Science.gov

Sample records for lhc luminosity upgrade

  1. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    NASA Astrophysics Data System (ADS)

    Valero-Biot, A.

    2014-06-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. The current planning in ATLAS also foresees significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acquisition. This presentation summarizes the various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC instantaneous luminosity during this decade and the next.

  2. LHC luminosity upgrade with large Piwinski angle scheme: a recent look

    SciTech Connect

    Bhat, C.M.; Zimmermann, f.; /CERN

    2011-09-01

    Luminosity upgrade at the LHC collider using longitudinally flat bunches in combination with the large crossing angle (large Piwinski angle scheme) is being studied with renewed interest in recent years. By design, the total beam-beam tune shift at the LHC is less than 0.015 for two interaction points together. But the 2010-11 3.5 TeV collider operation and dedicated studies indicated that the beam-beam tune shift is >0.015 per interaction point. In view of this development we have revisited the requirements for the Large Piwinski Angle scheme at the LHC. In this paper we present a new set of parameters and luminosity calculations for the desired upgrade by investigating: (1) current performance of the LHC injectors, (2) e-cloud issues on nearly flat bunches and (3) realistic beam particle distributions from longitudinal beam dynamics simulations. We also make some remarks on the needed upgrades on the LHC injector accelerators.

  3. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  4. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    SciTech Connect

    Xiao, B.; Alberty, L.; Belomestnykh, S.; Ben-Zvi, I.; Calaga, R.; Cullen, C.; Capatina, O.; Hammons, L.; Li, Z.; Marques, C.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  5. Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Ashby, J.; Bates, R. L.; Blue, A.; Burdin, S.; Buttar, C. M.; Casse, G.; Dervan, P.; Doonan, K.; Forshaw, D.; Lipp, J.; McMullen, T.; Pater, J.; Stewart, A.; Tsurin, I.

    2014-11-01

    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented.

  6. Results of FE65-P2 Stability Tests for the High Luminosity LHC Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Katherine; Atlas Collaboration

    2017-01-01

    The high luminosity upgrade of the LHC sets an imperative for readout technology capable of handling the consequences of higher particle interaction rates. Increased luminosity exists hand-in-hand with unprecedented levels of radiation and the need for exceptional logic density to store hit information during a trigger latency period on the order of 10 μs. The RD53 collaboration has developed specifications for the new generation of hybrid pixel readout chips to be included in the ATLAS and CMS Phase 2 upgrades. The FE65-P2 is a test readout chip fabricated on 65 nm CMOS technology that prototypes these design variants. Objectives of FE65-P2 include demonstrating the novel process of isolated analog front ends embedded in a digital design, known as ``analog islands in a digital sea.'' In addition, the innermost layer of the pixel detector in the upgraded ATLAS experiment will reach doses approaching 1 Mrad per run, and a single FE65-P2 should be tolerant to a lifetime dose near 500 Mrad. This talk will cover the test results of FE65-P2 calibration and stability. The experience gained from such tests will advise the development of RD53A, a large format readout chip to be fabricated in early 2017.

  7. Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

    DOE PAGES

    Marinozzi, Vittorio; Ambrosio, Giorgio; Ferracin, Paolo; ...

    2016-06-01

    In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close tomore » the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.« less

  8. Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

    SciTech Connect

    Marinozzi, Vittorio; Ambrosio, Giorgio; Ferracin, Paolo; Izquierdo Bermudez, Susana; Rysti, Juho; Salmi, Tiina; Sorbi, Massimo; Todesco, Ezio

    2016-06-01

    In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close to the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.

  9. Higher order mode filter design for double quarter wave crab cavity for the LHC high luminosity upgrade

    SciTech Connect

    Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Burt, G.; Calaga, R.; Capatina, O.; Hall, B.; Jones, T.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multiphysics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  10. Upgrades to the CMS Cathode Strip Chambers for 2017 and the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Morse, David; CMS Collaboration

    2017-01-01

    An overview will be given of upgrades to the CMS Cathode Strip Chambers (CSC) during the extended technical stop 2016-2017 and plans for future upgrades targeting the HL-LHC. HL-LHC conditions will surpass the physical capabilities of the present detector, and require novel hardware to cope with increased rates and maintain the high performance of the CSC achieved up to now.

  11. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    SciTech Connect

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  12. LARP Long Quadrupole: A "Long" Step Toward an LHC Luminosity Upgrade with Nb3Sn Magnets

    SciTech Connect

    Ambrosio, Giorgio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960's. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  13. Large area thinned planar sensors for future high-luminosity-LHC upgrades

    NASA Astrophysics Data System (ADS)

    Wittig, T.; Lawerenz, A.; Röder, R.

    2016-12-01

    Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2ṡ 1016 neq/cm2. For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ~ 4 × 4 cm2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.

  14. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  15. Mechanical Analysis of the 400 MHz RF-Dipole Crabbing Cavity Prototype for LHC High Luminosity Upgrade

    SciTech Connect

    De Silva, Subashini U.; Park, HyeKyoung; Delayen, Jean R.; Li, Z.

    2013-12-01

    The proposed LHC high luminosity upgrade requires two crabbing systems in increasing the peak luminosity, operating both vertically and horizontally at two interaction points of IP1 and IP5. The required system has tight dimensional constraints and needs to achieve higher operational gradients. A proof-of-principle 400 MHz crabbing cavity design has been successfully tested and has proven to be an ideal candidate for the crabbing system. The cylindrical proof-of-principle rf-dipole design has been adapted in to a square shaped design to further meet the dimensional requirements. The new rf-dipole design has been optimized in meeting the requirements in rf-properties, higher order mode damping, and multipole components. A crabbing system in a cryomodule is expected to be tested on the SPS beam line prior to the test at LHC. The new prototype is required to achieve the mechanical and thermal specifications of the SPS test followed by the test at LHC. This paper discusses the detailed mechanical and thermal analysis in minimizing Lorentz force detuning and sensitivity to liquid He pressure fluctuations.

  16. A new ATLAS pixel front-end IC for upgraded LHC luminosity

    NASA Astrophysics Data System (ADS)

    Barbero, M.; Arutinov, D.; Beccherle, R.; Darbo, G.; Ely, R.; Fougeron, D.; Garcia-Sciveres, M.; Gnani, D.; Hemperek, T.; Karagounis, M.; Kluit, R.; Kostioukhine, V.; Mekkaoui, A.; Menouni, M.; Schipper, J.-D.

    2009-06-01

    A new pixel Front-End (FE) IC is being developed in a 130 nm technology for use in the upgraded ATLAS pixel detector. The new pixel FE will be made of smaller pixels (50×250 μm vs. 50×400 μm for the present FE, FE-I3), a much improved active area over inactive area ratio, and a new analog pixel chain tuned for low power and new detector input capacitance. The higher luminosity for which this IC is tuned implies a complete redefinition of the digital architecture logic, which will not be based on End-of-Column data buffering but on local pixel logic and local pixel data storage. An overview of the new FE is given with particular emphasis on the new digital logic architecture and possible architecture variations.

  17. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    SciTech Connect

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  18. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  19. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    NASA Astrophysics Data System (ADS)

    Spoor, Matthew

    2017-02-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  20. Design and Analysis of TQS01, a 90 mm Nb3Sn Model Quadrupole for LHC Luminosity Upgrade Based on a Key and Bladder Assembly

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.C.; Dietderich, D.R.; Ferracin, P.; Ghosh, A.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Novitsky, I.V.; Sabbi, G.L.; Turrioni, D.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    The US LHC Accelerator Research Program (LARP) is developing Nb{sub 3}Sn accelerator magnet technology for the LHC luminosity upgrade. Two 90 mm 'Technology Quadrupole' models (TQS01, TQC01) are being developed in close collaboration between LBNL and FNAL, using identical coil design, but two different support structures. The TQS01 structure was developed and tested at LBNL. With this approach coils are supported by an outer aluminum shell and assembled using keys and bladders. In contrast, the second model TQC01, utilize stainless steel collars and a thick stainless steel skin. This paper describes the TQS01 model magnet, its 3D ANSYS stress analysis, and anticipated instrumentation and assembly procedure.

  1. Test Results of 15 T Nb3Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Schmalzle, J.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D.W.; Chlachidze, G.; Dietderich, D.R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Kashikhin, V.V.; Sabbi, G.L.; Schmalzle, J.; Wanderer,; P.l Xiaorong, W.; Zlobin, A.V.

    2011-08-03

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  2. Test Results of 15 T Nb{sub 3}Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D. W.; Chlachidze, G.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Kashikhin, V. V.; Sabbi, G. L.; Schmalzle, J.; Wang, X.; Zlobin, A. V.

    2010-08-01

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3 Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  3. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  4. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  5. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  6. High Luminosity LHC: Challenges and plans

    SciTech Connect

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Bruning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, Massimo; Iadarola, G.; Li, K.; Lechner, A.; Medrano, L. Medina; Metral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomas, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  7. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  8. Upgrades of the CMS Outer Tracker for HL-LHC

    NASA Astrophysics Data System (ADS)

    Sguazzoni, Giacomo

    2017-02-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 ×1034cm-2s-1 around 2028, to possibly reach an integrated luminosity of 3000 fb-1 in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D activities.

  9. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2016-07-12

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  10. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Cadoux, F.; Clark, A.; Endo, M.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Hanagaki, K.; Hara, K.; Iacobucci, G.; Ikegami, Y.; Jinnouchi, O.; La Marra, D.; Nakamura, K.; Nishimura, R.; Perrin, E.; Seez, W.; Takubo, Y.; Takashima, R.; Terada, S.; Todome, K.; Unno, Y.; Weber, M.

    2014-04-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm-2 s-1. For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described.

  11. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  12. Detector Developments for the High Luminosity LHC Era (4/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  13. Detector Developments for the High Luminosity LHC Era (4/4)

    SciTech Connect

    2010-09-22

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  14. Detector Developments for the High Luminosity LHC Era (3/4)

    SciTech Connect

    2010-09-22

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  15. Detector Developments for the High Luminosity LHC Era (3/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  16. The BRAN luminosity detectors for the LHC

    NASA Astrophysics Data System (ADS)

    Matis, H. S.; Placidi, M.; Ratti, A.; Turner, W. C.; Bravin, E.; Miyamoto, R.

    2017-03-01

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×1034 cm-2 s-1 with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  17. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    NASA Astrophysics Data System (ADS)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  18. SMALL ANGLE CRAB COMPENSATION FOR LHC IR UPGRADE

    SciTech Connect

    CALAGA,R.; DORDA, U.; OHMI, D.; OIDE, K.; TOMAS, R.; ZIMMERMANN, F.

    2007-06-25

    A small angle (< 1 mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle [I]. The luminosity loss increases steeply to unacceptable levels as the IP beta function is reduced below its nominal value (see Fig. 1 in Ref. [2]). The crab compensation in the LHC can be accomplished using only two sets of deflecting RF cavities, placed in collision-free straight sections of the LHC to nullify the effective crossing angles at IPI & IP5. We also explore a 400 MHz superconducting cavity design and discuss the pertinent RF challenges. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, and crab RF noise sources.

  19. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  20. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  1. Operational results from the LHC luminosity monitors

    SciTech Connect

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  2. Heat Exchanger Design Studies for AN Lhc Inner Triplet Upgrade

    NASA Astrophysics Data System (ADS)

    Rabehl, R. J.; Huang, Y.

    2008-03-01

    A luminosity upgrade of the CERN Large Hadron Collider (LHC) is planned to coincide with the expected end of life of the existing inner triplet quadrupole magnets. The upgraded inner triplet will have much larger heat loads to be removed from the magnets by the cryogenics system. A number of cryogenics design studies have been completed under the LHC Accelerator Research Program (LARP), including investigations of required heat exchanger characteristics to transfer this heat from the pressurized He II bath to the saturated He II system. This paper discusses heat exchangers both external to the magnet cold mass and internal to the magnet cold mass. A possible design for a heat exchanger external to the magnet cold mass is also presented.

  3. CMS HCAL Endcap Simulations for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Pedro, Kevin

    2013-04-01

    The long-term high luminosity upgrade to the LHC will increase the levels of radiation affecting the CMS calorimeters. By the end of Phase 2, parts of the electromagnetic and hadronic endcap calorimeters could receive up to 10 MRad of radiation. A model of the radiation damage to HCAL, which has been implemented in the CMS fast simulation, will be described. The effects of radiation on physics capabilities with jets will be presented, with the most important effect coming from scaling of photodetector noise due to recalibration. In addition, a standalone Geant4 simulation with a simplified geometry can be used to test configurations with new radiation-hard ECALs. Results for pion response and resolution with new configurations will be shown.

  4. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  5. New Detector Technologies for the LHC Experiments: Prospects, Strategies and Technologies for the HL-LHC Upgrades

    SciTech Connect

    Mannelli, Marcello

    2013-03-06

    We review the prospects, strategies and technologies for the High Luminosity (HL-LHC) upgrades of the ATLAS and CMS detectors, in the light of a very successful two year-long first physics run, and the discovery of a new 126 GeV boson with properties consistent with those of the Standard Model Higgs boson.

  6. Upgrades to the CSC Cathode Strip Chamber electronics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Bravo, C.

    2017-01-01

    The luminosity, latency, and trigger rate foreseen at the High Luminosity LHC (HL-LHC) present challenges to efficient readout of the Cathode Strip Chambers (CSCs, [1]) of the CMS end cap muon detector. Upgrades to the electronics are targeted for the inner rings of CSCs in each station, which have the highest flux of particles. The upgrades comprise digital cathode front end boards for nearly deadtimeless and long trigger latency operating capability, new DAQ boards that transmit data from the detectors with higher-bandwidth links, and a new data concentrator/interface to the central DAQ system that can receive the higher input rates.

  7. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  8. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  9. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  10. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    SciTech Connect

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.; Ferracin, P.; Sabbi, G.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  11. Upgrades for the Precision Proton Spectrometer at the LHC: Precision timing and tracking detectors

    NASA Astrophysics Data System (ADS)

    Gallinaro, Michele

    2017-03-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately ±210 m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25 ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  12. Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

    NASA Astrophysics Data System (ADS)

    Díez, Sergio; Atlas Collaboration

    2013-01-01

    This paper describes the baseline integration structures for the silicon strip sensors to be used in the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC) machine, the so-called High Luminosity LHC (HL-LHC). Highly modular structures have been developed for the integration of the silicon strips sensors, readout electronics, cooling, and support structures, called 'staves' for the barrel region and 'petals' for the end-caps of the ATLAS strips tracker. This work describes the status of the current prototypes, the building procedure, designed for mass production even at a prototyping stage, and their electrical performances.

  13. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  14. OPEN MIDPLANE DIPOLE DESIGN FOR LHC IR UPGRADE.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; SCHMALZLE,J.; MOKHOV,N.

    2004-01-21

    The proposed luminosity upgrade of the Large Hadron Collider (LHC), now under construction, will bring a large increase in the number of secondary particles from p-p collisions at the interaction point (IP). Energy deposition will be so large that the lifetime and quench performance of interaction region (IR) magnets may be significantly reduced if conventional designs are used. Moreover, the cryogenic capacity of the LHC will have to be significantly increased as the energy deposition load on the interaction region (IR) magnets by itself will exhaust the present capacity. We propose an alternate open midplane dipole design concept for the dipole-first optics that mitigates these issues. The proposed design takes advantage of the fact that most of the energy is deposited in the midplane region. The coil midplane region is kept free of superconductor, support structure and other material. Initial energy deposition calculations show that the increase in temperature remains within the quench tolerance of the superconducting coils. In addition, most of the energy is deposited in a relatively warm region where the heat removal is economical. We present the basic concept and preliminary design that includes several innovations.

  15. Design and testing of a four rod crab cavity for High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hall, B.; Burt, G.; Apsimon, R.; Lingwood, C. J.; Tutte, A.; Grudiev, A.; Macpherson, A.; Navarro-Tapia, M.; Calaga, R.; Hernández-Chahín, K. G.; Appleby, R. B.; Goudket, P.

    2017-01-01

    A 4-rod deflecting structure is proposed as a possible crab cavity design for the LHC high luminosity upgrade. Crab cavities are required for the LHC luminosity upgrade to provide a greater bunch overlap in the presence of a crossing angle, but must fit in the existing limited space. The structure has two parallel sections consisting of two longitudinally opposing quarter-wave rods, where each rod has the opposite charge from each of its nearest neighbors. The structure is transversely compact because the frequency is dependent on the rod lengths rather than the cavity radius. Simulations were undertaken to investigate the effect of rod shape on surface fields, higher order multipole terms and induced wakefields in order to obtain the optimal rod shape. The simulation results presented show that the addition of focus electrodes or by shaping the rods the sextupole contribution of the cavity voltage can be negated; the sextupole contribution is 321.57 mTm /m2 , Epeak=27.7 MV /m , and Bpeak=63.9 mT at the design voltage of 3 MV. The damping requirements for the LHC are critical and suitable couplers to damp all modes but the operating mode are presented. The results of various testing cycles of the first SRF 4 rod prototype cavity are presented and show that the cavity has reached the required transverse voltage of 3 MV.

  16. High Speed Measurements of the LHC Luminosity Monitor

    NASA Astrophysics Data System (ADS)

    Beche, J. F.; Byrd, J. M.; Monroy, M.; Ratti, A.; Turner, W.; Bravin, E.

    2006-11-01

    The LHC luminosity monitor is a gas ionization chamber designed to operate in the high radiation environment present in the TAN neutral absorbers at the LHC. One of the challenges is to measure the luminosity of individual bunch crossings with a minimum separation of 25 nsec. To test the time response and other aspects of a prototype chamber, we have performed a test using an x-ray beam of 40-60 keV with pulse spacing of 26 nsec as an ionizing beam. The tests were made at BL 8.3.2 at the Advanced Light Source (ALS). This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  17. 4D fast tracking for experiments at high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Neri, N.; Cardini, A.; Calabrese, R.; Fiorini, M.; Luppi, E.; Marconi, U.; Petruzzo, M.

    2016-11-01

    The full exploitation of the physics potential of the high luminosity LHC is a big challenge that requires new instrumentation and innovative solutions. We present here a conceptual design and simulation studies of a fast timing pixel detector with embedded real-time tracking capabilities. The system is conceived to operate at 40 MHz event rate and to reconstruct tracks in real-time, using precise space and time 4D information of the hit, for fast trigger decisions. This work is part of an R&D project aimed at building an innovative tracking detector with superior time (10 ps) and position (10 μm) resolutions to be used in very harsh radiation environments, for the ultimate flavour physics experiment at the high luminosity phase of the LHC.

  18. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  19. LHC Abort Gap Cleaning Studies During Luminosity Operation

    SciTech Connect

    Gianfelice-Wendt, E.; Bartmann, W.; Boccardi, A.; Bracco, C.; Bravin, E.; Goddard, B.; Hofle, W.; Jacquet, D.; Jeff, A.; Kain, V.; Meddahi, M.; /CERN

    2012-05-11

    The presence of significant intensities of un-bunched beam is a potentially serious issue in the LHC. Procedures using damper kickers for cleaning both the Abort Gap (AG) and the buckets targeted for injection, are currently in operation at flat bottom. Recent observations of relatively high population of the AG during physics runs brought up the need for AG cleaning during luminosity operation. In this paper the results of experimental studies performed in October 2011 are presented.

  20. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  1. Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...

    2017-01-10

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis andmore » the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less

  2. A readout driver for the ATLAS LAr-calorimeter at a High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Kielburg-Jeka, A.; Stärz, S.

    2011-01-01

    A new readout driver (ROD) is being developed as a central part of the signal processing of the ATLAS liquid-argon calorimeters for operation at the High Luminosity LHC (HL-LHC). In the architecture of the upgraded readout system, the ROD modules will have several challenging tasks: receiving of up to 1.4 Tb/s of data per board from the detector front-end on multiple high-speed serial links, low-latency data processing, data buffering, and data transmission to the ATLAS trigger and DAQ systems. In order to evaluate the different components, prototype boards in ATCA format equipped with modern Xilinx and Altera FPGAs have been built. We will report on the measured performance of the SERDES devices, the parallel signal processing using DSP slices, the implementation of trigger interfaces, using e.g. multi-Gb Ethernet, as well as the development of the ATCA infrastructure on the very first ROD prototype modules.

  3. Status and Outlook for the RHIC Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Bai, Mei

    2010-02-01

    electron lens to compensate the beam-beam effect is also currently explored at RHIC. This presentation will report the current performance of RHIC as well as the plans for RHIC luminosity upgrades. )

  4. Simulation of the LHC BRAN luminosity monitor for high luminosity interaction regions

    SciTech Connect

    Miyamoto, R.; Matis, H.; Ratti, A.; Stiller, J.; White, S.M.

    2010-05-23

    The BRAN (Beam RAte of Neutrals) detector monitors the collision rates in the high luminosity interaction regions of LHC (ATLAS and CMS). This Argon gas ionization detector measures the forward neutral particles from collisions at the interaction point. To predict and improve the understanding of the detector's performance, we produced a detailed model of the detector and its surroundings in Fluka. In this paper, we present the model and results of our simulations including the detectors estimated response to interactions for beam energies of 3.5, 5, and 7 TeV.

  5. Simulations of a fast feedback system for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Daw, Aron; Mastoridis, Themistoklis; Nguyen, Philippe

    2017-01-01

    The High-Luminosity LHC upgrade, expected to be finished by 2025, will generate a tenfold increase in the number of recorded collisions. Part of this improvement will come from the implementation of crab cavities, which exert transverse momentum kicks on the bunches of particles just before they collide, in order to have head-on collisions. The crab cavity field will include amplitude and phase noise, leading to undesirable consequences, such as the increase of the particle cloud size (emittance). Simulations were performed to evaluate the performance improvement with a proposed fast feedback system acting through the crab cavities. This work is supported by the National Science Foundation under Grant No. PHY-1535536.

  6. US-LARP progress on LHC IR upgrades

    SciTech Connect

    Sen, Tanaji; Johnstone, John; Mokhov, Nikolai; Fischer, Wolfram; Gupta, Ramesh; Qiang, Ji; /LBL, Berkeley

    2006-03-01

    We review the progress on LHC IR upgrades made by the US-LARP collaboration since the last CARE meeting in November 2004. We introduce a new optics design with doublet focusing, and discuss energy deposition calculations with an open mid-plane dipole. We present the results of a beam-beam experiment at RHIC. This experiment was the first phase of a planned test of the wire compensation principle at RHIC.

  7. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

    DOE PAGES

    Cooley, L. D.; Ghosh, A. K.; Dietderich, D. R.; ...

    2017-06-01

    The High Luminosity Upgrade of the Large Hadron Collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. no.4000207, along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN andmore » LARP. This paper describes the rationale beneath the 0.85 mm diameter strand’s chief parameters, which are 108 or more sub-elements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for ~100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to the HL-LHC specification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the sub-element diameter from 50 to 55 μm, and a Nb:Sn molar ratio of 3.6 instead of 3.4. Furthermore, the statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.« less

  8. Upgraded Trigger Readout Electronics for the ATLAS LAr Calorimeters for Future LHC Running

    NASA Astrophysics Data System (ADS)

    Ma, Hong; ATLAS Liquid Argon Calorimeter Group

    2015-02-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that are digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first- level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 1034cm-2s-1. In order to retain the capability to trigger on low energy electrons and photons when the LHC is upgraded to higher luminosity, an improved LAr calorimeter trigger readout is proposed and being constructed. The new trigger readout system makes available the fine segmentation of the calorimeter at the L1 trigger with high precision in order to reduce the QCD jet background in electron, photon and tau triggers, and to improve jet and missing ET trigger performance. The new LAr Trigger Digitizer Board is designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new Digital Processing System. The reconstructed energies of trigger readout channels after digital filtering are transmitted to the L1 system, allowing the extraction of improved trigger signatures. This contribution presents the motivation for the upgrade, the concept for the new trigger readout and the expected performance of the new trigger, and describes the components being developed for the new system.

  9. Upgrade of the ATLAS muon spectrometer for operation at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Kortner, Oliver

    2017-02-01

    The High-Luminosity Large Hadron Collider will increase the sensitivity of the ATLAS experiment to rare physics processes. In order to cope with a 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the 1st trigger level to 1 MHz at 6 μ s latency. This requires new on- and off-chamber electronics for its muon spectrometer. The replacement of the precision chamber read-out electronics will make it possible to include their data in the 1st level trigger decision and thus to increase the selectivity of the 1st level muon trigger. The acceptance of the present RPC trigger system in the barrel region will be increased from 75% to 95% by the installation of additional thin-gap RPC with a substantially increased high-rate capability compared to the current RPCs.

  10. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-11-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  11. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  12. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  13. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  14. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  15. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  16. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  17. Planar pixel sensors for the ATLAS tracker upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Gallrapp, C.; Atlas Planar Pixel Sensor R&D Project

    2013-08-01

    The ATLAS Planar Pixel Sensor R&D Project is a collaboration of 17 institutes and more than 80 scientists. Their goal is to explore the operation of planar pixel sensors for the tracker upgrade at the High Luminosity-Large Hadron Collider (HL-LHC). This work will give a summary of the achievements on radiation studies with n-in-n and n-in-p pixel sensors, bump-bonded to ATLAS FE-I3 and FE-I4 read-out chips. The summary includes results from tests with radioactive sources and tracking efficiencies extracted from test beam measurements. Analysis results of 2 ×1016neqcm-2 and 1 ×1016neqcm-2 (1 MeV neutron equivalent) irradiated n-in-n and n-in-p modules confirm the operation of planar pixel sensors for future applications.

  18. Development of pixel sensors with 25 × 500 μm2 pitch for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Burdin, S.; Casse, G.; Dervan, P.; Forshaw, D.; Hayward, H.; Tsurin, I.; Wormald, M.

    2014-11-01

    Upgrade of the ATLAS tracker detector for high-luminosity LHC conditions requires novel approaches to the pixel sensor design. Tests of different pitch layouts represent significant part of the ATLAS upgrade program. Better momentum resolution and multiple track reconstruction in the r - ϕ plane could be achieved with finer ϕ-segmentation. Changing the pitch from 50 × 250 μm2 to 25 × 500 μm2 in the outer pixel modules would improve the tracking performance of the upgraded ATLAS detector. The pixel sensors with 25 × 500 μm2 readout by FE-I4 chips have been designed at the University of Liverpool. The sensors were measured in the laboratory and test-beam. Results of these tests will be presented together with geometry characteristics of other novel pixel layouts, compatible with the FE-I4 floor-plan, which have been designed and produced.

  19. 800MHz Crab Cavity Conceptual Design For the LHC Upgrade

    SciTech Connect

    Xiao, Liling; Li, Zenghai; Ng, Cho-Kuen; Seryi, Andrei; /SLAC

    2009-05-26

    In this paper, we present an 800 MHz crab cavity conceptual design for the LHC upgrade. The cell shape is optimized for lower maximum peak surface fields as well as higher transverse R/Q. A compact coax-to-coax coupler scheme is proposed to damp the LOM/SOM modes. A two-stub antenna with a notch filter is used as the HOM coupler to damp the HOM modes in the horizontal plane and rejects the operating mode at 800MHz. Multipacting (MP) simulations show that there are strong MP particles at the disks. Adding grooves along the short axis without changing the operating mode's RF characteristics can suppress the MP activities. Possible input coupler configurations are discussed.

  20. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  1. The Upgrade of the ATLAS Electron and Photon Triggers for LHC Run 2 and their Performance

    NASA Astrophysics Data System (ADS)

    Thomson, Evelyn; Atlas Collaboration

    2016-03-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance multivariate analysis techniques are introduced at the HLT. The evolution of the ATLAS electron and photon triggers and their performance will be presented, including new results from the 2015 LHC Run 2 operation. Submitted on behalf of ATLAS electron and photon combined performance group. Speaker is yet to be chosen.

  2. An Alternative High Luminosity LHC with Flat Optics and Long-Range Beam-Beam Compensation

    SciTech Connect

    Fartoukh, Stephane; Valishev, Alexander; Shatilov, Dmitry

    2015-06-01

    In the baseline scenario of the High-Luminosity LHC (HL-LHC), the geometric loss of luminosity in the two high luminosity experiments due to collisions with a large crossing angle is recovered by tilting the bunches in the interaction region with the use of crab cavities. A possible backup scenario would rely on a reduced crossing angle together with flat optics (with different horizontal and vertical $\\beta^{\\ast}$values) for the preservation of luminosity performance. However, the reduction of crossing angle coupled with the flat optics significantly enhances the strength of long-range beam-beam interactions. This paper discusses the possibility to mitigate the long-range beam-beam effects by current bearing wire compensators (or e-lens). We develop a new HL-LHC parameter list and analyze it in terms of integrated luminosity performance as compared to the baseline. Further, we evaluate the operational scenarios using numerical simulations of single-particle dynamics with beam-beam effects.

  3. ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

    SciTech Connect

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

    2010-05-23

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  4. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  5. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  6. The radiation hardness and temperature stability of Planar Light-wave Circuit splitters for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.

    2011-10-01

    High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( < 0.1 dB) in reducing the operating temperature from 25°C to -25°C. The silica based splitters from all manufacturers did not exhibit significant radiation induced insertion losses, despite the high dose they were exposed to. The glass based sample, however, had a per channel radiation induced insertion loss of up to 1.16 dB. Whilst the silica based splitters can be considered as qualified for HL-LHC use with regards to radiation hardness, the glass technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.

  7. Second-generation coil design of the Nb3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, S. Izquierdo; Ambrosio, G.; Ballarino, A.; ...

    2016-01-18

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a finemore » tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this study, we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.« less

  8. Support Structure Design of the $\\hbox{Nb}_{3}\\hbox{Sn}$ Quadrupole for the High Luminosity LHC

    SciTech Connect

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of the detailed 3D numerical analysis performed in preparation for the first short model test.

  9. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    SciTech Connect

    Kain, V.; Aberle, O.; Bracco, C.; Fraser, M.; Galleazzi, F.; Gianfelice-Wendt, E.; Kosmicki, A.; Maciariello, F.; Meddahi, M.; Nuiry, F. X.; Steele, G.; Velotti, F.

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  10. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  11. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Hall, G.

    2016-07-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  12. Scenarios for sLHC and vLHC

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Zimmermann, F.

    2008-03-01

    The projected lifetime of the LHC low-beta quadrupoles and evolution of the statistical error halving time call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the EU CARE-HHH network, two scenarios have been developed for increasing the LHC peak luminosity by a factor 10, to 10 cms ("sLHC"). Both scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges differ substantially. In either scenario luminosity leveling during a store would be advantageous for the physics experiments. Longer-term R&D efforts are devoted to a higher-energy hadron collider ("vLHC"), which could be realized on a green field or as a later and more radical LHC upgrade.

  13. Second-generation coil design of the Nb3Sn low-β quadrupole for the high luminosity LHC

    SciTech Connect

    Bermudez, S. Izquierdo; Ambrosio, G.; Ballarino, A.; Cavanna, E.; Bossert, R.; Cheng, D.; Dietderich, D.; Ferracin, P.; Ghosh, A.; Hagen, P.; Holik, E.; Perez, J. C.; Rochepault, E.; Schmalzle, J.; Todesco, E.; Yu, M.

    2016-01-18

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build a 150 mm aperture Nb3Sn quadrupole for the LHC interaction regions. A first series of 1.5 m long coils were fabricated and assembled in a first short model. A detailed visual inspection of the coils was carried out to investigate cable dimensional changes during heat treatment and the position of the windings in the coil straight section and in the end region. The analyses allow identifying a set of design changes which, combined with a fine tune of the cable geometry and a field quality optimization, were implemented in a new, second-generation, coil design. In this study, we review the main characteristics of the first generation coils, describe the modification in coil lay-out, and discuss their impact on parts design and magnet analysis.

