Science.gov

Sample records for lhc luminosity upgrade

  1. LHC luminosity upgrade with large Piwinski angle scheme: a recent look

    SciTech Connect

    Bhat, C.M.; Zimmermann, f.; /CERN

    2011-09-01

    Luminosity upgrade at the LHC collider using longitudinally flat bunches in combination with the large crossing angle (large Piwinski angle scheme) is being studied with renewed interest in recent years. By design, the total beam-beam tune shift at the LHC is less than 0.015 for two interaction points together. But the 2010-11 3.5 TeV collider operation and dedicated studies indicated that the beam-beam tune shift is >0.015 per interaction point. In view of this development we have revisited the requirements for the Large Piwinski Angle scheme at the LHC. In this paper we present a new set of parameters and luminosity calculations for the desired upgrade by investigating: (1) current performance of the LHC injectors, (2) e-cloud issues on nearly flat bunches and (3) realistic beam particle distributions from longitudinal beam dynamics simulations. We also make some remarks on the needed upgrades on the LHC injector accelerators.

  2. Towards a new LHC interaction region design for a luminosity upgrade

    SciTech Connect

    James Strait et al.

    2003-05-29

    After the LHC operates for several years at nominal parameters, it will be necessary to upgrade it for higher luminosity. Replacing the low-{beta} insertions with a higher performance design based on advanced superconducting magnets is one of the most straightforward steps in this direction. Preliminary studies show that, with magnet technology that is expected to be developed by early in the next decade, a factor of 2 to 5 reduction in {beta}* could be achieved with new insertions, as part of an upgrade aimed at a factor of 10 luminosity increase. In this paper we survey several possible second generation LHC interaction regions designs, which address the expected limitations on LHC performance imposed by the baseline insertions.

  3. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  4. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    SciTech Connect

    Xiao, B.; Alberty, L.; Belomestnykh, S.; Ben-Zvi, I.; Calaga, R.; Cullen, C.; Capatina, O.; Hammons, L.; Li, Z.; Marques, C.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  5. LARP NB3SN QUADRUPOLE MAGNETS FOR THE LHC LUMINOSITY UPGRADE

    SciTech Connect

    Ferracin, P.

    2009-06-01

    The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb{sub 3}Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: (1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, (2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos2{theta} coils, and (3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that ND{sub 3}Sn technology is mature for use in high energy accelerators. After an overview of design features and test results of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos2{theta} coils, and the qualification of the support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb{sub 3}Sn superconducting magnets, is presented.

  6. Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

    DOE PAGES

    Marinozzi, Vittorio; Ambrosio, Giorgio; Ferracin, Paolo; Izquierdo Bermudez, Susana; Rysti, Juho; Salmi, Tiina; Sorbi, Massimo; Todesco, Ezio

    2016-06-01

    In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close tomore » the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.« less

  7. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  8. Higher order mode filter design for double quarter wave crab cavity for the LHC high luminosity upgrade

    SciTech Connect

    Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Burt, G.; Calaga, R.; Capatina, O.; Hall, B.; Jones, T.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multiphysics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  9. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  10. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  11. Mechanical Analysis of the 400 MHz RF-Dipole Crabbing Cavity Prototype for LHC High Luminosity Upgrade

    SciTech Connect

    De Silva, Subashini U.; Park, HyeKyoung; Delayen, Jean R.; Li, Z.

    2013-12-01

    The proposed LHC high luminosity upgrade requires two crabbing systems in increasing the peak luminosity, operating both vertically and horizontally at two interaction points of IP1 and IP5. The required system has tight dimensional constraints and needs to achieve higher operational gradients. A proof-of-principle 400 MHz crabbing cavity design has been successfully tested and has proven to be an ideal candidate for the crabbing system. The cylindrical proof-of-principle rf-dipole design has been adapted in to a square shaped design to further meet the dimensional requirements. The new rf-dipole design has been optimized in meeting the requirements in rf-properties, higher order mode damping, and multipole components. A crabbing system in a cryomodule is expected to be tested on the SPS beam line prior to the test at LHC. The new prototype is required to achieve the mechanical and thermal specifications of the SPS test followed by the test at LHC. This paper discusses the detailed mechanical and thermal analysis in minimizing Lorentz force detuning and sensitivity to liquid He pressure fluctuations.

  12. Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Vilella, E.; Benoit, M.; Casanova, R.; Casse, G.; Ferrere, D.; Iacobucci, G.; Peric, I.; Vossebeld, J.

    2016-01-01

    HV-CMOS sensors can offer important advantages in terms of material budget, granularity and cost for large area tracking systems in high energy physics experiments. This article presents the design and simulated results of an HV-CMOS pixel demonstrator for the High Luminosity-LHC. The pixel demonstrator has been designed in the 0.35 μm HV-CMOS process from ams AG and submitted for fabrication through an engineering run. To improve the response of the sensor, different wafers with moderate to high substrate resistivities are used to fabricate the design. The prototype consists of four large analog and standalone matrices with several pixel flavours, which are all compatible for readout with the FE-I4 ASIC. Details about the matrices and the pixel flavours are provided in this article.

  13. Nb$_3$Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    SciTech Connect

    Ambrosio, Giorgio

    2015-01-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  14. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  15. Design and Analysis of TQS01, a 90 mm Nb3Sn Model Quadrupole for LHC Luminosity Upgrade Based on a Key and Bladder Assembly

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.C.; Dietderich, D.R.; Ferracin, P.; Ghosh, A.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Novitsky, I.V.; Sabbi, G.L.; Turrioni, D.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    The US LHC Accelerator Research Program (LARP) is developing Nb{sub 3}Sn accelerator magnet technology for the LHC luminosity upgrade. Two 90 mm 'Technology Quadrupole' models (TQS01, TQC01) are being developed in close collaboration between LBNL and FNAL, using identical coil design, but two different support structures. The TQS01 structure was developed and tested at LBNL. With this approach coils are supported by an outer aluminum shell and assembled using keys and bladders. In contrast, the second model TQC01, utilize stainless steel collars and a thick stainless steel skin. This paper describes the TQS01 model magnet, its 3D ANSYS stress analysis, and anticipated instrumentation and assembly procedure.

  16. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  17. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2016-07-12

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  18. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Todome, K.; Jinnouchi, O.; Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Hirose, M.; Homma, Y.; Sato, S.; Hara, K.; Sato, K.

    2016-09-01

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the "super-module" in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  19. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  20. UPGRADING RHIC FOR HIGHER LUMINOSITY.

    SciTech Connect

    MACKAY,W.; BEN-ZVI,I.; BRENNAN,J.M.; HARRISON,M.; KEWISCH,J.; PEGGS,S.; ROSER,T.; TRBOJEVIC,D.; PARKHOMCHUK,V.

    2001-06-18

    While RHIC has only just started running for its heavy ion physics program, in the first run last summer, we achieved 10% of the design luminosity. In this paper we discuss plans for increasing the luminosity by a factor of 35 beyond the nominal design. A factor of 4 should be straightforward by doubling the number of bunches per ring and squeezing the {beta}* from 2 to 1 m at selected interaction points. An additional factor of 8 to 10 could be possible by using electron cooling to counteract intrabeam scattering and reduce emittances of the beams.

  1. The ATLAS liquid argon calorimeter: One year of LHC operation and future upgrade plans for HL-LHC

    SciTech Connect

    Krieger, P. W.

    2011-07-01

    An overview of the ATLAS liquid-argon calorimeter system is provided, along with a discussion of its operation and performance during the first year of LHC running. Upgrade planning related to the proposed high-luminosity upgrade of the LHC is also discussed, with an emphasis on the forward part of the calorimeter where the effects of the higher luminosity are a particular challenge. (authors)

  2. Detector Developments for the High Luminosity LHC Era (3/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  3. Detector Developments for the High Luminosity LHC Era (4/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  4. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    NASA Astrophysics Data System (ADS)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  5. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  6. Detector Developments for the High Luminosity LHC Era (1/4)

    SciTech Connect

    2010-09-22

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  7. SMALL ANGLE CRAB COMPENSATION FOR LHC IR UPGRADE

    SciTech Connect

    CALAGA,R.; DORDA, U.; OHMI, D.; OIDE, K.; TOMAS, R.; ZIMMERMANN, F.

    2007-06-25

    A small angle (< 1 mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle [I]. The luminosity loss increases steeply to unacceptable levels as the IP beta function is reduced below its nominal value (see Fig. 1 in Ref. [2]). The crab compensation in the LHC can be accomplished using only two sets of deflecting RF cavities, placed in collision-free straight sections of the LHC to nullify the effective crossing angles at IPI & IP5. We also explore a 400 MHz superconducting cavity design and discuss the pertinent RF challenges. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, and crab RF noise sources.

  8. Upgrade of the ATLAS Central Trigger for LHC Run-2

    NASA Astrophysics Data System (ADS)

    Artz, S.; Bauss, B.; Boterenbrood, H.; Buescher, V.; Degele, R.; Dhaliwal, S.; Ellis, N.; Farthouat, P.; Galster, G.; Ghibaudi, M.; Glatzer, J.; Haas, S.; Igonkina, O.; Jakobi, K.; Jansweijer, P.; Kahra, C.; Kaluza, A.; Kaneda, M.; Marzin, A.; Ohm, C.; Silva Oliveira, M. V.; Pauly, T.; Pöttgen, R.; Reiss, A.; Schäfer, U.; Schäffer, J.; Schipper, J. D.; Schmieden, K.; Schreuder, F.; Simioni, E.; Simon, M.; Spiwoks, R.; Stelzer, J.; Tapprogge, S.; Vermeulen, J.; Vogel, A.; Zinser, M.

    2015-02-01

    The increased energy and luminosity of the LHC in the run-2 data taking period requires a more selective trigger menu in order to satisfy the physics goals of ATLAS. Therefore the electronics of the central trigger system is upgraded to allow for a larger variety and more sophisticated trigger criteria. In addition, the software controlling the central trigger processor (CTP) has been redesigned to allow the CTP to accommodate three freely configurable and separately operating sets of sub detectors, each independently using the almost full functionality of the trigger hardware. This new approach and its operational advantages are discussed as well as the hardware upgrades.

  9. Optical link ASICs for LHC upgrades

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Kagan, H. P.; Kass, R. D.; Moore, J. R.; Smith, D. S.

    2011-05-01

    We have designed three ASICs for possible applications in a new pixel layer (insertable B-layer or IBL) for the ATLAS detector for the first phase of the LHC luminosity upgrade. The ASICs are a high-speed driver for the vertical-cavity surface-emitting laser (VCSEL), a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock, and a clock multiplier to produce a higher frequency clock to serialize the data for transmission. These ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the ASICs and the submission has been mostly successful. We irradiated the ASICs with 24 GeV/c protons at CERN to a dosage of 70 Mrad. We observed no significant degradation except the driver circuit in the VCSEL driver fabricated using the thick oxide process in order to provide sufficient voltage to drive a VCSEL. The degradation is due to the radiation induced large threshold shifts in the PMOS transistors used.

  10. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  11. Beam Instrumentation and Diagnostics for the LHC Upgrade

    NASA Astrophysics Data System (ADS)

    Bravin, E.; Dehning, B.; Jones, R.; Lefevre, T.

    The extensive array of beam instrumentation with which the LHC is equipped, has played a major role in its commissioning, rapid intensity ramp-up and safe and reliable operation. High Luminosity LHC (HL-LHC) brings with it a number of new challenges in terms of beam instrumentation that will be discussed in this chapter. The beam loss system will need significant upgrades in order to be able to cope with the demands of HL-LHC, with cryogenic beam loss monitors under investigation for deployment in the new inner triplet magnets to distinguish between primary beam losses and collision debris. Radiation tolerant integrated circuits are also being developed to allow the front-end electronics to sit much closer to the detector. Upgrades to other existing systems are also envisaged; including the beam position measurement system in the interaction regions and the addition of a halo measurement capability to synchrotron light diagnostics. Additionally, several new diagnostic systems are under investigation, such as very high bandwidth pick-ups and a streak camera installation, both able to perform intra-bunch measurements of transverse position on a turn by turn basis.

  12. New Detector Technologies for the LHC Experiments: Prospects, Strategies and Technologies for the HL-LHC Upgrades

    SciTech Connect

    Mannelli, Marcello

    2013-03-06

    We review the prospects, strategies and technologies for the High Luminosity (HL-LHC) upgrades of the ATLAS and CMS detectors, in the light of a very successful two year-long first physics run, and the discovery of a new 126 GeV boson with properties consistent with those of the Standard Model Higgs boson.

  13. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  14. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  15. Cms Hadron Calorimeter Operations in the 2011 Lhc Run and the Upgrade Plans

    NASA Astrophysics Data System (ADS)

    de Barbaro, Pawel

    2012-08-01

    We have witnessed amazing performance of LHC accelerator in 2010 and its even more amazing performance in 2011. By early October 2011, LHC has delivered more than 4 fb-1 of integrated luminosity, with peak instantaneous luminosities reaching above 3*10 33 cm-2/s. In this note, we review CMS Hadron Calorimeter operations during the 2011 LHC run. In particular, we describe HCAL calibration methods and discuss main sources of calorimeter noise and development of noise filters. Finally, we present plans for HCAL upgrade...

  16. Test Results of the Luminosity Monitors for the LHC

    SciTech Connect

    Beche, J.F.; Byrd, J. M.; Doolittle, L.; Manfredi, P. F.; Matis, H. S.; Monroy, M.; Ratti, A.; Stezelberger, T.; Stiller, J.; Turner, W.; Yaver, H.; Drees, A.; Bravin, E.

    2009-05-04

    The Luminosity Monitor for the LHC has been built at LBNL and will be operational in the LHC during the upcoming run. The device, a gas ionization chamber, is installed in the high luminosity regions (those dedicated to the ATLAS and CMS experiments) and capable to resolve bunch-by-bunch luminosity as well as survive extreme levels of radiation. During the experimental R&D phase of its design, a prototype of this detector has been tested extensively at the ALS, in RHIC as well as in the SPS. Results of these experiments are presented here.

  17. FLUKA studies of hadron-irradiated scintillating crystals for calorimetry at the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Quittnat, Milena; CMS Collaboration

    2015-02-01

    Calorimetry at the High-Luminosity LHC (HL-LHC) will be performed in a harsh radiation environment with high hadron fluences. The upgraded CMS electromagnetic calorimeter design and suitable scintillating materials are a focus of current research. In this paper, first results using the Monte Carlo simulation program FLUKA are compared to measurements performed with proton-irradiated LYSO, YSO and cerium fluoride crystals. Based on these results, an extrapolation to the behavior of an electromagnetic sampling calorimeter, using one of the inorganic scintillators above as an active medium, is performed for the upgraded CMS experiment at the HL-LHC. Characteristic parameters such as the induced ambient dose, fluence spectra for different particle types and the residual nuclei are studied, and the suitability of these materials for a future calorimeter is surveyed. Particular attention is given to the creation of isotopes in an LYSO-tungsten calorimeter that might contribute a prohibitive background to the measured signal.

  18. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  19. Level-1 pixel based tracking trigger algorithm for LHC upgrade

    NASA Astrophysics Data System (ADS)

    Moon, C.-S.; Savoy-Navarro, A.

    2015-10-01

    The Pixel Detector is the innermost detector of the tracking system of the Compact Muon Solenoid (CMS) experiment at CERN Large Hadron Collider (LHC) . It precisely determines the interaction point (primary vertex) of the events and the possible secondary vertexes due to heavy flavours (b and c quarks); it is part of the overall tracking system that allows reconstructing the tracks of the charged particles in the events and combined with the magnetic field to measure their momentum. The pixel detector allows measuring the tracks in the region closest to the interaction point. The Level-1 (real-time) pixel based tracking trigger is a novel trigger system that is currently being studied for the LHC upgrade. An important goal is developing real-time track reconstruction algorithms able to cope with very high rates and high flux of data in a very harsh environment. The pixel detector has an especially crucial role in precisely identifying the primary vertex of the rare physics events from the large pile-up (PU) of events. The goal of adding the pixel information already at the real-time level of the selection is to help reducing the total level-1 trigger rate while keeping an high selection capability. This is quite an innovative and challenging objective for the experiments upgrade for the High Luminosity LHC (HL-LHC) . The special case here addressed is the CMS experiment. This document describes exercises focusing on the development of a fast pixel track reconstruction where the pixel track matches with a Level-1 electron object using a ROOT-based simulation framework.

  20. The Atlas Tracker Upgrade:. Short Strips Detectors for the sLHC

    NASA Astrophysics Data System (ADS)

    Soldevila, Unnila; Miñano, M.; Garcia, C.; Lacasta, C.; Marti, S.

    2010-04-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 20I8 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector tracker is being designed. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. Planar detectors to be made on p-type wafers in a number of different designs have been developed. These prototype detectors were then produced by a leading manufacturers and irradiated to a set of fluences matched to sLHC expectations. The irradiated sensors were subsequently tested with LHC-readout-electronics in order to study the radiation-induced degradation, and determine their performance after serious hadron irradiation of up to 1015 neqcm-2. The signal suffers degradation as a function of irradiation. It is however evident that sufficient charge can still be recorded even at the highest fluence. We will give an overview of the ATLAS tracker upgrade, in particular focusing on innermost silicon strip layers. We will draw conclusions on what type and design of strip detectors to employ for the upgrades of the tracking layers in the sLHC upgrades of LHC experiments.

  1. SLC-2000: A luminosity upgrade for the SLC

    SciTech Connect

    Breidenbach, M.; Decker, F.J.; Helm, R.

    1996-08-01

    The authors discuss a possible upgrade to the Stanford Linear Collider (SLC), whose objective is to increase the SLC luminosity by at least a factor 7, to an average Z production rate of more than 35,000 per week. The centerpiece of the upgrade is the installation of a new superconducting final doublet with a field gradient of 240 T/m, which will be placed at a distance of only 70 cm from the interaction point. In addition, several bending magnet in each final focus will be lengthened and two octupole correctors are added. A complementary upgrade of damping rings and bunch compressors will allow optimum use of the modified final focus and can deliver, or exceed, the targeted luminosity. The proposed upgrade will place the SLC physics program in a very competitive position, and will also enable it to pursue its pioneering role as the first and only linear collider.

  2. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  3. Multichannel assault on natural supersymmetry at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Savoy, Michael; Tata, Xerxes

    2016-08-01

    Recent clarifications of naturalness in supersymmetry robustly require the presence of four light Higgsinos with mass ˜100 - 300 GeV while gluinos and (top) squarks may lie in the multi-TeV range, possibly out of LHC reach. We project the high-luminosity (300 - 3000 fb-1 ) reach of LHC14 via gluino cascade decays and via same-sign diboson production. We compare these to the reach for neutralino pair production Z˜1Z˜2 followed by Z˜2→Z˜1ℓ+ℓ- decay to soft dileptons which recoil against a hard jet. It appears that 3000 fb-1 is just about enough integrated luminosity to probe naturalness with up to 3% fine-tuning at the 5 σ level, thus either discovering natural supersymmetry or else ruling it out.

  4. OPEN MIDPLANE DIPOLE DESIGN FOR LHC IR UPGRADE.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; SCHMALZLE,J.; MOKHOV,N.

    2004-01-21

    The proposed luminosity upgrade of the Large Hadron Collider (LHC), now under construction, will bring a large increase in the number of secondary particles from p-p collisions at the interaction point (IP). Energy deposition will be so large that the lifetime and quench performance of interaction region (IR) magnets may be significantly reduced if conventional designs are used. Moreover, the cryogenic capacity of the LHC will have to be significantly increased as the energy deposition load on the interaction region (IR) magnets by itself will exhaust the present capacity. We propose an alternate open midplane dipole design concept for the dipole-first optics that mitigates these issues. The proposed design takes advantage of the fact that most of the energy is deposited in the midplane region. The coil midplane region is kept free of superconductor, support structure and other material. Initial energy deposition calculations show that the increase in temperature remains within the quench tolerance of the superconducting coils. In addition, most of the energy is deposited in a relatively warm region where the heat removal is economical. We present the basic concept and preliminary design that includes several innovations.

  5. LHC Abort Gap Cleaning Studies During Luminosity Operation

    SciTech Connect

    Gianfelice-Wendt, E.; Bartmann, W.; Boccardi, A.; Bracco, C.; Bravin, E.; Goddard, B.; Hofle, W.; Jacquet, D.; Jeff, A.; Kain, V.; Meddahi, M.; /CERN

    2012-05-11

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  6. Luminosity measurement method for the LHC: The detector requirement studies

    NASA Astrophysics Data System (ADS)

    Krasny, M. W.; Chwastowski, J.; Cyz, A.; Słowikowski, K.

    2013-11-01

    In our earlier paper [1] we have proposed a new luminosity measurement method for the LHC collider. It is based on the detection of lepton pairs produced in the peripheral collisions of the LHC beam particles and allows to reach better than 1% accuracy of the theoretical control of the event rate. In order to implement this method a new, specialized luminosity detector must be incorporated within the fiducial volume of one of the existing LHC detectors. In this paper the requirement studies for such a detector are presented. They are driven, almost exclusively, by its capacity to identify, within the level 1 trigger latency of the host detector, the bunch crossings with exclusive, coplanar pairs of opposite charge particles. It is shown that a tracking detector with the azimuthal hit resolution of 2 mrad allows us to reduce the rate of background events to the requisite O(1 kHz) level while retaining a sufficiently large fraction of the signal events for the precise luminosity measurement.

  7. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  8. Development of TQC01, a 90mm Nb3Sn model quadrupole for LHC upgrade based on ss collar

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Ghosh, A.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Novitski, I.; Sabbi, G.L.; Turrioni, D.; Whitson, G.; Yamada, r.; /Fermilab /LBL, Berkeley /Brookhaven

    2005-10-01

    As a first step toward the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer technological quadrupole models (TQS01 at LBNL and TQC01 at Fermilab) are being constructed within the framework of the US LHC Accelerator Research Program (LARP). Both models use the same coil design, but have different coil support structures. This paper describes the TQC01 design, fabrication technology and summarizes its main parameters.

  9. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  10. Status and Outlook for the RHIC Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2010-02-01

    electron lens to compensate the beam-beam effect is also currently explored at RHIC. This presentation will report the current performance of RHIC as well as the plans for RHIC luminosity upgrades. )

  11. Upgraded readout electronics for the ATLAS LAr calorimeter at the phase I of LHC

    NASA Astrophysics Data System (ADS)

    Stärz, S.; Atlas Liquid Argon Calorimeter Group

    2013-08-01

    The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics is summing analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up noise expected during the high luminosity phases of LHC will be increased by factors of 3-7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. The general concept of the upgraded LAr calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The R&D activities and architectural studies undertaken by the ATLAS LAr Calorimeter group are described.

  12. US-LARP progress on LHC IR upgrades

    SciTech Connect

    Sen, Tanaji; Johnstone, John; Mokhov, Nikolai; Fischer, Wolfram; Gupta, Ramesh; Qiang, Ji; /LBL, Berkeley

    2006-03-01

    We review the progress on LHC IR upgrades made by the US-LARP collaboration since the last CARE meeting in November 2004. We introduce a new optics design with doublet focusing, and discuss energy deposition calculations with an open mid-plane dipole. We present the results of a beam-beam experiment at RHIC. This experiment was the first phase of a planned test of the wire compensation principle at RHIC.

  13. Steady State Heat Deposits Modeling in the Nb3Sn Quadrupole Magnets for the Upgrade of the LHC Inner Triplet

    SciTech Connect

    Bocian, D.; Ambrosio, G.; Felice, H.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Hafalia, R.; /Fermilab /Lawrence Berkeley Lab /Brookhaven

    2011-09-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. In previous papers, a Network Model has been used to study the thermodynamic behavior of magnet coils and to calculate the quench levels in the LHC magnets for expected beam loss profiles. This model was subsequently used for thermal analysis and design optimization of Nb{sub 3}Sn quadrupole magnets, which LARP (US LHC Accelerator Research Program) is developing for possible use in the LHC luminosity upgrade. For these new magnets, the heat transport efficiency from the coil to the helium bath needs to be determined and optimized. In this paper the study of helium cooling channels and the heat evacuation scheme are presented and discussed.

  14. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  15. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented. PMID:26932084

  16. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  17. A proposed Drift Tubes-seeded muon track trigger for the CMS experiment at the High Luminosity-LHC

    NASA Astrophysics Data System (ADS)

    Pozzobon, N.; Lazzizzera, I.; Vanini, S.; Zotto, P.

    2016-07-01

    The LHC program at 13 and 14 TeV, after the observation of the candidate SM Higgs boson, will help clarify future subjects of study and shape the needed tools. Any upgrade of the LHC experiments for unprecedented luminosities, such as the High Luminosity-LHC ones, must then maintain the acceptance on electroweak processes that can lead to a detailed study of the properties of the candidate Higgs boson. The acceptance of the key lepton, photon and hadron triggers should be kept such that the overall physics acceptance, in particular for low-mass scale processes, can be the same as the one the experiments featured in 2012. In such a scenario, a new approach to early trigger implementation is needed. One of the major steps will be the inclusion of high-granularity tracking sub-detectors, such as the CMS Silicon Tracker, in taking the early trigger decision. This contribution can be crucial in several tasks, including the confirmation of triggers in other subsystems, and the improvement of the on-line momentum measurement resolution. A muon track-trigger for the CMS experiment at the High Luminosity-LHC is presented. A back-extrapolation of Drift Tubes trigger primitives is proposed to match tracks found at Level 1 with muon candidates. The main figures-of-merit are presented, featuring sharp thresholds and less contamination from lower momentum muons, and an expected rate reduction of a factor of 5-10 at typical thresholds with respect to the muon trigger configuration used in 2012.

  18. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  19. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  20. Improved luminosity determination in pp collisions at using the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A. A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Agustoni, M.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Atkinson, M.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bittner, B.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Bremer, J.; Brendlinger, K.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, X.; Chen, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Cole, S.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dao, V.; Darbo, G.; Darlea, G. L.; Dassoulas, J. A.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dinut, F.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Dressnandt, N.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Duda, D.; Dudarev, A.; Dudziak, F.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Frank, T.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Goeringer, C.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Göpfert, T.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Goshaw, A. T.; Gosselink, M.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guest, D.; Guicheney, C.; Guindon, S.; Gul, U.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Hong, T. M.; Hooft van Huysduynen, L.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karakostas, K.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Keller, J. S.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Koperny, S.; Köpke, L.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kreiss, S.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Lepold, F.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lukas, W.; Lumb, D.; Luminari, L.; Lund, E.; Lundberg, B.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lundquist, J.; Lungwitz, M.; Lynn, D.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Maenner, R.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Martens, F. K.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzaferro, L.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Möser, N.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Muenstermann, D.; Müller, T. A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Plotnikova, E.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schneider, B.; Schnoor, U.; Schoening, A.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciolla, G.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snyder, S.; Sobie, R.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Staude, A.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Swedish, S.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valentinetti, S.; Valero, A.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Wang, T.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Wetter, J.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xu, C.; Xu, D.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Young, C. J.; Youssef, S.; Yu, D.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimin, N. I.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2013-08-01

    The luminosity calibration for the ATLAS detector at the LHC during pp collisions at in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at . A luminosity uncertainty of is obtained for the 47 pb-1 of data delivered to ATLAS in 2010, and an uncertainty of is obtained for the 5.5 fb-1 delivered in 2011.

  1. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  2. The New Transfer Line Collimation System for the LHC High Luminosity Era

    SciTech Connect

    Kain, Verena; Bracco, Chiara; Goddard, Brennan; Maciariello, Fausto; Meddahi, Malika; Mereghetti, Alessio; Steele, Genevieve; Velotti, Francesco; Gianfelice-Wendt, Eliana

    2014-07-01

    A set of passive absorbers is located at the end of each of the 3 km long injection lines to protect the LHC in case of failures during the extraction process from the LHC’s last pre-injector or the beam transfer itself. In case of an erroneous extraction, the absorbers have to attenuate the beam to a safe level and be robust enough themselves to survive the impact. These requirements are difficult to fulfil with the very bright and intense beams produced by the LHC injectors for the high luminosity era. This paper revisits the requirements for the SPS-to-LHC transfer line collimation system and the adapted strategy to fulfill these for the LHC high luminosity operation. A possible solution for the new transfer line collimation system is presented.

  3. Operation of the ATLAS end-cap calorimeters at sLHC luminosities: An experimental study

    NASA Astrophysics Data System (ADS)

    Tikhonov, Yu. A.; Atlas Liquid Argon Hilum Group

    2010-05-01

    The expected increase of luminosity at sLHC by a factor of ten with respect to LHC luminosities has serious consequences for the ATLAS liquid argon calorimeters in the end-cap (EMEC, HEC) and in the forward region (FCAL). Small modules of each type of calorimeter have been built and exposed to a high intensity (up to 10 12 pps) proton beam of 60 GeV at IHEP/Protvino. The correlation between beam intensity and the read-out signal has been studied. Also, the dependence of the HV currents as well as calorimeter module temperature on the beam intensity has been measured.

  4. 800MHz Crab Cavity Conceptual Design For the LHC Upgrade

    SciTech Connect

    Xiao, Liling; Li, Zenghai; Ng, Cho-Kuen; Seryi, Andrei; /SLAC

    2009-05-26

    In this paper, we present an 800 MHz crab cavity conceptual design for the LHC upgrade. The cell shape is optimized for lower maximum peak surface fields as well as higher transverse R/Q. A compact coax-to-coax coupler scheme is proposed to damp the LOM/SOM modes. A two-stub antenna with a notch filter is used as the HOM coupler to damp the HOM modes in the horizontal plane and rejects the operating mode at 800MHz. Multipacting (MP) simulations show that there are strong MP particles at the disks. Adding grooves along the short axis without changing the operating mode's RF characteristics can suppress the MP activities. Possible input coupler configurations are discussed.

  5. Tevatron Collider Run II status and novel technologies for luminosity upgrades

    SciTech Connect

    Vladimir Shiltsev

    2004-07-20

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 92e30 cm-2s-1 which exceeds the original Run IIa goal. Over 0.57fb-1 have being delivered to each CDF and D0 experiments since the beginning of the Run II. In parallel to the Collider operation, we have started a project of the luminosity upgrade which should lead to peak luminosities of about 270e30 and total integrated luminosity of 4.4-8.5 fb-1 through FY2009. In this paper we describe the status of the Tevatron Collider complex, essence of the upgrades and novel accelerator technologies to be employed.

  6. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    SciTech Connect

    Fartoukh, Stephane; Valishev, Alexander; Shatilov, Dmitry

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  7. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  8. The Upgrade of the ATLAS Electron and Photon Triggers for LHC Run 2 and their Performance

    NASA Astrophysics Data System (ADS)

    Thomson, Evelyn; Atlas Collaboration

    2016-03-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance multivariate analysis techniques are introduced at the HLT. The evolution of the ATLAS electron and photon triggers and their performance will be presented, including new results from the 2015 LHC Run 2 operation. Submitted on behalf of ATLAS electron and photon combined performance group. Speaker is yet to be chosen.

  9. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Ilic, N.

    2014-03-01

    The ATLAS experiment is a multi-purpose detector built for analyzing LHC collision data. In July 2012, ATLAS announced the discovery of the Higgs boson, the last undiscovered particle in the Standard Model of Particle Physics. The ATLAS Liquid Argon (LAr) Calorimeter played a crucial role in the discovery by providing accurate measurements of Higgs final state objects such as photons, electrons and jets. The LAr detector is a sampling calorimeter consisting of four subsystems: an electromagnetic barrel, electromagnetic endcaps, hadronic endcaps, and forward calorimeters. The purity and temperature of the liquid argon remained well above the required levels throughout the data-taking period. Overall the calorimeter performed very well, with over 99% of data it collected in 2012 proton-proton collisions being suitable for physics analyses. In order to ensure good LAr detector performance at future higher luminosity LHC operation, several upgrades are being planned and implemented.

  10. ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

    SciTech Connect

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

    2010-05-23

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  11. Jet identification and energy scale corrections in a high-luminosity environment at the LHC

    NASA Astrophysics Data System (ADS)

    Miller, David

    2009-05-01

    The LHC physics program will ultimately probe not only the highest energies ever produced in the laboratory but also the most numerous and frequent collisions between hadronic particles ever. These luminosities will produce hadronic jets from simultaneous proton-proton collisions in unprecedented numbers, presenting extreme challenges for jet identification, calibration and missing energy (ET) measurements. We present a unified jet energy scale program designed to account for these uncorrelated soft interactions using the advanced technique of associating calorimeter jets to reconstructed primary vertices using tracks. This approach suppresses the background contributions from these ``pile-up'' interactions and allows for jet-by-jet energy scale corrections for multiple interactions. This approach is shown to be vital for coping with the unparalleled luminosity of the LHC.

  12. Second-generation coil design of the Nb3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, S. Izquierdo; Ambrosio, G.; Ballarino, A.; Cavanna, E.; Bossert, R.; Cheng, D.; Dietderich, D.; Ferracin, P.; Ghosh, A.; Hagen, P.; et al

    2016-01-18

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a finemore » tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this study, we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.« less

  13. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    SciTech Connect

    Kain, V.; Aberle, O.; Bracco, C.; Fraser, M.; Galleazzi, F.; Gianfelice-Wendt, E.; Kosmicki, A.; Maciariello, F.; Meddahi, M.; Nuiry, F. X.; Steele, G.; Velotti, F.

