventional LHC limits from searching for MCLs produced via Drell-Yan processes can be enhanced by including the contribution of photon fusion processes.

  11. Top-philic Z ' forces at the LHC

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Low, Ian; Zhang, Yue

    2018-03-01

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z ' at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z ' and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z ' at the LHC and examine carefully the treatment of ananomalous Z ' current in the low-energy effective theory. Recipes for properly computing the production rate in the Z ' + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z ' to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

  12. Calibration techniques and strategies for the present and future LHC electromagnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Aleksa, M.

    2018-02-01

    This document describes the different calibration strategies and techniques applied by the two general purpose experiments at the LHC, ATLAS and CMS, and discusses them underlining their respective strengths and weaknesses from the view of the author. The resulting performances of both calorimeters are described and compared on the basis of selected physics results. Future upgrade plans for High Luminosity LHC (HL-LHC) are briefly introduced and planned calibration strategies for the upgraded detectors are shown.

  13. Two injection digital block versus single subcutaneous palmar injection block for finger lacerations.

    PubMed

    Okur, O M; Şener, A; Kavakli, H Ş; Çelik, G K; Doğan, N Ö; Içme, F; Günaydin, G P

    2017-12-01

    We aimed to compare two digital nerve block techniques in patients due to traumatic digital lacerations. This was a randomized-controlled study designed prospectively in the emergency department of a university-based training and research hospital. Randomization was achieved by sealed envelopes. Half of the patients were randomised to traditional (two-injection) digital nerve block technique while single-injection digital nerve block technique was applied to the other half. Score of pain due to anesthetic infiltration and suturing, onset time of total anesthesia, need for an additional rescue injection were the parameters evaluated with both groups. Epinephrin added lidocaine hydrochloride preparation was used for the anesthetic application. Visual analog scale was used for the evaluation of pain scores. Outcomes were compared by using Mann-Whitney U test and Student t-test. Fifty emergency department patients ≥18 years requiring digital nerve block were enrolled in the study. Mean age of the patients was 33 (min-max: 19-86) and 39 (78 %) were male. No statistically significant difference was found between the two groups in terms of our main parameters; anesthesia pain score, suturing pain score, onset time of total anesthesia and rescue injection need. Single injection volar digital nerve block technique is a suitable alternative for digital anesthesias in emergency departments.

  14. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  15. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  16. Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)

    NASA Astrophysics Data System (ADS)

    Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.

    2017-12-01

    After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.

  17. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS

  18. Transitions from injecting to non-injecting drug use: potential protection against HCV infection

    PubMed Central

    Des Jarlais, Don C.; McKnight, Courtney; Arasteh, Kamyar; Feelemyer, Jonathan; Perlman, David C.; Hagan, Holly; Cooper, Hannah L. F.

    2013-01-01

    Transitions from injecting to non-injecting drug use have been reported from many different areas, particularly in areas with large human immunodeficiency virus (HIV) epidemics. The extent to which such transitions actually protect against HIV and HCV has not been determined. A cross-sectional survey with HIV and hepatitis C (HCV) testing was conducted with 322 former injectors (persons who had injected illicit drugs but permanently transitioned to non-injecting use) and 801 current injectors recruited in New York City between 2007 and 2012. There were no differences in HIV prevalence, while HCV prevalence was significantly lower among former injectors compared to current injectors. Years injecting functioned as a mediating variable linking former injector status to lower HCV prevalence. Transitions have continued well beyond the reduction in the threat of AIDS to injectors in the city. New interventions to support transitions to non-injecting drug use should be developed and supported by both drug treatment and syringe exchange programs. PMID:24161262

  19. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; Delannoy, H.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, Th.; Léonard, A.; Luetic, J.; Postiau, N.; Seva, T.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Caselle, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmayer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Silvestris, L.; Maggi, G.; Martiradonna, S.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Patterson, A.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.

    2017-06-01

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  20. Cornering pseudoscalar-mediated dark matter with the LHC and cosmology

    NASA Astrophysics Data System (ADS)

    Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Fuks, Benjamin; Goudelis, Andreas; Zaldivar, Bryan

    2017-07-01

    Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However, LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space.

  1. Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$$_3$$Sn Dipole Model for LHC Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chlachidze, G.; DiMarco, J.; Andreev, N.

    2014-01-01

    FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization andmore » iron yoke saturation.« less

  2. Probing light nonthermal dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2014-05-01

    This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.

  3. Challenges to Software/Computing for Experimentation at the LHC

    NASA Astrophysics Data System (ADS)

    Banerjee, Sunanda

    The demands of future high energy physics experiments towards software and computing have led the experiments to plan the related activities as a full-fledged project and to investigate new methodologies and languages to meet the challenges. The paths taken by the four LHC experiments ALICE, ATLAS, CMS and LHCb are coherently put together in an LHC-wide framework based on Grid technology. The current status and understandings have been broadly outlined.

  4. Flow-injection system for automated dissolution testing of isoniazid tablets with chemiluminescence detection.

    PubMed

    Li, B; Zhang, Z; Liu, W

    2001-05-30

    A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.

  5. The BSM-AI project: SUSY-AI-generalizing LHC limits on supersymmetry with machine learning

    NASA Astrophysics Data System (ADS)

    Caron, Sascha; Kim, Jong Soo; Rolbiecki, Krzysztof; de Austri, Roberto Ruiz; Stienen, Bob

    2017-04-01

    A key research question at the Large Hadron Collider is the test of models of new physics. Testing if a particular parameter set of such a model is excluded by LHC data is a challenge: it requires time consuming generation of scattering events, simulation of the detector response, event reconstruction, cross section calculations and analysis code to test against several hundred signal regions defined by the ATLAS and CMS experiments. In the BSM-AI project we approach this challenge with a new idea. A machine learning tool is devised to predict within a fraction of a millisecond if a model is excluded or not directly from the model parameters. A first example is SUSY-AI, trained on the phenomenological supersymmetric standard model (pMSSM). About 300, 000 pMSSM model sets - each tested against 200 signal regions by ATLAS - have been used to train and validate SUSY-AI. The code is currently able to reproduce the ATLAS exclusion regions in 19 dimensions with an accuracy of at least 93%. It has been validated further within the constrained MSSM and the minimal natural supersymmetric model, again showing high accuracy. SUSY-AI and its future BSM derivatives will help to solve the problem of recasting LHC results for any model of new physics. SUSY-AI can be downloaded from http://susyai.hepforge.org/. An on-line interface to the program for quick testing purposes can be found at http://www.susy-ai.org/.

  6. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    NASA Astrophysics Data System (ADS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  7. Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...

    2017-01-10

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb 3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axismore » and the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less

  8. [Inadvertent injection of succinylcholine as an epidural test dose].

    PubMed

    Pourzitaki, Chryssa; Tsaousi, Georgia; Logotheti, Helena; Amaniti, Ekaterini

    Epidural action of neuromuscular blocking agents could be explained under the light of their physicochemical characteristics and epidural space properties. In the literature there are few cases of accidental neuromuscular agent's epidural administration, manifesting mainly with neuromuscular blockade institution or fasciculations. We report a case of accidental succinylcholine administration as an epidural test dose, in a female patient undergoing scheduled laparotomy, under combined general and epidural anesthesia. Approximately 2min after the succinylcholine injection the patient complained for shortness of breath, while mild fasciculations appeared in her trunk and face, managed by immediate general anesthesia institution. With the exception of a relatively longer duration of neuromuscular blockade compared with intravenous administration, no neurological or cardiovascular sequelae or other symptoms of local or systemic toxicity were observed. Oral administration of diazepam seems to lessen the adverse effects from accidental epidural administration of succinylcholine. The meticulous and discriminative labeling of syringes, as well as keeping persistent cautions during all anesthesia procedures remains of crucial importance. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  10. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  11. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  12. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    DOE PAGES

    Adam, W.; Bergauer, T.; Brondolin, E.; ...

    2017-06-27

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. Furthermore, this paper describes the main measurement results and conclusions thatmore » motivated this decision.« less

  13. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, W.; Bergauer, T.; Brondolin, E.

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. Furthermore, this paper describes the main measurement results and conclusions thatmore » motivated this decision.« less

  14. High HIV Prevalence, Suboptimal HIV Testing, and Low Knowledge of HIV-Positive Serostatus Among Injection Drug Users in St. Petersburg, Russia

    PubMed Central

    Toussova, Olga V.; Verevochkin, Sergei V.; Barbour, Russell; Heimer, Robert; Kozlov, Andrei P.

    2011-01-01

    The purpose of this analysis was to estimate human immunodeficiency virus (HIV) prevalence and testing patterns among injection drug users (IDUs) in St. Petersburg, Russia. HIV prevalence among 387 IDUs in the sample was 50%. Correlates of HIV-positive serostatus included unemployment, recent unsafe injections, and history/current sexually transmitted infection. Seventy-six percent had been HIV tested, but only 22% of those who did not report HIV-positive serostatus had been tested in the past 12 months and received their test result. Correlates of this measure included recent doctor visit and having been in prison or jail among men. Among the 193 HIV-infected participants, 36% were aware of their HIV-positive serostatus. HIV prevalence is high and continuing to increase in this population. Adequate coverage of HIV testing has not been achieved, resulting in poor knowledge of positive serostatus. Efforts are needed to better understand motivating and deterring factors for HIV testing in this setting. PMID:18843531

  15. Predicted and Totally Unexpected in the Energy Frontier Opened by LHC

    NASA Astrophysics Data System (ADS)

    Zichichi, Antonino

    2011-01-01

    Opening lectures. Sid Coleman and Erice / A. Zichichi. Remembering Sidney Coleman / G.'t Hooft -- Predicted signals at LHC. From extra-dimensions: Multiple branes scenarios and their contenders / I. Antoniadis. Predicted signals at the LHC from technicolor / A. Martin. The one-parameter model at LHC / J. Maxin, E. Mayes and D. V. Nanopoulos. How supercritical string cosmology affects LHC / D. V. Nanopoulos. High scale physics connection to LHC data / P. Nath. Predicted signatures at the LHC from U(I) extensions of the standard model / P. Nath -- Hot theoretical topics. Progress on the ultraviolet finiteness of supergravity / Z. Bern. Status of supersymmetry: Foundations and applications / S. Ferrara and A. Marrani. Quantum gravity from dynamical triangulation / R. Loll. Status of superstring and M-theory / J. H. Schwarz. Some effects of instantons in QCD / G.'t Hooft. Crystalline gravity / G.'t Hooft -- QCD problems. Strongly coupled gauge theories / R. Kenway. Strongly interacting matter at high energy density / L. McLerran. Seminars on specialized topics. The nature and the mass of neutrinos. Majorana vs. Dirac / A. Bettini. The anomalous spin distributions in the nucleon / A. Deshpande. Results from PHENIX at RHIC / M. J. Tannenbaum -- Highlights from laboratories. Highlights from RHIC / Y. Akiba. News from the Gran Sasso Underground Laboratory / E. Coccia. Highlights from TRIUMF / N. S. Lockyer. Highlights from Superkamiokande / M. Koshiba. Highlights from Fermilab / P. J. Oddone. Highlights from IHEP / Y. Wang -- Special sessions for new talents. Fake supergravity and black hole evolution / A. Gnecchi. Track-based improvement in the jet transverse momentum resolution for ATLAS / Z. Marshall. Searches for supersymmetric dark matter with XENON / K. Ni. Running of Newton's constant and quantum gravitational effects / D. Reeb.

  16. New Tools for Forecasting Old Physics at the LHC

    ScienceCinema

    Dixon, Lance

    2018-05-21

    For the LHC to uncover many types of new physics, the "old physics" produced by the Standard Model must be understood very well. For decades, the central theoretical tool for this job was the Feynman diagram expansion. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated LHC events with many jets in the final state. Such events are already visible in the initial LHC data. Over the past few years, alternative methods to Feynman diagrams have come to fruition. These new "on-shell" methods are based on the old principles of unitarity and factorization. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. I will describe how and why these methods work, and present some of the recent state-of-the-art results that have been obtained with them.

  17. The ALICE Experiment at CERN Lhc:. Status and First Results

    NASA Astrophysics Data System (ADS)

    Vercellin, Ermanno

    The ALICE experiment is aimed at studying the properties of the hot and dense matter produced in heavy-ion collisions at LHC energies. In the first years of LHC operation the ALICE physics program will be focused on Pb-Pb and p-p collisions. The latter, on top of their intrinsic interest, will provide the necessary baseline for heavy-ion data. After its installation and a long commissioning with cosmic rays, in late fall 2009 ALICE participated (very successfully) in the first LHC run, by collecting data in p-p collisions at c.m. energy 900 GeV. After a short stop during winter, LHC operations have been resumed; the machine is now able to accelerate proton beams up to 3.5 TeV and ALICE has undertaken the data taking campaign at 7 TeV c.m. energy. After an overview of the ALICE physics goals and a short description of the detector layout, the ALICE performance in p-p collisions will be presented. The main physics results achieved so far will be highlighted as well as the main aspects of the ongoing data analysis.

  18. Top-philic Z' forces at the LHC

    DOE PAGES

    Fox, Patrick J.; Low, Ian; Northwestern Univ., Evanston, IL; ...

    2018-03-13

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, amore » $$Z^\\prime$$ at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. Here, we consider the low-energy effective theory of a top-philic $Z'$ and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic $Z'$ at the LHC and examine carefully the treatment of an anomalous $Z'$ current in the low-energy effective theory. Recipes for properly computing the production rate in the $Z'+j$ channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale $Z'$ to explain possible violations of lepton universality in $B$ meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the $B$ physics anomaly.« less

  19. Intermediate Scale Laboratory Testing to Understand Mechanisms of Capillary and Dissolution Trapping during Injection and Post-Injection of CO 2 in Heterogeneous Geological Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif

    2015-03-31

    Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO 2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO 2 in supercritical fluid phase (scCO 2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanismsmore » in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO 2. Laboratory experiments using scCO 2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO 2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO 2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.« less

  20. Overview of the International Space Station System Level Trace Contaminant Injection Test

    NASA Technical Reports Server (NTRS)

    Tatara, James D.; Perry, Jay L.; Franks, Gerald D.

    1997-01-01

    Trace contaminant control onboard the International Space Station will be accomplished not only by the Trace Contaminant Control Subassembly but also by other Environmental Control and Life Support System subassemblies. These additional removal routes include absorption by humidity condensate in the Temperature and Humidity Control Condensing Heat Exchanger and adsorption by the Carbon Dioxide Removal Assembly. The Trace Contaminant Injection Test, which was performed at NASA's Marshall Space Flight Center, investigated the system-level removal of trace contaminants by the International Space Station Atmosphere Revitalization, and Temperature/Humidity Control Subsystems, (November-December 1997). It is a follow-on to the Integrated Atmosphere Revitalization Test conducted in 1996. An estimate for the magnitude of the assisting role provided by the Carbon Dioxide Removal Assembly and the Temperature and Humidity Control unit was obtained. In addition, data on the purity of Carbon Dioxide Removal Assembly carbon dioxide product were obtained to support Environmental Control and Life Support System Air Revitalization Subsystem loop closure.

  1. Field Injection Test in the Host Rock nearby a Fault Zone - Stress Determination and Fault Hydraulic Diffusivity

    NASA Astrophysics Data System (ADS)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2017-12-01

    Fluid injections associated with human activities are well known to induce perturbations in the ambient rock mass. In particular, the hydromechanical response of a nearby fault under an increase of the pore pressure is of great interest in permeability as well as seismicity related problems. We present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). The site was densely instrumented and during the test the pressure, displacements and seismicity were recorded in order to capture the hydro-mechanical response of the surrounding stimulated volume. A numerical model was used including the reactivated structure at the injection point interacting with a plane representing the main fault orientation. A number of calculations were performed in order to estimate the injection characteristics and the state of stress of the test. By making use of the recorded seismic events location an attempt is made to reproduce the spatio-temporal characteristics of the microseismicity cloud. We have introduced in the model heterogeneous frictional properties along the fault plane that result in flow and rupture channeling effects. Based on the spatio-temporal characteristics of these rupture events we attempt to estimate the resulting hydraulic properties of the fault according to the triggering front concept proposed by Shapiro et al. (2002). The effect of the frictional heterogeneities and the fault orientation on the resulting hydraulic diffusivity is discussed. We have so far observed in our model that by statistically taking into account the frictional heterogeneities in our analysis, the spatio-temporal characteristics of the rupture events and the recovered hydraulic properties of the fault are in a satisfying agreement. References: Shapiro, S. A., Rothert, E., Rath, V., & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity

  2. Relationship Between the Provision of Injection Services in Ambulatory Physician Offices and Prescribing Injectable Medicines.

    PubMed

    Yousefi, Naeimeh; Rashidian, Arash; Soleymani, Fatemeh; Kebriaeezade, Abbas

    2017-01-01

    Overuse of injections is a common problem in many low-income and middle income countries. While cultural factors and attitudes of both physicians and patients are important factors, physicians› financial intensives may play an important role in overprescribing of injections. This study was designed to assess the effects of providing injection- services in physicians› ambulatory offices on prescribing injectable medicines. This cross-sectional study was conducted in Tehran in 2012 -2013and included a random sample of general physicians, pediatricians and infectious disease specialists. We collected data on the provision of injection services in or in proximity of physician offices, and obtained data from physicians› prescriptions in the previous three-month period. We analyzed the data using ANOVA, Student›s t-test and linear regression methods. We obtained complete data from 465 of 600 sampled physicians. Overall 41.9% of prescriptions contained injectable medicines. 75% of physicians offered injection services in their offices. Male physicians and general physicians were more likely to offer the services, and more likely to prescribe injectables. We observed a clear linear relationship between the injection service working hours and the proportion of prescriptions containing injectables (p-value<0.001). Providing injection service in the office was directly linked with the proportion of prescriptions containing injectables. While provision of injection services may provide a direct financial benefit to physicians, it is unlikely to be able to substantially reduce injectable medicines› prescription without addressing the issue.

  3. Subsurface injection of treated sewage into a saline-water aquifer at St. Petersburg, Florida - Water-quality changes and potential for recovery of injected sewage

    USGS Publications Warehouse

    Hickey, J.J.; Ehrlich, G.G.

    1984-01-01

    The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Treated sewage with a mean chloride concentration of 170 mg/ml was injected through a single well for 12 months at a mean rate of 4.7 x 105 cubic feet per day. The volume of water injected during the year was 1.7x108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitrification, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/l in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/l in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Data suggest that very little near

  4. Connecting LHC signals with deep physics at the TeV scale and baryogenesis

    NASA Astrophysics Data System (ADS)

    Shu, Jing

    differential cross section and the anomalous coupling of Z'-Z-Z can be discriminated from the regular one at the 3s level when both Z bosons decay leptonically at the LHC. The origin of baryon asymmetry of the Universe (BAU) remains an important, unsolved problem for particle physics and cosmology, and is one of the motivations to search for possible new physics beyond SM. In the second part of this dissertation, we attempt to account for the baryon number generation in our universe through some novel mechanisms. We first systematically investigate models of baryogenesis from spontaneously Lorentz violating background (SLVB). We find that the sphaleron transitions will generate a nonzero B+L asymmetry in the presence of SLVB and we identify two scenarios of interest. We then consider the possibilities to generate a baryon asymmetry through an earlier time phase transition and address the question whether or not we can still test the baryogenesis mechanism at LHC/ILC if the electroweak phase transition is not strongly first order. We find a general framework and realize this idea in the top flavor model. We show that the realistic baryon density can be achieved in the natural parameter space of topflavor model.

  5. Impact de l'utilisation des strategies d'injection multiple et de biodiesel sur un moteur diesel a rampe commune d'injection

    NASA Astrophysics Data System (ADS)

    Plamondon, Etienne

    Using biodiesel/diesel fuel blends and multiple injection strategies in diesel engines have shown promising results in improving the trade-off relationship between nitrous oxides and particulate matters, but their effects are still not completely understood. In this context, this thesis focuses on the characterization of the multiple injection strategies and biodiesel impacts on pollutant emissions, performances and injection system behavior. To reach this goal, an experimental campaign on a diesel engine was performed and a model simulating the injection process was developed. The engine tests at low load with pilot injection allowed the reduction of NOx emissions up to 27% and those of PM up to 22.3% compared to single injection, provided that a precise tuning of the injection parameters was previously realized. This simultaneous reduction is explained by the reduction of the premixed combustion phase and injected fuel quantity during principal injection when a pilot injection is used. With triple injection for the tested engine load, the post-injection did not result in PM reduction since it contributes by itself to the PM production while the preinjection occurred too soon to burn conveniently and caused perturbations in the injection system as well. Using B20 blend in single injection caused a PM increase and a NOx reduction which might be explained by the poorer fuel atomization. However, pilot injection with B20 allowed to get a simultaneous reduction of NOx and PM, as observed with diesel. An injection simulation model was also developed and experimentally validated for different injection pressures as well as different energizing times and dwell times. When comparing the use of biodiesel with diesel, simulation showed that there was a critical energizing time for which both fuels yielded the same injection duration. For shorter energizing times, the biodiesel injection duration was shorter than for diesel, while longer energizing times presented the

  6. Development of a timing detector for the TOTEM experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Minafra, Nicola

    2017-09-01

    The upgrade program of the TOTEM experiment will include the installation of timing detectors inside vertical Roman Pots to allow the reconstruction of the longitudinal vertex position in the presence of event pile-up in high- β^{\\ast} dedicated runs. The small available space inside the Roman Pot, optimized for high-intensity LHC runs, and the required time precision led to the study of a solution using single crystal CVD diamonds. The sensors are read out using fast low-noise front-end electronics developed by the TOTEM Collaboration, achieving a signal-to-noise ratio larger than 20 for MIPs. A prototype was designed, manufactured and tested during a test beam campaign, proving a time precision below 100ps and an efficiency above 99%. The geometry of the detector has been designed to guarantee uniform occupancy in the expected running conditions keeping, at the same time, the number of channels below 12. The read-out electronics was developed during an extensive campaign of beam tests dedicated first to the characterization of existing solution and then to the optimization of the electronics designed within the Collaboration. The detectors were designed to be read out using the SAMPIC chip, a fast sampler designed specifically for picosecond timing measurements with high-rate capabilities; later, a modified version was realized using the HPTDC to achieve the higher trigger rates required for the CT-PPS experiment. The first set of prototypes was successfully installed and tested in the LHC in November 2015; moreover the detectors modified for CT-PPS are successfully part of the global CMS data taking since October 2016.

  7. Design of FPGA-based radiation tolerant quench detectors for LHC

    NASA Astrophysics Data System (ADS)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  8. Experiential learning in high energy physics: a survey of students at the LHC

    NASA Astrophysics Data System (ADS)

    Camporesi, Tiziano; Catalano, Gelsomina; Florio, Massimo; Giffoni, Francesco

    2017-03-01

    More than 36 000 students and post-docs will be involved until 2025 in research at the Large Hadron Collider (LHC) mainly through international collaborations. To what extent they value the skills acquired? Do students expect that their learning experience will have an impact on their professional future? By drawing from earlier literature on experiential learning, we have designed a survey of current and former students at LHC. To quantitatively measure the students’ perceptions, we compare the salary expectations of current students with the assessment of those now employed in different jobs. Survey data are analysed by ordered logistic regression models, which allow multivariate statistical analyses with limited dependent variables. Results suggest that experiential learning at LHC positively correlates with both current and former students’ salary expectations. Those already employed clearly confirm the expectations of current students. At least two not mutually exclusive explanations underlie the results. First, the training at LHC is perceived to provide students valuable skills, which in turn affect the salary expectations; secondly, the LHC research experience per se may act as signal in the labour market. Respondents put a price tag on their learning experience, a ‘LHC salary premium’ ranging from 5% to 12% compared with what they would have expected for their career without such an experience at CERN.

  9. Modelling and measurements of bunch profiles at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadopoulou, S.; Antoniou, F.; Argyropoulos, T.

    The bunch profiles in the LHC are often observed to be non-Gaussian, both at Flat Bottom (FB) and Flat Top (FT) energies. Especially at FT, an evolution of the tail population in time is observed. In this respect, the Monte-Carlo Software for IBS and Radiation effects (SIRE) is used to track different types of beam distributions. The impact of the distribution shape on the evolution of bunch characteristics is studied. The results are compared with observations from the LHC Run 2 data.

  10. Lead Ions and Coulomb's Law at the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2018-01-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics…

  11. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre

    2016-02-01

    After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  12. Numerical Modeling of the Pumping Tests at the Ketzin Pilot Site for CO2 Injection: Model Calibration and Heterogeneity Effects

    NASA Astrophysics Data System (ADS)

    Chen, F.; Wiese, B.; Zhou, Q.; Birkholzer, J. T.; Kowalsky, M. B.