  14. 3D silicon pixel detectors for the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  15. A Proposal for the Upgrade of the Muon Drift Tubes Trigger for the CMS Experiment at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Zotto, Pierluigi; Montecassiano, Fabio

    2016-11-01

    A major upgrade of the readout and trigger electronics of the CMS Drift Tubes muon detector is foreseen in order to allow its efficient operation at the High Luminosity LHC. A proposal for a new L1 Trigger Primitives Generator for this detector is presented, featuring an algorithm operating on the time of charge collection measurements provided by the asynchronous readout of the new TDC system being developed. The algorithm is being designed around the implementation in state-of-the-art FPGA devices of the original development of a Compact Hough Transform (CHT) algorithm combined with a Majority Mean-Timer, to identify both the parent bunch crossing and the muon track parameters. The current state of the design is presented along with the performance requirements, focusing on the future developments.

  16. The ATLAS Fast Tracker and Tracking at the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ilic, N.

    2017-02-01

    The increase in centre-of-mass energy and luminosity of the Large Hadron Collider makes controlling trigger rates with high efficiency challenging. The ATLAS Fast TracKer is a hardware processor built to reconstruct tracks at a rate of up to 100 kHz and provide them to the high level trigger. The tracker reconstructs tracks by matching incoming detector hits with pre-defined track patterns stored in associative memory on custom ASICs. Inner detector hits are fitted to these track patterns using modern FPGAs. This proceeding describe the electronics system used for the massive parallelization performed by the Fast TracKer. An overview of the installation, commissioning and running of the system is given. The ATLAS upgrades planned to enable tracking at the High-Luminosity Large Hadron Collider are also discussed.

  17. CMS Tracker upgrade for HL-LHC: R&D plans, present status and perspectives

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-07-01

    During the high luminosity phase of the LHC (HL-LHC), the machine is expected to deliver an instantaneous luminosity of 5 ×1034cm-2s-1. A total of 3000 fb-1 of data is foreseen to be delivered, with the opening of new physics potential for the LHC experiments, but also new challenges from the point of view of both detector and electronics capabilities and radiation hardness. In order to maintain its physics reach, CMS will build a new Tracker, including a completely new Pixel Detector and Outer Tracker. The ongoing R&D activities on both pixel and strip sensors will be presented. The present status of the Inner and Outer Tracker projects will be illustrated, and the possible perspectives will be discussed.

  18. Luminosity determination in pp collisions at [Formula: see text] = 8 TeV using the ATLAS detector at the LHC.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Duguid, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kawade, K; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Menary, S B; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L

    2016-01-01

    The luminosity determination for the ATLAS detector at the LHC during pp collisions at [Formula: see text] 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of [Formula: see text] is obtained for the [Formula: see text] of pp collision data delivered to ATLAS at [Formula: see text] 8 TeV in 2012.

  19. Improved luminosity determination in pp collisions at [Formula: see text] using the ATLAS detector at the LHC.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boek, T T; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crépé-Renaudin, S; Crescioli, F; Cristinziani, M; Crosetti, G; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Dohmae, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Duxfield, R; Dwuznik, M; Dydak, F; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilchriese, M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Goeringer, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Göpfert, T; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gössling, C; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guindon, S; Gul, U; Guler, H; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koenig, S; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollefrath, M; Komar, A A; Komori, Y; Kondo, T; Köneke, K; König, A C; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Koperny, S; Köpke, L; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Lumb, D; Luminari, L; Lund, E; Lundberg, B; Lundberg, J; Lundberg, O; Lund-Jensen, B; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, M; Maeno, T; Magnoni, L; Magradze, E; Mahboubi, K; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Mangeard, P S; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mättig, P; Mättig, S; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Mönig, K; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Möser, N; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Muenstermann, D; Müller, T A; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero Y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schneider, B; Schnoor, U; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Young, C J; Youssef, S; Yu, D; Yu, D R; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zenz, S; Zerwas, D; Zevi Della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zutshi, V; Zwalinski, L

    The luminosity calibration for the ATLAS detector at the LHC during pp collisions at [Formula: see text] in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at [Formula: see text]. A luminosity uncertainty of [Formula: see text] is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of [Formula: see text] is obtained for the 5.5 fb(-1) delivered in 2011.

  20. Luminosity determination in pp collisions at √{s} = 8 TeV using the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kawade, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.

    2016-12-01

    The luminosity determination for the ATLAS detector at the LHC during pp collisions at √{s} = 8 TeV in 2012 is presented. The evaluation of the luminosity scale is performed using several luminometers, and comparisons between these luminosity detectors are made to assess the accuracy, consistency and long-term stability of the results. A luminosity uncertainty of δ L/L = ± 1.9% is obtained for the 22.7 fb^{-1} of pp collision data delivered to ATLAS at √{s} = 8 TeV in 2012.

  1. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  2. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  3. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Izquierdo Bermudez, S.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Tartaglia, M.; Turrioni, D.; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  4. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  5. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  6. Submission of the first full scale prototype chip for upgraded ATLAS pixel detector at LHC, FE-I4A

    NASA Astrophysics Data System (ADS)

    Barbero, Marlon; Arutinov, David; Beccherle, Roberto; Darbo, Giovanni; Dube, Sourabh; Elledge, David; Fleury, Julien; Fougeron, Denis; Garcia-Sciveres, Maurice; Gensolen, Fabrice; Gnani, Dario; Gromov, Vladimir; Jensen, Frank; Hemperek, Tomasz; Karagounis, Michael; Kluit, Ruud; Kruth, Andre; Mekkaoui, Abderrezak; Menouni, Mohsine; Schipper, Jan David; Wermes, Norbert; Zivkovic, Vladimir

    2011-09-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences between the FE-I4A IC and the final FE-I4 as envisioned for IBL.

  7. Prototype Testing for a Copper Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Anzalone, Gene; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Rogers, Reggie; /SLAC

    2009-01-20

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw referred to as RC0 has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results. The prototype has also been tested in vacuum bake-out to confirm compliance with the LHC vacuum spec. CMM equipment has been used to verify the flatness of the jaw surface after heat tests and bake-out.

  8. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  9. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    DOE PAGES

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; ...

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data frommore » the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.« less

  10. Field Tolerances for the Triplet Quadrupoles of the LHC High Luminosity Lattice

    SciTech Connect

    Nosochkov, Yuri; Cai, Y.; Jiao, Y.; Wang, M-H.; Fartoukh, S.; Giovannozzi, M.; Maria, R.de; McIntosh, E.

    2012-06-25

    It has been proposed to implement the so-called Achromatic Telescopic Squeezing (ATS) scheme in the LHC high luminosity (HL) lattice to reduce beta functions at the Interaction Points (IP) up to a factor of 8. As a result, the nominal 4.5 km peak beta functions reached in the Inner Triplets (IT) at collision will be increased by the same factor. This, therefore, justifies the installation of new, larger aperture, superconducting IT quadrupoles. The higher beta functions will enhance the effects of the triplet quadrupole field errors leading to smaller beam dynamic aperture (DA). To maintain the acceptable DA, the effects of the triplet field errors must be re-evaluated, thus specifying new tolerances. Such a study has been performed for the so-called '4444' collision option of the HL-LHC layout version SLHCV3.01, where the IP beta functions are reduced by a factor of 4 in both planes with respect to a pre-squeezed value of 60 cm at two collision points. The dynamic aperture calculations were performed using SixTrack. The impact on the triplet field quality is presented.

  11. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  12. Magnetic Measurements of the First Nb$_3$Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    SciTech Connect

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; Ferracin, P.; Holik, E.; Sabbi, G.; Stoynev, S.; Strauss, T.; Sylvester, C.; Tartaglia, M.; Todesco, E.; Velev, G.; Wang, X.

    2016-09-06

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  13. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    NASA Astrophysics Data System (ADS)

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2017-02-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  14. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    SciTech Connect

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred; Novitski, Igor; Karppinen, Mikko

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  15. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    SciTech Connect

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  16. Design of a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Lari, Luisella; /LPHE, Lausanne

    2010-02-15

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: (1) Collimator jaw deflection and sagitta due to heating must be small when operated in the steady state condition, (2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, (3) Jaws must recover from accident scenario where up to 8 full intensity beam pulses impact on the jaw surface and (4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities.

  17. Mechanical qualification of the support structure for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC

    SciTech Connect

    Juchno, M.; Ambrosio, G.; Anerella, M.; Bajas, H.; Bajko, M.; Bourcey, N.; Cheng, D. W.; Felice, H.; Ferracin, P.; Grosclaude, P.; Guinchard, M.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.

  18. Mechanical qualification of the support structure for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure wasmore » preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less

  19. The readout of the LHC beam luminosity monitor: Accurate shower energy measurements at a 40 MHz repetition rate

    SciTech Connect

    Manfredi, P.F.; Ratti, L.; Speziali, V.; Traversi, G.; Manghisoni, M.; Re, V.; Denes, P.; Placidi, M.; Ratti, A.; Turner, W.C.; Datte, P.S.; Millaud, J.E.

    2003-05-10

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction create showers in the absorbers placed in front of the cryogenic separation dipoles. The shower energy, as it can be measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. This principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, detector and front-end electronics must comply with extremely stringent requirements. To make the bunch-by-bunch measurement feasible, their speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, in the actual operation the detector must stand extremely high radiation doses. The front-end electronics, to survive, must be located at some distance from the region of high radiation field, which means that a properly terminated, low-noise, cable connection is needed between detector and front-end electronics. After briefly reviewing the solutions that have been adopted for the detector and the front-end electronics and the results that have been obtained so far in tests on the beam, the latest version of the instrument in describe in detail. It will be shown how a clever detector design, a suitable front-end conception based on the use of a ''cold resistance'' cable termination and a careful low-noise design, along with the use of an effective deconvolution algorithm, make the luminosity measurement possible on a bunch-by-bunch basis at the LHC bunch repetition rates.

  20. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  1. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    NASA Astrophysics Data System (ADS)

    Bochenek, M.; Dabrowski, W.; Faccio, F.; Michelis, S.

    2010-12-01

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved.

  2. Probing TeV scale Top-Philic Resonances with Boosted Top-Tagging at the High Luminosity LHC

    SciTech Connect

    Kim, Jeong Han; Kong, Kyoungchul; Lee, Seung J.; Mohlabeng, Gopolang

    2016-04-25

    We investigate the discovery potential of singly produced top-philic resonances at the high luminosity (HL) LHC in the four-top final state. Our analysis spans over the fully-hadronic, semi-leptonic, and same-sign dilepton channels where we present concrete search strategies adequate to a boosted kinematic regime and high jet-multiplicity environments. We utilize the Template Overlap Method (TOM) with newly developed template observables for tagging boosted top quarks, a large-radius jet variable $M_J$ and customized b-tagging tactics for background discrimination. Our results show that the same-sign dilepton channel gives the best sensitivity among the considered channels, with an improvement of significance up to 10%-20% when combined with boosted-top tagging. Both the fully-hadronic and semi-leptonic channels yield comparable discovery potential and contribute to further enhancements in the sensitivity by combining all channels. Finally, we show the sensitivity of a top-philic resonance at the LHC and HL-LHC by showing the $2\\sigma$ exclusion limit and $5\\sigma$ discovery reach, including a combination of all three channels.

  3. The CMS muon system: status and upgrades for LHC Run-2 and performance of muon reconstruction with 13 TeV data

    NASA Astrophysics Data System (ADS)

    Battilana, C.

    2017-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV centre-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  4. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  5. Test results of the first 3D-IC prototype chip developed in the framework of HL-LHC/ATLAS hybrid pixel upgrade

    NASA Astrophysics Data System (ADS)

    Pangaud, P.; Arutinov, D.; Barbero, M.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Garcia-Sciveres, M.; Godiot, S.; Hemperek, T.; Krüger, H.; Obermann, T.; Rozanov, S.; Wermes, N.

    2014-02-01

    To face new challenges brought by the upgrades of the Large Hadron Collider at CERN and of the ATLAS pixels detector, for which high spatial resolution, very good signal to noise ratio and high radiation hardness is needed, 3D integrated technologies are investigated. In the years to come, the Large Hadron Collider will be upgraded to Higher Luminosity (HL-LHC). The ATLAS pixel detector needs to handle this new challenging environment. As a consequence, 3D integrated technologies are pursued with the target of offering higher spatial resolution, very good signal to noise ratio and unprecedented radiation hardness. We present here the test results of the first 3D prototype chip developed in the GlobalFoundries 130 nm technology processed by the Tezzaron Company, submitted within the 3D-IC consortium for which a qualification program was developed. Reliability and influence on the behavior of the integrated devices due to the presence of the Bond Interface (BI) and of the Through Silicon Via (TSV) connections, both needed for the 3D integration process, have also been addressed by the tests.

  6. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  7. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    SciTech Connect

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.; /Fermilab

    2008-06-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup.

  8. Simulations of the LHC high luminosity monitors at beam energies from 3.5 TeV to 7.0 TeV

    SciTech Connect

    Matis, H.S.; Miyamoto, R.; Humphreys, P.; Ratti, A.; Turner, W.C.; Stiller, J.

    2011-03-28

    We have constructed two pairs of fast ionization chambers (BRAN) for measurement and optimization of luminosity at IR1 and IR5 of the LHC. These devices are capable of monitoring the performance of the LHC at low luminosity 10{sup 28} cm{sup -2}s{sup -1} during beam commissioning all the way up to the expected full luminosity of 10{sup 34} cm{sup -2}s{sup -1} at 7.0 TeV. The ionization chambers measure the intensity of hadronic/electromagnetic showers produced by the forward neutral particles of LHC collisions. To predict and improve the understanding of the BRAN performance, we created a detailed FLUKA model of the detector and its surroundings. In this paper, we describe the model and the results of our simulations including the detector's estimated response to pp collisions at beam energies of 3.5, 5.0, and 7.0 TeV per beam. In addition, these simulations show the sensitivity of the BRAN to the crossing angle of the two LHC beams. It is shown that the BRAN sensitivity to the crossing angle is proportional to the measurement of crossing angle by the LHC beam position monitors.

  9. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  10. A Versatile Link for High-Speed, Radiation Resistant Optical Transmission in LHC Upgrades

    NASA Astrophysics Data System (ADS)

    Xiang, A.; Gong, D.; Hou, S.; Huffman, T.; Kwan, S.; Liu, K.; Liu, T.; Prosser, A.; Soos, C.; Su, D.; Teng, P.; Troska, J.; Vasey, F.; Weidberg, T.; Ye, J.

    The Versatile Link project is developing a general purpose physical layer optical link with high bandwidth, radiation resistance and magnetic-field tolerance that meets the requirements of LHC upgrade experiments. This paper presents recent work on system specifications, front-end transceiver prototypes, passive components studies and commercial back-end transceiver evaluations. System optical power budgets are specified for single mode (1310nm) and multi-mode (850nm) links, with a target data rate of 4.8 Gbps and a transmission length of 150 meters. Noise and interference penalties are simulated using the 10GbE link model and verified by bit error ratio measurement on reference links. The power margin is particularly constrained by radiation degradation of the front-end receivers. We report the power budgets for all link variants where at least 1.8 dB safety margins are maintained. The Versatile Transceiver (VTRx) - the front-end module to be installed on-detector - is based on a commercial small form pluggable (SFP+) package, modified to optimize size and mass, assembled to host a qualified laser, PIN photodiode, custom-designed radiation tolerant laser driver and receiving amplifier. A set of VTRxs with validated components have been prototyped and compliance tested. We also present the radiation test results on front-end components and passive components. The total fluence tests for lasers and PINs have been carried out with pions and neutrons up to 4 x 1015/cm2. SEU tests have been performed on PIN photodiodes and the full receiver optical subassembly. Radiation induced absorption in a number of single mode and multi-mode fibers, at -25¡C and up to 500 kGy, have been measured and high performance candidates identified. Commercial off-of-the-shelf parts have been examined for use as back-end transceivers. Compliance tests on SFP+, 4+4 parallel optical engines and SNAP 12 transmitter/receivers have been completed.

  11. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  12. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  13. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 μm or 150 μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 μm×10 μm, at the positions of the original wire bonding pads.

  14. The upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Bird, T.

    2014-12-01

    The LHCb experiment is set for a significant upgrade, which will be ready for Run 3 of the LHC in 2020. This upgrade will allow LHCb to run at a significantly higher instantaneous luminosity and collect an integrated luminosity of 50fb-1 by the end of Run 4. In this process the Vertex Locator (VELO) detector will be upgraded to a pixel-based silicon detector. The upgraded VELO will improve upon the current detector by being closer to the beams and having lower material modules with microchannel cooling and a thinner RF-foil. Simulations have shown that it will maintain its excellent performance, even after the radiation damage caused by collecting an integrated luminosity of 50fb-1.

  15. CMS Pixel Detector design for HL-LHC

    NASA Astrophysics Data System (ADS)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  16. Pixel DAQ and trigger for HL-LHC

    NASA Astrophysics Data System (ADS)

    Morettini, P.

    2017-03-01

    The read-out is one of the challenges in the design of a pixel detector for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), that is expected to operate from 2026 at a leveled luminosity of 5 × 1034 cm‑2 s‑1. This is especially true if tracking information is needed in a low latency trigger system. The difficulties of a fast read-out will be reviewed, and possible strategies explained. The solutions that are being evaluated by the ATLAS and CMS collaborations for the upgrade of their trackers will be outlined and ideas on possible development beyond HL-LHC will be presented.

  17. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    SciTech Connect

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander V.

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  18. Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Beyer, J.; La Rosa, A.; Nisius, R.; Savic, N.

    2017-01-01

    The ATLAS experiment will undergo around the year 2025 a replacement of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) with a new 5-layer pixel system. Thin planar pixel sensors are promising candidates to instrument the innermost region of the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. The sensors of 50-150 μm thickness, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests. In particular active edge sensors have been investigated. The performance of two different versions of edge designs are compared: the first with a bias ring, and the second one where only a floating guard ring has been implemented. The hit efficiency at the edge has also been studied after irradiation at a fluence of 1015 neq/cm2. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50x50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angles with respect to the short pixel direction. Results on the hit efficiency in this configuration are discussed for different sensor thicknesses.

  19. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  20. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Aruntinov, D.; Barbero, M.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Wermes, N.; Breugnon, P.; Chantepie, B.; Clemens, J. C.; Fei, R.; Fougeron, D.; Godiot, S.; Pangaud, P.; Rozanov, A.; Garcia-Sciveres, M.; Mekkaoui, A.

    2013-12-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  1. Search for single production of the heavy vectorlike T quark with T →t h and h →γ γ at the high-luminosity LHC

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei

    2017-02-01

    The vectorlike top partners T are predicted in many extensions of the Standard Model (SM). In a simplified model including a single vectorlike T quark with charge 2 /3 , we investigate the process p p →T j induced by the couplings between the top partner with the first and the third generation quarks at the LHC. We find that the mixing with the first generation can enhance the production cross section. We further study the observability of the single heavy top partner through the process p p →T (→t h )j →t (→b ℓνℓ)h (→γ γ )j at the high-luminosity (HL)-LHC (a 14 TeV p p collider with an integrated luminosity of 3 ab-1 ). For three typical heavy T quark masses mT=600 , 800 and 1000 GeV, the 3 σ exclusion limits, as well as the 5 σ discovery reach in the parameter plane of the two variables g*-RL, are respectively obtained at the HL-LHC.

  2. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  3. Upgrade of the LHCb VELO detector

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  4. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  5. 3D sensors for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Vázquez Furelos, D.; Carulla, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; Lange, J.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.

    2017-01-01

    In order to increase its discovery potential, the Large Hadron Collider (LHC) accelerator will be upgraded in the next decade. The high luminosity LHC (HL-LHC) period requires new sensor technologies to cope with increasing radiation fluences and particle rates. The ATLAS experiment will replace the entire inner tracking detector with a completely new silicon-only system. 3D pixel sensors are promising candidates for the innermost layers of the Pixel detector due to their excellent radiation hardness at low operation voltages and low power dissipation at moderate temperatures. Recent developments of 3D sensors for the HL-LHC are presented.

  6. Results From the DAFNE High Luminosity Test

    SciTech Connect

    Milardi, C.; Alesini, D.; Biagini, M.E.; Boni, R.; Boscolo, M.; Bossi, F.; Buonomo, B.; Clozza, A.; Delle Monache, G.; Demma, T.; Di Pasquale, E.; Di Pirro, G.; Drago, A.; Gallo, A.; Ghigo, A.; Guiducci, S.; Ligi, C.; Marcellini, F.; Mazzitelli, G.; Murtas, F.; Pellegrino, L.; /Frascati /Novosibirsk, IYF /CERN /INFN, Cosenza /INFN, Rome /KEK, Tsukuba /Orsay, LAL /Rome U. /Pisa U. /INFN, Pisa /INFN, Rome3 /SLAC

    2012-04-11

    The DAPHNE collider, based on a new collision scheme including Large Piwinsky angle and Crab-Waist, has been successfully commissioned and is presently delivering luminosity to the SIDDHARTA detector. Large crossing angle and Crab-Waist scheme proved to be effective in: (1) Increasing luminosity, now a factor 2.7 higher than in the past; and (2) controlling transverse beam blow-up due to the beam-beam. Work is in progress to reach the ultimate design luminosity goal 5.0 {center_dot} 10{sup 32} cm{sup -2}s{sup -1}. The new collision scheme is the main design concept for a new project aimed at building a Super-B factory that is expected to achieve a luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1} and it has been also taken into account to upgrade one of the LHC interaction regions.

  7. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    SciTech Connect

    Strauss, T.; Apollinari, G.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Di Marco, J.; Nobrega, F.; Novitski, I.; Stoynev, S.; Turrioni, D.; Velev, G.; Zlobin, A. V.; Auchmann, B.; Izquierdo Bermudez, S,; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  8. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  9. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Stoynev, S.; Turrioni, D.; Auchmann, B.; Izquierdo Bermudez, S.; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2015-06-01

    FNAL and CERN are developing a twin-aperture 11 T $Nb_{3}Sn$ dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture $Nb_{3}Sn$ demonstrator dipole and tested. Test results of this twin-aperture $Nb_{3}Sn$ dipole model are reported and discussed.

  10. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  11. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  12. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  13. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  14. The ALICE high-level trigger read-out upgrade for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Engel, H.; Alt, T.; Breitner, T.; Gomez Ramirez, A.; Kollegger, T.; Krzewicki, M.; Lehrbach, J.; Rohr, D.; Kebschull, U.

    2016-01-01

    The ALICE experiment uses an optical read-out protocol called Detector Data Link (DDL) to connect the detectors with the computing clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The interfaces of the clusters to these optical links are realized with FPGA-based PCI-Express boards. The High-Level Trigger is a computing cluster dedicated to the online reconstruction and compression of experimental data. It uses a combination of CPU, GPU and FPGA processing. For Run 2, the HLT has replaced all of its previous interface boards with the Common Read-Out Receiver Card (C-RORC) to enable read-out of detectors at high link rates and to extend the pre-processing capabilities of the cluster. The new hardware also comes with an increased link density that reduces the number of boards required. A modular firmware approach allows different processing and transport tasks to be built from the same source tree. A hardware pre-processing core includes cluster finding already in the C-RORC firmware. State of the art interfaces and memory allocation schemes enable a transparent integration of the C-RORC into the existing HLT software infrastructure. Common cluster management and monitoring frameworks are used to also handle C-RORC metrics. The C-RORC is in use in the clusters of ALICE DAQ and HLT since the start of LHC Run 2.

  15. Pixel Hybridization Technologies for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Biasotti, M.; Ceriale, V.; Darbo, G.; Gariano, G.; Gaudiello, A.; Gemme, C.; Rossi, L.; Rovani, A.; Ruscino, E.

    2016-12-01

    During the 2024-2025 shut-down, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×1034 cm-2s-1. This upgrade of the collider is called High-Luminosity LHC (HL-LHC). ATLAS and CMS detectors will be upgraded to meet the new challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing and an integrated luminosity of 3000 fb-1 over ten years. In particular, the current trackers will be completely replaced. In HL-LHC the trackers should operate under high fluences (up to 1.4 × 1016 neq cm-2), with a correlated high radiation damage. The pixel detectors, the innermost part of the trackers, needed a completely new design in the readout electronics, sensors and interconnections. A new 65 nm front-end (FE) electronics is being developed by the RD53 collaboration compatible with smaller pixel sizes than the actual ones to cope with the high track densities. Consequently the bump density will increase up to 4 ·104 bumps/cm2. Preliminary results of two hybridization technologies study are presented in this paper. In particular, the on-going bump-bonding qualification program at Leonardo-Finmeccanica is discussed, together with alternative hybridization techniques, as the capacitive coupling for HV-CMOS detectors.

  16. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  17. LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Hennessy, Karol

    2017-02-01

    The upgrade of the LHCb experiment, scheduled for LHC Run-III, scheduled to start in 2021, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm enabling the detector to run at luminosities of 2×1033 cm-2 s-1. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The upgraded VELO will provide fast pattern recognition and track reconstruction to the software trigger. The silicon pixel sensors have 55×55 μm2 pitch, and are read out by the VeloPix ASIC, from the Timepix/Medipix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate of more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The foil will be manufactured through milling and possibly thinned further by chemical etching. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates. The current status of the VELO upgrade is described and latest results from operation of irradiated sensor assemblies are presented.

  18. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  19. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  20. Considerations on Energy Frontier Colliders after LHC

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  1. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    NASA Astrophysics Data System (ADS)

    Guthoff, Moritz

    2017-02-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  2. Novel module production methods for the CMS pixel detector, upgrade phase I

    NASA Astrophysics Data System (ADS)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  3. Handling collision debris in quad- and dipole-first LHC IR options

    SciTech Connect

    Mokhov, N.V.; Rakhno, I.L.; /Fermilab

    2006-12-01

    Detailed MARS15 Monte Carlo energy deposition calculations are performed for two main designs of the LHC interaction regions (IR) capable to achieve a luminosity of 10{sup 35} cm{sup -2} s{sup -1}: a traditional quadrupole-first scheme and the one with a dual-bore inner triplet with separation dipoles placed in front of the quadrupoles. It is shown that with the appropriate design of the Nb3Sn magnets, IR layout and a number of protective measures implemented, both schemes are feasible for the LHC luminosity upgrade up to 10{sup 35} cm{sup -2} s{sup -1}.

  4. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  5. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  6. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  7. High luminosity operation, beam-beam effects and their compensation in Tevatron

    SciTech Connect

    Shiltsev, V.; /Fermilab

    2008-06-01

    Over the past 2 years the Tevatron peak luminosity steadily progressed and reached the level of 3.15 {center_dot} 10{sup 32} cm{sup -2} s{sup -1} which exceeds the Run II Upgrade goal. We discuss the collider performance, illustrate limitations and understanding of beam-beam effects and present experimental results of compensation of the beam-beam effects by electron lenses--a technique of great interest for the LHC.

  8. The upgrade programme of the major experiments at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    La Rocca, P.; Riggi, F.

    2014-05-01

    After a successful data taking period at the CERN LHC by the major physics experiments (ALICE, ATLAS, CMS and LHCb) since 2009, a long-term plan is already envisaged to fully exploit the vast physics potential of the Large Hadron Collider (LHC) within the next two decades. The CERN accelerator complex will undergo a series of upgrades leading ultimately to increase both the collision energy and the luminosity, thus maximizing the amount of data delivered to all experiments. As a consequence, the experiments have also to cope with very high detector occupancies and operate in the hard radiation environment caused by a huge multiplicity of particles produced in each beam crossing. In parallel to the accelerator upgrades, the LHC experiments are planning various upgrades to their detector, trigger, and data acquisition systems. The main motivation for the upgrades is to extend and to improve their physics programme also in the increasingly challenging LHC environment. In this paper a general overview of the upgrade programme of the major experiments at LHC will be given, with some additional details concerning specifications and physics programme of new detector subsystems.

  9. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  10. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  11. Will there be energy frontier colliders after LHC?

    SciTech Connect

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.

  12. Quench performance and field quality of FNAL twin-aperture 11 T Nb3Sn dipole model for LHC upgrades

    DOE PAGES

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperturemore » configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less

  13. RICH upgrade: Current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Pistone, A.; LHCb RICH Collaboration

    2016-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The second long shutdown of the LHC is currently scheduled to begin in 2018. During this period the LHCb experiment with all its sub-detectors will be upgraded in order to run at an instantaneous luminosity of 2 × 10^{33} cm-2s-1 and to read out data at a rate of 40MHz into a flexible software-based trigger. The Ring Imaging CHerenkov (RICH) system will require new photon detectors and modifications of the optics of the upstream detector. Tests of the prototype of the smallest constituent of the new RICH system have been performed during testbeam sessions at the Test Beam Facility SPS North Area (CERN) in Autumn 2014.

  14. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  15. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-05-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given.

  16. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  17. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Casse, G.

    2014-04-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed.

  18. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  19. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  20. RHIC PLANS TOWARDS HIGHER LUMINOSITY

    SciTech Connect

    FEDOTOV,A.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and tric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters. Planned major upgrades include the Electron Beam Ion Source (EBIS), RHIC-11, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity both for heavy ions and protons are discussed in detail.

  1. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    NASA Astrophysics Data System (ADS)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  2. High voltage multiplexing for the ATLAS Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Villani, E. G.; Phillips, P.; Matheson, J.; Lynn, D.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.

    2014-01-01

    The increased luminosity of the HL-LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation, stemming from the otherwise too high occupancy. Among the many technological challenges facing the ATLAS Tracker Upgrade there is more an efficient power distribution and HV biasing of the sensors. The solution adopted in the current ATLAS detector uses one HV conductor for each sensor, which makes it easy to disable malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. A number of approaches, including the use of the same HV line to bias several sensors and suitable HV switches, along with their control circuitry, are currently being investigated for this purpose. The proposed solutions along with latest test results and measurements will be described.

  3. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Buchanan, E.

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  4. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    NASA Astrophysics Data System (ADS)

    Baszczyk, M. K.; Benettoni, M.; Calabrese, R.; Cardinale, R.; Carniti, P.; Cassina, L.; Cavallero, G.; Cojocariu, L.; Cotta Ramusino, A.; D'Ambrosio, C.; Dorosz, P. A.; Easo, S.; Eisenhardt, S.; Fiorini, M.; Frei, C.; Gambetta, S.; Gibson, V.; Gotti, C.; Harnew, N.; He, J.; Keizer, F.; Kucewicz, W.; Maciuc, F.; Maino, M.; Malaguti, R.; Matteuzzi, C.; McCann, M.; Morris, A.; Muheim, F.; Papanestis, A.; Pessina, G.; Petrolini, A.; Piedigrossi, D.; Pistone, A.; Placinta, V. M.; Sigurdsson, S.; Simi, G.; Smith, J.; Spradlin, P.; Tomassetti, L.; Wotton, S. A.

    2017-01-01

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  5. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  6. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  7. Associative Memory Pattern Matching for the L1 Track Trigger of CMS at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Fedi, Giacomo

    2016-11-01

    The High Luminosity LHC (HL-LHC) will deliver a luminosity of up to 5 × 1034cm-2s-1, with an average of about 140 overlapping proton-proton collisions per bunch crossing. These extreme pileup conditions place stringent requirements on the trigger system to be able to cope with the resulting event rates. A key component of the CMS upgrade for HL-LHC is a track trigger system, able to identify tracks with transverse momenta above 2 GeV/c already at the first-level trigger. We present here the status of the implementation of a prototype system, based on the combination of Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices, with the purpose to demonstrate the concept based on state-of-the-art technologies, and to direct the efforts of the necessary R&D toward a final system.

  8. FPGA-based algorithms for the new trigger system for the phase 2 upgrade of the CMS drift tubes detector

    NASA Astrophysics Data System (ADS)

    Cela-Ruiz, J.-M.

    2017-01-01

    The new luminosity conditions imposed after the LHC upgrade will require a dedicated upgrade of several subdetectors. To cope with the new requirements, CMS drift tubes subdetector electronics will be redesigned in order to achieve the new foreseen response speed. In particular, it is necessary to enhance the first stage of the trigger system (L1A). In this document we present the development of a software algorithm, based on the mean timer paradigm, capable of reconstructing muon trajectories and rejecting spurious signals. It has been initially written in C++ programming language, but designed with its portability to a FPGA VHDL code in mind.