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  14. Support Structure Design of the $\\hbox{Nb}_{3}\\hbox{Sn}$ Quadrupole for the High Luminosity LHC

    SciTech Connect

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of the detailed 3D numerical analysis performed in preparation for the first short model test.

  15. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  16. Scenarios for sLHC and vLHC

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Zimmermann, F.

    2008-03-01

    The projected lifetime of the LHC low-beta quadrupoles and evolution of the statistical error halving time call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the EU CARE-HHH network, two scenarios have been developed for increasing the LHC peak luminosity by a factor 10, to 10 cms ("sLHC"). Both scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges differ substantially. In either scenario luminosity leveling during a store would be advantageous for the physics experiments. Longer-term R&D efforts are devoted to a higher-energy hadron collider ("vLHC"), which could be realized on a green field or as a later and more radical LHC upgrade.

  17. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Hall, G.

    2016-07-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  18. Radiation-hard ASICs for optical data transmission in the first phase of the LHC upgrade

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Kagan, H. P.; Kass, R. D.; Moore, J. R.; Smith, D. S.; Wiese, A.; Ziolkowskic, M.

    2010-12-01

    We have designed two ASICs for possible applications in the optical links of a new layer of the pixel detector to be install inside the ATLAS Pixel detector for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL and a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock. Both ASICs contain 4 channels for operation with a VCSEL or PIN array. The ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the performance of the ASICs is satisfactory. The receiver/decoder can properly decode the bi-phase marked input stream with low PIN current and the driver can operate a VCSEL up to ~ 5 Gb/s. The added functionalities are also successful, including redundancy to bypass a broken VCSEL or PIN channel, individual control of VCSEL current, and power-on reset circuit to set all VCSEL currents to a nominal value. The ASICs were irradiated to a dose of 46 Mrad with 24 GeV/c protons. The observed modest degradation is acceptable and the single event upset rate is negligible.

  19. Radiation-hard ASICs for optical data transmission in the first phase of the LHC upgrade

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Kagan, H. P.; Kass, R. D.; Moore, J. R.; Smith, D. S.; Wiese, A.; Ziolkowskic, M.

    2011-06-01

    We have designed two ASICs for possible applications in the optical links of a new layer of the pixel detector to be install inside the ATLAS Pixel detector for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for a VCSEL and a receiver/decoder to decode the signal received at a PIN diode to extract the data and clock. Both ASICs contain 4 channels for operation with a VCSEL or PIN array. The ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the performance of the ASICs is satisfactory. The receiver/decoder properly decodes the bi-phase marked input stream with low PIN current and the driver can operate a VCSEL up to ˜5 Gb/s. The added functionalities are also successful, including redundancy to bypass a broken VCSEL or PIN channel, individual control of VCSEL current, and power-on reset circuit to set all VCSEL currents to a nominal value.

  20. CMS Tracker upgrade for HL-LHC: R&D plans, present status and perspectives

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-07-01

    During the high luminosity phase of the LHC (HL-LHC), the machine is expected to deliver an instantaneous luminosity of 5 ×1034cm-2s-1. A total of 3000 fb-1 of data is foreseen to be delivered, with the opening of new physics potential for the LHC experiments, but also new challenges from the point of view of both detector and electronics capabilities and radiation hardness. In order to maintain its physics reach, CMS will build a new Tracker, including a completely new Pixel Detector and Outer Tracker. The ongoing R&D activities on both pixel and strip sensors will be presented. The present status of the Inner and Outer Tracker projects will be illustrated, and the possible perspectives will be discussed.

  1. Production of CMS FPIX detector modules and development of novel radiation-hard silicon sensors for future upgrades of the LHC

    NASA Astrophysics Data System (ADS)

    Koybasi, Ozhan

    The Compact Muon Solenoid (CMS) experiment currently taking data at the Large Hadron Collider (LHC) has the largest ever built all-silicon tracking system with a pixel detector as the innermost component. The pixel detector consists of three 53 cm long barrel layers (BPIX) at radial distances of r= 4.4, 7.3, and 10.2 cm from the interaction point complemented with two end-cap disks (FPIX) on each side of the interaction region covering radial distances from ˜6 cm to 15 cm. The development, production, and qualification of the silicon detector modules used for the construction of the CMS FPIX disks are described. The plan for the luminosity upgrade of the LHC foresees a phase I upgrade increasing the peak luminosity from 1034 cm.2s.1 (original design figure) to 2-3 x 1034 cm-2s-1 after about 5 years of operation, followed by phase II upgrade eventually reaching a value of 5x1034 cm-2 s-1 (the so-called "High Luminosity-LHC" or "HL-LHC"). At Phase I, the CMS pixel detector will be replaced by a new detector, which will have an additional fourth barrel layer at r=16 cm and two extra forward disks on each side with radial coverage of all disks increased to r =4.5-16.1 cm. Although the present non- n silicon pixel sensor technology meets the performance requirements, it is possible to achieve the same performance with the relatively new n-on-p technology, which would reduce the cost by ˜50%. The phase II upgrade, on the other hand, faces a challenge for the detector technology to be adopted for the innermost tracking layers (at r ˜ 4 cm) where the radiation fluence is expected to reach values close to 1016 neq /cm2, since the conventional planar silicon sensors are functional only up to a fluence of ˜1015 neq/cm2. The 3D silicon sensor technology is regarded as one of the most promising solutions for the radiation tolerance requirements of innermost pixel tracking layers at the HL-LHC. Improvements to the current n-on-n silicon pixel sensor design; and development

  2. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  3. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  4. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    SciTech Connect

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.; Wang, M-H.; Fartoukh, S.; Giovannozzi, M.; Maria, R.de; McIntosh, E.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effects of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.

  5. Design Study of the High Luminosity LHC Recombination Dipole (D2)

    SciTech Connect

    Sabbi, GianLuca; Wang, Xiaorong

    2014-05-26

    The interaction region design of the high-luminosity LHC requires replacing the recombination dipole magnets (D2) with new ones. The preliminary specifications include an aperture of 105 mm, with 186 mm separation between the twin-aperture axes, and an operating field in the range of 3.5 to 4.5 T. The main design challenge is to decouple the magnetic field in the two apertures and ensure good field quality. The approach adopted for the present D2 magnets, using the iron yoke as a shield between the two apertures, leads to large saturation effects. In this study, we propose an alternative approach where the iron yoke is designed primarily for low saturation, and the resulting large but current-independent cross-talk between the apertures is corrected with an asymmetric arrangement of the conductor blocks. A preliminary solution based on the LHC dipole cable is presented, and the expected harmonics for geometric, saturation and persistent current effects are provided. Finally, the feasibility of an operating field at the high end of the range considered is discussed, to minimize the D2 magnet length and facilitate the space allocation for other components.

  6. Development of Nb3Sn 11 T single aperture demonstrator dipole for LHC upgrades

    SciTech Connect

    Zlobin, A.V.; Apollinari, G.; Andreev, N.; Barzi, E.; Kashikhin, V.V.; Nobrega, f.; Novitski, I.; Auchmann, B.; Karppinen, M.; Rossi, L.; /CERN

    2011-03-01

    The LHC collimation upgrade foresees additional collimators installed in dispersion suppressor regions. To obtain the necessary space for the collimators, a solution based on the substitution of LHC main dipoles for stronger dipoles is being considered. CERN and FNAL have started a joint program to demonstrate the feasibility of Nb{sub 3}Sn technology for this purpose. The goal of the first phase is the design and construction of a 2-m long single-aperture demonstrator magnet with a nominal field of 11 T at 11.85 kA with 20% margin. This paper describes the magnetic and mechanical design of the demonstrator magnet and summarizes its design parameters.

  7. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Izquierdo Bermudez, S.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Tartaglia, M.; Turrioni, D.; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  8. Analysis of the BRAN Forward High Luminosity Detectors at the LHC

    NASA Astrophysics Data System (ADS)

    Green, Brett; Ratti, Alessandro; Matis, Howard

    2013-10-01

    The Beam Rate of Neutrals detectors measure relative luminosity in the far forward regions of ATLAS and CMS at the LHC by detecting secondary showers from neutral particles using high-pressure ionization chambers. One detector is on each side, clockwise and counterclockwise, of ATLAS and CMS. Proton-proton, proton-lead, and lead-lead collisions have been measured. We have simulated the detector during all three collision types (pp, pPb, and PbPb) in the modeling program FLUKA. The detectors take measurements in both pulse height and counting modes for four separate quadrants. Pulse height mode measures changes in voltage caused by incoming particles, whereas counting mode measures the number of times a threshold was exceeded. We show that the detector can measure luminosity for all reaction types on both sides, a range extending over three orders of magnitude. We calculate crossing angle, and we quantify reaction asymmetry. We show that by comparing data with known and accepted values we may calibrate the detector. This research was supported by the Department of Energy's Workforce Development of Teachers and Scientists, Berkeley Lab, and Berkeley Lab's Center for Science and Engineering Education.

  9. Readout electronics upgrade on ALICE/PHOS detector for Run 2 of LHC

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, F.; Feng, W.; Huang, G.; Song, Z.; Yin, Z.; Zhou, D.

    2015-02-01

    The ALICE/PHOS detector is carrying out a major upgrade of its readout electronics for the RUN 2 of LHC (2015-2017). A new architecture based on the point to point link is developed. The event readout rate can achieve 30 kHz by replacing the old parallel GTL bus with DTC links. The communication stability of the interface between front-end electronic boards and readout concentrators is significantly improved. A new FPGA firmware is designed to be compatible with the upgraded ALICE trigger system and DATE software.

  10. Prototype Testing for a Copper Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Anzalone, Gene; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Rogers, Reggie; /SLAC

    2009-01-20

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw referred to as RC0 has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results. The prototype has also been tested in vacuum bake-out to confirm compliance with the LHC vacuum spec. CMM equipment has been used to verify the flatness of the jaw surface after heat tests and bake-out.

  11. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    NASA Astrophysics Data System (ADS)

    Strizenec, P.

    2014-09-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid Argon sampling calorimeters are used for all electromagnetic calorimetry covering the pseudorapidity region up to 3.2, as well as for hadronic calorimetry in the range 1.4-4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform azimuthal response. Copper and tungsten were chosen as passive material for the hadronic calorimetry; whereas a parallel plate geometry was adopted at large polar angles, an innovative one based on cylindrical electrodes with thin argon gaps was designed for the coverage at low angles, where the particles flow is higher. All detectors are housed in three cryostats kept at 88.5 K. After installation in 2004-2006, the calorimeters were extensively commissioned over the three years period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, around 27 fb-1 of data have been collected at a unprecedented center of mass energies between 7 TeV and 8 TeV. During all these stages, the calorimeter and its electronics have been operating with performances very close to the specification ones. After 2019, the instantaneous luminosity will reach 2-3 × 1034 cm-2s-1, well above the luminosity for which the calorimeter was designed. In order to preserve its triggering capabilities, the detector will be upgraded with a new fully digital trigger system with a refined granularity. In 2023, the instantaneous luminosity will ultimately reach 5-7 × 1034 cm-2s-1, requiring a complete replacement of the readout electronics. Moreover, with an increased particle flux, several phenomena (liquid argon boiling, space charge effects...) will affect the performance of the forward calorimeter (FCal). A replacement with a new FCal with smaller LAr gaps or a new calorimeter module are considered. The performance of these new

  12. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    DOE PAGES

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; et al

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data frommore » the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.« less

  13. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  14. Hadronic jet-vertex association in a high-luminosity environment at the LHC

    NASA Astrophysics Data System (ADS)

    Miller, David

    2008-04-01

    The LHC physics program will ultimately probe not only the highest energies ever produced in the laboratory but also the most numerous and frequent collisions between hadronic particles ever. These particle luminosities, much above the current Tevatron values, will produce hadronic jets from simultaneous uncorrelated proton-proton collisions in unprecedented numbers, thus introducing challenges for jet identification and association with the primary collision vertices, jet energy measurements and missing energy resolution. We continue work first introduced by the Tevatron experiments to combine tracking information with calorimeter jets in order to disentangle this jet background. Using an algorithm which assigns a jet-vertex association probability, jet selection is shown to be insensitive to the contributions from these ``pile-up'' collisions, which is essential for the many physics analyses dependent on event jet multiplicity. Furthermore, jet-by-jet multiple interaction energy corrections are now possible and improvements to the primary vertex identification from jet-vertex association are gained for several interesting physics processes.

  15. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  16. Mechanical qualification of the support structure for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; Bajas, H.; Bajko, M.; Bourcey, N.; Cheng, D. W.; Felice, H.; Ferracin, P.; Grosclaude, P.; et al

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure wasmore » preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less

  17. Construction and Bench Testing of a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. The Phase II collimators must be robust in various operating conditions and accident scenarios. This paper reports on the final construction and testing of the prototype collimator to be installed in the SPS (Super Proton Synchrotron) at CERN. Bench-top measurements will demonstrate that the device is fully operational and has the mechanical and vacuum characteristics acceptable for installation in the SPS.

  18. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    SciTech Connect

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  19. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    SciTech Connect

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred; Novitski, Igor; Karppinen, Mikko

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  20. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; Shatilov, Dmitry

    2015-12-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called "configurations," where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.

  1. Triggering on electrons, jets and tau leptons with the CMS upgraded calorimeter trigger for the LHC RUN II

    NASA Astrophysics Data System (ADS)

    Zabi, A.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.

    2016-02-01

    The Compact Muon Solenoid (CMS) experiment has implemented a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC will increase its centre-of-mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2 × 1034 cm-2 s-1. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition (DAQ) system has been upgraded. A novel concept for the L1 calorimeter trigger is introduced: the Time Multiplexed Trigger (TMT) . In this design, nine main processors receive each all of the calorimeter data from an entire event provided by 18 preprocessors. This design is not different from that of the CMS DAQ and HLT systems. The advantage of the TMT architecture is that a global view and full granularity of the calorimeters can be exploited by sophisticated algorithms. The goal is to maintain the current thresholds for calorimeter objects and improve the performance for their selection. The performance of these algorithms will be demonstrated, both in terms of efficiency and rate reduction. The callenging aspects of the pile-up mitigation and firmware design will be presented.

  2. COMPLETION OF SUPERCONDUCTING MAGNET PRODUCTION AT BNL FOR THE HERA LUMINOSITY UPGRADE

    SciTech Connect

    WANDERER,P.ANERELLA,M.ESCALLIER,J.GHOSH,A.JAIN,A.MARONE,A.MURATORE,J.PARKER,A.PRODELL,A.THOMPSON,P.WU,K.C.

    2001-09-24

    Brookhaven National Laboratory (BNL) has completed production of the superconducting multi-function magnets that are now installed as part of the HERA luminosity upgrade at DESY. The magnets, cryostats, and lead assemblies were designed and built at BNL. To fit inside the existing detectors, the coils plus cryostat structure had to meet a challenging radial budget (e.g., 39 mm horizontally). Two types of magnets were needed and three of each type were built. Each magnet contained normal and skew quadrupole, normal and skew dipole, and sextupole coils. The magnets operate in the {approx}1.5 T solenoid field of a detector. The quadrupole coils produce gradients up to 13 T/m. The dipole coils generate fields up to 0.3 T. Coils were wound under computer control using either seven-strand round cable or a single strand. To simultaneously avoid excessive synchrotron radiation background scattered from the beam pipe and yet have a small cryostat, one type of magnet used a tapered coil structure. The cryogenic system incorporates cooling with both 40 K helium and supercritical helium. All of the coils were tested in liquid helium in a vertical dewar. Quench test results have been excellent. The field quality of the magnets has met the stringent requirements imposed on interaction region magnets. One magnet of each type was tested at BNL as a completed assembly to verify the performance of the leads and cryostats. Two of each type were tested at DESY and then installed in the Zeus and H1 experiments. The remaining magnets are spares. Final results of quench testing, field quality measurements and cryogenic performance are reported.

  3. Recent Progress on the Design of a Rotatable Copper Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Lari, Luisella; /Cern /EPFL-ISIC

    2009-08-03

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite collimators with 30 high Z Phase II collimators. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: (1) Collimator jaw deflection due to heating and sagitta must be small when operated in the steady state condition, (2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, (3) Jaws must recover from accident scenario where up to 8 full intensity beam pulses impact on the jaw surface and (4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities. This paper reports on recent updates to the design and testing.

  4. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  5. Probing TeV scale top-philic resonances with boosted top-tagging at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Han; Kong, Kyoungchul; Lee, Seung J.; Mohlabeng, Gopolang

    2016-08-01

    We investigate the discovery potential of singly produced top-philic resonances at the high luminosity (HL) LHC in the four-top final state. Our analysis spans over the fully hadronic, semileptonic, and same-sign dilepton channels where we present concrete search strategies adequate to a boosted kinematic regime and high jet-multiplicity environments. We utilize the template overlap method with newly developed template observables for tagging boosted top quarks, a large-radius jet variable MJ , and customized b -tagging tactics for background discrimination. Our results show that the same-sign dilepton channel gives the best sensitivity among the considered channels, with an improvement of significance up to 10%-20% when combined with boosted top-tagging. Both the fully hadronic and semileptonic channels yield comparable discovery potential and contribute to further enhancements in the sensitivity by combining all channels. Finally, we show the sensitivity of a top-philic resonance at the LHC and HL-LHC by showing the 2 σ exclusion limit and 5 σ discovery reach, including a combination of all three channels.

  6. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    SciTech Connect

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.; /Fermilab

    2008-06-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup.

  7. Mitigation of effects of beam-induced energy deposition in the LHC high-luminosity interaction regions

    SciTech Connect

    Nikolai V. Mokhov et al.

    2003-05-28

    Beam-induced energy deposition in the LHC high luminosity interaction region components is one of the serious limits for the machine performance. The results of further optimization and comprehensive MARS14 calculations in the IP1 and IP5 inner and outer triplets are summarized for the updated lattice, calculation model, baseline pp-collision source term, and for realistic engineering constraints on the hardware design. It is shown that the optimized layout and absorbers would provide a sufficient reduction of peak power density and dynamic heat load in the superconducting components with an adequate safety margin. Accumulated dose and residual dose rates in and around the region components are also kept below the tolerable limits in the proposed design.

  8. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  9. On a possible effective four-boson interaction and its implications at the upgraded LHC

    NASA Astrophysics Data System (ADS)

    Arbuzov, Boris A.; Zaitsev, Ivan V.

    2016-09-01

    We consider the possibility of a spontaneous generation of four-fold effective interactions of electroweak gauge bosons W and B. The conditions for the spontaneous generation are shown to lead to a set of compensation equations for parameters of the interaction. In the case of a realization of a non-trivial solution of the set, the important electroweak parameter sinθ is defined. The existence of two non-trivial solutions is demonstrated, which provide a satisfactory value for the electromagnetic fine structure constant α at scale M: α(M)=0.007756. There is a solution with the high effective cut-off being close to the Planck mass by order of magnitude. The most interesting solution corresponds to an effective cut-off of ≃10 TeV. This solution gives a quite definite prediction for non-perturbative effects in the processes p+p→\\tmacr t(W,Z), which could be observed at the upgraded LHC.

  10. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  11. POTENTIAL FOR HIGGS PHYSICS AT THE LHC AND SUPER-LHC.

    SciTech Connect

    CRANMER, K.S.

    2005-12-12

    The expected sensitivity of the LHC experiments to the discovery of the Higgs boson and the measurement of its properties is presented in the context of both the standard model and the its minimal supersymmetric extension. Prospects for a luminosity-upgraded ''Super-LHC'' are also presented. If it exists, the LHC should discover standard model Higgs boson, measure its mass accurately, and make various measurements of its couplings, spin and CP properties. In the context of the CP-conserving MSSM, the LHC should be able to discover one or more Higgs bosons over the entire m{sub A}-tan {beta} plane, with two or more observable in many cases. The large number of channels available insure a robust discovery and offer many opportunities for additional measurements. Observation of H {yields} {mu}{mu}, measurement of the tri-linear Higgs self-coupling, and various search channels are statistics-limited, and only possible with a luminosity upgrade. A luminosity upgrade would substantially improve some of the coupling measurements and generally extend the sensitivity in the MSSM Higgs plane. Efforts are ongoing to understand the upgrade of the LHC to the Super-LHC.

  12. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  13. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 μm or 150 μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 μm×10 μm, at the positions of the original wire bonding pads.

  14. Results From the DAFNE High Luminosity Test

    SciTech Connect

    Milardi, C.; Alesini, D.; Biagini, M.E.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, G.; Murtas, F.; Pellegrino, L.; /Frascati /Novosibirsk, IYF /CERN /INFN, Cosenza /INFN, Rome /KEK, Tsukuba /Orsay, LAL /Rome U. /Pisa U. /INFN, Pisa /INFN, Rome3 /SLAC

    2012-04-11

    The DAPHNE collider, based on a new collision scheme including Large Piwinsky angle and Crab-Waist, has been successfully commissioned and is presently delivering luminosity to the SIDDHARTA detector. Large crossing angle and Crab-Waist scheme proved to be effective in: (1) Increasing luminosity, now a factor 2.7 higher than in the past; and (2) controlling transverse beam blow-up due to the beam-beam. Work is in progress to reach the ultimate design luminosity goal 5.0 {center_dot} 10{sup 32} cm{sup -2}s{sup -1}. The new collision scheme is the main design concept for a new project aimed at building a Super-B factory that is expected to achieve a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} and it has been also taken into account to upgrade one of the LHC interaction regions.

  15. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  16. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Stoynev, S.; Turrioni, D.; Auchmann, B.; Izquierdo Bermudez, S.; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2015-06-01

    FNAL and CERN are developing a twin-aperture 11 T $Nb_{3}Sn$ dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture $Nb_{3}Sn$ demonstrator dipole and tested. Test results of this twin-aperture $Nb_{3}Sn$ dipole model are reported and discussed.

  17. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  18. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  19. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  20. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  1. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  2. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  3. The ALICE high-level trigger read-out upgrade for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Engel, H.; Alt, T.; Breitner, T.; Gomez Ramirez, A.; Kollegger, T.; Krzewicki, M.; Lehrbach, J.; Rohr, D.; Kebschull, U.

    2016-01-01

    The ALICE experiment uses an optical read-out protocol called Detector Data Link (DDL) to connect the detectors with the computing clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The interfaces of the clusters to these optical links are realized with FPGA-based PCI-Express boards. The High-Level Trigger is a computing cluster dedicated to the online reconstruction and compression of experimental data. It uses a combination of CPU, GPU and FPGA processing. For Run 2, the HLT has replaced all of its previous interface boards with the Common Read-Out Receiver Card (C-RORC) to enable read-out of detectors at high link rates and to extend the pre-processing capabilities of the cluster. The new hardware also comes with an increased link density that reduces the number of boards required. A modular firmware approach allows different processing and transport tasks to be built from the same source tree. A hardware pre-processing core includes cluster finding already in the C-RORC firmware. State of the art interfaces and memory allocation schemes enable a transparent integration of the C-RORC into the existing HLT software infrastructure. Common cluster management and monitoring frameworks are used to also handle C-RORC metrics. The C-RORC is in use in the clusters of ALICE DAQ and HLT since the start of LHC Run 2.

  4. Luminosity measurements at hadron colliders

    SciTech Connect

    Papadimitriou, Vaia; /Fermilab

    2008-04-01

    In this paper we discuss luminosity measurements at Tevatron and HERA as well as plans for luminosity measurements at LHC. We discuss luminosity measurements using the luminosity detectors of the experiments as well as measurements by the machine. We address uncertainties of the measurements, challenges and lessons learned.

  5. The upgraded LHCb RICH detector: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Cardinale, R.

    2016-07-01

    The LHCb upgrade will take place during the second long shutdown of the LHC (LS2). The upgrade will enable the experiment to run at an instantaneous luminosity of 2 ×1033cm-2s-1 and will read out data at a rate of 40 MHz into a flexible software-based trigger. The two Ring Imaging Cherenkov detectors (RICH), installed in the LHCb experiment, will be re-designed to comply with these new operating conditions. The status and perspective of the RICH upgrade project will be presented.

  6. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  7. CMS upgrade and future plans

    NASA Astrophysics Data System (ADS)

    Hoepfner, Kerstin

    2015-05-01

    CMS plans for operation at the LHC phase-II unprecedented in terms of luminosity thus resulting in serious consequences for detector performance. To achieve the goal to maintain the present excellent performance of the CMS detector, several upgrades are necessary. To handle the high phase-II data rates, the readout and trigger systems are redesigned using recent technology developments. The high particle rates will accelerate detector aging and require replacement of the tracker and forward calorimeters. In addition, the muon system will be extended.

  8. From the LHC to future colliders

    SciTech Connect

    De Roeck, A.; Assamagan, K.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglien, G.; Well, J.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Schumacher, M.; Bechtle, P.; Carena, M.; Chachamis, G.; Chen, K.F.; De Curtis, S.; Desch, K.; Dittmar, M.; Dreiner, H.; Duhrssen, M.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Gopalakrishna, S.; Govoni, P.; Gunion, J.; Hollik, W.; Hou, W.S.; Isidori, G.; Juste, A.; Kalinowski, J.; Korytov, A.; Kou, E.; Kraml, S.; Krawczyk, M.; Martin, A.; Milstead, D.; Morton-Thurtle, V.; Moenig, K.; Mele, B.; Ozcan, E.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Rizzo, T.; Rolbiecki, K.; Sannino, F.; Schram, M.; Smillie, J.; Sultansoy, S.; Tattersall, J.; Uwer, P., Webber, B.; and Wienemann, P.

    2010-03-02

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  9. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  10. Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview)

    NASA Astrophysics Data System (ADS)

    Gongadze, A. L.

    2016-03-01

    The increase in luminosity and energy of the Large hadron collider (LHC) in the next upgrade (Phase-1) in 2018-2019 will lead to a significant increase in radiation load on the ATLAS detector, primarily in the areas close to the interaction point of the LHC proton beams. One of these regions is the Small Wheel of the ATLAS Muon Spectrometer. It is planned to be replaced with the New Small Wheel that will have Micromegas chambers as main coordinate detectors. The paper gives an overview of all existing types of Micromegas detectors with special focus on the Micromegas chambers for the ATLAS detector upgrade.

  11. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  12. Novel module production methods for the CMS pixel detector, upgrade phase I

    NASA Astrophysics Data System (ADS)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  13. High luminosity operation, beam-beam effects and their compensation in Tevatron

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2008-06-01

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 3.15 {center_dot} 10{sup 32} cm{sup -2} s{sup -1} which exceeds the Run II Upgrade goal. We discuss the collider performance, illustrate limitations and understanding of beam-beam effects and present experimental results of compensation of the beam-beam effects by electron lenses--a technique of great interest for the LHC.

  14. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  15. The upgraded ATLAS and CMS detectors and their physics capabilities.

    PubMed

    Wells, Pippa S

    2015-01-13

    The update of the European Strategy for Particle Physics from 2013 states that Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting 10 times more data than in the initial design. The plans for upgrading the ATLAS and CMS detectors so as to maintain their performance and meet the challenges of increasing luminosity are presented here. A cornerstone of the physics programme is to measure the properties of the 125GeV Higgs boson with the highest possible precision, to test its consistency with the Standard Model. The high-luminosity data will allow precise measurements of the dominant production and decay modes, and offer the possibility of observing rare modes including Higgs boson pair production. Direct and indirect searches for additional Higgs bosons beyond the Standard Model will also continue.

  16. Run 2 upgrades to the CMS Level-1 calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Kreis, B.; Berryhill, J.; Cavanaugh, R.; Mishra, K.; Rivera, R.; Uplegger, L.; Apanasevich, L.; Zhang, J.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Tapper, A.; Foudas, C.; Beaudette, F.; Cadamuro, L.; Mastrolorenzo, L.; Romanteau, T.; Sauvan, J. B.; Strebler, T.; Zabi, A.; Barbieri, R.; Cali, I. A.; Innocenti, G. M.; Lee, Y.-J.; Roland, C.; Wyslouch, B.; Guilbaud, M.; Li, W.; Northup, M.; Tran, B.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Cepeda, M.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ojalvo, I.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2016-01-01

    The CMS Level-1 calorimeter trigger is being upgraded in two stages to maintain performance as the LHC increases pile-up and instantaneous luminosity in its second run. In the first stage, improved algorithms including event-by-event pile-up corrections are used. New algorithms for heavy ion running have also been developed. In the second stage, higher granularity inputs and a time-multiplexed approach allow for improved position and energy resolution. Data processing in both stages of the upgrade is performed with new, Xilinx Virtex-7 based AMC cards.

  17. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  18. Upgrade of the ALICE Experiment: Letter Of Intent

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. These plans are presented in the ALICE Upgrade Letter of Intent, submitted to the LHCC (LHC experiments Committee) in September 2012. In order to fully exploit the physics reach of the LHC in this field, high-precision measurements of the heavy-flavour production, quarkonia, direct real and virtual photons, and jets are necessary. This will be achieved by an increase of the LHC Pb-Pb instant luminosity up to 6×1027 cm-2s-1 and running the ALICE detector with the continuous readout at the 50 kHz event rate. The physics performance accessible with the upgraded detector, together with the main detector modifications, are presented.

  19. CMS Run-2 Instrumentation for beam radiation and luminosity measurement using novel detector technologies

    NASA Astrophysics Data System (ADS)

    Gomez Espinosa, Alejandro; CMS Collaboration Collaboration

    2016-03-01

    The higher energy and luminosity for Run 2 at the LHC initiated the development of dedicated technologies for beam radiation monitoring and luminosity measurement. A dedicated pixel luminosity detector measures coincidences in several three layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. The full pixel data is also read out at a lower rate to reconstruct charged particle tracks for monitoring and beam spot determination. The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC, produced in 130 nm CMOS technology, for excellent time resolution. A new beam-halo monitor exploits Cerenkov light production in fused quartz crystals to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems include dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All sub-detectors have been taking data from the first day of LHC operation in April 2015. Detector performance results from the 2015 LHC Run II will be presented.

  20. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  1. Silicon sensors for HL-LHC tracking detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor

    2013-12-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC) in 2021 in order to harvest the maximum physics potential. After the upgrade, unprecedented levels of radiation will require the experiments to upgrade their tracking detectors to withstand hadron fluences equivalent to over 1016 1 MeV neutrons per cm2. Within the RD50 Collaboration, a massive R&D program is underway to develop silicon sensors with sufficient radiation tolerance. Recent defect characterization and Edge-TCT measurement results improved the understanding of irradiated detector performance. RD50 results show that sensors with n-side readout, easiest made with p-type silicon, have a superior radiation hardness due to the high overlap of electric and weighting field after irradiation, larger contribution of electrons to the total signal and finally due to charge multiplication which may enhance the collected charge at high bias voltages in this type of detector. A further area of activity is the development of advanced sensor types like 3D silicon and thin pixel detectors designed for the extreme radiation levels expected for the inner layers.

  2. RICH upgrade: Current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Pistone, A.; LHCb RICH Collaboration

    2016-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The second long shutdown of the LHC is currently scheduled to begin in 2018. During this period the LHCb experiment with all its sub-detectors will be upgraded in order to run at an instantaneous luminosity of 2 × 10^{33} cm-2s-1 and to read out data at a rate of 40MHz into a flexible software-based trigger. The Ring Imaging CHerenkov (RICH) system will require new photon detectors and modifications of the optics of the upstream detector. Tests of the prototype of the smallest constituent of the new RICH system have been performed during testbeam sessions at the Test Beam Facility SPS North Area (CERN) in Autumn 2014.

  3. Aging and environmental tolerance of an optical transmitter for the ATLAS Phase-I upgrade at the LHC

    NASA Astrophysics Data System (ADS)

    Chang, F. X.; Chang, H. T.; Duh, T. S.; Hayamizu, T.; Hou, S.; Hu, X.; Liu, C.; Liu, T.; Sakemi, Y.; Schwarz, T.; Teng, P. K.; Tsai, P. R.; Wang, C. H.; Wang, S. Y.; Yang, Y.; Ye, J.

    2016-09-01

    The dual channel Miniature optical Transmitter (MTx) is developed for the ATLAS Phase-I upgrade requiring durable performance in the Large Hadron Collider environment. The data transmission has achieved 8 Gbps per channel with a custom-designed LOCld laser driver and 850 nm VCSELs packaged in transmitter optical sub-assemblies (TOSAs). The performance of the MTx opto-electronics is evaluated. Accelerated aging tests of the VCSELs were conducted in a chamber at 85 °C, 85% relative humidity, with TOSA and bare-die samples prepared in non-hermetic condition. Radiation tolerance of the VCSELs was investigated with 30 MeV and 70 MeV protons. The radiation induced effects in data transmission were investigated for light-power degradation and parameters of eye-diagrams.