    2013-12-01

    The Stuttgart formation used for ongoing CO2 injection at the Ketzin pilot test site in Germany is highly heterogeneous in nature. The site characterization data, including 3D seismic amplitude images, the regional geology data, and the core measurements and geophysical logs of the wells show the formation is composed of permeable sandstone channels of varying thickness and length embedded in less permeable mudstones. Most of the sandstone channels are located in the upper 10-15 m of the formation, with only a few sparsely distributed sandstone channels in the bottom 70-m layer. Three-dimensional seismic data help to identify the large-scale facies distribution patterns in the Stuttgart formation, but are unable to resolve internal structures at a smaller scale (e.g. ~100 m). Heterogeneity has a large effect on the pressure propagation measured during a suite of pumping tests conducted in 2007-2008 and also impacts strongly the CO2 arrival times observed during the ongoing CO2 injection experiment. The arrival time of the CO2 plume at the observation well Ktzi 202was 12.5 times greater than at the other observation well Ktzi 200, even though the distance to the injection well is only 2.2 times farther than that of Ktzi 200. To characterize subsurface properties and help predict the behavior of injected CO2 in subsequent experiments, we develop a TOUGH2/EOS9 model for modeling the hydraulic pumping tests and use the inverse modeling tool iTOUGH2 for automatic model calibration. The model domain is parameterized using multiple zones, with each zone assumed to have uniform rock properties. The calibrated model produces system responses that are in good agreement with the measured pressure drawdown data, indicating that it captures the essential flow processes occurring during the pumping tests. The estimated permeability distribution shows that the heterogeneity is significant and that the study site is situated a semi-closed system with one or two sides open to

  13. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  14. Dihadron production at the LHC: full next-to-leading BFKL calculation

    NASA Astrophysics Data System (ADS)

    Celiberto, Francesco G.; Ivanov, Dmitry Yu.; Murdaca, Beatrice; Papa, Alessandro

    2017-06-01

    The study of the inclusive production of a pair of charged light hadrons (a "dihadron" system) featuring high transverse momenta and well separated in rapidity represents a clear channel for the test of the BFKL dynamics at the Large Hadron Collider (LHC). This process has much in common with the well-known Mueller-Navelet jet production; however, hadrons can be detected at much smaller values of the transverse momentum than jets, thus allowing to explore an additional kinematic range, supplementary to the one studied with Mueller-Navelet jets. Furthermore, it makes it possible to constrain not only the parton densities (PDFs) for the initial proton, but also the parton fragmentation functions (FFs) describing the detected hadron in the final state. Here, we present the first full NLA BFKL analysis for cross sections and azimuthal angle correlations for dihadrons produced in the LHC kinematic ranges. We make use of the Brodsky-Lapage-Mackenzie optimization method to set the values of the renormalization scale and study the effect of choosing different values for the factorization scale. We also gauge the uncertainty coming from the use of different PDF and FF parametrizations.

  15. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  16. Injectable Drug Eluting Elastomeric Polymer: A Novel Submucosal Injection Material

    PubMed Central

    Tran, Richard T.; Palmer, Michael; Tang, Shou-Jiang; Abell, Thomas L.; Yang, Jian

    2011-01-01

    Background Biodegradable hydrogels can deliver therapeutic payloads with great potentials in endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) to yield improvements in efficacy and foster mucosal regeneration. Objective To assess the efficacy of an injectable drug eluting elastomeric polymer (iDEEP) as a submucosal injection material. Design Comparative study among 3 different solutions using material characterization tests, ex vivo and in vivo porcine models. Setting Academic hospital. Interventions 30 gastric submucosal cushions were achieved with saline (0.9%), sodium hyaluronate (0.4%), and iDEEP (n = 10) in ex vivo porcine stomachs. Four porcine gastric submucosal cushions were then performed in vivo using iDEEP. Main outcome measurements Maximum injection pressure, Rebamipide release rate, submucosal elevation duration, and assessment of in vivo efficacy by en bloc resection. Results No significant difference in injection pressures between iDEEP (28.9 ± 0.3 PSI) and sodium hyaluronate (29.5 ± 0.4 PSI, P > .05) was observed. iDEEP gels displayed a controlled release of Rebamipide up to 2 weeks in vitro. The elevation height of iDEEP (5.7 ± 0.5 mm) was higher than saline (2.8 ± 0.2 mm, P < .01) and SH (4.2 ± 0.2 mm, P < .05). All EMR procedures were successfully performed after injection of iDEEP, and a large gel cushion was noted after the resection procedure. Limitations Benchtop, ex vivo, and non-survival pig study. Conclusions A novel injection solution was evaluated for endoscopic resection. These results suggest that iDEEP may provide a significant step towards the realization of an ideal EMR and ESD injection material. PMID:22301346

  17. Semivisible Jets: Dark Matter Undercover at the LHC.

    PubMed

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong

    2015-10-23

    Dark matter may be a composite particle that is accessible via a weakly coupled portal. If these hidden-sector states are produced at the Large Hadron Collider (LHC), they would undergo a QCD-like shower. This would result in a spray of stable invisible dark matter along with unstable states that decay back to the standard model. Such "semivisible" jets arise, for example, when their production and decay are driven by a leptophobic Z' resonance; the resulting signature is characterized by significant missing energy aligned along the direction of one of the jets. These events are vetoed by the current suite of searches employed by the LHC, resulting in low acceptance. This Letter will demonstrate that the transverse mass-computed using the final-state jets and the missing energy-provides a powerful discriminator between the signal and the QCD background. Assuming that the Z' couples to the standard model quarks with the same strength as the Z(0), the proposed search can discover (exclude) Z' masses up to 2.5 TeV (3.5 TeV) with 100  fb(-1) of 14 TeV data at the LHC.

  18. Probing the Higgs self coupling via single Higgs production at the LHC

    DOE PAGES

    Degrassi, G.; Giardino, P. P.; Maltoni, F.; ...

    2016-12-16

    Here, we propose a method to determine the trilinear Higgs self coupling that is alternative to the direct measurement of Higgs pair production total cross sections and differential distributions. Furthermore, the method relies on the effects that electroweak loops featuring an anomalous trilinear coupling would imprint on single Higgs production at the LHC. We first calculate these contributions to all the phenomenologically relevant Higgs production (ggF, VBF, WH, ZH, tmore » $$\\bar{t}$$ ) and decay (γγ,WW*/ZZ*→ 4f, b$$\\bar{b}$$,ττ) modes at the LHC and then estimate the sensitivity to the trilinear coupling via a one-parameter fit to the single Higgs measurements at the LHC 8 TeV. We also found that the bounds on the self coupling are already competitive with those from Higgs pair production and will be further improved in the current and next LHC runs.« less

  19. The effectiveness of a mail reminder system for depot medroxyprogesterone injections.

    PubMed

    Madlon-Kay, D J

    1996-04-01

    To determine if a mail reminder system leads to an increase in the percentage of depot medroxyprogesterone acetate (Depo-Provera) injections administered on time, the charts of 184 women were reviewed. The reminder postcard included the due dates of both the next medroxyprogesterone injection and the next Papanicolaou test. Timeliness of injections improved with the reminder system from 64% administered on time to 76% (P < .02). Injections given late despite the reminders were late a mean of 8 days. Injections given late before the reminder system began were late a mean of 20 days (P < .05). If injections given during the injection's 14-day "grace" period are included, the on-time rate improved from 87% to 96% with the reminder system (P < .005). The reminder system was not effective in ensuring annual Papanicolaou testing. Vigilance is needed to ensure that women receiving medroxyprogesterone injections also receive timely Papanicolaou testing.

  20. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    NASA Astrophysics Data System (ADS)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  1. Browns Ferry Nuclear Plant: variation in test intervals for high-pressure coolant injection (HPCI) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christie, R.F.; Stetkar, J.W.

    1985-01-01

    The change in availability of the high-pressure coolant injection system (HPCIS) due to a change in pump and valve test interval from monthly to quarterly was analyzed. This analysis started by using the HPCIS base line evaluation produced as part of the Browns Ferry Nuclear Plant (BFN) Probabilistic Risk Assessment (PRA). The base line evaluation showed that the dominant contributors to the unavailability of the HPCI system are hardware failures and the resultant downtime for unscheduled maintenance.

  2. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    DOE PAGES

    Robens, Tania; Stefaniak, Tim

    2016-05-13

    Here, we present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they ful ll all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low mass and high mass region, i.e. the mass range where the additional Higgsmore » state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group.« less

  3. New diesel injection nozzle flow measuring device

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2000-04-01

    A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.

  4. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    DOE PAGES

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; ...

    2016-06-07

    Here, planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2 × 10 15 neq/cm 2 fluence. Preliminary results of the data analysis are presented.

  5. Longitudinal density monitor for the LHC

    NASA Astrophysics Data System (ADS)

    Jeff, A.; Andersen, M.; Boccardi, A.; Bozyigit, S.; Bravin, E.; Lefevre, T.; Rabiller, A.; Roncarolo, F.; Welsch, C. P.; Fisher, A. S.

    2012-03-01

    The longitudinal density monitor (LDM) is primarily intended for the measurement of the particle population in nominally empty rf buckets. These so-called satellite or ghost bunches can cause problems for machine protection as well as influencing the luminosity calibration of the LHC. The high dynamic range of the system allows measurement of ghost bunches with as little as 0.01% of the main bunch population at the same time as characterization of the main bunches. The LDM is a single-photon counting system using visible synchrotron light. The photon detector is a silicon avalanche photodiode operated in Geiger mode, which allows the longitudinal distribution of the LHC beams to be measured with a resolution of 90 ps. Results from the LDM are presented, including a proposed method for constructing a 3-dimensional beam density map by scanning the LDM sensor in the transverse plane. In addition, we present a scheme to improve the sensitivity of the system by using an optical switching technique.

  6. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  7. The history of the LHC

    ScienceCinema

    Evans, Lyn

    2018-05-23

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D, industrialization, construction, installation and commissioning.

  8. Expanding the reach of heavy neutrino searches at the LHC

    NASA Astrophysics Data System (ADS)

    Flórez, Andrés; Gui, Kaiwen; Gurrola, Alfredo; Patiño, Carlos; Restrepo, Diego

    2018-03-01

    The observation of neutrino oscillations establishes that neutrinos have non-zero mass and provides one of the more compelling arguments for physics beyond the standard model (SM) of particle physics. We present a feasibility study to search for hypothetical Majorana neutrinos (N) with TeV scale masses, predicted by extensions of the SM to explain the small but non-zero SM neutrino mass, using vector boson fusion (VBF) processes at the 13 TeV LHC. In the context of the minimal Type-I seesaw mechanism (mTISM), the VBF production cross-section of a lepton (ℓ) and associated heavy Majorana neutrino (Nℓ) surpasses that of the Drell-Yan process at approximately mNℓ = 1.4TeV. We consider second and third-generation heavy neutrino (Nμ or Nτ, where ℓ= muon (μ) or tau (τ) leptons) production through VBF processes, with subsequent Nμ and Nτ decays to a lepton and two jets, as benchmark cases to show the effectiveness of the VBF topology for Nℓ searches at the 13 TeV LHC. The requirement of a dilepton pair combined with four jets, two of which are identified as VBF jets with large separation in pseudorapidity and a TeV scale dijet mass, is effective at reducing the SM background. These criteria may provide expected exclusion bounds, at 95% confidence level, of mNℓ < 1.7 (2.4) TeV, assuming 100 (1000) fb-1 of 13 TeV data from the LHC and mixing |VℓNℓ|2 = 1. The use of the VBF topology to search for mNℓ increases the discovery reach at the LHC, with expected significances greater than 5σ (3σ) for Nℓ masses up to 1.7 (2.05) TeV using 1000fb-1 of 13 TeV data from the LHC.

  9. Signals of two universal extra dimensions at the LHC

    NASA Astrophysics Data System (ADS)

    Burdman, G.; Éboli, O. J. P.; Spehler, D.

    2016-11-01

    Extensions of the standard model with universal extra dimensions are interesting both as phenomenological templates as well as model-building fertile ground. For instance, they are one of the prototypes for theories exhibiting compressed spectra, leading to difficult searches at the LHC since the decay products of new states are soft and immersed in a large standard model background. Here we study the phenomenology at the LHC of theories with two universal extra dimensions. We obtain the current bound by using the production of second level excitations of electroweak gauge bosons decaying to a pair of leptons and study the reach of the LHC Run II in this channel. We also introduce a new channel originating in higher dimensional operators and resulting in the single production of a second level quark excitation. Its subsequent decay into a hard jet and lepton pair resonance would allow the identification of a more model-specific process, unlike the more generic vector resonance signal. We show that the sensitivity of this channel to the compactification scale is very similar to the one obtained using the vector resonance.

  10. C P -violation in the two Higgs doublet model: From the LHC to EDMs

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Li, Hao-Lin; Ramsey-Musolf, Michael

    2018-01-01

    We study the prospective sensitivity to C P -violating two Higgs doublet models from the 14 TeV LHC and future electric dipole moment (EDM) experiments. We concentrate on the search for a resonant heavy Higgs that decays to a Z boson and a SM-like Higgs h , leading to the Z (ℓℓ)h (b b ¯ ) final state. The prospective LHC reach is analyzed using the Boosted Decision Tree method. We illustrate the complementarity between the LHC and low energy EDM measurements and study the dependence of the physics reach on the degree of deviation from the alignment limit. In all cases, we find that there exists a large part of parameter space that is sensitive to both EDMs and LHC searches.

  11. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  12. Introducing the LHC in the Classroom: An Overview of Education Resources Available

    ERIC Educational Resources Information Center

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-01-01

    In the context of the recent re-start of CERN's Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and…

  13. Hydrogeological characterization of shallow-depth zone for CO2 injection and leak test at a CO2 environmental monitoring site in Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Kim, T. W.; Kim, H. H.; Ha, S. W.; Jeon, W. T.; Lee, K. K.

    2015-12-01

    The main goal of the this study is to evaluate the importance of heterogeneities in controlling the field-scale transport of CO2 are originated from the CO2 injected at saturated zone below the water table for monitoring and prediction of CO2 leakage from a reservoir. Hydrogeological and geophysical data are collected to characterize the site, prior to conducting CO2 injection experiment at the CO2 environmental monitoring site at Eumseong, Korea. The geophysical data were acquired from borehole electromagnetic flowmeter tests, while the hydraulic data were obtained from pumping tests, slug tests, and falling head permeability tests. Total of 13 wells to perform hydraulic and geophysical test are established along groundwater flow direction in regular sequence, revealed by the results of borehole electromagnetic flowmeter test. The results of geophysical tests indicated that hydraulic gradient is not identical with the topographic gradient. Groundwater flows toward the uphill direction in the study area. Then, the hydraulic tests were conducted to identify the hydraulic properties of the study site. According to the results of pumping and slug tests at the study site, the hydraulic conductivity values show ranges between 4.75 x 10-5 cm/day and 9.74 x 10-5 cm/day. In addition, a portable multi-level sampling and monitoring packer device which remains inflated condition for a long period developed and used to isolate designated depths to identify vertical distribution of hydrogeological characteristics. Hydrogeological information obtained from this study will be used to decide the injection test interval of CO2-infused water and gaseous CO2. Acknowledgement: Financial support was provided by "R&D Project on Environmental Mangement of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  14. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  15. VII Workshop Italiano sulla fisica pp a LHC

    NASA Astrophysics Data System (ADS)

    LHCpp2016 è la settima edizione dell'incontro nazionale sulla fisica p-p a LHC. Questa serie di incontri è nata a Pisa nel 2003 con lo scopo di stimolare lo scambio di idee tra le comunità sperimentali di ATLAS, CMS e LHCB e la comunità teorica. Caratteristica fondamentale di questi incontri è la preparazione di larga parte dei talk in collaborazione tra i vari esperimenti e la comunità teorica. Largo spazio nella preparazione e presentazione dei talk viene dato ai giovani ricercatori. In questa settima edizione, che si tiene di nuovo a Pisa, vogliamo concentrare l'attenzione sulle potenzialità di scoperta offerte dai dati raccolti durante il runII di LHC.

  16. Anomalous Z' and diboson resonances at the LHC

    NASA Astrophysics Data System (ADS)

    Ismail, Ahmed; Katz, Andrey

    2018-04-01

    We propose novel collider searches which can significantly improve the LHC reach to new gauge bosons Z' with mixed anomalies with the electroweak (EW) gauge group. Such a Z' necessarily acquires a Chern-Simons coupling to the EW gauge bosons and these couplings can drive both exotic Z decays into Z'γ if the new gauge boson is sufficiently light, as well as Z' decays into EW gauge bosons. While the exotic decay rate of the heavy Z into Z'γ is too small to be observed at the LHC, for a light Z', we show the potential of a lepton jet search in association with a photon to probe the rare decay Z → Z'γ.

  17. Advanced information processing system: Fault injection study and results

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.

    1992-01-01

    The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.

  18. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Florian, D.

    This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplifiedmore » template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.« less

  19. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Solovyanov, Oleg

    2017-10-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ˜30 MeV to ˜2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. The calorimeter timing calibration and resolutions are studied with a sample of multijets events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. TileCal performance satisfies the design requirements and has provided an essential contribution to physics results in ATLAS. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC), delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, the Tile Calorimeter will undergo a major replacement of its on- and off-detector electronics. All signals will be digitised and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz

  20. EPPS16: nuclear parton distributions with LHC data.

    PubMed

    Eskola, Kari J; Paakkinen, Petja; Paukkunen, Hannu; Salgado, Carlos A

    2017-01-01

    We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom for the flavor dependence of nuclear effects than in other currently available analyses. As a result, especially the uncertainty estimates are more objective flavor by flavor. The neutrino DIS plays a pivotal role in obtaining a mutually consistent behavior for both up and down valence quarks, and the LHC dijet data clearly constrain gluons at large momentum fraction. Mainly for insufficient statistics, the pion-nucleus DY and heavy-gauge-boson production in proton-lead collisions impose less visible constraints. The outcome - a new set of next-to-leading order nuclear PDFs called EPPS16 - is made available for applications in high-energy nuclear collisions.

  1. Top Quark and Higgs Boson Physics at LHC-ATLAS

    NASA Astrophysics Data System (ADS)

    Tomoto, M.

    2013-03-01

    One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.

  2. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  3. Harm reduction measures and injecting inside prison versus mandatory drugs testing: results of a cross sectional anonymous questionnaire survey. The European Commission Network on HIV Infection and Hepatitis in Prison.

    PubMed Central

    Bird, A. G.; Gore, S. M.; Hutchinson, S. J.; Lewis, S. C.; Cameron, S.; Burns, S.

    1997-01-01

    OBJECTIVES: (a) To determine both the frequency of injecting inside prison and use of sterilising tablets to clean needles in the previous four weeks; (b) to assess the efficiency of random mandatory drugs testing at detecting prisoners who inject heroin inside prison; (c) to determine the percentage of prisoners who had been offered vaccination against hepatitis B. DESIGN: Cross sectional willing anonymous salivary HIV surveillance linked to a self completion risk factor questionnaire. SETTING: Lowmoss prison, Glasgow, and Aberdeen prison on 11 and 30 October 1996. SUBJECTS: 293 (94%) of all 312 inmates at Lowmoss and 146 (93%) of all 157 at Aberdeen, resulting in 286 and 143 valid questionnaires. MAIN OUTCOME MEASURES: Frequency of injecting inside prison in the previous four weeks by injector inmates who had been in prison for at least four weeks. RESULTS: 116 (41%) Lowmoss and 53 (37%) Aberdeen prisoners had a history of injecting drug use but only 4% of inmates (17/395; 95% confidence interval 2% to 6%) had ever been offered vaccination against hepatitis B. 42 Lowmoss prisoners (estimated 207 injections and 258 uses of sterilising tablets) and 31 Aberdeen prisoners (229 injections, 221 uses) had injected inside prison in the previous four weeks. The prisons together held 112 injector inmates who had been in prison for more than four weeks, of whom 57 (51%; 42% to 60%) had injected in prison in the past four weeks; their estimated mean number of injections was 6.0 (SD 5.7). Prisoners injecting heroin six times in four weeks will test positive in random mandatory drugs testing on at most 18 days out of 28. CONCLUSIONS: Sterilising tablets and hepatitis B vaccination should be offered to all prisoners. Random mandatory drugs testing seriously underestimates injector inmates' harm reduction needs. PMID:9233321

  4. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  5. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  6. Human and bovine spinal disc mechanics subsequent to trypsin injection.

    PubMed

    Alsup, Jeremy; Bishop, Timothy; Eggett, Dennis; Bowden, Anton E

    2017-10-01

    To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments. Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading. Stiffness and neutral zone parameters experienced significant changes over time, with bovine tissues more strongly affected than human cadaver tissues. This was true in both axial rotation and flexion-extension. The treatment type significantly affected the neutral zone measurements in axial rotation. Hysteresis parameters were impacted by control injections. The extrapolation of bovine coccygeal motion testing results to human lumbar disc mechanics is not yet practical. The injected treatment may have a smaller impact on disc mechanics than time in testing. Viscoelasticity of human lumbar discs may be impacted by any damage to the annulus fibrosis induced by needlestick. Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.

  7. Test of the wire ageing induced by radiation for the CMS barrel muon chambers

    NASA Astrophysics Data System (ADS)

    Conti, E.; Gasparini, F.

    2001-06-01

    We have carried out laboratory tests to measure the ageing of a wire tube due to pollutants outgassed by various materials. The tested materials are those used in the barrel muon drift tubes of the CMS experiment at LHC. An X-ray gun irradiated the test tube to accelerate the ageing process. No ageing effect has been measured for a period equivalent to 10 years of operation at LHC.

  8. Probing top-Z dipole moments at the LHC and ILC

    DOE PAGES

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less

  9. Design, production and first commissioning results of the electrical feedboxes of the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perin, A.; Atieh, S.; Benda, V.

    2007-12-01

    A total of 44 CERN designed cryogenic electrical feedboxes are needed to power the LHC superconducting magnets. The feedboxes include more than 1000 superconducting circuits fed by high temperature superconductor and conventional current leads ranging from 120 A to 13 kA. In addition to providing the electrical current to the superconducting circuits, they also ensure specific mechanical and cryogenic functions for the LHC. The paper focuses on the main design aspects and related production operations and gives an overview of specific technologies employed. Results of the commissioning of the feedboxes of the first LHC sectors are presented.

  10. What kind of sQGP is the matter created at RHIC and LHC?

    NASA Astrophysics Data System (ADS)

    Liao, Jinfeng

    2011-10-01

    One of the main discoveries at RHIC is the so-called ``perfect fluid,'' and one of the most interesting things to see at LHC is whether and how such ``perfect fluid'' property will change at much higher collisional energies. I argue these will provide unique opportunity to answer theoretical question about the nature of sQGP. I will discuss two very different scenarios for the QGP in the temperature range from RHIC to LHC: (1) sQGP as a ``see-saw''-QGP of its electric and magnetic components, which is inspired by the deep and generic Electric-Magnetic duality in field theories; (2) sQGP as a super-strong-QGP, which may have a holographic dual in one form or another due to the strong coupling. The two scenarios predict different medium properties (viscosity, and opacity to hard probes) with increasing temperature from RHIC to LHC, therefore making them distinguishable at the upcoming LHC top energy PbPb collisions. The first hints of a possible change in created matter's structure at LHC 2.76TeV collisions as well as expectations for 5.5TeV collisions will be discussed. Supported under DOE Contract No. DE-AC02-98CH10886.

  11. Time-resolved seismic tomography at the EGS geothermal reservoir of Soultz-Sous-Forêts (France) during hydraulic stimulations. A comparison between different injection tests

    NASA Astrophysics Data System (ADS)

    Dorbath, C.; Calo, M.; Cornet, F.; Frogneux, M.

    2011-12-01

    One major goal of monitoring seismicity accompanying hydraulic fracturing of a reservoir is to recover the seismic velocity field in and around the geothermal site. Several studies have shown that the 4D (time dependent) seismic tomographies are very useful to illustrate and study the temporal variation of the seismic velocities conditioned by injected fluids. However, only an appropriate separation of the data in subsets and a reliable tomographic method allow studying representative variations of the seismic velocities during and after the injection periods. We present here new 4D seismic tomographies performed using datasets regarding some stimulation tests performed at the Enhanced Geothermal System (EGS) site of Soultz-sous-Forêts (Alsace, France). The data used were recorded during the stimulation tests occurred in 2000, 2003 and 2004 that involved the wells GPK2, GPK3 and GPK4. For each set of events, the subsetting of the data was performed by taking into account the injection parameters of the stimulation tests (namely the injected flow rate and the wellhead pressure). The velocity models have been obtained using the Double-Difference tomographic method (Zhang and Thurber 2003) and further improved with the post-processing WAM technique (Calo' et al., 2009, 2011). This technique resulted very powerful because combines high resolution and reliablity of the seismic velocity fields calculated even with small datasets. In this work we show the complete sequence of the time-lapse tomographies and their variations in time and between different stimulation tests.