  9. Radiation hardness studies of n + -in-n planar pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-12-01

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with the increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 to about 3000 fb -1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×1015 neq cm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2×1016 neq cm-2. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for these fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge after IBL fluences was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. After SLHC fluences, still reliable operation of the devices could be observed with a collected charge of more than 5000 electrons per MIP.

  10. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  11. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  12. L1 track triggers for ATLAS in the HL-LHC

    DOE PAGES

    Lipeles, E.

    2012-01-01

    The HL-LHC, the planned high luminosity upgrade for the LHC, will increase the collision rate in the ATLAS detector approximately a factor of 5 beyond the luminosity for which the detectors were designed, while also increasing the number of pile-up collisions in each event by a similar factor. This means that the level-1 trigger must achieve a higher rejection factor in a more difficult environment. This presentation discusses the challenges that arise in this environment and strategies being considered by ATLAS to include information from the tracking systems in the level-1 decision. The main challenges involve reducing the data volumemore » exported from the tracking system for which two options are under consideration: a region of interest based system and an intelligent sensor method which filters on hits likely to come from higher transverse momentum tracks.« less

  13. Experimental status of supersymmetry after the LHC Run-I

    NASA Astrophysics Data System (ADS)

    Autermann, Christian

    2016-09-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  14. The CDF upgrade

    SciTech Connect

    Newman-Holmes, C.; CDF Collaboration

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector.

  15. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    SciTech Connect

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  16. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kuger, Fabian

    2017-02-01

    With the high luminosity upgrade of the LHC the ATLAS Muon spectrometer will face increased particle rates, requiring an upgrade of the innermost end-cap detectors with a high-rate capable technology. Micromegas have been chosen as main tracking technology for this New Small Wheel upgrade. In an intense R&D and prototype phase the technology has proven to meet the stringent performance requirements of highly efficient particle detection with better than 100 μm spatial resolution, independent of the track incidence angle up to 32°, in a magnetic field B ≤ 0.3 T and at background hit rate of up to 15 kHz/cm2.

  17. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Baselga, M.; Pellegrini, G.; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  18. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    SciTech Connect

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.

  19. The versatile link, a common project for super-LHC

    SciTech Connect

    Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.

    2009-07-01

    Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

  20. The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Lambert, Keenan; Brown, Shanice; Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Team

    2017-01-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. The experiment is preparing for the LHC upgrade after the second long shutdown (LS2) in 2019-20. To this end, ALICE is undertaking a major initiative to extend its physics capabilities. Among these improvements is a new Fast Interaction Trigger (FIT). The FIT will be replacing the current T0 and V0 trigger detectors. The purpose of the FIT will be to determine multiplicity, centrality, and reaction plane. The FIT will also serve as the primary forward trigger, luminosity, and collision time detector. This presentation will discuss the FIT upgrade and the results from the performance of the FIT detectors in simulations and test beams that support the current design parameters. This material is based upon work supported by the National Science Foundation under grants NSF-PHY-1407051, NSF-PHY-1305280, NSF-PHY-1613118, and NSF-PHY-1625081.

  1. The CMS Level-1 trigger system for LHC Run II

    NASA Astrophysics Data System (ADS)

    Cadamuro, L.

    2017-03-01

    The Compact Muon Solenoid (CMS) experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC has increased the centre-of-mass energy of proton-proton collisions up to 13 TeV and may progressively reach an instantaneous luminosity of 2×1034 cm‑2 s‑1 or higher. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition system has been upgraded. The upgraded CMS Level-1 (L1) trigger benefits from the recent μTCA technology and is designed to maintain the performance under high instantaneous luminosity conditions. More sophisticated, innovative algorithms are now the core of the first decision layer of CMS: this drastically reduces the trigger rate and improves the trigger efficiency for a wide variety of physics processes. In this document, we present the overall architecture of the upgraded Level-1 trigger system. The performance of single object triggers, measured on collision data recorded during the 2016 running period, are also summarised.

  2. PS-module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    NASA Astrophysics Data System (ADS)

    Grossmann, J.

    2017-02-01

    During the HL-LHC era an instantaneous luminosity of 5×1034 cm‑2s‑1 will be reached and possibly 3000 fb‑1 integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has pT -discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  3. Testing of the front-end hybrid circuits for the CMS Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Gadek, T.; Blanchot, G.; Honma, A.; Kovacs, M.; Raymond, M.; Rose, P.

    2017-01-01

    The upgrade of the CMS Tracker for the HL-LHC requires the design of new double-sensor, silicon detector modules, which implement Level 1 trigger functionality in the increased luminosity environment. These new modules will contain two different, high-density front-end hybrid circuits, equipped with flip-chip ASICs, auxiliary electronic components and mechanical structures. The hybrids require qualification tests before they are assembled into modules. Test methods are proposed together with the corresponding test hardware and software. They include functional tests and signal injection in a cold environment to find possible failure modes of the hybrids under real operating conditions.

  4. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  5. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  6. Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1

    SciTech Connect

    Stickland, David P.

    2015-09-20

    This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied its design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.

  7. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavitiy for the LHC Update

    SciTech Connect

    Li, Zenghai; Xiao, Liling; Ng, Cho; Markiewicz, Thomas; /SLAC

    2010-08-26

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R&D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  8. The CMS electron and photon trigger for the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Dezoort, Gage; Xia, Fan

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.

  9. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Barrillon, P.

    2009-10-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restricted space inside the pots makes the coupling to the read out devices very challenging. Several technologies have been tested in a beam at DESY and a cosmic-ray setup at CERN. A possible upgrade of the photo detection could consist in the replacement of the PMT by Geiger-mode avalanche photodiodes. Preliminary tests are being performed comparing the performance of these devices with the ones of the PMTs.

  10. Performance of the ATLAS Muon Trigger in Run I and Upgrades for Run II

    NASA Astrophysics Data System (ADS)

    Kobayashi, Dai

    2015-12-01

    The ATLAS experiment at the Large Hadron Collider (LHC) has taken data at a centre-of-mass energy between 900 GeV and 8 TeV during Run I (2009-2013). The LHC delivered an integrated luminosity of about 20 fb-1 in 2012, which required dedicated strategies to ensure the highest possible physics output while effectively reducing the event rate. The Muon High Level Trigger has successfully adapted to the changing environment from low instantaneous luminosity (1032 cm-2 s-1) in 2010 to the peak high instantaneous luminosity (1034 cm-2 s-1). The selection strategy has been optimized for the various physics analyses involving muons in the final state. We will present the excellent performance achieved during Run I. In preparation for the next data taking period (Run II) several hardware and software upgrades to the ATLAS Muon Trigger have been performed to deal with the increased trigger rate expected at higher centre-of-mass energy and increased instantaneous luminosity. We will highlight the development of novel algorithms that have been developed to maintain a highly efficient event selection while reducing the processing time by a factor of three. In addition, the two stages of the high level trigger that was deployed in Run I will be merged for Run II. We will discuss novel approaches that are being developed to further improve the trigger algorithms for Run II and beyond.

  11. Study of the Variation of Transverse Voltage in the 4 Rod Crab Cavity for LHC

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2011-04-01

    The planned high luminosity upgrade to LHC will utilise crab cavities to rotate the beam in order to increase the luminosity in the presence of a finite crossing angle. A compact design is required in order for the cavities to fit between opposing beam-lines. In this paper we discuss we discuss one option for the LHC crab cavity based on a 4 rod TEM deflecting cavity. Due to the large transverse size of the LHC beam the cavity is required to have a large aperture while maintaining a constant transverse voltage across the aperture. The cavity has been optimised to minimise the variation of the transverse voltage while keeping the peak surface electric and magnetic fields low for a given kick. This is achieved while fitting within the strict design space of the LHC. The variation of deflecting voltage across the aperture has been studied numerically and compared with numerical and analytical estimates of other deflecting cavity types. Performance measurements an aluminium prototype of this cavity are presented and compared to the simulated design.

  12. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  13. DAΦNE status and upgrade plans

    NASA Astrophysics Data System (ADS)

    Zobov, M.; DAΦNE Collaboration Team

    2008-12-01

    The Frascati Φ-factory DAΦNE has successfully completed experimental runs for the three main detectors, KLOE, FINUDA and DEAR. The best peak luminosity achieved so far is 1.6 × 1032 cm-2 s-1, while the best daily integrated luminosity is 10 pb-1. At present the DAΦNE team is preparing an upgrade of the collider based on the novel crab waist collision scheme. The upgrade is aimed at pushing the luminosity towards 1033cm-2s-1. In this paper we describe present collider performance and discuss ongoing preparatory work for the upgrade.

  14. Quench performance and field quality of FNAL twin-aperture 11 T Nb3Sn dipole model for LHC upgrades

    SciTech Connect

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; Auchmann, Bernhard; Barzi, Emanuela; Bermudez, Susana Izquierdo; Bossert, Rodger; Chlachidze, Guram; DiMarco, Joseph; Karppinen, Mikko; Nobrega, Alfred; Novitski, Igor; Rossi, Lucio; Savary, Frederic; Smekens, David; Strauss, Thomas; Turrioni, Daniele; Velev, Gueorgui V.; Zlobin, Alexander V.

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.

  15. Test beam results of 3D silicon pixel sensors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Grenier, P.; Alimonti, G.; Barbero, M.; Bates, R.; Bolle, E.; Borri, M.; Boscardin, M.; Buttar, C.; Capua, M.; Cavalli-Sforza, M.; Cobal, M.; Cristofoli, A.; Dalla Betta, G.-F.; Darbo, G.; Da Vià, C.; Devetak, E.; DeWilde, B.; Di Girolamo, B.; Dobos, D.; Einsweiler, K.; Esseni, D.; Fazio, S.; Fleta, C.; Freestone, J.; Gallrapp, C.; Garcia-Sciveres, M.; Gariano, G.; Gemme, C.; Giordani, M.-P.; Gjersdal, H.; Grinstein, S.; Hansen, T.; Hansen, T.-E.; Hansson, P.; Hasi, J.; Helle, K.; Hoeferkamp, M.; Hügging, F.; Jackson, P.; Jakobs, K.; Kalliopuska, J.; Karagounis, M.; Kenney, C.; Köhler, M.; Kocian, M.; Kok, A.; Kolya, S.; Korokolov, I.; Kostyukhin, V.; Krüger, H.; La Rosa, A.; Lai, C. H.; Lietaer, N.; Lozano, M.; Mastroberardino, A.; Micelli, A.; Nellist, C.; Oja, A.; Oshea, V.; Padilla, C.; Palestri, P.; Parker, S.; Parzefall, U.; Pater, J.; Pellegrini, G.; Pernegger, H.; Piemonte, C.; Pospisil, S.; Povoli, M.; Roe, S.; Rohne, O.; Ronchin, S.; Rovani, A.; Ruscino, E.; Sandaker, H.; Seidel, S.; Selmi, L.; Silverstein, D.; Sjøbæk, K.; Slavicek, T.; Stapnes, S.; Stugu, B.; Stupak, J.; Su, D.; Susinno, G.; Thompson, R.; Tsung, J.-W.; Tsybychev, D.; Watts, S. J.; Wermes, N.; Young, C.; Zorzi, N.

    2011-05-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS inner detector solenoid field. Sensors were bump-bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  16. Production and quality control of Micromegas anode PCBs for the ATLAS NSW upgrade

    NASA Astrophysics Data System (ADS)

    Kuger, F.

    2016-11-01

    To exploit the full discovery potential of the Large Hadron Collider an upgrade towards high luminosity (HL-LHC) is scheduled for 2024-25. Simultaneously to the accelerator, the experiments have to adapt to the expected higher particle rates and detector occupancy. Within the next long shutdown in 2019-20 the innermost end-cap regions of the ATLAS Muon spectrometer will be replaced by the New Small Wheels (NSW) including Micromegas detector modules of several m2 size. The Micromegas readout anode boards, representing the core components of the detector, are manufactured in industry, making the NSW Micromegas the first Micro Pattern Gaseous Detector (MPGD) for a major LHC experiment with a crucial industrial contribution. Production of the up to 2.2 m long boards is a serious challenge for industrialization technology and quality control methods.

  17. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  18. Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  19. The Fast Interaction Trigger detector for the ALICE Upgrade

    NASA Astrophysics Data System (ADS)

    Karavicheva, T. L.; ALICE Collaboration

    2017-01-01

    As a result of the LHC injectors upgrade after the Long Shutdown (2019-2020), the expected Pb-Pb luminosity and collision rate during the so called Runs 3 and 4 will considerably exceed the design parameters for several of the key ALICE detectors systems including the forward trigger detectors. Fast Interaction Trigger (FIT) will be the primary forward trigger, luminosity, and collision time measurement detector. It will also determine multiplicity, centrality, and reaction plane of heavy ion collisions. FIT is expected to match and even exceed the functionality and performance currently secured by three ALICE sub-detectors: the time zero detector (T0), the VZERO system (V0), and the Forward Multiplicity Detector (FMD). FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors and of a single, large-size scintillator ring. Because of the presence of the muon spectrometer, the placement of the FIT arrays will be asymmetric: ∼800 mm from the interaction point (IP) on the absorber side and ∼3200 mm from IP on the opposite side. The ongoing beam tests and Monte Carlo studies verify the physics performance and refine the geometry of the FIT arrays. The presentation gives a short description of FIT, triggers and readout requirement for the ALICE Upgrade, a summary of the performance, and the outcome of the simulations and beam tests.

  20. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  1. Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Garcia, A. Conde; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Stenis, M. Van; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6 < | η | < 2.2, while continuing R&D is ongoing for additional regions.

  2. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  3. Exploring the quality of latest sensor prototypes for the CMS Tracker Phase II Upgrade

    NASA Astrophysics Data System (ADS)

    König, A.

    2017-02-01

    The luminosity of the LHC will be increased by a factor of five to seven after the third long shutdown (LS3) scheduled in the mid of the next decade. The significant increase in luminosity along with the limitations of the current Tracker require a complete renewal of the CMS Outer Tracker, the Tracker Phase-2 Upgrade, during the LS3. New types of modules called PS and 2S modules are foreseen offering enhanced functionality and radiation hardness. Milestones in sensor R&D for the 2S modules as well as first characterization results are presented. AC-coupled silicon strip sensors of two vendors, produced on 6-inch as well as on 8-inch wafers, are considered which both are in n-on-p technology. Global as well as single strip parameters were measured providing insights into the quality of the sensors.

  4. HVMUX, a high voltage multiplexing for the ATLAS Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Giulio Villani, E.; Phillips, P.; Matheson, J.; Zhang, Z.; Lynn, D.; Kuczewski, P.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.

    2017-01-01

    The HV biasing solution adopted in the current ATLAS detector uses one HV conductor for each sensor. This approach easily allows disabling of malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. In fact, the increased luminosity of the Upgraded LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation. Different approaches to bring the HV biasing to the detectors, including the use of a shared HV line to bias several sensors and employing semiconductor switches for the HV routing (HVMUX), have been investigated. Beside the size constraints, particular attention must be paid to the radiation tolerance of any proposed solution, which, for the strips detector, requires proper operation up to fluences of the order of 2ṡ 1015 1MeV neq/cm2 and TID in excess of 300 kGy. In this paper, a description of the proposed HVMUX solution, along with electrical and radiation tests results will be presented and discussed.

  5. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  6. FPGA-Based Approach to Level-1 Track Finding at CMS for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Skinnari, Louise

    2016-11-01

    The high luminosity upgrade of the LHC is expected to deliver luminosities of 7.5 × 1034 cm-2s-1, with an average of 140-200 overlapping proton-proton collisions in each bunch crossing at a frequency of 40 MHz. To maintain manageable trigger rates under these conditions track reconstruction will be incorporated in the all-hardware first level of the CMS trigger. A track-finding algorithm based on seed tracklets has been developed and implemented on commercially available FPGAs for this purpose. An overview of the algorithm is presented, results are shown of its expected performance from simulations, and an implementation of the algorithm in a Xilinx Virtex-7 FPGA for a hardware demonstrator system is discussed.

  7. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    NASA Astrophysics Data System (ADS)

    Hopkins, Walter

    2017-02-01

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65-180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  8. CERN LHC signals for warped electroweak neutral gauge bosons

    SciTech Connect

    Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Soni, Amarjit; Han Tao; Huang, G.-Y.; Perez, Gilad; Si Zongguo

    2007-12-01

    We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z{sup '} cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2){sub L}xSU(2){sub R}xU(1){sub X} gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to {approx}2(3) TeV KK scale with an integrated luminosity of {approx}100 fb{sup -1} ({approx}1 ab{sup -1}). Since current theoretical framework(s) favor KK masses > or approx. 3 TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.

  9. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Giacomini, G.; Bagolini, A.; Bomben, M.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  10. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Govender, M.; Hofsajer, I.; Ruan, X.; Sandrock, C.; Spoor, M.

    2015-10-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade.

  11. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  12. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  13. Prospects for heavy-flavour measurements with the ALICE inner and forward tracker upgrade

    NASA Astrophysics Data System (ADS)

    Fionda, F.

    2016-01-01

    During the second long shutdown (LS2) of the LHC the ALICE detector will be improved with the installation of an upgraded Inner Tracking System (ITS) and a new Muon Forward Tracker (MFT). These detectors will crucially contribute to the precise characterization of the high-temperature, strongly-interacting medium created in ultra-relativistic Pb-Pb collisions at √sNN = 5.5 TeV. In the central barrel, the upgraded ITS will consist of seven cylindrical layers of silicon pixel detectors, starting at a radial distance of 22.4 mm from the beam axis. At forward rapidity, the MFT will be composed of five silicon pixel planes added in the acceptance of the existing Muon Spectrometer (-4 < ƞ < -2.5), upstream to the hadron absorber. Detailed results on the expected performances for heavy-flavour (HF) measurements down to low transverse momentum, with the upgraded ITS and MFT, will be given for central Pb-Pb collisions for various benchmark analyses, assuming an integrated luminosity of 10 nb-1, as foreseen for the ALICE upgrade programme.

  14. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  15. The CMS Level-1 Calorimeter Trigger for the LHC Run II

    NASA Astrophysics Data System (ADS)

    Zabi, A.; Beaudette, F.; Cadamuro, L.; Davignon, O.; Romanteau, T.; Strebler, T.; Cepeda, M.; Sauvan, J. B.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Taylor, J.; Foudas, C.; Baber, M.; Bundock, A.; Breeze, S.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Shtipliyski, A.; Tapper, A.; Ojalvo, I.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Dasu, S.; Dodd, L.; Forbes, R.; Gorski, T.; Klabbers, P.; Levine, A.; Ruggles, T.; Smith, N.; Smith, W.; Svetek, A.; Tikalsky, J.; Vicente, M.

    2017-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was performed in two stages, with the first running in 2015 for proton and heavy ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb‑1 of data since the start of the Run II of the Large Hadron Collider (LHC). The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the μTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Sophisticated and innovative algorithms are now the core of the first decision layer of the experiment. The system has been able to adapt to the outstanding performance of the LHC, which ran with an instantaneous luminosity well above design. The performance of the system for single physics objects are presented along with the optimizations foreseen to maintain the thresholds for the harsher conditions expected during the LHC Run II and Run III periods.

  16. A continuous read-out TPC for the ALICE upgrade

    NASA Astrophysics Data System (ADS)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  17. Software for implementing trigger algorithms on the upgraded CMS Global Trigger System

    NASA Astrophysics Data System (ADS)

    Matsushita, Takashi; Arnold, Bernhard

    2015-12-01

    The Global Trigger is the final step of the CMS Level-1 Trigger and implements a trigger menu, a set of selection requirements applied to the final list of trigger objects. The conditions for trigger object selection, with possible topological requirements on multiobject triggers, are combined by simple combinatorial logic to form the algorithms. The LHC has resumed its operation in 2015, the collision-energy will be increased to 13 TeV with the luminosity expected to go up to 2x1034 cm-2s-1. The CMS Level-1 trigger system will be upgraded to improve its performance for selecting interesting physics events and to operate within the predefined data-acquisition rate in the challenging environment expected at LHC Run 2. The Global Trigger will be re-implemented on modern FPGAs on an Advanced Mezzanine Card in MicroTCA crate. The upgraded system will benefit from the ability to process complex algorithms with DSP slices and increased processing resources with optical links running at 10 Gbit/s, enabling more algorithms at a time than previously possible and allowing CMS to be more flexible in how it handles the trigger bandwidth. In order to handle the increased complexity of the trigger menu implemented on the upgraded Global Trigger, a set of new software has been developed. The software allows a physicist to define a menu with analysis-like triggers using intuitive user interface. The menu is then realised on FPGAs with further software processing, instantiating predefined firmware blocks. The design and implementation of the software for preparing a menu for the upgraded CMS Global Trigger system are presented.

  18. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    NASA Astrophysics Data System (ADS)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  19. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  20. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  1. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  2. Development of edgeless n-on-p planar pixel sensors for future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Bomben, Marco; Bagolini, Alvise; Boscardin, Maurizio; Bosisio, Luciano; Calderini, Giovanni; Chauveau, Jacques; Giacomini, Gabriele; La Rosa, Alessandro; Marchiori, Giovanni; Zorzi, Nicola

    2013-06-01

    The development of n-on-p "edgeless" planar pixel sensors being fabricated at FBK (Trento, Italy), aimed at the upgrade of the ATLAS Inner Detector for the High Luminosity phase of the Large Hadron Collider (HL-LHC), is reported. A characterizing feature of the devices is the reduced dead area at the edge, achieved by adopting the "active edge" technology, based on a deep etched trench, suitably doped to make an ohmic contact to the substrate. The project is presented, along with the active edge process, the sensor design for this first n-on-p production and a selection of simulation results, including the expected charge collection efficiency after radiation fluence of 1×1015 neq/cm2 comparable to those expected at HL-LHC (about ten years of running, with an integrated luminosity of 3000 fb-1) for the outer pixel layers. We show that, after irradiation and at a bias voltage of 500 V, more than 50% of the signal should be collected in the edge region; this confirms the validity of the active edge approach.

  3. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Savic, N.; Beyer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.

    2016-12-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more radiation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 μm recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of these modules is investigated at beam tests and the results on edge efficiency will be shown.

  4. Electroweak physics at the LHC

    NASA Astrophysics Data System (ADS)

    Berryhill, J.; Oh, A.

    2017-02-01

    The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of proton-proton collisions at center-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5 and 20 {{fb}}-1, respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This article reviews the status of electroweak measurements of the ATLAS, CMS and LHCb experiments at the LHC.

  5. Luminosity monitor at PEP

    SciTech Connect

    Fox, J.D.; Franklin, M.E.B.

    1981-02-01

    The luminosity monitor system utilized by the MKII Detector and by the PEP operators is described. This system processes information from 56 photomultipliers and calculates independent luminosities for each of the 3 colliding bunches in PEP. Design considerations, measurement techniques, and sources of error in the luminosity measurement are discussed.

  6. Upgrade of the ALICE muon trigger electronics

    NASA Astrophysics Data System (ADS)

    Dupieux, P.; Joly, B.; Jouve, F.; Manen, S.; Vandaële, R.

    2014-09-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb-Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm2 with rates up to 100 Hz/cm2, which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments.

  7. Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Weigell, P.; Beimforde, M.; Gallrapp, Ch.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.

    2011-12-01

    The existing ATLAS tracker will be at its functional limit for particle fluences of 10 15 neq/cm2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. n-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 μm thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current ATLAS read-out chip FE-I3. The characterisation has been performed with the ATLAS pixel read-out systems, before and after irradiation with 24 GeV/ c protons. In addition preliminary testbeam results for the tracking efficiency and charge collection, obtained with a SCM, are discussed.

  8. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  9. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  10. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    DOE PAGES

    Bubna, M.; Bolla, G.; Bortoletto, D.; ...

    2015-08-03

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 1034 cm–2s–1 and collect ~ 3000fb–1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect ofmore » reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.« less

  11. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    SciTech Connect

    Bubna, M.; Bolla, G.; Bortoletto, D.; Shipsey, I.; Manfra, M.; Khan, K.; Arndt, K.; Hinton, N.; Godshalk, A.; Kumar, A.; Menasce, D.; Moroni, L.; Chramowicz, J.; Lei, C. M.; Prosser, A.; Rivera, R.; Uplegger, L.; Vetere, Maurizio Lo; Robutti, Enrico; Ferro, Fabrizio; Ravera, Fabio; Costa, Marco

    2015-08-03

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 1034 cm–2s–1 and collect ~ 3000fb–1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.

  12. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    NASA Astrophysics Data System (ADS)

    Bubna, M.; Bortoletto, D.; Bolla, G.; Shipsey, I.; Manfra, M. J.; Khan, K.; Arndt, K.; Hinton, N.; Godshalk, A.; Kumar, A.; Menasce, D.; Moroni, L.; Chramowicz, J.; Lei, C. M.; Prosser, A.; Rivera, R.; Uplegger, L.; Lo Vetere, M.; Robutti, E.; Ferro, F.; Ravera, F.; Costa, Marco

    2015-08-01

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L=5×1034 cm-2s-1 and collect ~ 3000 fb-1 of data. The innermost layer of the pixel detector will be exposed to doses of about 1016 neq/ cm2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have been fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. The results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.

  13. RHIC and its upgrade programmes.

    SciTech Connect

    Roser,T.

    2008-06-23

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species. After a brief review of the achieved performance the presentation will give an overview of the plans, challenges and status of machine upgrades, that range from a new heavy ion pre-injector and beam cooling at 100 GeV to a high luminosity electron-ion collider.

  14. Performance Requirements for the Phase-2 Tracker Upgrades for ATLAS and CMS

    NASA Astrophysics Data System (ADS)

    Abbaneo, Duccio

    2016-11-01

    The High-Luminosity operation of the LHC poses unprecedented challenges for the design of the upgraded trackers of ATLAS [1] and CMS [2]. The stringent requirements imposed by the high particle density and integrated fluence reduce the phase-space of valid technical solutions, inducing both collaborations to design "all-silicon" trackers. On the other hand constraints and requirements coming for the rest of the detector lead to some different choices, especially for the outer trackers. The main requirements for the two tracking systems are reviewed, discussing the implications for the detector designs and layout, and explaining why some of the technical choices remain different in the two experiments. To conclude, some expected performance figures for the two tracking systems are presented.

  15. Performance of a full-size small-strip thin gap chamber prototype for the ATLAS new small wheel muon upgrade

    NASA Astrophysics Data System (ADS)

    Abusleme, A.; Bélanger-Champagne, C.; Bellerive, A.; Benhammou, Y.; Botte, J.; Cohen, H.; Davies, M.; Du, Y.; Gauthier, L.; Koffas, T.; Kuleshov, S.; Lefebvre, B.; Li, C.; Lupu, N.; Mikenberg, G.; Mori, D.; Ochoa-Ricoux, J. P.; Codina, E. Perez; Rettie, S.; Robichaud-Véronneau, A.; Rojas, R.; Shoa, M.; Smakhtin, V.; Stelzer, B.; Stelzer-Chilton, O.; Toro, A.; Torres, H.; Ulloa, P.; Vachon, B.; Vasquez, G.; Vdovin, A.; Viel, S.; Walker, P.; Weber, S.; Zhu, C.

    2016-05-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. The most important upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will be installed during the LHC long shutdown in 2019/2020. Small-Strip Thin Gap Chamber (sTGC) detectors are designed to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. To validate the design, a full-size prototype sTGC detector of approximately 1.2 × 1.0m2 consisting of four gaps has been constructed. Each gap provides pad, strip and wire readouts. The sTGC intrinsic spatial resolution has been measured in a 32 GeV pion beam test at Fermilab. At perpendicular incidence angle, single gap position resolutions of about 50 μm have been obtained, uniform along the sTGC strip and perpendicular wire directions, well within design requirements. Pad readout measurements have been performed in a 130 GeV muon beam test at CERN. The transition region between readout pads has been found to be 4 mm, and the pads have been found to be fully efficient.

  16. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    NASA Astrophysics Data System (ADS)

    Bornheim, A.

    2017-03-01

    The High Luminosity LHC (HL-LHC) aims to reach the unprecedented integrated luminosity of 3 ab‑1 with an instantaneous luminosity up to 5 × 1034 cm‑2 s‑1. This poses stringent requirements on the radiation resistance of detector components and on the latency of the trigger system. The barrel region of the CMS Electromagnetic Calorimeter will be able to retain the current lead tungstate crystals and avalanche photo diode detectors which will meet the performance requirements throughout the operational lifetime of the HL-LHC. The new front-end electronics and very front-end system required at high luminosities will be described.

  17. An ASIC for fast single photon counting in the LHCb RICH upgrade

    NASA Astrophysics Data System (ADS)

    Gotti, C.

    2017-03-01

    The LHCb experiment will be upgraded during the second LHC long shutdown (years 2019–2020) to operate at higher luminosity. The new triggerless architecture of LHCb requires data from the entire detector to be read out at 40 MHz. The basic element of the front-end electronics of the Ring Imaging Cherenkov (RICH) detector upgrade is the "Elementary Cell" (EC), a readout system for multianode photomultiplier tubes designed to minimise parasitic capacitance at the anodes, to obtain a fast readout with low noise and low crosstalk. At the heart of the EC is the CLARO, an 8 channel, low power and radiation hard front-end ASIC designed in 0.35 μm CMOS technology. Each channel compares the charge signals from the photomultiplier anodes with a programmable threshold, and gives a digital pulse at the output when the threshold is exceeded. Baseline recovery occurs in less than 25 ns for typical single photon signals. In the LHCb RICH upgrade environment, the chips will have to withstand radiation up to a total ionising dose of 2 kGy (200 krad) and neutron and hadron fluences up to 03×112 cm‑2 and following irradiation, the chips have been shown to tolerate such doses with a margin of safety.

  18. Status of LHC crab activity simulations and beam studies

    SciTech Connect

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  19. DC-DC conversion powering schemes for the CMS tracker at Super-LHC

    NASA Astrophysics Data System (ADS)

    Klein, K.; Feld, L.; Jussen, R.; Karpinski, W.; Merz, J.; Sammet, J.

    2010-07-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN, Geneva, houses the largest silicon strip tracker ever built. For the foreseen luminosity upgrade of the LHC, the Super-LHC, however, a completely new silicon tracker will have to be constructed. One out of several major improvements currently under consideration is the implementation of a track trigger, with tracking information being provided to the first level trigger. Such an intelligent tracker design, utilising fast digital readout electronics, will most certainly lead to an increased power consumption, compared to today's tracker. In combination with the desire to reduce the amount of passive material inside the tracking volume and the impracticality to exchange or even add additional supply cables, a novel powering scheme will be inevitable. In this article a powering scheme based on DC-DC conversion is proposed, and requirements for the DC-DC converters are discussed. Studies of important DC-DC converter quantities such as the power efficiency, conducted and radiated noise levels, and material budget are presented, and a possible implementation of DC-DC buck converters into one proposed track trigger layout is sketched.

  20. Three-loop corrections to the Higgs boson mass and implications for supersymmetry at the LHC.

    PubMed

    Feng, Jonathan L; Kant, Philipp; Profumo, Stefano; Sanford, David

    2013-09-27

    In supersymmetric models with minimal particle content and without left-right squark mixing, the conventional wisdom is that the 125.6 GeV Higgs boson mass implies top squark masses of O(10)  TeV, far beyond the reach of colliders. This conclusion is subject to significant theoretical uncertainties, however, and we provide evidence that it may be far too pessimistic. We evaluate the Higgs boson mass, including the dominant three-loop terms at O(αtαs2), in currently viable models. For multi-TeV top squarks, the three-loop corrections can increase the Higgs boson mass by as much as 3 GeV and lower the required top-squark masses to 3-4 TeV, greatly improving prospects for supersymmetry discovery at the upcoming run of the LHC and its high-luminosity upgrade.