  4. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  5. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  6. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  7. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  8. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  9. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  10. Quality Factor for the Hadronic Calorimeter in High Luminosity Conditions

    NASA Astrophysics Data System (ADS)

    Seixas, J. M.; ATLAS Tile Calorimeter System

    2015-05-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of ATLAS experiment of the Large Hadron Collider (LHC) and has about 10,000 eletronic channels. An Optimal Filter (OF) has been used to estimate the energy sampled by the calorimeter and applies a Quality Factor (QF) for signal acceptance. An approach using Matched Filter (MF) has also been pursued. In order to cope with the luminosity rising foreseen for LHC operation upgrade, different algorithms have been developed. Currently, the OF measurement for signal acceptance is implemented through a chi-square test. At a low luminosity scenario, such QF measurement has been used as a way to describe how the acquired signal is compatible to the pulse shape pattern. However, at high-luminosity conditions, due to pile up, this QF acceptance is no longer possible when OF is employed, and the QF becomes a measurement to indicate whether the reconstructed signal suffers or not from pile up. Methods are being developed in order to recover the superimposed information, and the QF may be used again as signal acceptance criterion. In this work, a new QF measurement is introduced. It is based on divergence statistics, which measures the similarity of probability density functions.

  11. Design and performance of the upgrade of the CMS L1 muon trigger

    NASA Astrophysics Data System (ADS)

    Bortignon, P.

    2016-07-01

    After the Long Shutdown 1 (LS1) LHC will run at a center of mass energy of 13 TeV, providing CMS with proton collisions at an expected luminosity which is almost double the LHC design value of 1034cm-2s-1, and almost three times the peak luminosity reached during Run1 of 7.7 ·1033cm-2s-1. The higher luminosity and center of mass energy of the LHC will raise the Level 1 (L1) muon trigger rate by almost a factor six for a given muon transverse momentum pT threshold. It is therefore necessary to increase the muon (pT) threshold to keep the trigger rate below 100 kHz, the maximum sustainable rate for the CMS detectors. An increase of the L1 trigger thresholds implies a lowering of the efficiency in detecting signals from new physics. The CMS muon trigger is upgraded using custom designed AMC boards, with more powerful FPGAs and larger memories. The upgraded CMS muon trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger boards for muon pT assignment, drastically reducing the trigger rate and improving the trigger efficiency. The upgraded system design exploits the redundancy of the CMS muon detectors at a very early stage merging different muon detector information already at L1. The pileup subtracted information from the upgraded calorimeter trigger allows to require isolated muons already in the L1 algorithms. The upgrade trigger is also designed to include inputs from GEM, the phase 2 muon detector upgrade in the very high pseudorapidity region.

  12. The fast beam condition monitor BCM1F backend electronics upgraded MicroTCA-based architecture

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, Agnieszka A.; Bell, Alan; Dabrowski, Anne E.; Guthoff, Moritz; Hempel, Maria; Henschel, Hans; Karacheban, Olena; Lange, Wolfgang; Lohmann, Wolfgang; Lokhovitskiy, Arkady; Leonard, Jessica L.; Loos, Robert; Miraglia, Marco; Penno, Marek; Pozniak, Krzysztof T.; Przyborowski, Dominik; Stickland, David; Trapani, Pier Paolo; Romaniuk, Ryszard; Ryjov, Vladimir; Walsh, Roberval

    2014-11-01

    The Beam Radiation Instrumentation and Luminosity Project of the CMS experiment, consists of several beam monitoring systems. One system, the upgraded Fast Beams Condition Monitor, is based on 24 single crystal CVD diamonds with a double-pad sensor metallization and a custom designed readout. Signals for real-time monitoring are transmitted to the counting room, where they are received and processed by new back-end electronics designed to extract information on LHC collision, beam induced background and activation products. The Slow Control Driver is designed for the front-end electronics configuration and control. The system architecture and the upgrade status will be presented.

  13. Tevatron Detector Upgrades

    SciTech Connect

    Lipton, Ronald

    2005-03-22

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. We discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  14. Tevatron detector upgrades

    SciTech Connect

    Lipton, R.; /Fermilab

    2005-01-01

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  15. From the LHC to future colliders. CERN Theory Institute summary report

    NASA Astrophysics Data System (ADS)

    de Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Wells, J.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Schumacher, M.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; Chen, K. F.; de Curtis, S.; Desch, K.; Dittmar, M.; Dreiner, H.; Dührssen, M.; Foster, B.; Frandsen, M. T.; Giammanco, A.; Godbole, R.; Gopalakrishna, S.; Govoni, P.; Gunion, J.; Hollik, W.; Hou, W. S.; Isidori, G.; Juste, A.; Kalinowski, J.; Korytov, A.; Kou, E.; Kraml, S.; Krawczyk, M.; Martin, A.; Milstead, D.; Morton-Thurtle, V.; Moenig, K.; Mele, B.; Ozcan, E.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Rizzo, T.; Rolbiecki, K.; Sannino, F.; Schram, M.; Smillie, J.; Sultansoy, S.; Tattersall, J.; Uwer, P.; Webber, B.; Wienemann, P.

    2010-04-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb-1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb-1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  16. Implementation of FPGA-based level-1 tracking at CMS for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Chaves, J.

    2014-10-01

    A new approach for track reconstruction is presented to be used in the all-hardware first level of the CMS trigger. The application of the approach is intended for the upgraded all-silicon tracker, which is to be installed for the High Luminosity era of the LHC (HL-LHC). The upgraded LHC machine is expected to deliver a luminosity on the order of 5 × 1034 cm-2s-1. This expected luminosity means there would be about 125 pileup events in each bunch crossing at a frequency of 40 MHz. To keep the CMS trigger rate at a manageable level under these conditions, it is necessary to make quick decisions on the events that will be processed. The timing estimates for the algorithm are expected to be below 5 μs, well within the requirements of the L1 trigger at CMS for track identification. The algorithm is integer-based, allowing it to be implemented on an FPGA. Currently we are working on a demonstrator hardware implementation using a Xilinx Virtex 6 FPGA. Results from simulations in C++ and Verilog are presented to show the algorithm performance in terms of data throughput and parameter resolution.

  17. Luminosity monitor.

    SciTech Connect

    Underwood, D. G.

    1998-07-16

    Luminosity monitors are needed in each experiment doing spin physics at RHIC. They concentrate on the luminosity aspects here because, for example, with a 10{sup {minus}3} raw asymmetry in an experiment, an error of 10{sup {minus}4} in the luminosity is as significant as a 10% polarization error. Because luminosity is a property of how two beams overlap, the luminosity at an interaction region must be measured at that interaction region in order to be relevant to the experiment at that interaction region. The authors will have to do the physics and the luminosity measurements by using labels on the event sums according to the polarization labels on the colliding bunches. Most likely they will not have independent polarization measurement on each bunch, but only on all the filled bunches in a ring, or perhaps all the bunches that are actually used in an experiment. Most analyses can then be handled by using the nine combinations gotten from three kinds of bunches in each ring, +, {minus} and empty bunches. The empty bunches are needed to measure beam-gas background, (and some, like six in a row, are needed for the beam abort). Much of the difficulty comes from the fact that they must use a physics process to represent the luminosity. This process must have kinematic and geometric cuts both to reduce systematics such as beam-gas backgrounds, and to make it representative of the part of the interaction diamond from which the physics events come.

  18. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  19. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  20. L1 track triggers for ATLAS in the HL-LHC

    SciTech Connect

    Lipeles, E.

    2012-01-01

    The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volume exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.

  1. L1 track triggers for ATLAS in the HL-LHC

    DOE PAGES

    Lipeles, E.

    2012-01-01

    The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volumemore » exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.« less

  2. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    SciTech Connect

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  3. Experimental status of supersymmetry after the LHC Run-I

    NASA Astrophysics Data System (ADS)

    Autermann, Christian

    2016-09-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  4. Status of Fast Interaction Trigger for ALICE Upgrade

    NASA Astrophysics Data System (ADS)

    Karavicheva, T. L.; Kurepin, A. B.; Trzaska, W. H.

    2015-06-01

    As a result of the LHC upgrade after the Long Shutdown 2, the expected luminosity and collision rate during the so called Run 3 will considerably exceed the design parameters for several of the key ALICE detectors systems including the forward trigger detectors. Furthermore, the introduction of a new Muon Forward Tracker significantly reduces the space envelope available for the upgraded Fast Interaction Trigger (FIT) detector on the muon spectrometer side. At the same time, FIT is expected to match and even exceed the functionality and performance currently secured by three ALICE sub-detectors: the time zero detector (T0), the VZERO system, and the Forward Multiplicity Detector (FMD). The harsh conditions of Run 3 would accelerate the ageing and radiation damage (detectable already during Run 1) of the FIT detector if we were to use standard PMTs. The solution came thanks to the latest developments in MCP-PMT technology providing compact photo sensors with excellent characteristics and stability.

  5. Performance of the ATLAS Hadronic calorimeter and the phase II upgrade program

    NASA Astrophysics Data System (ADS)

    Chekanov, Sergei; Atlas Collaboration

    2015-04-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. Results on calibration, monitoring, signal reconstruction and performance of the TileCal detector using ppcollision from the LHC run I are presented. In particular, the studies of the TileCal response to single isolated charged particles and high-pT jets, as well as the noise description with increasing pile-up are presented. Upgrade plans for TileCal electronics for the High Luminosity LHC programme in 2024 are discussed, together with R&D activities at different laboratories that target different parts of the TileCal electronics. On behalf of the ATLAS Collaboration.

  6. The versatile link, a common project for super-LHC

    SciTech Connect

    Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.

    2009-07-01

    Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

  7. Development and testing of an upgrade to the CMS level-1 calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Baber, M.; Blake, M.; Brooke, J.; Cepeda Hermida, M.; Dasu, S.; Durkin, T.; Fayer, S.; Friis, E. K.; Gorski, T.; Hall, G.; Harder, K.; Iles, G.; Ives, S.; Jones, J.; Klabbers, P. R.; Levine, A. G.; Lucas, C.; Lucas, R.; Newbold, D.; Marrouche, J.; Paramesvaran, S.; Perry, T. M.; Rose, A.; Sankey, D.; Smith, W.; Tapper, A.; Thea, A.; Williams, T.

    2014-01-01

    When the LHC resumes operation in 2015, the higher centre-of-mass energy and high-luminosity conditions will require significantly more sophisticated algorithms to select interesting physics events within the readout bandwidth limitations. The planned upgrade to the CMS calorimeter trigger will achieve this goal by implementing a flexible system based on the μTCA standard, with modules based on Xilinx Virtex-7 FPGAs and up to 144 optical links running at speeds of 10 Gbps. The upgrade will improve the energy and position resolution of physics objects, enable much improved isolation criteria to be applied to electron and tau objects and facilitate pile-up subtraction to mitigate the effect of the increased number of interactions occurring in each bunch crossing. The design of the upgraded system is summarised with particular emphasis placed on the results of prototype testing and the experience gained which is of general application to the design of such systems.

  8. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    SciTech Connect

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.

  9. Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$_3$Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Chlachidze, G.; DiMarco, J.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Bossert, R.; Fiscarelli, L.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Turrioni, D.; Velev, G. V.; Zlobin, A. V.

    2014-01-01

    FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization and iron yoke saturation.

  10. Test beam campaigns for the CMS Phase I Upgrade pixel readout chip

    NASA Astrophysics Data System (ADS)

    Spannagel, S.; CMS Collaboration

    2014-12-01

    The current CMS silicon pixel detector as the innermost component of the CMS experiment is performing well at LHC design luminosity, but would be subject to severe inefficiencies at LHC peak luminosities of 2 × 1034 cm-2 s-1. Therefore, an upgrade of the CMS pixel detector is planned, including a new readout chip. The chip design comprises additional on-chip buffer cells as well as high-speed data links and low-threshold comparators in the pixel cells. With these changes the upgraded pixel detector will be able to maintain or even improve the efficiency of the current detector at the increased requirements imposed by high luminosities and pile-up. The effects of these design changes on e.g. position resolution and charge collection efficiency were studied in detail using a precision tracking telescope at the DESY test beam facilities. The high telescope track resolution enables precise studies of tracking efficiency, charge sharing and collection even within single pixel cells of the device under test. This publication focuses on the improved performance and capabilities of the new pixel readout chip and summarizes results from test beam campaigns with both unirradiated and irradiated devices. The functionality of the chip design with its improved charge threshold, redesigned data transmission and buffering scheme has been verified.

  11. Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1

    SciTech Connect

    Stickland, David P.

    2015-09-20

    This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied its design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.

  12. CDF trigger final balance: Offline resolution at low level selections to fight against Tevatron increasing luminosity

    SciTech Connect

    Amerio, S.; /Padua U. /INFN, Padua

    2010-01-01

    The CDF detector at Tevatron collider is at present the most long-lasting high energy physics experiment. Since its first data taking in 1992 it has produced many results of primary importance, such as the discovery of top quark and, more recently, the observations of Bs oscillations and single-top production. None of them would have been possible without a fast and efficient trigger system. Based on a three level architecture, the CDF trigger takes decisions on simple calorimetric and tracking objects and assures both high efficiency on signal events and low dead time. It reduces the data flow rate from 2.53 MHz, the collision rate, to 150 Hz, the current limit on tape writing and is flexible enough to be easily adapted to the continuously growing instantaneous luminosity. In the last years the Tevatron instantaneous luminosity has rapidly increased and is now reaching 4 x 10{sup 32} cm{sup -2} s{sup -1}. The CDF trigger system has been widely upgraded to cope with increasing trigger rates. The upgrade result is online reconstruction of missing transverse energy, jets and tracks with a quality comparable to the offline one. Jet energy and direction can be precisely determined and tracks can be subjected to 3-D reconstruction with good resolution. These upgrades reduce high trigger rates to acceptable levels and have provided invaluable tools to increase the purity of the collected samples. They also represent a helpful experience for LHC experiments where background rates will be much more demanding.

  13. The CMS pixel luminosity telescope

    NASA Astrophysics Data System (ADS)

    Kornmayer, A.

    2016-07-01

    The Pixel Luminosity Telescope (PLT) is a new complement to the CMS detector for the LHC Run II data taking period. It consists of eight 3-layer telescopes based on silicon pixel detectors that are placed around the beam pipe on each end of CMS viewing the interaction point at small angle. A fast 3-fold coincidence of the pixel planes in each telescope will provide a bunch-by-bunch measurement of the luminosity. Particle tracking allows collision products to be distinguished from beam background, provides a self-alignment of the detectors, and a continuous in-time monitoring of the efficiency of each telescope plane. The PLT is an independent luminometer, essential to enhance the robustness on the measurement of the delivered luminosity and to reduce its systematic uncertainties. This will allow to determine production cross-sections, and hence couplings, with high precision and to set more stringent limits on new particle production.

  14. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavitiy for the LHC Update

    SciTech Connect

    Li, Zenghai; Xiao, Liling; Ng, Cho; Markiewicz, Thomas; /SLAC

    2010-08-26

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R&D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  15. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  16. Study of the Variation of Transverse Voltage in the 4 Rod Crab Cavity for LHC

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2011-04-01

    The planned high luminosity upgrade to LHC will utilise crab cavities to rotate the beam in order to increase the luminosity in the presence of a finite crossing angle. A compact design is required in order for the cavities to fit between opposing beam-lines. In this paper we discuss we discuss one option for the LHC crab cavity based on a 4 rod TEM deflecting cavity. Due to the large transverse size of the LHC beam the cavity is required to have a large aperture while maintaining a constant transverse voltage across the aperture. The cavity has been optimised to minimise the variation of the transverse voltage while keeping the peak surface electric and magnetic fields low for a given kick. This is achieved while fitting within the strict design space of the LHC. The variation of deflecting voltage across the aperture has been studied numerically and compared with numerical and analytical estimates of other deflecting cavity types. Performance measurements an aluminium prototype of this cavity are presented and compared to the simulated design.

  17. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  18. The upgrade of the Inner Tracking System of ALICE

    NASA Astrophysics Data System (ADS)

    Siddhanta, Sabyasachi

    2014-11-01

    ALICE has devised a comprehensive upgrade strategy to enhance its physics capabilities and to exploit the LHC running conditions after the second long shutdown of the LHC scheduled in 2018-2019. Within this upgrade programme, the upgrade of the Inner Tracking System (ITS) forms an important part. The upgraded ITS will have a barrel geometry consisting of seven layers of Monolithic Active Pixel Sensors (MAPS) with high granularity, which would fulfil the material budget, readout and radiation hardness requirements for the upgrade. In this contribution, an overview of the upgraded ITS, its technology and performance studies are presented.

  19. Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation

    SciTech Connect

    Perin, A.; Casas-Cubillos, J.; Pezzetti, M.; Almeida, M.

    2014-01-29

    The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away from the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.

  20. Upgrade of the gas flow control system of the resistive current leads of the LHC inner triplet magnets: Simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Perin, A.; Almeida, M.; Casas-Cubillos, J.; Pezzetti, M.

    2014-01-01

    The 600 A and 120 A circuits of the inner triplet magnets of the Large Hadron Collider are powered by resistive gas cooled current leads. The current solution for controlling the gas flow of these leads has shown severe operability limitations. In order to allow a more precise and more reliable control of the cooling gas flow, new flowmeters will be installed during the first long shutdown of the LHC. Because of the high level of radiation in the area next to the current leads, the flowmeters will be installed in shielded areas located up to 50 m away from the current leads. The control valves being located next to the current leads, this configuration leads to long piping between the valves and the flowmeters. In order to determine its dynamic behaviour, the proposed system was simulated with a numerical model and validated with experimental measurements performed on a dedicated test bench.

  1. The LHCb detector upgrade

    NASA Astrophysics Data System (ADS)

    Schindler, H.

    2013-12-01

    The upgrade of the LHCb experiment, with its installation scheduled for the second long shutdown (LS2) of the Large Hadron Collider (LHC), will transform the data acquisition and processing architecture to a triggerless readout at 40 MHz with subsequent software-based event selection in a CPU farm. In this contribution, an overview of the detector technology options under consideration and the associated challenges is given and selected highlights of the ongoing R&D programme are presented.

  2. Small-strip Thin Gap Chambers for the muon spectrometer upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Perez Codina, E.

    2016-07-01

    The ATLAS muon system upgrade to be installed during the LHC long shutdown in 2018/19, the so-called New Small Wheel (NSW), is designed to cope with the increased instantaneous luminosity in LHC Run 3. The small-strip Thin Gap Chambers (sTGC) will provide the NSW with a fast trigger and high precision tracking. The construction protocol has been validated by test beam experiments on a full-size prototype sTGC detector, showing the performance requirements are met. The intrinsic spatial resolution for a single layer has been found to be about 45 μm for a perpendicular incident angle, and the transition region between pads has been measured to be about 4 mm.

  3. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  4. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  5. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  6. Development and implementation of optimal filtering in a Virtex FPGA for the upgrade of the ATLAS LAr calorimeter readout

    NASA Astrophysics Data System (ADS)

    Stärz, S.

    2012-12-01

    In the context of upgraded read-out systems for the Liquid-Argon Calorimeters of the ATLAS detector, modified front-end, back-end and trigger electronics are foreseen for operation in the high-luminosity phase of the LHC. Accuracy and efficiency of the energy measurement and reliability of pile-up suppression are substantial when processing the detector raw-data in real-time. Several digital filter algorithms are investigated for their performance to extract energies from incoming detector signals and for the needs of the future trigger system. The implementation of fast, resource economizing, parameter driven filter algorithms in a modern Virtex FPGA is presented.

  7. Trigger algorithms and electronics for the ATLAS muon new small wheel upgrade

    NASA Astrophysics Data System (ADS)

    Guan, L.

    2016-01-01

    The New Small Wheel Upgrade for the ATLAS experiment will replace the innermost station of the Muon Spectrometer in the forward region in order to maintain its current performance during high luminosity data-taking after the LHC Phase-I upgrade. The New Small Wheel, comprising Micromegas and small Thin Gap Chambers, will reduce the rate of fake triggers coming from backgrounds in the forward region and significantly improve the Level-1 muon trigger selectivity by providing precise on-line segment measurements with ~ 1 mrad angular resolution. Such demanding precision, together with the short time (~ 1 μs) to prepare trigger data and perform on-line reconstruction, implies very stringent requirements on the design of trigger system and trigger electronics. This paper presents an overview of the design of the New Small Wheel trigger system, trigger algorithms and processor hardware.

  8. Beam-machine Interaction at the CERN LHC

    SciTech Connect

    Boccone, V.; Bruce, R.; Brugger, M.; Calviani, M.; Cerutti, F. Esposito, L.S.; Ferrari, A.; Lechner, A.; Mereghetti, A.; Nowak, E.; Shetty, N.V.; Skordis, E.; Versaci, R.; Vlachoudis, V.

    2014-06-15

    The radiation field generated by a high energy and intensity accelerator is of concern in terms of element functionality threat, component damage, electronics reliability, and material activation, but also provides signatures that allow actual operating conditions to be monitored. The shower initiated by an energetic hadron involves many different physical processes, down to slow neutron interactions and fragment de-excitation, which need to be accurately described for design purposes and to interpret operation events. The experience with the transport and interaction Monte Carlo code FLUKA at the Large Hadron Collider (LHC), operating at CERN with 4 TeV proton beams (and equivalent magnetic rigidity Pb beams) and approaching nominal luminosity and energy, is presented. Design, operation and upgrade challenges are reviewed in the context of beam-machine interaction account and relevant benchmarking examples based on radiation monitor measurements are shown.

  9. Radiation-hard ASICs for LHC optical data transmission

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Kagan, H. P.; Kass, R. D.; Moore, J. R.; Smith, D. S.

    2010-11-01

    We have designed several ASICs for possible applications in a new ATLAS pixel layer for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL, a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock, and a clock multiplier to produce a higher frequency clock to serialize the data for transmission. These chips were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated chips and the submission has been mostly successful. We irradiated the chips with 24 GeV/c protons at CERN to a dosage of 70 Mrad. We observed no significant degradation except the driver circuit in the VCSEL driver fabricated using the thick oxide process in order to provide sufficient voltage to drive a VCSEL. The degradation is due to the radiation induced large threshold shifts in the PMOS transistors used.

  10. Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Affolder, A. A.; Anghinolfi, F.; Bates, R.; Betancourt, C.; Buttar, C.; Carter, J. R.; Casse, G.; Chen, H.; Chilingarov, A.; Civera, J. V.; Clark, A.; Colijn, A. P.; Dabrowski, W.; Dawson, N.; Dewilde, B.; Dhawan, S.; Dressnandt, N.; Dwužnik, M.; Eklund, L.; Fadeyev, V.; Farthouat, P.; Ferrère, D.; Fox, H.; French, R.; Gallop, B.; García, C.; Gerling, M.; Gibson, M.; Gilchriese, M.; Gonzalez Sevilla, S.; Goodrick, M.; Greenall, A.; Grillo, A. A.; Haber, C. H.; Hessey, N. P.; Holt, R.; Hommels, L. B. A.; Jakobs, K.; Jones, T. J.; Kaplon, J.; Kierstead, J.; Koffeman, E.; Köhler, M.; Lacasta, C.; La Marra, D.; Li, Z.; Lindgren, S.; Lynn, D.; Maddock, P.; Mahboubi, K.; Martinez-McKinney, F.; Matheson, J.; Maunu, R.; McCarthy, R.; Newcomer, M.; Nickerson, R.; O'Shea, V.; Paganis, S.; Parzefall, U.; Pernecker, S.; Phillips, P.; Poltorak, K.; Puldon, D.; Robinson, D.; Sadrozinski, H. F.-W.; Santoyo, D.; Sattari, S.; Schamberger, D.; Seiden, A.; Sutcliffe, P.; Swientek, K.; Tsionou, D.; Tyndel, M.; Unno, Y.; Viehhauser, G.; Villani, E. G.; von Wilpert, J.; Wastie, R.; Weber, M.; Weidberg, A.; Wiik, L.; Wilmut, I.; Wormald, M.; Wright, J.; Xu, D.

    2011-04-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed “stave” concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support.Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5μm pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US.We present results of the first 20 chip ABCN25 ASIC hybrids for these sensors, results of the first prototype 5120 strip module built with 40 ABCN25 read-out ASICs, and the status of the hybrids and modules being developed for the ATLAS tracker upgrade stave programme.

  11. Development of radiation hard semiconductor sensors for charged particle tracking at very high luminosities

    NASA Astrophysics Data System (ADS)

    Betancourt, Christopher; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.; Wright, John

    2010-09-01

    The RD50 collaboration (sponsored by the European Organization for Nuclear Research CERN) has been exploring the development of radiation hard semiconductor devices for very high-luminosity colliders since 2002. The target fluence to qualify detectors set by the anticipated dose for the innermost tracking layers of the future upgrade of the CERN large hadron collider (LHC) is 1016 1 MeV neutron equivalent (neq) cm-2. This is much larger than typical fluences in space, but is mainly limited to displacement and total dose damage, without the single-event effects typical for the space environment. RD50 investigates radiation hardening from many angles, including: Search for alternative semiconductor to replace silicon, improvement of the intrinsic tolerance of the substrate material (p- vs. n-type, initial doping concentration, oxygen concentration), optimization of the readout geometry (collection of holes or electrons, surface treatment), novel detector designs (3D, edge-less, interconnects).

  12. Comparison of irradiated stFZ silicon sensors using LHC speed front-end electronics

    NASA Astrophysics Data System (ADS)

    Eckert, S.; Ehrich, T.; Jakobs, K.; Kühn, S.; Parzefall, U.

    2007-12-01

    Results from irradiated detector modules assembled with sensors made out of standard p-in-n FZ silicon will be presented. The modules were read out using LHC speed front-end electronics and characterised with different techniques. Two complementary methods to generate the charge inside the sensor were used: An IR laser set-up with a wavelength of λ=982 nm and a β set-up utilising a 90Sr source allowing for both relative and absolute CCE measurements. As the aim of our measurement programme is to develop silicon detectors able to operate at the sLHC, these modules were irradiated with three different fluences with the highest corresponding roughly to the fluence expectations for an LHC luminosity upgrade at a radial distance of r≈35 cm [M. Huhtinen, First CMS Upgrade Workshop, CERN, February 26-27, 2004. ]. The sensors were characterised before and after irradiation with 26 MeV protons. After irradiation the modules were stored at temperatures below -40C and operated at temperatures around -5C to limit the leakage current and annealing effects. The full depletion voltage Vfd and the charge collection efficiency have been measured.

  13. Resource Utilization by the ATLAS High Level Trigger during 2010 and 2011 LHC running

    NASA Astrophysics Data System (ADS)

    Lipeles, Elliot; Ospanov, Rustem; Schaefer, Doug

    2012-12-01

    Since starting in 2010, the Large Hadron Collider (LHC) has produced collisions at an ever increasing rate. The ATLAS experiment successfully recorded the collision data with high efficiency and excellent data quality. Events were selected using a three-level trigger system, where each level made a more refined selection. The Level 1 (L1) trigger consisted of a custom-designed hardware trigger which seeded two higher software based trigger levels. Over 300 triggers composed a trigger menu which selected physics signatures such as electrons, muons, particle jets, etc. Each trigger consumed computing resources of the ATLAS Trigger system and offline storage. The LHC instantaneous luminosity conditions, desired physics goals of the collaboration, and the limits of the trigger infrastructure determined the composition of the ATLAS Trigger menu. We describe a trigger monitoring framework called the Cost Monitoring Framework for computing the costs of individual trigger algorithms such as data request rates and CPU consumption. This framework was used to prepare the ATLAS Trigger for data taking during increases of more than six orders of magnitude in the LHC luminosity and has been influential in guiding ATLAS Trigger computing upgrades.

  14. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  15. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Govender, M.; Hofsajer, I.; Ruan, X.; Sandrock, C.; Spoor, M.

    2015-10-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade.

  16. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  17. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  18. Silicon microstrip detectors in 3D technology for the sLHC

    NASA Astrophysics Data System (ADS)

    Parzefall, Ulrich; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kühn, Susanne; Pahn, Gregor; Parkes, Chris; Pennicard, David; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 1015 Neq/cm2, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 1015 Neq/cm2. The tests were performed with three systems: a highly focused IR-laser with 5 μm spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr90β-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  19. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  20. Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS

    NASA Astrophysics Data System (ADS)

    Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.

    2016-01-01

    There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 1035 cm-2s-1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards.

  1. Prospects for heavy-flavour measurements with the ALICE inner and forward tracker upgrade

    NASA Astrophysics Data System (ADS)

    Fionda, F.

    2016-01-01

    During the second long shutdown (LS2) of the LHC the ALICE detector will be improved with the installation of an upgraded Inner Tracking System (ITS) and a new Muon Forward Tracker (MFT). These detectors will crucially contribute to the precise characterization of the high-temperature, strongly-interacting medium created in ultra-relativistic Pb-Pb collisions at √sNN = 5.5 TeV. In the central barrel, the upgraded ITS will consist of seven cylindrical layers of silicon pixel detectors, starting at a radial distance of 22.4 mm from the beam axis. At forward rapidity, the MFT will be composed of five silicon pixel planes added in the acceptance of the existing Muon Spectrometer (-4 < ƞ < -2.5), upstream to the hadron absorber. Detailed results on the expected performances for heavy-flavour (HF) measurements down to low transverse momentum, with the upgraded ITS and MFT, will be given for central Pb-Pb collisions for various benchmark analyses, assuming an integrated luminosity of 10 nb-1, as foreseen for the ALICE upgrade programme.

  2. Future silicon sensors for the CMS Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Bernard-Schwarz, Maria; CMS Tracker Collaboration

    2013-01-01

    For the high-luminosity phase of LHC (Large Hadron Collider) at CERN a campaign was started in the CMS (Compact Muon Solenoid) experiment to investigate different radiation hard silicon detectors. Therefore 6 in. silicon wafers were ordered to answer various questions regarding for example the radiation tolerance and the annealing behavior of different sensor material. The testing variety includes sensor versions n-in-p and p-in-n in thicknesses from 50 μm to 300 μm. In terms of sensor material the difference between floating zone, magnetic Czochralski and epitaxial grown silicon is investigated. For the n-in-p sensors, the different isolation technologies, p-stop and p-spray, are tested. The design of the wafer contains test structures, diodes, mini-sensors, long and very short strip sensors, real pixel sensors and double metal routing variants. The irradiation is done with mixed fluences of protons and neutrons which represent the rates of integrated hadrons that are expected in the CMS tracker after the LHC upgrade. This paper presents an overview of results from measurements of non-irradiated test structures with different technologies and also the results after irradiation.

  3. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  4. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  5. A continuous read-out TPC for the ALICE upgrade

    NASA Astrophysics Data System (ADS)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  6. Software for implementing trigger algorithms on the upgraded CMS Global Trigger System

    NASA Astrophysics Data System (ADS)

    Matsushita, Takashi; Arnold, Bernhard

    2015-12-01

    The Global Trigger is the final step of the CMS Level-1 Trigger and implements a trigger menu, a set of selection requirements applied to the final list of trigger objects. The conditions for trigger object selection, with possible topological requirements on multiobject triggers, are combined by simple combinatorial logic to form the algorithms. The LHC has resumed its operation in 2015, the collision-energy will be increased to 13 TeV with the luminosity expected to go up to 2x1034 cm-2s-1. The CMS Level-1 trigger system will be upgraded to improve its performance for selecting interesting physics events and to operate within the predefined data-acquisition rate in the challenging environment expected at LHC Run 2. The Global Trigger will be re-implemented on modern FPGAs on an Advanced Mezzanine Card in MicroTCA crate. The upgraded system will benefit from the ability to process complex algorithms with DSP slices and increased processing resources with optical links running at 10 Gbit/s, enabling more algorithms at a time than previously possible and allowing CMS to be more flexible in how it handles the trigger bandwidth. In order to handle the increased complexity of the trigger menu implemented on the upgraded Global Trigger, a set of new software has been developed. The software allows a physicist to define a menu with analysis-like triggers using intuitive user interface. The menu is then realised on FPGAs with further software processing, instantiating predefined firmware blocks. The design and implementation of the software for preparing a menu for the upgraded CMS Global Trigger system are presented.

  7. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    NASA Astrophysics Data System (ADS)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  8. Tevatron operational status and possible lessons for the LHC

    SciTech Connect

    Lebedev, V.; /Fermilab

    2006-06-01

    This paper provides an overview of the Tevatron Run II luminosity progress and plans, including SC magnet measurements and modeling of field errors in view of the LHC operation. It also discusses antiproton production, stacking and cooling.

  9. Phase 1 Upgrade of the CMS Pixel Detector: Module Assembly and Testing

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish

    2014-03-01

    The CMS pixel detector is the innermost component of the all-silicon tracking system located closest to the interaction point and thus operates in a high-occupancy/high-radiation environment created by particle collisions. The performance of the current pixel detector has been excellent during Run 1 of the LHC. However, the foreseen increases of the instantaneous and integrated luminosities at the LHC necessitate an upgrade of the pixel detector in order to maintain the excellent tracking and physics performance of the CMS detector. The new pixel detector is expected to be installed during the extended end-of-year shutdown in 2016/17. The main new features of the upgraded pixel detector would be ultra-light mechanical design with four barrel layers and three end-caps on either side of the interaction point, digital readout chip with higher rate capability and new cooling system. These and other design improvements, along with the current status on module assembly and testing, will be discussed.