  12. Extraforaminal needle tip position reduces risk of intravascular injection in CT-fluoroscopic lumbar transforaminal epidural steroid injections

    PubMed Central

    Yu, Robinson K.; Ghodadra, Anish; Agarwal, Vikas

    2016-01-01

    Background Lumbar transforaminal epidural steroid injection is a common and effective tool for managing lumbar radicular pain, although accidental intravascular injection can rarely result in paralysis. The purpose of this study is to determine the safest needle tip position for computed tomography (CT)-guided lumbar transforaminal epidural steroid injections as determined by incidence of intravascular injection. Methods Three radiologists, in consensus, reviewed procedural imaging for consecutive CT-fluoroscopic lumbar transforaminal epidural steroid injections performed during a 16-month period. Intravascular injections were identified and categorized by needle tip position, vessel type injected, intravascular injection volume and procedural phase containing the intravascular injection. Pearson chi-square and logistic regression testing were used to assess differences between groups, as appropriate. Results Intravascular injections occurred in 9% (52/606) of injections. The intravascular injection rate was significantly lower (P<0.001) for extraforaminal needle position (0%, 0/109) compared to junctional (8%, 27/319) and foraminal (14%, 25/178) needle tip positions. Of the intravascular injections, 4% (2/52) were likely arterial, 35% (18/52) were likely venous, and 62% (32/52) were indeterminate for vessel type injected. 46% (24/52) of intravascular injections were large volume, 33% (17/52) were small volume, and 21% (11/52) were trace volume. 56% (29/52) of intravascular injections occurred with the contrast trial dose, 29% (15/52) with the steroid/analgesic cocktail, and 15% (8/52) with both. Conclusions An extraforaminal needle position for CT-fluoroscopic lumbar transforaminal epidural steroid injections decreases the risk of intravascular injection and therefore may be safer than other needle tip positions. PMID:28097241

  13. Building a Prototype of LHC Analysis Oriented Computing Centers

    NASA Astrophysics Data System (ADS)

    Bagliesi, G.; Boccali, T.; Della Ricca, G.; Donvito, G.; Paganoni, M.

    2012-12-01

    A Consortium between four LHC Computing Centers (Bari, Milano, Pisa and Trieste) has been formed in 2010 to prototype Analysis-oriented facilities for CMS data analysis, profiting from a grant from the Italian Ministry of Research. The Consortium aims to realize an ad-hoc infrastructure to ease the analysis activities on the huge data set collected at the LHC Collider. While “Tier2” Computing Centres, specialized in organized processing tasks like Monte Carlo simulation, are nowadays a well established concept, with years of running experience, site specialized towards end user chaotic analysis activities do not yet have a defacto standard implementation. In our effort, we focus on all the aspects that can make the analysis tasks easier for a physics user not expert in computing. On the storage side, we are experimenting on storage techniques allowing for remote data access and on storage optimization on the typical analysis access patterns. On the networking side, we are studying the differences between flat and tiered LAN architecture, also using virtual partitioning of the same physical networking for the different use patterns. Finally, on the user side, we are developing tools and instruments to allow for an exhaustive monitoring of their processes at the site, and for an efficient support system in case of problems. We will report about the results of the test executed on different subsystem and give a description of the layout of the infrastructure in place at the site participating to the consortium.

  14. Single-Transverse-Spin-Asymmetry studies with a fixed-target experiment using the LHC beams (AFTER@LHC)

    DOE PAGES

    Lansberg, J. P.; Anselmino, M.; Arnaldi, R.; ...

    2016-11-19

    Here we discuss the potential of AFTER@LHC to measure single-transverse-spin asymmetries in open-charm and bottomonium production. With a HERMES-like hydrogen polarised target, such measurements over a year can reach precisions close to the per cent level. This is particularly remarkable since these analyses can probably not be carried out anywhere else.

  15. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    PubMed

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  16. Physical characterization and modeling of chitosan/peg blends for injectable scaffolds.

    PubMed

    Lima, Daniel B; Almeida, Renata D; Pasquali, Matheus; Borges, Sílvia P; Fook, Marcus L; Lisboa, Hugo M

    2018-06-01

    Injectable scaffolds find many applications on the biomedical field due to several advantages on preformed scaffolds such as being able to fill any defect can be used in minimal invasion surgeries and are ready to use products. The most critical parameter for an injectable scaffold usage is its injectability, which can be related with rheological properties. Therefore, the objective of the present work was to increase knowledge about the critical parameters influencing injectability of biopolymers used for injectable scaffolds. Rheological and mechanical properties of a biopolymer blend in combination with injectability tests for a given design space controlled by the concentrations of both polymers and temperatures was made. Then those results were modeled to better understand the impact of parameters on injectability. The biopolymer blend chosen was Chitosan physically blended with Poly(ethylene glycol) where variations of both polymer concentrations and molecular weights were tested. Rheological and mechanical properties of all samples were determined, together with the injection force using a compression test at different injection conditions. All solutions were clear and transparent suggesting perfect miscibility. Rheological results were modeled using Ostwald-Waelle law and revealed a shear thinning pseudo-plastic solution at any composition and temperature, being chitosan concentration the most influencing variable. Compression tests results revealed mean injection forces ranging from 9.9 ± 0.06N to 29.9 ± 0.65N and it was possible to accurately estimate those results. Simulations revealed draw speed as the most influencing parameter. Cell viability tests revealed a non-cytotoxic biopolymer blend. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. U.S. Involvement in the LHC

    DOE PAGES

    Green, Dan

    2016-12-14

    The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.

  18. Quasi-stable injection channels in a wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiltshire-Turkay, Mara; Farmer, John P.; Pukhov, Alexander

    2016-05-15

    The influence of initial position on the acceleration of externally injected electrons in a plasma wakefield is investigated. Test-particle simulations show previously unobserved complex structure in the parameter space, with quasi-stable injection channels forming for particles injected in narrow regions away from the wake centre. Particles injected into these channels remain in the wake for a considerable time after dephasing and as a result achieve significantly higher energy than their neighbours. The result is relevant to both the planning and optimisation of experiments making use of external injection.

  19. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    PubMed

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  20. The Shift in Emphasis From Risk-Based to Age-Based Hepatitis C Virus (HCV) Testing in the US Tends to Remove Injection Drug Use From Discourse on HCV.

    PubMed

    Jordan, Ashly E; Perlman, David C

    2017-02-23

    Hepatitis C virus (HCV) infection is hyperendemic among people who inject drugs; nonsterile drug injection is the principle risk for HCV acquisition. Due to gaps in the HCV care continuum, there have been recommendations in the United States emphasizing age-rather than risk-based testing strategies. The central research focus of this project is to explore the meanings and implications of the shift in emphasis from risk-based to age-based HCV testing with regard to people who use drugs. Content analysis and critical discourse analysis, informed by eco-social theory, were used to examine relevant documents. Fifteen documents were assessed for eligibility; 6 documents comprised the final set reviewed. In content analysis, age-based testing was both mentioned more frequently and was supported more strongly than risk-based testing. Risk-based testing was frequently mentioned in terms minimizing its use and drug use was often mentioned only euphemistically. The reframed emphasis largely removed discussion of injection drug use from discussion of HCV risks. Shifting the emphasis of HCV testing from testing based on specific routes of transmission and risk to testing based on age removes injection drug use from HCV discourse. This has the potential to either facilitate HCV care for drug users or to further stigmatize and marginalize drug use and people who use drugs. The potential implications of this shift in testing emphasis for public health merit further investigation.

  1. Residual Limb Hyperhidrosis Managed by Botulinum Toxin Injections, Enhanced by the Iodine-Starch Test: A Case Report.

    PubMed

    Hansen, Colby R; Godfrey, Bradeigh

    2017-04-01

    Hyperhidrosis of the residual limb is a common condition affecting patients with amputations. The iodine-starch test is used by dermatologists to identify focal areas of hyperhidrosis before treatment with botulinum toxin. Here, we describe a case of a patient with a transtibial amputation with moderate-to-severe hyperhidrosis who received intradermal botulinum toxin injections to treat residual limb hyperhidrosis, with particular emphasis given to the utility of the iodine-starch test in managing this common condition. The iodine-starch test successfully identified hyperhidrotic areas before treatment as well as confirmed the physiologic anhidrotic effect of the botulinum toxin treatment. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Production and installation of the LHC low-beta triplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Bossert, R.; DiMarco, J.

    2005-09-01

    The LHC performance depends critically on the low-{beta}, triplets, located on either side of the four interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain extremely high heat loads and have an excellent field quality. A collaboration of CERN, Fermilab and KEK was formed in 1996 to design and build the triplet systems, and after nine years of joint effort the production has been completed in 2005. We retrace the main events of the project and present the design features and performance of the low-{beta} quadrupoles, built by KEKmore » and Fermilab, as well as of other vital elements of the triplet. The tunnel installation of the first triplet and plans for commissioning in the LHC are also presented. Apart from the excellent technical results, the construction of the LHC low-{beta} triplets has been a highly enriching experience combining harmoniously the different competences and approaches to engineering in a style reminiscent of high energy physics experiment collaborations, and rarely before achieved in construction of an accelerator.« less

  3. Creating the Primordial Quark-Gluon Plasma at the LHC

    NASA Astrophysics Data System (ADS)

    Harris, John W.

    2013-04-01

    Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.

  4. Air Liquides Contribution to the CERN Lhc Refrigeration System

    NASA Astrophysics Data System (ADS)

    Dauguet, P.; Gistau-Baguer, G. M.; Briend, P.; Hilbert, B.; Monneret, E.; Villard, J. C.; Marot, G.; Delcayre, F.; Mantileri, C.; Hamber, F.; Courty, J. C.; Hirel, P.; Cohu, A.; Moussavi, H.

    2008-03-01

    The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is a superconducting machine over 27 km in circumference. Its magnets and cavities require helium refrigeration and liquefaction over the temperature range of 1.8 K to 300 K. This is the largest cryogenic system in the world with respect to the needed cryogenic power: 144-kW equivalent power at 4.5 K. The LHC cryogenic system is composed of 8×18 kW at 4.5 K refrigerators, 8×2.4 kW at 1.8 K systems, 5 main valve boxes, more than 27 km of helium transfer lines and around 300 service modules connecting the transfer line to the magnet and cavity strings. More than half of these components have been designed, manufactured, installed and commissioned by Air Liquide. Due to the huge size of the project, the engineering, construction and commissioning of the equipment has lasted for 8 years, from the first order of equipment in 1998 to final commissioning in 2006. Specifications, architecture and the Air Liquide design of major components of the LHC Refrigeration System are presented in this paper.

  5. Intercontinental Multi-Domain Monitoring for LHC with perfSONAR

    NASA Astrophysics Data System (ADS)

    Vicinanza, D.

    2012-12-01

    The Large Hadron Collider (LHC) is currently running at CERN in Geneva, Switzerland. Physicists are using LHC to recreate the conditions just after the Big Bang, by colliding two beams of particles and heavy ions head-on at very high energy. The project is generating more than 15 TB of raw data per year, plus 10 TB of “event summary data”. This data is sent out from CERN to eleven Tier 1 research centres in Europe, Asia, and North America using a multi-gigabits Optical Private Network (OPN), the LHCOPN. Tier 1 sites are then connected to 100+ academic and research institutions in the world (the Tier 2s) through a Multipoint to Multipoint network, the LHC Open Network Environment (LHCONE). Network monitoring on such complex network architecture to ensure robust and reliable operation is of crucial importance. The chosen approach for monitoring the OPN and ONE is based on the perfSONAR framework, which is designed for multi-domain monitoring environments. perfSONAR (www.perfsonar.net) is an infrastructure for performance monitoring data exchange between networks, making it easier to solve performance problems occurring between network measurement points interconnected through several network domains.

  6. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  7. Injectable Chitosan/β-Glycerophosphate System for Sustained Release: Gelation Study, Structural Investigation, and Erosion Tests.

    PubMed

    Dalmoro, Annalisa; Abrami, Michela; Galzerano, Barbara; Bochicchio, Sabrina; Barba, Anna Angela; Grassi, Mario; Larobina, Domenico

    2017-01-01

    Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/β-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Determination of the event collision time with the ALICE detector at the LHC

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.

    2017-02-01

    Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp, p-Pb and Pb-Pb) during the first period of data taking of LHC (RUN 1).

  9. Constraining Elko dark matter at the LHC with monophoton events

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Dias, M.; de Campos, F.; Duarte, L.; Hoff da Silva, J. M.

    2018-02-01

    A mass-dimension-one fermion, also known as Elko, constitutes a dark-matter candidate which might interact with photons at the tree level in a specific fashion. In this work, we investigate the constraints imposed by unitarity and LHC data on this type of interactions using the search for new physics in monophoton events. We found that Elkos which can explain the dark matter relic abundance mainly through electromagnetic interactions are excluded at the 95% CL by the 8 TeV LHC data for masses up to 1 TeV.

  10. Pc as Physics Computer for Lhc ?

    NASA Astrophysics Data System (ADS)

    Jarp, Sverre; Simmins, Antony; Tang, Hong; Yaari, R.

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group, of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments.

  11. The MoEDAL Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-04-01

    In 2010 the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the 7th international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. The MoEDAL detector is like a giant camera ready to reveal "photographic" evidence for new physics and also to actually trap long-lived new particles for further study. The MoEDAL experiment will significantly expand the horizon for discovery at the LHC, in a complementary way. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big-bang unfurl at the earliest times.

  12. Histopathological and immunohistochemical changes in the testes of rabbits after injection with the growth promoter boldenone.

    PubMed

    Tousson, Ehab; El-Moghazy, Mostafa; Massoud, Ahmed; Akel, Amani

    2012-03-01

    Recently, boldenone (androgenic steroid) is used in improvement of the growth and food conversion in food-producing animals. In addition, it is used by bodybuilders during both off-season and precontest, where it is well known for increasing vascularity while preparing for a bodybuilding contest. The present study was designed to investigate the possible effect of growth promoter boldenone undecylenate on the structure and functions of rabbit testes. A total of 32 adult New Zealand rabbits were divided into 4 groups. The first group in the control group includes animals that were intramuscularly injected with olive oil and dissected after 3 weeks. Three experimental groups include animals that receive 1, 2, and 3 intramuscular injections of 5 mg/kg body weight boldenone, and dissected after 3, 6, and 9 weeks, respectively. Treating rabbits with boldenone increased the testosterone levels compared to the control group. Seminiferous tubules of the rabbit testis treated with boldenone showed reduced development and degeneration of the germinal epithelium, leading to debris and syncytial cell formation in the lumina of seminiferous tubules. Our immunohistochemical results indicated severe reduction in proliferating cell nuclear antigen-positive spermatogonia in boldenone-treated animals as compared to the control group. These findings explain the common phenomena among athletics and bodybuilders who suffer from infertility as they were injected with some drugs such as steroids (boldenone) to build muscles.

  13. Less-simplified models of dark matter for direct detection and the LHC

    NASA Astrophysics Data System (ADS)

    Choudhury, Arghya; Kowalska, Kamila; Roszkowski, Leszek; Sessolo, Enrico Maria; Williams, Andrew J.

    2016-04-01

    We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators' mass. We derive the strongest limits for combinations of vector + scalar, vector + "squark", and "squark" + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances.

  14. Active waste-injection systems in Florida, 1976

    USGS Publications Warehouse

    Vecchioli, John; McKenzie, D.J.; Pascale, C.A.; Wilson, W.E.

    1979-01-01

    As of the end of 1976, seven systems were injecting liquid wastes into Florida 's subsurface environment at a combined average rate of 15 million gallons per day. This report presents for each of these systems information on the kind and amount of waste injected and type of pretreatment, construction characteristics of the injection and monitor wells, type of test and monitoring data available, and brief discussion of any operational problems experienced. (Kosco-USGS)

  15. Psychometric Evaluation of a Turkish Version of the Diabetes Fear of Self-injecting and Self-testing Questionnaire (D-FISQ).

    PubMed

    Celik, Selda; Pinar, Rukiye

    2016-09-01

    To examine the psychometric properties of a Turkish version of the Diabetes Fear of Injecting and Self-testing Questionnaire (D-FISQ). Forward-backward translation of the D-FISQ from English into Turkish was conducted. Original English and translated forms were examined by a panel group. Validity was investigated using content, confirmatory factor analysis, and divergent validity. Reliability was assessed using Cronbach α values, item-total correlations, and intraclass correlations. The sample comprised 350 patients with diabetes. Data were analyzed using SPSS 15.0 for Windows and LISREL 8. The content validity index for the panel members was .90, which indicated perfect content validity; items in D-FISQ were clear, concise, readable, and distinct. Confirmatory factor analysis confirmed the original construct of the D-FISQ. All items had factor loadings higher than the recommended level of .40. The D-FISQ scores were discriminated by the level of anxiety. Reliability results were also satisfactory. Cronbach α values were within ideal limits. Item-total correlation coefficient ranged from .72 to .86. In terms of test-retest reliability, intraclass correlation coefficient was found to be over .90. D-FISQ is a valid and reliable questionnaire in assessing needle-prick fear among Turkish patients with diabetes. We recommend performing the Turkish D-FISQ in determining and screening patients with diabetes who have fear related to self-insulin injection and finger-prick test. Thus, health care professionals should be aware of the potential consequences of injection fear such as insulin misuse and poor self-monitoring of blood glucose, which may have unfavorable effects on optimal diabetes management. Copyright © 2016. Published by Elsevier B.V.

  16. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGES

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; ...

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ ~0 1, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ ~ 1, stop t ~ 1 or chargino χ ~± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a largermore » Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /E T events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ ~± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ ~ ±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  17. Supersymmetric dark matter after LHC run 1

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, tilde{χ }^01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau tilde{τ }1, stop tilde{t}1 or chargino tilde{χ }^± 1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the {tilde{τ }_1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for / E_T events and long-lived charged particles, whereas their H / A funnel, focus-point and tilde{χ }^± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is tilde{χ }^± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  18. An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Dutee, Francis J

    1941-01-01

    A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.

  19. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  20. Federated data storage system prototype for LHC experiments and data intensive science

    NASA Astrophysics Data System (ADS)

    Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Ryabinkin, E.; Zarochentsev, A.

    2017-10-01

    Rapid increase of data volume from the experiments running at the Large Hadron Collider (LHC) prompted physics computing community to evaluate new data handling and processing solutions. Russian grid sites and universities’ clusters scattered over a large area aim at the task of uniting their resources for future productive work, at the same time giving an opportunity to support large physics collaborations. In our project we address the fundamental problem of designing a computing architecture to integrate distributed storage resources for LHC experiments and other data-intensive science applications and to provide access to data from heterogeneous computing facilities. Studies include development and implementation of federated data storage prototype for Worldwide LHC Computing Grid (WLCG) centres of different levels and University clusters within one National Cloud. The prototype is based on computing resources located in Moscow, Dubna, Saint Petersburg, Gatchina and Geneva. This project intends to implement a federated distributed storage for all kind of operations such as read/write/transfer and access via WAN from Grid centres, university clusters, supercomputers, academic and commercial clouds. The efficiency and performance of the system are demonstrated using synthetic and experiment-specific tests including real data processing and analysis workflows from ATLAS and ALICE experiments, as well as compute-intensive bioinformatics applications (PALEOMIX) running on supercomputers. We present topology and architecture of the designed system, report performance and statistics for different access patterns and show how federated data storage can be used efficiently by physicists and biologists. We also describe how sharing data on a widely distributed storage system can lead to a new computing model and reformations of computing style, for instance how bioinformatics program running on supercomputers can read/write data from the federated storage.

  1. Blood-Injection-Injury (B-I-I) Specific Phobia Affects the Outcome of Hypoxic Challenge Testing.

    PubMed

    Spurling, Kristofer J; McGoldrick, Veronica P

    2017-05-01

    Blood-injection-injury (B-I-I) phobia is capable of producing inaccurate hypoxic challenge testing results due to anxiety-induced hyperventilation. A 69-yr-old woman with a history of hypersensitivity pneumonitis, restrictive spirometry, exercise desaturation requiring supplementary oxygen on mobilizing, reduced DLco, and B-I-I phobia was referred for hypoxic challenge testing (HCT) to assess in-flight oxygen requirements. HCT was performed by breathing a 15% FIo2 gas mixture, simulating the available oxygen in ambient air onboard aircraft pressurized to an equivalent altitude of 8000 ft. Spo2 fell to a nadir value of 81% during HCT, although it rapidly increased to 89% during the first of two attempts at blood gas sampling. A resultant blood gas sample showed an acceptable Po2 outside the criteria for recommending in-flight oxygen and a reduced Pco2. Entering the nadir Spo2 value into the Severinghaus equation gives an estimated arterial Po2 of 6 kPa (45 mmHg), which was felt to be more representative of resting values during HCT, and in-flight oxygen was recommended. While hyperventilation is an expected response to hypoxia, transient rises in Spo2 coinciding with threat of injury are likely to be attributable to emotional stress-induced hyperventilation, characteristic of B-I-I specific phobia and expected during the anticipation of exteroceptive threat, even in normal subjects. In summary, should excessive hyperventilation be detected during HCT and coincide with transient increases in Spo2, HCT should be repeated using Spo2 only as a guide to the level of hypoxemia, and Spo2 maintained using supplementary oxygen in accordance with alternative methods described in guidelines.Spurling KJ, McGoldrick VP. Blood-injection-injury (B-I-I) specific phobia affects the outcome of hypoxic challenge testing. Aerosp Med Hum Perform. 2017; 88(5):503-506.

  2. From RHIC to LHC: Lessons on the QGP

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich

    2011-10-01

    Recent data from heavy-ion collisions at RHIC and LHC, together with significant advances in theory, have allowed us to make significant first steps in proceeding from a qualitative understanding of high energy collision dynamics to a quantitative characterization of the transport properties of the hot and dense QCD matter created in these collisions. The almost perfectly liquid nature of the Quark-Gluon Plasma (QGP) created at RHIC has recently also been confirmed at the much higher LHC energies, and we can now constrain the specific QGP shear viscosity (η / s) QGP to within a factor of 2.5 of its conjectured lower quantum bound. Viscous hydrodynamics, coupled to a microscopic hadron cascade at late times, has proven to be an extremely successful and highly predictive model for the QGP evolution at RHIC and LHC. The experimental discovery of higher order harmonic flow coefficients and their theoretically predicted differential sensitivity to shear viscosity promises additional gains in precision by about a factor 5 in (η / s) QGP for the very near future. The observed modification of jets and suppression of high-pT hadrons confirms the picture of the QGP as a strongly coupled colored liquid, and recent LHC data yield strong constraints on parton energy loss models, putting significant strain on some theoretical approaches, tuned to RHIC data, that are based on leading-order perturbative QCD. Thermal photon radiation provides important cross-checks on the early stages of dynamical evolution models and constrains the initial QGP temperature, but the recently measured strong photon elliptic flow challenges our present understanding of photon emission rates in the hadronic phase. Recent progress in developing a complete theoretical model for all stages of the QGP fireball expansion, from strong fluctuating gluon fields at its beginning to final hadronic freeze-out, and remaining challenges will be discussed. Work supported by DOE (grants DE-SC0004286 and DE

  3. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation.

    PubMed

    Luna, M; Gastone, F; Tosco, T; Sethi, R; Velimirovic, M; Gemoets, J; Muyshondt, R; Sapion, H; Klaas, N; Bastiaens, L

    2015-10-01

    The paper reports a pilot injection test of microsized zerovalent iron (mZVI) dispersed in a guar gum shear thinning solution. The test was performed in the framework of the EU research project AQUAREHAB in a site in Belgium contaminated by chlorinated aliphatic hydrocarbons (CAHs). The field application was aimed to overcome those critical aspects which hinder mZVI field injection, mainly due to the colloidal instability of ZVI-based suspensions. The iron slurry properties (iron particles size and concentration, polymeric stabilizer type and concentration, slurry viscosity) were designed in the laboratory based on several tests (reactivity tests towards contaminants, sedimentation tests and rheological measurements). The particles were delivered into the aquifer through an injection well specifically designed for controlled-pressure delivery (approximately 10 bars). The well characteristics and the critical pressure of the aquifer (i.e. the injection pressure above which fracturing occurs) were assessed via two innovative injection step rate tests, one performed with water and the other one with guar gum. Based on laboratory and field preliminary tests, a flow regime at the threshold between permeation and preferential flow was selected for mZVI delivery, as a compromise between the desired homogeneous distribution of the mZVI around the injection point (ensured by permeation flow) and the fast and effective injection of the slurry (guaranteed by high discharge rates and injection pressure, resulting in the generation of preferential flow paths). A monitoring setup was designed and installed for the real-time monitoring of relevant parameters during injection, and for a fast determination of the spatial mZVI distribution after injection via non-invasive magnetic susceptibility measurements. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  5. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  6. Finding the strong CP problem at the LHC

    NASA Astrophysics Data System (ADS)

    D'Agnolo, Raffaele Tito; Hook, Anson

    2016-11-01

    We show that a class of parity based solutions to the strong CP problem predicts new colored particles with mass at the TeV scale, due to constraints from Planck suppressed operators. The new particles are copies of the Standard Model quarks and leptons. The new quarks can be produced at the LHC and are either collider stable or decay into Standard Model quarks through a Higgs, a W or a Z boson. We discuss some simple but generic predictions of the models for the LHC and find signatures not related to the traditional solutions of the hierarchy problem. We thus provide alternative motivation for new physics searches at the weak scale. We also briefly discuss the cosmological history of these models and how to obtain successful baryogenesis.