  1. The Protostellar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Offner, Stella S. R.; McKee, Christopher F.

    2011-07-01

    The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. In 2010, McKee & Offner considered three main accretion models: the isothermal sphere (IS) model, the turbulent core (TC) model, and an approximation of the competitive accretion (CA) model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star-forming regions and find that models with an approximately constant accretion time, such as the TC and CA models, appear to agree better with observation than those with a constant accretion rate, such as the IS model. We show that observations of the mean protostellar luminosity in these nearby regions of low-mass star formation suggest a mean star formation time of 0.3 ± 0.1 Myr. Such a timescale, together with some accretion that occurs non-radiatively and some that occurs in high-accretion, episodic bursts, resolves the classical "luminosity problem" in low-mass star formation, in which observed protostellar luminosities are significantly less than predicted. An accelerating star formation rate is one possible way of reconciling the observed star formation time and mean luminosity. Future observations will place tighter constraints on the observed luminosities, star formation time, and episodic accretion, enabling better discrimination between star formation models and clarifying the influence of variable accretion on the PLF.

  2. THE PROTOSTELLAR LUMINOSITY FUNCTION

    SciTech Connect

    Offner, Stella S. R.; McKee, Christopher F. E-mail: cmckee@astro.berkeley.edu

    2011-07-20

    The protostellar luminosity function (PLF) is the present-day luminosity function of the protostars in a region of star formation. It is determined using the protostellar mass function in combination with a stellar evolutionary model that provides the luminosity as a function of instantaneous and final stellar mass. In 2010, McKee and Offner considered three main accretion models: the isothermal sphere (IS) model, the turbulent core (TC) model, and an approximation of the competitive accretion (CA) model. We also consider the effect of an accretion rate that tapers off linearly in time and an accelerating star formation rate. For each model, we characterize the luminosity distribution using the mean, median, maximum, ratio of the median to the mean, standard deviation of the logarithm of the luminosity, and the fraction of very low luminosity objects. We compare the models with bolometric luminosities observed in local star-forming regions and find that models with an approximately constant accretion time, such as the TC and CA models, appear to agree better with observation than those with a constant accretion rate, such as the IS model. We show that observations of the mean protostellar luminosity in these nearby regions of low-mass star formation suggest a mean star formation time of 0.3 {+-} 0.1 Myr. Such a timescale, together with some accretion that occurs non-radiatively and some that occurs in high-accretion, episodic bursts, resolves the classical 'luminosity problem' in low-mass star formation, in which observed protostellar luminosities are significantly less than predicted. An accelerating star formation rate is one possible way of reconciling the observed star formation time and mean luminosity. Future observations will place tighter constraints on the observed luminosities, star formation time, and episodic accretion, enabling better discrimination between star formation models and clarifying the influence of variable accretion on the PLF.

  3. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    SciTech Connect

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.; Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Alberty, L.; Artoos, K.; Calaga, R.; Capatina, O.; Capelli, T.; Carra, F.; Leuxe, R.; Kuder, N.; Zanoni, C.; Li, Z.; Ratti, A.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  4. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  5. Quark anomalous chromomagnetic moment bounds -- Projection to higher luminosities and energy

    SciTech Connect

    Cheung, K.; Silverman, D.

    1998-12-31

    The statistical limits on detectability of an anomalous chromomagnetic moment of a quark coupling to a gluon are projected to higher luminosities at the Tevatron at Fermilab, and to the LHC. They roughly scale as the energy, and are not strongly improved with increasing luminosity.

  6. Level-2 Calorimeter Trigger Upgrade at CDF

    SciTech Connect

    Flanagan, G.U.; /Purdue U.

    2007-04-01

    The CDF Run II Level-2 calorimeter trigger is implemented in hardware and is based on an algorithm used in Run I. This system insured good performance at low luminosity obtained during the Tevatron Run II. However, as the Tevatron instantaneous luminosity increases, the limitations of the current system due to the algorithm start to become clear. In this paper, we will present an upgrade of the Level-2 calorimeter trigger system at CDF. The upgrade is based on the Pulsar board, a general purpose VME board developed at CDF and used for upgrading both the Level-2 tracking and the Level-2 global decision crate. This paper will describe the design, hardware and software implementation, as well as the advantages of this approach over the existing system.

  7. Elementary Particle Interactions with CMS at LHC

    SciTech Connect

    Spanier, Stefan

    2016-07-31

    The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.

  8. Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Liu, H.; Benoit, M.; Chen, H.; Chen, K.; Di Bello, F. A.; Iacobucci, G.; Lanni, F.; Peric, I.; Ristic, B.; Barreto Pinto, M. Vicente; Wu, W.; Xu, L.; Jin, G.

    2017-01-01

    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in the testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. Further development is ongoing to adapt to different sensors, and to make it available to various lab test stands.

  9. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  10. Diamond Pixel Luminosity Telescopes

    SciTech Connect

    Halyo, Valerie

    2014-12-15

    In this document, Halyo summaries her key contributions to CMS at the LHC and provide an explanation of their importance and her role in each project. At the end Halyo describes her recent research interest that includes GPU/MIC Acceleration of the High Level Trigger (HLT) to Extend the Physics Research at the LHC. A description of her work the recent promising results that she accomplished and the deliverable are also elaborated. These contribution were only possible thanks to DOE support of junior faculty research and their clear goal to promote research and innovations.

  11. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  12. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  13. LARP Long Quadrupole: A "Long" Step Toward an LHC

    SciTech Connect

    Giorgio Ambrosio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  14. Luminosity enhancements at SLAC

    SciTech Connect

    Coward, D.H.

    1984-04-01

    Several ideas are discussed that have been proposed to improve the luminosity at the SPEAR and PEP electron-positron storage rings and to insure good luminosity at the SLAC Linear Collider. There have been two proposals studied recently for SPEAR: a Microbeta insertion using Samarium Cobalt permanent magnets, and a Minibeta insertion using conventional quadrupole magnets. The notations Microbeta and minibeta used here are somewhat arbitrary since the front faces of the first quadrupole magnets for both insertions are at nearly the same distance from the interaction point.

  15. The new CMS DAQ system for LHC operation after 2014 (DAQ2)

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Bawej, Tomasz; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Coarasa, Jose Antonio; Darlea, Georgiana-Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Ceballos, Guillelmo; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, Andre; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Morovic, Srecko; Nunez-Barranco-Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Ozga, Wojciech; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Cristian Spataru, Andrei; Stieger, Benjamin; Sumorok, Konstanty; Veverka, Jan; Wakefield, Christopher Colin; Zejdl, Petr

    2014-06-01

    The Data Acquisition system of the Compact Muon Solenoid experiment at CERN assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GByte/s. We are presenting the design of the 2nd generation DAQ system, including studies of the event builder based on advanced networking technologies such as 10 and 40 Gbit/s Ethernet and 56 Gbit/s FDR Infiniband and exploitation of multicore CPU architectures. By the time the LHC restarts after the 2013/14 shutdown, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime. In order to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increase the number of readout channels and replace the off-detector readout electronics with a μTCA implementation. The second generation DAQ system, foreseen for 2014, will need to accommodate the readout of both existing and new off-detector electronics and provide an increased throughput capacity. Advances in storage technology could make it feasible to write the output of the event builder to (RAM or SSD) disks and implement the HLT processing entirely file based.

  16. Recent results of the ATLAS upgrade planar pixel sensors R&D project

    NASA Astrophysics Data System (ADS)

    Weigell, Philipp

    2013-12-01

    To extend the physics reach of the LHC experiments, several upgrades to the accelerator complex are planned, culminating in the HL-LHC, which eventually leads to an increase of the peak luminosity by a factor of five to ten compared to the LHC design value. To cope with the higher occupancy and radiation damage also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) μm, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m2. To reach this goal the pixel productions are being transferred to 6 in production lines and more cost-efficient and industrialised interconnection techniques are investigated. Additionally, the n-in-p technology is employed, which requires less production steps since it relies on a single-sided process. An overview of the recent accomplishments obtained within the ATLAS Planar Pixel Sensor R&D Project is given. The performance in terms of charge collection and tracking efficiency, obtained with radioactive sources in the laboratory and at beam tests, is presented for devices built from sensors of different vendors connected to either the present ATLAS read-out chip FE-I3 or the new Insertable B-Layer read-out chip FE-I4. The devices, with a thickness varying between 75 μm and 300 μm, were irradiated to several fluences up to 2×1016 neq/cm2. Finally, the different approaches followed inside the collaboration to achieve slim or active edges for planar pixel sensors are presented.

  17. The performance for the TeV photon measurement of the LHCf upgraded detector using Gd2SiO5 (GSO) scintillators

    NASA Astrophysics Data System (ADS)

    Makino, Y.; Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Haguenauer, M.; Itow, Y.; Iwata, T.; Kasahara, K.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Muraki, Y.; Papini, P.; Ricciarini, S.; Sako, T.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W. C.; Ueno, M.; Zhou, Q. D.

    2017-02-01

    The Large Hadron Collider forward (LHCf) experiment measures the forward particle production at the LHC to verify hadronic interaction models used in air shower experiments. We have upgraded very small sampling and imaging calorimeters using GSO scintillators to measure the most energetic particles generated in √{ s }=13 TeV p-p collisions at the zero-degree region of the LHC. Upgraded detectors were calibrated at the SPS North area facility in CERN and it was confirmed that the detector can measure electro-magnetic showers with energy resolution of 3% and position resolution of better than 123 μm for 100 GeV electrons. The operation of LHCf in 13 TeV p-p collisions has been successfully completed with integrated luminosity of 5 nb-1. Reconstructed π0 peak with the mass resolution of 3.7% and stability less than 1% during the operation implies that our measurement was stable enough in the high irradiation condition.

  18. High luminosity particle colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-03-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  19. Superconducting Magnet Technology for the Upgrade

    SciTech Connect

    Todesco, E.; Ambrosio, G.; Ferracin, P.; Rifflet, J. M.; Sabbi, G. L.; Segreti, M.; Nakamoto, T.; van Weelderen, R.; Xu, Q.

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  20. LHC Computing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  1. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Belikov, Iouri

    2016-10-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  2. Mechanical Design Studies of the MQXF Long Model Quadrupole for the HiLumi LHC

    DOE PAGES

    Pan, Heng; Anderssen, Eric; Ambrosio, Giorgio; ...

    2016-12-20

    The Large Hadron Collider Luminosity upgrade (HiLumi) program requires new low-β triplet quadrupole magnets, called MQXF, in the Interaction Region (IR) to increase the LHC peak and integrated luminosity. The MQXF magnets, designed and fabricated in collaboration between CERN and the U.S. LARP, will all have the same cross section. The MQXF long model, referred as MQXFA, is a quadrupole using the Nb3Sn superconducting technology with 150 mm aperture and a 4.2 m magnetic length and is the first long prototype of the final MQXF design. The MQXFA magnet is based on the previous LARP HQ and MQXFS designs. Inmore » this paper we present the baseline design of the MQXFA structure with detailed 3D numerical analysis. A detailed tolerance analysis of the baseline case has been performed by using a 3D finite element model, which allows fast computation of structures modelled with actual tolerances. Tolerance sensitivity of each component is discussed to verify the actual tolerances to be achieved by vendors. In conclusion, tolerance stack-up analysis is presented in the end of this paper.« less

  3. Mechanical Design Studies of the MQXF Long Model Quadrupole for the HiLumi LHC

    SciTech Connect

    Pan, Heng; Anderssen, Eric; Ambrosio, Giorgio; Cheng, Daniel; Juchno, Mariusz; Ferracin, Paolo; Felice, Helene; Perez, Juan; Prestemon, Soren; Vallone, Giorgio

    2016-12-20

    The Large Hadron Collider Luminosity upgrade (HiLumi) program requires new low-β triplet quadrupole magnets, called MQXF, in the Interaction Region (IR) to increase the LHC peak and integrated luminosity. The MQXF magnets, designed and fabricated in collaboration between CERN and the U.S. LARP, will all have the same cross section. The MQXF long model, referred as MQXFA, is a quadrupole using the Nb3Sn superconducting technology with 150 mm aperture and a 4.2 m magnetic length and is the first long prototype of the final MQXF design. The MQXFA magnet is based on the previous LARP HQ and MQXFS designs. In this paper we present the baseline design of the MQXFA structure with detailed 3D numerical analysis. A detailed tolerance analysis of the baseline case has been performed by using a 3D finite element model, which allows fast computation of structures modelled with actual tolerances. Tolerance sensitivity of each component is discussed to verify the actual tolerances to be achieved by vendors. In conclusion, tolerance stack-up analysis is presented in the end of this paper.

  4. Foward Calorimetry in ALICE at LHC

    NASA Astrophysics Data System (ADS)

    Chujo, Tatsuya; Alice Focal Collaboration

    2014-09-01

    We present an upgrade proposal for calorimetry in the forward direction, FOCAL, to measure direct photons in η = 3 . 3 - 5 . 3 in ALICE at the Large Hadron Collider (LHC). We suggest to use an electromagnetic calorimeter based on the novel technology of silicon sensors with W absorbers for photons, together with a conventional hadron calorimeter for jet measurements and photon isolation. The current status of the FOCAL R&D project will be presented.

  5. SUSY searches at the LHC with the ATLAS experiment

    ScienceCinema

    None

    2016-07-12

    First ATLAS searches for signals of Supersymmetry in proton-proton collisions at the LHC are presented. These searches are performed in various channels containing different lepton and jet multiplicities in the final states; the full data sample recorded in the 2010 LHC run, corresponding to an integrated luminosity of 35 pb-1, has been analysed. Limits on squarks and gluins are the most stringent to date.

  6. Color Sextet Scalars in Early LHC Experiments

    SciTech Connect

    Berger, Edmond L.; Cao Qinghong; Chen, Chuan-Ren; Shaughnessy, Gabe; Zhang Hao

    2010-10-29

    We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 fb{sup -1} of integrated luminosity. The top quark polarization can distinguish gauge triplet and singlet scalars.

  7. hhjj production at the LHC

    DOE PAGES

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; ...

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  8. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  9. Parton distribution benchmarking with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Carrazza, Stefano; Del Debbio, Luigi; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C.-P.

    2013-04-01

    We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+ α s uncertainty in the gluon fusion Higgs production cross section.

  10. The LUCID detector ATLAS luminosity monitor and its electronic system

    NASA Astrophysics Data System (ADS)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  11. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R&D Project

    NASA Astrophysics Data System (ADS)

    George, M.

    2014-05-01

    After the foreseen upgrade of the LHC towards the HL-LHC, coming along with higher beam energies and increased peak luminosities, the experiments have to upgrade their detector systems to cope with the expected higher occupancies and radiation damages. In case of the ATLAS experiment a new Inner Tracker will be installed in this context. The ATLAS Planar Pixel Sensor R&D Project (PPS) is investigating the possibilities to cope with these new requirements, using planar pixel silicon sensors, working in a collaboration of 17 institutions and more than 80 scientists. Since the new Inner Tracker is supposed to have an active area on the order of 8 m2 on the one side and has to withstand extreme irradiation on the other side, the PPS community is working on several approaches to reduce production costs, while increasing the radiation tolerance of the sensors. Another challenge is to produce sensors in such large quantities. During the production of the Insertable b-Layer (IBL) modules, the PPS community has proven to be able to produce a large scale production of planar silicon sensors with a high yield. For cost reduction reasons, it is desirable to produce larger sensors. There the PPS community is working on so called quad- and hex-modules, which have a size of four, respectively six FE-I4 readout chips. To cope with smaller radii and strict material budget requirements for the new pixel layers, developments towards sensors with small inactive areas are in the focus of research. Different production techniques, which even allow the production of sensors with active edges, have been investigated and the designs were qualified using lab and testbeam measurements. The short distance between the new innermost pixel layers and the interaction point, combined with the increase in luminosity, requires designs which are more radiation tolerant. Since charge collection on the one hand decreases with irradiation and on the other hand is not uniform within the pixel cells

  12. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  13. Irradiation and testbeam of KEK/HPK planar p-type pixel modules for HL-LHC

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Arai, Y.; Hagihara, M.; Hanagaki, K.; Hara, K.; Hori, R.; Hirose, M.; Ikegami, Y.; Jinnouchi, O.; Kamada, S.; Kawagoe, K.; Kohno, T.; Motohashi, K.; Nishimura, R.; Oda, S.; Otono, H.; Takubo, Y.; Terada, S.; Takashima, R.; Tojo, J.; Unno, Y.; Usui, J.; Wakui, T.; Yamaguchi, D.; Yamamoto, K.; Yamamura, K.

    2015-06-01

    For the ATLAS detector upgrade for the high luminosity LHC (HL-LHC), an n-in-p planar pixel sensor-module is being developed with HPK. The modules were irradiated at the Cyclotron RadioIsotope Center (CYRIC) using 70 MeV protons. For the irradiation, a novel irradiation box has been designed that carries 16 movable slots to irradiate the samples slot-by-slot independently, to reduce the time for replacing the samples by hand, thus reducing the irradiation to human body. The box can be moved horizontally and vertically to scan the samples for a maximum area of 11 cm × 11 cm. Tests were subsequently carried out with beam at CERN by using 120 GeV pions and at DESY with 4 GeV electrons. We describe the analyses of the testbeam data of the KEK/HPK sensor-modules, focussing on the comparison of the performance of old and new designs of pixel structures, together with a reference of the simplest design (no biasing structure). The novel design has shown comparably good performance as the no-structure design in detecting passing-through charged particles.

  14. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    DOE PAGES

    Pan, H.; Felice, H.; Cheng, D. W.; ...

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less

  15. Weak-strong Beam-beam Simulations for HL-LHC

    SciTech Connect

    Banfi, Danilo; Barranco, Javier; Pieloni, Tatiana; Valishev, Alexander

    2014-07-01

    In this paper we present dynamic aperture studies for possible High Luminosity LHC optics in the presence of beam-beam interactions, crab crossing schemes and magnets multipolar errors. Possible operational scenarios of luminosity leveling by transverse offset and betatron function are also studied and the impact on the beams stability is discussed.

  16. The BaBar Level 1 Drift-Chamber Trigger Upgrade With 3D Tracking

    SciTech Connect

    Chai, X.D.; /Iowa U.

    2005-11-29

    At BABAR, the Level 1 Drift Chamber trigger is being upgraded to reduce increasing background rates while the PEP-II luminosity keeps improving. This upgrade uses the drift time information and stereo wires in the drift chamber to perform a 3D track reconstruction that effectively rejects background events spread out along the beam line.

  17. Measurement of the luminosity in the ZEUS experiment at HERA II

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Andruszkow, J.; Bold, T.; Borzemski, P.; Buettner, C.; Caldwell, A.; Chwastowski, J.; Daniluk, W.; Drugakov, V.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Helbich, M.; Januschek, F.; Jurkiewicz, P.; Kisielewska, D.; Klein, U.; Kotarba, A.; Lohmann, W.; Ning, Y.; Oliwa, K.; Olkiewicz, K.; Paganis, S.; Pieron, J.; Przybycien, M.; Ren, Z.; Ruchlewicz, W.; Schmidke, W.; Schneekloth, U.; Sciulli, F.; Stopa, P.; Sztuk-Dambietz, J.; Suszycki, L.; Sutiak, J.; Wierba, W.; Zawiejski, L.

    2014-04-01

    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung off protons. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.

  18. Beam dynamics and expected RHIC performance with 56MHz RF upgrade

    SciTech Connect

    Fedotov,A.V.; Ben-Zvi, I.

    2009-05-04

    An upgrade of the RHIC storage RF system with a superconducting 56 MHz cavity was recently proposed. This upgrade will provide a significant increase in the acceptance of the RHIC 197 MHz storage RF bucket. This paper summarizes simulations of beam evolution due to intra-beam scattering (IBS) for beam parameters expected with the 56 MHz SRF cavity upgrade. Expected luminosity improvements are shown for Au ions at 100 GeV/nucleon and protons at 250 GeV.

  19. Status of 11 T 2-in-1 Nb$_3$Sn Dipole Development for LHC

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Apollinari, Giorgio; Barzi, Emanuela; Bossert, Rodger; Buehler, Marc; Chlachidze, Guram; DiMarco, Joseph; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Velev, Gueorgui; Auchmann, Bernhard; Karppinen, Mikko; Rossi, Lucio; Smekens, David

    2014-07-01

    The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.

  20. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  1. The operation of the LHC accelerator complex (1/2)

    SciTech Connect

    2010-04-07

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  2. The operation of the LHC accelerator complex (2/2)

    SciTech Connect

    2010-04-09

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  3. The operation of the LHC accelerator complex (2/2)

    ScienceCinema

    None

    2016-07-12

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  4. The operation of the LHC accelerator complex (1/2)

    ScienceCinema

    None

    2016-07-12

    These lectures will give an overview of what happens when the LHC is in running mode. They are aimed at students working on the LHC experiments, but all those who are curious about what happens behind the scenes of the LHC are welcomed. You will learn all you always wanted to know about the LHC, and never had the courage to ask! The only pre-requisite is a basic, college-level, knowledge of EM and of the principles that allow to steer charged beams. Topics covered will include, among others: - the description of the injector chain, from the generation of the protons, to the delivery of bunches to the LHC. - the discussion of the steps required to accelerate the beams in the LHC, to bring them into collision, and to control the luminosity at the interaction points. - the description of the monitoring tools available to the LHC operators, and an explanation of the various plots and panels that can be found on the LHC web pages. o Lecture 1: Wednesday April 7, 10-11am o Lecture 2: Friday April 9, 10-11am The lectures will be webcast, recorded and archived. Coffee will be served before the lectures, starting at 9:45

  5. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Strobbe, N.

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  6. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  7. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  8. Beam losses due to abrupt crab cavity failures in the LHC

    SciTech Connect

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-03-28

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  9. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Zhou, B.

    2016-09-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  10. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    King, Robert; CMS Muon group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  11. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    NASA Astrophysics Data System (ADS)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  12. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  13. High Luminosity Heavy Quark and Electromagnetic Probes at RHIC

    SciTech Connect

    David, G; Frawley, A D; Rapp, R; Ullrich, T; Vogt, R; Xu, Z

    2008-03-30

    The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory was designed to study the properties of quantum chromodynamics (QCD) in a hot and dense medium. The first years of RHIC operation and accompanying theoretical studies have helped pinpoint certain classes of measurements needed to more fully probe the medium and determine its properties. The medium created in these heavy-ion (AA) collisions appears to thermalize quickly and exhibits collective flow patterns consistent with hydrodynamic predictions. The initial temperature of the medium is not known and it is not yet understood whether deconfinement and chiral symmetry restoration are realized during its evolution. The answers to these questions require higher luminosities and detector upgrades, referred to as RHIC-II. The goal of RHIC II is to achieve the answers to the above questions by increasing the ion luminosity. The measurements thus far at RHIC could not fully address these fundamental questions, either due to incomplete detection capabilities or insufficient statistics to draw meaningful and robust conclusions. Working groups were formed to determine which physics topics could best be addressed by the combination of planned upgrades and increased luminosity. Reports from each working group were used to prepare a white paper for RHIC II, along with additional inputs from the conveners of all working groups.

  14. The new CMS DAQ system for run-2 of the LHC

    DOE PAGES

    Bawej, Tomasz; Behrens, Ulf; Branson, James; ...

    2015-05-21

    The data acquisition (DAQ) system of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high level trigger (HLT) farm. The HLT farm selects interesting events for storage and offline analysis at a rate of around 1 kHz. The DAQ system has been redesigned during the accelerator shutdown in 2013/14. The motivation is twofold: Firstly, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime by the time the LHC restarts. Secondly, in ordermore » to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increasing the number of readout channels and replacing the off-detector readout electronics with a μTCA implementation. The new DAQ architecture will take advantage of the latest developments in the computing industry. For data concentration, 10/40 Gb/s Ethernet technologies will be used, as well as an implementation of a reduced TCP/IP in FPGA for a reliable transport between custom electronics and commercial computing hardware. A Clos network based on 56 Gb/s FDR Infiniband has been chosen for the event builder with a throughput of ~ 4 Tb/s. The HLT processing is entirely file based. This allows the DAQ and HLT systems to be independent, and to use the HLT software in the same way as for the offline processing. The fully built events are sent to the HLT with 1/10/40 Gb/s Ethernet via network file systems. Hierarchical collection of HLT accepted events and monitoring meta-data are stored into a global file system. As a result, this paper presents the requirements, technical choices, and performance of the new system.« less

  15. The new CMS DAQ system for run-2 of the LHC

    SciTech Connect

    Bawej, Tomasz; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana -Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Forrest, Andrew; Gigi, Dominique; Glege, Frank; Gomez-Ceballos, Guillelmo; Gomez-Reino, Robert; Hegeman, Jeroen; Holzner, Andre; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Morovic, Srecko; Nunez-Barranco-Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakul, Hannes; Schwick, Christoph; Stieger, Benjamin; Sumorok, Konstanty; Veverka, Jan; Zejdl, Petr

    2015-05-21

    The data acquisition (DAQ) system of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high level trigger (HLT) farm. The HLT farm selects interesting events for storage and offline analysis at a rate of around 1 kHz. The DAQ system has been redesigned during the accelerator shutdown in 2013/14. The motivation is twofold: Firstly, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime by the time the LHC restarts. Secondly, in order to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increasing the number of readout channels and replacing the off-detector readout electronics with a μTCA implementation. The new DAQ architecture will take advantage of the latest developments in the computing industry. For data concentration, 10/40 Gb/s Ethernet technologies will be used, as well as an implementation of a reduced TCP/IP in FPGA for a reliable transport between custom electronics and commercial computing hardware. A Clos network based on 56 Gb/s FDR Infiniband has been chosen for the event builder with a throughput of ~ 4 Tb/s. The HLT processing is entirely file based. This allows the DAQ and HLT systems to be independent, and to use the HLT software in the same way as for the offline processing. The fully built events are sent to the HLT with 1/10/40 Gb/s Ethernet via network file systems. Hierarchical collection of HLT accepted events and monitoring meta-data are stored into a global file system. As a result, this paper presents the requirements, technical choices, and performance of the new system.

  16. First production of new thin 3D sensors for HL-LHC at FBK

    NASA Astrophysics Data System (ADS)

    Sultan, D. M. S.; Dalla Betta, G.-F.; Mendicino, R.; Boscardin, M.; Ronchin, S.; Zorzi, N.

    2017-01-01

    Owing to their intrinsic (geometry dependent) radiation hardness, 3D pixel sensors are promising candidates for the innermost tracking layers of the forthcoming experiment upgrades at the "Phase 2" High-Luminosity LHC (HL-LHC) . To this purpose, extreme radiation hardness up to the expected maximum fluence of 2 × 1016 neq.cm-2 must come along with several technological improvements in a new generation of 3D pixels, i.e., increased pixel granularity (050×5 or 025× 10 μ m2 cell size), thinner active region (0~ 10 \\textmu m), narrower columnar electrodes (~ 5 \\textmu m diameter) with reduced inter-electrode spacing (0~ 3 μ m), and very slim edges (0~ 10 μ m). The fabrication of the first batch of these new 3D sensors was recently completed at FBK on Si-Si direct wafer bonded 6" substrates. Initial electrical test results, performed at wafer level on sensors and test structures, highlighted very promising performance, in good agreement with TCAD simulations: low leakage current (< 1 pA/column), intrinsic breakdown voltage of more than 150 V, capacitance of about 50 fF/column, thus assessing the validity of the design approach. A large variety of pixel sensors compatible with both existing (e.g., ATLAS FEI4 and CMS PSI46) and future (e.g., RD53) read-out chips were fabricated, that were also electrically tested on wafer using a temporary metal layer patterned as strips shorting rows of pixels together. This allowed a statistically significant distribution of the relevant electrical quantities to be obtained, thus gaining insight into the impact of process-induced defects. A few 3D strip test structures were irradiated with X-rays, showing inter-strip resistance of at least several GΩ even after 50 Mrad(Si) dose, thus proving the p-spray robustness. We present the most important design and technological aspects, and results obtained from the initial investigations.

  17. Hydrocarbonaceous material upgrading method

    DOEpatents

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  18. The CMS Level-1 electron and photon trigger: for Run II of LHC

    NASA Astrophysics Data System (ADS)

    Dev, N.; Jessop, C.; Meng, F.; Marinelli, N.; Taroni, S.; Beaudette, F.; Cadamuro, L.; Davignon, O.; Romanteau, T.; Strebler, T.; Zabi, A.; Sauvan, J. B.; Marrouche, J.; Wardle, N.; Aggleton, R.; Ball, F.; Brooke, J.; Newbold, D.; Paramesvaran, S.; Smith, D.; Taylor, J.; Baber, M.; Bundock, A.; Citron, M.; Elwood, A.; Hall, G.; Iles, G.; Laner, C.; Penning, B.; Rose, A.; Shtipliyski, A.; Tapper, A.; Durkin, T.; Harder, K.; Harper, S.; Shepherd-Themistocleous, C.; Thea, A.; Williams, T.; Neu, C.; Sinthuprasith, T.; Xia, F.

    2017-02-01

    The Compact Muon Solenoid (CMS) employs a sophisticated two-level online triggering system that has a rejection factor of up to 105. Since the beginning of Run II of LHC, the conditions that CMS operates in have become increasingly challenging. The centre-of-mass energy is now 13 TeV and the instantaneous luminosity currently peaks at 1.5 ×1034 cm‑2s‑1. In order to keep low physics thresholds and to trigger efficiently in such conditions, the CMS trigger system has been upgraded. A new trigger architecture, the Time Multiplexed Trigger (TMT) has been introduced which allows the full granularity of the calorimeters to be exploited at the first level of the online trigger. The new trigger has also benefited immensely from technological improvements in hardware. Sophisticated algorithms, developed to fully exploit the advantages provided by the new hardware architecture, have been implemented. The new trigger system started taking physics data in 2016 following a commissioning period in 2015, and since then has performed extremely well. The hardware and firmware developments, electron and photon algorithms together with their performance in challenging 2016 conditions is presented.

  19. Active lower order mode damping for the four rod LHC crab cavity

    NASA Astrophysics Data System (ADS)

    Dexter, A. C.; Burt, G.; Apsimon, R.

    2017-02-01

    The high luminosity upgrade planned for the LHC requires crab cavities to rotate bunches into alignment at the interaction points. They compensate for a crossing angle near 500 μ r ad . It is anticipated that four crab cavities in succession will be utilized to achieve this rotation on either side of each IP in a local crossing scheme. A crab cavity operates in a dipole mode but always has an accelerating mode that may be above or below the frequency of the operating mode. Crab cavities are given couplers to ensure that unwanted acceleration modes are strongly damped however employing standard practice these unwanted modes will always have some level of excitation. Where this excitation has a random phase it might promote bunch growth and limit beam lifetime. This paper sets out a method for active control of the phase and amplitude of the unwanted lowest accelerating mode in the crab cavities. The paper investigates the level of suppression that can be achieved as a function cavity quality factor and proximity to resonance.

  20. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    NASA Astrophysics Data System (ADS)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  1. SUSY at the ILC and Solving the LHC Inverse Problem

    SciTech Connect

    Gainer, James S.; /SLAC

    2008-05-28

    Recently a large scale study of points in the MSSM parameter space which are problematic at the Large Hadron Collider (LHC) has been performed. This work was carried out in part to determine whether the proposed International Linear Collider (ILC) could be used to solve the LHC inverse problem. The results suggest that while the ILC will be a valuable tool, an energy upgrade may be crucial to its success, and that, in general, precision studies of the MSSM are more difficult at the ILC than has generally been believed.

  2. Proposal to upgrade the MIPP data acquisition system

    SciTech Connect

    Baker, W.; Carey, D.; Johnstone, C.; Kostin, M.; Meyer, H.; Raja, R.; /Fermilab

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  3. Diamond detectors for the TOTEM timing upgrade

    NASA Astrophysics Data System (ADS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F. S.; Catanesi, M. G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajíček, M. V.; Losurdo, L.; Lo Vetere, M.; Rodríguez, F. Lucas; Lucsanyi, D.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    2017-03-01

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.