  10. Continuing u.s. participation in the lhc accelerator program

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2005-12-01

    The U.S. LHC Accelerator Research Program (LARP) was established to enable U.S. accelerator specialists to take on active and important roles in the LHC accelerator project during its commissioning and early operations, and to be a major collaborator in future LHC performance upgrades. It is hoped that this follow-on effort to the U.S. contributions to the LHC accelerator project will improve the capabilities of the U.S. accelerator community in accelerator science and technology in order to more effectively use, develop, and preserve unique U.S. resources and capabilities during the LHC era.

  11. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  12. A DC-DC conversion powering scheme for the CMS Phase-1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Feld, L.; Fleck, M.; Friedrichs, M.; Hensch, R.; Karpinski, W.; Klein, K.; Sammet, J.; Wlochal, M.

    2013-02-01

    The CMS pixel detector was designed for a nominal instantaneous LHC luminosity of 1ṡ1034 cm-2s-1. During Phase-1 of the LHC upgrade, the instantaneous luminosity will be increased to about twice this value. To preserve the excellent performance of the pixel detector despite the increase in particle rates and track densities, the CMS Collaboration foresees the exchange of its pixel detector in the shutdown 2016/2017. The new pixel detector will be improved in many respects, and will comprise twice the number of readout channels. A powering scheme based on DC-DC conversion will be adopted, which will enable the provision of the required power with the present cable plant. The powering scheme of the CMS pixel detector will be described, and the performance of prototype DC-DC buck converters will be presented, including power efficiency, system tests with DC-DC converters and pixel modules, thermal management, reliability at low temperature, and studies of potential frequency locking between DC-DC converters.

  13. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    DOE PAGES

    Bubna, M.; Bolla, G.; Bortoletto, D.; Shipsey, I.; Manfra, M.; Khan, K.; Arndt, K.; Hinton, N.; Godshalk, A.; Kumar, A.; et al

    2015-08-03

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 1034 cm–2s–1 and collect ~ 3000fb–1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect ofmore » reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.« less

  14. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    SciTech Connect

    Bubna, M.; Bolla, G.; Bortoletto, D.; Shipsey, I.; Manfra, M.; Khan, K.; Arndt, K.; Hinton, N.; Godshalk, A.; Kumar, A.; Menasce, D.; Moroni, L.; Chramowicz, J.; Lei, C. M.; Prosser, A.; Rivera, R.; Uplegger, L.; Vetere, Maurizio Lo; Robutti, Enrico; Ferro, Fabrizio; Ravera, Fabio; Costa, Marco

    2015-08-03

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 1034 cm–2s–1 and collect ~ 3000fb–1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.

  15. Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Weigell, P.; Beimforde, M.; Gallrapp, Ch.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.

    2011-12-01

    The existing ATLAS tracker will be at its functional limit for particle fluences of 10 15 neq/cm2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. n-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 μm thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current ATLAS read-out chip FE-I3. The characterisation has been performed with the ATLAS pixel read-out systems, before and after irradiation with 24 GeV/ c protons. In addition preliminary testbeam results for the tracking efficiency and charge collection, obtained with a SCM, are discussed.

  16. Status of LHC crab activity simulations and beam studies

    SciTech Connect

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  17. Upgrade of the ALICE muon trigger electronics

    NASA Astrophysics Data System (ADS)

    Dupieux, P.; Joly, B.; Jouve, F.; Manen, S.; Vandaële, R.

    2014-09-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb-Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm2 with rates up to 100 Hz/cm2, which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments.

  18. Estimates of HE-LHC beam parameters at different injection energies

    SciTech Connect

    Sen, Tanaji; /Fermilab

    2010-11-01

    A future upgrade to the LHC envisions increasing the top energy to 16.5 TeV and upgrading the injectors. There are two proposals to replace the SPS as the injector to the LHC. One calls for a superconducting ring in the SPS tunnel while the other calls for an injector (LER) in the LHC tunnel. In both scenarios, the injection energy to the LHC will increase. In this note we look at some of the consequences of increased injection energy to the beam dynamics in the LHC.

  19. Tests of CMS Phase 1 Pixel Upgrade Back-End Electronics

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Matthew

    2016-03-01

    The CMS detector will be upgraded so that it can handle the higher instantaneous luminosity of the 13-14 TeV collisions. The Phase 1 Pixel detector will experience a higher density of particle interactions requiring new front-end and read-out electronics. A front-end pixel data emulator was developed to validate the back-end readout electronics prior to installation and operation. A FPGA-based design emulates 400 Mbps data patterns from the front-end read-out chips and will be used to confirm that each Front End Driver (FED) can correctly decode and process the expected data patterns and error conditions. A FED test bench using the emulator can produce LHC-like conditions for stress testing FED hardware, firmware and online software. The design of the emulator and initial test results will be reported.

  20. Performance of a full-size small-strip thin gap chamber prototype for the ATLAS new small wheel muon upgrade

    NASA Astrophysics Data System (ADS)

    Abusleme, A.; Bélanger-Champagne, C.; Bellerive, A.; Benhammou, Y.; Botte, J.; Cohen, H.; Davies, M.; Du, Y.; Gauthier, L.; Koffas, T.; Kuleshov, S.; Lefebvre, B.; Li, C.; Lupu, N.; Mikenberg, G.; Mori, D.; Ochoa-Ricoux, J. P.; Codina, E. Perez; Rettie, S.; Robichaud-Véronneau, A.; Rojas, R.; Shoa, M.; Smakhtin, V.; Stelzer, B.; Stelzer-Chilton, O.; Toro, A.; Torres, H.; Ulloa, P.; Vachon, B.; Vasquez, G.; Vdovin, A.; Viel, S.; Walker, P.; Weber, S.; Zhu, C.

    2016-05-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. The most important upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will be installed during the LHC long shutdown in 2019/2020. Small-Strip Thin Gap Chamber (sTGC) detectors are designed to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. To validate the design, a full-size prototype sTGC detector of approximately 1.2 × 1.0m2 consisting of four gaps has been constructed. Each gap provides pad, strip and wire readouts. The sTGC intrinsic spatial resolution has been measured in a 32 GeV pion beam test at Fermilab. At perpendicular incidence angle, single gap position resolutions of about 50 μm have been obtained, uniform along the sTGC strip and perpendicular wire directions, well within design requirements. Pad readout measurements have been performed in a 130 GeV muon beam test at CERN. The transition region between readout pads has been found to be 4 mm, and the pads have been found to be fully efficient.

  1. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    SciTech Connect

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.; Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Alberty, L.; Artoos, K.; Calaga, R.; Capatina, O.; Capelli, T.; Carra, F.; Leuxe, R.; Kuder, N.; Zanoni, C.; Li, Z.; Ratti, A.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  2. Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC.

    PubMed

    Feng, Jonathan L; Kant, Philipp; Profumo, Stefano; Sanford, David

    2013-09-27

    In supersymmetric models with minimal particle content and without left-right squark mixing, the conventional wisdom is that the 125.6 GeV Higgs boson mass implies top squark masses of O(10)  TeV, far beyond the reach of colliders. This conclusion is subject to significant theoretical uncertainties, however, and we provide evidence that it may be far too pessimistic. We evaluate the Higgs boson mass, including the dominant three-loop terms at O(αtαs2), in currently viable models. For multi-TeV top squarks, the three-loop corrections can increase the Higgs boson mass by as much as 3 GeV and lower the required top-squark masses to 3-4 TeV, greatly improving prospects for supersymmetry discovery at the upcoming run of the LHC and its high-luminosity upgrade.

  3. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  4. Hadron colliders (SSC/LHC)

    SciTech Connect

    Chao, A.W.; Palmer, R.B. |; Evans, L.; Gareyte, J.; Siemann, R.H.

    1992-12-31

    The nominal SSC and LHC designs should operate conservatively at luminosities up to 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. This luminosity is dictated by the event rates that can be handled by the detectors. However, this limit is event dependent (e.g. it does not take much of a detector to detect the event pp {yields} elephant; all one needs is extremely high luminosity). As such, it is useful to explore the possibility of going beyond the 10{sup 33} cm{sup {minus}2} s{sup {minus}1} level. Such exploration will also improve the accelerator physics understanding of pp collider designs. If the detector limitations are removed, the first accelerator limits occur when the luminosity is at the level of 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. These accelerator limits will first be reviewed. The authors will then continue on to explore even higher luminosity as the ultimate limit of pp colliders. Accelerator technologies needed to achieve this ultimate luminosity as well as the R and D needed to reach it are discussed.

  5. CMS ECAL electronics developments for HL-LHC

    NASA Astrophysics Data System (ADS)

    Hansen, M.

    2015-03-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosities. The CMS electromagnetic calorimeter (ECAL) will face a challenging environment at the HL-LHC: higher event pileup, higher radiation levels for the crystals and photo-detectors, and a higher rate of anomalous signals from the Avalanche Photodiodes (APDs) used for the light readout in the ECAL Barrel. A redesign of the ECAL electronics (including an increase in trigger rate and latency) is planned in order to mitigate these challenges and to maintain the excellent physics performance of the detector.

  6. The ALICE Central Trigger Processor (CTP) upgrade

    NASA Astrophysics Data System (ADS)

    Krivda, M.; Alexandre, D.; Barnby, L. S.; Evans, D.; Jones, P. G.; Jusko, A.; Lietava, R.; Pospíšil, J.; Villalobos Baillie, O.

    2016-03-01

    The ALICE Central Trigger Processor (CTP) at the CERN LHC has been upgraded for LHC Run 2, to improve the Transition Radiation Detector (TRD) data-taking efficiency and to improve the physics performance of ALICE. There is a new additional CTP interaction record sent using a new second Detector Data Link (DDL), a 2 GB DDR3 memory and an extension of functionality for classes. The CTP switch has been incorporated directly onto the new LM0 board. A design proposal for an ALICE CTP upgrade for LHC Run 3 is also presented. Part of the development is a low latency high bandwidth interface whose purpose is to minimize an overall trigger latency.

  7. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Akar, S.; Lhcb Collaboration

    2014-11-01

    The LHCb experiment is a high-precision spectrometer searching for New Physics via measurements of CP violation and rare decays in the b- and c-quark sector. The quality of the results obtained from the data collected during the first Run of the LHC has demonstrated the excellent performance and the robustness of the detector. In order to significantly increase the statistical precision on theoretically clean observables in the heavy flavor sector, the level of collected data by the LHCb detector must be increased much beyond 1 fb-1 per year. Therefore, it is planned to upgrade the detector, which will allow a 40 MHz readout with a much more flexible software-based triggering system and redesigned sub-detectors.

  8. The D0 detector upgrade

    SciTech Connect

    Bross, A.D.

    1995-02-01

    The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector.

  9. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  10. Diamond Pixel Luminosity Telescopes

    SciTech Connect

    Halyo, Valerie

    2014-12-23

    In this document, Halyo summaries her key contributions to CMS at the LHC and provide an explanation of their importance and her role in each project. At the end Halyo describes her recent research interest that includes GPU/MIC Acceleration of the High Level Trigger (HLT) to Extend the Physics Research at the LHC. A descriptionof her work the recent promising results that she accomplished and the deliverable are also elaborated. These contribution were only possible thanks to DOE support of junior faculty research and their clear goal to promote research and innovations. Princeton University i

  11. The D0 experiment's integrated luminosity for Tevatron Run IIa

    SciTech Connect

    Andeen, T.; Casey, B.C.K.; DeVaughan, K.; Enari, Y.; Gallas, E.; Krop, D.; Partridge, R.; Schellman, H.; Snow, G.R.; Yacoob, S.; Yoo, H.D.; /Brown U. /Fermilab /Indiana U. /Northwestern U. /Nebraska U.

    2007-04-01

    An essential ingredient in all cross section measurements is the luminosity used to normalize the data sample. In this note, we present the final assessment of the integrated luminosity recorded by the D0 experiment during Tevatron Run IIa. The luminosity measurement is derived from hit rates from the products of inelastic proton-antiproton collisions registered in two arrays of scintillation counters called the luminosity monitor (LM) detectors. Measured LM rates are converted to absolute luminosity using a normalization procedure that is based on previously measured inelastic cross sections and the geometric acceptance and efficiency of the LM detectors for registering inelastic events. During Run IIa, the LM detector performance was improved by a sequence of upgrades to the electronic readout system and other factors summarized in this note. The effects of these changes on the reported luminosity were tracked carefully during the run. Due to the changes, we partition the run into periods for which different conversions from measured LM rates to absolute luminosity apply. The primary upgrade to the readout system late in Run IIa facilitated a reevaluation of the overall normalization of the luminosity measurement for the full data sample. In this note, we first review the luminosity measurement technique employed by D0. We then summarize the changes to the LM system during Run IIa and the corresponding normalization adjustments. The effect of the adjustments is to increase D0's assessment of its recorded integrated luminosity compared to what was initially reported during Run IIa. The overall increase is 13.4% for data collected between April 20, 2002 (the beginning of Run IIa data used for physics analysis) and February 22, 2006 (the end of Run IIa).

  12. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  13. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  14. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  15. Luminosity enhancements at SLAC

    SciTech Connect

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point.

  16. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  17. FPGA-based 10-Gbit Ethernet Data Acquisition Interface for the Upgraded Electronics of the ATLAS Liquid Argon Calorimeters

    NASA Astrophysics Data System (ADS)

    Grohs, J. Philipp; Atlas Liquid Argon calorimeter Group

    2014-06-01

    A stepwise upgrade of the LHC is foreseen starting now until the year 2023 to increase the instantaneous luminosity up to five times of its design value. It implies a challenge for the ATLAS experiment coping with the expected event pile-up, especially for the Level-1 calorimeter trigger system. In order to keep the trigger rates within the limited bandwidth new algorithms have to be applied which in turn requires an upgrade of the ATLAS Liquid Argon calorimeter trigger readout electronics. Towards this upgrade, the ATLAS Liquid Argon calorimeter group develops a high-speed data acquisition interface in ATCA standard using commercial hardware instead of complex and expensive in-house developments where possible. This paper gives an overview of the general concepts of the DAQ interface, the engaged technologies and the current status of the development efforts for an FPGA based fast data link with a standard 10 Gbps Ethernet protocol which may also be useful for DAQ systems of other high energy physics experiments.

  18. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    SciTech Connect

    Grenier, P.; Alimonti, G.; Barbero, M.; Bates, R.; Bolle, E.; Borri, M.; Boscardin, M.; Buttar, C.; Capua, M.; Cavalli-Sforza, M.; Cobal, M.; Cristofoli, A.; Dalla Betta, G.F.; Darbo, G.; Da Via, C.; Devetak, E.; DeWilde, B.; Di Girolamo, B.; Dobos, D.; Einsweiler, K.; Esseni, D.; /Udine U. /INFN, Udine /Calabria U. /INFN, Cosenza /Barcelona, Inst. Microelectron. /Manchester U. /CERN /LBL, Berkeley /INFN, Genoa /INFN, Genoa /Udine U. /INFN, Udine /Oslo U. /ICREA, Barcelona /Barcelona, IFAE /SINTEF, Oslo /SINTEF, Oslo /SLAC /SLAC /Bergen U. /New Mexico U. /Bonn U. /SLAC /Freiburg U. /VTT Electronics, Espoo /Bonn U. /SLAC /Freiburg U. /SLAC /SINTEF, Oslo /Manchester U. /Barcelona, IFAE /Bonn U. /Bonn U. /CERN /Manchester U. /SINTEF, Oslo /Barcelona, Inst. Microelectron. /Calabria U. /INFN, Cosenza /Udine U. /INFN, Udine /Manchester U. /VTT Electronics, Espoo /Glasgow U. /Barcelona, IFAE /Udine U. /INFN, Udine /Hawaii U. /Freiburg U. /Manchester U. /Barcelona, Inst. Microelectron. /CERN /Fond. Bruno Kessler, Povo /Prague, Tech. U. /Trento U. /INFN, Trento /CERN /Oslo U. /Fond. Bruno Kessler, Povo /INFN, Genoa /INFN, Genoa /Bergen U. /New Mexico U. /Udine U. /INFN, Udine /SLAC /Oslo U. /Prague, Tech. U. /Oslo U. /Bergen U. /SUNY, Stony Brook /SLAC /Calabria U. /INFN, Cosenza /Manchester U. /Bonn U. /SUNY, Stony Brook /Manchester U. /Bonn U. /SLAC /Fond. Bruno Kessler, Povo

    2011-08-19

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance. Full and partial 3D pixel detectors have been tested, with and without a 1.6T magnetic field, in high energy pion beams at the CERN SPS North Area in 2009. Sensors characteristics have been measured as a function of the beam incident angle and compared to a regular planar pixel device. Overall full and partial 3D devices have similar behavior. Magnetic field has no sizeable effect on 3D performances. Due to electrode inefficiency 3D devices exhibit some loss of tracking efficiency for normal incident tracks but recover full efficiency with tilted tracks. As expected due to the electric field configuration 3D sensors have little charge sharing between cells.

  19. LHC Computing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  20. The upstream tracker for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Steinkamp, Olaf

    2016-09-01

    The LHCb collaboration is planning a comprehensive upgrade of the experiment for the long shutdown of the LHC in 2019/20. As part of this upgrade, the tracking station in front of the LHCb dipole magnet will be replaced by a new planar four-layer silicon micro-strip detector with 40 MHz readout and silicon sensors with finer granularity and improved radiation hardness. Key design aspects of this new Upstream Tracker are described and a brief overview of the status of the project is given.

  1. The new CMS DAQ system for LHC operation after 2014 (DAQ2)

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Bawej, Tomasz; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Coarasa, Jose Antonio; Darlea, Georgiana-Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Ceballos, Guillelmo; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, Andre; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Morovic, Srecko; Nunez-Barranco-Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Ozga, Wojciech; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Cristian Spataru, Andrei; Stieger, Benjamin; Sumorok, Konstanty; Veverka, Jan; Wakefield, Christopher Colin; Zejdl, Petr

    2014-06-01

    The Data Acquisition system of the Compact Muon Solenoid experiment at CERN assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GByte/s. We are presenting the design of the 2nd generation DAQ system, including studies of the event builder based on advanced networking technologies such as 10 and 40 Gbit/s Ethernet and 56 Gbit/s FDR Infiniband and exploitation of multicore CPU architectures. By the time the LHC restarts after the 2013/14 shutdown, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime. In order to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increase the number of readout channels and replace the off-detector readout electronics with a μTCA implementation. The second generation DAQ system, foreseen for 2014, will need to accommodate the readout of both existing and new off-detector electronics and provide an increased throughput capacity. Advances in storage technology could make it feasible to write the output of the event builder to (RAM or SSD) disks and implement the HLT processing entirely file based.

  2. Interaction Region Upgrades of e+ e- B-Factories

    SciTech Connect

    Sullivan, M.; /SLAC

    2008-02-22

    Both the PEP-II and KEKB B-Factories have plans to upgrade their Interaction Regions (IRs) in order to improve luminosity performance. Last summer PEP-II added cooling to the IR beam pipe in order to increase beam currents thereby raising the luminosity. In addition, PEP-II is working on a design that modifies the permanent magnets near the Interaction Point (IP) for an even higher luminosity increase. KEKB is also planning an improvement to their IR that will decrease the detector beam pipe radius. In addition, KEK has a design to increase the luminosity of KEKB to 1 x 10{sup 35} cm{sup -2} sec{sup -1} which includes changes to the IR. PEP-II is also investigating the feasibility of a 1 x 10{sup 36} cm{sup -2} sec{sup -1} luminosity design. I summarize these various upgrades and concentrate on issues common to the different designs.

  3. Analyzing Potential Tracking Algorithms for the Upgrade to the Silicon Tracker of the Compact Muon Solenoid

    NASA Astrophysics Data System (ADS)

    Hardin, John; McDermott, Kevin

    2011-10-01

    The research performed revolves around creating tracking algorithms for the proposed ten-year upgrade to the tracker for CMS, one of two main detectors for the LHC at CERN. The proposed upgrade to the tracker for CMS will use fast hardware to trace particle trajectories so that they can be used immediately in a trigger system. The additional information will be combined with other sub-detectors in CMS, enabling mostly the non-background events to be read-out by the detector. The algorithms would be implemented directly into the Level-1 trigger, the first trigger in a 2 trigger system, to be used in real time. Specifically, by analyzing computer generated stable particles over various ranges of transverse momentum and the tracks they produce, we created and tested various simulated trigger algorithms that might be used in hardware. As one algorithm has proved very effective, the next step is to test this algorithm against simulated events with an environment equivalent to SLHC luminosities.

  4. The MICE luminosity monitor

    NASA Astrophysics Data System (ADS)

    Dobbs, A.; Forrest, D.; Soler, F. J. P.

    2013-02-01

    The MICE experiment will provide the first measurement of ionisation cooling, a technique suitable for reducing the transverse emittance of a tertiary muon beam in a future neutrino factory accelerator facility. MICE is presently in the final stages of commissioning its beam line. The MICE luminosity monitor has proved an invaluable tool throughout this process, providing independent measurements of particle rate from the MICE target, normalisation for beam line detectors and verification of simulation codes.

  5. High-luminosity considerations

    SciTech Connect

    Platner, E.D.

    1982-01-01

    There appears to be some controversy over how high a luminosity one can use before a variety of detector limitations impose a practical limit. Factors leading to flux limitations for a variety of detector types are discussed, and practical considerations to extending those limits are reviewed. Also, a method of reducing the effects of pileup inherent in calorimeter use at L = 10/sup 33//cm/sup 2//sec is given.

  6. Superconducting Magnet Technology for the Upgrade

    SciTech Connect

    Todesco, E.; Ambrosio, G.; Ferracin, P.; Rifflet, J. M.; Sabbi, G. L.; Segreti, M.; Nakamoto, T.; van Weelderen, R.; Xu, Q.

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  7. Feasibility studies of the diffractive bremsstrahlung measurement at the LHC

    NASA Astrophysics Data System (ADS)

    Chwastowski, Janusz J.; Czekierda, Sabina; Kycia, Radosław; Staszewski, Rafał; Turnau, Jacek; Trzebiński, Maciej

    2016-06-01

    Feasibility studies of an observation of the exclusive diffractive bremsstrahlung in proton-proton scattering at the centre of mass energy 13 TeV at the LHC are reported. These studies aim at the dedicated data taking periods with low instantaneous luminosity delivered by the LHC where the pile-up interactions can be neglected. A simplified approach to the photon and the scattered proton energy reconstruction is used. The background influence is discussed.

  8. SUSY searches at the LHC with the ATLAS experiment

    ScienceCinema

    None

    2016-07-12

    First ATLAS searches for signals of Supersymmetry in proton-proton collisions at the LHC are presented. These searches are performed in various channels containing different lepton and jet multiplicities in the final states; the full data sample recorded in the 2010 LHC run, corresponding to an integrated luminosity of 35 pb-1, has been analysed. Limits on squarks and gluins are the most stringent to date.

  9. Upgrade of the ATLAS Level-1 Trigger with event topology information

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Artz, S.; Bauβ, B.; Büscher, V.; Jakobi, K.; Kaluza, A.; Kahra, C.; Palka, M.; Reiβ, A.; Schäffer, J.; Schäfer, U.; Schulte, A.; Simon, M.; Tapprogge, S.; Vogel, A.; Zinser, M.

    2015-12-01

    The Large Hadron Collider (LHC) in 2015 will collide proton beams with increased luminosity from 1034 up to 3 × 1034cm-2s-1. ATLAS is an LHC experiment designed to measure decay properties of high energetic particles produced in the protons collisions. The higher luminosity places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz while at the same time, selecting those events with valuable physics meaning. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 100kHz and decision latency of less than 2.5µs. It is composed of the Calorimeter Trigger (L1Calo), the Muon Trigger (L1Muon) and the Central Trigger Processor (CTP). By 2015, there will be a new electronics element in the chain: the Topological Processor System (L1Topo system). The L1Topo system consist of a single AdvancedTCA shelf equipped with three L1Topo processor blades. It will make it possible to use detailed information from L1Calo and L1Muon processed in individual state-of-the-art FPGA processors. This allows the determination of angles between jets and/or leptons and calculates kinematic variables based on lists of selected/sorted objects. The system is designed to receive and process up to 6Tb/s of real time data. The paper reports the relevant upgrades of the Level-1 trigger with focus on the topological processor design and commissioning.

  10. Recent results of the ATLAS upgrade planar pixel sensors R&D project

    NASA Astrophysics Data System (ADS)

    Weigell, Philipp

    2013-12-01

    To extend the physics reach of the LHC experiments, several upgrades to the accelerator complex are planned, culminating in the HL-LHC, which eventually leads to an increase of the peak luminosity by a factor of five to ten compared to the LHC design value. To cope with the higher occupancy and radiation damage also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) μm, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m2. To reach this goal the pixel productions are being transferred to 6 in production lines and more cost-efficient and industrialised interconnection techniques are investigated. Additionally, the n-in-p technology is employed, which requires less production steps since it relies on a single-sided process. An overview of the recent accomplishments obtained within the ATLAS Planar Pixel Sensor R&D Project is given. The performance in terms of charge collection and tracking efficiency, obtained with radioactive sources in the laboratory and at beam tests, is presented for devices built from sensors of different vendors connected to either the present ATLAS read-out chip FE-I3 or the new Insertable B-Layer read-out chip FE-I4. The devices, with a thickness varying between 75 μm and 300 μm, were irradiated to several fluences up to 2×1016 neq/cm2. Finally, the different approaches followed inside the collaboration to achieve slim or active edges for planar pixel sensors are presented.

  11. Color Sextet Scalars in Early LHC Experiments

    SciTech Connect

    Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao

    2010-10-29

    We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.

  12. hhjj production at the LHC

    DOE PAGES

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; Nordstrom, Karl; Spannowsky, Michael

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  13. The CDF level 2 calorimetric trigger upgrade

    SciTech Connect

    Bhatti, A.; Canepa, A.; Casarsa, M.; Convery, M.; Cortiana, G.; Dell'Orso, M.; Donati, S.; Flanagan, G.; Frisch, H.; Fukun, T.; Krop, D.; /Chicago U., EFI /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2009-01-01

    CDF II upgraded the calorimeter trigger to cope with the higher detector occupancy due to the increased Tevatron instantaneous luminosity ({approx} 2.8 x 10{sup 32} cm{sup -2} s{sup -1}). While the original system was implemented in custom hardware and provided to the L2 trigger a limited-quality jet clustering performed using a reduced resolution measurement of the transverse energy in the calorimeter trigger towers, the upgraded system provides offline-quality jet reconstruction of the full resolution calorimeter data. This allows to keep better under control the dependence of the trigger rates on the instantaneous luminosity and to improve the efficiency and purity of the trigger selections. The upgraded calorimeter trigger uses the general purpose VME board Pulsar, developed at CDF II and already widely used to upgrade the L2 tracking and L2 decision systems. A battery of Pulsars is used to merge and send the calorimeter data to the L2 CPUs, where software-implemented algorithms perform offline-like clustering. In this paper we review the design and the performance of the upgraded system.

  14. Machine optics studies for the LHC measurements

    NASA Astrophysics Data System (ADS)

    Trzebiński, Maciej

    2014-11-01

    In this work the properties of scattered protons in the vicinity of the ATLAS Interaction Point (IP1) for various LHC optics settings are discussed. Firstly, the beam elements installed around IP1 are presented. Then the ATLAS forward detector systems: Absolute Luminosity For ATLAS (ALFA) and ATLAS Forward Protons (AFP) are described and their similarities and differences are discussed. Next, the various optics used at Large Hadron Collider (LHC) are described and the beam divergence and width at the Interaction Point as well as at the ATLAS forward detectors locations are calculated. Finally, the geometric acceptance of the ATLAS forward detectors is shown and the impact of the LHC collimators on it is discussed.

  15. Higgs coupling measurements at the LHC

    NASA Astrophysics Data System (ADS)

    Englert, Christoph; Kogler, Roman; Schulz, Holger; Spannowsky, Michael

    2016-07-01

    Due to the absence of tantalising hints for new physics during the LHC's Run 1, the extension of the Higgs sector by dimension-six operators will provide the new phenomenological standard for searches of non-resonant extensions of the Standard Model. Using all dominant and subdominant Higgs production mechanisms at the LHC, we compute the constraints on Higgs physics-relevant dimension-six operators in a global and correlated fit. We show in how far these constraints can be improved by new Higgs channels becoming accessible at higher energy and luminosity, both through inclusive cross sections as well as through highly sensitive differential distributions. This allows us to discuss the sensitivity to new effects in the Higgs sector that can be reached at the LHC if direct hints for physics beyond the SM remain elusive. We discuss the impact of these constraints on well-motivated BSM scenarios.

  16. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  17. TCS Upgrade

    NASA Astrophysics Data System (ADS)

    Grossnickle, J. A.; Miller, K. E.

    2004-11-01

    The original TCS experiment has demonstrated the robust ability to form and sustain FRCs in steady-state using Rotating Magnetic Fields (RMF). Radiation levels, which are due in large part to Oxygen, are seen to increase dramatically after the initial formation phase ( ˜0.5 msec), causing a severe drop in the plasma temperature. Since the RMF magnitude and frequency determine the plasma density, as the temperature is limited, so is the FRC's external field and energy confinement time. In order to improve temperatures and flux levels, TCS is being extensively upgraded. All o-ring sealed flanges will be replaced with wire sealed flanges, and heating blankets installed to bake the system to 200 C. Internal flux rings, shielded with Tantalum, will be installed to shield the quartz and stainless steel vacuum wall from the plasma. Unique aspects of this design are related to the interface between the quartz section needed to allow penetration of the RMF from the external antennas and the adjacent stainless steel vacuum chambers. Wall conditioning will include glow discharge, Ti gettering, siliconization, and/or boronization. The total system will be described.

  18. Overview of the recent activities of the RD50 collaboration on radiation hardening of semiconductor detectors for the sLHC

    NASA Astrophysics Data System (ADS)

    Casse, Gianluigi

    2009-01-01

    The RD50 collaboration has been exploring the development of radiation hard semiconductor devices for very high-luminosity colliders since 2002. The target fluence to qualify detectors set by the anticipated dose for the innermost tracking layers of the future upgrade of the CERN large hadron collider (LHC) is 10 16 1 MeV neutron equivalent (n eq) cm -2. This is about an order of magnitude higher than the maximum dose for the most exposed silicon detectors in the current machine. RD50 investigates the radiation hardening of silicon sensors from many angles: improvement of the intrinsic tolerance of the substrate material, optimisation of the readout geometry and study of novel design of detectors. A review of some of the recent activities within RD50 is here presented.

  19. Upgrade of the Upstream Tracker at LHCb

    NASA Astrophysics Data System (ADS)

    Andrews, Jason; LHCb Collaboration

    2015-04-01

    The LHCb detector will be upgraded to allow it operate at higher collider luminosity without the need for a hardware trigger stage. Flavor enriched events will be selected in a software based, high level trigger, using fully reconstructed events. This presentation will describe the design, optimization and the expected performance of the Upstream Tracker (UT), which has a critical role in high level trigger scheme.

  20. Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2007-12-01

    Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.

  1. Weak-strong Beam-beam Simulations for HL-LHC

    SciTech Connect

    Banfi, Danilo; Barranco, Javier; Pieloni, Tatiana; Valishev, Alexander

    2014-07-01

    In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.

  2. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    DOE PAGES

    Pan, H.; Felice, H.; Cheng, D. W.; Anderssen, E.; Ambrosio, G.; Perez, J. C.; Juchno, M.; Ferracin, P.; Prestemon, S. O.

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less

  3. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  4. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  5. Designing the ATLAS trigger menu for high luminosities

    NASA Astrophysics Data System (ADS)

    Nakahama, Yu

    2012-12-01

    The LHC has a bunch-crossing rate of 20 MHz whereas the ATLAS detector has an average recording rate of about 400 Hz. To reduce the rate of events but still maintain a high efficiency for selecting interesting events needed by ATLAS physics analyses, a three-level trigger system is used in ATLAS. Events are selected based on the Trigger Menu, the definitions of the physics signatures the experiment triggers on. In the 2012 data taking since April, approximately 700 chains are used online. The menu must reflect not only the physics goals of the collaboration but also take into consideration the LHC luminosity and the strict DAQ limitations. An overview of the design, the validation and the performance of the trigger menu for the 2011 data-taking is given. During 2011, the menu had to evolve as the luminosity increase from below 2×1033 cm-2s-1 to almost 5×1033 cm-2s-1. Re-designing the menu for the up-coming high luminosity of around 1034 cm-2s-1 and large number of collision events that take place per each bunch crossing (pile-up) of around 35 interactions per bunch crossing at √s = 8 TeV is described. Initial performance in the 2012 data-taking is also reported.