  7. Radio observations of GRB 100418a: Test of an energy injection model explaining long-lasting GRB afterglows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moin, A.; Wang, Z.; Chandra, P.

    We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-termmore » monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.« less

  8. Low HIV testing rate and its correlates among men who inject drugs in Iran.

    PubMed

    Shokoohi, Mostafa; Karamouzian, Mohammad; Osooli, Mehdi; Sharifi, Hamid; Fahimfar, Noushin; Haghdoost, AliAkbar; Zamani, Omid; Mirzazadeh, Ali

    2016-06-01

    Iran has a concentrated HIV epidemic among people who inject drugs (PWID). Low HIV testing uptake could contribute to the significant number HIV-infected PWID, who go undiagnosed. This study aims to assess HIV testing uptake and its correlates among PWID in Iran. Data were collected through a national cross-sectional bio-behavioral study in 2010. Adult male HIV-negative PWID were included in the current analysis. All estimates were adjusted for the clustering effect of the sampling sites. Multivariable logistic regression was used to examine the correlates of recent HIV testing and adjusted odds ratios (AOR) were reported. Out of the 2146 eligible PWID for this study, 49.8% reported having ever tested for HIV. However, only 24.9% had tested in the previous year and received their test results. Around 65.2% of PWID knew an HIV testing site. In the multivariable analysis, knowing an HIV testing site (AOR=13.9; P-value<0.001), ≥24 years of age (AOR=3.30; P-value=0.027), and multiple incarcerations (AOR=1.71; P-value<0.001) were positively, and a monthly income of ≥65 US dollar (AOR=0.23; P-value=0.009) was negatively associated with having been tested and received the results. Despite the availability of free HIV counselling and testing for PWID in Iran, only one-fourth of adult male PWID had been tested for HIV and received their results. Implementing policies and strategies to normalize routine HIV testing among PWID are crucial steps to help curb the epidemic among Iranian PWID. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Search for gauge extensions of the MSSM at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Ahmed; Demir, Durmus A.; Department of Physics, Izmir Institute of Technology, IZTECH, TR35430 Izmir

    2009-05-01

    The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of themore » MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+Ee{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC.« less

  10. Electrokinetic focusing injection methods on microfluidic devices.

    PubMed

    Fu, Lung-Ming; Yang, Ruey-Jen; Lee, Gwo-Bin

    2003-04-15

    This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.

  11. QCD matter thermalization at the RHIC and the LHC

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Cheng, Luan; El, Andrej; Gallmeister, Kai; Greiner, Carsten

    2009-06-01

    Employing the perturbative QCD inspired parton cascade, we investigate kinetic and chemical equilibration of the partonic matter created in central heavy ion collisions at RHIC and LHC energies. Two types of initial conditions are chosen. One is generated by the model of wounded nucleons using the PYTHIA event generator and Glauber geometry. Another is considered as a color glass condensate. We show that kinetic equilibration is almost independent of the chosen initial conditions, whereas there is a sensitive dependence for chemical equilibration. The time scale of thermalization lies between 1 and 1.5 fm/c. The final parton transverse energy obtained from BAMPS calculations is compared with the RHIC data and is estimated for the LHC energy.

  12. Microcellular nanocomposite injection molding process

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt

    2003-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...

  13. ηc production in photon-induced interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.

    2018-05-01

    In this paper we investigate the ηc production by photon-photon and photon-hadron interactions in p p and p A collisions at the LHC energies. The inclusive and diffractive contributions for the ηc photoproduction are estimated using the nonrelativistic quantum chromodynamics (NRQCD) formalism. We estimate the rapidity and transverse momentum distributions for the ηc photoproduction in hadronic collisions at the LHC and present our estimate for the total cross sections at the Run 2 energies. A comparison with the predictions for the exclusive ηc photoproduction, which is a direct probe of the odderon, is also presented.

  14. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    Straessner, Arno

    2018-04-16

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  15. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    NASA Astrophysics Data System (ADS)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  16. Electrokinetic injection techniques in microfluidic chips.

    PubMed

    Fu, L M; Yang, R J; Lee, G B; Liu, H H

    2002-10-01

    The separation efficiency of a microfluidic chip is influenced to a significant degree by the flow field conditions within the injection microchannel. Therefore, an understanding of the physics of the flow within this channel is beneficial in the design and operation of such a system. The configuration of an injection system is determined by the volume of the sample plug that is to be delivered to the separation process. Accordingly, this paper addresses the design and testing of injection systems with a variety of configurations, including a simple cross, a double-T, and a triple-T configuration. This paper also presents the design of a unique multi-T injection configuration. Each injection system cycles through a predetermined series of steps, in which the electric field magnitude and distribution within the various channels is strictly manipulated, to effectuate a virtual valve. The uniquemulti-T configuration injection system presented within this paper has the ability to simulate the functions of the cross, double-T, and triple-T systems through appropriate manipulations of the electric field within its various channels. In other words, the proposed design successfully combines several conventional injection systems within a single microfluidic chip.

  17. Associations between injection risk and community disadvantage among suburban injection drug users in southwestern Connecticut, USA.

    PubMed

    Heimer, Robert; Barbour, Russell; Palacios, Wilson R; Nichols, Lisa G; Grau, Lauretta E

    2014-03-01

    Increases in drug abuse, injection, and opioid overdoses in suburban communities led us to study injectors residing in suburban communities in southwestern Connecticut, US. We sought to understand the influence of residence on risk and injection-associated diseases. Injectors were recruited by respondent-driven sampling and interviewed about sociodemographics, somatic and mental health, injection risk, and interactions with healthcare, harm reduction, substance abuse treatment, and criminal justice systems. HIV, hepatitis B and C (HBV and HCV) serological testing was also conducted. Our sample was consistent in geographic distribution and age to the general population and to the patterns of heroin-associated overdose deaths in the suburban towns. High rates of interaction with drug abuse treatment and criminal justice systems contrasted with scant use of harm reduction services. The only factors associated with both dependent variables-residence in less disadvantaged census tracts and more injection risk-were younger age and injecting in one's own residence. This contrasts with the common association among urban injectors of injection-associated risk behaviors and residence in disadvantaged communities. Poor social support and moderate/severe depression were associated with risky injection practices (but not residence in specific classes of census tracts), suggesting that a region-wide dual diagnosis approach to the expansion of harm reduction services could be effective at reducing the negative consequences of injection drug use.

  18. Catching Collisions in the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruguiele, Claudia; Hirschauer, Jim

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  19. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2018-01-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  20. Dynamical scales for multi-TeV top-pair production at the LHC

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Heymes, David; Mitov, Alexander

    2017-04-01

    We calculate all major differential distributions with stable top-quarks at the LHC. The calculation covers the multi-TeV range that will be explored during LHC Run II and beyond. Our results are in the form of high-quality binned distributions. We offer predictions based on three different parton distribution function (pdf) sets. In the near future we will make our results available also in the more flexible fastNLO format that allows fast re-computation with any other pdf set. In order to be able to extend our calculation into the multi-TeV range we have had to derive a set of dynamic scales. Such scales are selected based on the principle of fastest perturbative convergence applied to the differential and inclusive cross-section. Many observations from our study are likely to be applicable and useful to other precision processes at the LHC. With scale uncertainty now under good control, pdfs arise as the leading source of uncertainty for TeV top production. Based on our findings, true precision in the boosted regime will likely only be possible after new and improved pdf sets appear. We expect that LHC top-quark data will play an important role in this process.

  1. Using integral dispersion relations to extend the LHC reach for new physics

    NASA Astrophysics Data System (ADS)

    Denton, Peter B.; Weiler, Thomas J.

    2014-02-01

    Many models of electroweak symmetry breaking predict new particles with masses at or just beyond LHC energies. Even if these particles are too massive to be produced on-shell at the LHC, it may be possible to see evidence of their existence through the use of integral dispersion relations (IDRs). Making use of Cauchy's integral formula and the analyticity of the scattering amplitude, IDRs are sensitive in principle to changes in the cross section at arbitrarily large energies. We investigate some models of new physics. We find that a sudden, order-one increase in the cross section above new particle mass thresholds can be inferred well below the threshold energy. On the other hand, for two more physical models of particle production, we show that the reach in energy and the signal strength of the IDR technique is greatly reduced. The peak sensitivity for the IDR technique is shown to occur when the new particle masses are near the machine energy, an energy where direct production of new particles is kinematically disallowed, phase-space suppressed, or, if applicable, suppressed by the soft parton distribution functions. Thus, IDRs do extend the reach of the LHC, but only to a window around Mχ˜√sLHC .

  2. Pre-Test CFD for the Design and Execution of the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.

    2014-01-01

    With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to

  3. Cross-border injection drug use and HIV and hepatitis C virus seropositivity among people who inject drugs in San Diego, California.

    PubMed

    Horyniak, Danielle; Wagner, Karla D; Armenta, Richard F; Cuevas-Mota, Jazmine; Hendrickson, Erik; Garfein, Richard S

    2017-09-01

    The prevalence of HIV and Hepatitis C Virus (HCV) are significantly lower among people who inject drugs (PWID) in San Diego, CA, USA compared with PWID in Tijuana, Mexico, located directly across the border. We investigated associations between cross-border injection drug use (IDU), HIV and HCV seroprevalence and engagement in injecting risk behaviours while on each side of the border. Using baseline interviews and serologic testing data from STAHR II, a longitudinal cohort study of PWID in San Diego, bivariate and multivariable logistic regression analyses examined associations between recent (past six months) cross-border IDU and HIV and HCV antibody seropositivity, socio-demographics, drug use characteristics, and participants' connections to, and perceptions about Mexico. Chi-squared tests and McNemar tests examined associations between cross-border IDU and injecting risk behaviours. Of the 567 participants (93% U.S.-born, 73% male, median age 45 years), 86 (15%) reported recent cross-border IDU. Cross-border IDU was not associated with HIV (OR: 0.85, 95% CI: 0.37-1.95) or HCV seropositivity (OR: 1.01, 95% CI: 0.62-1.65). Age, identifying as Hispanic or Latino/a, and being concerned about risk of violence when travelling to Mexico were independently associated with decreased odds of recent cross-border IDU. Injecting cocaine at least weekly, having ever lived in Mexico and knowing PWID who reside in Mexico were associated with increased odds of recent cross-border IDU. PWID who reported cross-border IDU were significantly less likely to engage in receptive needle sharing, equipment sharing, and public injection while in Mexico compared with in San Diego (all p<0.001). Prevalence of HIV and HCV infection was similar among PWID who had and had not injected in Mexico, possibly due to practising safer injecting while in Mexico. Research is needed to elucidate contextual factors enabling U.S. PWID to inject safely while in Mexico. Copyright © 2017 Elsevier B.V. All

  4. Streamlining CASTOR to manage the LHC data torrent

    NASA Astrophysics Data System (ADS)

    Lo Presti, G.; Espinal Curull, X.; Cano, E.; Fiorini, B.; Ieri, A.; Murray, S.; Ponce, S.; Sindrilaru, E.

    2014-06-01

    This contribution describes the evolution of the main CERN storage system, CASTOR, as it manages the bulk data stream of the LHC and other CERN experiments, achieving over 90 PB of stored data by the end of LHC Run 1. This evolution was marked by the introduction of policies to optimize the tape sub-system throughput, going towards a cold storage system where data placement is managed by the experiments' production managers. More efficient tape migrations and recalls have been implemented and deployed where bulk meta-data operations greatly reduce the overhead due to small files. A repack facility is now integrated in the system and it has been enhanced in order to automate the repacking of several tens of petabytes, required in 2014 in order to prepare for the next LHC run. Finally the scheduling system has been evolved to integrate the internal monitoring. To efficiently manage the service a solid monitoring infrastructure is required, able to analyze the logs produced by the different components (about 1 kHz of log messages). A new system has been developed and deployed, which uses a transport messaging layer provided by the CERN-IT Agile Infrastructure and exploits technologies including Hadoop and HBase. This enables efficient data mining by making use of MapReduce techniques, and real-time data aggregation and visualization. The outlook for the future is also presented. Directions and possible evolution will be discussed in view of the restart of data taking activities.

  5. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  6. Development of devices for self-injection: using tribological analysis to optimize injection force

    PubMed Central

    Lange, Jakob; Urbanek, Leos; Burren, Stefan

    2016-01-01

    This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in combination with silicone. PMID:27274319

  7. Gauge mediation at the LHC: status and prospects

    DOE PAGES

    Knapen, Simon; Redigolo, Diego

    2017-01-30

    We show that the predictivity of general gauge mediation (GGM) with TeV-scale stops is greatly increased once the Higgs mass constraint is imposed. The most notable results are a strong lower bound on the mass of the gluino and right-handed squarks, and an upper bound on the Higgsino mass. If the μ-parameter is positive, the wino mass is also bounded from above. These constraints relax significantly for high messenger scales and as such long-lived NLSPs are favored in GGM. We identify a small set of most promising topologies for the neutralino/sneutrino NLSP scenarios and estimate the impact of the currentmore » bounds and the sensitivity of the high luminosity LHC. The stau, stop and sbottom NLSP scenarios can be robustly excluded at the high luminosity LHC.« less

  8. Construction of a Direct Water-Injected Two-Stroke Engine for Phased Direct Fuel Injection-High Pressure Charging Investigations

    NASA Technical Reports Server (NTRS)

    Somsel, James P.

    1998-01-01

    The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).

  9. Gaseous Emissions Results from a Three-Cup Flametube Test of a Third-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Podboy, Derek P.; Lee, Phil; Dam, Bidhan

    2017-01-01

    This paper summarizes the development of lean direct injection (LDI) combustor technology at, or in collaboration with, the NASA Glenn Research Center. These configurations differ mainly in fuel-air mixing strategy. The paper reviews the NOx performance and operability characteristics of multiple LDI configurations tested at NASA Glenn.

  10. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP)more » Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed

  11. Policing behaviors, safe injection self-efficacy, and intervening on injection risks: Moderated mediation results from a randomized trial.

    PubMed

    Pitpitan, Eileen V; Patterson, Thomas L; Abramovitz, Daniela; Vera, Alicia; Martinez, Gustavo; Staines, Hugo; Strathdee, Steffanie A

    2016-01-01

    We aim to use conditional or moderated mediation to simultaneously test how and for whom an injection risk intervention was efficacious at reducing receptive needle sharing among female sex workers who inject drugs (FSWs-IDUs) in Mexico. Secondary analysis of data from a randomized trial. A total of 300 FSW-IDUs participated in Mujer Mas Segura in Ciudad Juarez, Mexico, and were randomized to an interactive injection risk intervention or a didactic injection risk intervention. We measured safe injection self-efficacy as the hypothesized mediator and policing behaviors (being arrested and syringe confiscation) as hypothesized moderators. In total, 213 women provided complete data for the current analyses. Conditional (moderated) mediation showed that the intervention affected receptive needle sharing through safe injection self-efficacy among women who experienced syringe confiscation. On average, police syringe confiscation was associated with lower safe injection self-efficacy (p = .04). Among those who experienced syringe confiscation, those who received the interactive (vs. didactic) intervention reported higher self-efficacy, which in turn predicted lower receptive needle sharing (p = .04). Whereas syringe confiscation by the police negatively affected safe injection self-efficacy and ultimately injection risk behavior, our interactive intervention helped to "buffer" this negative impact of police behavior on risky injection practices. The theory-based, active skills building elements included in the interactive condition, which were absent from the didactic condition, helped participants' self-efficacy for safer injection in the face of syringe confiscation. (c) 2015 APA, all rights reserved).

  12. Policing Behaviors, Safe Injection Self-Efficacy, and Intervening on Injection Risks: Moderated Mediation Results from a Randomized Trial

    PubMed Central

    Pitpitan, Eileen V.; Patterson, Thomas L.; Abramovitz, Daniela; Vera, Alicia; Martinez, Gustavo; Staines, Hugo; Strathdee, Steffanie A.

    2015-01-01

    Objective We aim to use conditional, or moderated mediation to simultaneously test how and for whom an injection risk intervention was efficacious at reducing receptive needle sharing among female sex workers who inject drugs (FSWs-IDUs) in Mexico. Methods Secondary analysis of data from a randomized trial. A total of 300 FSW-IDUs participated in Mujer Mas Segura in Ciudad Juarez, Mexico and were randomized to an interactive injection risk intervention or a didactic injection risk intervention. We measured safe injection self-efficacy as the hypothesized mediator, and policing behaviors (being arrested and syringe confiscation) as hypothesized moderators. 213 women provided complete data for the current analyses. Results Conditional (moderated) mediation showed that the intervention affected receptive needle sharing through safe injection self-efficacy among women who experienced syringe confiscation. On average, police syringe confiscation was associated with lower safe injection self-efficacy (p = 0.04). Among those who experienced syringe confiscation, those who received the interactive (vs. didactic) intervention reported higher self-efficacy, which in turn predicted lower receptive needle sharing (p = 0.04). Conclusions Whereas syringe confiscation by the police negatively impacted safe injection self-efficacy and ultimately injection risk behavior, our interactive intervention helped to “buffer” this negative impact of police behavior on risky injection practices. The theory-based, active skills building elements included in the interactive condition, which were absent from the didactic condition, helped participants’ self-efficacy for safer injection in the face of syringe confiscation. PMID:26120851

  13. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

    DOE PAGES

    Cooley, L. D.; Ghosh, A. K.; Dietderich, D. R.; ...

    2017-06-01

    The High Luminosity Upgrade of the Large Hadron Collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. no.4000207, along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN andmore » LARP. This paper describes the rationale beneath the 0.85 mm diameter strand’s chief parameters, which are 108 or more sub-elements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for ~100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to the HL-LHC specification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the sub-element diameter from 50 to 55 μm, and a Nb:Sn molar ratio of 3.6 instead of 3.4. Furthermore, the statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.« less

  14. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  15. The QuarkNet CMS masterclass: bringing the LHC to students

    NASA Astrophysics Data System (ADS)

    Cecire, Kenneth; McCauley, Thomas

    2016-04-01

    QuarkNet is an educational program which brings high school teachers and their students into the particle physics research community. The program supports research experiences and professional development workshops and provides inquiry-oriented investigations, some using real experimental data. The CMS experiment at the LHC has released several thousand proton-proton collision events for use in education and outreach. QuarkNet, in collaboration with CMS, has developed a physics masterclass and e-Lab based on this data. A masterclass is a day-long educational workshop where high school students travel to nearby universities and research laboratories. There they learn from LHC physicists about the basics of particle physics and detectors. They then perform a simple measurement using LHC data, and share their results with other students around the world via videoconference. Since 2011 thousands of students from over 25 countries have participated in the CMS masterclass as organized by QuarkNet and the International Particle Physics Outreach Group (IPPOG).We describe here the masterclass exercise: the physics, the online event display and database preparation behind it, the measurement the students undertake, their results and experiences, and future plans for the exercise.

  16. The performance of the CASTOR calorimeter during LHC Run 2

    NASA Astrophysics Data System (ADS)

    van de Klundert, Merijn H. F.; CMS Collaboration

    2017-11-01

    CASTOR is an electromagnetic and hadronic tungsten-quartz sampling Cerenkov calorimeter located at the Compact Muon Solenoid experiment at the Large Hadron Collider. The detector has pseudorapidity borders at -5.2 and -6.6. An overview is presented on the various aspects of CASTOR’s performance and their relations during LHC Run 2. The equalisation of CASTOR’s channels is performed using beam-halo muons. Thereafter, CASTOR’s pedestal spectrum is studied. It is shown that noise estimates which are extracted using a fit, give on average a 10% lower threshold than statistical estimates. Gain correction factors, which are needed for the intercalibration, are obtained using a statistical, in-situ applicable method. The results of this method are shown to be reasonably consistent with laboratory measurements. Penultimately the absolute calibration is discussed, with emphasis on the relation between the scale uncertainty and CASTOR’s alignment. It is shown that the alignment’s contribution to the systematic uncertainty is decreased by over 50% in LHC Run 2 w.r.t. LHC Run 1. Finally generalisations of the conclusions to other subsystems and future improvements are discussed.

  17. Comparison of Nerve Stimulation-guided Axillary Brachial Plexus Block, Single Injection versus Four Injections: A Prospective Randomized Double-blind Study.

    PubMed

    Badiger, Santoshi V; Desai, Sameer N

    2017-01-01

    A variety of techniques have been described for the axillary block using nerve stimulator, either with single injection, two, three, or four separate injections. Identification of all the four nerves is more difficult and time-consuming than other methods. Aim of the present study is to compare success rate, onset, and duration of sensory and motor anesthesia of axillary block using nerve stimulator, either with single injection after identification of any one of the four nerves or four separate injections following identification of each of nerve. Prospective, randomized, double-blind study. Patients undergoing forearm and hand surgeries under axillary block. One hundred patients, aged 18-75 years, were randomly allocated into two groups of 50 each. Axillary block was performed under the guidance of nerve stimulator with a mixture of 18 ml of 1.5% lignocaine and 18 ml of 0.5% bupivacaine. In the first group ( n = 50), all 36 ml of local anesthetic was injected after the identification of motor response to any one of the nerves and in Group 2, all the four nerves were identified by the motor response, and 9 ml of local anesthetic was injected at each of the nerves. The success rate of the block, onset, and duration of sensory and motor block was assessed. Categorical variables were compared using the Chi-square test, and continuous variables were compared using independent t -test. The success rate of the block with four injection technique was higher compared to single-injection technique (84% vs. 56%, P = 0.02). Four injection groups had a faster onset of sensory and motor block and prolonged duration of analgesia compared to single-injection group ( P < 0.001). There were no significant differences in the incidence of accidental arterial puncture and hemodynamic parameter between the groups. Identification of all the four nerves produced higher success rate and better quality of the block when compared to single-injection technique.

  18. Cross-border drug injection relationships among injection drug users in Tijuana, Mexico

    PubMed Central

    Wagner, Karla D.; Pollini, Robin A.; Patterson, Thomas L.; Lozada, Remedios; Ojeda, Victoria D.; Brouwer, Kimberly C.; Vera, Alicia; Volkmann, Tyson A.; Strathdee, Steffanie A.

    2010-01-01

    Background International borders are unique social and environmental contexts characterized by high levels of mobility. Among drug users, mobility increases risk for human immunodeficiency virus (HIV) in part through its effects on the social environment. However, the social dynamics of drug users living in border regions are understudied. Methods 1056 injection drug users (IDUs) residing in Tijuana, Mexico were recruited using respondent-driven sampling (RDS) from 2006 to 2007, and underwent surveys and testing for HIV, syphilis, and tuberculosis (TB). Using logistic regression on baseline data, we identified correlates of having ever injected drugs with someone from the US. Results Almost half (48%) reported ever injecting drugs with someone from the US. In RDS-adjusted logistic regression, factors independently associated with having ever injected with someone from the US included: having greater than middle school education (Adjusted Odds Ratio [AOR] 2.91; 95% Confidence Interval [C.I.] 1.52, 5.91), speaking English (AOR 3.24, 95% C.I. 1.96, 5.36), age (AOR 1.10 per year; 95% C.I. 1.07, 1.14), age at initiation of injection drug use (AOR 0.90 per year; 95% C.I. 0.86, 0.94), homelessness (AOR 2.61; 95% C.I. 1.27, 5.39), and having ever been incarcerated (AOR 11.82; 95% C.I., 5.22, 26.77). No associations with HIV, syphilis, TB, drug use, or injection risk behavior were detected. Conclusion Findings suggest that IDU networks in Mexico and the US may transcend international borders, with implications for cross-border transmission of infectious disease. Binational programs and policies need to consider the structure and geographic distribution of drug using networks. PMID:20889270

  19. Searching for new physics with three-particle correlations in pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Sanchis-Lozano, Miguel-Angel; Sarkisyan-Grinbaum, Edward K.