  4. Status of sensor qualification for the PS module with on-chip pT discrimination for the CMS tracker phase 2 upgrade

    NASA Astrophysics Data System (ADS)

    Grossmann, Johannes

    2017-02-01

    The high luminosity upgrade of the LHC is targeted to deliver 3000 fb-1 at a luminosity of 5×1034 cm-2 s-1. Higher granularity, 140 collisions per bunch crossing and existing bandwidth limitations require a reduction of the amount of data at module level. New modules have binary readout, on-chip pT discrimination and capabilities to provide track finding data at 40 MHz to the L1-trigger. The CMS collaboration has undertaken R&D effort to develop new planar sensors for the pixel-strip (PS) module, which has to withstand 1×1015 cm-2 1 MeV neutron equivalent fluence in the innermost layer of the tracker. The module is composed of a strip sensor and a macro pixel sensor with 100 μm×1.5 mm pixel size. Sensors were characterized in the laboratory and the effects of different process parameters and sensor concepts were studied. This contribution presents a new sensor prototype with n-pixels in p-bulk material in planar technology for the PS module. A new inverted module concept is presented, which has advantages with respect to the baseline concept. Electrical characterization of sensors and SEM-images are presented.

  5. Study of Higgs boson production and its b-b(bar) decay in gamma-gamma processes in proton-nucleus collisions at the LHC

    SciTech Connect

    d'Enterria, David; Lansberg, Jean-Philippe; /Ecole Polytechnique, CPHT /SLAC

    2010-08-26

    We explore for the first time the possibilities to measure an intermediate-mass (m{sub H} = 115-140 GeV/c{sup 2}) Standard-Model Higgs boson in electromagnetic proton-lead (p Pb) interactions at the CERN Large Hadron Collider (LHC) via its b{bar b} decay. Using equivalent Weizsacker-Williams photon fluxes and Higgs effective field theory for the coupling {gamma}{gamma} {yields} H, we obtain a leading-order cross section of the order of 0.3 pb for exclusive Higgs production in elastic (p Pb {yields} {gamma}{gamma} p H Pb) and semielastic (p Pb {yields} {gamma}{gamma} X H Pb) processes at {radical}S{sub NN} = 8.8 TeV. After applying various kinematics cuts to remove the main backgrounds ({gamma}{gamma} {yields} b{bar b} and misidentified {gamma}{gamma} {yields} q{bar q} events), we find that a Higgs boson with m{sub H} = 120 GeV/c{sup 2} could be observed in the b{bar b} channel with a 3{sigma}-significance integrating 300 pb{sup -1} with an upgraded pA luminosity of 10{sup 31} cm{sup -2}s{sup -1}. We also provide for the first time semielastic Higgs cross sections, along with elastic t{bar t} cross sections, for electromagnetic pp, pA and AA collisions at the LHC.

  6. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    SciTech Connect

    Pan, H.; Felice, H.; Cheng, D. W.; Anderssen, E.; Ambrosio, G.; Perez, J. C.; Juchno, M.; Ferracin, P.; Prestemon, S. O.

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN. In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.

  7. The Phase-1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Klein, Katja

    2017-02-01

    The CMS experiment features a pixel detector with three barrel layers and two discs per side, corresponding to an active silicon area of 1 m2. The detector delivered high-quality data during LHC Run 1. However, the CMS pixel detector was designed for the nominal instantaneous LHC luminosity of 1 ·1034cm-2s-1 . It is expected that the instantaneous luminosity will increase and reach twice the design value before Long Shutdown 3, scheduled for 2023. Under such conditions, the present readout chip would suffer from data loss due to buffer overflow, leading to significant inefficiencies of up to 16%. The CMS collaboration is presently constructing a new pixel detector to replace the present device during the winter shutdown 2016/2017. The design of this new detector will be outlined, the construction status summarized and the performance described.

  8. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  9. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  10. Training for Technology Upgrade.

    ERIC Educational Resources Information Center

    Strandberg, John

    1997-01-01

    A computer system conversion in a business was relatively painless for users and invisible to customers. The plan relied on basic training strategies that apply to a variety of technology upgrades. (Author/JOW)

  11. SLHC upgrade plans for the ATLAS pixel detector

    NASA Astrophysics Data System (ADS)

    Šícho, Petr

    2009-08-01

    The ATLAS pixel detector is an 80 million channels silicon tracking system designed to detect charged tracks and secondary vertices with very high precision. An upgrade of the ATLAS pixel detector is presently being considered, enabling to cope with higher luminosity at Super Large Hadron Collider (SLHC). The increased luminosity leads to extremely high radiation doses in the innermost region of the ATLAS tracker. Options considered for a new detector are discussed, as well as some important R&D activities, such as investigations towards novel detector geometries and novel processes.

  12. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  13. Multiwavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan; Oegerle, William R. (Technical Monitor)

    2002-01-01

    I have developed a technique for measuring multi-variate luminosity functions of galaxies. Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principle component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multiwavelength luminosity function for the galaxies in the released SDSS catalog, and show that the results are consistent with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by the SIRTF and GALEX missions.

  14. Constraints on anomalous top quark couplings at the LHC

    SciTech Connect

    Rizzo, T.G.

    1996-09-01

    Measurements of distributions associated with the pair production of top quarks at the LHC can be used to constrain (or observe) the anomalous chromomagnetic dipole moment(k) of the top. For example, using either the tt(bar) invariant mass or the Pt distribution of top we find that sensitivities to ; k; of order 0.05 are obtainable with 100 /fb of integrated luminosity. This is similar in magnitude to what can be obtained at a 500 GeV NLC with an integrated luminosity of 50 /fb through an examination of the e(+)e(-) right arrow tt(bar)g process.

  15. Evolutionary variations of solar luminosity

    NASA Technical Reports Server (NTRS)

    Endal, A. S.

    1981-01-01

    Theoretical arguments for a 30% increase in the solar luminosity over the past 4.7 billion years are reviewed. A scaling argument shows that this increase can be predicted without detailed numerical calculations. The magnitude of the increase is independent of nuclear reaction rates, as long as conversion of hydrogen to helium provides the basic energy source of the Sun. The effect of the solar luminosity increase on the terrestrial climate is briefly considered. It appears unlikely that an enhanced greenhouse effect, due to reduced gases (NH3, CH4), can account for the long-term paleoclimatic trends.

  16. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above

  17. ATLAS level-1 calorimeter trigger: Run-2 performance and Phase-1 upgrades

    NASA Astrophysics Data System (ADS)

    Carlson, Ben; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    The Run-2 performance and Phase-1 upgrade are presented for the hardware-based level-1 calorimeter trigger (L1Calo) for the ATLAS Experiment. This trigger has a latency of about 2.2 microseconds to make a decision to help ATLAS select about 100 kHz of the most interesting collisions from the nominal LHC rate of 40 MHz. We summarize the upgrade after Run-1 (2009-2012) and discuss its performance in Run-2 (2015-current). We also outline the on-going Phase-1 upgrade for the next run (2021-2024) and its expected performance.

  18. The upgrade of the Belle II forward calorimeter

    NASA Astrophysics Data System (ADS)

    Manoni, E.; Aloisio, A.; Baccaro, S.; Branchini, P.; Cecchi, C.; Cemmi, A.; De Lucia, E.; De Nardo, G.; de Sangro, R.; Felici, G.; Finocchiaro, G.; Fiore, S.; Giordano, R.; Merola, M.; Oberhof, B.; Passeri, A.; Peruzzi, I. M.; Piccolo, M.; Rossi, A.; Sciacca, C.

    2017-02-01

    The new facility SuperKEKB will be an upgrade of the existing KEKB electron-positron asymmetric collider, with a target luminosity of 8 ×1035cm-2s-1, about 40 times greater than that of KEKB. The detector will also be upgraded to cope with the higher luminosity, pile-up and occupancy. We report here on the design and development of the new pure CsI calorimeter for the forward region. An intensive R&D is being carried on to study the performance of pure CsI crystals with Avalanche Photodiodes readout. Results about the relative energy resolution of this detector, along with radiation hardness studies of all the components, are presented. A matrix of 16 crystals has been put on an electron beam at the BTF facility in Frascati and results in terms of energy resolution of this prototype are also discussed.

  19. Gauge mediation at the LHC: status and prospects

    NASA Astrophysics Data System (ADS)

    Knapen, Simon; Redigolo, Diego

    2017-01-01

    We show that the predictivity of general gauge mediation (GGM) with TeV-scale stops is greatly increased once the Higgs mass constraint is imposed. The most notable results are a strong lower bound on the mass of the gluino and right-handed squarks, and an upper bound on the Higgsino mass. If the μ-parameter is positive, the wino mass is also bounded from above. These constraints relax significantly for high messenger scales and as such long-lived NLSPs are favored in GGM. We identify a small set of most promising topologies for the neutralino/sneutrino NLSP scenarios and estimate the impact of the current bounds and the sensitivity of the high luminosity LHC. The stau, stop and sbottom NLSP scenarios can be robustly excluded at the high luminosity LHC.

  20. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  1. Anomalous quartic and triple gauge couplings in {gamma}-induced processes at the LHC

    SciTech Connect

    Royon, Christophe; Chapon, Emilien

    2011-07-15

    We study the W/Z pair production via two-photon exchange at the LHC and give the sensitivities on trilinear and quartic gauge anomalous couplings between photons and W/Z bosons for an integrated luminosity of 30 and 200 fb{sup -1}. For simplicity and to obtain lower backgrounds, only the leptonic decays of the electroweak bosons are considered. The intact protons in the final states are detected in the ATLAS Forward Proton detectors. The high energy and luminosity of the LHC and the forward detectors allow to probe beyond standard model physics and to test the Higgsless and extra dimension models in an unprecedent way.

  2. Spin and diffractive physics with a fixed-target experiment at the LHC (AFTER-LHC)

    SciTech Connect

    Lorce, C.; Chambert, V.; Didelez, J. P.; Genolini, B.; Hadjidakis, C.; Lansberg, J. P.; Rosier, P.; Brodsky, S. J.; Ferreiro, E. G.; Fleuret, F.

    2013-04-15

    We report on the spin and diffractive physics at a future multi-purpose f xed-target experiment with proton and lead LHC beams extracted by a bent crystal. The LHC multi-TeV beams allow for the most energetic f xed-target experiments ever performed, opening new domains of particle and nuclear physics and complementing that of collider physics, in particular that of RHIC and the EIC projects. The luminosity achievable with AFTER using typical targets would surpass that of RHIC by more than 3 orders of magnitude. The f xed-target mode has the advantage to allow for measurements of single-spin asymmetries with polarized target as well as of single-diffractive processes in the target region.

  3. Dijet spectroscopy at high luminosity

    SciTech Connect

    Green, D.

    1990-07-01

    A study of the dijet mass resolution has been made appropriate to high luminosity operation. As a benchmark, the mass resolution of W {yields} jj for a Higgs boson of 800 GeV has been optimized for no, eight, and sixteen overlapping minbias events. A factor of 2.5 degradation in M{sub jj} width is seen. 6 refs., 10 figs.

  4. Availability modeling approach for future circular colliders based on the LHC operation experience

    NASA Astrophysics Data System (ADS)

    Niemi, Arto; Apollonio, Andrea; Gutleber, Johannes; Sollander, Peter; Penttinen, Jussi-Pekka; Virtanen, Seppo

    2016-12-01

    Reaching the challenging integrated luminosity production goals of a future circular hadron collider (FCC-hh) and high luminosity LHC (HL-LHC) requires a thorough understanding of today's most powerful high energy physics research infrastructure, the LHC accelerator complex at CERN. FCC-hh, a 4 times larger collider ring aims at delivering 10 - 20 ab-1 of integrated luminosity at 7 times higher collision energy. Since the identification of the key factors that impact availability and cost is far from obvious, a dedicated activity has been launched in the frame of the future circular collider study to develop models to study possible ways to optimize accelerator availability. This paper introduces the FCC reliability and availability study, which takes a fresh new look at assessing and modeling reliability and availability of particle accelerator infrastructures. The paper presents a probabilistic approach for Monte Carlo simulation of the machine operational cycle, schedule and availability for physics. The approach is based on best-practice, industrially applied reliability analysis methods. It relies on failure rate and repair time distributions to calculate impacts on availability. The main source of information for the study is coming from CERN accelerator operation and maintenance data. Recent improvements in LHC failure tracking help improving the accuracy of modeling of LHC performance. The model accuracy and prediction capabilities are discussed by comparing obtained results with past LHC operational data.

  5. The upgraded CDF front end electronics for calorimetry

    SciTech Connect

    Drake, G.; Frei, D.; Hahn, S.R.; Nelson, C.A.; Segler, S.L.; Stuermer, W.

    1991-11-01

    The front end electronics used in the calorimetry of the CDF detector has been upgraded to meet system requirements for higher expected luminosity. A fast digitizer utilizing a 2 {mu}Sec, 16 bit ADC has been designed and built. Improvements to the front end trigger circuitry have been implemented, including the production of 900 new front end modules. Operational experience with the previous system is presented, with discussion of the problems and performance goals.

  6. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R. H.

    2011-04-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut für Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied.The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  7. Testing sTGC with small angle wire edges for the ATLAS new small wheel muon detector upgrade

    SciTech Connect

    Roth, Itamar; Klier, Amit; Duchovni, Ehud

    2015-07-01

    The LHC upgrade scheduled for 2018 is expected to significantly increase the accelerator's luminosity, and as a result the radiation background rates in the ATLAS Muon Spectrometer will increase too. Some of its components will have to be replaced in order to cope with these high rates. Newly designed small-strip Thin Gap chambers (sTGC) will replace them at the small wheel region. One of the differences between the sTGC and the currently used TGC is the alignment of the wires along the azimuthal direction. As a result, the outermost wires approach the detector's edge with a small angle. Such a configuration may be a cause for various problems. Two small dedicated chambers were built and tested in order to study possible edge effects that may arise from the new configuration. The sTGC appears to be stable and no spark have been observed, yet some differences in the detector response near the edge is seen and further studies should be carried out. (authors)

  8. Latency study of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    NASA Astrophysics Data System (ADS)

    Meng, X. T.; Levin, D. S.; Chapman, J. W.; Li, D. C.; Yao, Z. E.; Zhou, B.

    2017-02-01

    The High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by the CERN Microelectronics group, has been proposed for the digitization of the thin-Resistive Plate Chambers (tRPC) in the ATLAS Muon Spectrometer Phase-1 upgrade project. These chambers, to be staged for higher luminosity LHC operation, will increase trigger acceptance and reduce or eliminate the fake muon trigger rates in the barrel-endcap transition region, corresponding to pseudo-rapidity range 1<|η|<1.3. Low level trigger candidates must be flagged within a maximum latency of 1075 ns, thus imposing stringent signal processing time performance requirements on the readout system in general, and on the digitization electronics in particular. This paper investigates the HPTDC signal latency performance based on a specially designed evaluation board coupled with an external FPGA evaluation board, when operated in triggerless mode, and under hit rate conditions expected in Phase-I. This hardware based study confirms previous simulations and demonstrates that the HPTDC in triggerless operation satisfies the digitization timing requirements in both leading edge and pair modes.

  9. Searches for BSM and Higgs boson at LHC

    SciTech Connect

    Jinnouchi, O.; Collaboration: ATLAS Collaboration; CMS Collaboration

    2012-07-27

    This article reviews the recent results from the two energy frontier experiments, ATLAS and CMS at the large hadron collider (LHC), using the data collected during 2011 corresponding up to 4.9 fb{sup -1} integrated luminosity of {radical}(s) = 7TeV proton proton collisions. The recent results of searches for the Standard Model Higgs boson, and searches for beyond Standard Model physics based on supersymmetry and other new exotic models are presented.

  10. Upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Rossegger, Stefan

    2013-12-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavor production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 μm. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and an average material budget of 1.1% X0 per layer. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavor detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last 10 years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of the impact parameter resolution, standalone tracking efficiency at low pt, momentum resolution and readout capabilities. The usage of the most recent monolithic and/or hybrid pixel detector technologies allows the improvement of the detector material budget and the intrinsic spatial resolution both by a factor of three with respect to the present ITS. The installation of a smaller beam-pipe reduces the distance between the first detector layer and the interaction vertex. Under these assumptions, simulations show that an overall improvement of the impact parameter resolution by a factor of three is possible. The Conceptual Design Report for the Upgrade of the ALICE ITS, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

  11. Distributed Russian Tier-2 - RDIG in Simulation and Analysis of Alice Data From LHC

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Jancurova, L.; Kiryanov, A.; Kotlyar, V.; Mitsyn, V.; Lyublev, Y.; Ryabinkin, E.; Shabratova, G.; Smirnov, S.; Stepanova, L.; Urazmetov, W.; Zarochentsev, A.

    2011-12-01

    On the threshold of LHC data there were intensive test and upgrade of GRID application software for all LHC experiments at the top of the modern LCG middleware (gLite). The update of such software for ALICE experiment at LHC, AliEn[1] had provided stable and secure operation of sites developing LHC data. The activity of Russian RDIG (Russian Data Intensive GRID) computer federation which is the distributed Tier-2 centre are devoted to simulation and analysis of LHC data in accordance with the ALICE computing model [2]. Eight sites of this federation interesting in ALICE activity upgrade their middle ware in accordance with requirements of ALICE computing what ensured success of MC production and end-user analysis activity at all eight sites. The result of occupancy and efficiency of each site in the time of LHC operation will be presented in the report. The outline the results of CPU and disk space usage at RDIG sites for the data simulation and analysis of first LHC data from the exposition of ALICE detector [3] will be presented as well. There will be presented also the information about usage of parallel analysis facility based on PROOF [4].

  12. Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation

    SciTech Connect

    Redaelli, S.; Bertarelli, A.; Bruce, R.; Perini, D.; Rossi, A.; Salvachua, B.; Stancari, G.; Valishev, A.

    2015-06-01

    Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes are also discussed.

  13. Recent Results of the ATLAS Upgrade Planar Pixel Sensor R Project

    NASA Astrophysics Data System (ADS)

    Marchiori, G.

    The ATLAS detector has to undergo significant updates at the end of the current decade, in order to withstand the increased occupancy and radiation damage that will be produced by the high-luminosity upgrade of the Large Hadron Collider. In this presentation we give an overview of the recent accomplishments of the R&D activity on the planar pixel sensors for the ATLAS Inner Detector upgrade.

  14. First Attempts at using Active Halo Control at the LHC

    SciTech Connect

    Wagner, Joschka; Bruce, Roderik; Garcia Morales, Hector; Höfle, Wolfgang; Kotzian, Gerd; Kwee-Hinzmann, Regina; Langner, Andy; Mereghetti, Alessio; Quaranta, Elena; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen; Stancari, Giulio; Tomás, Rogelio; Valentino, Gianluca; Valuch, Daniel

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  15. Searching for anomalous top quark production at the early LHC.

    PubMed

    Gao, Jun; Li, Chong Sheng; Yang, Li Lin; Zhang, Hao

    2011-08-26

    We present a detailed study of the anomalous top quark production with subsequent decay at the LHC induced by model-independent flavor-changing neutral-current couplings, incorporating the complete next-to-leading order QCD effects. Our results show that, taking into account the current limits from the Tevatron, the LHC with √s=7  TeV may discover the anomalous coupling at 5σ level for a very low integrated luminosity of 61  pb⁻¹. The discovery potentials for the anomalous couplings at the LHC are examined in detail. We also discuss the possibility of using the charge ratio to distinguish the tug and tcg couplings.

  16. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  17. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  18. Upgraded D[O] calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement

    SciTech Connect

    Lokos, S.

    1992-11-01

    The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects.

  19. Upgraded D{O} calorimeter electronics for short Tevatron bunch space and the effect of pile-up on the W mass measurement

    SciTech Connect

    Lokos, S.; For the D {O} Collaboration

    1992-11-01

    The high luminosity and short bunch spacing time of the upgraded Tevatron force the calorimeter to replace a significant part of the present electronics. The W mass measurement was used to study the pile-up effects.

  20. Imaging the LHC beams with silicon and scintillating fibre vertex detectors

    NASA Astrophysics Data System (ADS)

    Rihl, M.

    2017-02-01

    The LHCb Vertex Locator (VELO) is used to reconstruct beam-gas interaction vertices which allows one to obtain precise profiles of the LHC beams. In LHCb, this information is combined with the profile of the reconstructed beam-beam collisions and with the LHC beam currents to perform precise measurements of the luminosity. This beam-gas imaging (BGI) method also allows one to study the transverse beam shapes, beam positions and angles in real time. Therefore, a demonstrator beam-gas vertex detector (BGV) based on scintillating fibre modules has been built and installed in LHC Ring 2 at point 4.

  1. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  2. Upgrading of Existing Structures.

    DTIC Science & Technology

    1980-06-01

    and double shoring, flange, boxed beam , and king post truss upgrading methods. - 1 - ,-. Upgraded concrete floors tested were single and double...Post Flange Beam Truss WOOD - D.L. = 20 psf t 4.5 11.4 - 2.4 1.7 1.7 Light - Joist, Glulam* (0.4) (6.8) (9.2) (2.6) (1.7) (2.2)** Medium- Joist, Glulam... truss shoring consists basically of cables or rods secured parallel to joists or beams and ten- sioned to form a king post truss configuration. The

  3. The UKIRT Upgrades Programme

    NASA Astrophysics Data System (ADS)

    Adamson, Andy; Davies, John; Robson, Ian

    Tim Hawarden presented this paper to the 30th anniversary workshop, just a month before his untimely death. The editors have done their best to convert his talk into this paper, and gratefully acknowledge the assistance of Nick Rees (a member of the Upgrades team, now at Diamond Light Source). Tim's discussion concerned the UKIRT Upgrades Project, which ran through the 1990s and transformed the telescope and made it truly competitive on the world stage for operation into the twenty-first century. The reference list at the end of the paper is comprehensive; some of these are referred to in the paper itself and some are included for completeness only.

  4. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  5. Accurate crab cavity modeling for the high luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Brett, D. R.; Appleby, R. B.; De Maria, R.; Garcia, J. Barranco; Garcia, R. Tomás; Hall, B.; Burt, G.

    2014-10-01

    As part of the Large Hadron Collider high luminosity upgrade it is proposed to include crab cavities in the lattice in order to enhance the luminosity. For one proposed cavity design the dynamics of the cavity is considered in terms of its impact upon the dynamic aperture of the machine. Taylor maps of the cavity are created and used to perform this analysis with a full assessment of their validity. Furthermore from these Taylor maps, symplectic methods are developed further, guided by the knowledge gained in the study of the physics contained in them.

  6. Accelerator Science: Luminosity vs. Energy

    ScienceCinema

    Lincoln, Don

    2016-09-28

    In the world of high energy physics there are several parameters that are important when one constructs a particle accelerator. Two crucial ones are the energy of the beam and the luminosity, which is another word for the number of particles in the beam. In this video, Fermilab’s Dr. Don Lincoln explains the differences and the pros and cons. He even works in an unexpected sporting event.

  7. Accelerator Science: Luminosity vs. Energy

    SciTech Connect

    Lincoln, Don

    2016-09-19

    In the world of high energy physics there are several parameters that are important when one constructs a particle accelerator. Two crucial ones are the energy of the beam and the luminosity, which is another word for the number of particles in the beam. In this video, Fermilab’s Dr. Don Lincoln explains the differences and the pros and cons. He even works in an unexpected sporting event.

  8. Status of the TOTEM experiment at LHC

    NASA Astrophysics Data System (ADS)

    Baechler, J.; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csörgő, T.; Deile, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, M. R.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Lucas Rodríguez, F.; Macrí, M.; Magaletti, L.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vítek, M.; Welti, J.; Whitmore, J.

    2013-08-01

    The TOTEM experiment is dedicated to the measurement of the total proton-proton cross-section with the luminosity-independent method and the study of elastic and diffractive scattering processes. Two tracking telescopes, T1 and T2, integrated in the CMS detector, cover the pseudo-rapidity region between 3.1 and 6.5 on both sides of the interaction point IP5. The Roman Pot (RP) stations are located at distances of ±147 m and ±220 m with respect to the interaction point to measure the very forward scattered protons at very small angles. During the LHC technical stop in winter 2010/2011, the TOTEM experiment was completed with the installation of the T1 telescope and the RP stations at ±147 m. In 2011, the LHC machine provided special optics with the large ß*=90 m, allowing TOTEM to measure the elastic scattering differential cross-section, down to the four-momentum transfer squared |t|=2×10-2 GeV2. Using the optical theorem and extrapolation of the differential cross-section to t=0 (optical point), the total p-p cross-section at the LHC energy of √{ s} = 7 TeV could be computed for the first time. Furthermore we measured with standard LHC beam optics and the energy of √{ s} = 7 TeV the forward charged particle pseudorapidity density dn/dη in the range of 5.3<|η|<6.4. The status of the experiment, the performance of the detectors with emphasis on the RPs are described and the first physics results are presented.

  9. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  10. Performance of the new small-strip Thin Gap Chamber for the ATLAS Muon System at the LHC

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain; Atlas Nsw Stgc Group Collaboration

    2016-03-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program. The largest phase-1 upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward region with the so-called New Small Wheel (NSW). The NSW consists of layers of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities. The precision reconstruction of tracks requires a spatial resolution of about 100 microns, and the trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads for triggering. The pads are used to produce a 3-out-of-4 coincidence to identify muon tracks in an sTGC quadruplet. A full size sTGC quadruplet has been constructed and equipped with the first prototype of dedicated front-end electronics. The design of the sTGC will be described. The performance of the sTGC quadruplet has been characterized with data collected at the Fermilab and CERN test beam facilities. Spatial resolution and trigger efficiency results will be presented. An overview of the simulation and digitization model of the sTGC will also be summarized.

  11. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  12. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  13. Upgrade of the D0 detector: The Tevatron beyond 2 fb**(-1)

    SciTech Connect

    Quinn, Breese; /Mississippi U.

    2005-01-01

    Recent performance of Fermilab's Tevatron has exceeded this year's design goals and further accelerator upgrades are underway. The high-luminosity period which follows these improvements is known as Run IIb. The D0 experiment is in the midst of a comprehensive upgrade program designed to enable it to thrive with much higher data rate and occupancy. Extensive modifications of and additions to all levels of the trigger and the silicon tracker are in progress. All upgrade projects are on schedule for installation in the 2005 shutdown.

  14. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  15. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  16. The Local [CII] Emission Line Luminosity Function

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh

    2017-01-01

    I present, for the first time, the local [CII]158 $\\mu$m emission line luminosity function measured using a sample of more than 500 galaxies from the RBGS. [CII] luminosities are measured from the Herschel PACS observations of the LIRGs in the GOALS survey and estimated for the rest of the sample based on the far-IR luminosity and color. The sample covers 91.3% of the sky and is complete at $S_{60\\mu m} > 5.24 Jy$. We calculated the completeness as a function of [CII] line luminosity and distance, based on the far-IR color and flux densities. The [CII] luminosity function is constrained in the range $\\sim 10^{7-9} \\ L_{\\odot}$ from both the 1/Vmax and the STY maximum likelihood methods. The shape of our derived [CII] emission line luminosity function agrees well with the IR luminosity function. For the CO(1-0) and [CII] luminosity functions to agree, we propose a varying ratio of [CII]/CO(1-0) as a function of CO luminosity, with larger ratios for fainter CO luminosities. Limited [CII] high redshift observations as well as estimates based on the IR and UV luminosity functions, are suggestive of an evolution in the [CII] luminosity function similar to the evolution trend of the cosmic star formation rate density. ALMA with full capability will be able to confirm this prediction.

  17. PACIFIC: the readout ASIC for the SciFi Tracker of the upgraded LHCb detector

    NASA Astrophysics Data System (ADS)

    Mazorra, J.; Chanal, H.; Comerma, A.; Gascón, D.; Gómez, S.; Han, X.; Pillet, N.; Vandaele, R.

    2016-02-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and will switch to a 40 MHz readout rate using a trigger-less software based system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with the higher detector occupancy and radiation damage. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed and a custom ASIC, called the low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC), will be used to digitise the signals from the SiPMs. This article presents an overview of the R&D for the PACIFIC. It is a 64-channel ASIC implemented in 130 nm CMOS technology, aiming at a radiation tolerant design with a power consumption below 10 mW per channel. It interfaces directly with the SiPM anode through a current mode input, and provides a configurable non-linear 2-bit per channel digital output. The SiPM signal is acquired by a current conveyor and processed with a fast shaper and a gated integrator. The digitization is performed using a three threshold non-linear flash ADC operating at 40 MHz. Simulation and test results show the PACIFIC chip prototypes functioning well.

  18. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  19. Beam-Beam Study on the Upgrade of Beijing Electron Positron Collider

    SciTech Connect

    Wang, S.; Cai, Y.; /SLAC

    2006-02-10

    It is an important issue to study the beam-beam interaction in the design and performance of such a high luminosity collider as BEPCII, the upgrade of Beijing Electron Positron Collider. The weak-strong simulation is generally used during the design of a collider. For performance a large scale tune scan, the weak-strong simulation studies on beam-beam interaction were done, and the geometry effects were taken into account. The strong-strong simulation studies were done for investigating the luminosity goal and the dependence of the luminosity on the beam parameters.

  20. LHC Physics Potential versus Energy

    SciTech Connect

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  1. Pinhole Luminosity Monitor with Feedback

    SciTech Connect

    Spencer, J

    2004-05-17

    Previously, the generalized luminosity L was defined and calculated for all incident channels based on an NLC e{sup +}e{sup -} design. Alternatives were then considered to improve the differing beam-beam e{sup -}e{sup -} e{gamma} and {gamma}{gamma} channels. Regardless of the channel, there was a large flux of outgoing, high energy photons that were produced from the beam-beam interaction e.g. beamsstrahlung that needs to be disposed of and whose flux depended on L. One approach to this problem is to consider it a resource and attempt to take advantage of it by disposing of these straight-ahead photons in more useful ways than simply dumping them. While there are many options for monitoring the luminosity, any method that allows feedback and optimization in real time and in a non-intercepting and non-interfering way during normal data taking is extremely important--especially if it provides other capabilities such as high resolution tuning of spot sizes and can be used for all incident channels without essential modifications to their setup. Our ''pin-hole'' camera appears to be such a device if it can be made to work with high energy photons in ways that are compatible with the many other constraints and demands on space around the interaction region. The basis for using this method is that it has, in principle, the inherent resolution and bandwidth to monitor the very small spot sizes and their stabilities that are required for very high, integrated luminosity. While there are many possible, simultaneous uses of these outgoing photon beams, we limit our discussion to a single, blind, proof-of-principle experiment that was done on the FFTB line at SLAC to certify the concept of a camera obscura for high energy photons.

  2. D{O} upgrade muon electronics design

    SciTech Connect

    Baldin, B.; Green, D.; Haggerty, H.; Hansen, S.

    1994-11-01

    The planned luminosity for the upgrade is ten times higher than at present (L {approximately} 10{sup 32}cm{sup {minus}2}s{sup {minus}1}) and involves a time between collisions as small as 132 ns. To operate in this environment, completely new electronics is required for the 17,500 proportional drift tubes of the system. These electronics include a deadtimeless readout, a digital TDC with about 1 ns binning for the wire signals, fast charge integrators and pipelined ADCs for digitizing the pad electrode signals, a new wire signal triggering scheme and its associated trigger logic, and high level DSP processing. Some test results of measurements performed on prototype channels and a comparison with the existing electronics are presented.

  3. Computing and data handling requirements for SSC (Superconducting Super Collider) and LHC (Large Hadron Collider) experiments

    SciTech Connect

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs.

  4. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)

  5. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  6. The upgrade of the CMS hadron calorimeter with silicon 5 photomultipliers

    SciTech Connect

    Strobbe, N.