  6. The operation of the LHC accelerator complex (2/2)

    ScienceCinema

    None

    2016-07-12

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  7. The operation of the LHC accelerator complex (1/2)

    ScienceCinema

    None

    2016-07-12

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  8. The operation of the LHC accelerator complex (1/2)

    SciTech Connect

    2010-04-07

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  9. The operation of the LHC accelerator complex (2/2)

    SciTech Connect

    2010-04-09

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  10. STS atmospheric luminosities

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1984-01-01

    During the STS-8 space shuttle mission special photographic and TV operations were carried out to record the properties of the spacecraft induced luminosities. One of these luminous phenomena is the quiescent vehicle glow which was photographed during the STS-8 mission with an image intensified photographic camera, with and without an objective grating. During the latter part of the mission the altitude of the shuttle was relatively low (120 n.m. = 222 km) and unprecedentedly high intensity of the glow was observed. The crew reported that the glow was easily visible to the naked eye. The proper orientation of the shuttle with respect to the velocity vector and the objective grating permitted the exposure of good objective spectrum of the glow in the visible region. From the results it is clear that the spectrum appears to be a continuum as observed by the image intensifier objective grating camera. Qualitative examination of the data shows that there is very tail little glow ion the wavelength range of 4300 to about 5000 angstroms. Above 5000 angstroms the glow becomes stronger towards the red and then it falls off towards higher wavelength and of the spectrum presumably because of the responsivity of the device.

  11. Concepts for ELIC - A High Luminosity CEBAF Based Electron-Light Ion Collider

    SciTech Connect

    Ya. Derbenev, A. Bogacz, G. Krafft, R. Li, L. Merminga, B. Yunn, Y. Zhang

    2006-09-01

    A CEBAF accelerator based electron-light ion collider (ELIC) of rest mass energy from 20 to 65 GeV and luminosity from 10^33 to 10^35 cm6-2s^-1 with both beams polarized is envisioned as a future upgrade to CEBAF. A two step upgrade scenario is under study: CEBAF accelerator-ring-ring scheme (CRR) as the first step, and a multi-turn ERL-ring as the second step, to attain a better electron emittance and maximum luminosity. In this paper we report results of our studies of the CRR version of ELIC.

  12. High luminosity muon collider design

    SciTech Connect

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  13. Status of 11 T 2-in-1 Nb$_3$Sn Dipole Development for LHC

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Apollinari, Giorgio; Barzi, Emanuela; Bossert, Rodger; Buehler, Marc; Chlachidze, Guram; DiMarco, Joseph; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Velev, Gueorgui; Auchmann, Bernhard; Karppinen, Mikko; Rossi, Lucio; Smekens, David

    2014-07-01

    The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.

  14. Beam losses due to abrupt crab cavity failures in the LHC

    SciTech Connect

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-03-28

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  15. CDF level 2 trigger upgrade

    SciTech Connect

    Anikeev, K.; Bogdan, M.; DeMaat, R.; Fedorko, W.; Frisch, H.; Hahn, K.; Hakala, M.; Keener, P.; Kim, Y.; Kroll, J.; Kwang, S.; Lewis, J.; Lin, C.; Liu, T.; Marjamaa, F.; Mansikkala, T.; Neu, C.; Pitkanen, S.; Reisert, B.; Rusu, V.; Sanders, H.; /Fermilab /Chicago U. /Pennsylvania U.

    2006-01-01

    We describe the new CDF Level 2 Trigger, which was commissioned during Spring 2005. The upgrade was necessitated by several factors that included increased bandwidth requirements, in view of the growing instantaneous luminosity of the Tevatron, and the need for a more robust system, since the older system was reaching the limits of maintainability. The challenges in designing the new system were interfacing with many different upstream detector subsystems, processing larger volumes of data at higher speed, and minimizing the impact on running the CDF experiment during the system commissioning phase. To meet these challenges, the new system was designed around a general purpose motherboard, the PULSAR, which is instrumented with powerful FPGAs and modern SRAMs, and which uses mezzanine cards to interface with upstream detector components and an industry standard data link (S-LINK) within the system.

  16. Luminosity class of neutron reflectometers

    NASA Astrophysics Data System (ADS)

    Pleshanov, N. K.

    2016-10-01

    The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.

  17. Beam dynamics and expected RHIC performance with 56MHz RF upgrade

    SciTech Connect

    Fedotov,A.V.; Ben-Zvi, I.

    2009-05-04

    An upgrade of the RHIC storage RF system with a superconducting 56 MHz cavity was recently proposed. This upgrade will provide a significant increase in the acceptance of the RHIC 197 MHz storage RF bucket. This paper summarizes simulations of beam evolution due to intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvements are shown for Au ions at 100 GeV/nucleon and protons at 250 GeV.

  18. Cornering diphoton resonance models at the LHC

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Kulkarni, Suchita; Mariotti, Alberto; Sessolo, Enrico Maria; Spannowsky, Michael

    2016-08-01

    We explore the ability of the high luminosity LHC to test models which can explain the 750 GeV diphoton excess. We focus on a wide class of models where a 750 GeV singlet scalar couples to Standard Model gauge bosons and quarks, as well as dark matter. Including both gluon and photon fusion production mechanisms, we show that LHC searches in channels correlated with the diphoton signal will be able to probe wide classes of diphoton models with L ˜ 3000 fb-1 of data. Furthermore, models in which the scalar is a portal to the dark sector can be cornered with as little as L ˜ 30 fb-1.

  19. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  20. Two Alternate High Gradient Quadrupoles; An Upgraded Tevatron IR and A"Pipe" Design

    SciTech Connect

    McInturff, A.D.; Oort, J.M. van; Scanlan, R.M.

    1995-04-01

    With the U.S. cancellation of the SSC project, the only large approved hadron accelerator project is CERN's LHC. One of the more critical elements in the performance of a collider is the quadrupole lens at the beam collision points. These quadrupoles, usually referred to as the 'insertion quads' normally form a set of triplets around the interaction region. Their focal power directly affects the luminosity available at the crossing point In order to achieve as high a gradient as possible, the CERN design team has proposed a very efficient high gradient quadrupole which is based on a graded four-layer winding structure. At Fermilab's Tevatron, an upgraded two layer winding quadrupole has been in operation since 1989, and has provided a 50% higher gradient than its predecessor. The quadrupole was basically state of the art when it was designed in 1985. Since then however, improvements have been made in cabling, conductor perfonnance, etc. Naturally, operation of a modernized version of this .design can provide higher capabilities. This improved two layer design can serve as an alternative to the more intricate graded four layer design now envisioned for the LHC, provided it can obtain the proposed gradient. A high gradient quadrupole with a 'pipe' layout can be considered as a possible candidate for future large collider insertion regions. It is possible to fine-tune the design to obtain a good field-quality, the conductor is well cooled in case of a large radiation heat load, and the overall structure is smaller than a conventional quadrupole with a comparable field gradient.

  1. Luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Bajan, K.; Biernacka, M.; Flin, P.; Godłowski, W.; Panko, E.; Popiela, J.

    2016-10-01

    We constructed and studied the luminosity function of 6188 galaxyclusters. This was performed by counting brightness of galaxiesbelonging to clusters in the PF catalogue, taking galaxy data fromMRSS. Our result shows that the investigated structures arecharacterized by a luminosity function different from that ofoptical galaxies and radiogalaxies (Machalski & Godłowski2000). The implications of this result for theoriesof galaxy formation are briefly discussed.

  2. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    NASA Astrophysics Data System (ADS)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  3. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Zhou, B.

    2016-09-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  4. Prospects for forward photon measurements at LHC

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Marco

    2016-03-01

    We present the opportunities to experimentally probe the gluon density at small x in nuclei to explore non-linear gluon evolution, saturation and the physics of the Color Glass Condensate by measuring photon production at forward rapidity in proton-nucleus collisions at the LHC. Performance studies for π0 and direct photon measurements based on simulations of a Forward Calorimeter (FoCal), which is under consideration as an upgrade for the ALICE detector, are presented. Other aspects of the FoCal physics program for pp, p+Pb and Pb+Pb collisions are briefly discussed as well.

  5. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  6. SUSY at the ILC and Solving the LHC Inverse Problem

    SciTech Connect

    Gainer, James S.; /SLAC

    2008-05-28

    Recently a large scale study of points in the MSSM parameter space which are problematic at the Large Hadron Collider (LHC) has been performed. This work was carried out in part to determine whether the proposed International Linear Collider (ILC) could be used to solve the LHC inverse problem. The results suggest that while the ILC will be a valuable tool, an energy upgrade may be crucial to its success, and that, in general, precision studies of the MSSM are more difficult at the ILC than has generally been believed.

  7. Top channel for early supersymmetry discovery at the LHC

    SciTech Connect

    Kane, Gordon L.; Kuflik, Eric; Lu, Ran; Wang, Lian-Tao

    2011-11-01

    Arguably the best-motivated channel for early LHC discovery is events including a high multiplicity of third generation quarks, such as four top quarks. For example generic string theories compactified to four dimensions with stabilized moduli typically have light gluinos with large branching ratios to t- and b-quarks. We analyze signals and background at 7 TeV LHC energy for 1 fb{sup -1} integrated luminosity, suggesting a reach for gluinos of about 650 GeV. A non-standard model signal from counting b-jets and leptons is robust, and provides information on the gluino mass, cross section, and spin.

  8. LHC and Flavour Physics

    SciTech Connect

    Blake, T.

    2009-12-17

    The large centre of mass energy of the LHC will provide a huge cross-section for heavy flavour production making the LHC a powerful laboratory for studying the indirect effects of new physics. The prospects for four key measurements at LHCb and the central detectors (ATLAS and CMS) are presented.

  9. Study of Higgs boson production and its b-b(bar) decay in gamma-gamma processes in proton-nucleus collisions at the LHC

    SciTech Connect

    d'Enterria, David; Lansberg, Jean-Philippe; /Ecole Polytechnique, CPHT /SLAC

    2010-08-26

    We explore for the first time the possibilities to measure an intermediate-mass (m{sub H} = 115-140 GeV/c{sup 2}) Standard-Model Higgs boson in electromagnetic proton-lead (p Pb) interactions at the CERN Large Hadron Collider (LHC) via its b{bar b} decay. Using equivalent Weizsacker-Williams photon fluxes and Higgs effective field theory for the coupling {gamma}{gamma} {yields} H, we obtain a leading-order cross section of the order of 0.3 pb for exclusive Higgs production in elastic (p Pb {yields} {gamma}{gamma} p H Pb) and semielastic (p Pb {yields} {gamma}{gamma} X H Pb) processes at {radical}S{sub NN} = 8.8 TeV. After applying various kinematics cuts to remove the main backgrounds ({gamma}{gamma} {yields} b{bar b} and misidentified {gamma}{gamma} {yields} q{bar q} events), we find that a Higgs boson with m{sub H} = 120 GeV/c{sup 2} could be observed in the b{bar b} channel with a 3{sigma}-significance integrating 300 pb{sup -1} with an upgraded pA luminosity of 10{sup 31} cm{sup -2}s{sup -1}. We also provide for the first time semielastic Higgs cross sections, along with elastic t{bar t} cross sections, for electromagnetic pp, pA and AA collisions at the LHC.

  10. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  11. Constraints on anomalous top quark couplings at the LHC

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    Measurements of distributions associated with the pair production of top quarks at the LHC can be used to constrain (or observe) the anomalous chromomagnetic dipole moment(k) of the top. For example, using either the tt(bar) invariant mass or the Pt distribution of top we find that sensitivities to ; k; of order 0.05 are obtainable with 100 /fb of integrated luminosity. This is similar in magnitude to what can be obtained at a 500 GeV NLC with an integrated luminosity of 50 /fb through an examination of the e(+)e(-) right arrow tt(bar)g process.

  12. Evolutionary variations of solar luminosity

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1981-01-01

    Theoretical arguments for a 30% increase in the solar luminosity over the past 4.7 billion years are reviewed. A scaling argument shows that this increase can be predicted without detailed numerical calculations. The magnitude of the increase is independent of nuclear reaction rates, as long as conversion of hydrogen to helium provides the basic energy source of the Sun. The effect of the solar luminosity increase on the terrestrial climate is briefly considered. It appears unlikely that an enhanced greenhouse effect, due to reduced gases (NH3, CH4), can account for the long-term paleoclimatic trends.

  13. Performance of the prototype readout system for the CMS endcap hadron calorimeter upgrade

    NASA Astrophysics Data System (ADS)

    Pastika, N. J.

    2016-03-01

    The CMS experiment at the CERN Large Hadron Collider (LHC) will upgrade the photon detection and readout systems of its barrel and endcap hadron calorimeters (HCAL) through the second long shutdown of the LHC in 2018. The upgrade includes new silicon photomultipliers (SiPMs), SiPM control electronics, signal digitization via the Fermilab QIE11 ASIC, data formatting and serialization via a Microsemi FPGA, and data transmission via CERN Versatile Link technology. The first prototype system for the endcap HCAL has been assembled and characterized on the bench and in a test beam. The design of this new system and prototype performance are described.

  14. Hydrocarbonaceous material upgrading method

    SciTech Connect

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  15. Shuttle Upgrade Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Shuttle upgrade plan, including details on safety enhancements, reliability and maintainability improvements, investment protection (mission life remaining), Next Generation Reusable Launch Vehicle technologies, HEDS exploration strategic goals, and upgrades for safety and supportability.

  16. Proposal to upgrade the MIPP data acquisition system

    SciTech Connect

    Baker, W.; Carey, D.; Johnstone, C.; Kostin, M.; Meyer, H.; Raja, R.; /Fermilab

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  17. Commissioning and Initial LHC Run-2 operation of the ATLAS minimum bias trigger scintillators

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.

    2016-07-01

    The Minimum Bias Trigger Scintillators (MBTS) are sub-detectors in ATLAS delivering the primary trigger for selecting events from low luminosity proton-proton, lead-lead and lead-proton collisions with the smallest possible bias. The MBTS have undergone a complete replacement before LHC Run-2 and several improvements have been implemented in the layout. Since 2014 the MBTS have been commissioned with cosmic rays and first LHC Run-2 beam splash events. We summarise the outcome of the commissioning.

  18. Run II of the LHC: The Accelerator Science

    NASA Astrophysics Data System (ADS)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  19. Calculation of integrated luminosity for beams stored in the Tevatron collider

    SciTech Connect

    Finley, D.A.

    1989-03-20

    A model for calculating the integrated luminosity of beams stored in the Tevatron collider will be presented. The model determines the instantaneous luminosity by calculating the overlap integral of bunched beams passing through the interaction region. The calculation accounts for the variation in beam size due to the beta functions and also for effects due to finite longitudinal emittance and non-zero dispersion in the interaction region. The integrated luminosity is calculated for the beams as they evolve due to processes including collisions and intrabeam scattering. The model has been applied to both the extant and upgraded Tevatron collider, but is not limited to them. The original motivation for developing the computer model was to determine the reduction in luminosity due to beams with non-zero longitudinal emittances. There are two effects: the transverse beam size is increased where the dispersion is non-zero; the finite length of the beam bunch combined with an increasing /beta/ function results in an increased transverse beam size at the ends of the bunch. The derivation of a sufficiently useful analytic expression for the luminosity proved to be intractable. Instead, a numerical integration computer program was developed to calculate the luminosity in the presence of a finite longitudinal emittance. The program was then expanded into a model which allows the luminosity to vary due to changes in emittances and reduction in bunch intensities. At that point, it was not difficult to calculate the integrated luminosity. 5 refs., 2 figs., 4 tabs.

  20. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  1. The white dwarf luminosity function

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  2. Multigap Diffraction at LHC

    SciTech Connect

    Goulianos, Konstantin

    2005-10-06

    The large rapidity interval available at the Large Hadron Collider (LHC) offers an arena in which the QCD aspects of diffraction may be explored in an environment free of gap survival complications using events with multiple rapidity gaps.

  3. Searching for anomalous top quark production at the early LHC.

    PubMed

    Gao, Jun; Li, Chong Sheng; Yang, Li Lin; Zhang, Hao

    2011-08-26

    We present a detailed study of the anomalous top quark production with subsequent decay at the LHC induced by model-independent flavor-changing neutral-current couplings, incorporating the complete next-to-leading order QCD effects. Our results show that, taking into account the current limits from the Tevatron, the LHC with √s=7  TeV may discover the anomalous coupling at 5σ level for a very low integrated luminosity of 61  pb⁻¹. The discovery potentials for the anomalous couplings at the LHC are examined in detail. We also discuss the possibility of using the charge ratio to distinguish the tug and tcg couplings.

  4. Searching for Anomalous Top Quark Production at the Early LHC

    SciTech Connect

    Gao Jun; Li Chongsheng; Zhang Hao; Yang Lilin

    2011-08-26

    We present a detailed study of the anomalous top quark production with subsequent decay at the LHC induced by model-independent flavor-changing neutral-current couplings, incorporating the complete next-to-leading order QCD effects. Our results show that, taking into account the current limits from the Tevatron, the LHC with {radical}(s)=7 TeV may discover the anomalous coupling at 5{sigma} level for a very low integrated luminosity of 61 pb{sup -1}. The discovery potentials for the anomalous couplings at the LHC are examined in detail. We also discuss the possibility of using the charge ratio to distinguish the tug and tcg couplings.

  5. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  6. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  7. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  8. The 12 GeV JLab Upgrade Project

    SciTech Connect

    Smith, Elton

    2009-01-01

    The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

  9. 209-E Upgrades

    SciTech Connect

    Merrill, B.J.; DeMyer, J.J.

    1985-02-04

    Pacific Northwest Laboratory has initiated a review of the Safeguards and Security systems at the Critical Mass Laboratory with regards to determining appropriate upgrading actions that assure that an effective and efficient Safeguards and Security posture consistent with DOE-RL policies, procedures, and priorities is effected. As a result of this review, PNL has concluded that specific upgrades are required at CML that provide a demonstrated enhancement to the overall security posture of the facility and are based upon prudent expenditures of government funds. It was further concluded that additional recommended upgrades provide minimal improvement to the overall security system at a significant outlay of funds.

  10. Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation

    SciTech Connect

    Redaelli, S.; Bertarelli, A.; Bruce, R.; Perini, D.; Rossi, A.; Salvachua, B.; Stancari, G.; Valishev, A.

    2015-06-01

    Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes are also discussed.

  11. Distributed Russian Tier-2 - RDIG in Simulation and Analysis of Alice Data From LHC

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Jancurova, L.; Kiryanov, A.; Kotlyar, V.; Mitsyn, V.; Lyublev, Y.; Ryabinkin, E.; Shabratova, G.; Smirnov, S.; Stepanova, L.; Urazmetov, W.; Zarochentsev, A.

    2011-12-01

    On the threshold of LHC data there were intensive test and upgrade of GRID application software for all LHC experiments at the top of the modern LCG middleware (gLite). The update of such software for ALICE experiment at LHC, AliEn[1] had provided stable and secure operation of sites developing LHC data. The activity of Russian RDIG (Russian Data Intensive GRID) computer federation which is the distributed Tier-2 centre are devoted to simulation and analysis of LHC data in accordance with the ALICE computing model [2]. Eight sites of this federation interesting in ALICE activity upgrade their middle ware in accordance with requirements of ALICE computing what ensured success of MC production and end-user analysis activity at all eight sites. The result of occupancy and efficiency of each site in the time of LHC operation will be presented in the report. The outline the results of CPU and disk space usage at RDIG sites for the data simulation and analysis of first LHC data from the exposition of ALICE detector [3] will be presented as well. There will be presented also the information about usage of parallel analysis facility based on PROOF [4].

  12. Luminosities for Final Flash Stars

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth; Joyce, Richard; Lebzelter, Thomas

    2010-08-01

    A brief yet common evolutionary process is a post-AGB final episode of helium shell burning. This occurs after a low mass star has ejected a planetary nebula and has started on the white dwarf track. Seven stars are now classified with varying degrees of certainty as one of these ``final flash'' objects. Two of these have actually been observed to eject a shell of gas first as a pseudo-photosphere and then as a thick dust envelope. The dust envelopes are expanding at ~100 km s^-1. We propose AO imaging of the circumstellar shells to measure changes from images recorded a decade or more ago. From these changes we will determine geometric parallaxes and hence luminosities. The luminosity will be compared to stellar evolution models. In an additional challenge to models we will calibrate the He I emission line flux and through this the mass loss rate from the fast stellar wind.

  13. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  14. Solar response to luminosity variations

    NASA Astrophysics Data System (ADS)

    Arendt, S.

    1990-08-01

    The connection between solar luminosity and magnetic fields is now well-established. Magnetic fields under the guise of sunspots and faculae enhance or suppress heat transfer through the solar surface, leading to changes in the total solar luminosity. This raises the question of the effect that such surface heat transfer perturbations have on the internal structure of the sun. The problem has been considered previously by Foukal and Spruit. Here, researchers generalize the calculation of Spruit, removing the assumption of a constant heat diffusivity coefficient by treating the full mixing length heat transfer expression. Further, they treat the surface conditions in a simpler manner, and show that the previous conclusions of Foukal and Spruit are unaffected by these modifications. The model shows that following the application of a step function emissivity change: a fraction 1 - D0 of the luminosity change relaxes away after approx. 50 days. This corresponds to the thermal diffusion time across the convection zone, adjusting to a value in correspondence with the surface change. In other words, the whole convection zone feels the perturbation on this timescale. The remaining fraction relaxes away on a timescale of 10 to the 5th power years, corresponding to the convective layer radiating away enough energy so that it can adjust to its new adiabat. These are the same results arrived at by Spruit and Foukal. For variations of sigma on timescales of 10 to 200 years, then, the only important relaxation is the 50 day one. If the amplitude of this relaxation is small, the luminosity follows the sigma variation.

  15. Solar Response to Luminosity Variations

    NASA Technical Reports Server (NTRS)

    Arendt, S.

    1990-01-01

    The connection between solar luminosity and magnetic fields is now well-established. Magnetic fields under the guise of sunspots and faculae enhance or suppress heat transfer through the solar surface, leading to changes in the total solar luminosity. This raises the question of the effect that such surface heat transfer perturbations have on the internal structure of the sun. The problem has been considered previously by Foukal and Spruit. Here, researchers generalize the calculation of Spruit, removing the assumption of a constant heat diffusivity coefficient by treating the full mixing length heat transfer expression. Further, they treat the surface conditions in a simpler manner, and show that the previous conclusions of Foukal and Spruit are unaffected by these modifications. The model shows that following the application of a step function emissivity change: a fraction 1 - D(sub 0) of the luminosity change relaxes away after approx. 50 days. This corresponds to the thermal diffusion time across the convection zone, adjusting to a value in correspondence with the surface change. In other words, the whole convection zone feels the perturbation on this timescale. The remaining fraction relaxes away on a timescale of 10 to the 5th power years, corresponding to the convective layer radiating away enough energy so that it can adjust to its new adiabat. These are the same results arrived at by Spruit and Foukal. For variations of sigma on timescales of 10 to 200 years, then, the only important relaxation is the 50 day one. If the amplitude of this relaxation is small, the luminosity follows the sigma variation.

  16. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  17. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  18. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This

  19. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R. H.

    2011-04-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut für Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied.The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  20. Torsion discovery potential and its discrimination at CERN LHC

    SciTech Connect

    Almeida, F. M. L. Jr. de; Nepomuceno, A. A.; Vale, M. A. B. do

    2009-01-01

    Torsion models constitute a well-known class of extended quantum gravity models. In this paper we study some phenomenological consequences of a torsion field interacting with fermions at LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. These new states will form a resonance decaying into difermions, as occurs in many extensions of the standard model, such as models predicting the existence of additional neutral gauge bosons, usually named Z{sup '}. Using the dielectron channel we evaluate the integrated luminosity needed for a 5{sigma} discovery as a function of the torsion mass, for different coupling values. We also calculate the luminosity needed to discriminate, with 95% C.L., the two possible different torsion natures. Finally, we show that the observed signal coming from the torsion field could be distinguished from a signal coming from a new neutral gauge boson, provided there is enough luminosity.

  1. DAQ Architecture for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Liu, Guoming; Neufeld, Niko

    2014-06-01

    LHCb will have an upgrade of its detector in 2018. After the upgrade, the LHCb experiment will run at a high luminosity of 2 × 1033 cm-2s-1. The upgraded detector will be read out at 40 MHz with a highly flexible software-based triggering strategy. The Data Acquisition (DAQ) system of LHCb reads out the data fragments from the Front-End Electronics and transports them to the High-Lever Trigger farm at an aggregate throughput of ~ 32 Tbit/s. The DAQ system will be based on high speed network technologies such as InfiniBand and/or 10/40/100 Gigabit Ethernet. Independent of the network technology, there are different possible architectures for the DAQ system. In this paper, we present our studies on the DAQ architecture, where we analyze size, complexity and relative cost. We evaluate and compare several data-flow schemes for a network-based DAQ: push, pull and push with barrel-shifter traffic shaping. We also discuss the requirements and overall implications of the data-flow schemes on the DAQ system.

  2. Status report of the upgrade of the CMS muon system with Triple-GEM detectors

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abdelalim, A. A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-07-01

    For the High Luminosity LHC CMS is planning to install new large size Triple-GEM detectors, equipped with a new readout system in the forward region of its muon system (1.5 < | η | < 2.2). In this note we report on the status of the project, the main achievements regarding the detectors as well as the electronics and readout system.

  3. LHC Physics Potential versus Energy

    SciTech Connect

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  4. eXtremely Fast Tracker trigger upgrade at CDF

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Cox, C.; Cox, D.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Purdue U.

    2009-01-01

    The CDF II eXtremely Fast Tracker (XFT) is a trigger processor which reconstructs charged particle tracks in the transverse plane of the central tracking chamber. The XFT tracks are also extrapolated to the electromagnetic calorimeter and muon chambers to generate trigger electron and muon candidates. The XFT is crucial for the entire CDF II physics program: it detects high P{sub t} lepton from W/Z and heavy flavors decay and, in conjunction with the level 2 processor, it identifies secondary vertices from beauty decay. The XFT has thus been crucial for the recent measurement of the B{sub s}{sup 0} oscillation and {Sigma}{sub b}. The increase of the Tevatron instantaneous luminosity demanded an upgrade of the system to cope with the higher occupancy of the chamber. In the upgraded XFT, three-dimensional tracking reduces the level of fake tracks and measures the longitudinal track parameters, which strongly reinforce the trigger selection. This allows to maintain the trigger perfectly efficient at the record luminosities 2-3 x 10{sup 32} cm{sup -2} s{sup -1} and to maintain intact the CDF II high luminosity physics program, which includes the Higgs search. In this paper we review the architecture, the used technology, the performance and the impact of the upgraded XFT on the entire CDF II trigger strategy.

  5. Upgraded D(O) calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement

    NASA Astrophysics Data System (ADS)

    Lokos, S.

    1992-11-01

    The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects.

  6. Upgraded D[O] calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement

    SciTech Connect

    Lokos, S.

    1992-11-01

    The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects.

  7. Sprite Luminosity and Radio Noise

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Evans, A.; Mezentsev, A.; van der Velde, O.; Soula, S.

    2013-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into streamer tips (McHarg et al., 2010) with diameters 50-100 m at 60-80 km height (Kanmae et al., 2012). The sprite luminosity coincides in time and space with extremely low frequency electromagnetic radiation <3 kHz in excellent agreement with theory (Cummer and Fullekrug, 2001). This theory is based on current flowing in the body of sprites at 70-80 km height associated with large streamer densities (Pasko et al., 1998). A more detailed study shows specifically that the exponential growth and splitting of streamers at 70-80 km height results in an electron multiplication associated with the acceleration of electrons to a few eV. The accelerated electrons radiate a small amount of electromagnetic energy and the incoherent superposition of many streamers causes the observed electromagnetic radiation (Qin et al., 2012). It has been predicted that this newly recognized physical mechanism might also result in low frequency ( 30-300 kHz) electromagnetic radiation emanating from sprite streamers near 40 km height in the stratosphere, albeit with very small magnetic fields 10^{-17}-10^{-12} T from a single streamer (Qin et al., 2012). The presence of this predicted radiation was promptly confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). Specifically, it was found that the sprite luminosity coincides with sudden enhancements of the radio noise. These initial observations are extended here with a more detailed analysis to study the spatial coherence of the radio noise recorded with a novel network of sensitive radio receivers deployed during field work in the summer 2013. This network of radio receivers is used to study the relationship between the radio noise and the sprite luminosity observed with video cameras. The sprite luminosity is inferred from video recordings by use of sophisticated image

  8. Computing and data handling requirements for SSC (Superconducting Super Collider) and LHC (Large Hadron Collider) experiments

    SciTech Connect

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs.

  9. Unidentified IRAS sources: Ultrahigh luminosity galaxies

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Schneider, D. P.; Danielson, G. E.; Beichman, C. A.; Lonsdale, C. J.; Neugebauer, G.; Soifer, B. T.

    1985-01-01

    Optical imaging and spectroscopy measurements were obtained for six of the high galactic latitude infrared sources reported by Houck, et al. (1984) from the IRAS survey to have no obvious optical counterparts on the POSS prints. All are identified with visually faint galaxies that have total luminosities in the range 5 x 10 to the 11th power stellar luminosity to 5 x 10 to the 12th power stellar luminosity. This luminosity emerges virtually entirely in the infrared. The origin of the luminosity, which is one to two orders of magnitude greater than that of normal galaxies, is not known at this time.

  10. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  11. Upgrading of cracking gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.; Ragonese, F.P.; Yurchak, S.

    1990-08-21

    This patent describes an integrated catalytic cracking and gasoline upgrading process. It comprises: withdrawing a product stream from the riser reactor of a catalytic cracking process unit; charging the product stream to a primary fractionation zone; withdrawing an intermediate gasoline stream from the primary fractionation zone, the intermediate gasoline stream comprising olefinic gasoline having an ASTM D86 boiling range from about 90{degrees} to about 170{degrees} C.; contacting a first portion of the intermediate gasoline stream and a C{sub 2}{minus}C{sub 5} olefinic stream with a catalyst under conversion conditions to form an upgraded gasoline stream; and charging a second portion of the intermediate gasoline stream together with the upgraded gasoline stream to a gasoline product storage facility.

  12. Diffraction Physics with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Evdokimov, Sergey

    2015-06-01

    The ALICE experiment is equipped with a wide range of detectors providing excellent tracking and particle identification in the central region, as well as forward detectors with extended pseudorapidity coverage, which are well suited for studying diffractive processes. Cross section measurements of single and double diffractive processes performed by ALICE in pp collisions at √ {s} = 0.9, ; 2.76, ; 7 ; {textrm{TeV}} will be reported. Currently, ALICE is studying double-gap events in pp collisions at √ {s} = 7 ; {textrm{TeV}}, which give an insight into the central diffraction processes: current status and future perspectives will be discussed. The upgrade plans for diffraction studies, further extending the pseudorapidity acceptance of the ALICE setup for the forthcoming Run 2 of the LHC, will be outlined.

  13. Introduction to LHC physics

    NASA Astrophysics Data System (ADS)

    Polesello, Giacomo

    2006-11-01

    An elementary introduction to the basic features of experimentation at the LHC is given, with some emphasis on the detector requirements and on some basic experimental techniques. The experimental program is briefly introduced, and bibliographical indications are provided for a detailed study of the key physics topics.

  14. PACIFIC: the readout ASIC for the SciFi Tracker of the upgraded LHCb detector

    NASA Astrophysics Data System (ADS)

    Mazorra, J.; Chanal, H.; Comerma, A.; Gascón, D.; Gómez, S.; Han, X.; Pillet, N.; Vandaele, R.

    2016-02-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and will switch to a 40 MHz readout rate using a trigger-less software based system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with the higher detector occupancy and radiation damage. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed and a custom ASIC, called the low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC), will be used to digitise the signals from the SiPMs. This article presents an overview of the R&D for the PACIFIC. It is a 64-channel ASIC implemented in 130 nm CMOS technology, aiming at a radiation tolerant design with a power consumption below 10 mW per channel. It interfaces directly with the SiPM anode through a current mode input, and provides a configurable non-linear 2-bit per channel digital output. The SiPM signal is acquired by a current conveyor and processed with a fast shaper and a gated integrator. The digitization is performed using a three threshold non-linear flash ADC operating at 40 MHz. Simulation and test results show the PACIFIC chip prototypes functioning well.

  15. Upgrade of the D0 detector: The Tevatron beyond 2 fb**(-1)

    SciTech Connect

    Quinn, Breese; /Mississippi U.

    2005-01-01

    Recent performance of Fermilab's Tevatron has exceeded this year's design goals and further accelerator upgrades are underway. The high-luminosity period which follows these improvements is known as Run IIb. The D0 experiment is in the midst of a comprehensive upgrade program designed to enable it to thrive with much higher data rate and occupancy. Extensive modifications of and additions to all levels of the trigger and the silicon tracker are in progress. All upgrade projects are on schedule for installation in the 2005 shutdown.

  16. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  17. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  18. Upgrading Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  19. MSSM Electroweak Baryogenesis and LHC Data

    SciTech Connect

    Carena, Marcela; Nardini, Germano; Quiros, Mariano; Wagner, Carlos E.M.

    2013-02-01

    Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.