    2018-06-01

    New phenomena involving pseudorapidity and azimuthal correlations among final-state particles in pp collisions at the LHC can hint at the existence of hidden sectors beyond the Standard Model. In this paper we rely on a correlated-cluster picture of multiparticle production, which was shown to account for the ridge effect, to assess the effect of a hidden sector on three-particle correlations concluding that there is a potential signature of new physics that can be directly tested by experiments using well-known techniques.

  20. Anesthetic efficacy of the supplemental intraosseous injection of 3% mepivacaine in irreversible pulpitis.

    PubMed

    Reisman, D; Reader, A; Nist, R; Beck, M; Weaver, J

    1997-12-01

    To determine the efficacy of a supplemental intraosseous injection of 3% mepivacaine in mandibular posterior teeth with irreversible pulpitis. Intraosseous injection pain, subjective heart rate increase, and pain ratings during endodontic treatment were also assessed. Forty-eight patients with irreversible pulpitis received conventional inferior alveolar nerve blocks. Electric pulp testing was used to determine pulpal anesthesia. Patients who were positive to the pulp testing, or negative to pulp testing but felt pain during endodontic treatment, received an intraosseous injection of 1.8 ml of 3% mepivacaine. A second intraosseous injection of 3% mepivacaine (1.8 ml) was given if the first injection was unsuccessful. Seventy-five percent of patients required an initial intraosseous injection because of failure to gain pulpal anesthesia. The inferior alveolar block was 25% successful; the first intraosseous injection increased success to 80%. A second intraosseous injection further increased success to 98%. These differences were significant (p < 0.05). Eight percent (4/48) of the initial intraosseous injections resulted in solution being expressed into the oral cavity: these were considered technique failures. For mandibular posterior teeth with irreversible pulpitis, a supplemental intraosseous injection of 3% mepivacaine increased anesthetic success. A second intraosseous injection, when necessary, further improved success.

  1. Bromism caused by mix-formulated analgesic injectables.

    PubMed

    Hsieh, P F; Tsan, Y T; Hung, D Z; Hsu, C L; Lee, Y C; Chang, M H

    2007-12-01

    Bromism, chronic bromide intoxication, can be caused by a variety of medicines, but bromism due to pain-relieving injectable medications has not been reported. In this study, the methods used were internet searching on bromide-containing injectables available in Taiwan and the first case report of bromism due to mixed-formulated injectable medication. Many analgesic/antipyretic and antihistamine injections containing bromides are still being used in Taiwan. They contain sodium bromide up to 1000 mg/ampoule or calcium bromide up to 800 mg/amp. A 25-year-old female suffered from forgetfulness and unstable gait after long-term frequent injections of a preparation to relieve head and neck pain. Blood tests showed hyperchloremia (171 mEq/L) and a negative anion gap (-48.7 mEq/L). Serum bromide measured 2150 mg/L. She recovered completely in 3 days with saline treatment. Many bromide-containing injections are still being used in Taiwan. Clinicians should keep alert on this issue to avoid iatrogenic bromism or making misdiagnoses.

  2. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  3. Development of MQXF: The Nb 3Sn low-β quadrupole for the HiLumi LHC

    DOE PAGES

    Ferracin, P.; G. Ambrosio; Anerella, M.; ...

    2015-12-18

    The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less

  4. Factors associated with HIV testing among male injecting drug users: findings from a cross-sectional behavioural and biological survey in Manipur and Nagaland, India.

    PubMed

    Ganju, Deepika; Ramesh, Sowmya; Saggurti, Niranjan

    2016-06-21

    Although targeted interventions in India require all high-risk groups, including injecting drug users (IDUs), to test for HIV every 6 months, testing uptake among IDUs remains far from universal. Our study estimates the proportion of IDUs who have taken an HIV test and identifies the factors associated with HIV testing uptake in Nagaland and Manipur, two high HIV prevalence states in India where the epidemic is driven by injecting drug use. Data are drawn from the cross-sectional Integrated Behavioural and Biological Assessment (2009) of 1650 male IDUs from two districts each of Manipur and Nagaland. Participants were recruited using respondent-driven sampling (RDS). Descriptive data were analysed using RDSAT 7.1. Multivariate logistic regression analysis was undertaken using STATA 11 to examine the association between HIV testing and socio-demographic, behavioural and programme exposure variables. One third of IDUs reported prior HIV testing, of whom 8 % had tested HIV-positive. Among those without prior testing, 6.2 % tested HIV-positive in the current survey. IDUs aged 25-34 years (adjusted odds ratio (OR) = 1.41; 95 % confidence interval (CI) = 1.03-1.93), married (Adjusted OR = 1.56; 95 % CI = 1.15-2.12), had a paid sexual partner (Adjusted OR = 1.64; 95 % CI = 1.24-2.18), injected drugs for more than 36 months (Adjusted OR = 1.38; 95 % CI = 1.06-1.81), injected frequently (Adjusted OR = 1.49; 95 % CI = 1.12-1.98) and had high-risk perception (Adjusted OR = 1.68; 95 % CI = 1.32-2.14) were more likely than others to test for HIV. Compared to those with no programme exposure, IDUs who received counselling, or counselling and needle/syringe services, were more likely to test for HIV. HIV testing uptake among IDUs is low in Manipur and Nagaland, and a critical group of HIV-positive IDUs who have never tested for HIV are being missed by current programmes. This study identifies key sub

  5. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; ATLAS Collaboration

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  6. Elastic extension of a local analysis facility on external clouds for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Ciaschini, V.; Codispoti, G.; Rinaldi, L.; Aiftimiei, D. C.; Bonacorsi, D.; Calligola, P.; Dal Pra, S.; De Girolamo, D.; Di Maria, R.; Grandi, C.; Michelotto, D.; Panella, M.; Taneja, S.; Semeria, F.

    2017-10-01

    The computing infrastructures serving the LHC experiments have been designed to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, the LHC experiments are exploring the opportunity to access Cloud resources provided by external partners or commercial providers. In this work we present the proof of concept of the elastic extension of a local analysis facility, specifically the Bologna Tier-3 Grid site, for the LHC experiments hosted at the site, on an external OpenStack infrastructure. We focus on the Cloud Bursting of the Grid site using DynFarm, a newly designed tool that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on an OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage.

  7. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (lhc)

    NASA Astrophysics Data System (ADS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  8. Transverse momentum distributions of baryons at LHC energies

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Piskounova, O. I.

    2016-04-01

    Transverse momentum spectra of protons and anti-protons from RHIC (√{ s} = 62 and 200 GeV) and LHC experiments (√{ s} = 0.9 and 7 TeV) have been considered. The data are fitted in the low pT region with the universal formula that includes the value of exponent slope as main parameter. It is seen that the slope of low pT distributions is changing with energy. This effect impacts on the energy dependence of average transverse momenta, which behaves approximately as s0.06 that is similar to the previously observed behavior of Λ-baryon spectra. In addition, the available data on Λc production from LHCb at √{ s} = 7 TeV were also studied. The estimated average is bigger than this value for protons proportionally to masses. The preliminary dependence of hadron average transverse momenta on their masses at LHC energy is presented.

  9. Astrophysical constraints on singlet scalars at LHC

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Masoumi, Ali

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ~ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singlet scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.

  10. Astrophysical constraints on singlet scalars at LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.; Masoumi, Ali, E-mail: mark.hertzberg@tufts.edu, E-mail: ali@cosmos.phy.tufts.edu

    2017-04-01

    We consider the viability of new heavy gauge singlet scalar particles at colliders such as the LHC . Our original motivation for this study came from the possibility of a new heavy particle of mass ∼ TeV decaying significantly into two photons at colliders, such as LHC, but our analysis applies more broadly. We show that there are significant constraints from astrophysics and cosmology on the simplest UV complete models that incorporate such new particles and its associated collider signal. The simplest and most obvious UV complete model that incorporates such signals is that it arises from a new singletmore » scalar (or pseudo-scalar) coupled to a new electrically charged and colored heavy fermion. Here we show that these new fermions (and anti-fermions) would be produced in the early universe, then form new color singlet heavy mesons with light quarks, obtain a non-negligible freeze-out abundance, and remain in kinetic equilibrium until decoupling. These heavy mesons possess interesting phenomenology, dependent on their charge, including forming new bound states with electrons and protons. We show that a significant number of these heavy states would survive for the age of the universe and an appreciable number would eventually be contained within the earth and solar system. We show that this leads to detectable consequences, including the production of highly energetic events from annihilations on earth, new spectral lines, and, spectacularly, the destabilization of stars. The lack of detection of these consequences rules out such simple UV completions, putting pressure on the viability of such new particles at LHC . To incorporate such a scalar would require either much more complicated UV completions or even further new physics that provides a decay channel for the associated fermion.« less

  11. Numerical simulations of a proposed hollow electron beam collimator for the LHC upgrade at CERN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Previtali, V.; Stancari, G.; Valishev, A.

    2013-07-12

    In the last years the LHC collimation system has been performing over the expectations, providing the machine with a nearly perfect e cient cleaning system[1]. Nonetheless, when trying to push the existing accelerators to - and over - their design limits, all the accelerator components are required to boost their performances. In particular, in view of the high luminosity frontier for the LHC, the increased intensity would ask for a more e cient cleaning system. In this framework innovative collimation solutions are under evaluation[2]: one option is the usage of an hollow electron lens for beam halo cleaning. This workmore » intends to study the applicability of an the hollow electron lens for the LHC collimation, by evaluating the case of the existing Tevatron e-lens applied to the nominal LHC 7 TeV beam. New e-lens operation modes are here proposed to standard enhance the electron lens halo removal e ect.« less

  12. Uncertainties on exclusive diffractive Higgs boson and jet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechambre, A.; CEA/IRFU/Service de physique des particules, CEA/Saclay; Kepka, O.

    2011-03-01

    Two theoretical descriptions of exclusive diffractive jets and Higgs production at the LHC were implemented into the FPMC generator: the Khoze, Martin, Ryskin model and the Cudell, Hernandez, Ivanov, Dechambre exclusive model. We then study the uncertainties. We compare their predictions to the CDF measurement and discuss the possibility of constraining the exclusive Higgs production at the LHC with early measurements of exclusive jets. We show that the present theoretical uncertainties can be reduced with such data by a factor of 5.

  13. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  14. Prevalence and risk factors for injection site skin infections among people who inject drugs (PWID) in Tehran.

    PubMed

    Noroozi, Mehdi; Armoon, Bahram; Ghisvand, Hesam; Noroozi, Alireza; Karimy, Mahmood; Bazrafshan, Mohammad Rafi; Marshall, Brandon D L; Dieji, Bahman

    2018-05-20

    Injection drug use is one of the major public health problems in Iran. Injection drug use is associated with numerous negative health outcomes, such as blood-borne infections (HIV, HCV) and injection site skin infections (abscesses, cellulitis). The aim of this study was to determine prevalence of injection site skin infections and its associated risk factors among people who inject drugs (PWID) in Tehran, Iran. The cross-sectional study was conducted from March to August 2016 in Tehran province. A total of 500 PWID were recruited by convenience and snowball sampling from Drop-in Centers (DIC) in the South of Tehran. Our primary outcomes were self-report of ever having injection sites skin infections and receiving treatment for them. We first examined associations between individual variables and lifetime history of having injection site infections in bivariate analysis using the chi-square or Fisher's exact tests, as appropriate. Variables with P-value <.2 were included in a multiple logistic regression model. Overall, 40% (CI95%: 30.3%, 52.2%) of participants reported ever having an injection site infection. In the multivariable model, those with low socioeconomic status (AOR = 2.4, P = .03), self-reported as HIV positive (AOR =1.6, P = .01), reporting more than 3 injections per day (AOR = 4.1, P = .03) and reuse of their own syringes (AOR = 8.5, P = .03) were more likely to have injection sites skin infections. PWID who used needle and syringe program (NSP) services were less likely to report injection site infections (AOR = 0.5, P = .04). We have identified several risk factors for injection sites infections among PWID, including frequency of injection per day, reuse of their own syringes, not using NSP services, HIV status, socioeconomic status with skin infections in PWID. Prevention strategies to reduce skin infections should focus on high-risk injection behaviors and improving access to NSP services. © 2018 Wiley Periodicals, Inc.

  15. Summary of Test Results of MQXFS1 - The First Short Model 150 mm Aperture $$Nb_3Sn$$ Quadrupole for the High-Luminosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynev, S.; et al.

    The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less

  16. Mobile Technology to Increase HIV/HCV Testing and Overdose Prevention/Response among People Who Inject Drugs

    PubMed Central

    Aronson, Ian David; Bennett, Alexander; Marsch, Lisa A.; Bania, Theodore C.

    2017-01-01

    The United States faces dramatically increasing rates of opioid overdose deaths, as well as persistent ongoing problems of undiagnosed HIV and HCV infection. These problems commonly occur together in substance using populations that have limited, if any, access to primary care and other routine health services. To collectively address all three issues, we developed the Mobile Intervention Kit (MIK), a tablet computer-based intervention designed to provide overdose prevention and response training and to facilitate HIV/HCV testing in community settings. Intervention content was produced in collaboration with experienced street outreach workers who appear onscreen in a series of educational videos. A preliminary pilot test of the MIK in a Bronx, NY street outreach syringe exchange program found the MIK is feasible and highly acceptable to a population of people who inject drugs. Participants accepted HIV and HCV testing post-intervention, as well as naloxone training to reverse overdose events. Pre-post tests also showed significant increases in knowledge of overdose prevention, HIV testing procedures, and asymptomatic HCV infection. Future iterations of the MIK can be optimized for use in community as well as clinical settings nationwide, and perhaps globally, with a focus on underserved urban populations. PMID:28879174

  17. Mobile Technology to Increase HIV/HCV Testing and Overdose Prevention/Response among People Who Inject Drugs.

    PubMed

    Aronson, Ian David; Bennett, Alexander; Marsch, Lisa A; Bania, Theodore C

    2017-01-01

    The United States faces dramatically increasing rates of opioid overdose deaths, as well as persistent ongoing problems of undiagnosed HIV and HCV infection. These problems commonly occur together in substance using populations that have limited, if any, access to primary care and other routine health services. To collectively address all three issues, we developed the Mobile Intervention Kit (MIK), a tablet computer-based intervention designed to provide overdose prevention and response training and to facilitate HIV/HCV testing in community settings. Intervention content was produced in collaboration with experienced street outreach workers who appear onscreen in a series of educational videos. A preliminary pilot test of the MIK in a Bronx, NY street outreach syringe exchange program found the MIK is feasible and highly acceptable to a population of people who inject drugs. Participants accepted HIV and HCV testing post-intervention, as well as naloxone training to reverse overdose events. Pre-post tests also showed significant increases in knowledge of overdose prevention, HIV testing procedures, and asymptomatic HCV infection. Future iterations of the MIK can be optimized for use in community as well as clinical settings nationwide, and perhaps globally, with a focus on underserved urban populations.

  18. Increased Uptake of HCV Testing through a Community-Based Educational Intervention in Difficult-to-Reach People Who Inject Drugs: Results from the ANRS-AERLI Study

    PubMed Central

    Roux, Perrine; Rojas Castro, Daniela; Ndiaye, Khadim; Debrus, Marie; Protopopescu, Camélia; Le Gall, Jean-Marie; Haas, Aurélie; Mora, Marion; Spire, Bruno; Suzan-Monti, Marie; Carrieri, Patrizia

    2016-01-01

    Aims The community-based AERLI intervention provided training and education to people who inject drugs (PWID) about HIV and HCV transmission risk reduction, with a focus on drug injecting practices, other injection-related complications, and access to HIV and HCV testing and care. We hypothesized that in such a population where HCV prevalence is very high and where few know their HCV serostatus, AERLI would lead to increased HCV testing. Methods The national multisite intervention study ANRS-AERLI consisted in assessing the impact of an injection-centered face-to-face educational session offered in volunteer harm reduction (HR) centers (“with intervention”) compared with standard HR centers (“without intervention”). The study included 271 PWID interviewed on three occasions: enrolment, 6 and 12 months. Participants in the intervention group received at least one face-to-face educational session during the first 6 months. Measurements The primary outcome of this analysis was reporting to have been tested for HCV during the previous 6 months. Statistical analyses used a two-step Heckman approach to account for bias arising from the non-randomized clustering design. This approach identified factors associated with HCV testing during the previous 6 months. Findings Of the 271 participants, 127 and 144 were enrolled in the control and intervention groups, respectively. Of the latter, 113 received at least one educational session. For the present analysis, we selected 114 and 88 participants eligible for HCV testing in the control and intervention groups, respectively. In the intervention group, 44% of participants reported having being tested for HCV during the previous 6 months at enrolment and 85% at 6 months or 12 months. In the control group, these percentages were 51% at enrolment and 78% at 12 months. Multivariable analyses showed that participants who received at least one educational session during follow-up were more likely to report HCV testing

  19. Quench Protection Studies of 11T Nb$$_3$$Sn Dipole Models for LHC Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  20. Final Technical Report for ``Paths to Discovery at the LHC : Dark Matter and Track Triggering"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Kristian

    Particle Dark Matter (DM) is perhaps the most compelling and experimentally well-motivated new physics scenario anticipated at the Large Hadron Collider (LHC). The DE-SC0014073 award allowed the PI to define and pursue a path to the discovery of Dark Matter in Run-2 of the LHC with the Compact Muon Solenoid (CMS) experiment. CMS can probe regions of Dark Matter phase-space that direct and indirect detection experiments are unable to constrain. The PI’s team initiated the exploration of these regions, searching specifically for the associated production of Dark Matter with top quarks. The effort focuses on the high-yield, hadronic decays ofmore » W bosons produced in top decay, which provides the highest sensitivity to DM produced via through low-mass spin-0 mediators. The group developed identification algorithms that achieve high efficiency and purity in the selection of hadronic top decays, and analysis techniques that provide powerful signal discrimination in Run-2. The ultimate reach of new physics searches with CMS will be established at the high-luminosity LHC (HL-LHC). To fully realize the sensitivity the HL-LHC promises, CMS must minimize the impact of soft, inelastic (“pileup”) interactions on the real-time “trigger” system the experiment uses for data refinement. Charged particle trajectory information (“tracking”) will be essential for pileup mitigation at the HL-LHC. The award allowed the PI’s team to develop firmware-based data delivery and track fitting algorithms for an unprecedented, real-time tracking trigger to sustain the experiment’s sensitivity to new physics in the next decade.« less

  1. Probing dark matter at the LHC using vector boson fusion processes.

    PubMed

    Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-09

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000  fb(-1).

  2. HIV infection and risk, prevention, and testing behaviors among injecting drug users -- National HIV Behavioral Surveillance System, 20 U.S. cities, 2009.

    PubMed

    Broz, Dita; Wejnert, Cyprian; Pham, Huong T; DiNenno, Elizabeth; Heffelfinger, James D; Cribbin, Melissa; Krishna, Nevin; Teshale, Eyasu H; Paz-Bailey, Gabriela

    2014-07-04

    At the end of 2009, an estimated 1,148,200 persons aged ≥13 years were living with human immunodeficiency virus (HIV) infection in the United States. Despite the recent decreases in HIV infection attributed to injection drug use, 8% of new HIV infections in 2010 occurred among injecting drug users (IDUs). June-December 2009. The National HIV Behavioral Surveillance System (NHBS) collects HIV prevalence and risk behavior data in selected metropolitan statistical areas (MSAs) from three populations at high risk for HIV infection: men who have sex with men, IDUs, and heterosexual adults at increased risk for HIV infection. Data for NHBS are collected in rotating cycles. For the 2009 NHBS cycle, IDUs were recruited in 20 participating MSAs using respondent-driven sampling, a peer-referral sampling method. Participants were eligible if they were aged ≥18 years, lived in a participating MSA, were able to complete a behavioral survey in English or Spanish, and reported that they had injected drugs during the past 12 months. Consenting participants completed an interviewer-administered (face-to-face), anonymous standardized questionnaire about HIV-associated behaviors, and all participants were offered anonymous HIV testing. Analysis of 2009 NHBS data represents the first large assessment of HIV prevalence among IDUs in the United States in >10 years. This report summarizes two separate analyses using unweighted data from 10,200 eligible IDUs in 20 MSAs from the second collection cycle of NHBS in 2009. Both an HIV infection analysis and a behavioral analysis were conducted. Different denominators were used in each analysis because of the order and type of exclusion criteria applied. For the HIV infection analysis, of the 10,200 eligible participants, 10,090 had a valid HIV test result, of whom 906 (9%) tested positive for HIV (range: 2%-19% by MSA). When 509 participants who reported receiving a previous positive HIV test result were excluded from this analysis, 4

  3. "The first shot": the context of first injection of illicit drugs, ongoing injecting practices, and hepatitis C infection in Rio de Janeiro, Brazil.

    PubMed

    Oliveira, Maria de Lourdes Aguiar; Hacker, Mariana A; Oliveira, Sabrina Alberti Nóbrega de; Telles, Paulo Roberto; O, Kycia Maria Rodrigues do; Yoshida, Clara Fumiko Tachibana; Bastos, Francisco I

    2006-04-01

    The context of first drug injection and its association with ongoing injecting practices and HCV (hepatitis C virus) infection were investigated. Injection drug users (IDUs) (N = 606) were recruited in "drug scenes" (public places, bars) in Rio de Janeiro, Brazil, interviewed, and tested for HCV. Sharing of needles/syringes was more prevalent at the first injection (51.3%) than at the baseline interview (36.8%). Those who shared syringes/needles at first injection were more likely to be currently engaged in direct/indirect sharing practices. Among young injectors (< 30 years), those reporting sharing of needles/ syringes at the first injection were about four times more likely to have been infected by HCV. Hepatitis C virus prevalence among active IDUs (n = 272) was 11%. Prison history and longer duration of drug injection were identified as independent predictors of HCV infection. To effectively curb HCV transmission among IDUs and minimize harms associated with risk behaviors, preventive strategies should target individuals initiating drug injection beginning with their very first injection and discourage the transition from non-injecting use to the self-injection of illicit drugs.

  4. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  5. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  6. The landscape of W± and Z bosons produced in pp collisions up to LHC energies

    NASA Astrophysics Data System (ADS)

    Basso, Eduardo; Bourrely, Claude; Pasechnik, Roman; Soffer, Jacques

    2017-10-01

    We consider a selection of recent experimental results on electroweak W± , Z gauge boson production in pp collisions at BNL RHIC and CERN LHC energies in comparison to prediction of perturbative QCD calculations based on different sets of NLO parton distribution functions including the statistical PDF model known from fits to the DIS data. We show that the current statistical PDF parametrization (fitted to the DIS data only) underestimates the LHC data on W± , Z gauge boson production cross sections at the NLO by about 20%. This suggests that there is a need to refit the parameters of the statistical PDF including the latest LHC data.

  7. Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, J.M.; Liu, J.C.; Prinz, A.

    2009-12-11

    As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less

  8. Proposed studies of strongly coupled plasmas at the future FAIR and LHC facilities: the HEDgeHOB collaboration

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lomonosov, I. V.; Shutov, A.; Udrea, S.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Jacobi, J.; Kain, V.; Kuster, M.; Ni, P.; Piriz, A. R.; Schmidt, R.; Spiller, P.; Varentsov, D.; Zioutas, K.

    2006-04-01

    Detailed theoretical studies have shown that intense heavy-ion beams that will be generated at the future Facility for Antiprotons and Ion Research (FAIR) (Henning 2004 Nucl. Instrum. Methods B 214 211) at Darmstadt will be a very efficient tool to create high-energy-density (HED) states in matter including strongly coupled plasmas. In this paper we show, with the help of two-dimensional numerical simulations, the interesting physical states that can be achieved considering different beam intensities using zinc as a test material. Another very interesting experiment that can be performed using the intense heavy-ion beam at FAIR will be generation of low-entropy compression of a test material such as hydrogen that is enclosed in a cylindrical shell of a high-Z material such as lead or gold. In such an experiment, one can study the problem of hydrogen metallization and the interiors of giant planets. Moreover, we discuss an interesting method to diagnose the HED matter that is at the centre of the Sun. We have also carried out simulations to study the damage caused by the full impact of the Large Hadron Collider (LHC) beam on a superconducting magnet. An interesting outcome of this study is that the LHC beam can induce HED states in matter.

  9. Signal injection as a fault detection technique.

    PubMed

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.

  10. Signal Injection as a Fault Detection Technique

    PubMed Central

    Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi

    2011-01-01

    Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801

  11. Progress on the Development of the Nb 3Sn 11T Dipole for the High Luminosity Upgrade of LHC

    DOE PAGES

    Savary, Frederic; Bajko, Marta; Bordini, Bernardo; ...