    2016-09-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  7. MSSM Electroweak Baryogenesis and LHC Data

    SciTech Connect

    Carena, Marcela; Nardini, Germano; Quiros, Mariano; Wagner, Carlos E.M.

    2013-02-01

    Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.

  8. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Falchieri, D.; Gabrielli, A.; Travaglini, R.; Chen, S.-P.; Hsu, S.-C.; Hauck, S.; Kugel, A.

    2014-11-01

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer - the Insertable B-Layer or IBL - located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  9. A micro-TCA based data acquisition system for the Triple-GEM detectors for the upgrade of the CMS forward muon spectrometer

    NASA Astrophysics Data System (ADS)

    Lenzi, T.

    2017-01-01

    The Gas Electron Multiplier (GEM) upgrade project aims at improving the performance of the muon spectrometer of the Compact Muon Solenoid (CMS) experiment which will suffer from the increase in luminosity of the Large Hadron Collider (LHC). The GEM collaboration proposes to instrument the first muon station with Triple-GEM detectors, a technology which has proven to be resistant to high fluxes of particles. The architecture of the readout system is based on the use of the microTCA standard hosting FPGA-based Advanced Mezzanine Card (AMC) and of the Versatile Link with the GBT chipset to link the on-detector electronics to the micro-TCA boards. For the front-end electronics a new ASIC, called VFAT3, is being developed. On the detector, a Xilinx Virtex-6 FPGA mezzanine board, called the OptoHybrid, has to collect the data from 24 VFAT3s and to transmit the data optically to the off-detector micro-TCA electronics, as well as to transmit the trigger data at 40 MHz to the CMS Cathode Strip Chamber (CSC) trigger. The microTCA electronics provides the interfaces from the detector (and front-end electronics) to the CMS DAQ, TTC (Timing, Trigger and Control) and Trigger systems. In this paper, we will describe the DAQ system of the Triple-GEM project and provide results from the latest test beam campaigns done at CERN.

  10. Characterizing luminosity evolution in the Tevatron

    SciTech Connect

    Shiltsev, V.; McCrory, E.; /Fermilab

    2005-05-01

    We derive an approximate form of a luminosity evolution in a high intensity hadron collider taking into account the most important phenomena of intrabeam scattering (IBS), beam burn-up due to luminosity and beam-beam effects. It is well known that an exponential decay does not describe luminosity evolution very well unless the lifetime is allowed to vary with time. However, a ''1/time'' evolution, which this derivation shows is a good approximation, fits data from the Tevatron well.

  11. Construction of luminosity function for galaxy clusters

    NASA Astrophysics Data System (ADS)

    Godłowski, Włodzimierz; Popiela, Joanna; Bajan, Katarzyna; Biernacka, Monika; Flin, Piotr; Panko, Elena

    2015-02-01

    The luminosity function is an important quantity for analysis of large scale structure statistics, interpretation of galaxy counts (Lin & Kirshner 1996). We investigate the luminosity function of galaxy clusters. This is performed by counting the brightness of galaxies belonging to clusters in PF Catalogue. The obtained luminosity function is significantly different than that obtained both for optical and radiogalaxies (Machalski & Godowski 2000). The implications of this result for theories of galaxy formation are discussed as well.

  12. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  13. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  14. The Role of US Groups in LHC Physics

    NASA Astrophysics Data System (ADS)

    Green, Daniel

    2009-05-01

    U.S. groups have been involved in the LHC for the last fifteen years and have participated in the design, construction, installation and commissioning of the ATLAS and CMS detectors and the LHC accelerator. During this period U.S. groups have been integral to the overall effort and indeed comprise the largest national group within the detector collaborations. In the future these groups will take on operations tasks and R&D plans for detector upgrades. Thus, the U.S. effort will be an extended commitment, decades long. Nevertheless, the methods whereby U.S. groups will play a proportionate role in the physics analyses are less clear. LHC data and computing resources will be spread worldwide. What collaborative tools will allow U.S. groups to fully participate in the expected rich LHC physics? Should there be multiple analysis centers within the large and distributed ATLAS and CMS collaborations? As high energy physics looks ahead to having fewer energy frontier facilities similar issues will arise in the future which makes these questions of more general interest.

  15. Prospects for Higgs searches at the Tevatron and LHC in the MSSM with explicit CP violation.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2010-01-01

    We analyze the Tevatron and Large Hadron Collider (LHC) reach for the Higgs sector of the minimal supersymmetric standard model (MSSM) in the presence of explicit CP violation. Using the most recent studies from the Tevatron and LHC collaborations, we examine the CPX benchmark scenario for a range of CP-violating phases in the soft trilinear and gluino mass terms and compute the exclusion/discovery potentials for each collider on the (MH+,tan{beta}) plane. Projected results from standard model (SM)-like, nonstandard, and charged Higgs searches are combined to maximize the statistical significance. We exhibit complementarity between the SM-like Higgs searches at the LHC with low luminosity and the Tevatron, and estimate the combined reach of the two colliders in the early phase of LHC running.

  16. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  17. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  18. Synchro-betatron effects in the presence of large Piwinski angle and crab cavities at the HL-LHC

    SciTech Connect

    White S.; Calaga, R.; Miyamoto, R.

    2012-05-20

    The reduction of {beta}* at the collision points for the high luminosity LHC (HL-LHC) requires an increment in the crossing angle to maintain the normalized beam separation to suppress the effects of long-range beam-beam interactions. However, an increase in the crossing angle may give rise to synchro-betatron resonances which may negatively affect the beam emittance and lifetime. 6D weak-strong and strong-strong simulations were performed to study the effect of synchro-betatron resonances in the context of the HL-LHC layout and its suppression via crab crossing.

  19. LHC forward physics

    SciTech Connect

    Akiba, K.; Akbiyik, M.; Albrow, M.; Arneodo, M.; Avati, V.; Baechler, J.; Baillie, O. Villalobos; Bartalini, P.; Bartels, J.; Baur, S.; Baus, C.; Beaumont, W.; Behrens, U.; Berge, D.; Berretti, M.; Bossini, E.; Boussarie, R.; Brodsky, S.; Broz, M.; Bruschi, M.; Bussey, P.; Byczynski, W.; Noris, J. C. Cabanillas; Villar, E. Calvo; Campbell, A.; Caporale, F.; Carvalho, W.; Chachamis, G.; Chapon, E.; Cheshkov, C.; Chwastowski, J.; Ciesielski, R.; Chinellato, D.; Cisek, A.; Coco, V.; Collins, P.; Contreras, J. G.; Cox, B.; Damiao, D. de Jesus; Davis, P.; Deile, M.; D’Enterria, D.; Druzhkin, D.; Ducloué, B.; Dumps, R.; Dzhelyadin, R.; Dziurdzia, P.; Eliachevitch, M.; Fassnacht, P.; Ferro, F.; Fichet, S.; Figueiredo, D.; Field, B.; Finogeev, D.; Fiore, R.; Forshaw, J.; Medina, A. Gago; Gallinaro, M.; Granik, A.; Gersdorff, G. von; Giani, S.; Golec-Biernat, K.; Goncalves, V. P.; Göttlicher, P.; Goulianos, K.; Grosslord, J-Y; Harland-Lang, L. A.; Haevermaet, H. Van; Hentschinski, M.; Engel, R.; Corral, G. Herrera; Hollar, J.; Huertas, L.; Johnson, D.; Katkov, I.; Kepka, O.; Khakzad, M.; Kheyn, L.; Khachatryan, V.; Khoze, V. A.; Klein, S.; Klundert, M. van; Krauss, F.; Kurepin, A.; Kurepin, N.; Kutak, K.; Kuznetsova, E.; Latino, G.; Lebiedowicz, P.; Lenzi, B.; Lewandowska, E.; Liu, S.; Luszczak, A.; Luszczak, M.; Madrigal, J. D.; Mangano, M.; Marcone, Z.; Marquet, C.; Martin, A. D.; Martin, T.; Hernandez, M. I. Martinez; Martins, C.; Mayer, C.; Nulty, R. Mc; Mechelen, P. Van; Macula, R.; Costa, E. Melo da; Mertzimekis, T.; Mesropian, C.; Mieskolainen, M.; Minafra, N.; Monzon, I. L.; Mundim, L.; Murdaca, B.; Murray, M.; Niewiadowski, H.; Nystrand, J.; Oliveira, E. G. de; Orava, R.; Ostapchenko, S.; Osterberg, K.; Panagiotou, A.; Papa, A.; Pasechnik, R.; Peitzmann, T.; Moreno, L. A. Perez; Pierog, T.; Pinfold, J.; Poghosyan, M.; Pol, M. E.; Prado, W.; Popov, V.; Rangel, M.; Reshetin, A.; Revol, J-P; Rijssenbeek, M.; Rodriguez, M.; Roland, B.; Royon, C.; Ruspa, M.; Ryskin, M.; Vera, A. Sabio; Safronov, G.; Sako, T.; Schindler, H.; Salek, D.; Safarik, K.; Saimpert, M.; Santoro, A.; Schicker, R.; Seger, J.; Sen, S.; Shabanov, A.; Schafer, W.; Silveira, G. Gil Da; Skands, P.; Soluk, R.; Spilbeeck, A. van; Staszewski, R.; Stevenson, S.; Stirling, W. J.; Strikman, M.; Szczurek, A.; Szymanowski, L.; Takaki, J. D. Tapia; Tasevsky, M.; Taesoo, K.; Thomas, C.; Torres, S. R.; Tricomi, A.; Trzebinski, M.; Tsybychev, D.; Turini, N.; Ulrich, R.; Usenko, E.; Varela, J.; Vetere, M. Lo; Tello, A. Villatoro; Pereira, A. Vilela; Volyanskyy, D.; Wallon, S.; Wilkinson, G.; Wöhrmann, H.; Zapp, K. C.; Zoccarato, Y.

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  20. LHC forward physics

    DOE PAGES

    Akiba, K.; Akbiyik, M.; Albrow, M.; ...

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  1. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  2. Status of the 11 T Nb$_{3}$Sn Dipole Project for the LHC

    SciTech Connect

    Savary, F.; et al.

    2015-01-01

    The planned upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators could be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. A joint development program with the goal of building a 5.5 m long two-in-one aperture Nb_3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN magnet groups. As part of the first phase of the program, 1 m long and 2 m long single aperture models are being built and tested, and the collared coils from these magnets will be assembled and tested in two-in-one configuration in both laboratories. In parallel with the short model magnet activities, the work has started on the production line in view of the scale-up to 5.5 m long prototype magnet. The development of the final cryo-assembly comprising two 5.5 m long 11 T dipole cold masses and the warm collimator in the middle, fully compatible with the LHC main systems and the existing machine interfaces, has also started at CERN. This paper summarizes the progress made at CERN and FNAL towards the construction of 5.5 m long 11 T Nb_3Sn dipole prototype and the present status of the activities related to the integration of the 11 T dipole and collimator in the LHC.

  3. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  4. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  5. Vector resonances at LHC Run II in composite 2HDM

    NASA Astrophysics Data System (ADS)

    Di Chiara, Stefano; Heikinheimo, Matti; Tuominen, Kimmo

    2017-03-01

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb-1, of the current run becomes available.

  6. Signals of Warped Extra Dimensions at the LHC

    SciTech Connect

    Osland, P.; Pankov, A. A.; Tsytrinov, A. V.; Paver, N.

    2010-12-22

    We discuss the signatures of the spin-2 graviton excitations predicted by the Randall-Sundrum model with one warped extra dimension, in dilepton and diphoton production at LHC. By using a specific angular analysis, we assess the ranges in mass and coupling constant where such gravitons can be discriminated against competitor spin-1 and spin-0 objects, that potentially could manifest themselves in these processes with the same mass and rate of events. Depending on the value of the coupling constant to quarks and leptons, the numerical results indicate graviton identification mass ranges up to 1.1-2.4 TeV and 1.6-3.2 TeV for LHC nominal energy of 14 TeV and time-integrated luminosity of 10 and 100fb{sup -1}, respectively.

  7. Single and Central Diffractive Higgs Production at the LHC

    SciTech Connect

    Ducati, M. B. Gay; Machado, M. M.; Silveira, G. G.

    2011-07-15

    The single and central diffractive production of the Standard Model Higgs boson is computed using the diffractive factorization formalism, taking into account a parametrization for the Pomeron structure function provided by the H1 Collaboration. We compute the cross sections at NLO accuracy for the gluon fusion process, since it is the leading mechanism for the Higgs boson production. The gap survival probability is also introduced to include the rescattering corrections due to spectator particles present in the interaction. The diffractive ratios are predicted for proton-proton collisions at the LHC, since the beam luminosity is favorable to the Higgs boson detection. These results provide updated estimations for the fraction of single and central diffractive events in the LHC kinematical regime.

  8. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  9. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  10. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  11. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  12. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  13. The D0 level 3 DAQ system: operation and upgrades

    SciTech Connect

    Garcia-Bellido, Aran; Bose, Tulika; Brooijmans, Gustaaf; Chapin, Doug; Cutts, David; Fuess, Stuart; Gadfort, Thomas; Haas, Andrew; Lee, William; Rechenmacher, Ron; Snyder, Scott; /Washington U., Seattle /Brown U. /Columbia U. /Fermilab /Brookhaven

    2007-05-01

    The D{O} Level 3 data acquisition system for Run II of the Tevatron has been reliably operating since May 2002. Designed to handle average event sizes of 250 kilobytes at a rate of 1 kHz, the system has been upgraded to be able to process more events, doubling its typical output rate from 50 Hz to 100 Hz, while coping with higher event sizes at the beginning of high luminosity collider stores. The system routes and transfers event fragments from 63 VME crates to any of approximately 320 processing nodes. The addition of more farm nodes, the performance of the components, and the running experience are described here.

  14. A Flexible Method of Estimating Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.; Fan, Xiaohui; Vestergaard, Marianne

    2008-08-01

    We describe a Bayesian approach to estimating luminosity functions. We derive the likelihood function and posterior probability distribution for the luminosity function, given the observed data, and we compare the Bayesian approach with maximum likelihood by simulating sources from a Schechter function. For our simulations confidence intervals derived from bootstrapping the maximum likelihood estimate can be too narrow, while confidence intervals derived from the Bayesian approach are valid. We develop our statistical approach for a flexible model where the luminosity function is modeled as a mixture of Gaussian functions. Statistical inference is performed using Markov chain Monte Carlo (MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform the MCMC. The MCMC simulates random draws from the probability distribution of the luminosity function parameters, given the data, and we use a simulated data set to show how these random draws may be used to estimate the probability distribution for the luminosity function. In addition, we show how the MCMC output may be used to estimate the probability distribution of any quantities derived from the luminosity function, such as the peak in the space density of quasars. The Bayesian method we develop has the advantage that it is able to place accurate constraints on the luminosity function even beyond the survey detection limits, and that it provides a natural way of estimating the probability distribution of any quantities derived from the luminosity function, including those that rely on information beyond the survey detection limits.

  15. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  16. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  17. The FNAL injector upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A.; /Fermilab

    2011-03-01

    The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  18. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  19. The Development of Large-Area Micromegas Detectors for the Atlas Upgrade

    NASA Astrophysics Data System (ADS)

    Wotschack, Joerg

    2013-04-01

    The upgrade of the ATLAS detector at the Large Hadron Collider (LHC) at CERN calls for a new generation of muon detectors capable of operating in a flux of collision and background particles approximately ten times larger compared to today's conditions. We report here on the Muon ATLAS MicroMegas Activity (MAMMA) R&D project aimed at the construction of large-area spark-resistant muon chambers using the micromegas technology.

  20. The 11 T dipole for HL-LHC: Status and plan

    SciTech Connect

    Savary, F.; Barzi, E.; Bordini, B.; Bottura, L.; Chlachidze, G.; Ramos, D.; Bermudez, S. Izquierdo; Karppinen, M.; Lackner, F.; Loffler, C. H.; Moron-Ballester, R.; Nobrega, A.; Perez, J. C.; Prin, H.; Smekens, D.; de Rijk, G.; Redaelli, S.; Rossi, L.; Willering, G.; Zlobin, A. V.; Giovannozzi, M.

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.

  1. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  2. Theory - LHC Phenomenology

    NASA Astrophysics Data System (ADS)

    Gori, Stefania

    2017-01-01

    The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.

  3. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  4. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  5. Probing dark matter at the LHC using vector boson fusion processes.

    PubMed

    Delannoy, Andres G; Dutta, Bhaskar; Gurrola, Alfredo; Johns, Will; Kamon, Teruki; Luiggi, Eduardo; Melo, Andrew; Sheldon, Paul; Sinha, Kuver; Wang, Kechen; Wu, Sean

    2013-08-09

    Vector boson fusion processes at the Large Hadron Collider (LHC) provide a unique opportunity to search for new physics with electroweak couplings. A feasibility study for the search of supersymmetric dark matter in the final state of two vector boson fusion jets and large missing transverse energy is presented at 14 TeV. Prospects for determining the dark matter relic density are studied for the cases of wino and bino-Higgsino dark matter. The LHC could probe wino dark matter with mass up to approximately 600 GeV with a luminosity of 1000  fb(-1).

  6. Synchrotron radiation damping, intrabeam scattering and beam-beam simulations for HE-LHC

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The proposed High-Energy LHC project presents an unusual combination of strong synchrotron radiation damping and intrabeam scattering, which is not seen in present-day hadron colliders. The subject of investigation reported in this paper was the simulation of beam-beam effect for the HE-LHC parameters. Parameters of SR and IBS are calculated, and the luminosity evolution is simulated in the absence of beam-beam interaction. Then, a weak-strong numerical simulation is used to predict the effect of beam-beam interaction on particle losses and emittance evolution.

  7. Construction and performance of the sTGC and MicroMegas chambers for ATLAS NSW upgrade

    NASA Astrophysics Data System (ADS)

    Sekhniaidze, G.

    2017-03-01

    The innermost stations of the current ATLAS muon end-cap system, the Small Wheels, must be upgraded in 2019 to retain their good precision tracking and trigger capabilities in the high background environment expected with the upcoming luminosity increase of the LHC. The New Small Wheels (NSW) will employ two chamber technologies: eight layers of MicroMegas (MM) arranged in two quadruplets, sandwiched between two quadruplets of small-strip Thin Gap Chambers (sTGC) for a total of about 2400 m2 of detection planes. All quadruplets have trapezoidal shapes with surface areas between 1 and 3 m2. Both MM and sTGC systems will independently provide trigger and tracking capabilities. The readout boards are industrially produced for both technologies and an accurate quality control is needed. In order to achieve a 15% transverse momentum resolution for 1 TeV muons, in addition to an excellent intrinsic resolution (010 μm), the mechanical precision of each plane of the assembled modules must be as good as 30 μm along the precision coordinate and 80 μm perpendicular to the chamber. In 2016 the milestone to build the first module-0 prototypes for both technologies has been reached. The construction procedure of the module-0 detectors will be reviewed, along with the results of the quality control checks performed during construction. The module-0 have been measured and subjected to a thorough validation. Results obtained with high-energy particle beams, with cosmic rays and with X-rays will be presented.

  8. LER-LHC injector workshop summary and super-ferric fast cycling injector in the SPS tunnel

    SciTech Connect

    Ambrosio, Giorgio; Hays, Steven; Huang, Yuenian; Johnstone, John; Kashikhin, Vadim; MacLachlan, James; Mokhov, Nikolai; Piekarz, Henryk; Sen, Tanaji; Shiltsev, Vladimir; de Rijk, Gijsbert; /CERN

    2007-03-01

    A Workshop on Low Energy Ring (LER) in the LHC tunnel as main injector was convened at CERN on October 11-12, 2006. We present the outline of the LER based on the presentations, and respond to the raised questions and discussions including the post-workshop studies. We also outline the possibility of using the LER accelerator technologies for the fast cycling injector accelerator in the SPS tunnel (SF-SPS). A primary goal for the LER (Low Energy Ring) injector accelerator is to inject 1.5 TeV proton beams into the LHC, instead of the current injection scheme with 0.45 TeV beams from the SPS. At this new energy, the field harmonics [1] of the LHC magnets are sufficiently satisfactory to prevent the luminosity losses expected to appear when applying the transfer of the 0.45 TeV SPS beams. In addition, a feasibility study of batch slip stacking in the LER has been undertaken with a goal of increasing in this way the LHC luminosity by up to a factor of 4. A combined luminosity increase may, therefore, be in the range of an order of magnitude. In the long term, the LER injector accelerator would greatly facilitate the implementation of a machine, which doubles the LHC energy (DLHC).

  9. Simulations of planar pixel sensors for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Benoit, M.; Dinu, N.; Lounis, A.; Marchiori, G.

    2011-04-01

    A physics-based device simulation was used to study the charge carrier distribution and the electric field configuration inside simplified two-dimensional models for pixel layouts based on the ATLAS pixel sensor. In order to study the behavior of such detectors under different levels of irradiation, a three-level defect model was implemented into the simulation. Using these models, the number of guard rings, the dead edge width and the detector thickness were modified to investigate their influence on the detector depletion at the edge and on its internal electric field distribution in order to optimize the layout parameters. Simulations indicate that the number of guard rings can be reduced by a few hundred microns with respect to the layout used for the present ATLAS sensors, with a corresponding extension of the active area of the sensors. A study of the inter-pixel capacitance and of the capacitance between the implants and the high-voltage contact as a function of several parameters affecting the geometry and the doping level of the implants was also carried out. The results are needed in order to evaluate the noise and the cross-talk among neighboring pixels when connected to the front-end electronics.

  10. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  11. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Jiménez Peña, J.

    2016-11-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL) . ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~ 6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  12. Characterization of the first prototype of the ALICE SAMPA ASIC for LHC Run 3 and beyond

    NASA Astrophysics Data System (ADS)

    Tambave, G.; Engeseth, K. P.; Velure, A.

    2017-03-01

    A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) is planing to upgrade its Time Projection Chamber (TPC) due to the expected higher Pb-Pb collision-rates in the next running period (Run 3) of the LHC starting in 2020. In the upgraded TPC, Gas Electron Multiplier (GEM) chambers and continuous readout system will replace Multi-Wire Proportional (MWP) chambers and conventional triggered readout. In the continuous readout, GEM signals will be processed using a 32 channel SAMPA ASIC. The first version of the SAMPA (MPW1) was delivered in 2014 and the production of final version is in progress. In this paper, the test results obtained for charge injection to the device using pulse generator as well as GEM detector prototype are reported.

  13. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2016-07-12

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  14. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  15. Upgrades to NRLMOL code

    NASA Astrophysics Data System (ADS)

    Basurto, Luis

    This project consists of performing upgrades to the massively parallel NRLMOL electronic structure code in order to enhance its performance by increasing its flexibility by: a) Utilizing dynamically allocated arrays, b) Executing in a parallel environment sections of the program that were previously executed in a serial mode, c) Exploring simultaneous concurrent executions of the program through the use of an already existing MPI environment; thus enabling the simulation of larger systems than it is currently capable of performing. Also developed was a graphical user interface that will allow less experienced users to start performing electronic structure calculations by aiding them in performing the necessary configuration of input files as well as providing graphical tools for the displaying and analysis of results. Additionally, a computational toolkit that can avail of large supercomputers and make use of various levels of approximation for atomic interactions was developed to search for stable atomic clusters and predict novel stable endohedral fullerenes. As an application of the developed computational toolkit, a search was conducted for stable isomers of Sc3N C80 fullerene. In this search, about 1.2 million isomers of C80 were optimized in various charged states at the PM6 level. Subsequently, using the selected optimized isomers of C80 in various charged state, about 10,000 isomers of Sc3N C80 were constructed which were optimized using semi-empirical PM6 quantum chemical method. A few selected lowest isomers of Sc3N C80 were optimized at the DFT level. The calculation confirms the lowest 3 isomers previously reported in literature but 4 new isomers are found within the lowest 10 isomers. Using the upgraded NRLMOL code, a study was done of the electronic structure of a multichromoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. A systematic examination of the effect of

  16. Altair performance and upgrades

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  17. Prospects for Quarkonium Measurements in p-A and A-A Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Winn, Michael

    2017-03-01

    The potential of the ALICE, ATLAS, CMS and LHCb detectors for the measurement of quarkonium in heavy-ion collisions, both in nucleus-nucleus (A-A) and in proton-nucleus (p-A) interactions, in the years 2015 until about 2030 in the LHC Runs 2, 3 and 4 with larger statistics and detector upgrades is described. A selection of newly available observables is discussed.

  18. Mining Upgrades to Reduce Pollution

    EPA Pesticide Factsheets

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  19. RISK REDUCTION FOR MATERIAL ACCOUNTABILITY UPGRADES.

    SciTech Connect

    FISHBONE, L.G.; SISKIND, B.

    2005-05-16

    We present in this paper a method for evaluating explicitly the contribution of nuclear material accountability upgrades to risk reduction at nuclear facilities. The method yields the same types of values for conditional risk reduction that physical protection and material control upgrades yield. Thereby, potential material accountability upgrades can be evaluated for implementation in the same way that protection and control upgrades are evaluated.

  20. The luminosity of Population III star clusters

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2015-06-01

    We analyse the time evolution of the luminosity of a cluster of Population III protostars formed in the early Universe. We argue from the Jeans criterion that primordial gas can collapse to form a cluster of first stars that evolve relatively independently of one another (i.e. with negligible gravitational interaction). We model the collapse of individual protostellar clumps using non-axisymmetric numerical hydrodynamics simulations. Each collapse produces a protostar surrounded by a massive disc (i.e. Mdisc /M* ≳ 0.1), whose evolution we follow for a further 30-40 kyr. Gravitational instabilities result in the fragmentation and the formation of gravitationally bound clumps within the disc. The accretion of these fragments by the host protostar produces accretion and luminosity bursts on the order of 106 L⊙. Within the cluster, we show that a simultaneity of such events across several protostellar cluster members can elevate the cluster luminosity to 5-10 times greater than expected, and that the cluster spends ˜15 per cent of its star-forming history at these levels. This enhanced luminosity effect is particularly enabled in clusters of modest size with ≃10-20 members. In one such instance, we identify a confluence of burst events that raise the luminosity to nearly 1000 times greater than the cluster mean luminosity, resulting in L > 108 L⊙. This phenomenon arises solely through the gravitational-instability-driven episodic fragmentation and accretion that characterizes this early stage of protostellar evolution.

  1. Spectrum-doubled heavy vector bosons at the LHC

    SciTech Connect

    Appelquist, Thomas; Bai, Yang; Ingoldby, James; Piai, Maurizio

    2016-01-19

    We study a simple effective field theory incorporating six heavy vector bosons together with the standard-model field content. The new particles preserve custodial symmetry as well as an approximate left-right parity symmetry. The enhanced symmetry of the model allows it to satisfy precision electroweak constraints and bounds from Higgs physics in a regime where all the couplings are perturbative and where the amount of fine-tuning is comparable to that in the standard model itself. We find that the model could explain the recently observed excesses in di-boson processes at invariant mass close to 2TeV from LHC Run 1 for a range of allowed parameter space. The masses of all the particles differ by no more than roughly 10%. In a portion of the allowed parameter space only one of the new particles has a production cross section large enough to be detectable with the energy and luminosity of Run 1, both via its decay to WZ and to Wh, while the others have suppressed production rates. Furthermore, the model can be tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale of the new particles higher than 3TeV.

  2. Spectrum-doubled heavy vector bosons at the LHC

    DOE PAGES

    Appelquist, Thomas; Bai, Yang; Ingoldby, James; ...

    2016-01-19

    We study a simple effective field theory incorporating six heavy vector bosons together with the standard-model field content. The new particles preserve custodial symmetry as well as an approximate left-right parity symmetry. The enhanced symmetry of the model allows it to satisfy precision electroweak constraints and bounds from Higgs physics in a regime where all the couplings are perturbative and where the amount of fine-tuning is comparable to that in the standard model itself. We find that the model could explain the recently observed excesses in di-boson processes at invariant mass close to 2TeV from LHC Run 1 for amore » range of allowed parameter space. The masses of all the particles differ by no more than roughly 10%. In a portion of the allowed parameter space only one of the new particles has a production cross section large enough to be detectable with the energy and luminosity of Run 1, both via its decay to WZ and to Wh, while the others have suppressed production rates. Furthermore, the model can be tested at the higher-energy and higher-luminosity run of the LHC even for an overall scale of the new particles higher than 3TeV.« less

  3. New physics from the top at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Yi; Freitas, Ayres; Han, Tao; Lee, Keith S. M.

    2012-11-01

    The top quark may hold the key to new physics associated with the electroweak symmetry-breaking sector, given its large mass and enhanced coupling to the Higgs sector. We systematically categorize generic interactions of a new particle that couples to the top quark and a neutral particle, which is assumed to be heavy and stable, thus serving as a candidate for cold dark matter. The experimental signatures for new physics involving top quarks and its partners at the Large Hadron Collider (LHC) may be distinctive, yet challenging to disentangle. We optimize the search strategy at the LHC for the decay of the new particle to a top quark plus missing energy and propose the study of its properties, such as its spin and couplings. We find that, at 14 TeV with an integrated luminosity of 100 fb-1, a spin-zero top partner can be observed at the 5 σ level for a mass of 675 GeV. A spin-zero particle can be differentiated from spin-1/2 and spin-1 particles at the 5 σ level with a luminosity of 10 fb-1.

  4. Non-simplified SUSY: widetilde{τ }-coannihilation at LHC and ILC

    NASA Astrophysics Data System (ADS)

    Berggren, M.; Cakir, A.; Krücker, D.; List, J.; Melzer-Pellmann, I.-A.; Samani, B. Safarzadeh; Seitz, C.; Wayand, S.

    2016-04-01

    If new phenomena beyond the Standard Model will be discovered at the LHC, the properties of the new particles could be determined with data from the High-Luminosity LHC and from a future linear collider like the ILC. We discuss the possible interplay between measurements at the two accelerators in a concrete example, namely a full SUSY model which features a small widetilde{τ }_1-LSP mass difference. Various channels have been studied using the Snowmass 2013 combined LHC detector implementation in the Delphes simulation package, as well as simulations of the ILD detector concept from the Technical Design Report. We investigate both the LHC and the ILC capabilities for discovery, separation and identification of various parts of the spectrum. While some parts would be discovered at the LHC, there is substantial room for further discoveries at the ILC. We finally highlight examples where the precise knowledge about the lower part of the mass spectrum which could be acquired at the ILC would enable a more in-depth analysis of the LHC data with respect to the heavier states.

  5. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  6. PDF4LHC recommendations for LHC Run II

    SciTech Connect

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  7. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; ...

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  8. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  9. hhjj production at the LHC

    SciTech Connect

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; Nordstrom, Karl; Spannowsky, Michael

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigation of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.

  10. Non-custodial warped extra dimensions at the LHC?

    NASA Astrophysics Data System (ADS)

    Dillon, Barry M.; Huber, Stephan J.

    2015-06-01

    With the prospect of improved Higgs measurements at the LHC and at proposed future colliders such as ILC, CLIC and TLEP we study the non-custodial Randall-Sundrum model with bulk SM fields and compare brane and bulk Higgs scenarios. The latter bear resemblance to the well studied type III two-Higgs-doublet models. We compute the electroweak precision observables and argue that incalculable contributions to these, in the form of higher dimensional operators, could have an impact on the T -parameter. This could potentially reduce the bound on the lowest Kaluza-Klein gauge boson masses to the 5 TeV range, making them detectable at the LHC. In a second part, we compute the misalignment between fermion masses and Yukawa couplings caused by vector-like Kaluza-Klein fermions in this setup. The misalignment of the top Yukawa can easily reach 10%, making it observable at the high-luminosity LHC. Corrections to the bottom and tau Yukawa couplings can be at the percent level and detectable at ILC, CLIC or TLEP.