  20. D(O) upgrade muon electronics design

    NASA Astrophysics Data System (ADS)

    Baldin, B.; Green, D.; Haggerty, H.; Hansen, S.

    1994-11-01

    The planned luminosity for the upgrade is ten times higher than at present (L (approximately) 10(exp 32)cm(exp -2)/s) and involves a time between collisions as small as 132 ns. To operate in this environment, completely new electronics is required for the 17,500 proportional drift tubes of the system. These electronics include a deadtimeless readout, a digital TDC with about 1 ns binning for the wire signals, fast charge integrators and pipelined ADC's for digitizing the pad electrode signals, a new wire signal triggering scheme and its associated trigger logic, and high level DSP processing. Some test results of measurements performed on prototype channels and a comparison with the existing electronics are presented.

  1. Tracking system of the upgraded LHCb

    NASA Astrophysics Data System (ADS)

    Obłąkowska-Mucha, A.; Szumlak, T.

    2016-07-01

    The upgrade of the LHCb experiment will run at an instantaneous luminosity up to 2 ×1033cm-2s-1 with a fully software based trigger, allowing us to read out the detector at a rate of 40 MHz. For this purpose, the full tracking system will be newly developed: the vertex locator (VELO) will be replaced by a pixel-based detector providing an excellent track reconstruction with an efficiency of above 99%. Upstream of the magnet, a silicon micro-strip detector with a high granularity and an improved acceptance, called the Upstream Tracker (UT) will be placed. The tracking system downstream of the magnet will be replaced by the Scintillating Fibre tracker (SciFi), which will consist of 12 layers using 2.5 m long scintillating fibres read out by silicon photo-multipliers.

  2. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  3. Prospects for Higgs searches at the Tevatron and LHC in the MSSM with explicit CP violation.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (MH+,tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  4. Probing baryogenesis with displaced vertices at the LHC

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Shuve, Brian

    2015-02-01

    The generation of the asymmetric cosmic baryon abundance requires a departure from thermal equilibrium in the early universe. In a large class of baryogenesis models, the baryon asymmetry results from the out-of-equilibrium decay of a new, massive particle. We highlight that in the interesting scenario where this particle has a weak scale mass, this out-of-equilibrium condition requires a proper decay length larger than O(1) mm. Such new fields are within reach of the LHC, at which they can be pair produced leaving a distinctive, displaced-vertex signature. This scenario is realized in the recently proposed mechanism of baryogenesis where the baryon asymmetry is produced through the freeze-out and subsequent decay of a meta-stable weakly interacting massive particle ("WIMP baryogenesis"). In analogy to missing energy searches for WIMP dark matter, the LHC is an excellent probe of these new long-lived particles responsible for baryogenesis via the low-background displaced vertex channel. In our paper, we estimate the limits on simplified models inspired by WIMP baryogenesis from two of the most sensitive collider searches by CMS and ATLAS with 8 TeV LHC data. We also estimate the LHC reach at 13 TeV using current strategies, and demonstrate that up to a factor of 100 improvement in cross-section limits can be achieved by requiring two displaced vertices while lowering kinematic thresholds. For meta-stable WIMPs produced through electroweak interactions, the high luminosity LHC is sensitive to masses up to 2.5 TeV for lifetimes around 1 cm, while for singlets pair-produced through the off-shell-Higgs portal, the LHC is sensitive to production cross sections of O(10) ab for benchmark masses around 150 GeV. Our analysis and proposals also generally apply to displaced vertex signatures from other new physics such as hidden valley models, twin Higgs models and displaced supersymmetry.

  5. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  6. Synchro-betatron effects in the presence of large Piwinski angle and crab cavities at the HL-LHC

    SciTech Connect

    White S.; Calaga, R.; Miyamoto, R.

    2012-05-20

    The reduction of {beta}* at the collision points for the high luminosity LHC (HL-LHC) requires an increment in the crossing angle to maintain the normalized beam separation to suppress the effects of long-range beam-beam interactions. However, an increase in the crossing angle may give rise to synchro-betatron resonances which may negatively affect the beam emittance and lifetime. 6D weak-strong and strong-strong simulations were performed to study the effect of synchro-betatron resonances in the context of the HL-LHC layout and its suppression via crab crossing.

  7. An LHCb general-purpose acquisition board for beam and background monitoring at the LHC

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Guzik, Z.; Jacobsson, R.

    2011-01-01

    In this paper we will present an LHCb custom-made acquisition board which was developed for a continuous beam and background monitoring during LHC operations at CERN. The paper describes both the conceptual design and its performance, and concludes with results from the first period of beam operations at the LHC. The main purpose of the acquisition board is to process signals from a pair of beam pickups to continuously monitor the intensity of each bunch, and to monitor the phase of the arrival time of each proton bunch with respect to the LHC bunch clock. The extreme versatility of the board also allowed the LHCb experiment to build a high-speed and high-sensitivity readout system for a fast background monitor based on a pair of plastic scintillators. The board has demonstrated very good performance and proved to be conceptually valid during the first months of operations at the LHC. Connected to the beam pickups, it provides the LHCb experiment with a real-time measurement of the total intensity of each beam and of the arrival time of each beam at the LHCb Interaction Point. It also monitors the LHC filling scheme and the beam current per bunch at a continuous rate of 40 MHz, and assures a proper global timing of LHCb. The continuous readout of the scintillators at bunch clock speed provides the LHCb experiment with high-resolution information about the beam halo and fast losses during both injection and circulating beam. It has also provided valuable information to the LHC during machine commissioning with beam. Recent results also shows that it could contribute as a luminosity monitor independent from the LHCb experiment readout system. Beam, background and luminosity measurements are continuously fed back to the LHC in the data exchange framework between the experiments and the LHC machine aimed at improving efficiently the experimental conditions real-time.

  8. First Results of the LHC Longitudinal Density Monitor

    SciTech Connect

    Jeff, A.; Boccardi, A.; Bravin, E.; Fisher, A.S.; Lefevre, T.; Rabiller, A.; Roncarolo, F.; Welsch, C.P.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.

    2012-04-19

    The Large Hadron Collider (LHC) at CERN is the world's largest particle accelerator. It is designed to accelerate and collide protons or heavy ions up to the center-of-mass energies of 14 TeV. Knowledge of the longitudinal distribution of particles is important for various aspects of accelerator operation, in particular to check the injection quality and to measure the proportion of charge outside the nominally filled bunches during the physics periods. In order to study this so-called ghost charge at levels very much smaller than the main bunches, a longitudinal profile measurement with a very high dynamic range is needed. A new detector, the LHC Longitudinal Density Monitor (LDM) is a single-photon counting system measuring synchrotron light by means of an avalanche photodiode detector. The unprecedented energies reached in the LHC allow synchrotron light diagnostics to be used with both protons and heavy ions. A prototype was installed during the 2010 LHC run and was able to longitudinally profile the whole ring with a resolution close to the target of 50 ps. On-line correction for the effects of the detector deadtime, pile-up and afterpulsing allow a dynamic range of 105 to be achieved. First measurements with the LDM are presented here along with an analysis of its performance and an outlook for future upgrades.

  9. Depleted CMOS pixels for LHC proton-proton experiments

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2016-07-01

    While so far monolithic pixel detectors have remained in the realm of comparatively low rate and radiation applications outside LHC, new developments exploiting high resistivity substrates with three or four well CMOS process options allow reasonably large depletion depths and full CMOS circuitry in a monolithic structure. This opens up the possibility to target CMOS pixel detectors also for high radiation pp-experiments at the LHC upgrade, either in a hybrid-type fashion or even fully monolithic. Several pixel matrices have been prototyped with high ohmic substrates, high voltage options, and full CMOS electronics. They were characterized in the lab and in test beams. An overview of the necessary development steps and different approaches as well as prototype results are presented in this paper.

  10. BNL upgrade plans

    SciTech Connect

    Foelsche, H.W.J.

    1987-01-01

    Brookhaven National Laboratory is proposing two major upgrade projects for a future experimental program with protons and heavy ions. The first is the construction of a Relativistic Heavy Ion Collider (RHIC) which will use the AGS complex as an injector. The second initiative is an upgrade of the AGS proton intensity and duty cycle. Both objectives require a Booster for the AGS which has recently been approved as a construction project. With the completion of the booster, and with certain modifications of the AGS, the facility will ultimately become capable of supporting average proton currents on the order of 25 to 50 microamperes. The RHIC will provide center-of-mass collision energies of 2 x 100 to 125 GeV/amu for ions up to the heaviest masses, and 2 x 250 GeV for protons.

  11. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  12. Do Low Luminosity Stars Matter?

    NASA Astrophysics Data System (ADS)

    Ruiz, María Teresa

    2010-11-01

    Historically, low luminosity stars have attracted very little attention, in part because they are difficult to see except with large telescopes, however, by neglecting to study them we are leaving out the vast majority of stars in the Universe. Low mass stars evolve very slowly, it takes them trillions of years to burn their hydrogen, after which, they just turn into a He white dwarf, without ever going through the red giant phase. This lack of observable evolution partly explains the lack of interest in them. The search for the “missing mass” in the galactic plane turned things around and during the 60s and 70s the search for large M/L objects placed M-dwarfs and cool WDs among objects of astrophysical interest. New fields of astronomical research, like BDs and exoplanets appeared as spin-offs from efforts to find the “missing mass”. The search for halo white dwarfs, believed to be responsible for the observed microlensing events, is pursued by several groups. The progress in these last few years has been tremendous, here I present highlights some of the great successes in the field and point to some of the still unsolved issues.

  13. Single and Central Diffractive Higgs Production at the LHC

    SciTech Connect

    Ducati, M. B. Gay; Machado, M. M.; Silveira, G. G.

    2011-07-15

    The single and central diffractive production of the Standard Model Higgs boson is computed using the diffractive factorization formalism, taking into account a parametrization for the Pomeron structure function provided by the H1 Collaboration. We compute the cross sections at NLO accuracy for the gluon fusion process, since it is the leading mechanism for the Higgs boson production. The gap survival probability is also introduced to include the rescattering corrections due to spectator particles present in the interaction. The diffractive ratios are predicted for proton-proton collisions at the LHC, since the beam luminosity is favorable to the Higgs boson detection. These results provide updated estimations for the fraction of single and central diffractive events in the LHC kinematical regime.

  14. Reconstruction of stop quark mass at the LHC

    SciTech Connect

    Casadei, Diego; Konoplich, Rostislav; Djilkibaev, Rashid

    2010-10-01

    The cascade mass reconstruction approach was applied to simulated production of the lightest stop quark at the LHC in the cascade decay g-tilde{yields}t-tilde{sub 1}t{yields}{chi}-tilde{sub 2}{sup 0}tt{yields}l-tilde{sub R}ltt{yields}{chi}-tilde{sub 1}{sup 0}lltt with top quarks decaying into hadrons. The stop quark mass was reconstructed assuming that the masses of gluino, slepton, and the two lightest neutralinos were reconstructed in advance. A data sample set for the SU3 model point containing 400 k supersymmetry events was generated which corresponded to an integrated luminosity of about 20 fb{sup -1} at 14 TeV. These events were passed through the AcerDET detector simulator, which parametrized the response of a generic LHC detector. The mass of the t-tilde{sub 1} was reconstructed with a precision of about 10%.

  15. LHC future prospects of the 750 GeV resonance

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Tobioka, Kohsaku

    2016-09-01

    A quantitative discussion on the future prospects of the 750 GeV resonance at the LHC experiment is given using a simple effective field theory analysis. The relative size of two effective operators relevant to diphoton decays can be probed by ratios of diboson signals in a robust way. We obtain the future sensitivities of Zγ, ZZ and WW resonance searches at the high luminosity LHC, rescaling from the current sensitivities at √{ s} = 13 TeV. Then, we show that a large fraction of parameter space in the effective field theory will be covered with 300 fb-1 and almost the whole parameter space will be tested with 3000 fb-1. This discussion is independent of production processes, other decay modes and total decay width.

  16. Signals of Warped Extra Dimensions at the LHC

    SciTech Connect

    Osland, P.; Pankov, A. A.; Tsytrinov, A. V.; Paver, N.

    2010-12-22

    We discuss the signatures of the spin-2 graviton excitations predicted by the Randall-Sundrum model with one warped extra dimension, in dilepton and diphoton production at LHC. By using a specific angular analysis, we assess the ranges in mass and coupling constant where such gravitons can be discriminated against competitor spin-1 and spin-0 objects, that potentially could manifest themselves in these processes with the same mass and rate of events. Depending on the value of the coupling constant to quarks and leptons, the numerical results indicate graviton identification mass ranges up to 1.1-2.4 TeV and 1.6-3.2 TeV for LHC nominal energy of 14 TeV and time-integrated luminosity of 10 and 100fb{sup -1}, respectively.

  17. Upgrade of the Belle Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Belle SVD Collaboration

    2010-11-01

    The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.

  18. Upgrade of the CSC Endcap Muon Port Card at CMS

    NASA Astrophysics Data System (ADS)

    Matveev, M.; Padley, P.

    2010-11-01

    The Muon Port Card (MPC) provides optical transmission of Level 1 Trigger primitives from 60 Endcap peripheral crates to the Track Finder (TF) crate within the CMS Cathode Strip Chamber (CSC) sub-detector at the CMS experiment at CERN. The system has been in operation since 2008 and comprises 180 1.6 Gbps optical links. The proposed Super-LHC (SLHC) upgrade implies higher data volumes to be transmitted through the trigger chain and more sophisticated trigger algorithms. We expect to upgrade the MPC boards within the next few years to accommodate these requirements. The paper presents the first results of simulation and prototyping with the goal of improving the sorting algorithms and using parallel 12-channel optical links and a more powerful Virtex-5 FPGA.

  19. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Falchieri, D.; Gabrielli, A.; Travaglini, R.; Chen, S.-P.; Hsu, S.-C.; Hauck, S.; Kugel, A.

    2014-11-01

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer - the Insertable B-Layer or IBL - located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  20. Gluino coannihilation and observability of gluinos at LHC run II

    NASA Astrophysics Data System (ADS)

    Nath, Pran; Spisak, Andrew B.

    2016-05-01

    The observability of a gluino at LHC run II is analyzed for the case where the gluino lies in the gluino-neutralino coannihilation region and the mass gap between the gluino and the neutralino is small. The analysis is carried out under the Higgs boson mass constraint and the constraint of dark matter relic density consistent with WMAP and Planck experiments. It is shown that in this case a gluino with mass much smaller than the current lower limit of ˜1500 GeV as given by LHC run II at 3.2 fb-1 of integrated luminosity would have escaped detection. The analysis is done using the signal regions used by the ATLAS Collaboration where an optimization of signal regions was carried out to determine the best regions for gluino discovery in the gluino-neutralino coannihilation region. It is shown that under the Higgs boson mass constraint and the relic density constraint, a gluino mass of ˜700 GeV would require 14 fb-1 of integrated luminosity for discovery and a gluino of mass ˜1250 GeV would require 3400 fb-1 of integrated luminosity for discovery at LHC run II. An analysis of dark matter for this case is also given. It is found that for the range of gluino masses considered, the neutralino mass lies within less than 100 GeV of the gluino mass. Thus a measurement of the gluino mass in the gluino-neutralino coannihilation region will provide a determination of the neutralino mass. In this region the neutralino is dominantly a gaugino and the spin-independent proton-neutralino cross section is small but much larger than the neutrino floor lying in the range ˜(1 - 10 )×10-47 cm2 . Thus a significant part of the parameter space of the model will lie within the reach of the next generation LUX-ZEPLIN dark matter experiment.

  1. Spin physics and TMD studies at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

    NASA Astrophysics Data System (ADS)

    Lansberg, J. P.; Anselmino, M.; Arnaldi, R.; Brodsky, S. J.; Chambert, V.; den Dunnen, W.; Didelez, J. P.; Genolini, B.; Ferreiro, E. G.; Fleuret, F.; Gao, Y.; Hadjidakis, C.; Hrvinacova, I.; Lorcé, C.; Massacrier, L.; Mikkelsen, R.; Pisano, C.; Rakotozafindrabe, A.; Rosier, P.; Schienbein, I.; Schlegel, M.; Scomparin, E.; Trzeciak, B.; Uggerhøj, U. I.; Ulrich, R.; Yang, Z.

    2015-01-01

    We report on the opportunities for spin physics and Transverse-Momentum Dependent distribution (TMD) studies at a future multi-purpose fixed-target experiment using the proton or lead ion LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic fixed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER@LHC using typical targets would surpass that of RHIC by more that 3 orders of magnitude in a similar energy region. In unpolarised proton-proton collisions, AFTER@LHC allows for measurements of TMDs such as the Boer-Mulders quark distributions, the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using the polarisation of hydrogen and nuclear targets, one can measure transverse single-spin asymmetries of quark and gluon sensitive probes, such as, respectively, Drell-Yan pair and quarkonium production. The fixed-target mode has the advantage to allow for measurements in the target-rapidity region, namely at large x↑ in the polarised nucleon. Overall, this allows for an ambitious spin program which we outline here.

  2. Exploring the universal extra dimension at the LHC

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Gautam; Datta, Anindya; Majee, Swarup Kumar; Raychaudhuri, Amitava

    2009-11-01

    Besides supersymmetry, the other prime candidate of physics beyond the Standard Model (SM), crying out for verification at the CERN Large Hadron Collider (LHC), is extra-dimension. To hunt for effects of Kaluza-Klein (KK) excitations of known fermions and bosons is very much in the agenda of the LHC. These KK states arise when the SM particles penetrate in the extra space-like dimension(s). In this paper, we consider a 5d scenario, called 'Universal Extra Dimension', where the extra space coordinate, compactified on an orbifold S/Z, is accessed by all the particles. The KK number ( n) is conserved at all tree level vertices. This entails the production of KK states in pairs and renders the lightest KK particle stable, which leaves the detector carrying away missing energy. The splitting between different KK flavors is controlled by the zero mode masses and the bulk- and brane-induced one-loop radiative corrections. We concentrate on the production of an n=1 KK electroweak gauge boson in association with an n=1 KK quark. This leads to a signal consisting of only one jet, one or more leptons and missing p. For definiteness we usually choose the inverse radius of compactification to be R=500 GeV, which sets the scale of the lowest lying KK states. We show on a case-by-case basis (depending on the number of leptons in the final state) that with 10 fb -1 integrated luminosity at the LHC with √{s}=14 TeV this signal can be detected over the SM background by imposing appropriate kinematic cuts. We record some of the expectations for a possible intermediate LHC run at √{s}=10 TeV and also exhibit the integrated luminosity required to obtain a 5 σ signal as a function of R.

  3. Higgs Boson Search at LHC (and LHC/CMS status)

    SciTech Connect

    Korytov, Andrey

    2008-11-23

    Presented are the results of the most recent studies by the CMS and ATLAS collaborations on the expected sensitivity of their detectors to observing a Higgs boson at LHC. The overview is preceded with a brief summary of the LHC and the CMS Experiment status.

  4. Diamond pad detector telescope for beam conditions and luminosity monitoring in ATLAS

    NASA Astrophysics Data System (ADS)

    Mikuž, M.; Cindro, V.; Dolenc, I.; Frais-Kölbl, H.; Gorišek, A.; Griesmayer, E.; Kagan, H.; Kramberger, G.; Mandić, I.; Niegl, M.; Pernegger, H.; Trischuk, W.; Weilhammer, P.; Zavrtanik, M.

    2007-09-01

    Beam conditions and the potential detector damage resulting from their anomalies have pushed the LHC experiments to plan their own monitoring devices in addition to those provided by the machine. ATLAS decided to build a telescope composed of two stations with four diamond pad detector modules each, placed symmetrically around the interaction point at z=±183.8cm and r˜55mm (η˜4.2). Equipped with fast electronics it allows time-of-flight separation of events resulting from beam anomalies from normally occurring p p interactions. In addition it will provide a coarse measurement of the LHC luminosity in ATLAS. Ten detector modules have been assembled and subjected to tests, from characterization of bare diamonds to source and beam tests. Preliminary results of beam test in the CERN PS indicate a signal-to-noise ratio of 14±2.

  5. Simulations of Head-On Beam-Beam Compensation at RHIC and LHC

    SciTech Connect

    Valishev, A.; /Fermilab

    2010-05-19

    Electron lenses are proposed as a way to mitigate head-on beam-beam effects for RHIC and LHC upgrades. An extensive effort was put together within the US LARP in order to develop numerical simulations of beam-beam effects in the presence of electron lenses. In this report the results of numerical beam-beam simulations for RHIC and LHC are presented. The effect of electron lenses is demonstrated and sensitivity of beam-beam compensation to machine parameters is discussed.

  6. MicroTCA and AdvancedTCA equipment evaluation and developments for LHC experiments

    NASA Astrophysics Data System (ADS)

    Bobillier, V.; Haas, S.; Joos, M.; Mendez, J.; Mico, S.; Vasey, F.

    2016-02-01

    The MicroTCA (MTCA) and AdvancedTCA (ATCA) industry standards have been selected as the platform for many of the current and planned upgrades of the off-detector electronic systems of two of the LHC experiments at CERN. We present a status update from an ongoing project to evaluate commercial MTCA and ATCA components with particular emphasis on infrastructure equipment such as shelves and power-supplies. Shelves customized for use in the existing LHC rack infrastructure have been tested, and electrical and cooling measurements and simulations were performed. In-house developments for hardware platform management will also be shown.

  7. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  8. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  9. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  10. Probing dark matter at the LHC using vector boson fusion processes.

    PubMed

    Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-01

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000  fb(-1).

  11. Probing Dark Matter at the LHC Using Vector Boson Fusion Processes

    NASA Astrophysics Data System (ADS)

    Delannoy, Andres G.; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-01

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000fb-1.

  12. Resid upgrading process

    SciTech Connect

    Angevine, P.J.; Chu, P.; Degann, T.F.; Kirker, G.W

    1989-05-30

    This patent describes a process for upgrading a petroleum residua feedstock which comprises contacting the feedstock under hydrotreating conditions with hydrogen and a catalyst composition comprising a catalytic metal component and a support comprising an amorphous magnesia-alumina-aluminum phosphate prepared by: (a) forming an aqueous solution of aluminum, magnesium and phosphoric acid; (b) precipitating amorphous magnesia-alumina-aluminum phosphate by the addition of ammonia to the solution in the presence of a source of organic cation having a size equal to or larger than 2 Angstroms; (c) separating the precipitate; and (d) calcining the precipitate.

  13. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  14. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J.; Kalmani, S. D.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Ke, Z.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Kim, H.; Kim, K. H.; Kim, T. J.; Kirsch, N.; Klima, B.; Klute, M.; Kohli, J. M.; Konrath, J.-P.; Komissarov, E. V.; Kopal, M.; Korablev, V. M.; Kostritski, A.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Kouznetsov, O.; Krane, J.; Kravchuk, N.; Krempetz, K.; Krider, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kubinski, R.; Kuchinsky, N.; Kuleshov, S.; Kulik, Y.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Kuznetsov, V. E.; Kwarciany, R.; Lager, S.; Lahrichi, N.; Landsberg, G.; Larwill, M.; Laurens, P.; Lavigne, B.; Lazoflores, J.; Le Bihan, A.-C.; Le Meur, G.; Lebrun, P.; Lee, S. W.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leitner, R.; Leonidopoulos, C.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Li, X.; Lima, J. G. R.; Lincoln, D.; Lindenmeyer, C.; Linn, S. L.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Litmaath, M.; Lizarazo, J.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lu, J.; Lubatti, H. J.; Lucotte, A.; Lueking, L.; Luo, C.; Lynker, M.; Lyon, A. L.; Machado, E.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Maity, M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Manakov, V.; Mao, H. S.; Maravin, Y.; Markley, D.; Markus, M.; Marshall, T.; Martens, M.; Martin, M.; Martin-Chassard, G.; Mattingly, S. E. K.; Matulik, M.; Mayorov, A. A.; McCarthy, R.; McCroskey, R.; McKenna, M.; McMahon, T.; Meder, D.; Melanson, H. L.; Melnitchouk, A.; Mendes, A.; Mendoza, D.; Mendoza, L.; Meng, X.; Merekov, Y. P.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mikhailov, V.; Miller, D.; Mitrevski, J.; Mokhov, N.; Molina, J.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mostafa, M.; Moua, S.; Mulders, M.; Mundim, L.; Mutaf, Y. D.; Nagaraj, P.; Nagy, E.; Naimuddin, M.; Nang, F.; Narain, M.; Narasimhan, V. S.; Narayanan, A.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neuenschwander, R. T.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nozdrin, A.; Nunnemann, T.; Nurczyk, A.; Nurse, E.; O'Dell, V.; O'Neil, D. C.; Oguri, V.; Olis, D.; Oliveira, N.; Olivier, B.; Olsen, J.; Oshima, N.; Oshinowo, B. O.; Otero y Garzón, G. J.; Padley, P.; Papageorgiou, K.; Parashar, N.; Park, J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, O.; Pétroff, P.; Petteni, M.; Phaf, L.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Polosov, P.; Pope, B. G.; Popkov, E.; Porokhovoy, S.; Prado da Silva, W. L.; Pritchard, W.; Prokhorov, I.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Quadt, A.; Quinn, B.; Ramberg, E.; Ramirez-Gomez, R.; Rani, K. J.; Ranjan, K.; Rao, M. V. S.; Rapidis, P. A.; Rapisarda, S.; Raskowski, J.; Ratoff, P. N.; Ray, R. E.; Reay, N. W.; Rechenmacher, R.; Reddy, L. V.; Regan, T.; Renardy, J.-F.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Roco, M.; Rotolo, C.; Royon, C.; Rubinov, P.; Ruchti, R.; Rucinski, R.; Rud, V. I.; Russakovich, N.; Russo, P.; Sabirov, B.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Satyanarayana, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schukin, A. A.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shankar, H. C.; Shary, V.; Shchukin, A. A.; Sheahan, P.; Shephard, W. D.; Shivpuri, R. K.; Shishkin, A. A.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skow, D.; Skubic, P.; Slattery, P.; Smith, D. E.; Smith, R. P.; Smolek, K.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Song, Y.; Sonnenschein, L.; Sopczak, A.; Sorín, V.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spartana, N.; Spurlock, B.; Stanton, N. R.; Stark, J.; Steele, J.; Stefanik, A.; Steinberg, J.; Steinbrück, G.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tentindo-Repond, S.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Terentyev, N.; Teterin, V.; Thomas, E.; Thompson, J.; Thooris, B.; Titov, M.; Toback, D.; Tokmenin, V. V.; Tolian, C.; Tomoto, M.; Tompkins, D.; Toole, T.; Torborg, J.; Touze, F.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Trippe, T. G.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Utes, M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Gemmeren, P.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Vaz, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vigneault, M.; Villeneuve-Seguier, F.; Vishwanath, P. R.; Vlimant, J.-R.; Von Toerne, E.; Vorobyov, A.; Vreeswijk, M.; Vu Anh, T.; Vysotsky, V.; Wahl, H. D.; Walker, R.; Wallace, N.; Wang, L.; Wang, Z.-M.; Warchol, J.; Warsinsky, M.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wegner, M.; Wermes, N.; Wetstein, M.; White, A.; White, V.; Whiteson, D.; Wicke, D.; Wijnen, T.; Wijngaarden, D. A.; Wilcer, N.; Willutzki, H.; Wilson, G. W.; Wimpenny, S. J.; Wittlin, J.; Wlodek, T.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Wu, Z.; Xie, Y.; Xu, Q.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yarema, R.; Yasuda, T.; Yatsunenko, Y. A.; Yen, Y.; Yip, K.; Yoo, H. D.; Yoffe, F.; Youn, S. W.; Yu, J.; Yurkewicz, A.; Zabi, A.; Zanabria, M.; Zatserklyaniy, A.; Zdrazil, M.; Zeitnitz, C.; Zhang, B.; Zhang, D.; Zhang, X.; Zhao, T.; Zhao, Z.; Zheng, H.; Zhou, B.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zitoun, R.; Zmuda, T.; Zutshi, V.; Zviagintsev, S.; Zverev, E. G.; Zylberstejn, A.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  15. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  16. CDF calorimeter and its upgrade

    SciTech Connect

    Seiya, Y.

    1995-01-01

    The CDF calorimeter systems are briefly reviewed with an emphasis on the calibration and the performance of the central electromagnetic calorimeter. Several physics analyses where the calorimetry plays an important role are discussed. The present gas calorimeter will be upgraded in accord with the collider upgrade. The new system is a scintillator-based calorimeter with optical fiber readout. A status of the CDF calorimeter upgrade project is also described.

  17. LER-LHC injector workshop summary and super-ferric fast cycling injector in the SPS tunnel

    SciTech Connect

    Ambrosio, Giorgio; Hays, Steven; Huang, Yuenian; Johnstone, John; Kashikhin, Vadim; MacLachlan, James; Mokhov, Nikolai; Piekarz, Henryk; Sen, Tanaji; Shiltsev, Vladimir; de Rijk, Gijsbert; /CERN

    2007-03-01

    A Workshop on Low Energy Ring (LER) in the LHC tunnel as main injector was convened at CERN on October 11-12, 2006. We present the outline of the LER based on the presentations, and respond to the raised questions and discussions including the post-workshop studies. We also outline the possibility of using the LER accelerator technologies for the fast cycling injector accelerator in the SPS tunnel (SF-SPS). A primary goal for the LER (Low Energy Ring) injector accelerator is to inject 1.5 TeV proton beams into the LHC, instead of the current injection scheme with 0.45 TeV beams from the SPS. At this new energy, the field harmonics [1] of the LHC magnets are sufficiently satisfactory to prevent the luminosity losses expected to appear when applying the transfer of the 0.45 TeV SPS beams. In addition, a feasibility study of batch slip stacking in the LER has been undertaken with a goal of increasing in this way the LHC luminosity by up to a factor of 4. A combined luminosity increase may, therefore, be in the range of an order of magnitude. In the long term, the LER injector accelerator would greatly facilitate the implementation of a machine, which doubles the LHC energy (DLHC).

  18. Luminosity determination at HERA-B

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; De Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. AA.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, S.; Somov, A.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Xella-Hansen, S.; Zaitsev, Yu.; Zavertyaev, M.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.

    2007-11-01

    A detailed description of an original method used to measure the luminosity accumulated by the HERA-B experiment for a data sample taken during the 2002-2003 HERA running period is reported. We show that, with this method, a total luminosity measurement can be achieved with a typical precision, including overall systematic uncertainties, at a level of 5% or better. We also report evidence for the detection of δ-rays generated in the target and comment on the possible use of such delta rays to measure luminosity.

  19. A digital readout system for the CMS Phase I Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    Stringer, R.

    2015-04-01

    The Phase I Upgrade to the CMS Pixel Detector at the LHC features a new 400 Mb/s digital readout system. This new system utilizes upgraded custom ASICs, PSI46digv2.1 Read Out Chips and Token Bit Manager for data packaging, new optical links and changes to the Front End Drivers. We are reporting on the new architecture of the full readout chain, the new schema for data encoding/transmission, and the results of preliminary testing of the new optical components.

  20. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  1. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  2. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2016-07-12

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  3. LHC - a "Why" Facility

    SciTech Connect

    Gordon Kane

    2009-01-14

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  4. The Fermilab Linac Upgrade

    SciTech Connect

    Noble, R.J.

    1991-02-01

    The Fermilab Linac Upgrade is planned to increase the energy of the H- linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which can limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHz drift-tube tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MHz side-coupled cavity modules operating at an average axial field of abut 7.5 MV/m. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a klystron-based rf power supply. A prototype rf modulator has been built and tested at Fermilab, and a prototype 12 MW klystron is being fabricated by Litton Electron Devices. Fabrication of production accelerator modules is in progress. 8 figs., 4 tabs.

  5. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  6. Fitting the luminosity decay in the Tevatron

    SciTech Connect

    McCrory, E.; Shiltsev, V.; Slaughter, A.J.; Xiao, A.; /Fermilab

    2005-05-01

    This paper explores how to fit the decay of the luminosity in the Tevatron. The standard assumptions of a fixed-lifetime exponential decay are only appropriate for very short time intervals. A ''1/time'' functional form fits well, and is supported by analytical derivations. A more complex form, assuming a time-varying lifetime-like term, also produces good results. Changes in the luminosity can be factored into two phenomena: The luminosity burn-off rate, and the burn-off rate from non-luminosity effects. This is particularly relevant for the antiprotons in the Tevatron. The luminous and the non-luminous burn rate of the antiprotons are shown for Tevatron stores.

  7. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  8. The pixel detector for the CMS phase-II upgrade

    NASA Astrophysics Data System (ADS)

    Dinardo, M. E.

    2015-04-01

    The high luminosity phase of the Large Hadron Collider (HL-LHC) requires a major pixel detector R&D effort to develop both readout chip and sensor that are capable to withstand unprecedented extremely high radiation. The target integrated luminosity of 3000 fb-1, that the HL-LHC is expected to deliver over about 10 years of operation, translates into a hadron fluence of 2×1016 1 MeV eq.n. / cm2, or equivalently 10 MGy of radiation dose in silicon, at about 3 cm from the interaction region where the first layer of the pixel detector could be located. The CMS collaboration has undertaken two baseline sensor R&D programs on thin n-on-p planar and 3D silicon sensor technologies. Together with the ATLAS collaboration it has also been established a common R&D effort for the development of the readout chip in the 65 nm CMOS technology. Status, progresses, and prospects of the CMS R&D effort are presented and discussed in this article.