    2017-02-08

    The high-luminosity large hadron collider (LHC) project at CERN entered into the production phase in October 2015 after the completion of the design study phase. In the meantime, the development of the 11 T dipole needed for the upgrade of the collimation system of the machine made significant progress with very good performance of the first two-in-one magnet model of 2-m length made at CERN. The 11 T dipole, which is more powerful than the current main dipoles of LHC, can be made shorter with an equivalent integrated field. This will allow creating space for the installation of additional collimatorsmore » in specific locations of the dispersion suppressor regions. Following tests carried out during heavy ions runs of LHC in the end of 2015, and a more recent review of the project budget, the installation plan for the 11 T dipole was revised. Consequently, one 11 T dipole full assembly containing two 11 T dipoles of 5.5-m length will be installed on either side of interaction point 7. These two units shall be installed during the long shutdown 2 in years 2019-2020. After a brief reminder on the design features of the magnet, this paper describes the current status of the development activities, in particular the short model programme and the construction of the first full scale prototype at CERN. Finally, critical operations such as the reaction treatment and the coil impregnation are discussed, the quench performance tests results of the two-in-one model are reviewed and finally, the plan toward the production for the long shut down 2 is described.« less

  12. Muon g -2 and dark matter suggest nonuniversal gaugino masses: S U (5 )×A4 case study at the LHC

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander S.; King, Steve F.; Schaefers, Patrick B.

    2018-06-01

    We argue that in order to account for the muon anomalous magnetic moment g -2 , dark matter and LHC data, nonuniversal gaugino masses Mi at the high scale are required in the framework of the minimal supersymmetric standard model. We also need a right-handed smuon μ˜R with a mass around 100 GeV, evading LHC searches due to the proximity of a neutralino χ˜10 several GeV lighter which allows successful dark matter. We discuss such a scenario in the framework of an S U (5 ) grand unified theory (GUT) combined with A4 family symmetry, where the three 5 ¯ representations form a single triplet of A4 with a unified soft mass mF, while the three 10 representations are singlets of A4 with independent soft masses mT 1,mT 2,mT 3. Although mT 2 (and hence μ˜R) may be light, the muon g -2 and relic density also requires light M1≃250 GeV , which is incompatible with universal gaugino masses due to LHC constraints on M2 and M3 arising from gaugino searches. After showing that universal gaugino masses M1 /2 at the GUT scale are excluded by gluino searches, we provide a series of benchmarks which show that while M1=M2≪M3 is in tension with 8 and 13 TeV LHC data, M1LHC data. We focus on a region of parameter space that has not been studied in detail before being characterized by low Higgsino mass μ ≈-300 GeV , as required by the muon g -2 . The LHC will be able to fully test this scenario with the upgraded luminosity via muon-dominated tri- and dilepton signatures resulting from Higgsino-dominated χ˜1±χ˜20 and χ˜1+χ˜1- production.

  13. A flippon related singlet at the LHC II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjun; Maxin, James A.; Mayes, Van E.

    2016-06-28

    Here, we consider the 750 GeV diphoton resonance at the 13 TeV LHC in the ℱ-SU(5) model with a Standard Model (SM) singlet field which couples to TeV-scale vector-like particles, dubbed flippons. This singlet field assumes the role of the 750 GeV resonance, with production via gluon fusion and subsequent decay to a diphoton via the vector-like particle loops. We present a numerical analysis showing that the observed 8 TeV and 13 TeV diphoton production cross-sections can be generated in the model space with realistic electric charges and Yukawa couplings for light vector-like masses. We further discuss the experimental viabilitymore » of light vector-like masses in a General No-Scale ℱ-SU(5) model, offering a few benchmark scenarios in this consistent GUT that can satisfy all experimental constraints imposed by the LHC and other essential experiments.« less

  14. Injection Locking Techniques for Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-01

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  15. Pena to review LHC agreement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, A.

    The US government plans to review its tentative agreement with Europe to help build the Large Hadron Collider (LHC), to make sure it is a good deal for this country. The review, announced last week by Energy Secretary Federico Pena, comes at the urging of Representative James Sensenbrenner (RWI), who chairs the House Science Committee. Agency officials say they are confident that most of the lawmaker`s concerns can be met with only minor changes to the proposed partnership, while European managers insist that the current agreement already addresses most of Sensenbrenner`s worries.

  16. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  17. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    NASA Astrophysics Data System (ADS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  18. Anesthetic efficacy of a repeated intraosseous injection given 30 min following an inferior alveolar nerve block/intraosseous injection.

    PubMed

    Reitz, J; Reader, A; Nist, R; Beck, M; Meyers, W J

    1998-01-01

    To determine whether a repeated intraosseous (IO) injection would increase or prolong pulpal anesthesia, we measured the degree of anesthesia obtained by a repeated IO injection given 30 min following a combination inferior alveolar nerve block/intraosseous injection (IAN/IO) in mandibular second premolars and in first and second molars. Using a repeated-measures design, we randomly assigned 38 subjects to receive two combinations of injections at two separate appointments. The combinations were an IAN/IO injection followed approximately 30 min later by another IO injection of 0.9 ml of 2% lidocaine with 1:100,000 epinephrine and a combination IAN/IO injection followed approximately 30 min later by a mock IO injection. The second premolar, first molar, and second molar were blindly tested with an Analytic Technology pulp tester at 2-min cycles for 120 min postinjection. Anesthesia was considered successful when two consecutive readings of 80 were obtained. One hundred percent of the subjects had lip numbness with IAN/IO and with IAN/IO plus repeated IO techniques. Rates of anesthetic success for the IAN/IO and for the IAN/IO plus repeated IO injection, respectively, were 100% and 97% for the second premolar, 95% and 95% for the first molar, and 87% and 87% for the second molar. The repeated IO injection increased pulpal anesthesia for approximately 14 min in the second premolar and for 6 min in the first molar, but no statistically significant differences (P > 0.05) were shown. In conclusion, the repeated IO injection of 0.9 ml of 2% lidocaine with 1:100,000 epinephrine given 30 min following a combination IAN/IO injection did not significantly increase pulpal anesthesia in mandibular second premolars or in first and second molars.

  19. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  20. HIV and injecting drug use in Indonesia: epidemiology and national response.

    PubMed

    Afriandi, Irvan; Aditama, Tjandra Yoga; Mustikawati, Dyah; Oktavia, Martiani; Alisjahbana, Bachti; Riono, Pandu

    2009-07-01

    Indonesia is facing one of the most rapidly growing HIV-epidemics in Asia. Risk behaviour associated with injecting drug use, such as sharing contaminated needles, is the main risk factor for HIV infection. Among the general population the prevalence of HIV-infection is still low (0.2%), but up to 50% or more of the estimated 145.000 - 170.000 injecting drug users are already HIV-positive. Overrepresentation of injecting drug users and continued risk behavior inside Indonesian prisons contribute to spread of HIV. Through sexual contacts, HIV is transmitted from current or previous injecting drug users to their non-injecting sexual partners; 10-20% of this group may already be infected. The national response targeted to limit spread of HIV through injecting drug use has included needle and syringe program (NSP), methadone maintenance treatment (MMT), voluntary counseling and testing (VCT), and outreach program as priority programs. However coverage and utilization of the harm reduction services is still limited, but effective integration with HIV testing and treatment is expanding. By 2008, there were 110 service points for NSP and 24 operational MMT clinics. Nevertheless, utilization of these services has been less satisfactory and their effectiveness has been questioned. Besides effective prevention, HIV- testing and earlier treatment of HIV-seropositve individuals, including those with a history of injecting drug use, will help control the growing HIV-epidemic in Indonesia.

  1. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  2. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  3. Dual fuel injection piggyback controller system

    NASA Astrophysics Data System (ADS)

    Muji, Siti Zarina Mohd.; Hassanal, Muhammad Amirul Hafeez; Lee, Chua King; Fawzi, Mas; Zulkifli, Fathul Hakim

    2017-09-01

    Dual-fuel injection is an effort to reduce the dependency on diesel and gasoline fuel. Generally, there are two approaches to implement the dual-fuel injection in car system. The first approach is changing the whole injector of the car engine, the consequence is excessive high cost. Alternatively, it also can be achieved by manipulating the system's control signal especially the Electronic Control Unit (ECU) signal. Hence, the study focuses to develop a dual injection timing controller system that likely adopted to control injection time and quantity of compressed natural gas (CNG) and diesel fuel. In this system, Raspberry Pi 3 reacts as main controller unit to receive ECU signal, analyze it and then manipulate its duty cycle to be fed into the Electronic Driver Unit (EDU). The manipulation has changed the duty cycle to two pulses instead of single pulse. A particular pulse mainly used to control injection of diesel fuel and another pulse controls injection of Compressed Natural Gas (CNG). The test indicated promising results that the system can be implemented in the car as piggyback system. This article, which was originally published online on 14 September 2017, contained an error in the acknowledgment section. The corrected acknowledgment appears in the Corrigendum attached to the pdf.

  4. A fault injection experiment using the AIRLAB Diagnostic Emulation Facility

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Mangum, Scott; Scheper, Charlotte

    1988-01-01

    The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.

  5. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitterer, M.; Stancari, G.; Valishev, A.

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  6. Performance of ARCHITECT HCV core antigen test with specimens from US plasma donors and injecting drug users.

    PubMed

    Mixson-Hayden, Tonya; Dawson, George J; Teshale, Eyasu; Le, Thao; Cheng, Kevin; Drobeniuc, Jan; Ward, John; Kamili, Saleem

    2015-05-01

    Hepatitis C virus (HCV) core antigen is a serological marker of current HCV infection. The aim of this study was mainly to evaluate the performance characteristics of the ARCHITECT HCV core antigen assay with specimens from US plasma donors and injecting drug users. A total of 551 serum and plasma samples with known anti-HCV and HCV RNA status were tested for HCV core antigen using the Abbott ARCHITECT HCV core antigen test. HCV core antigen was detectable in 100% of US plasma donor samples collected during the pre-seroconversion phase of infection (anti-HCV negative/HCV RNA positive). Overall sensitivity of the HCV core antigen assay was 88.9-94.3% in samples collected after seroconversion. The correlation between HCV core antigen and HCV RNA titers was 0.959. HCV core antigen testing may be reliably used to identify current HCV infection. Published by Elsevier B.V.

  7. FOREWORD: International Conference on Heavy Ion Collisions in the LHC Era

    NASA Astrophysics Data System (ADS)

    Arleo, Francois; Salgado, Carlos A.; Tran Thanh Van, Jean

    2013-03-01

    The International Conference on Heavy Ion Collisions in the LHC Era was held in Quy Nhon, Vietnam, on 16-20 July 2012. The series Rencontres du Vietnam, created by Jean Tran Thanh Van in 1993, consists of international meetings aimed to stimulate the development of advanced research in Vietnam and more generally in South East Asia, and to establish collaborative research networks with Western scientific communities. This conference, as the whole series, also supports the International Center for Interdisciplinary Science Education being built in Quy Nhon. The articles published in this volume present the latest results from the heavy-ion collision programs of RHIC and LHC as well as the corresponding theoretical interpretation and future perspectives. Lower energy nuclear programs were also reviewed, providing a rather complete picture of the state-of-the-art in the field. We wish to thank the sponsors of the Conference on Heavy Ion Collisions in the LHC Era: the European Research Council; Xunta de Galicia (Spain); EMMI (Germany) and Agence Nationale de la Recherche (France) François Arleo (Laboratoire d'Annecy-le-Vieux de Physique Théorique, France) Francois Arleo, Carlos A Salgado and Jean Tran Thanh Van Conference photograph

  8. Mono-W dark matter signals at the LHC: simplified model analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K., E-mail: n.bell@unimelb.edu.au, E-mail: yi.cai@unimelb.edu.au, E-mail: rleane@physics.unimelb.edu.au

    2016-01-01

    We study mono-W signals of dark matter (DM) production at the LHC, in the context of gauge invariant renormalizable models. We analyze two simplified models, one involving an s-channel Z' mediator and the other a t-channel colored scalar mediator, and consider examples in which the DM-quark couplings are either isospin conserving or isospin violating after electroweak symmetry breaking. While previous work on mono-W signals have focused on isospin violating EFTs, obtaining very strong limits, we find that isospin violating effects are small once such physics is embedded into a gauge invariant simplified model. We thus find that the 8 TeVmore » mono-W results are much less constraining than those arising from mono-jet searches. Considering both the leptonic (mono-lepton) and hadronic (mono fat jet) decays of the W, we determine the 14 TeV LHC reach of the mono-W searches with 3000 fb{sup −1} of data. While a mono-W signal would provide an important complement to a mono-jet discovery channel, existing constraints on these models imply it will be a challenging signal to observe at the 14 TeV LHC.« less

  9. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  10. Media-fill simulation tests in manual and robotic aseptic preparation of injection solutions in syringes.

    PubMed

    Krämer, Irene; Federici, Matteo; Kaiser, Vanessa; Thiesen, Judith

    2016-04-01

    The purpose of this study was to evaluate the contamination rate of media-fill products either prepared automated with a robotic system (APOTECAchemo™) or prepared manually at cytotoxic workbenches in the same cleanroom environment and by experienced operators. Media fills were completed by microbiological environmental control in the critical zones and used to validate the cleaning and disinfection procedures of the robotic system. The aseptic preparation of patient individual ready-to-use injection solutions was simulated by using double concentrated tryptic soy broth as growth medium, water for injection and plastic syringes as primary packaging materials. Media fills were either prepared automated (500 units) in the robot or manually (500 units) in cytotoxic workbenches in the same cleanroom over a period of 18 working days. The test solutions were incubated at room temperature (22℃) over 4 weeks. Products were visually inspected for turbidity after a 2-week and 4-week period. Following incubation, growth promotion tests were performed with Staphylococcus epidermidis. During the media-fill procedures, passive air monitoring was performed with settle plates and surface monitoring with contact plates on predefined locations as well as fingerprints. The plates got incubated for 5-7 days at room temperature, followed by 2-3 days at 30-35℃ and the colony forming units (cfu) counted after both periods. The robot was cleaned and disinfected according to the established standard operating procedure on two working days prior to the media-fill session, while on six other working days only six critical components were sanitized at the end of the media-fill sessions. Every day UV irradiation was operated for 4 h after finishing work. None of the 1000 media-fill products prepared in the two different settings showed turbidity after the incubation period thereby indicating no contamination with microorganisms. All products remained uniform, clear, and light

  11. Slepton pair production at the LHC in NLO+NLL with resummation-improved parton densities

    NASA Astrophysics Data System (ADS)

    Fiaschi, Juri; Klasen, Michael

    2018-03-01

    Novel PDFs taking into account resummation-improved matrix elements, albeit only in the fit of a reduced data set, allow for consistent NLO+NLL calculations of slepton pair production at the LHC. We apply a factorisation method to this process that minimises the effect of the data set reduction, avoids the problem of outlier replicas in the NNPDF method for PDF uncertainties and preserves the reduction of the scale uncertainty. For Run II of the LHC, left-handed selectron/smuon, right-handed and maximally mixed stau production, we confirm that the consistent use of threshold-improved PDFs partially compensates the resummation contributions in the matrix elements. Together with the reduction of the scale uncertainty at NLO+NLL, the described method further increases the reliability of slepton pair production cross sections at the LHC.

  12. Higgs radiation off top quarks at the Tevatron and the LHC.

    PubMed

    Beenakker, W; Dittmaier, S; Krämer, M; Plümper, B; Spira, M; Zerwas, P M

    2001-11-12

    Higgs bosons can be searched for in the channels pp macro/pp-->tt macro H + X at the Fermilab Tevatron and the Cern Large Hadron Collider (LHC). We have calculated the QCD corrections to these processes in the standard model at next-to-leading order. The higher-order corrections reduce the renormalization and factorization scale dependence considerably and stabilize the theoretical predictions for the cross sections. At the central scale mu = (2m(t)+M(H))/2 the properly defined K factors are slightly below unity for the Tevatron (K approximately 0.8) and slightly above unity for the LHC (K approximately 1.2).

  13. An update on blast furnace granular coal injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke andmore » results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.« less

  14. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less

  15. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  16. Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Bonente, Giulia; Ballottari, Matteo; Truong, Thuy B.; Morosinotto, Tomas; Ahn, Tae K.; Fleming, Graham R.; Niyogi, Krishna K.; Bassi, Roberto

    2011-01-01

    In photosynthetic organisms, feedback dissipation of excess absorbed light energy balances harvesting of light with metabolic energy consumption. This mechanism prevents photodamage caused by reactive oxygen species produced by the reaction of chlorophyll (Chl) triplet states with O2. Plants have been found to perform the heat dissipation in specific proteins, binding Chls and carotenoids (Cars), that belong to the Lhc family, while triggering of the process is performed by the PsbS subunit, needed for lumenal pH detection. PsbS is not found in algae, suggesting important differences in energy-dependent quenching (qE) machinery. Consistent with this suggestion, a different Lhc-like gene product, called LhcSR3 (formerly known as LI818) has been found to be essential for qE in Chlamydomonas reinhardtii. In this work, we report the production of two recombinant LhcSR isoforms from C. reinhardtii and their biochemical and spectroscopic characterization. We found the following: (i) LhcSR isoforms are Chl a/b– and xanthophyll-binding proteins, contrary to higher plant PsbS; (ii) the LhcSR3 isoform, accumulating in high light, is a strong quencher of Chl excited states, exhibiting a very fast fluorescence decay, with lifetimes below 100 ps, capable of dissipating excitation energy from neighbor antenna proteins; (iii) the LhcSR3 isoform is highly active in the transient formation of Car radical cation, a species proposed to act as a quencher in the heat dissipation process. Remarkably, the radical cation signal is detected at wavelengths corresponding to the Car lutein, rather than to zeaxanthin, implying that the latter, predominant in plants, is not essential; (iv) LhcSR3 is responsive to low pH, the trigger of non-photochemical quenching, since it binds the non-photochemical quenching inhibitor dicyclohexylcarbodiimide, and increases its energy dissipation properties upon acidification. This is the first report of an isolated Lhc protein constitutively active in

  17. Analysis of Tests of Subsurface Injection, Storage, and Recovery of Freshwater in Lancaster, Antelope Valley, California

    USGS Publications Warehouse

    Phillips, Steven P.; Carlson, Carl S.; Metzger, Loren F.; Howle, James F.; Galloway, Devin L.; Sneed, Michelle; Ikehara, Marti E.; Hudnut, Kenneth W.; King, Nancy E.

    2003-01-01

    Ground-water levels in Lancaster, California, declined more than 200 feet during the 20th century, resulting in reduced ground-water supplies and more than 6 feet of land subsidence. Facing continuing population growth, water managers are seeking solutions to these problems. Injection of imported, treated fresh water into the aquifer system when it is most available and least expensive, for later use during high-demand periods, is being evaluated as part of a management solution. The U.S. Geological Survey, in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency, monitored a pilot injection program, analyzed the hydraulic and subsidence-related effects of injection, and developed a simulation/optimization model to help evaluate the effectiveness of using existing and proposed wells in an injection program for halting the decline of ground-water levels and avoiding future land subsidence while meeting increasing ground-water demand. A variety of methods were used to measure aquifer-system response to injection. Water levels were measured continuously in nested (multi-depth) piezometers and monitoring wells and periodically in other wells that were within several miles of the injection site. Microgravity surveys were done to estimate changes in the elevation of the water table in the absence of wells and to estimate specific yield. Aquifer-system deformation was measured directly and continuously using a dual borehole extensometer and indirectly using continuous Global Positioning System (GPS), first-order spirit leveling, and an array of tiltmeters. The injected water and extracted water were sampled periodically and analyzed for constituents, including chloride and trihalomethanes. Measured injection rates of about 750 gallons per minute (gal/min) per well at the injection site during a 5-month period showed that injection at or above the average extraction rates at that site (about 800 gal/min) was

  18. Single top quark photoproduction at the LHC

    NASA Astrophysics Data System (ADS)

    de Favereau de Jeneret, J.; Ovyn, S.

    2008-08-01

    High-energy photon-proton interactions at the LHC offer interesting possibilities for the study of the electroweak sector up to TeV scale and searches for processes beyond the Standard Model. An analysis of the W associated single top photoproduction has been performed using the adapted MadGraph/MadEvent [F. Maltoni and T. Stelzer, JHEP 0302, (2003) 027; T. Stelzer and W.F. Long, Phys. Commun. 81, (1994) 357-371] and CalcHEP [A. Pukhov, Nucl. Inst. Meth A 502, (2003) 596-598] programs interfaced to the Pythia [T. Sjöstrand et al., Comput. Phys. Commun. 135, (2001) 238] generator and a fast detector simulation program. Event selection and suppression of main backgrounds have been studied. A comparable sensitivity to |V| to those obtained using the standard single top production in pp collisions has been achieved already for 10 fb of integrated luminosity. Photoproduction at the LHC provides also an attractive framework for observation of the anomalous production of single top due to Flavour-Changing Neutral Currents. The sensitivity to anomalous coupling parameters, k and k is presented and indicates that stronger limits can be placed on anomalous couplings after 1 fb.

  19. Measurement of momentum transfer due to adhesive forces: on-ground testing of in-space body injection into geodesic motion.

    PubMed

    Bortoluzzi, D; Benedetti, M; Baglivo, L; De Cecco, M; Vitale, S

    2011-12-01

    In the frame of many scientific space missions, a massive free-falling object is required to mark a geodesic trajectory, i.e., to follow inside a spacecraft an orbit that is determined only by the planetary gravity field. The achievement of high-purity geodesic trajectories sets tight design constraints on the reference sensor that hosts and controls the reference body. Among these, a mechanism may be required to cage the reference body during the spacecraft launch and to inject it into the geodesic trajectory once on-orbit. The separation of the body from the injection mechanism must be realized against the action of adhesion forces, and in the worst case this is performed dynamically, relying on the body's inertia through a quick retraction of the holding finger(s). Unfortunately, this manoeuvre may not avoid transferring some momentum to the body, which may affect or even jeopardize the subsequent spacecraft control if the residual velocity is too large. The transferred momentum measurement facility (TMMF) was developed to reproduce representative conditions of the in-flight dynamic injection and to measure the transferred momentum to the released test mass. In this paper, we describe the design and development of the TMMF together with the achieved measurement performance.

  20. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  1. Non-injection Drug Use and Injection Initiation Assistance among People Who Inject Drugs in Tijuana, Mexico.

    PubMed

    Ben Hamida, Amen; Rafful, Claudia; Jain, Sonia; Sun, Shelly; Gonzalez-Zuniga, Patricia; Rangel, Gudelia; Strathdee, Steffanie A; Werb, Dan

    2018-02-01

    Although most people who inject drugs (PWID) report receiving assistance during injection initiation events, little research has focused on risk factors among PWID for providing injection initiation assistance. We therefore sought to determine the influence of non-injection drug use among PWID on their risk to initiate others. We used generalized estimating equation (GEE) models on longitudinal data among a prospective cohort of PWID in Tijuana, Mexico (Proyecto El Cuete IV), while controlling for potential confounders. At baseline, 534 participants provided data on injection initiation assistance. Overall, 14% reported ever initiating others, with 4% reporting this behavior recently (i.e., in the past 6 months). In a multivariable GEE model, recent non-injection drug use was independently associated with providing injection initiation assistance (adjusted odds ratio [AOR] = 2.42, 95% confidence interval [CI] = 1.39-4.20). Further, in subanalyses examining specific drug types, recent non-injection use of cocaine (AOR = 9.31, 95% CI = 3.98-21.78), heroin (AOR = 4.00, 95% CI = 1.88-8.54), and methamphetamine (AOR = 2.03, 95% CI = 1.16-3.55) were all significantly associated with reporting providing injection initiation assistance. Our findings may have important implications for the development of interventional approaches to reduce injection initiation and related harms. Further research is needed to validate findings and inform future approaches to preventing entry into drug injecting.

  2. Probing Higgs-radion mixing in warped models through complementary searches at the LHC and the ILC

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Huitu, Katri; Maitra, Ushoshi; Patra, Monalisa

    2016-09-01

    We consider the Higgs-radion mixing in the context of warped space extradimensional models with custodial symmetry and investigate the prospects of detecting the mixed radion. Custodial symmetries allow the Kaluza-Klein excitations to be lighter and protect Z b b ¯ to be in agreement with experimental constraints. We perform a complementary study of discovery reaches of the Higgs-radion mixed state at the 13 and 14 TeV LHC and at the 500 and 1000 GeV International Linear Collider (ILC). We carry out a comprehensive analysis of the most significant production and decay modes of the mixed radion in the 80 GeV-1 TeV mass range and indicate the parameter space that can be probed at the LHC and the ILC. There exists a region of the parameter space which can be probed, at the LHC, through the diphoton channel even for a relatively low luminosity of 50 fb-1 . The reach of the four-lepton final state in probing the parameter space is also studied in the context of 14 TeV LHC, for a luminosity of 1000 fb-1 . At the ILC, with an integrated luminosity of 500 fb-1 , we analyze the Z -radion associated production and the W W fusion production, followed by the radion decay into b b ¯ and W+W-. The W W fusion production is favored over the Z -radion associated channel in probing regions of the parameter space beyond the LHC reach. The complementary study at the LHC and the ILC is useful both for the discovery of the radion and the understanding of its mixing sector.