  11. Higgs boson decay to light jets at the LHC

    NASA Astrophysics Data System (ADS)

    Carpenter, Linda M.; Han, Tao; Hendricks, Khalida; Qian, Zhuoni; Zhou, Ning

    2017-03-01

    We study the Higgs boson (h ) decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet (j ) represents any nonflavor-tagged jet from the observational point of view. The decay mode h →g g is chosen as the benchmark since it is the dominant channel in the Standard Model, but the bound obtained is also applicable to the light quarks (j =u , d , s ). We estimate the achievable bounds on the decay branching fractions through the associated production V h (V =W±,Z ). Events of the Higgs boson decaying into heavy (tagged) or light (untagged) jets are correlatively analyzed. We find that with 3000 fb-1 data at the HL-LHC, we should expect approximately 1 σ statistical significance on the SM V h (g g ) signal in this channel. This corresponds to a reachable upper bound BR (h →j j )≤4 BRSM(h →g g ) at 95% confidence level. A consistency fit also leads to an upper bound BR (h →c c )<15 BRSM(h →c c ) at 95% confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses or adding other production channels.

  12. First results on bilepton production based on LHC collision data and predictions for run II

    NASA Astrophysics Data System (ADS)

    Nepomuceno, A. A.; Eccard, F. L.; Meirose, B.

    2016-09-01

    The LHC potential for discovering doubly charged vector bileptons is investigated considering the measurable process p p →μ+μ+μ-μ-X . The study is performed assuming different bilepton and leptoquark masses. The process cross section is calculated at leading order using the Calchep package. Combining the calculation with the latest ATLAS experiment results at a center-of-mass energy of 7 TeV, bounds on bilepton masses based on LHC data are derived for the first time. The results exclude bilepton masses in the range of 250 GeV to 500 GeV at 95% C.L., depending on the leptoquark mass. Moreover, minimal LHC integrated luminosities needed for discovering and for setting limits on bilepton masses are obtained for 13 TeV center-of-mass energy. Simulated events are passed through a fast parametric detector simulation using the Delphes package.

  13. Signature of sub GeV dark matter particles at the LHC and the Tevatron

    NASA Astrophysics Data System (ADS)

    Albornoz Vásquez, Daniel; Bœhm, Céline; Idárraga, John

    2011-06-01

    In this letter, we investigate the production of light dark matter particles at LHC in a N=2 SUSY inspired model and demonstrate that particles will be copiously produced if the colored messengers Fq are lighter than 1 TeV. We expect up to 106 events if mFq≃500GeV, assuming a ˜1fb-1 luminosity. In addition, we show that, even if mFq>O(1)TeV, searches for Fq production at LHC are promising because a kinematical signature can be used to separate the signal from background. This signature is similar to that expected in supersymmetric scenarios. Hence, our study shows that most of the mFq range could be constrained using LHC data. This should encourage further studies since they could infirm/confirm the MeV DM scenario.

  14. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  15. Design approach for the development of a cryomodule for compact crab cavities for Hi-Lumi LHC

    NASA Astrophysics Data System (ADS)

    Pattalwar, Shrikant; Jones, Thomas; Templeton, Niklas; Goudket, Philippe; McIntosh, Peter; Wheelhouse, Alan; Burt, Graeme; Hall, Ben; Wright, Loren; Peterson, Tom

    2014-01-01

    A prototype Superconducting RF (SRF) cryomodule, comprising multiple compact crab cavities is foreseen to realise a local crab crossing scheme for the "Hi-Lumi LHC", a project launched by CERN to increase the luminosity performance of LHC. A cryomodule with two cavities will be initially installed and tested on the SPS drive accelerator at CERN to evaluate performance with high-intensity proton beams. A series of boundary conditions influence the design of the cryomodule prototype, arising from; the complexity of the cavity design, the requirement for multiple RF couplers, the close proximity to the second LHC beam pipe and the tight space constraints in the SPS and LHC tunnels. As a result, the design of the helium vessel and the cryomodule has become extremely challenging. This paper assesses some of the critical cryogenic and engineering design requirements and describes an optimised cryomodule solution for the evaluation tests on SPS.

  16. Technicolor walks at the LHC

    SciTech Connect

    Belyaev, Alexander; Foadi, Roshan; Frandsen, Mads T.; Jaervinen, Matti; Sannino, Francesco; Pukhov, Alexander

    2009-02-01

    We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable walking technicolor models. We study and compare the Drell-Yan and vector boson fusion mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the Drell-Yan processes. The composite Higgs phenomenology is also studied. If technicolor walks at the LHC, its footprints will be visible and our analysis will help in uncovering them.

  17. Development of ATLAS Liquid Argon Calorimeter front-end electronics for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Liu, T.

    2017-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5–7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter cells at 40–80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.

  18. The CMS experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer, H.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Glaser, P.; Hartl, C.; Hoermann, N.; Hrubec, J.; Hänsel, S.; Jeitler, M.; Kastner, K.; Krammer, M.; Magrans de Abril, I.; Markytan, M.; Mikulec, I.; Neuherz, B.; Nöbauer, T.; Oberegger, M.; Padrta, M.; Pernicka, M.; Porth, P.; Rohringer, H.; Schmid, S.; Schreiner, T.; Stark, R.; Steininger, H.; Strauss, J.; Taurok, A.; Uhl, D.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Petrov, V.; Prosolovich, V.; Chekhovsky, V.; Dvornikov, O.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Marfin, I.; Mossolov, V.; Shumeiko, N.; Solin, A.; Stefanovitch, R.; Suarez Gonzalez, J.; Tikhonov, A.; Fedorov, A.; Korzhik, M.; Missevitch, O.; Zuyeuski, R.; Beaumont, W.; Cardaci, M.; DeLanghe, E.; DeWolf, E. A.; Delmeire, E.; Ochesanu, S.; Tasevsky, M.; Van Mechelen, P.; D'Hondt, J.; DeWeirdt, S.; Devroede, O.; Goorens, R.; Hannaert, S.; Heyninck, J.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Yu, C.; Bouhali, O.; Charaf, O.; Clerbaux, B.; DeHarenne, P.; DeLentdecker, G.; Dewulf, J. P.; Elgammal, S.; Gindroz, R.; Hammad, G. H.; Mahmoud, T.; Neukermans, L.; Pins, M.; Pins, R.; Rugovac, S.; Stefanescu, J.; Sundararajan, V.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Tytgat, M.; Assouak, S.; Bonnet, J. L.; Bruno, G.; Caudron, J.; DeCallatay, B.; DeFavereau DeJeneret, J.; DeVisscher, S.; Demin, P.; Favart, D.; Felix, C.; Florins, B.; Forton, E.; Giammanco, A.; Grégoire, G.; Jonckman, M.; Kcira, D.; Keutgen, T.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Schul, N.; Van der Aa, O.; Beliy, N.; Daubie, E.; Herquet, P.; Alves, G.; Pol, M. E.; Souza, M. H. G.; Vaz, M.; DeJesus Damiao, D.; Oguri, V.; Santoro, A.; Sznajder, A.; DeMoraes Gregores, E.; Iope, R. L.; Novaes, S. F.; Tomei, T.; Anguelov, T.; Antchev, G.; Atanasov, I.; Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Cheshkov, C.; Dimitrov, A.; Dyulendarova, M.; Glushkov, I.; Kozhuharov, V.; Litov, L.; Makariev, M.; Marinova, E.; Markov, S.; Mateev, M.; Nasteva, I.; Pavlov, B.; Petev, P.; Petkov, P.; Spassov, V.; Toteva, Z.; Velev, V.; Verguilov, V.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Jiang, C. H.; Liu, B.; Shen, X. Y.; Sun, H. S.; Tao, J.; Wang, J.; Yang, M.; Zhang, Z.; Zhao, W. R.; Zhuang, H. L.; Ban, Y.; Cai, J.; Ge, Y. C.; Liu, S.; Liu, H. T.; Liu, L.; Qian, S. J.; Wang, Q.; Xue, Z. H.; Yang, Z. C.; Ye, Y. L.; Ying, J.; Li, P. J.; Liao, J.; Xue, Z. L.; Yan, D. S.; Yuan, H.; Carrillo Montoya, C. A.; Sanabria, J. C.; Godinovic, N.; Puljak, I.; Soric, I.; Antunovic, Z.; Dzelalija, M.; Marasovic, K.; Brigljevic, V.; Kadija, K.; Morovic, S.; Fereos, R.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.; Hektor, A.; Kadastik, M.; Kannike, K.; Lippmaa, E.; Müntel, M.; Raidal, M.; Rebane, L.; Aarnio, P. A.; Anttila, E.; Banzuzi, K.; Bulteau, P.; Czellar, S.; Eiden, N.; Eklund, C.; Engstrom, P.; Heikkinen, A.; Honkanen, A.; Härkönen, J.; Karimäki, V.; Katajisto, H. M.; Kinnunen, R.; Klem, J.; Kortesmaa, J.; Kotamäki, M.; Kuronen, A.; Lampén, T.; Lassila-Perini, K.; Lefébure, V.; Lehti, S.; Lindén, T.; Luukka, P. R.; Michal, S.; Moura Brigido, F.; Mäenpää, T.; Nyman, T.; Nystén, J.; Pietarinen, E.; Skog, K.; Tammi, K.; Tuominen, E.; Tuominiemi, J.; Ungaro, D.; Vanhala, T. P.; Wendland, L.; Williams, C.; Iskanius, M.; Korpela, A.; Polese, G.; Tuuva, T.; Bassompierre, G.; Bazan, A.; David, P. Y.; Ditta, J.; Drobychev, G.; Fouque, N.; Guillaud, J. P.; Hermel, V.; Karneyeu, A.; LeFlour, T.; Lieunard, S.; Maire, M.; Mendiburu, P.; Nedelec, P.; Peigneux, J. P.; Schneegans, M.; Sillou, D.; Vialle, J. P.; Anfreville, M.; Bard, J. P.; Besson, P.; Bougamont, E.; Boyer, M.; Bredy, P.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Jeanney, C.; Kircher, F.; Lemaire, M. C.; Lemoigne, Y.; Levesy, B.; Locci, E.; Lottin, J. P.; Mandjavidze, I.; Mur, M.; Pansart, J. P.; Payn, A.; Rander, J.; Reymond, J. M.; Rolquin, J.; Rondeaux, F.; Rosowsky, A.; Rousse, J. Y. A.; Sun, Z. H.; Tartas, J.; Van Lysebetten, A.; Venault, P.; Verrecchia, P.; Anduze, M.; Badier, J.; Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busata, A.; Busson, P.; Cerutti, M.; Chamont, D.; Charlot, C.; Collard, C.; Debraine, A.; Decotigny, D.; Dobrzynski, L.; Ferreira, O.; Geerebaert, Y.; Gilly, J.; Gregory, C.; Guevara Riveros, L.; Haguenauer, M.; Karar, A.; Koblitz, B.; Lecouturier, D.; Mathieu, A.; Milleret, G.; Miné, P.; Paganini, P.; Poilleux, P.; Pukhaeva, N.; Regnault, N.; Romanteau, T.; Semeniouk, I.; Sirois, Y.; Thiebaux, C.; Vanel, J. C.; Zabi, A.; Agram, J. L.; Albert, A.; Anckenmann, L.; Andrea, J.; Anstotz, F.; Bergdolt, A. M.; Berst, J. D.; Blaes, R.; Bloch, D.; Brom, J. M.; Cailleret, J.; Charles, F.; Christophel, E.; Claus, G.; Coffin, J.; Colledani, C.; Croix, J.; Dangelser, E.; Dick, N.; Didierjean, F.; Drouhin, F.; Dulinski, W.; Ernenwein, J. P.; Fang, R.; Fontaine, J. C.; Gaudiot, G.; Geist, W.; Gelé, D.; Goeltzenlichter, T.; Goerlach, U.; Graehling, P.; Gross, L.; Hu, C. Guo; Helleboid, J. M.; Henkes, T.; Hoffer, M.; Hoffmann, C.; Hosselet, J.; Houchu, L.; Hu, Y.; Huss, D.; Illinger, C.; Jeanneau, F.; Juillot, P.; Kachelhoffer, T.; Kapp, M. R.; Kettunen, H.; Lakehal Ayat, L.; LeBihan, A. C.; Lounis, A.; Maazouzi, C.; Mack, V.; Majewski, P.; Mangeol, D.; Michel, J.; Moreau, S.; Olivetto, C.; Pallarès, A.; Patois, Y.; Pralavorio, P.; Racca, C.; Riahi, Y.; Ripp-Baudot, I.; Schmitt, P.; Schunck, J. P.; Schuster, G.; Schwaller, B.; Sigward, M. H.; Sohler, J. L.; Speck, J.; Strub, R.; Todorov, T.; Turchetta, R.; Van Hove, P.; Vintache, D.; Zghiche, A.; Ageron, M.; Augustin, J. E.; Baty, C.; Baulieu, G.; Bedjidian, M.; Blaha, J.; Bonnevaux, A.; Boudoul, G.; Brunet, P.; Chabanat, E.; Chabert, E. C.; Chierici, R.; Chorowicz, V.; Combaret, C.; Contardo, D.; Della Negra, R.; Depasse, P.; Drapier, O.; Dupanloup, M.; Dupasquier, T.; El Mamouni, H.; Estre, N.; Fay, J.; Gascon, S.; Giraud, N.; Girerd, C.; Guillot, G.; Haroutunian, R.; Ille, B.; Lethuillier, M.; Lumb, N.; Martin, C.; Mathez, H.; Maurelli, G.; Muanza, S.; Pangaud, P.; Perries, S.; Ravat, O.; Schibler, E.; Schirra, F.; Smadja, G.; Tissot, S.; Trocme, B.; Vanzetto, S.; Walder, J. P.; Bagaturia, Y.; Mjavia, D.; Mzhavia, A.; Tsamalaidze, Z.; Roinishvili, V.; Adolphi, R.; Anagnostou, G.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Karpinski, W.; Khomich, A.; Klein, K.; Kukulies, C.; Lübelsmeyer, K.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Adamczyk, F.; Adolf, A.; Altenhöfer, G.; Bechstein, S.; Bethke, S.; Biallass, P.; Biebel, O.; Bontenackels, M.; Bosseler, K.; Böhm, A.; Erdmann, M.; Faissner, H.; Fehr, B.; Fesefeldt, H.; Fetchenhauer, G.; Frangenheim, J.; Frohn, J. H.; Grooten, J.; Hebbeker, T.; Hermann, S.; Hermens, E.; Hilgers, G.; Hoepfner, K.; Hof, C.; Jacobi, E.; Kappler, S.; Kirsch, M.; Kreuzer, P.; Kupper, R.; Lampe, H. R.; Lanske, D.; Mameghani, R.; Meyer, A.; Meyer, S.; Moers, T.; Müller, E.; Pahlke, R.; Philipps, B.; Rein, D.; Reithler, H.; Reuter, W.; Rütten, P.; Schulz, S.; Schwarthoff, H.; Sobek, W.; Sowa, M.; Stapelberg, T.; Szczesny, H.; Teykal, H.; Teyssier, D.; Tomme, H.; Tomme, W.; Tonutti, M.; Tsigenov, O.; Tutas, J.; Vandenhirtz, J.; Wagner, H.; Wegner, M.; Zeidler, C.; Beissel, F.; Davids, M.; Duda, M.; Flügge, G.; Giffels, M.; Hermanns, T.; Heydhausen, D.; Kalinin, S.; Kasselmann, S.; Kaussen, G.; Kress, T.; Linn, A.; Nowack, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Behrens, U.; Borras, K.; Flossdorf, A.; Hatton, D.; Hegner, B.; Kasemann, M.; Mankel, R.; Meyer, A.; Mnich, J.; Rosemann, C.; Youngman, C.; Zeuner, W. D.; Bechtel, F.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R. H.; Holm, U.; Klanner, R.; Pein, U.; Schirm, N.; Schleper, P.; Steinbrück, G.; Van Staa, R.; Wolf, R.; Atz, B.; Barvich, T.; Blüm, P.; Boegelspacher, F.; Bol, H.; Chen, Z. Y.; Chowdhury, S.; DeBoer, W.; Dehm, P.; Dirkes, G.; Fahrer, M.; Felzmann, U.; Frey, M.; Furgeri, A.; Gregoriev, E.; Hartmann, F.; Hauler, F.; Heier, S.; Kärcher, K.; Ledermann, B.; Mueller, S.; Müller, Th; Neuberger, D.; Piasecki, C.; Quast, G.; Rabbertz, K.; Sabellek, A.; Scheurer, A.; Schilling, F. P.; Simonis, H. J.; Skiba, A.; Steck, P.; Theel, A.; Thümmel, W. H.; Trunov, A.; Vest, A.; Weiler, T.; Weiser, C.; Weseler, S.; Zhukov, V.; Barone, M.; Daskalakis, G.; Dimitriou, N.; Fanourakis, G.; Filippidis, C.; Geralis, T.; Kalfas, C.; Karafasoulis, K.; Koimas, A.; Kyriakis, A.; Kyriazopoulou, S.; Loukas, D.; Markou, A.; Markou, C.; Mastroyiannopoulos, N.; Mavrommatis, C.; Mousa, J.; Papadakis, I.; Petrakou, E.; Siotis, I.; Theofilatos, K.; Tzamarias, S.; Vayaki, A.; Vermisoglou, G.; Zachariadou, A.; Gouskos, L.; Karapostoli, G.; Katsas, P.; Panagiotou, A.; Papadimitropoulos, C.; Aslanoglou, X.; Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Kovesarki, P.; Laszlo, A.; Odor, G.; Patay, G.; Sikler, F.; Veres, G.; Vesztergombi, G.; Zalan, P.; Fenyvesi, A.; Imrek, J.; Molnar, J.; Novak, D.; Palinkas, J.; Szekely, G.; Beni, N.; Kapusi, A.; Marian, G.; Radics, B.; Raics, P.; Szabo, Z.; Szillasi, Z.; Trocsanyi, Z. L.; Zilizi, G.; Bawa, H. S.; Beri, S. B.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J. M.; Kumar, A.; Singh, B.; Singh, J. B.; Arora, S.; Bhattacharya, S.; Chatterji, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jha, M.; Ranjan, K.; Shivpuri, R. K.; Srivastava, A. K.; Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Nayak, A.; Patil, M. R.; Sharma, S.; Sudhakar, K.; Acharya, B. S.; Banerjee, Sudeshna; Bheesette, S.; Dugad, S.; Kalmani, S. D.; Lakkireddi, V. R.; Mondal, N. K.; Panyam, N.; Verma, P.; Arfaei, H.; Hashemi, M.; Najafabadi, M. Mohammadi; Moshaii, A.; Paktinat Mehdiabadi, S.; Felcini, M.; Grunewald, M.; Abadjiev, K.; Abbrescia, M.; Barbone, L.; Cariola, P.; Chiumarulo, F.; Clemente, A.; Colaleo, A.; Creanza, D.; DeFilippis, N.; DePalma, M.; DeRobertis, G.; Donvito, G.; Ferorelli, R.; Fiore, L.; Franco, M.; Giordano, D.; Guida, R.; Iaselli, G.; Lacalamita, N.; Loddo, F.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; Mennea, M. S.; My, S.; Natali, S.; Nuzzo, S.; Papagni, G.; Pinto, C.; Pompili, A.; Pugliese, G.; Ranieri, A.; Romano, F.; Roselli, G.; Sala, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Bacchi, W.; Battilana, C.; Benvenuti, A. C.; Boldini, M.; Bonacorsi, D.; Braibant-Giacomelli, S.; Cafaro, V. D.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Ciocca, C.; Codispoti, G.; Cuffiani, M.; D'Antone, I.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Finelli, S.; Giacomelli, P.; Giordano, V.; Giunta, M.; Grandi, C.; Guerzoni, M.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Paolucci, A.; Pellegrini, G.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Torromeo, G.; Travaglini, R.; Veronese, G. P.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Gatto Rotondo, G.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Salemi, G.; Sutera, C.; Tricomi, A.; Tuve, C.; Bellucci, L.; Brianzi, M.; Broccolo, G.; Catacchini, E.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Maletta, F.; Manolescu, F.; Marchettini, C.; Masetti, L.; Mersi, S.; Meschini, M.; Minelli, C.; Paoletti, S.; Parrini, G.; Scarlini, E.; Sguazzoni, G.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M.; Colonna, D.; Daniello, L.; Fabbri, F.; Felli, F.; Giardoni, M.; La Monaca, A.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Paris, C.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Pucci, C.; Russo, A.; Saviano, G.; Fabbricatore, P.; Farinon, S.; Greco, M.; Musenich, R.; Badoer, S.; Berti, L.; Biasotto, M.; Fantinel, S.; Frizziero, E.; Gastaldi, U.; Gulmini, M.; Lelli, F.; Maron, G.; Squizzato, S.; Toniolo, N.; Traldi, S.; Banfi, S.; Bertoni, R.; Bonesini, M.; Carbone, L.; Cerati, G. B.; Chignoli, F.; D'Angelo, P.; DeMin, A.; Dini, P.; Farina, F. M.; Ferri, F.; Govoni, P.; Magni, S.; Malberti, M.; Malvezzi, S.; Mazza, R.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Rovere, M.; Sala, L.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.; Boiano, A.; Cassese, F.; Cassese, C.; Cimmino, A.; D'Aquino, B.; Lista, L.; Lomidze, D.; Noli, P.; Paolucci, P.; Passeggio, G.; Piccolo, D.; Roscilli, L.; Sciacca, C.; Vanzanella, A.; Azzi, P.; Bacchetta, N.; Barcellan, L.; Bellato, M.; Benettoni, M.; Bisello, D.; Borsato, E.; Candelori, A.; Carlin, R.; Castellani, L.; Checchia, P.; Ciano, L.; Colombo, A.; Conti, E.; Da Rold, M.; Dal Corso, F.; DeGiorgi, M.; DeMattia, M.; Dorigo, T.; Dosselli, U.; Fanin, C.; Galet, G.; Gasparini, F.; Gasparini, U.; Giraldo, A.; Giubilato, P.; Gonella, F.; Gresele, A.; Griggio, A.; Guaita, P.; Kaminskiy, A.; Karaevskii, S.; Khomenkov, V.; Kostylev, D.; Lacaprara, S.; Lazzizzera, I.; Lippi, I.; Loreti, M.; Margoni, M.; Martinelli, R.; Mattiazzo, S.; Mazzucato, M.; Meneguzzo, A. T.; Modenese, L.; Montecassiano, F.; Neviani, A.; Nigro, M.; Paccagnella, A.; Pantano, D.; Parenti, A.; Passaseo, M.; Pedrotta, R.; Pegoraro, M.; Rampazzo, G.; Reznikov, S.; Ronchese, P.; Sancho Daponte, A.; Sartori, P.; Stavitskiy, I.; Tessaro, M.; Torassa, E.; Triossi, A.; Vanini, S.; Ventura, S.; Ventura, L.; Verlato, M.; Zago, M.; Zatti, F.; Zotto, P.; Zumerle, G.; Baesso, P.; Belli, G.; Berzano, U.; Bricola, S.; Grelli, A.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vicini, A.; Vitulo, P.; Viviani, C.; Aisa, D.; Aisa, S.; Ambroglini, F.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Bizzaglia, S.; Brunetti, M. T.; Caponeri, B.; Checcucci, B.; Covarelli, R.; Dinu, N.; Fanò, L.; Farnesini, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Moscatelli, F.; Passeri, D.; Piluso, A.; Placidi, P.; Postolache, V.; Santinelli, R.; Santocchia, A.; Servoli, L.; Spiga, D.; Azzurri, P.; Bagliesi, G.; Balestri, G.; Basti, A.; Bellazzini, R.; Benucci, L.; Bernardini, J.; Berretta, L.; Bianucci, S.; Boccali, T.; Bocci, A.; Borrello, L.; Bosi, F.; Bracci, F.; Brez, A.; Calzolari, F.; Castaldi, R.; Cazzola, U.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Fiori, F.; Foà, L.; Gaggelli, A.; Gennai, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Latronico, L.; Ligabue, F.; Linari, S.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Massa, M.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Petrucciani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Segneri, G.; Sentenac, D.; Serban, A. T.; Slav, A.; Spagnolo, P.; Spandre, G.; Tenchini, R.; Tolaini, S.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Baccaro, S.; Barone, L.; Bartoloni, A.; Borgia, B.; Capradossi, G.; Cavallari, F.; Cecilia, A.; D'Angelo, D.; Dafinei, I.; DelRe, D.; Di Marco, E.; Diemoz, M.; Ferrara, G.; Gargiulo, C.; Guerra, S.; Iannone, M.; Longo, E.; Montecchi, M.; Nuccetelli, M.; Organtini, G.; Palma, A.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Safai Tehrani, F.; Zullo, A.; Alampi, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Benotto, F.; Biino, C.; Bolognesi, S.; Borgia, M. A.; Botta, C.; Brasolin, A.; Cartiglia, N.; Castello, R.; Cerminara, G.; Cirio, R.; Cordero, M.; Costa, M.; Dattola, D.; Daudo, F.; Dellacasa, G.; Demaria, N.; Dughera, G.; Dumitrache, F.; Farano, R.; Ferrero, G.; Filoni, E.; Kostyleva, G.; Larsen, H. E.; Mariotti, C.; Marone, M.; Maselli, S.; Menichetti, E.; Mereu, P.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Nervo, M.; Obertino, M. M.; Panero, R.; Parussa, A.; Pastrone, N.; Peroni, C.; Petrillo, G.; Romero, A.; Ruspa, M.; Sacchi, R.; Scalise, M.; Solano, A.; Staiano, A.; Trapani, P. P.; Trocino, D.; Vaniev, V.; Vilela Pereira, A.; Zampieri, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Kavka, C.; Penzo, A.; Kim, Y. E.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. C.; Kong, D. J.; Ro, S. R.; Son, D. C.; Park, S. Y.; Kim, Y. J.; Kim, J. Y.; Lim, I. T.; Pac, M. Y.; Lee, S. J.; Jung, S. Y.; Rhee, J. T.; Ahn, S. H.; Hong, B. S.; Jeng, Y. K.; Kang, M. H.; Kim, H. C.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Lim, J. K.; Moon, D. H.; Park, I. C.; Park, S. K.; Ryu, M. S.; Sim, K.-S.; Son, K. J.; Hong, S. J.; Choi, Y. I.; Castilla Valdez, H.; Sanchez Hernandez, A.; Carrillo Moreno, S.; Morelos Pineda, A.; Aerts, A.; Van der Stok, P.; Weffers, H.; Allfrey, P.; Gray, R. N. C.; Hashimoto, M.; Krofcheck, D.; Bell, A. J.; Bernardino Rodrigues, N.; Butler, P. H.; Churchwell, S.; Knegjens, R.; Whitehead, S.; Williams, J. C.; Aftab, Z.; Ahmad, U.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Asghar, S.; Dad, G.; Hafeez, M.; Hoorani, H. R.; Hussain, I.; Hussain, N.; Iftikhar, M.; Khan, M. S.; Mehmood, K.; Osman, A.; Shahzad, H.; Zafar, A. R.; Ali, A.; Bashir, A.; Jan, A. M.; Kamal, A.; Khan, F.; Saeed, M.; Tanwir, S.; Zafar, M. A.; Blocki, J.; Cyz, A.; Gladysz-Dziadus, E.; Mikocki, S.; Rybczynski, M.; Turnau, J.; Wlodarczyk, Z.; Zychowski, P.; Bunkowski, K.; Cwiok, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Kudla, I. M.; Pietrusinski, M.; Pozniak, K.; Zabolotny, W.; Zych, P.; Gokieli, R.; Goscilo, L.; Górski, M.; Nawrocki, K.; Traczyk, P.; Wrochna, G.; Zalewski, P.; Pozniak, K. T.; Romaniuk, R.; Zabolotny, W. M.; Alemany-Fernandez, R.; Almeida, C.; Almeida, N.; Araujo Vila Verde, A. S.; Barata Monteiro, T.; Bluj, M.; Da Mota Silva, S.; Tinoco Mendes, A. David; Freitas Ferreira, M.; Gallinaro, M.; Husejko, M.; Jain, A.; Kazana, M.; Musella, P.; Nobrega, R.; Rasteiro Da Silva, J.; Ribeiro, P. Q.; Santos, M.; Silva, P.; Silva, S.; Teixeira, I.; Teixeira, J. P.; Varela, J.; Varner, G.; Vaz Cardoso, N.; Altsybeev, I.; Babich, K.; Belkov, A.; Belotelov, I.; Bunin, P.; Chesnevskaya, S.; Elsha, V.; Ershov, Y.; Filozova, I.; Finger, M.; Finger, M., Jr.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gramenitski, I.; Kalagin, V.; Kamenev, A.; Karjavin, V.; Khabarov, S.; Khabarov, V.; Kiryushin, Y.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Kurenkov, A.; Lanev, A.; Lysiakov, V.; Malakhov, A.; Melnitchenko, I.; Mitsyn, V. V.; Moisenz, K.; Moisenz, P.; Movchan, S.; Nikonov, E.; Oleynik, D.; Palichik, V.; Perelygin, V.; Petrosyan, A.; Rogalev, E.; Samsonov, V.; Savina, M.; Semenov, R.; Sergeev, S.; Shmatov, S.; Shulha, S.; Smirnov, V.; Smolin, D.; Tcheremoukhine, A.; Teryaev, O.; Tikhonenko, E.; Urkinbaev, A.; Vasil'ev, S.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.; Zarubin, P.; Zubarev, E.; Bondar, N.; Gavrikov, Y.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kozlov, V.; Lebedev, V.; Makarenkov, G.; Moroz, F.; Neustroev, P.; Obrant, G.; Orishchin, E.; Petrunin, A.; Shcheglov, Y.; Shchetkovskiy, A.; Sknar, V.; Skorobogatov, V.; Smirnov, I.; Sulimov, V.; Tarakanov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Chmelev, D.; Druzhkin, D.; Ivanov, A.; Kudinov, V.; Logatchev, O.; Onishchenko, S.; Orlov, A.; Sakharov, V.; Smetannikov, V.; Tikhomirov, A.; Zavodthikov, S.; Andreev, Yu; Anisimov, A.; Duk, V.; Gninenko, S.; Golubev, N.; Gorbunov, D.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Pastsyak, A.; Postoev, V. E.; Sadovski, A.; Skassyrskaia, A.; Solovey, Alexander; Solovey, Anatoly; Soloviev, D.; Toropin, A.; Troitsky, S.; Alekhin, A.; Baldov, A.; Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Karpishin, V.; Kiselevich, I.; Kolosov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stepanov, N.; Stolin, V.; Vlasov, E.; Zaytsev, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Eyyubova, G.; Gribushin, A.; Ilyin, V.; Klyukhin, V.; Kodolova, O.; Kruglov, N. A.; Kryukov, A.; Lokhtin, I.; Malinina, L.; Mikhaylin, V.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Shamardin, L.; Sherstnev, A.; Snigirev, A.; Teplov, K.; Vardanyan, I.; Fomenko, A. M.; Konovalova, N.; Kozlov, V.; Lebedev, A. I.; Lvova, N.; Rusakov, S. V.; Terkulov, A.; Abramov, V.; Akimenko, S.; Artamonov, A.; Ashimova, A.; Azhgirey, I.; Bitioukov, S.; Chikilev, O.; Datsko, K.; Filine, A.; Godizov, A.; Goncharov, P.; Grishin, V.; Inyakin, A.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Krinitsyn, A.; Levine, A.; Lobov, I.; Lukanin, V.; Mel'nik, Y.; Molchanov, V.; Petrov, V.; Petukhov, V.; Pikalov, V.; Ryazanov, A.; Ryutin, R.; Shelikhov, V.; Skvortsov, V.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Talov, V.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.; Lukyanov, V.; Mamaeva, G.; Prilutskaya, Z.; Rumyantsev, I.; Sokha, S.; Tataurschikov, S.; Vasilyev, I.; Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Puzovic, J.; Smiljkovic, N.; Aguayo Navarrete, E.; Aguilar-Benitez, M.; Ahijado Munoz, J.; Alarcon Vega, J. M.; Alberdi, J.; Alcaraz Maestre, J.; Aldaya Martin, M.; Arce, P.; Barcala, J. M.; Berdugo, J.; Blanco Ramos, C. L.; Burgos Lazaro, C.; Caballero Bejar, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Chercoles Catalán, J. J.; Colino, N.; Daniel, M.; DeLa Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Ferrando, A.; Fouz, M. C.; Francia Ferrero, D.; Garcia Romero, J.; Garcia-Abia, P.; Gonzalez Lopez, O.; Hernandez, J. M.; Josa, M. I.; Marin, J.; Merino, G.; Molinero, A.; Navarrete, J. J.; Oller, J. C.; Puerta Pelayo, J.; Puras Sanchez, J. C.; Ramirez, J.; Romero, L.; Villanueva Munoz, C.; Willmott, C.; Yuste, C.; Albajar, C.; de Trocóniz, J. F.; Jimenez, I.; Macias, R.; Teixeira, R. F.; Cuevas, J.; Fernández Menéndez, J.; Gonzalez Caballero, I.; Lopez-Garcia, J.; Naves Sordo, H.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Cano Fernandez, D.; Diaz Merino, I.; Duarte Campderros, J.; Fernandez, M.; Fernandez Menendez, J.; Figueroa, C.; Garcia Moral, L. A.; Gomez, G.; Gomez Casademunt, F.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Garcia, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Orviz Fernandez, P.; Patino Revuelta, A.; Rodrigo, T.; Rodriguez Gonzalez, D.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Barbero, M.; Goldin, D.; Henrich, B.; Tauscher, L.; Vlachos, S.; Wadhwa, M.; Abbaneo, D.; Abbas, S. M.; Ahmed, I.; Akhtar, S.; Akhtar, M. I.; Albert, E.; Alidra, M.; Ashby, S.; Aspell, P.; Auffray, E.; Baillon, P.; Ball, A.; Bally, S. L.; Bangert, N.; Barillère, R.; Barney, D.; Beauceron, S.; Beaudette, F.; Benelli, G.; Benetta, R.; Benichou, J. L.; Bialas, W.; Bjorkebo, A.; Blechschmidt, D.; Bloch, C.; Bloch, P.; Bonacini, S.; Bos, J.; Bosteels, M.; Boyer, V.; Branson, A.; Breuker, H.; Bruneliere, R.; Buchmuller, O.; Campi, D.; Camporesi, T.; Caner, A.; Cano, E.; Carrone, E.; Cattai, A.; Chatelain, J. P.; Chauvey, M.; Christiansen, T.; Ciganek, M.; Cittolin, S.; Cogan, J.; Conde Garcia, A.; Cornet, H.; Corrin, E.; Corvo, M.; Cucciarelli, S.; Curé, B.; D'Enterria, D.; DeRoeck, A.; de Visser, T.; Delaere, C.; Delattre, M.; Deldicque, C.; Delikaris, D.; Deyrail, D.; Di Vincenzo, S.; Domeniconi, A.; Dos Santos, S.; Duthion, G.; Edera, L. M.; Elliott-Peisert, A.; Eppard, M.; Fanzago, F.; Favre, M.; Foeth, H.; Folch, R.; Frank, N.; Fratianni, S.; Freire, M. A.; Frey, A.; Fucci, A.; Funk, W.; Gaddi, A.; Gagliardi, F.; Gastal, M.; Gateau, M.; Gayde, J. C.; Gerwig, H.; Ghezzi, A.; Gigi, D.; Gill, K.; Giolo-Nicollerat, A. S.; Girod, J. P.; Glege, F.; Glessing, W.; Gomez-Reino Garrido, R.; Goudard, R.; Grabit, R.; Grillet, J. P.; Gutierrez Llamas, P.; Gutierrez Mlot, E.; Gutleber, J.; Hall-wilton, R.; Hammarstrom, R.; Hansen, M.; Harvey, J.; Hervé, A.; Hill, J.; Hoffmann, H. F.; Holzner, A.; Honma, A.; Hufnagel, D.; Huhtinen, M.; Ilie, S. D.; Innocente, V.; Jank, W.; Janot, P.; Jarron, P.; Jeanrenaud, M.; Jouvel, P.; Kerkach, R.; Kloukinas, K.; Kottelat, L. J.; Labbé, J. C.; Lacroix, D.; Lagrue, X.; Lasseur, C.; Laure, E.; Laurens, J. F.; Lazeyras, P.; LeGoff, J. M.; Lebeau, M.; Lecoq, P.; Lemeilleur, F.; Lenzi, M.; Leonardo, N.; Leonidopoulos, C.; Letheren, M.; Liendl, M.; Limia-Conde, F.; Linssen, L.; Ljuslin, C.; Lofstedt, B.; Loos, R.; Lopez Perez, J. A.; Lourenco, C.; Lyonnet, A.; Machard, A.; Mackenzie, R.; Magini, N.; Maire, G.; Malgeri, L.; Malina, R.; Mannelli, M.; Marchioro, A.; Martin, J.; Meijers, F.; Meridiani, P.; Meschi, E.; Meyer, T.; Meynet Cordonnier, A.; Michaud, J. F.; Mirabito, L.; Moser, R.; Mossiere, F.; Muffat-Joly, J.; Mulders, M.; Mulon, J.; Murer, E.; Mättig, P.; Oh, A.; Onnela, A.; Oriunno, M.; Orsini, L.; Osborne, J. A.; Paillard, C.; Pal, I.; Papotti, G.; Passardi, G.; Patino-Revuelta, A.; Patras, V.; Perea Solano, B.; Perez, E.; Perinic, G.; Pernot, J. F.; Petagna, P.; Petiot, P.; Petit, P.; Petrilli, A.; Pfeiffer, A.; Piccut, C.; Pimiä, M.; Pintus, R.; Pioppi, M.; Placci, A.; Pollet, L.; Postema, H.; Price, M. J.; Principe, R.; Racz, A.; Radermacher, E.; Ranieri, R.; Raymond, G.; Rebecchi, P.; Rehn, J.; Reynaud, S.; Rezvani Naraghi, H.; Ricci, D.; Ridel, M.; Risoldi, M.; Rodrigues Simoes Moreira, P.; Rohlev, A.; Roiron, G.; Rolandi, G.; Rumerio, P.; Runolfsson, O.; Ryjov, V.; Sakulin, H.; Samyn, D.; Santos Amaral, L. C.; Sauce, H.; Sbrissa, E.; Scharff-Hansen, P.; Schieferdecker, P.; Schlatter, W. D.; Schmitt, B.; Schmuecker, H. G.; Schröder, M.; Schwick, C.; Schäfer, C.; Segoni, I.; Sempere Roldán, P.; Sgobba, S.; Sharma, A.; Siegrist, P.; Sigaud, C.; Sinanis, N.; Sobrier, T.; Sphicas, P.; Spiropulu, M.; Stefanini, G.; Strandlie, A.; Szoncsó, F.; Taylor, B. G.; Teller, O.; Thea, A.; Tournefier, E.; Treille, D.; Tropea, P.; Troska, J.; Tsesmelis, E.; Tsirou, A.; Valls, J.; Van Vulpen, I.; Vander Donckt, M.; Vasey, F.; Vazquez Acosta, M.; Veillet, L.; Vichoudis, P.; Waurick, G.; Wellisch, J. P.; Wertelaers, P.; Wilhelmsson, M.; Willers, I. M.; Winkler, M.; Zanetti, M.; Bertl, W.; Deiters, K.; Dick, P.; Erdmann, W.; Feichtinger, D.; Gabathuler, K.; Hochman, Z.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; König, S.; Poerschke, P.; Renker, D.; Rohe, T.; Sakhelashvili, T.; Starodumov, A.; Aleksandrov, V.; Behner, F.; Beniozef, I.; Betev, B.; Blau, B.; Brett, A. M.; Caminada, L.; Chen, Z.; Chivarov, N.; Da Silva Di Calafiori, D.; Dambach, S.; Davatz, G.; Delachenal, V.; Della Marina, R.; Dimov, H.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dröge, M.; Eggel, C.; Ehlers, J.; Eichler, R.; Elmiger, M.; Faber, G.; Freudenreich, K.; Fuchs, J. F.; Georgiev, G. M.; Grab, C.; Haller, C.; Herrmann, J.; Hilgers, M.; Hintz, W.; Hofer, Hans; Hofer, Heinz; Horisberger, U.; Horvath, I.; Hristov, A.; Humbertclaude, C.; Iliev, B.; Kastli, W.; Kruse, A.; Kuipers, J.; Langenegger, U.; Lecomte, P.; Lejeune, E.; Leshev, G.; Lesmond, C.; List, B.; Luckey, P. D.; Lustermann, W.; Maillefaud, J. D.; Marchica, C.; Maurisset, A.; Meier, B.; Milenovic, P.; Milesi, M.; Moortgat, F.; Nanov, I.; Nardulli, A.; Nessi-Tedaldi, F.; Panev, B.; Pape, L.; Pauss, F.; Petrov, E.; Petrov, G.; Peynekov, M. M.; Pitzl, D.; Punz, T.; Riboni, P.; Riedlberger, J.; Rizzi, A.; Ronga, F. J.; Roykov, P. A.; Röser, U.; Schinzel, D.; Schöning, A.; Sourkov, A.; Stanishev, K.; Stoenchev, S.; Stöckli, F.; Suter, H.; Trüb, P.; Udriot, S.; Uzunova, D. G.; Veltchev, I.; Viertel, G.; von Gunten, H. P.; Waldmeier-Wicki, S.; Weber, R.; Weber, M.; Weng, J.; Wensveen, M.; Wittgenstein, F.; Zagoursky, K.; Alagoz, E.; Amsler, C.; Chiochia, V.; Hoermann, C.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Tsirigkas, D.; Wilke, L.; Blyth, S.; Chang, Y. H.; Chen, E. A.; Go, A.; Hung, C. C.; Kuo, C. M.; Li, S. W.; Lin, W.; Chang, P.; Chao, Y.; Chen, K. F.; Gao, Z.; Hou, G. W. S.; Hsiung, Y. B.; Lei, Y. J.; Lin, S. W.; Lu, R. S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Velikzhanin, Y.; Wang, C. C.; Wang, M.-Z.; Aydin, S.; Azman, A.; Bakirci, M. N.; Basegmez, S.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis Topaksu, A.; Kisoglu, H.; Kurt, P.; Ozdemir, K.; Ozdes Koca, N.; Ozkurt, H.; Ozturk, S.; Polatöz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Önengüt, G.; Gamsizkan, H.; Sekmen, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Grinev, B.; Lyubynskiy, V.; Senchyshyn, V.; Levchuk, L.; Lukyanenko, S.; Soroka, D.; Sorokin, P.; Zub, S.; Anjum, A.; Baker, N.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D.; Solomonides, A.; Brooke, J. J.; Croft, R.; Cussans, D.; Evans, D.; Frazier, R.; Grant, N.; Hansen, M.; Head, R. D.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Lynch, C.; Mackay, C. K.; Metson, S.; Nash, S. J.; Newbold, D. M.; Presland, A. D.; Probert, M. G.; Reid, E. C.; Smith, V. J.; Tapper, R. J.; Walton, R.; Bateman, E.; Bell, K. W.; Brown, R. M.; Camanzi, B.; Church, I. T.; Cockerill, D. J. A.; Cole, J. E.; Connolly, J. F.; Coughlan, J. A.; Flower, P. S.; Ford, P.; Francis, V. B.; French, M. J.; Galagedera, S. B.; Gannon, W.; Gay, A. P. R.; Geddes, N. I.; Greenhalgh, R. J. S.; Halsall, R. N. J.; Haynes, W. J.; Hill, J. A.; Jacob, F. R.; Jeffreys, P. W.; Jones, L. L.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Maddox, A. J.; Morrissey, Q. R.; Murray, P.; Patrick, G. N.; Pattison, C. A. X.; Pearson, M. R.; Quinton, S. P. H.; Rogers, G. J.; Salisbury, J. G.; Shah, A. A.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Stephenson, R.; Taghavi, S.; Tomalin, I. R.; Torbet, M. J.; Williams, J. H.; Womersley, W. J.; Worm, S. D.; Xing, F.; Apollonio, M.; Arteche, F.; Bainbridge, R.; Barber, G.; Barrillon, P.; Batten, J.; Beuselinck, R.; Brambilla Hall, P. M.; Britton, D.; Cameron, W.; Clark, D. E.; Clark, I. W.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Dewhirst, G.; Dris, S.; Foudas, C.; Fulcher, J.; Futyan, D.; Graham, D. J.; Greder, S.; Greenwood, S.; Hall, G.; Hassard, J. F.; Hays, J.; Iles, G.; Kasey, V.; Khaleeq, M.; Leaver, J.; Lewis, P.; MacEvoy, B. C.; Maroney, O.; McLeod, E. M.; Miller, D. G.; Nash, J.; Nikitenko, A.; Noah Messomo, E.; Noy, M.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Price, D. R.; Qu, X.; Raymond, D. M.; Rose, A.; Rutherford, S.; Ryan, M. J.; Sciacca, F.; Seez, C.; Sharp, P.; Sidiropoulos, G.; Stettler, M.; Stoye, M.; Striebig, J.; Takahashi, M.; Tallini, H.; Tapper, A.; Timlin, C.; Toudup, L.; Virdee, T.; Wakefield, S.; Walsham, P.; Wardrope, D.; Wingham, M.; Zhang, Y.; Zorba, O.; Da Via, C.; Goitom, I.; Hobson, P. R.; Imrie, D. C.; Reid, I.; Selby, C.; Sharif, O.; Teodorescu, L.; Watts, S. J.; Yaselli, I.; Hazen, E.; Heering, A.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Rohlf, J.; Sulak, L.; Varela Rodriguez, F.; Wu, S. X.; Avetisyan, A.; Bose, T.; Christofek, L.; Cutts, D.; Esen, S.; Hooper, R.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.; Breedon, R.; Case, M.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Fisyak, Y.; Friis, E.; Grim, G.; Holbrook, B.; Ko, W.; Kopecky, A.; Lander, R.; Lin, F. C.; Lister, A.; Maruyama, S.; Pellett, D.; Rowe, J.; Searle, M.; Smith, J.; Soha, A.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Bonushkin, Y.; Chandramouly, S.; Cline, D.; Cousins, R.; Erhan, S.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Lisowski, B.; Matthey, C.; Mohr, B.; Mumford, J.; Otwinowski, S.; Pischalnikov, Y.; Rakness, G.; Schlein, P.; Shi, Y.; Tannenbaum, B.; Tucker, J.; Valuev, V.; Wallny, R.; Wang, H. G.; Yang, X.; Zheng, Y.; Andreeva, J.; Babb, J.; Campana, S.; Chrisman, D.; Clare, R.; Ellison, J.; Fortin, D.; Gary, J. W.; Gorn, W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Layter, J. G.; Liu, F.; Liu, H.; Luthra, A.; Pasztor, G.; Rick, H.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sytnik, V.; Tran, P.; Villa, S.; Wilken, R.; Wimpenny, S.; Zer-Zion, D.; Branson, J. G.; Coarasa Perez, J. A.; Dusinberre, E.; Kelley, R.; Lebourgeois, M.; Letts, J.; Lipeles, E.; Mangano, B.; Martin, T.; Mojaver, M.; Muelmenstaedt, J.; Norman, M.; Paar, H. P.; Petrucci, A.; Pi, H.; Pieri, M.; Rana, A.; Sani, M.; Sharma, V.; Simon, S.; White, A.; Würthwein, F.; Yagil, A.; Affolder, A.; Allen, A.; Campagnari, C.; D'Alfonso, M.; Dierlamm, A.; Garberson, J.; Hale, D.; Incandela, J.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Kyre, S.; Lamb, J.; Lowette, S.; Nikolic, M.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Shah, Y. S.; Stuart, D.; Swain, S.; Vlimant, J. R.; White, D.; Witherell, M.; Bornheim, A.; Bunn, J.; Chen, J.; Denis, G.; Galvez, P.; Gataullin, M.; Legrand, I.; Litvine, V.; Ma, Y.; Mao, R.; Nae, D.; Narsky, I.; Newman, H. B.; Orimoto, T.; Rogan, C.; Shevchenko, S.; Steenberg, C.; Su, X.; Thomas, M.; Timciuc, V.; van Lingen, F.; Veverka, J.; Voicu, B. R.; Weinstein, A.; Wilkinson, R.; Xia, Y.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Bunce, M.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Givens, K.; Heyburn, B.; Johnson, D.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Das, S.; Duboscq, J. E.; Gibbons, L. K.; Heltsley, B.; Jones, C. D.; Kuznetsov, V.; Patterson, J. R.; Riley, D.; Ryd, A.; Stroiney, S.; Sun, W.; Thom, J.; Vaughan, J.; Wittich, P.; Beetz, C. P.; Cirino, G.; Podrasky, V.; Sanzeni, C.; Winn, D.; Abdullin, S.; Afaq, M. A.; Albrow, M.; Amundson, J.; Apollinari, G.; Atac, M.; Badgett, W.; Bakken, J. A.; Baldin, B.; Banicz, K.; Bauerdick, L. A. T.; Baumbaugh, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Boubekeur, A.; Bowden, M.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chevenier, G.; Chlebana, F.; Churin, I.; Cihangir, S.; Dagenhart, W.; Demarteau, M.; Dykstra, D.; Eartly, D. P.; Elias, J. E.; Elvira, V. D.; Evans, D.; Fisk, I.; Freeman, J.; Gaines, I.; Gartung, P.; Geurts, F. J. M.; Giacchetti, L.; Glenzinski, D. A.; Gottschalk, E.; Grassi, T.; Green, D.; Grimm, C.; Guo, Y.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hesselroth, T.; Holm, S.; Holzman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kossiakov, S.; Kousouris, K.; Kowalkowski, J.; Kramer, T.; Kwan, S.; Lei, C. M.; Leininger, M.; Los, S.; Lueking, L.; Lukhanin, G.; Lusin, S.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Moccia, S.; Mokhov, N.; Mrenna, S.; Murray, S. J.; Newman-Holmes, C.; Noeding, C.; O'Dell, V.; Paterno, M.; Petravick, D.; Pordes, R.; Prokofyev, O.; Ratnikova, N.; Ronzhin, A.; Sekhri, V.; Sexton-Kennedy, E.; Sfiligoi, I.; Shaw, T. M.; Skup, E.; Smith, R. P.; Spalding, W. J.; Spiegel, L.; Stavrianakou, M.; Stiehr, G.; Stone, A. L.; Suzuki, I.; Tan, P.; Tanenbaum, W.; Temple, L. E.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Wands, R.; Wenzel, H.; Whitmore, J.; Wicklund, E.; Wu, W. M.; Wu, Y.; Yarba, J.; Yarba, V.; Yumiceva, F.; Yun, J. C.; Zimmerman, T.; Acosta, D.; Avery, P.; Barashko, V.; Bartalini, P.; Bourilkov, D.; Cavanaugh, R.; Dolinsky, S.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gorn, L.; Holmes, D.; Kim, B. J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Levchenko, P.; Madorsky, A.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Prescott, C.; Ramond, L.; Ramond, P.; Schmitt, M.; Scurlock, B.; Stasko, J.; Stoeck, H.; Wang, D.; Yelton, J.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Atramentov, O.; Bertoldi, M.; Dharmaratna, W. G. D.; Gershtein, Y.; Gleyzer, S. V.; Hagopian, S.; Hagopian, V.; Jenkins, C. J.; Johnson, K. F.; Prosper, H.; Simek, D.; Thomaston, J.; Baarmand, M.; Baksay, L.; Guragain, S.; Hohlmann, M.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Barannikova, O.; Bazterra, V. E.; Betts, R. R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Hollis, R.; Iordanova, A.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Ayan, A. S.; Briggs, R.; Cankocak, K.; Clarida, W.; Cooper, A.; Debbins, P.; Duru, F.; Fountain, M.; McCliment, E.; Merlo, J. P.; Mestvirishvili, A.; Miller, M. J.; Moeller, A.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Perera, L.; Schmidt, I.; Wang, S.; Yetkin, T.; Anderson, E. W.; Chakir, H.; Hauptman, J. M.; Lamsa, J.; Barnett, B. A.; Blumenfeld, B.; Chien, C. Y.; Giurgiu, G.; Gritsan, A.; Kim, D. W.; Lae, C. K.; Maksimovic, P.; Swartz, M.; Tran, N.; Baringer, P.; Bean, A.; Chen, J.; Coppage, D.; Grachov, O.; Murray, M.; Radicci, V.; Wood, J. S.; Zhukova, V.; Bandurin, D.; Bolton, T.; Kaadze, K.; Kahl, W. E.; Maravin, Y.; Onoprienko, D.; Sidwell, R.; Wan, Z.; Dahmes, B.; Gronberg, J.; Hollar, J.; Lange, D.; Wright, D.; Wuest, C. R.; Baden, D.; Bard, R.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kunori, S.; Lockner, E.; Ratnikov, F.; Santanastasio, F.; Skuja, A.; Toole, T.; Wang, L.; Wetstein, M.; Alver, B.; Ballintijn, M.; Bauer, G.; Busza, W.; Gomez Ceballos, G.; Hahn, K. A.; Harris, P.; Klute, M.; Kravchenko, I.; Li, W.; Loizides, C.; Ma, T.; Nahn, S.; Paus, C.; Pavlon, S.; Piedra Gomez, J.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G.; Sumorok, K.; Vaurynovich, S.; Wenger, E. A.; Wyslouch, B.; Bailleux, D.; Cooper, S.; Cushman, P.; DeBenedetti, A.; Dolgopolov, A.; Dudero, P. R.; Egeland, R.; Franzoni, G.; Gilbert, W. J.; Gong, D.; Grahl, J.; Haupt, J.; Klapoetke, K.; Kronkvist, I.; Kubota, Y.; Mans, J.; Rusack, R.; Sengupta, S.; Sherwood, B.; Singovsky, A.; Vikas, P.; Zhang, J.; Booke, M.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Sonnek, P.; Summers, D.; Watkins, S.; Bloom, K.; Bockelman, B.; Claes, D. R.; Dominguez, A.; Eads, M.; Furukawa, M.; Keller, J.; Kelly, T.; Lundstedt, C.; Malik, S.; Snow, G. R.; Swanson, D.; Ecklund, K. M.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M.; Alverson, G.; Barberis, E.; Boeriu, O.; Eulisse, G.; McCauley, T.; Musienko, Y.; Muzaffar, S.; Osborne, I.; Reucroft, S.; Swain, J.; Taylor, L.; Tuura, L.; Gobbi, B.; Kubantsev, M.; Kubik, A.; Ofierzynski, R. A.; Schmitt, M.; Spencer, E.; Stoynev, S.; Szleper, M.; Velasco, M.; Won, S.; Andert, K.; Baumbaugh, B.; Beiersdorf, B. A.; Castle, L.; Chorny, J.; Goussiou, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolberg, T.; Marchant, J.; Marinelli, N.; McKenna, M.; Ruchti, R.; Vigneault, M.; Wayne, M.; Wiand, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Gu, J.; Killewald, P.; Ling, T. Y.; Rush, C. J.; Sehgal, V.; Williams, G.; Adam, N.; Chidzik, S.; Denes, P.; Elmer, P.; Garmash, A.; Gerbaudo, D.; Halyo, V.; Jones, J.; Marlow, D.; Olsen, J.; Piroué, P.; Stickland, D.; Tully, C.; Werner, J. S.; Wildish, T.; Wynhoff, S.; Xie, Z.; Huang, X. T.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Apresyan, A.; Arndt, K.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Bujak, A.; Everett, A.; Fahling, M.; Garfinkel, A. F.; Gutay, L.; Ippolito, N.; Kozhevnikov, Y.; Laasanen, A. T.; Liu, C.; Maroussov, V.; Medved, S.; Merkel, P.; Miller, D. H.; Miyamoto, J.; Neumeister, N.; Pompos, A.; Roy, A.; Sedov, A.; Shipsey, I.; Cuplov, V.; Parashar, N.; Bargassa, P.; Lee, S. J.; Liu, J. H.; Maronde, D.; Matveev, M.; Nussbaum, T.; Padley, B. P.; Roberts, J.; Tumanov, A.; Bodek, A.; Budd, H.; Cammin, J.; Chung, Y. S.; DeBarbaro, P.; Demina, R.; Ginther, G.; Gotra, Y.; Korjenevski, S.; Miner, D. C.; Sakumoto, W.; Slattery, P.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Bartz, E.; Chuang, S. H.; Doroshenko, J.; Halkiadakis, E.; Jacques, P. F.; Khits, D.; Lath, A.; Macpherson, A.; Plano, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Watts, T. L.; Cerizza, G.; Hollingsworth, M.; Lazoflores, J.; Ragghianti, G.; Spanier, S.; York, A.; Aurisano, A.; Golyash, A.; Kamon, T.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Berntzon, L.; Carrell, K. W.; Gumus, K.; Jeong, C.; Kim, H.; Lee, S. W.; McGonagill, B. G.; Roh, Y.; Sill, A.; Spezziga, M.; Thomas, R.; Volobouev, I.; Washington, E.; Wigmans, R.; Yazgan, E.; Bapty, T.; Engh, D.; Florez, C.; Johns, W.; Keskinpala, T.; Luiggi Lopez, E.; Neema, S.; Nordstrom, S.; Pathak, S.; Sheldon, P.; Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Humphrey, M.; Imlay, R.; Ledovskoy, A.; Phillips, D., II; Powell, H.; Ronquest, M.; Yohay, R.; Anderson, M.; Baek, Y. W.; Bellinger, J. N.; Bradley, D.; Cannarsa, P.; Carlsmith, D.; Crotty, I.; Dasu, S.; Feyzi, F.; Gorski, T.; Gray, L.; Grogg, K. S.; Grothe, M.; Jaworski, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Magrans de Abril, M.; Mohapatra, A.; Ott, G.; Smith, W. H.; Weinberg, M.; Wenman, D.; Atoian, G. S.; Dhawan, S.; Issakov, V.; Neal, H.; Poblaguev, A.; Zeller, M. E.; Abdullaeva, G.; Avezov, A.; Fazylov, M. I.; Gasanov, E. M.; Khugaev, A.; Koblik, Y. N.; Nishonov, M.; Olimov, K.; Umaraliev, A.; Yuldashev, B. S.