  9. The D0 level 3 DAQ system: operation and upgrades

    SciTech Connect

    Garcia-Bellido, Aran; Bose, Tulika; Brooijmans, Gustaaf; Chapin, Doug; Cutts, David; Fuess, Stuart; Gadfort, Thomas; Haas, Andrew; Lee, William; Rechenmacher, Ron; Snyder, Scott; /Washington U., Seattle /Brown U. /Columbia U. /Fermilab /Brookhaven

    2007-05-01

    The D{O} Level 3 data acquisition system for Run II of the Tevatron has been reliably operating since May 2002. Designed to handle average event sizes of 250 kilobytes at a rate of 1 kHz, the system has been upgraded to be able to process more events, doubling its typical output rate from 50 Hz to 100 Hz, while coping with higher event sizes at the beginning of high luminosity collider stores. The system routes and transfers event fragments from 63 VME crates to any of approximately 320 processing nodes. The addition of more farm nodes, the performance of the components, and the running experience are described here.

  10. Luminosity Optimization Feedback in the SLC

    SciTech Connect

    1999-03-01

    The luminosity optimization at the SLC has been limited by the precision with which one can measure the micron size beams at the Interaction Point. Ten independent tuning parameters must be adjusted. An automated application has been used to scan each parameter over a significant range and set the minimum beam size as measured with a beam-beam deflection scan. Measurement errors limited the accuracy of this procedure and degraded the resulting luminosity. A new luminosity optimization feedback system has been developed using novel dithering techniques to maximize the luminosity with respect to the 10 parameters, which are adjusted one at a time. Control devices are perturbed around nominal setpoints, while the averaged readout of a digitized luminosity monitor measurement is accumulated for each setting. Results are averaged over many pulses to achieve high precision and then fitted to determine the optimal setting. The dithering itself causes a small loss in luminosity, but the improved optimization is expected to significantly enhance the performance of the SLC. Commissioning results are reported.

  11. Skill Upgrading, Incorporated. Final Report.

    ERIC Educational Resources Information Center

    Skill Upgrading, Inc., Baltimore, MD.

    As in two other projects in Cleveland and Newark, New Jersey, this project was set up in Baltimore to provide technical assistance in designing ways to meet in-plant skills needs by upgrading job skills on entry workers through High Intensity Training (HIT). Skill Upgrading, Inc. was established in Maryland to provide training and manpower…

  12. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  13. New physics from the top at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; Lee, Keith S. M.

    2012-11-01

    The top quark may hold the key to new physics associated with the electroweak symmetry-breaking sector, given its large mass and enhanced coupling to the Higgs sector. We systematically categorize generic interactions of a new particle that couples to the top quark and a neutral particle, which is assumed to be heavy and stable, thus serving as a candidate for cold dark matter. The experimental signatures for new physics involving top quarks and its partners at the Large Hadron Collider (LHC) may be distinctive, yet challenging to disentangle. We optimize the search strategy at the LHC for the decay of the new particle to a top quark plus missing energy and propose the study of its properties, such as its spin and couplings. We find that, at 14 TeV with an integrated luminosity of 100 fb-1, a spin-zero top partner can be observed at the 5 σ level for a mass of 675 GeV. A spin-zero particle can be differentiated from spin-1/2 and spin-1 particles at the 5 σ level with a luminosity of 10 fb-1.

  14. Spectrum-doubled heavy vector bosons at the LHC

    DOE PAGES

    Appelquist, Thomas; Bai, Yang; Ingoldby, James; Piai, Maurizio

    2016-01-19

    We study a simple effective field theory incorporating six heavy vector bosons together with the standard-model field content. The new particles preserve custodial symmetry as well as an approximate left-right parity symmetry. The enhanced symmetry of the model allows it to satisfy precision electroweak constraints and bounds from Higgs physics in a regime where all the couplings are perturbative and where the amount of fine-tuning is comparable to that in the standard model itself. We find that the model could explain the recently observed excesses in di-boson processes at invariant mass close to 2TeV from LHC Run 1 for amore » range of allowed parameter space. The masses of all the particles differ by no more than roughly 10%. In a portion of the allowed parameter space only one of the new particles has a production cross section large enough to be detectable with the energy and luminosity of Run 1, both via its decay to WZ and to Wh, while the others have suppressed production rates. Furthermore, the model can be tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale of the new particles higher than 3TeV.« less

  15. Non-simplified SUSY: widetilde{τ }-coannihilation at LHC and ILC

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Cakir, A.; Krücker, D.; List, J.; Melzer-Pellmann, I.-A.; Samani, B. Safarzadeh; Seitz, C.; Wayand, S.

    2016-04-01

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small widetilde{τ }_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.

  16. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  17. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  18. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; et al

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  19. The FNAL injector upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A.; /Fermilab

    2011-03-01

    The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  20. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  1. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  2. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  3. hhjj production at the LHC

    SciTech Connect

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; Nordstrom, Karl; Spannowsky, Michael

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigation of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.

  4. Design of High Luminosity Ring-Ring Electron- Light Ion Collider at CEBAF

    SciTech Connect

    Slawomir Bogacz; Antje Bruell; Jean Delayen; Yaroslav Derbenev; Rolf Ent; Joseph Grames; Andrew Hutton; Geoffrey Krafft; Rui Li; Nikolitsa Merminga; Benard Poelker; Bogdan Wojtsekhowski; Byung Yunn; Yuhong Zhang; C Montag

    2007-06-25

    Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

  5. Side benefits of the LHC

    NASA Astrophysics Data System (ADS)

    Miller, David J.

    2009-12-01

    Paul Michael Grant's article on a proposed hydrogen-cooled electric "Supergrid" ("Extreme energy makeover" October pp37-39) provides an answer to an oft-posed question about CERN's Large Hadron Collider (LHC). As a particle physicist, I am frequently asked by well-informed non-physicists why it is worth pouring more money into repairing the LHC if it costs so much and CERN cannot yet make it work. My first answer is that the fundamental physics that the LHC will do is worthwhile in its own right. But I also add that the LHC and Fermilab's Tevatron are great demonstrators for the superconducting transmission of large electric currents over tens of kilometres.

  6. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  7. Measuring smuon-selectron mass splitting at the CERN LHC and patterns of supersymmetry breaking

    SciTech Connect

    Allanach, B. C.; Conlon, J. P.; Lester, C. G.

    2008-04-01

    With sufficient data, CERN LHC experiments can constrain the smuon-selectron mass splitting through differences in the dielectron and dimuon edges from supersymmetry (SUSY) cascade decays. We study the sensitivity of the LHC to this mass splitting, which within minimal supergravity may be constrained down to O(10{sup -4}) for 30 fb{sup -1} of integrated luminosity. Over substantial regions of SUSY breaking parameter space the fractional edge splitting can be significantly enhanced over the fractional mass splitting. Within models where the selectron and smuon are constrained to be universal at a high scale, edge splittings up to a few percent may be induced by renormalization group effects and may be significantly discriminated from zero. The edge splitting provides important information about high-scale SUSY breaking terms and should be included in any fit of LHC data to high-scale models.

  8. A luminosity model of RHIC gold runs

    SciTech Connect

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  9. Probing the NMSSM via Higgs boson signatures from stop cascade decays at the LHC

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amit; Ghosh, Dilip Kumar; Mondal, Subhadeep; Poddar, Sujoy; Sengupta, Dipan

    2015-06-01

    Higgs signatures from the cascade decays of light top squarks are an interesting possibility in the next-to-minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light top-squark mass at the 13 TeV run of the LHC by means of five NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct-detection constraints. We consider single and dilepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe top-squark masses up to 1.2 TeV with 300 fb-1 luminosity via the dilepton channel, while with the jet-substructure method, top-squark masses up to 1 TeV can be probed with 300 fb-1 luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high-luminosity run of the 13 TeV LHC.

  10. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; Bottura, L.; Chlachidze, G.; Ramos, D.; Bermudez, S. Izquierdo; Karppinen, M.; Lackner, F.; Loffler, C. H.; et al

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  11. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  12. The Empirical Mass-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Fang, X.

    2014-08-01

    The recent works devoted to improving empirical Mass-Luminosity Relation (MLR) for main sequence stars are reviewed in this paper. In the mass-luminosity plane, the observational data are subjected to non-negligible errors in both coordinates with different dimensions. In order to obtain more reliable results, a more reasonable weight-assigning scheme is needed. Such a scheme is developed, with which each data point can have its own due contribution. For low mass stars (smaller than ˜1M⊙), three-piecewise continuous improved MLRs in K, J and H bands are obtained respectively. For visual band, improved MLR for stars with mass spanning from 0.12M⊙ to 22.89 M⊙, and improved MMLR (mass-metallicity-luminosity relation) for low mass stars which is based on our K band MLR and available observational metallicity data are provided. Further improvements of MLR would have to come from future observations.

  13. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-01

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch. PMID:17749020

  14. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  15. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-01

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch.

  16. Measurement of the Inclusive $Z \\to ee$ Production Cross Section in Proton-Proton Collisions at $\\sqrt{s}$ = 7TeV and $Z \\to ee$ Decays as Standard Candles for Luminosity at the Large Hadron Collider

    SciTech Connect

    Werner, Jeremy

    2011-01-01

    This thesis comprises a precision measurement of the inclusive \\Zee production cross section in proton-proton collisions provided by the Large Hadron Collider (LHC) at a center-of-mass energy of $\\sqrt{s}=7$~TeV and the absolute luminosity based on \\Zee decays. The data was collected by the Compact Muon Solenoid (CMS) detector near Geneva, Switzerland during the year of 2010 and corresponds to an integrated luminosity of $\\int\\mathcal{L}dt = 35.9\\pm 1.4$~pb$^{-1}$. Electronic decays of $Z$ bosons allow one of the first electroweak measurements at the LHC, making the cross section measurement a benchmark of physics performance after the first year of CMS detector and LHC machine operations. It is the first systematic uncertainty limited \\Zee cross section measurement performed at $\\sqrt{s}=7$~TeV. The measured cross section pertaining to the invariant mass window $M_{ee}\\in (60,120)$~GeV is reported as: $\\sigma(pp\\to Z+X) \\times \\mathcal{B}( Z\\to ee ) = 997 \\pm 11 \\mathrm{(sta t)} \\pm 19 \\mathrm{(syst)} \\pm 40 \\mathrm{(lumi)} \\textrm{ pb}$, which agrees with the theoretical prediction calculated to NNLO in QCD. Leveraging \\Zee decays as ``standard candles'' for measuring the absolute luminosity at the LHC is examined; they are produced copiously, are well understood, and have clean detector signatures. Thus the consistency of the inclusive \\Zee production cross section measurement with the theoretical prediction motivates inverting the measurement to instead use the \\Zee signal yield to measure the luminosity. The result, which agrees with the primary relative CMS luminosity measurement calibrated using Van der Meer separation scans, is not only the most precise absolute luminosity measurement performed to date at a hadron collider, but also the first one based on a physics signal at the LHC.

  17. Upgrading Diagnostic Diagrams

    NASA Astrophysics Data System (ADS)

    Proxauf, B.; Kimeswenger, S.; Öttl, S.

    2014-04-01

    Diagnostic diagrams of forbidden lines have been a useful tool for observers in astrophysics for many decades now. They are used to obtain information on the basic physical properties of thin gaseous nebulae. Moreover they are also the initial tool to derive thermodynamic properties of the plasma from observations to get ionization correction factors and thus to obtain proper abundances of the nebulae. Some diagnostic diagrams are in wavelengths domains which were difficult to take either due to missing wavelength coverage or low resolution of older spectrographs. Thus they were hardly used in the past. An upgrade of this useful tool is necessary because most of the diagrams were calculated using only the species involved as a single atom gas, although several are affected by well-known fluorescence mechanisms as well. Additionally the atomic data have improved up to the present time. The new diagnostic diagrams are calculated by using large grids of parameter space in the photoionization code CLOUDY. For a given basic parameter the input radiation field is varied to find the solutions with cooling-heating-equilibrium. Empirical numerical functions are fitted to provide formulas usable in e.g. data reduction pipelines. The resulting diagrams differ significantly from those used up to now and will improve the thermodynamic calculations.

  18. Altair performance and upgrades

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  19. Endothermic hydrocarbon upgrading process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-08-21

    This patent describes a process for upgrading aliphatic hydrocarbons to aromatic hydrocarbons. It comprises: burning a hydrogen-deficient fuel under oxygen-deficient conditions to evolve a hot gas containing essentially no oxygen; providing an aromatization reaction zone containing a zeolite catalyst; directly transferring a quantity of thermal energy from the hot flue gas to the aromatization reaction zone by flowing hot flue gas through the aromatization reaction zone; contacting an aliphatic hydrocarbon feedstream with the zeolite catalyst under primary conversion conditions in the aromatization reaction zone to evolve an aromatization reaction zone effluent stream containing aromatics; withdrawing the aromatization reaction zone effluent stream from the aromatization zone; separating the aromatization reaction zone effluent stream into a product stream, a secondary conversion feedstream comprising CO, CO{sub 2}, and H{sub i} and a stream containing C{sub 3}-C{sub 5} aliphatics; and charging the secondary conversion feedstream to a methanol synthesis reaction zone to convert at least a portion of the secondary conversion feedstream to methanol.

  20. Endothermic hydrocarbon upgrading process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1991-07-09

    This patent describes a process for upgrading aliphatic hydrocarbons to aromatic hydrocarbons. It comprises burning a hydrogen-deficient fuel under oxygen-deficient conditions to evolve a hot flue gas containing essentially no oxygen; providing an aromatization reaction zone containing a zeolite catalyst; directly transferring a quantity of thermal energy from the hot flue gas to the aromatization reaction zone by flowing hot flue gas through the aromatization reaction zone, the quantity of thermal energy being sufficient to supply the endothermic heat of reaction to aromatize at least a portion of the aliphatic feedstream; contacting an aliphatic hydrocarbon feedstream with the zeolite catalyst under primary conversion conditions in the aromatization reaction zone to evolve an aromatization reaction zone effluent stream containing aromatics; withdrawing the aromatization reaction zone effluent stream from the aromatization reaction zone; separating the aromatization reaction zone effluent stream into a product stream, a secondary conversion feedstream comprising CO, CO{sub 2}, and H{sub 2} and a stream containing C{sub 3}-C{sub 5} aliphatics; and charging the secondary conversion feedstream.

  1. NCSU PULSTAR Reactor instrumentation upgrade

    SciTech Connect

    Perez, P.B.; Bilyj, S.J.

    1993-08-12

    The Nuclear Reactor Program at North Carolina State University initiated an upgrade program at the NCSU PULSTAR Reactor in 1990. Twenty-year-old instrumentation is currently undergoing replacement with solid-state and current technology equipment. The financial assistance from the United States Department of Energy has been the primary source of support. This interim report provides the status of the first two phases of the upgrade program.

  2. RISK REDUCTION FOR MATERIAL ACCOUNTABILITY UPGRADES.

    SciTech Connect

    FISHBONE, L.G.; SISKIND, B.

    2005-05-16

    We present in this paper a method for evaluating explicitly the contribution of nuclear material accountability upgrades to risk reduction at nuclear facilities. The method yields the same types of values for conditional risk reduction that physical protection and material control upgrades yield. Thereby, potential material accountability upgrades can be evaluated for implementation in the same way that protection and control upgrades are evaluated.

  3. On the mass-luminosity relation.

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Kondo, Y.

    1972-01-01

    The results of a least-squares study of the mass-luminosity relation for eclipsing and visual binary stars consisting of main sequence components are presented. Two methods are discussed. First, the values of the coefficients A and B in the relation log M = A + BM sub BOL are determined. Then a technique which permits the determination of alpha and beta in the relation M = alpha L beta, when only the sum of the masses, and not the individual masses of each component, is known. The results and a comparison of the two methods are discussed. It is found that the following mass-luminosity relation represents the observational data satisfactorily: log M = 0.504 - 0.103 M sub BOL, -8 less than or equal to M sub BOL less than or equal to +10.5. A discussion of the data and of the possibility that separate mass-luminosity relations may exist for visual and eclipsing binaries is given. The possibility that more than one mass-luminosity relation is required in the range -8 less than or equal to M sub BOL less than or equal to +13 is also discussed.

  4. Recent improvements in luminosity at PEP

    SciTech Connect

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program.

  5. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  6. Tevatron Experimental Issues at High Luminosities

    SciTech Connect

    Kreps, Michal; CDF, for the; collaborations, D0

    2009-12-01

    In this paper we describe the detector components, triggers and analysis techniques for flavor physics at the Tevatron experiments CDF and D0. As Tevatron performs very well and runs at higher luminosities regularly we also touch issues related to it and efforts to improve detectors and triggers for such running.

  7. Summary of symposium: Low luminosity sources

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.

    1987-01-01

    The author summarized certain aspects of the conference. He shares this task with another colleague thereby breaking the task into more manageable proportions. The author covers the low luminosity sources. He begins his review with a summary of some major themes of the conference and ends with a few speculations on possible theoretical mechanisms.

  8. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  9. Energy deposition studies for the high-luminosity Large Hadron Collider inner triplet magnets

    NASA Astrophysics Data System (ADS)

    Mokhov, N. V.; Rakhno, I. L.; Tropin, I. S.; Cerutti, F.; Esposito, L. S.; Lechner, A.

    2015-05-01

    A detailed model of the high-luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the fluka and mars15 codes. Detailed simulations have been performed coherently with the codes on the impact of particle debris from the 14-TeV center-of-mass pp-collisions on the short- and long-term stability of the inner triplet magnets. After optimizing the absorber configuration, the peak power density averaged over the magnet inner cable width is found to be safely below the quench limit at the luminosity of 5 ×1034 cm-2 s-1 . For the anticipated lifetime integrated luminosity of 3000 fb-1 , the peak dose calculated for the innermost magnet insulator ranges from 20 to 35 MGy, a figure close to the commonly accepted limit. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. fluka and mars results on energy deposition are in very good agreement.

  10. User and Performance Impacts from Franklin Upgrades

    SciTech Connect

    He, Yun

    2009-05-10

    The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

  11. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity variations. The 0.1-percent variation of the solar constant measured during the last sunspot cycle provided the basis for determining the amplitude of each luminosity cycle. Model output is a summation of the amplitudes of each cycle of a geometric progression of harmonic sine waves that are referenced to the 11-year average solar cycle. When the last eight cycles in Emiliani's oxygen-18 variations from deep-sea cores were standardized to the average length of glaciations during the Pleistocene (88,000 years), correlation coefficients with the model output ranged from 0.48 to 0.76. In order to calibrate the model to real time, model output was graphically compared to indirect records of glacial advances and retreats during the last 24,000 years and with sea-level rises during the Holocene. Carbon-14 production during the last millenium and elevations of the Great Salt Lake for the last 140 years demonstrate significant correlations with modeled luminosity. Major solar flares during the last 90 years match well with the time-calibrated model.

  12. Performance measurement of the upgraded D0 central track trigger

    SciTech Connect

    Mommsen, Remigius, K.; /Manchester U. /Fermilab

    2006-12-01

    The D0 experiment was upgraded in spring 2006 to harvest the full physics potential of the Tevatron accelerator at Fermi National Accelerator Laboratory, Batavia, Illinois, USA. It is expected that the peak luminosity delivered by the accelerator will increase to over 300 x 10{sup 30} cm{sup -2} s{sup -1}. One of the upgraded systems is the Central Track Trigger (CTT). The CTT uses the Central Fiber Tracker (CFT) and Preshower detectors to identify central tracks with p{sub T} > 1.5GeV at the first trigger level. Track candidates are formed by comparing fiber hits to predefined track equations. In order to minimize latency, this operation is performed in parallel using combinatorial logic implemented in FPGAs. Limited hardware resources prevented the use of the full granularity of the CFT. This leads to a high fake track rate as the occupancy increases. In order to mitigate the problem, new track-finding hardware was designed and commissioned. We report on the upgrade and the improved performance of the CTT system.

  13. From hybrid to CMOS pixels ... a possibility for LHC's pixel future?

    NASA Astrophysics Data System (ADS)

    Wermes, N.

    2015-12-01

    Hybrid pixel detectors have been invented for the LHC to make tracking and vertexing possible at all in LHC's radiation intense environment. The LHC pixel detectors have meanwhile very successfully fulfilled their promises and R&D for the planned HL-LHC upgrade is in full swing, targeting even higher ionising doses and non-ionising fluences. In terms of rate and radiation tolerance hybrid pixels are unrivaled. But they have disadvantages as well, most notably material thickness, production complexity, and cost. Meanwhile also active pixel sensors (DEPFET, MAPS) have become real pixel detectors but they would by far not stand the rates and radiation faced from HL-LHC. New MAPS developments, so-called DMAPS (depleted MAPS) which are full CMOS-pixel structures with charge collection in a depleted region have come in the R&D focus for pixels at high rate/radiation levels. This goal can perhaps be realised exploiting HV technologies, high ohmic substrates and/or SOI based technologies. The paper covers the main ideas and some encouraging results from prototyping R&D, not hiding the difficulties.

  14. Probe of extra dimensions in lepton pair production at the LHC: An update

    SciTech Connect

    Pankov, A. A.; Serenkova, I. A.; Tsytrinov, A. V.

    2009-01-01

    Arkani-Hamed, Dimopoulous, and Dvali have proposed a model (ADD) of low-scale quantum gravity featuring large extra dimensions. In this model, the exchange of Kaluza-Klein towers of gravitons can enhance the production rate of lepton pairs at high invariant mass in proton-proton collisions at the LHC. By considering the present and future LHC energy regimes, we reanalyse the potential of the LHC to discover the effects of large extra dimensions and to discriminate between various theoretical models. Specifically, in latter case we explore the capability of the LHC to distinguish spin-2 Kaluza-Klein towers of gravitons exchange from other new physics effects which might be conveniently parametrized by the four-fermion contact interactions. We find that the LHC with planned energy 14 TeV and luminosity 100 fb⁻¹ will be capable of discovering (and identifying) graviton exchange effects in the large extra dimensions with the cutoff parameter of order M{sub S} = 6.2 TeV (4.8 TeV) for d = 6 and M{sub S} = 8.8 TeV (6.8 TeV) for d = 3.

  15. Impact of LSP character on Slepton reach at the LHC

    NASA Astrophysics Data System (ADS)

    Eckel, Jonathan; Ramsey-Musolf, Michael J.; Shepherd, William; Su, Shufang

    2014-11-01

    Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of and depend strongly on the sign and value of M 1 /M 2, which has strong implications for the reach of dilepton plus [InlineMediaObject not available: see fulltext.] searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus [InlineMediaObject not available: see fulltext.] searches at the 8TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for with a Higgsino-like LSP is the strongest (˜ 490 GeV) for M 1 /M 2 ˜ - tan2 θ W and is the weakest (˜ 220 GeV) for M 1 /M 2 ˜ tan2 θ W . We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb-1 integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Winolike) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5 σ discovery sensitivity is about 100 GeV smaller. For 300 fb-1 integrated luminosity, the reach is about 50 - 100 GeV higher.

  16. Dashboard for the LHC experiments

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Belov, S.; Berejnoj, A.; Cirstoiu, C.; Chen, Y.; Chen, T.; Chiu, S.; Miguel, M. D. F. D.; Ivanchenko, A.; Gaidioz, B.; Herrala, J.; Janulis, M.; Kodolova, O.; Maier, G.; Maguire, E. J.; Munro, C.; Rivera, R. P.; Rocha, R.; Saiz, P.; Sidorova, I.; Tsai, F.; Tikhonenko, E.; Urbah, E.

    2008-07-01

    In this paper we present the Experiment Dashboard monitoring system, which is currently in use by four Large Hadron Collider (LHC)[1] experiments. The goal of the Experiment Dashboard is to monitor the activities of the LHC experiments on the distributed infrastructure, providing monitoring data from the virtual organization (VO) and user perspectives. The LHC experiments are using various Grid infrastructures (LCG[2]/EGEE[3], OSG[4], NDGF[5]) with correspondingly various middleware flavors and job submission methods. Providing a uniform and complete view of various activities like job processing, data movement and publishing, access to distributed databases regardless of the underlying Grid flavor is the challenging task. In this paper we will describe the Experiment Dashboard concept, its framework and main monitoring applications.

  17. A pattern recognition mezzanine based on associative memory and FPGA technology for L1 track triggering at HL-LHC

    NASA Astrophysics Data System (ADS)

    Alunni, L.; Biesuz, N.; Bilei, G. M.; Citraro, S.; Crescioli, F.; Fanò, L.; Fedi, G.; Magalotti, D.; Magazzù, G.; Servoli, L.; Storchi, L.; Palla, F.; Placidi, P.; Papi, A.; Piadyk, Y.; Rossi, E.; Spiezia, A.

    2016-07-01

    The increase of luminosity at HL-LHC will require the introduction of tracker information at Level-1 trigger system for the experiments to maintain an acceptable trigger rate to select interesting events despite the one order of magnitude increase in the minimum bias interactions. To extract in the required latency the track information a dedicated hardware has to be used. We present the tests of a prototype system (Pattern Recognition Mezzanine) as core of pattern recognition and track fitting for HL-LHC ATLAS and CMS experiments, combining the power of both Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices.

  18. Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Khalek, S. Abdel; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Gonzalez, B. Alvarez; Alviggi, M. G.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Ammosov, V. V.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Mayes, J. Backus; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Costa, J. Barreiro Guimarães da; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Garcia, J. A. Benitez; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Renstrom, P. A. Bruckman de; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Urbán, S. Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Camarda, S.; Cameron, D.; Caminada, L. M.; Armadans, R. Caminal; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Castaneda-Miranda, E.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Barajas, C. A. Chavez; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Ortuzar, M. Crispin; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; De Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Ciaccio, A. Di; Di Ciaccio, L.; Domenico, A. Di; Donato, C. Di; Girolamo, A. Di; Girolamo, B. Di; Mattia, A. Di; Micco, B. Di; Nardo, R. Di; Simone, A. Di; Sipio, R. Di; Valentino, D. Di; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Vale, M. A. B. do; Wemans, A. Do Valle; Doan, T. K. O.; Dobos, D.; Dobson, E.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Perez, S. Fernandez; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Bustos, A. C. Florez; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Walls, F. M. Garay; Garberson, F.; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, L.; de la Hoz, S. González; Parra, G. Gonzalez; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Jiménez, Y. Hernández; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Quiles, A. Irles; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javůrek, T.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le, B. T.; Le Dortz, O.; Guirriec, E. Le; Menedeu, E. Le; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Miotto, G. Lehmann; Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Paredes, B. Lopez; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; de Andrade Filho, L. Manhaes; Ramos, J. A. Manjarres; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Moya, M. Miñano; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Barrera, C. Oropeza; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; García-Estan, M. T. Pérez; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qin, G.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Adam, E. Romero; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Ferrando, B. M. Salvachua; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Camillocci, E. Solfaroli; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramania, HS.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Gallego, E. Valladolid; Vallecorsa, S.; Ferrer, J. A. Valls; Van Berg, R.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; Eldik, N. van; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Schmitt, H. von der; Radziewski, H. von; Toerne, E. von; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2014-07-01

    Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb. Tag-and-probe methods using events with leptonic decays of and bosons and mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

  19. Experimental demonstration of beam-beam compensation by Tevatron electron lenses and prospects for the LHC

    SciTech Connect

    Shiltsev, V.; Alexahin, Y.; Kamerdzhiev, V.; Kuznetsov, G.; Zhang, X.L.; Bishofberger, K.; /Los Alamos

    2007-06-01

    Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams are significant sources of beam loss and lifetime limitations in the Tevatron Collider Run II (2001-present). We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in high energy physics (HEP) operation, predict the performance for planned luminosity upgrades and discuss ways to improve it.

  20. Le LHC, un tunnel cosmique

    SciTech Connect

    2009-09-17

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  1. A new readout control system for the LHCb upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Jacobsson, R.

    2012-11-01

    The LHCb experiment has proposed an upgrade towards a full 40 MHz readout system in order to run between five and ten times its initial design luminosity. The entire readout architecture will be upgraded in order to cope with higher sub-detector occupancies, higher rate and higher network load. In this paper, we describe the architecture, functionalities and a first hardware implementation of a new fast Readout Control system for the LHCb upgrade, which will be entirely based on FPGAs and bi-directional links. We also outline the real-time implementations of the new Readout Control system, together with solutions on how to handle the synchronous distribution of timing and synchronous information to the complex upgraded LHCb readout architecture. One section will also be dedicated to the control and usage of the newly developed CERN GBT chipset to transmit fast and slow control commands to the upgraded LHCb Front-End electronics. At the end, we outline the plans for the deployment of the system in the global LHCb upgrade readout architecture.

  2. B Physics at the LHC

    SciTech Connect

    Gersabeck, Marco

    2010-02-10

    The LHC is scheduled to start its first physics data taking period later in 2009. Primarily LHCb but also ATLAS and CMS will start a rich B physics programme with the potential of revealing New Physics in the heavy flavour sector. This contribution will cover the prospects for B physics at the LHC with particular emphasis to early measurements. This includes CP violation measurements in B{sub d}{sup 0} and B{sub s}{sup 0} decays, searches for rare decays such as B{sub s}{sup 0}->{mu}{mu}, as well as semileptonic and radiative channels.

  3. L'Aventure du LHC

    SciTech Connect

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  4. a New Luminosity Function for Galaxies as Given by the Mass-Luminosity Relationship

    NASA Astrophysics Data System (ADS)

    Zaninetti, Lorenzo

    2008-04-01

    The search for a luminosity function for galaxies both alternative or companion to a Schechter function is a key problem in the reduction of data from catalogs of galaxies. Two luminosity functions for galaxies can be built starting from two distributions of mass as given by the fragmentation. A first overall distribution function is the Kiang function, which represents a useful description of the area and volume distribution of the Poisson Voronoi diagrams. The second distribution, which covers the case of low-mass galaxies, is the truncated Pareto distribution: in this model we have a natural bound due to the minimum mass/luminosity observed and an upper bound (function of the considered environment) represented by the boundary with the observed mass/luminosity overall behavior. The mass distribution is then converted into a luminosity distribution through a standard mass-luminosity relationship. The mathematical rules to convert the probability density function are used and the two new functions are normalized to the total number of galaxies per unit volume. The test of the two new luminosity functions for galaxies that cover different ranges in magnitude was made on the Sloan Digital Sky Survey (SDSS) in five different bands; the results are comparable to those of the Schechter function. A new parameter, which indicates the stellar content, is derived. The joint distribution in redshift and flux, the mean redshift and the number density connected with the first luminosity function for galaxies are obtained by analogy with the Schechter function. A new formula, which allows us to express the mass as a function of the absolute magnitude, is derived.

  5. Node weighted network upgrade problems

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Marathe, M.V.; Ravi, S.S.

    1996-09-01

    Consider a network where nodes represent processors and edges represent bidirectional communication links. The processor at a node v can be upgraded at an expense of cost(v). Such an upgrade reduces the delay of each link emanating from v by a fixed factor x, where 0 < x < 1. The goal is to find a minimum cost set of nodes to be upgraded so that the resulting network has a spanning tree in which edge is of delay at most a given value {delta}. The authors provide both hardness and approximation results for the problem. They show that the problem is NP-hard and cannot be approximated within any factor {beta} < ln n, unless NP {improper_subset} DTIME(n{sup log log n}), where n is the number of nodes in the network. They then present the first polynomial time approximation algorithms for the problem. For the general case, the approximation algorithm comes within a factor of 2 ln n of the minimum upgrading cost. When the cost of upgrading each node is 1, they present an approximation algorithm with a performance guarantee of 4(2 + ln {Delta}), where {Delta} is the maximum node degree. Finally, they present a polynomial time algorithm for the class of treewidth-bounded graphs.

  6. Performance simulation studies for the ALICE TPC GEM upgrade

    NASA Astrophysics Data System (ADS)

    Ljunggren, M.

    2016-07-01

    To be able to exploit the anticipated interaction rate of 50 kHz in Pb-Pb collisions during run 3 of the LHC (beyond 2019), the ALICE TPC will be upgraded to allow continuous readout. As this is not possible with the current Multi Wire Proportional Chamber (MWPC) based amplification, the readout will be replaced with Gas Electron Multiplier (GEM) readout chambers that can suppress ~ 99% of the ion back flow. The space charge of the remaining 1% ion back flow, however, will cause significant distortions to the measured tracks of order cm. Simulation studies to characterize the distortions and test correction strategies have been performed, which show that the intrinsic momentum resolution, without these distortions, can be recovered.

  7. Upgrade of the cryogenic CERN RF test facility

    SciTech Connect

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  8. The Mid-infrared Luminosity Evolution and Luminosity Function of Quasars with WISE and SDSS

    NASA Astrophysics Data System (ADS)

    Singal, J.; George, J.; Gerber, A.