  3. The TOTEM detector at LHC

    NASA Astrophysics Data System (ADS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Berardi, V.; Berretti, M.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M. G.; Ciocci, M. A.; Csanád, M.; Csörgő, T.; Deile, M.; Dénes, E.; Dimovasili, E.; Doubek, M.; Eggert, K.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Janda, M.; Kaˇspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri`, M.; Magazzu`, G.; Minutoli, S.; Niewiadomski, H.; Notarnicola, G.; Novak, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spearman, W.; Spinella, F.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Vacek, V.; Vitek, M.; Whitmore, J.; Wu, J.

    2010-05-01

    The TOTEM experiment, small in size compared to the others at the LHC, is dedicated to the measurement of the total proton-proton cross-sections with a luminosity-independent method and to the study of elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the IP5 interaction point, two tracking telescopes, T1 and T2, will be installed on each side in the pseudo-rapidity region between 3.1 and 6.5, and Roman Pot stations will be placed at distances of 147 and 220 m from IP5. The telescope closest to the interaction point (T1, centred at z=9 m) consists of Cathode Strip Chambers (CSC), while the second one (T2, centred at 13.5 m), makes use of Gas Electron Multipliers (GEM). The proton detectors in the Roman Pots are silicon devices designed by TOTEM with the specific objective of reducing down to a few tens of microns the insensitive area at the edge. High efficiency as close as possible to the physical detector boundary is an essential feature. It maximizes the experimental acceptance for protons scattered elastically or interactively at polar angles down to a few micro-radians at IP5. To measure protons at the lowest possible emission angles, special beam optics have been conceived to optimize proton detection in terms of acceptance and resolution. The read-out of all TOTEM subsystems is based on the custom-developed digital VFAT chip with trigger capability.

  4. The structure of the proton in the LHC precision era

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Harland-Lang, Lucian; Rojo, Juan

    2018-05-01

    We review recent progress in the determination of the parton distribution functions (PDFs) of the proton, with emphasis on the applications for precision phenomenology at the Large Hadron Collider (LHC). First of all, we introduce the general theoretical framework underlying the global QCD analysis of the quark and gluon internal structure of protons. We then present a detailed overview of the hard-scattering measurements, and the corresponding theory predictions, that are used in state-of-the-art PDF fits. We emphasize here the role that higher-order QCD and electroweak corrections play in the description of recent high-precision collider data. We present the methodology used to extract PDFs in global analyses, including the PDF parametrization strategy and the definition and propagation of PDF uncertainties. Then we review and compare the most recent releases from the various PDF fitting collaborations, highlighting their differences and similarities. We discuss the role that QED corrections and photon-initiated contributions play in modern PDF analysis. We provide representative examples of the implications of PDF fits for high-precision LHC phenomenological applications, such as Higgs coupling measurements and searches for high-mass New Physics resonances. We conclude this report by discussing some selected topics relevant for the future of PDF determinations, including the treatment of theoretical uncertainties, the connection with lattice QCD calculations, and the role of PDFs at future high-energy colliders beyond the LHC.

  5. Modeling of beam-induced damage of the LHC tertiary collimators

    NASA Astrophysics Data System (ADS)

    Quaranta, E.; Bertarelli, A.; Bruce, R.; Carra, F.; Cerutti, F.; Lechner, A.; Redaelli, S.; Skordis, E.; Gradassi, P.

    2017-09-01

    Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore crucial for safe operation and for predicting possible limitations in the overall machine performance. For this, a three-step simulation approach is presented, based on tracking simulations followed by calculations of energy deposited in the impacted material and hydrodynamic simulations to predict the thermomechanical effect of the impact. This approach is applied to metallic collimators at the CERN Large Hadron Collider (LHC), which in standard operation intercept halo protons, but risk to be damaged in the case of extraction kicker malfunction. In particular, tertiary collimators protect the aperture bottlenecks, their settings constrain the reach in β* and hence the achievable luminosity at the LHC experiments. Our calculated damage levels provide a very important input on how close to the beam these collimators can be operated without risk of damage. The results of this approach have been used already to push further the performance of the present machine. The risk of damage is even higher in the upgraded high-luminosity LHC with higher beam intensity, for which we quantify existing margins before equipment damage for the proposed baseline settings.

  6. CERN data services for LHC computing

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.

    2017-10-01

    Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.

  7. Comparative Efficacy of Platelet Rich Plasma Injection, Corticosteroid Injection and Ultrasonic Therapy in the Treatment of Periarthritis Shoulder.

    PubMed

    Kothari, Shashank Yeshwant; Srikumar, Venkataraman; Singh, Neha

    2017-05-01

    Periarthritis (PA) shoulder characterised by pain and restricted range of motion has a plethora of treatment options with inconclusive evidence. Platelet Rich Plasma (PRP) is an emerging treatment option and its efficacy needs to be examined and compared with other routine interventions. To assess the efficacy of PRP injection and compare it with corticosteroid injection and ultrasonic therapy in the treatment of PA shoulder. Patients with PA shoulder (n=195) were randomised to receive single injection of PRP (2 ml) or corticosteroid (80 mg of methylprednisolone) or ultrasonic therapy (seven sittings in two weeks; 1.5 W/cm 2 , 1 MHz, continuous mode). All participants were also advised to perform a home based 10 minute exercise therapy. The primary outcome measure was active range of motion of the shoulder. Secondary outcome measures used were Visual Analogue Scale (VAS) for pain and a shortened version of Disabilities of the Arm, Shoulder and Hand (QuickDASH) for function. Participants were evaluated at 0, 3, 6 and 12 weeks. Chi-square test, one way and repeated measures of ANOVA tests were used to determine significant differences. PRP treatment resulted in statistically significant improvements over corticosteroid and ultrasonic therapy in active as well as passive range of motion of shoulder, VAS and QuickDASH at 12 weeks. At six weeks, PRP treatment resulted in statistically significant improvements over ultrasonic therapy in VAS and QuickDASH. No major adverse effects were observed. This study demonstrates that single injection of PRP is effective and better than corticosteroid injection or ultrasonic therapy in treatment of PA shoulder.

  8. Massive Gas Injection Valve Development for NSTX-U

    DOE Data Explorer

    Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Plunkett, G. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Way, W.-S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-05-01

    NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.

  9. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    NASA Astrophysics Data System (ADS)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.; Papka, M. E.; Benjamin, D. P.

    2017-01-01

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application and the performance that was achieved.

  10. Methods To Assess Shear-Thinning Hydrogels for Application As Injectable Biomaterials

    PubMed Central

    2017-01-01

    Injectable hydrogels have gained popularity as a vehicle for the delivery of cells, growth factors, and other molecules to localize and improve their retention at the injection site, as well as for the mechanical bulking of tissues. However, there are many factors, such as viscosity, storage and loss moduli, and injection force, to consider when evaluating hydrogels for such applications. There are now numerous tools that can be used to quantitatively assess these factors, including for shear-thinning hydrogels because their properties change under mechanical load. Here, we describe relevant rheological tests and ways to measure injection force using a force sensor or a mechanical testing machine toward the evaluation of injectable hydrogels. Injectable, shear-thinning hydrogels can be used in a variety of clinical applications, and as an example we focus on methods for injection into the heart, where an understanding of injection properties and mechanical forces is imperative for consistent hydrogel delivery and retention. We discuss methods for delivery of hydrogels to mouse, rat, and pig hearts in models of myocardial infarction, and compare methods of tissue postprocessing for hydrogel preservation. Our intent is that the methods described herein can be helpful in the design and assessment of shear-thinning hydrogels for widespread biomedical applications. PMID:29250593

  11. Hadronic production of Bs(*) at the Tevatron and LHC

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Wei; Fang, Zhen-Yun; Chang, Chao-Hsi; Wu, Xing-Gang; Zhong, Tao; Yu, Yao

    2009-06-01

    We study the hadronic production of Bs and Bs* mesons within the fixed-flavor-number scheme, in which the dominant gluon-gluon fusion mechanism is dealt with by using the complete αs4 approach. Main theoretical uncertainties for Bs and Bs* production at the Tevatron and LHC are presented. It is found that when ms increases by steps of 0.1 GeV, the integrated cross section of Bs(*) decreases by 80%-100%. When mb increases by steps of 0.1 GeV, it changes by ˜10%, while the uncertainties caused by the parton distribution function and the factorization scale vary within the region of (1)/(5) to (1)/(3). Considering a possible kinematic cut on the transverse momentum and the rapidity cut for the detectors at the Tevatron and LHC, we also make estimations on the Bs and Bs* production with various kinematic cuts.

  12. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  13. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.

    2008-07-11

    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-formingmore » chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.« less

  14. A pooled analysis of injection site-related adverse events in patients with schizophrenia treated with olanzapine long-acting injection.

    PubMed

    Atkins, Susan; Detke, Holland C; McDonnell, David P; Case, Michael G; Wang, Shufang

    2014-01-14

    Depot antipsychotic injections are an important tool for the management of patients with schizophrenia who have difficulty with adherence to oral medication. However, pain and discomfort at the injection site can be a potential impediment to the use of these long-acting formulations. We report here the results of a pooled analysis of injection site-related adverse events (AEs) collected during treatment with the olanzapine long-acting injection (olanzapine LAI). Unsolicited injection site-related AEs were pooled from 7 olanzapine LAI clinical trials conducted in patients between March 2001 and December 2010. All patients had a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) or Fourth Edition, Text Revision (DSM-IV-TR) diagnosis of schizophrenia or schizoaffective disorder and were between the ages of 18 and 75. Doses ranged from 45 to 405 mg olanzapine LAI, and injection intervals were 2, 3, or 4 weeks. Events were evaluated for severity, timing, possible risk factors, and outcome. A criterion of p < .05 for statistical significance was used for all tests. A total of 1752 patients received at least 1 olanzapine LAI injection. Of these, 92 patients (5.3%) reported at least 1 injection site-related AE, with "pain" being the most common type (2.9%). Most events were mild (81.4%) and the median duration was 3 days. Four patients (0.2%) discontinued due to injection site-related AEs. Dose volume and body mass index did not appear to affect the probability of injection site-related AEs. However, patients who experienced a post-injection delirium/sedation syndrome event (n = 37) were more likely to have or have had an injection site-related AE at some time during the study. Incidence of injection site-related AEs appeared to decrease over time. In 94.2% of the injection site-related AEs, no specific treatment or concomitant medication was reported; in 9 cases, patients received pharmacologic treatment for reaction, mass, abscess, rash, or

  15. " L = R" - U(1) R lepton number at the LHC

    NASA Astrophysics Data System (ADS)

    Frugiuele, Claudia; Grégoire, Thomas; Kumar, Piyush; Pontón, Eduardo

    2013-05-01

    We perform a detailed study of a variety of LHC signals in supersymmetric models where lepton number is promoted to an (approximate) U(1) R symmetry. Such a symmetry has interesting implications for naturalness, as well as flavor- and CP-violation, among others. Interestingly, it makes large sneutrino vacuum expectation values phenomenologically viable, so that a slepton doublet can play the role of the down-type Higgs. As a result, (some of) the leptons and neutrinos are incorporated into the chargino and neutralino sectors. This leads to characteristic decay patterns that can be experimentally tested at the LHC. The corresponding collider phenomenology is largely determined by the new approximately conserved quantum number, which is itself closely tied to the presence of "leptonic R-parity violation". We find rather loose bounds on the first and second generation squarks, arising from a combination of suppressed production rates together with relatively small signal efficiencies of the current searches. Naturalness would indicate that such a framework should be discovered in the near future, perhaps through spectacular signals exhibiting the lepto-quark nature of the third generation squarks. The presence of fully visible decays, in addition to decay chains involving large missing energy (in the form of neutrinos) could give handles to access the details of the spectrum of new particles, if excesses over SM background were to be observed. The scale of neutrino masses is intimately tied to the source of U(1) R breaking, thus opening a window into the R-breaking sector through neutrino physics. Further theoretical aspects of the model have been presented in the companion paper [1].

  16. Scalar production in association with a Z boson at the LHC and ILC: The mixed Higgs-radion case of warped models

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Moreau, Grégory; Richard, François

    2017-07-01

    The radion scalar field might be the lightest new particle predicted by extradimensional extensions of the standard model. It could thus lead to the first signatures of new physics at the LHC collider. We perform a complete study of the radion production in association with the Z gauge boson in the custodially protected warped model with a brane-localized Higgs boson addressing the gauge hierarchy problem. Radion-Higgs mixing effects are present. Such a radion production receives possibly resonant contributions from the Kaluza-Klein excitations of the Z boson as well as the extra neutral gauge boson (Z'). All the exchange and mixing effects induced by those heavy bosons are taken into account in the radion coupling and rate calculations. The investigation of the considered radion production at the LHC allows us to be sensitive to some parts of the parameter space but only the ILC program at high luminosity would cover most of the theoretically allowed parameter space via the studied reaction. Complementary tests of the same theoretical parameters can be realized through the high accuracy measurements of the Higgs couplings at the ILC. The generic sensitivity limits on the rates discussed for the LHC and ILC potential reach can be applied to the searches for other (light) exotic scalar bosons.

  17. Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio

    2016-03-14

    This document summarises the proposal of the LHC Dark Matter Working Group on how to present LHC results on s-channel simplified dark matter models and to compare them to direct (indirect) detection experiments.

  18. Impact of LSP character on Slepton reach at the LHC

    NASA Astrophysics Data System (ADS)

    Eckel, Jonathan; Ramsey-Musolf, Michael J.; Shepherd, William; Su, Shufang

    2014-11-01

    Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of and depend strongly on the sign and value of M 1 /M 2, which has strong implications for the reach of dilepton plus [InlineMediaObject not available: see fulltext.] searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus [InlineMediaObject not available: see fulltext.] searches at the 8TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for with a Higgsino-like LSP is the strongest (˜ 490 GeV) for M 1 /M 2 ˜ - tan2 θ W and is the weakest (˜ 220 GeV) for M 1 /M 2 ˜ tan2 θ W . We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb-1 integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Winolike) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5 σ discovery sensitivity is about 100 GeV smaller. For 300 fb-1 integrated luminosity, the reach is about 50 - 100 GeV higher.

  19. Compressor Stall Recovery Through Tip Injection Assessed

    NASA Technical Reports Server (NTRS)

    Suder, Ken L.

    2001-01-01

    Aerodynamic stability is a fundamental limit in the compressor design process. The development of robust techniques for increasing stability has several benefits: enabling higher loading and fewer blades, increasing safety throughout a mission, increasing tolerance to stage mismatch during part-speed operation and speed transients, and providing an opportunity to match stages at the compressor maximum efficiency point, thus reducing fuel burn. Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors if the injection is activated before stall occurs. This approach to stall suppression requires that a reliable stall warning system be available. Tests have recently been performed to assess whether steady injection can also be used to recover from fully developed stall. If mass injection is effective in recovering from stall quickly enough to avoid structural damage or loss of engine power, then a stall warning system may not be required. The stall recovery tests were performed on a transonic compressor rotor at its design tip speed of 1475 ft/sec using four injectors evenly spaced around the compressor case upstream of the rotor. The injectors were connected to an external air source. In an actual engine application, the injected air would be supplied with compressor bleed air. The injectors were isolated from the air source by a fast-acting butterfly valve. With the injectors turned off, the compressor was throttled into stall. Air injection was then activated with no change in throttle setting by opening the butterfly valve. The compressor recovered from stall at a fixed throttle setting with the aid of tip injection. The unsteady operating characteristic of the rotor was measured during these tests using high-response pressure sensors located upstream and downstream of the rotor. The figure shows the results, where the unsteady pressure and mass

  20. Frequency of booster injections of allergoids.

    PubMed

    Norman, P S; Creticos, P S; Marsh, D G

    1990-01-01

    In 1982, 43 ragweed-sensitive patients receiving maintenance injections of full doses of ragweed allergoid were selected for a study of the immunologic and clinical efficacy of booster injections only four times a year. These patients had participated for 2 to 7 years as part of a trial of mixes of up to four allergoids to common pollens in the mid-Atlantic area tailored to each patient's skin test sensitivity. They were divided into a group (21 patients) to receive injections every 3 months and a group (22 patients) to receive injections about every 6 weeks (eight injections per year). Patients were rerandomized after 1 year so that half of each original group switched to the alternate treatment, and this program was continued until after the ragweed season of 1985. Thirty-four patients were still under study the last year. Doses, per injection, were 100 allergoid units (1 allergoid unit equals 100 PNU) of each allergen in the mixture. Symptom scores during the 8 weeks of each of the four ragweed seasons were not significantly higher in the 3-month treated group. IgG antibody levels to Amb a I (antigen E) were followed until early 1984 and were not significantly different in the two groups, even though the 6-week treated patients received a two times higher cumulative dose per year. Rates of local and systemic reactions (percent of injections eliciting reactions) were not different in the groups, which means that the 3-month treated group had about half as many reactions by virtue of taking half as many injections.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Mechanical qualification of the support structure for MQXF, the Nb 3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb 3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structuremore » was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less

  2. GPU/MIC Acceleration of the LHC High Level Trigger to Extend the Physics Reach at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halyo, Valerie; Tully, Christopher

    The quest for rare new physics phenomena leads the PI [3] to propose evaluation of coprocessors based on Graphics Processing Units (GPUs) and the Intel Many Integrated Core (MIC) architecture for integration into the trigger system at LHC. This will require development of a new massively parallel implementation of the well known Combinatorial Track Finder which uses the Kalman Filter to accelerate processing of data from the silicon pixel and microstrip detectors and reconstruct the trajectory of all charged particles down to momentums of 100 MeV. It is expected to run at least one order of magnitude faster than anmore » equivalent algorithm on a quad core CPU for extreme pileup scenarios of 100 interactions per bunch crossing. The new tracking algorithms will be developed and optimized separately on the GPU and Intel MIC and then evaluated against each other for performance and power efficiency. The results will be used to project the cost of the proposed hardware architectures for the HLT server farm, taking into account the long term projections of the main vendors in the market (AMD, Intel, and NVIDIA) over the next 10 years. Extensive experience and familiarity of the PI with the LHC tracker and trigger requirements led to the development of a complementary tracking algorithm that is described in [arxiv: 1305.4855], [arxiv: 1309.6275] and preliminary results accepted to JINST.« less

  3. CERN and LHC - Their Place in Global Science

    ScienceCinema

    None

    2018-01-09

    The Large Hadron Collider (LHC) is the largest scientific instrument in the world. It brings into collision intense beams of protons and ions to explore the structure of matter and investigate the forces of nature at an unprecedented energy scale, thus serving a community of some 7,000 particle physicists from all over the world.

  4. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  5. Probing composite models at the LHC with exotic quarks production

    NASA Astrophysics Data System (ADS)

    Kukla, Romain

    2017-03-01

    After the Higgs boson hunt, the LHC could be a powerful tool to unravel the mystery of which physics lies beyond the realm of the Standard Model. Different new sectors have been postulated to address naturalness: SUSY, extra dimensions and strong dynamics theories. Composite models extend EWSB to a global symmetry breaking whose pseudo-Goldstone boson is the SM Higgs boson. The resulting mass spectrum originates from a partial mixing between fundamental fermions and composite fields which creates massive states including new heavy quarks coupled preferentially to the top quark. Searches for these top partners have been carried out by the ATLAS and CMS collaborations, constraining the models. Other composite contributions are expected to enhance the 4-top production, which should be observable in the next years at the LHC.

  6. Granisetron Injection

    MedlinePlus

    ... and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with other ... be injected intravenously (into a vein) and granisetron extended-release injection comes as a liquid to be ...

  7. Deltoid Injections of Risperidone Long-acting Injectable in Patients with Schizophrenia

    PubMed Central

    Quiroz, Jorge A.; Rusch, Sarah; Thyssen, An; Kushner, Stuart

    2011-01-01

    Background Risperidone long-acting injectable was previously approved for treatment of schizophrenia as biweekly injections in the gluteal muscle only. We present data on local injection-site tolerability and safety of risperidone long-acting injectable and comparability of systemic exposure of deltoid versus gluteal injections. Methods Risperidone long-acting injectable was administered in an open-label, single-dose, two-way crossover study, with patients randomized to receive either 25mg gluteal/37.5mg deltoid crossover in two treatment periods or 50mg gluteal/50mg deltoid injections crossover; each treatment period was separated by an 85-day observation period (Study 1) and an open-label, multiple-dose study (4 sequential 37.5mg or 50mg deltoid injections every 2 weeks) (Study 2). The pharmacokinetic results from both the studies have already been published. Results In Study 1 (n=170), the majority of patients had no local injection-site findings, based on investigator and patient-rated evaluations. In Study 2 (n=53), seven of the 51 patients who received at least two deltoid injections discontinued (primary endpoint). However, none of the discontinuations were due to injection-site related reasons. The 90-percent upper confidence limit of the true proportion of injection-site issue withdrawals was 5.7 percent. No moderate or severe injection-site reactions were reported. Conclusion Intramuscular injections via the deltoid and gluteal sites are equivalent routes of administration of risperidone long-acting injectable with respect to local injection-site tolerability. The overall safety and tolerability profile of risperidone long-acting injectable was comparable when administered as an intramuscular injection in the deltoid (37.5mg and 50mg) and gluteal (25mg and 50mg) sites. PMID:21779538

  8. Pressures generated in vitro during Stabident intraosseous injections.

    PubMed

    Whitworth, J M; Ramlee, R A M; Meechan, J G

    2005-05-01

    To test the hypothesis that the Stabident intraosseous injection is a potentially high-pressure technique, which carries serious risks of anaesthetic cartridge failure. A standard Astra dental syringe was modified to measure the internal pressure of local anaesthetic cartridges during injection. Intra-cartridge pressures were measured at 1 s intervals during slow (approximately 15 s) and rapid (<10 s) injections of 2% Xylocaine with 1:80,000 adrenaline (0.25 cartridge volumes) into air (no tissue resistance), or into freshly prepared Stabident perforation sites in the anterior mandible of freshly culled young and old sheep (against tissue resistance). Each injection was repeated 10 times over 3 days. Absolute maximum pressures generated by each category of injection, mean pressures at 1 s intervals in each series of injections, and standard deviations were calculated. Curves of mean maximum intra-cartridge pressure development with time were plotted for slow and rapid injections, and one-way anova (P<0.05) conducted to determine significant differences between categories of injection. Pressures created when injecting into air were less than those needed to inject into tissue (P<0.001). Fast injection produced greater intra-cartridge pressures than slow delivery (P<0.05). Injection pressures rose more quickly and to higher levels in small, young sheep mandibles than in larger, old sheep mandibles. The absolute maximum intra-cartridge pressure developed during the study was 3.31 MPa which is less than that needed to fracture glass cartridges. Stabident intraosseous injection conducted in accordance with the manufacturer's instructions does not present a serious risk of dangerous pressure build-up in local anaesthetic cartridges.

  9. Integration of Russian Tier-1 Grid Center with High Performance Computers at NRC-KI for LHC experiments and beyond HENP

    NASA Astrophysics Data System (ADS)

    Belyaev, A.; Berezhnaya, A.; Betev, L.; Buncic, P.; De, K.; Drizhuk, D.; Klimentov, A.; Lazin, Y.; Lyalin, I.; Mashinistov, R.; Novikov, A.; Oleynik, D.; Polyakov, A.; Poyda, A.; Ryabinkin, E.; Teslyuk, A.; Tkachenko, I.; Yasnopolskiy, L.

    2015-12-01

    The LHC experiments are preparing for the precision measurements and further discoveries that will be made possible by higher LHC energies from April 2015 (LHC Run2). The need for simulation, data processing and analysis would overwhelm the expected capacity of grid infrastructure computing facilities deployed by the Worldwide LHC Computing Grid (WLCG). To meet this challenge the integration of the opportunistic resources into LHC computing model is highly important. The Tier-1 facility at Kurchatov Institute (NRC-KI) in Moscow is a part of WLCG and it will process, simulate and store up to 10% of total data obtained from ALICE, ATLAS and LHCb experiments. In addition Kurchatov Institute has supercomputers with peak performance 0.12 PFLOPS. The delegation of even a fraction of supercomputing resources to the LHC Computing will notably increase total capacity. In 2014 the development a portal combining a Tier-1 and a supercomputer in Kurchatov Institute was started to provide common interfaces and storage. The portal will be used not only for HENP experiments, but also by other data- and compute-intensive sciences like biology with genome sequencing analysis; astrophysics with cosmic rays analysis, antimatter and dark matter search, etc.