    2016-11-01

    We determine the 22 μm luminosity evolution and luminosity function for quasars from a data set of over 20,000 objects obtained by combining flux-limited Sloan Digital Sky Survey optical and Wide field Infrared Survey Explorer mid-infrared data. We apply methods developed in previous works to access the intrinsic population distributions non-parametrically, taking into account the truncations and correlations inherent in the data. We find that the population of quasars exhibits positive luminosity evolution with redshift in the mid-infrared, but with considerably less mid-infrared evolution than in the optical or radio bands. With the luminosity evolutions accounted for, we determine the density evolution and local mid-infrared luminosity function. The latter displays a sharp flattening at local luminosities below ∼ {10}31 erg s‑1 Hz‑1, which has been reported previously at 15 μm for AGN classified as both type 1 and type 2. We calculate the integrated total emission from quasars at 22 μm and find it to be a small fraction of both the cosmic infrared background light and the integrated emission from all sources at this wavelength.

  9. Measurement of Electromagnetic Cross Sections in Heavy Ion Interations and Its Consequences for Luminosity Lifetimes in Ion Colliders

    SciTech Connect

    Datz, S.; Grafstroem, P.; Knudsen, H.; Krause, H.F.; Mikkelsen, U.; Scheidenberger, C.; Schuch, R.H.; Vane, C.R.; Vilakazi, Z.

    1999-03-29

    The limitation of the luminosity lifetime in high energy heavy ion colliders like RHIC or LHC operating in ion mode is set by the very large cross section of beam - beam interactions. One of the dominant processes at relativistic energies is electron capture from pair production in the strong electromagnetic field provided by the high Z of the ions. The capture cross sections for Pb82+ interacting with a number targets have been measured using one of the high energy resolution 158 GeV/nucleon beams at CERN. The results, together with results on electromagnetic dissociation, are discussed in terms of beam lifetimes for RHIC and LHC using extrapolations of the measurements to the corresponding collider energies.

  10. Hardware Testing of the BaBar Drift Chamber Electronics Upgrade (SULI paper)

    SciTech Connect

    Littlejohn, Bryce; Chu, Yiwen; Wiik, Liv; /SLAC

    2006-01-04

    The BaBar drift chamber provides position, timing, and dE/dx measurements for charged decay products of the {Upsilon}(4S) resonance at 10.58 GeV. Increasing data collection rates stemming from higher PEP II luminosities and background have highlighted dead time problems in the drift chamber's data acquisition system. A proposed upgrade, called Phase II, aims to solve the problem with the introduction of rewritable, higher-memory firmware in the DAQ front-end electronics that lowers dataflow through the system. After fabrication, the new electronics components were tested to ensure proper function and reliability before installation in the detector. Some tests checked for successful operation of individual components, while others operated entire sections of the upgraded system in a mockup drift chamber environment. This paper explains the testing process and presents results regarding performance of the upgrade electronics.

  11. Luminosity limitations for Electron-Ion Collider

    SciTech Connect

    Valeri Lebedev

    2000-09-01

    The major limitations on reaching the maximum luminosity for an electron ion collider are discussed in application to the ring-ring and linac-ring colliders. It is shown that with intensive electron cooling the luminosity of 10{sup 33} cm{sup -2} s{sup -1} is feasible for both schemes for the center-of-mass collider energy above approximately 15 GeV. Each scheme has its own pros and cons. The ring-ring collider is better supported by the current accelerator technology while the linac-ring collider suggests unique features for spin manipulations of the electron beam. The article addresses a general approach to a choice of collider scheme and parameters leaving details for other conference publications dedicated to particular aspects of the ring-ring and linac-ring colliders.

  12. Studies of Transverse-Momentum-Dependent Distributions with a Fixed-Target ExpeRiment Using the LHC Beams (AFTER@LHC)

    NASA Astrophysics Data System (ADS)

    Massacrier, L.; Anselmino, M.; Arnaldi, R.; Brodsky, S. J.; Chambert, V.; den Dunnen, W.; Didelez, J. P.; Genolini, B.; Ferreiro, E. G.; Fleuret, F.; Gao, Y.; Hadjidakis, C.; Hřivnáčová, I.; Lansberg, J. P.; Lorcé, C.; Mikkelsen, R.; Pisano, C.; Rakotozafindrabe, A.; Rosier, P.; Schienbein, I.; Schlegel, M.; Scomparin, E.; Trzeciak, B.; Uggerhøj, U. I.; Ulrich, R.; Yang, Z.

    2016-02-01

    We report on the studies of Transverse-Momentum-Dependent distributions (TMDs) at a future fixed-target experiment -AFTER@LHC- using the p+ or Pb ion LHC beams, which would be the most energetic fixed-target experiment ever performed. AFTER@LHC opens new domains of particle and nuclear physics by complementing collider-mode experiments, in particular those of RHIC and the EIC projects. Both with an extracted beam by a bent crystal or with an internal gas target, the luminosity achieved by AFTER@LHC surpasses that of RHIC by up to 3 orders of magnitude. With an unpolarised target, it allows for measurements of TMDs such as the Boer-Mulders quark distributions and the distribution of unpolarised and linearly polarised gluons in unpolarised protons. Using polarised targets, one can access the quark and gluon Sivers TMDs through single transverse-spin asymmetries in Drell-Yan and quarkonium production. In terms of kinematics, the fixed-target mode combined with a detector covering ηlab ∈ [1, 5] allows one to measure these asymmetries at large x↑ in the polarised nucleon.

  13. Mass-Luminosity Relationship of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Stanek, Rebecca; Evrard, August

    2004-04-01

    Deriving cosmological parameters from counts of galaxy clusters requires a clear understanding of the relationship between cluster observables and their underlying mass. While previous work has assumed pure power-law forms for these relationships, we explore here a power-law model with log-normal scatter and apply it to describing the REFLEX X-ray cluster luminosity function within a ΛCDM universe. We assume a space density calibrated from Hubble Volume simulations (the ``Jenkins mass function'' dn(M)/d ln M) and compute a luminosity function dn(L)/d ln L by assuming a conditional probability p(M|L) described by a Gaussian of fixed log-normal width ΔM and mean relation L = L_15 M^p. Because of the flux-limited nature of the REFLEX catalog, the space density of clusters at different luminosities is effectively sampling the mass function at different redshifts. We explore different corrections for this effect, and derive maximum-likelihood estimates for the three model parameters, L_15, p and Δ_M. The most likely model requires large scatter ΔM ˜ 1, but the allowed region in parameter space is fairly broad. We discuss the role that independent observables such as gas temperature and lensing mass will have in helping to break the model degeneracy.

  14. EVOLUTION OF THE Halpha LUMINOSITY FUNCTION

    SciTech Connect

    Westra, Eduard; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian

    2010-01-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a window on the star formation history over the last 4 Gyr. SHELS is a spectroscopically complete survey for R{sub tot} < 20.3 over 4 square{sup 0}. We use the 10k spectra to select a sample of pure star-forming galaxies based on their Halpha emission line. We use the spectroscopy to determine extinction corrections for individual galaxies and to remove active galaxies in order to reduce systematic uncertainties. We use the large volume of SHELS with the depth of a narrowband survey for Halpha galaxies at z approx 0.24 to make a combined determination of the Halpha luminosity function at z approx 0.24. The large area covered by SHELS yields a survey volume big enough to determine the bright end of the Halpha luminosity function from redshift 0.100 to 0.377 for an assumed fixed faint-end slope alpha = -1.20. The bright end evolves: the characteristic luminosity L* increases by 0.84 dex over this redshift range. Similarly, the star formation density increases by 0.11 dex. The fraction of galaxies with a close neighbor increases by a factor of 2-5 for L{sub Ha}lpha approx> L* in each of the redshift bins. We conclude that triggered star formation is an important influence for star-forming galaxies with Halpha emission.

  15. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  16. The Physics Program of a High-Luminosity Asymmetric B Factory at SLAC

    SciTech Connect

    Eisner, A.; Mandelkern, M.; Morrison, R.; Witherell, M.; Burchat, P.; Kent, J.; Erbacher, R.; Vernon, W.; Eigen, G.; Hitlin, D.; Porter, F.; Weinstein, A.; Wisniewski, W.; Wagner, S.; Franzini, P.; Tuts, M.; Averill, D.; Snyder, A.; Goldhaber, G.; Oddone, P.; Roe, N.; Ronan, M.; Spahn, M.; MacFarlane, D.; Bartelt, J.; Bloom, E.; Bulos, F.; Cords, D.; Dib, C.; Dorfan, J.; Dunietz, I.; Gilman, F.; Godfrey, G.; Hyer, T.; Jensen, G.; Leith, D.; Marsiske, H.; Nir, Y.; Lee-Franzini, J.

    1989-10-01

    A high-luminosity asymmetric energy B Factory, proposed as an upgrade to the PEP storage ring at SLAC, provides the best opportunity to study CP violation as a means of testing the consistency of the Standard Model. If the phenomenon of CP violation is xplained by the Standard Model simply through the non-zero angles and phase of the Kobayashi-Maskawa matrix, then there are precise relations between the K-M parameters and the various measurable CP-violating asymmetries in B meson decay. Should these onsistency relations fail, the origin of CP violation must lie outside the Standard Model framework. Our measurements would then lead to the first experiment-driven extensions of the Standard Model. The B Factory will also carry out a varied, high-quality program of studies f other aspects of the physics of b quarks, as well as high-precision measurements in r and charm physics. We describe a detailed series of measurements to be carried out in the first few years at a peak luminosity of 3 x 10{sup 33} cm{sup -2}sec{sup -1}, the initial luminosity goal of the B Factory, as well as the program accessible to a larger data sample.

  17. Pseudo-goldstino and electroweak gauginos at the LHC

    NASA Astrophysics Data System (ADS)

    Hikasa, Ken-ichi; Liu, Tao; Wang, Lin; Yang, Jin Min

    2014-07-01

    The multi-sector SUSY breaking predicts the existence of pseudo-goldstino, which could couple more strongly to visible fields than ordinary gravitino. Then the lightest neutralino and chargino can decay into a pseudo-goldstino plus a Z-boson, Higgs boson or W-boson. In this note we perform a Monte Carlo simulation for the direct productions of the lightest neutralino and chargino followed by the decays to pseudo-goldstino. Considering scenarios with higgsino-like, bino-like or wino-like lightest neutralino, we find that the signal-to-background ratio at the high luminosity LHC is between 6 and 25% and the statistical significance can be above 5 σ.

  18. Nb3Sn Quadrupole Magnets for the LHC IR

    SciTech Connect

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.r.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-08-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC). At present, Nb{sub 3}Sn is the only practical conductor which can meet these requirements. Since Nb{sub 3}Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  19. Connecting LHC, ILC, and quintessence

    NASA Astrophysics Data System (ADS)

    Chung, Daniel J. H.; Everett, Lisa L.; Kong, Kyoungchul; Matchev, Konstantin T.

    2007-10-01

    If the cold dark matter consists of weakly interacting massive particles (WIMPs), anticipated measurements of the WIMP properties at the Large Hadron Collider (LHC) and the International Linear Collider (ILC) will provide an unprecedented experimental probe of cosmology at temperatures of order 1 GeV. It is worth emphasizing that the expected outcome of these tests may or may not be consistent with the picture of standard cosmology. For example, in kination-dominated quintessence models of dark energy, the dark matter relic abundance can be significantly enhanced compared to that obtained from freeze out in a radiation-dominated universe. Collider measurements then will simultaneously probe both dark matter and dark energy. In this article, we investigate the precision to which the LHC and ILC can determine the dark matter and dark energy parameters under those circumstances. We use an illustrative set of four benchmark points in minimal supergravity in analogy with the four LCC benchmark points. The precision achievable together at the LHC and ILC is sufficient to discover kination-dominated quintessence, under the assumption that the WIMPs are the only dark matter component. The LHC and ILC can thus play important roles as alternative probes of both dark matter and dark energy.

  20. String Physics at the LHC

    SciTech Connect

    Anchordoqui, Luis A.

    2008-11-23

    The LHC program will include the identification of events with single high-k{sub T} photons as probes of new physics. We show that this channel is uniquely suited to search for experimental evidence of TeV-scale open string theory.

  1. Heavy Quark Photoproduction at LHC

    SciTech Connect

    Goncalves, V. P.; Meneses, A. R.; Machado, M. V.

    2010-11-12

    In this work we calculate the inclusive and difractive photoproduction of heavy quarks in proton-proton collisions at LHC energies within the color dipole picture employing three phenomenological saturation models based on the color glass condensate formalism. Our results demonstrate that the experimental analyzes of these reactions is feasible and that the cross sections are sensitive to the underlying parton dynamics.

  2. The history of the LHC

    SciTech Connect

    2010-05-11

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  3. PHOBOS in the LHC era

    SciTech Connect

    Steinberg, Peter

    2015-01-15

    The PHOBOS experiment ran at the RHIC collider from 2000 to 2005, under the leadership of Wit Busza. These proceedings summarize selected PHOBOS results, highlighting their continuing relevance amidst the wealth of new results from the lead–lead program at the Large Hadron Collider (LHC)

  4. ELECTRONICS FOR CALORIMETERS AT LHC.

    SciTech Connect

    RADEKA,V.

    2001-09-11

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated.

  5. The history of the LHC

    ScienceCinema

    None

    2016-07-12

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  6. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  7. Supersymmetry Without Prejudice at the 7 TeV LHC

    SciTech Connect

    Conley, John A.; Gainer, James S.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC

    2011-08-12

    We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for {approx} 71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S {ge} 5 for 1 fb{sup -1} of integrated luminosity. We then examine the model characteristics for the cases which cannot be discovered and find several contributing factors. We find that a blanket statement that squarks and gluinos are excluded with masses below a specific value cannot be made. We next explore possible modifications to the kinematic cuts in these analyses that may improve the pMSSM model coverage. Lastly, we examine the implications of a null search at the 7 TeV LHC in terms of the degree of fine-tuning that would be present in this model set and for sparticle production at the 500 GeV and 1 TeV Linear Collider.

  8. Event Plane Resolution Simulations for The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Sulaimon, Isiaka; Harton, Austin; Garcia, Edmundo; Alice-Fit Collaboration

    2016-03-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments of the LHC. ALICE is dedicated to the study of the transition of matter to Quark Gluon Plasma in heavy ion collisions. In the present ALICE detector there are two sub-detectors, (the T0 and V0), that provide minimum bias trigger, multiplicity trigger, beam-gas event rejection, collision time for other sub detectors, on line multiplicity and event plane determination. In order to adapt these functionalities to the collision rates expected for the LHC upgrade after 2020, it is planned to replace these systems by a single detector system, called the Fast Interaction Trigger (FIT). In this presentation we describe the performance parameters of the FIT upgrade; show the proposed characteristics of the T0-Plus and the simulations that support the conceptual design of this detector. In particular we describe the performance simulations of the event plane resolution. This material is based upon work supported by the National Science Foundation under Grants NSF-PHY-0968903 and NSF-PHY-1305280.

  9. Resource Utilization by the ATLAS High Level Trigger during 2010 and 2011 LHC Running

    NASA Astrophysics Data System (ADS)

    Ospanov, Rustem; ATLAS Collaboration

    In 2010 and 2011, the ATLAS experiment successfully recorded data from LHC collisions with high efficiency and excellent data quality. ATLAS employs a three-level trigger system to select events of interest for physics analyzes and detector commissioning. The trigger system consists of a custom-designed hardware trigger at level-1 and software algorithms at the two higher levels. The trigger selection is defined by a trigger menu which consists of more than 300 individual trigger signatures, such as electrons, muons, particle jets, etc. An execution of a trigger signature incurs computing and data storage costs. The composition of the deployed trigger menu depends on the instantaneous LHC luminosity, the experiment's goals for the recorded data, and the limits imposed by the available computing power, network bandwidth and storage space. This paper describes a trigger monitoring framework for assigning computing costs for individual trigger signatures and trigger menus as a whole. These costs can be extrapolated to higher luminosity allowing development of trigger menus for a higher LHC collision rate than currently achievable.

  10. Scalar dark matter search at the LHC through flavor-changing neutral current top decay

    SciTech Connect

    Li Tong; Shafi, Qaisar

    2011-05-01

    We discuss an extended standard model electroweak sector which contains a stable scalar dark matter particle, the D boson. To search for the D boson at the LHC we exploit the flavor-changing neutral current top quark decay, t{yields}cDD, mediated by the lightest standard model-like Higgs h{sup 0} in a two Higgs doublet model framework. The branching ratio for t{yields}cDD in this case can be as high as 10{sup -3}, after taking into account constraints arising from the D boson relic abundance. With an integrated luminosity of 10(100) fb{sup -1}, the 14 TeV LHC can explore values of this branching ratio that are one (two) order of magnitude smaller in tt production with tt{yields}cbl{sup -}(cbl{sup +})+Ee{sub T}. For a D boson mass < or approx. 60 GeV, m{sub h}{sup 0} < or approx. 2M{sub Z}, 10 fb{sup -1} luminosity and a branching ratio BR(t{yields}cDD){approx}10{sup -4}, the estimated number of signal events at the 14 TeV LHC is of order 80.

  11. NLC Luminosity as a Function of Beam Parameters

    SciTech Connect

    Nosochkov, Yuri

    2002-06-06

    Realistic calculation of NLC luminosity has been performed using particle tracking in DIMAD and beam-beam simulations in GUINEA-PIG code for various values of beam emittance, energy and beta functions at the Interaction Point (IP). Results of the simulations are compared with analytic luminosity calculations. The optimum range of IP beta functions for high luminosity was identified.

  12. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    NASA Astrophysics Data System (ADS)

    Bergauer, Thomas

    2016-09-01

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb-1 over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p-p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow pT discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  13. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  14. Distinguishing Dirac/Majorana sterile neutrinos at the LHC

    NASA Astrophysics Data System (ADS)

    Dib, Claudio O.; Kim, C. S.; Wang, Kechen; Zhang, Jue

    2016-07-01

    We study the purely leptonic decays of W±→e±e±μ∓ν and μ±μ±e∓ν produced at the LHC, induced by sterile neutrinos with mass mN below MW in the intermediate state. Since the final state neutrino escapes detection, one cannot tell whether this process violates lepton number, which would indicate a Majorana character for the intermediate sterile neutrino. Our study shows that when the sterile neutrino mixings with electrons and muons are different enough, one can still discriminate between the Dirac and Majorana character of this intermediate neutrino by simply counting and comparing the above decay rates. After performing collider simulations and statistical analysis, we find that at the 14 TeV LHC with an integrated luminosity of 3000 fb-1, for two benchmark scenarios mN=20 and 50 GeV, at least a 3 σ level of exclusion on the Dirac case can be achieved for disparities as mild as, e.g., |UN e|2<0.7 |UN μ|2 or |UN μ|2<0.7 |UN e|2 , provided that |UN e|2 and |UN μ|2 are both above ˜2 ×10-6.

  15. Exploring the Standard Model with the High Luminosity, Polarized Electron-Ion Collider

    SciTech Connect

    Milner, Richard G.

    2009-08-04

    The Standard Model is only a few decades old and has been successfully confirmed by experiment, particularly at the high energy frontier. This will continue with renewed vigor at the LHC. However, many important elements of the Standard Model remain poorly understood. In particular, the exploration of the strong interaction theory Quantum Chromodynamics is in its infancy. How does the spin-1/2 of the proton arise from the fundamental quark and gluon constituents? Can we understand the new QCD world of virtual quarks and gluons in the nucleon? Using precision measurements can we test the limits of the Standard Model and look for new physics? To address these and other important questions, physicists have developed a concept for a new type of accelerator, namely a high luminosity, polarized electron-ion collider. Here the scientific motivation is summarized and the accelerator concepts are outlined.

  16. Radiative return capabilities of a high-energy, high-luminosity e+e- collider

    NASA Astrophysics Data System (ADS)

    Karliner, Marek; Low, Matthew; Rosner, Jonathan L.; Wang, Lian-Tao

    2015-08-01

    An electron-positron collider operating at a center-of-mass energy ECM can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at ECM=250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy e+e- colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

  17. THE LUMINOSITY PROFILES OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Donzelli, C. J.; Muriel, H.; Madrid, J. P.

    2011-08-01

    We have derived detailed R-band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 mag arcsec{sup -2}. Light profiles were initially fitted with a Sersic's R {sup 1/n} model, but we found that 205 ({approx}48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner Sersic model, with indices n {approx} 1-7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCG luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter ({approx}0.2 mag) than single profile BCGs. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values M{sub R} = -23.8 {+-} 0.6 mag for single profile BCGs and M{sub R} = -24.0 {+-} 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best-fit slope of the Kormendy relation for the whole sample is a = 3.13 {+-} 0.04. However, when fitted separately, single and double profile BCGs show different slopes: a{sub single} = 3.29 {+-} 0.06 and a{sub double} = 2.79 {+-} 0.08. Also, the logarithmic slope of the metric luminosity {alpha} is higher in double profile BCGs ({alpha}{sub double} = 0.65 {+-} 0.12) than in single profile BCGs ({alpha}{sub single} = 0.59 {+-} 0.14). The mean isophote outer ellipticity (calculated at {mu} {approx} 24 mag arcsec{sup -2}) is higher in double profile BCGs (e{sub double} = 0.30 {+-} 0.10) than in single profile BCGs (e{sub single} = 0.26 {+-} 0.11). Similarly

  18. Deriving Kinetic Luminosity Functions from the Low-Frequency Radio Luminosity Functions of FRII Sources

    NASA Astrophysics Data System (ADS)

    Kapinska, Anna D.; Uttley, P.; Kaiser, C. R.

    2010-03-01

    FRII radio galaxies are relatively simple systems which can be used to determine the influence of jets on their environments. Even simple analytical models of FRII evolution can link the observed lobe luminosities and sizes to fundamental properties such as jet power and density of the ambient medium; these are crucial for understanding AGN feedback. However, due to strong flux selection effects interpreting FRII samples is not straightforward. To overcome this problem we construct Monte Carlo simulations to create artificial samples of radio galaxies. We explore jet power and external density distributions by using them as the simulation input parameters. Further, we compute radio luminosity functions (RLF) and fit them to the observed low-frequency radio data that cover redshifts up to z 2, which gives us the most plausible distributions of FRIIs' fundamental properties. Moreover, based on these RLFs, we obtain the kinetic luminosity functions of these powerful sources.

  19. Nova outburst luminosities, postnova magnitude behaviour, and long term evolution of nova shell luminosities

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.

    2002-11-01

    A luminosity calibration of galactic novae indicates that all novae at brightness maximum radiate over-Eddington, and that speed- and light curve classes are intimately related. In later stages, the Balmer and [O III] line fluxes decline in similar ways for novae of all speed classes, except in slow ones where Balmer emission diminishes faster, and [O III] persists for decades. The brightness of the central source declines during the first century after outburst; decline rates for novae with orbital periods above 0.2 days are in good agreement with theoretical predictions, but there are indications that the luminosity will remain constant afterwards. Postnovae with shorter periods appear to decline more rapidly, and they often erupt from low-luminosity stages.

  20. Pin-Hole Luminosity Monitor with Feedback

    NASA Astrophysics Data System (ADS)

    Norem, James H.; Spencer, James E.

    Previously, the generalized luminosity { L} was defined and calculated for all incident channels based on an NLC e+e- design. Alternatives were then considered to improve the differing beam-beam effects in the e-e-, eγ and γγ channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamstrahlung that needs to be disposed of and whose flux depended on { L}. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important - especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our "pin-hole" camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  1. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2016-07-12

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  2. An improved method of constructing binned luminosity functions

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.

    2000-01-01

    We show that binned differential luminosity functions constructed using the 1/Va method have a significant systematic error for objects close to the flux limit(s) of their parent sample. This is particularly noticeable when luminosity functions are produced for a number of different redshift ranges as is common in the study of AGN or galaxy evolution. We present a simple method of constructing a binned luminosity function which overcomes this problem and has a number of other advantages over the traditional 1/Va method. We also describe a practical method for comparing binned and model luminosity functions, by calculating the expectation values of the binned luminosity function from the model. Binned luminosity functions produced by the two methods are compared for simulated data and for the Large Bright QSO Survey (LBQS). It is shown that the 1/Va method produces a very misleading picture of evolution in the LBQS. The binned luminosity function of the LBQS is then compared with a model two-power-law luminosity function undergoing pure luminosity evolution from Boyle et al. The comparison is made using a model luminosity function averaged over each redshift shell, and using the expectation values for the binned luminosity function calculated from the model. The luminosity function averaged in each redshift shell gives a misleading impression that the model over predicts the number of QSOs at low luminosity even for 1.0< z<1.5, when model and data are consistent. The expectation values show that there are significant differences between model and data: the model overpredicts the number of low luminosity sources at both low and high redshift. The luminosity function does not appear to steepen relative to the model as redshift increases.

  3. CLOC: Cluster Luminosity Order-Statistic Code

    NASA Astrophysics Data System (ADS)

    Da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael

    2016-02-01

    CLOC computes cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.

  4. Long-Range And Head-On Beam-Beam Compensation Studies in RHIC With Lessons for the LHC

    SciTech Connect

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.P.; Sterbini, G.; Zimmermann, F.; Kim, H.J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.; /SLAC

    2011-11-28

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  5. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.-P.; Sterbini, G.; Zimmermann, F.; Kim, H.-J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2009-01-12

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  6. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect

    Fischer,W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J. -P.; Sterbini, G.; Zimmermann, F.; Kim, H. -J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2008-11-24

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both RIDC and the LHC. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  7. Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC

    SciTech Connect

    Pattalwar, Shrikant; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Jones, Thomas; Templeton, Niklas; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom

    2014-01-29

    A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the “Hi-Lumi LHC”, a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.

  8. Oxygen-rich Mira variables: Near-infrared luminosity calibrations. Populations and period-luminosity relations

    NASA Technical Reports Server (NTRS)

    Alvarez, R.; Mennessier, M.-O.; Barthes, D.; Luri, X.; Mattei, J. A.

    1997-01-01

    Hipparcos astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Three distinct classes of stars with different kinematics and scale heights were identified. The two most significant groups present characteristics close to those usually assigned to extended/thick disk-halo populations and old disk populations, respectively, and thus they may differ by their metallicity abundance. Two parallel period-luminosity relations are found, one for each population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.

  9. LUMINOSITY INCREASES IN GOLD-GOLD OPERATION IN RHIC.

    SciTech Connect

    FISCHER,W.AHERNS,L.BAI,M.ET AL.

    2004-07-05

    After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand higher luminosity to study heavy ion collisions in detail. In gold-gold, operation, RHIC delivers now twice the design luminosity. During the last gold-gold operating period (Run-4) the machine delivered 15 times more luminosity than during the previous gold-gold operating period (Run-2), two years ago. We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.

  10. Development of MQXF: The Nb3Sn low-β quadrupole for the HiLumi LHC

    DOE PAGES

    Ferracin, P.; G. Ambrosio; Anerella, M.; Ballarino, A.; Bajas, H.; Bajko, M.; Bordini, B.; Bossert, R.; Cheng, D. W.; Dietderich, D. R.; et al

    2015-12-18

    The High Luminosity (HiLumi) Large Hadron Collider (LHC) project has, as the main objective, to increase the LHC peak luminosity by a factor five and the integrated luminosity by a factor ten. This goal will be achieved mainly with a new interaction region layout, which will allow a stronger focusing of the colliding beams. The target will be to reduce the beam size in the interaction points by a factor of two, which requires doubling the aperture of the low-β (or inner triplet) quadrupole magnets. The use of Nb3Sn superconducting material and, as a result, the possibility of operating atmore » magnetic field levels in the windings higher than 11 T will limit the increase in length of these quadrupoles, called MQXF, to acceptable levels. After the initial design phase, where the key parameters were chosen and the magnet's conceptual design finalized, the MQXF project, a joint effort between the U.S. LHC Accelerator Research Program and the Conseil Europeen pour la Recherche Nucleaire (CERN), has now entered the construction and test phase of the short models. Concurrently, the preparation for the development of the full-length prototypes has been initiated. Lastly, this paper will provide an overview of the project status, describing and reporting on the performance of the superconducting material, the lessons learnt during the fabrication of superconducting coils and support structure, and the fine tuning of the magnet design in view of the start of the prototyping phase.« less

  11. L'Aventure du LHC

    ScienceCinema

    None

    2016-07-12

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  12. Beautiful mirrors at the LHC

    NASA Astrophysics Data System (ADS)

    Kumar, Kunal; Shepherd, William; Tait, Tim M. P.; Vega-Morales, Roberto

    2010-08-01

    We explore the “Beautiful Mirrors” model, which aims to explain the measured value of A b FB , discrepant at the 2.9σ level. This scenario introduces vector-like quarks which mix with the bottom, subtly affecting its coupling to the Z. The spectrum of the new particles consists of two bottom-like quarks and a charge -4/3 quark, all of which have electroweak interactions with the third generation. We explore the phenomenology and discovery reach for these new particles at the LHC, exploring single mirror quark production modes whose rates are proportional to the same mixing parameters which resolve the A b FB anomaly. We find that for mirror quark masses ≲ 500 GeV, a 14 TeV LHC with 300 fb-1 is required to reasonably establish the scenario and extract the relevant mixing parameters.

  13. A highly selective first-level muon trigger with MDT chamber data for ATLAS at HL-LHC

    NASA Astrophysics Data System (ADS)

    Nowak, S.; Kroha, H.

    2016-07-01

    Highly selective triggers are essential for the physics programme of the ATLAS experiment at HL-LHC where the instantaneous luminosity will be about an order of magnitude larger than the LHC instantaneous luminosity in Run 1. The first level muon trigger rate is dominated by low momentum muons below the nominal trigger threshold due to the moderate momentum resolution of the Resistive Plate and Thin Gap trigger chambers. The resulting high trigger rates at HL-LHC can be sufficiently reduced by using the data of the precision Muon Drift Tube chambers for the trigger decision. This requires the implementation of a fast MDT read-out chain and of a fast MDT track reconstruction algorithm with a latency of at most 6 μs. A hardware demonstrator of the fast read-out chain has been successfully tested at the HL-LHC operating conditions at the CERN Gamma Irradiation Facility. The fast track reconstruction algorithm has been implemented on a fast trigger processor.

  14. CMS hadron calorimeter front-end upgrade for SLHC phase I

    SciTech Connect

    Whitmore, Juliana; /Fermilab

    2009-09-01

    We present an upgrade plan for the CMS HCAL detector. The HCAL upgrade is required for the increased luminosity (3 * 10E34) of SLHC Phase I which is targeted for 2014. A key aspect of the HCAL upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at the L1 trigger. The increased segmentation is achieved by replacing the hybrid photodiodes (HPDs) with silicon PMTs (SIPMs). We plan to instrument each fiber of the calorimeter with an SIPM (103,000 total). We will then electrically sum outputs from selected SIPMs to form the longitudinal readout segments. In addition to having more longitudinal information, the upgrade plans include a new custom ADC with matched sensitivity and timing information. The increased data volume requires higher speed transmitters and the additional power dissipation for the readout electronics requires better thermal design, since much of the on-detector infrastructure (front-end electronics crates, cooling pipes, optical fiber plant, etc.) will remain the same. We will report on the preliminary designs for these upgraded systems, along with performance requirements and initial design studies.

  15. LHC magnet quench protection system

    NASA Astrophysics Data System (ADS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  16. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2016-07-12

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  17. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  18. Thermodynamics and luminosities of rainbow black holes

    SciTech Connect

    Mu, Benrong; Wang, Peng; Yang, Haitang E-mail: pengw@scu.edu.cn

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  19. Thermodynamics and luminosities of rainbow black holes

    NASA Astrophysics Data System (ADS)

    Mu, Benrong; Wang, Peng; Yang, Haitang

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1-η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n >= 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  20. Low luminosity AGNs in the local universe

    NASA Astrophysics Data System (ADS)

    Ikiz, Tuba; Peletier, Reynier F.; Yesilyaprak, Cahit

    2016-04-01

    Galaxies are known to contain black holes (e.g. Ferrarese & Merritt 2000), whose mass correlates with the mass of their bulge. A fraction of them also has an Active Galactic Nucleus (AGN), showing excess emission thought to be due to accretion of mass by the supermassive black hole at the center of the galaxy. It is thought that AGNs play a very important role during the formation of galaxies by creating large outflows that stop star formation in the galaxy (see e.g. Kormendy & Ho 2013). The aim is to detect the fraction of Low Luminosity Active Galactic Nucleus (LLAGN) in the nearby Universe. At present, they are typically found using optical spectroscopy (e.g. Kauffmann, Heckman et al. 2003), who discuss the influence of the AGN on the host galaxy and vice versa. However, optical spectra are seriously affected by extinction in these generally very dusty objects, and therefore can only give us partial information about the AGN. I used a newly-found method, and apply it to the S4G sample, a large, complete, sample of nearby galaxies, which I am studying in detail with a large collaboration, to detect the fraction of low luminosity AGNs, and to better understand the relation between AGNs and their host galaxy which is thought to be crucial for their formation.