  10. Closing in on the chargino contribution to the muon g -2 in the MSSM: Current LHC constraints

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru; Ma, Kai; Mukhopadhyay, Satyanarayan

    2018-03-01

    We revisit the current LHC constraints on the electroweak-ino sector parameters in the minimal supersymmetric standard model (MSSM) that are relevant to explaining the (g -2 )μ anomaly via the dominant chargino and muon sneutrino loop. Since the LHC bounds on electroweak-inos become weaker if they decay via an intermediate stau or a tau sneutrino instead of the first two generation sleptons, we perform a detailed analysis of the scenario with a bino as the lightest supersymmetric particle (LSP) and a light stau as the next-to-lightest one (NLSP). Even in this scenario, the chargino sector parameters in the MSSM that can account for the (g -2 )μ anomaly within 1 σ are already found to be significantly constrained by the 8 TeV LHC and the available subset of the 13 TeV LHC limits. We also estimate the current LHC exclusions in the left-smuon (and/or left-selectron) NLSP scenario from multilepton searches, and further combine the constraints from the multitau and multilepton channels for a mass spectrum in which all three generations of sleptons are lighter than the chargino. In the latter two cases, small corners of the 1 σ favored region for (g -2 )μ are still allowed at present.

  11. Barriers and missed opportunities to HIV testing among injection drug users in two Mexico--US border cities.

    PubMed

    Moyer, Laura B; Brouwer, Kimberley C; Brodine, Stephanie K; Ramos, Rebeca; Lozada, Remedios; Cruz, Michelle Firestone; Magis-Rodriguez, Carlos; Strathdee, Steffanie A

    2008-01-01

    Despite increasing HIV prevalence in cities along the Mexico--US border, HIV testing among high-risk populations remains low. We sought to identify barriers associated with HIV testing among injection drug users (IDUs) in Tijuana and Ciudad Juarez, the two largest Mexican border cities located across from San Diego, California and El Paso, Texas, respectively. In 2005, 222 IDUs in Tijuana and 205 IDUs in Ciudad Juarez were recruited by respondent-driven sampling and administered a questionnaire to collect socio-demographic, behavioural and HIV testing history data. Blood samples were provided for serological testing of HIV, hepatitis C virus (HCV) and syphilis. Only 38% and 30% of respondents in Tijuana and Ciudad Juarez, respectively, had ever had an HIV test. The factors independently associated with never having been tested for HIV differed between the two sites, except for lack of knowledge on HIV transmission, which was independently associated in both locales. Importantly, 65% of those who had never been tested for HIV in both cities experienced at least one missed opportunity for voluntary testing, including medical visits, drug treatment and spending time in jail. Among this high-risk IDU population we found HIV testing to be low, with voluntary testing in public and private settings utilised inadequately. These findings underscore the need to expand voluntary HIV education and testing and to integrate it into services and locales frequented by IDUs in these Mexico--US border cities.

  12. Developments in the ATLAS Tracking Software ahead of LHC Run 2

    NASA Astrophysics Data System (ADS)

    Styles, Nicholas; Bellomo, Massimiliano; Salzburger, Andreas; ATLAS Collaboration

    2015-05-01

    After a hugely successful first run, the Large Hadron Collider (LHC) is currently in a shut-down period, during which essential maintenance and upgrades are being performed on the accelerator. The ATLAS experiment, one of the four large LHC experiments has also used this period for consolidation and further developments of the detector and of its software framework, ahead of the new challenges that will be brought by the increased centre-of-mass energy and instantaneous luminosity in the next run period. This is of particular relevance for the ATLAS Tracking software, responsible for reconstructing the trajectory of charged particles through the detector, which faces a steep increase in CPU consumption due to the additional combinatorics of the high-multiplicity environment. The steps taken to mitigate this increase and stay within the available computing resources while maintaining the excellent performance of the tracking software in terms of the information provided to the physics analyses will be presented. Particular focus will be given to changes to the Event Data Model, replacement of the maths library, and adoption of a new persistent output format. The resulting CPU profiling results will be discussed, as well as the performance of the algorithms for physics processes under the expected conditions for the next LHC run.

  13. Heavy-Ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production

    NASA Astrophysics Data System (ADS)

    Trzeciak, B.; Da Silva, C.; Ferreiro, E. G.; Hadjidakis, C.; Kikola, D.; Lansberg, J. P.; Massacrier, L.; Seixas, J.; Uras, A.; Yang, Z.

    2017-09-01

    We outline the case for heavy-ion-physics studies using the multi-TeV lead LHC beams in the fixed-target mode. After a brief contextual reminder, we detail the possible contributions of AFTER@LHC to heavy-ion physics with a specific emphasis on quarkonia. We then present performance simulations for a selection of observables. These show that Υ (nS), J/ψ and ψ (2S) production in heavy-ion collisions can be studied in new energy and rapidity domains with the LHCb and ALICE detectors. We also discuss the relevance to analyse the Drell-Yan pair production in asymmetric nucleus-nucleus collisions to study the factorisation of the nuclear modification of partonic densities and of further quarkonium states to restore their status of golden probes of the quark-gluon plasma formation.

  14. Nusinersen Injection

    MedlinePlus

    Nusinersen injection comes as a solution (liquid) to inject intrathecally (into the fluid-filled space of the spinal canal). Nusinersen injection is given by a doctor in a medical office or clinic. It is usually given as ...

  15. Constraints on Smoke Injection Height, Source Strength, and Transports from MISR and MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Petrenko, Mariya; Val Martin, Maria; Chin, Mian

    2014-01-01

    The AeroCom BB (Biomass Burning) Experiment AOD (Aerosol Optical Depth) motivation: We have a substantial set of satellite wildfire plume AOD snapshots and injection heights to help calibrate model/inventory performance; We are 1) adding more fire source-strength cases 2) using MISR to improve the AOD constrains and 3) adding 2008 global injection heights; We selected GFED3-daily due to good overall source strength performance, but any inventory can be tested; Joint effort to test multiple, global models, to draw robust BB injection height and emission strength conclusions. We provide satellite-based injection height and smoke plume AOD climatologies.

  16. ALICE and "The state of matter" at LHC

    ScienceCinema

    Schukraft, Juergen

    2018-04-26

    Assembly and installation of ALICE, the LHC heavy ion experiment dedicated to the study of matter at extreme temperature and pressure, is nearing completion and the commissioning of the detector is well under way. A good time to look back, to the making of ALICE, and to look forward, to the first physics with proton and heavy ion beams.

  17. Analysis of the SPS Long Term Orbit Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velotti, Francesco; Bracco, Chiara; Cornelis, Karel

    2016-06-01

    The Super Proton Synchrotron (SPS) is the last accelerator in the Large Hadron Collider (LHC) injector chain, and has to deliver the two high-intensity 450 GeV proton beams to the LHC. The transport from SPS to LHC is done through the two Transfer Lines (TL), TI2 and TI8, for Beam 1 (B1) and Beam 2 (B2) respectively. During the first LHC operation period Run 1, a long term drift of the SPS orbit was observed, causing changes in the LHC injection due to the resulting changes in the TL trajectories. This translated into longer LHC turnaround because of the necessitymore » to periodically correct the TL trajectories in order to preserve the beam quality at injection into the LHC. Different sources for the SPS orbit drifts have been investigated: each of them can account only partially for the total orbit drift observed. In this paper, the possible sources of such drift are described, together with the simulated and measured effect they cause. Possible solutions and countermeasures are also discussed.« less

  18. Factors associated with time between using a drug and injection initiation among people who inject drugs in Kermanshah, Iran.

    PubMed

    Noroozi, Mehdi; Farhadi, Mohammad Hassan; Armoon, Bahram; Farhoudian, Ali; Shushtari, Zahra Jorjoran; Sharhani, Asaad; Karimi, Salah Eddin; Sayadnasiri, Mohammad; Rezaei, Omid; Ghiasvand, Hesam

    2018-05-17

    Background The transition from non-injection to injection drug use dramatically increases the risk of transmitting HIV and other blood borne infections including hepatitis B virus (HBV) and hepatitis C virus (HCV). The aim of this study was to explore factors associated with the transition from first illicit drug use to first injection among drug users. Methods Using snowball sampling and convenience sampling through needle and syringe programmes (NSPs), we recruited 500 people who inject drugs (PWID) in Kermanshah, between September and December 2014. Trained interviewers collected data on socio-demographic characteristics, HIV testing and drug-related risk behaviors over the last month prior to interview using a structured questionnaire. Our main outcome variable was first illicit drug use to first injection (TIJ). TIJ was calculated by subtracting age at first drug injection from age of first illicit drug use. Results Overall, the average age at first drug use and injection were 21.4 [standard deviation (SD 5.6)] and 22.8 (SD 8.9), respectively. The average duration of injection was 6.0 (SD 4.6) years. Overall, the mean of TIJ for participants was 1.4 (IQR = 2, 4) years. Age of first injecting drug use negatively correlated with TIJ (R2 = 0.219, p = 0.001). Education level and socioeconomic status (SES), and negatively correlated with TIJ. Conclusion Some demographic factors and drug use characteristics including educational level, SES, knowledge of HIV status, age of initiating drug use, being a poly drug user and using methamphetamine were predictors of the time to transition.

  19. Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota--Analysis of thermal data and nonisothermal modeling of short-term test cycles

    USGS Publications Warehouse

    Miller, Robert T.; Delin, G.N.

    2002-01-01

    In May 1980, the University of Minnesota began a project to evaluate the feasibility of storing heated water (150 degrees Celsius) in the Franconia-Ironton Galesville aquifer (183 to 245 meters below land surface) and later recovering it for space heating. The University's steam-generation facilities supplied high-temperature water for injection. The Aquifer Thermal-Energy Storage system is a doublet-well design in which the injection-withdrawal wells are spaced approximately 250 meters apart. Water was pumped from one of the wells through a heat exchanger, where heat was added or removed. This water was then injected back into the aquifer through the other well. Four short-term test cycles were completed. Each cycle consisted of approximately equal durations of injection and withdrawal ranging from 5.25 to 8.01 days. Equal rates of injection and withdrawal, ranging from 17.4 to 18.6 liters per second, were maintained for each short-term test cycle. Average injection temperatures ranged from 88.5 to 117.9 degrees Celsius. Temperature graphs for selected depths at individual observation wells indicate that the Ironton and Galesville Sandstones received and stored more thermal energy than the upper part of the Franconia Formation. Clogging of the Ironton Sandstone was possibly due to precipitation of calcium carbonate or movement of fine-grain material or both. Vertical-profile plots indicate that the effects of buoyancy flow were small within the aquifer. A three-dimensional, anisotropic, nonisothermal, ground-water-flow, and thermal-energy-transport model was constructed to simulate the four short-term test cycles. The model was used to simulate the entire short-term testing period of approximately 400 days. The only model properties varied during model calibration were longitudinal and transverse thermal dispersivities, which, for final calibration, were simulated as 3.3 and 0.33 meters, respectively. The model was calibrated by comparing model-computed results to

  20. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  1. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the World- wide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. This paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  2. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE PAGES

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.; ...

    2016-09-29

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  3. Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. T.; Uram, T. D.; LeCompte, T. J.

    As the LHC moves to higher energies and luminosity, the demand for computing resources increases accordingly and will soon outpace the growth of the Worldwide LHC Computing Grid. To meet this greater demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider. Finally, this paper details the process by which Alpgen was adapted from a single-processor serial-application to a large-scale parallel-application andmore » the performance that was achieved.« less

  4. Acceptability of rapid oral fluid HIV testing among male injection drug users in Taiwan, 1997 and 2007.

    PubMed

    Lyu, Shu-Yu; Morisky, Donald E; Yeh, Ching-Ying; Twu, Shiing-Jer; Peng, Eugene Yu-Chang; Malow, Robert M

    2011-04-01

    Rapid oral fluid HIV testing (rapid oral testing) is in the process of being adapted in Taiwan and elsewhere given its advantages over prior HIV testing methods. To guide this process, we examined the acceptability of rapid oral testing at two time points (i.e., 1997 and 2007) among one of the highest risk populations, male injection drug users (IDUs). For this purpose, an anonymous self-administered survey was completed by HIV-negative IDUs involved in the criminal justice system in 1997 (N (1)=137 parolees) and 2007 (N (2)=106 prisoners). A social marketing model helped guide the design of our questionnaire to assess the acceptability of rapid oral testing. This included assessing a new product, across four marketing dimensions: product, price, promotion, and place. Results revealed that in both 1997 and 2007, over 90% indicated that rapid oral testing would be highly acceptable, particularly if the cost was under US$6, and that a pharmacy would be the most appropriate and accessible venue for selling the rapid oral testing kits. The vast majority of survey respondents believed that the cost of rapid oral testing should be federally subsidized and that television and newspaper advertisements would be the most effective media to advertise for rapid oral testing. Both the 1997 and 2007 surveys suggested that rapid oral HIV testing would be particularly accepted in Taiwan by IDUs after release from the criminal justice system.

  5. The long journey to the Higgs boson and beyond at the LHC: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    2016-09-01

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  6. Signal for a light singlet scalar at the LHC

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Modak, Tanmoy; Ng, John N.

    2018-03-01

    In the general Higgs portal-like models, the extra neutral scalar, S , can mix with the Standard Model (SM) Higgs boson, H . We perform an exploratory study focusing on the direct search for such a light singlet S at the Large Hadron Collider (LHC). After careful study of the SM background, we find the process p p →t t ¯ S followed by S →b b ¯ can be used to investigate S with mass in the 20 LHC. The signal significance becomes meaningful with a luminosity around a few ab-1. Also, we study the prospects of finding the light scalar at the future 100 TeV p p collider, the Z and Higgs factories. With similar luminosity, the current Large Electron-Positron Collider (LEP) limits on the mixing between S and H can be improved by at least one or two order of magnitudes.

  7. Comparative Efficacy of Platelet Rich Plasma Injection, Corticosteroid Injection and Ultrasonic Therapy in the Treatment of Periarthritis Shoulder

    PubMed Central

    Srikumar, Venkataraman; Singh, Neha

    2017-01-01

    Introduction Periarthritis (PA) shoulder characterised by pain and restricted range of motion has a plethora of treatment options with inconclusive evidence. Platelet Rich Plasma (PRP) is an emerging treatment option and its efficacy needs to be examined and compared with other routine interventions. Aim To assess the efficacy of PRP injection and compare it with corticosteroid injection and ultrasonic therapy in the treatment of PA shoulder. Materials and Methods Patients with PA shoulder (n=195) were randomised to receive single injection of PRP (2 ml) or corticosteroid (80 mg of methylprednisolone) or ultrasonic therapy (seven sittings in two weeks; 1.5 W/cm2, 1 MHz, continuous mode). All participants were also advised to perform a home based 10 minute exercise therapy. The primary outcome measure was active range of motion of the shoulder. Secondary outcome measures used were Visual Analogue Scale (VAS) for pain and a shortened version of Disabilities of the Arm, Shoulder and Hand (QuickDASH) for function. Participants were evaluated at 0, 3, 6 and 12 weeks. Chi-square test, one way and repeated measures of ANOVA tests were used to determine significant differences. Results PRP treatment resulted in statistically significant improvements over corticosteroid and ultrasonic therapy in active as well as passive range of motion of shoulder, VAS and QuickDASH at 12 weeks. At six weeks, PRP treatment resulted in statistically significant improvements over ultrasonic therapy in VAS and QuickDASH. No major adverse effects were observed. Conclusion This study demonstrates that single injection of PRP is effective and better than corticosteroid injection or ultrasonic therapy in treatment of PA shoulder. PMID:28658861

  8. Comparison Between the Two-Injection Technique and the Four-Injection Technique in Axillary Brachial Plexus Block with Articaine.

    PubMed

    Ertikin, Aysun; Argun, Güldeniz; Mısırlıoğlu, Mesut; Aydın, Murat; Arıkan, Murat; Kadıoğulları, Nihal

    2017-10-01

    In this study, we aimed to compare axillary brachial plexus block using the two-injection and four-injection techniques assisted with ultrasonography (USG) and nerve stimulator in patients operated for carpal tunnel syndrome with articaine. To evaluate which technique is more effective, we compared the onset time, effectiveness, and duration of block procedures, patient satisfaction, adverse effect of the drug, and complication rates of the motor and sensory blocks. Sixty patients were randomly divided into two groups. A mixture of physiologic serum added to articain with NaHCO 3 (30 mL) was injected into the patients' axilla in both the groups. After the blockage of the musculocutaneous nerve in both the groups, the median nerve in the two-injection group and the median nerve, ulnar nerve, and radial nerve in the four-injection group were blocked. In brachial plexus nerves, sensorial blockage was evaluated with pinprick test, and motor block was evaluated by contraction of the muscles innervated by each nerve. The adverse effects and complications, visual analog scale (VAS) values during the operation, and post-operative patient satisfaction were recorded. Sufficient analgesia and anaesthesia were achieved with no need for an additional local anaesthetics in both the groups. Furthermore, additional sedation requirements were found to be similar in both the groups. A faster rate and a more effective complete block were achieved in more patients from the four-injection group. In the two-injection group, the block could not be achieved for N. radialis in one patient. All other nerves were successfully blocked. Whereas the blockage procedure lasted longer in the four-injection group, the VAS values recorded during the blockage procedure were higher in the four-injection group. No statistical difference was found with regard to patient satisfaction, and no adverse effects and complications were observed in any group. Although the multi-injection method takes more time

  9. Flavorful Z‧ signatures at LHC and ILC

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Long; Okada, Nobuchika

    2008-10-01

    There are lots of new physics models which predict an extra neutral gauge boson, referred as Z‧-boson. In a certain class of these new physics models, the Z‧-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z‧-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z‧-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z‧-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z‧-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z‧-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z‧-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.

  10. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  11. Readiness of the ATLAS Tile Calorimeter for LHC collisions

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2010-12-08

    The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of themore » timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  12. The artificial retina for track reconstruction at the LHC crossing rate

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2016-04-01

    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.

  13. Injectable silk foams for the treatment of cervical insufficiency

    NASA Astrophysics Data System (ADS)

    Fournier, Eric P.

    Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.

  14. LABORATORY SCALE STEAM INJECTION TREATABILITY STUDIES

    EPA Science Inventory

    Laboratory scale steam injection treatability studies were first developed at The University of California-Berkeley. A comparable testing facility has been developed at USEPA's Robert S. Kerr Environmental Research Center. Experience has already shown that many volatile organic...

  15. Investigation of interfacial fracture behavior on injection molded parts

    NASA Astrophysics Data System (ADS)

    Fischer, Matthieu; Ausias, Gilles; Kuehnert, Ines

    2016-03-01

    In this study the interfacial morphology of different polymers joined by various assembly injection molding (AIM) technologies were discussed. Melt streams were injected successively using tools with core-back or rotation techniques. To compare bulk specimen strength and weld line strength, the fracture behavior of different specimen scales and thin sections were investigated. An in-situ SEM tensile test and a new thin section testing device which is used in polarized (transmitted) light microscopy were used to observe specimen failure. The effects of processing on spherulitic structures were linked to bonding strength and mechanical properties.

  16. Characterizing dark matter at the LHC in Drell-Yan events

    NASA Astrophysics Data System (ADS)

    Capdevilla, Rodolfo M.; Delgado, Antonio; Martin, Adam; Raj, Nirmal

    2018-02-01

    Spectral features in LHC dileptonic events may signal radiative corrections coming from new degrees of freedom, notably dark matter and mediators. Using simplified models, and under a set of simplifying assumptions, we show how these features can reveal the fundamental properties of the dark sector, such as self-conjugation, spin and mass of dark matter, and the quantum numbers of the mediator. Distributions of both the invariant mass mℓℓ and the Collins-Soper scattering angle cos θCS are studied to pinpoint these properties. We derive constraints on the models from LHC measurements of mℓℓ and cos θCS, which are competitive with direct detection and jets+MET searches. We find that in certain scenarios the cos θCS spectrum provides the strongest bounds, underlining the importance of scattering angle measurements for nonresonant new physics.

  17. LHC signals from cascade decays of warped vector resonances

    DOE PAGES

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi; ...

    2017-05-15

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  18. LHC signals from cascade decays of warped vector resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh S.; Collins, Jack H.; Du, Peizhi

    Recently (arXiv:1608.00526), a new framework for warped higher-dimensional compactifications with “bulk” standard model (SM) was proposed: in addition to the UV (Planck scale) and IR (a couple of TeV) branes, there is an intermediate brane, taken to be around 10TeV. The SM matter and Higgs fields propagate from the UV brane down to this intermediate brane only, while gauge and gravity fields propagate in the entire bulk. Such a configuration renders the lightest gauge Kaluza-Klein (KK) states within LHC reach, simultaneously satisfying flavor and CP constraints. In addition, the usual leading decay modes of the lightest KK gauge bosons intomore » top and Higgs bosons are suppressed. This effect permits erstwhile subdominant channels to become significant. These include flavor-universal decays to SM fermions and Higgs bosons, and a novel channel — decay to a radion and a SM gauge boson, followed by radion decay to a pair of SM gauge bosons. In this work, we first delineate the parameter space where the above mentioned cascade decay of gauge KK particles dominates, and thereby can be the discovery mode at the LHC. We then perform a detailed analysis of the LHC signals from this model, finding that 300/fb suffices for evidence of KK-gluon in tri-jet, jet + di-photon and jet + di-boson channels. However, KK photon in photon + di-jet, and KK-W in leptonic W + di-jet require 3000/fb. The crucial feature of this decay chain is a “double” resonance, i.e. 3-particle and 2-particle invariant mass peaks, corresponding to the KK gauge boson and the radion respectively.« less

  19. Measuring tissue back-pressure--in vivo injection forces during subcutaneous injection.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Schwarb, Edward; Chipperfield, Mark; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-07-01

    Limited information is available on injection forces of parenterals representing the in vivo situation. Scope of the present study was to investigate the contribution of the subcutaneous (sc) tissue layer to injection forces during in vivo injection. Göttingen minipigs received injections of isotonic dextran solutions (1-100 mPas) into the plica inguinalis using different injection rates and volumes (0.025-0.2 mL/s and 2.5 vs. 4.5 mL). The contribution of the sc back-pressure to injection forces was found to increase linearly with viscosity and injection rate ranging from 0.6 ± 0.5 N to 1.0 ± 0.4 N (1 mPas), 0.7 ± 0.2 N to 2.4 ± 1.9 N (10 mPas), and 1.8 ± 0.6 N to 4.7 ± 3.3 N (20 mPas) for injection rates of 0.025 to 0.2 mL/s, respectively. Variability increased with viscosity and injection rate. Values are average values from 10 randomized injections. A maximum of 12.9 N was reached for 20 mPas at 0.2 mL/s; 6.9 ± 0.3 N was determined for 100 mPas at 0.025 mL/s. No difference was found between injection volumes of 2.5 and 4.5 mL. The contribution of the tissue was differentiated from the contribution of the injection device and a local temperature effect. This effect was leading to warming of the (equilibrated) sample in the needle, therefore smaller injection forces than expected compensating tissue resistance to some parts. When estimating injection forces representative for the in vivo situation, the contribution of the tissue has to be considered as well as local warming of the sample in the needle during injection.

  20. Vertical-deformation, water-level, microgravity, geodetic, water-chemistry, and flow-rate data collected during injection, storage, and recovery tests at Lancaster, Antelope Valley, California, September 1995 through September 1998

    USGS Publications Warehouse

    Metzger, Loren F.; Ikehara, Marti E.; Howle, James F.

    2001-01-01

    A series of freshwater injection, storage, and recovery tests were conducted from September 1995 through September 1998 to evaluate the feasibility of artificially recharging ground water in the Lancaster area of the Antelope Valley, California. The tests used two production wells at a well field located in the southern part of the city of Lancaster. Monitoring networks were established at or in the vicinity of the test site to measure vertical deformation of the aquifer system, water-level fluctuations, land-surface deformation, water chemistry, and injection well flow rates during water injection and recovery. Data presented in this report were collected from a dual extensometer; 10 piezometers; 1 barometer; 27 active or abandoned production wells; 31 gravity stations; 124 bench marks; 1 permanent and 1 temporary continuous Global Positioning System (GPS) station; 3 tiltmeters; and 2 electromagnetic flowmeters from September 1995 through September 1998. This report discusses the location and design of the monitoring networks and the methods used to collect and process the data, and presents the data in tables and graphs.