    2008-08-01

    The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2 s-1 (1027 cm-2 s-1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

  19. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  20. Stellar luminosity variations and global warming.

    PubMed

    Foukal, P

    1994-04-08

    Recent studies indicate that variation in the sun's luminosity is less than that observed in many other stars of similar magnetic activity. Current findings also indicate that in more active stars, the attenuation by faculae of sunspot luminosity modulation is less effective than in the sun at present. The sun could thus become photometrically more variable (and dimmer) if its magnetic activity exceeded present levels. But the levels of solar activity required for this to occur are not observed in carbon-14 and beryllium-10 records over the past several millennia, which indicates that such an increase in amplitude of surface magnetism-driven variations in solar luminosity is unlikely in the present epoch.

  1. Measurement of the Inclusive $Z \\to ee$ Production Cross Section in Proton-Proton Collisions at $\\sqrt{s}$ = 7TeV and $Z \\to ee$ Decays as Standard Candles for Luminosity at the Large Hadron Collider

    SciTech Connect

    Werner, Jeremy

    2011-01-01

    This thesis comprises a precision measurement of the inclusive \\Zee production cross section in proton-proton collisions provided by the Large Hadron Collider (LHC) at a center-of-mass energy of $\\sqrt{s}=7$~TeV and the absolute luminosity based on \\Zee decays. The data was collected by the Compact Muon Solenoid (CMS) detector near Geneva, Switzerland during the year of 2010 and corresponds to an integrated luminosity of $\\int\\mathcal{L}dt = 35.9\\pm 1.4$~pb$^{-1}$. Electronic decays of $Z$ bosons allow one of the first electroweak measurements at the LHC, making the cross section measurement a benchmark of physics performance after the first year of CMS detector and LHC machine operations. It is the first systematic uncertainty limited \\Zee cross section measurement performed at $\\sqrt{s}=7$~TeV. The measured cross section pertaining to the invariant mass window $M_{ee}\\in (60,120)$~GeV is reported as: $\\sigma(pp\\to Z+X) \\times \\mathcal{B}( Z\\to ee ) = 997 \\pm 11 \\mathrm{(sta t)} \\pm 19 \\mathrm{(syst)} \\pm 40 \\mathrm{(lumi)} \\textrm{ pb}$, which agrees with the theoretical prediction calculated to NNLO in QCD. Leveraging \\Zee decays as ``standard candles'' for measuring the absolute luminosity at the LHC is examined; they are produced copiously, are well understood, and have clean detector signatures. Thus the consistency of the inclusive \\Zee production cross section measurement with the theoretical prediction motivates inverting the measurement to instead use the \\Zee signal yield to measure the luminosity. The result, which agrees with the primary relative CMS luminosity measurement calibrated using Van der Meer separation scans, is not only the most precise absolute luminosity measurement performed to date at a hadron collider, but also the first one based on a physics signal at the LHC.

  2. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Ochi, Atsuhiko; Homma, Yasuhiro; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    The Micro Pixel Chamber(μ-PIC)isbeingdevelopedasacandidateforthe muonsystemoftheATLAS detectorfor upgrading in LHC experiments. The μ-PICisa micro-patterngaseous detector that doesn'thave floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to theATLAS cavern. Spark rates are measured using severalgas mixtures under7MeV neutron irradiation, andgoodpropertieswereobservedusingneon,ethane,andCF4mixtureofgases.Usingresistivematerialsas electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  3. Upgrade of the cryogenic CERN RF test facility

    SciTech Connect

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  4. Multi-wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Miller, N. A.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and absorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, we optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, we derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  5. Multi-Wavelength Luminosity Functions of Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2002-01-01

    Multivariate or multi-wavelength luminosity functions will reveal the interplay between star formation, chemical evolution, and ab- sorption and re-emission of dust within evolving galaxy populations. By using principal component analysis to reduce the dimensionality of the problem, I optimally extract the relevant photometric information from large galaxy catalogs. As a demonstration of the technique, I derive the multi-wavelength luminosity function for the galaxies in the released SDSS catalog, and compare the results with those obtained by traditional methods. This technique will be applicable to catalogs of galaxies from datasets obtained by 2MASS, and the SIRTF and GALEX missions.

  6. Four tops for LHC

    NASA Astrophysics Data System (ADS)

    Alvarez, Ezequiel; Faroughy, Darius A.; Kamenik, Jernej F.; Morales, Roberto; Szynkman, Alejandro

    2017-02-01

    We design a search strategy for the Standard Model t t bar t t bar production at the LHC in the same-sign dilepton and trilepton channels. We study different signal features and, given the small expected number of signal events, we scrutinize in detail all reducible and irreducible backgrounds. Our analysis shows that by imposing a basic set of jet and lepton selection criteria, the SM pp → t t bar t t bar process could be evidenced in the near future, within Run-II, when combining both multi-lepton search channels. We argue that this search strategy should also be used as a guideline to test New Physics coupling predominantly to top-quarks. In particular, we show that a non-resonant New Physics enhancement in the four-top final state would be detectable through this search strategy. We study two top-philic simplified models of this kind, a neutral scalar boson and a Z‧, and present current and future exclusion limits on their mass and couplings.

  7. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Riedler, P.

    2016-12-01

    During the long shutdown of the Large Hadron Collider (LHC) in 2019-20 (LS2) the present Inner Tracking System (ITS) of the ALICE experiment based on silicon pixel, silicon drift and silicon strip detectors, will be entirely replaced by a new tracker using novel monolithic silicon pixel chips. This new tracker will significantly enhance heavy flavour measurements, which are out of reach for the present system, e.g. charmed baryons, such as the ΛC, and will allow studying hadrons containing a beauty quark. The new tracker will provide an improved pointing resolution in rϕ and z, decreasing the present values by a factor 3 and 5, respectively, to about 40 μm for a pT of 500 MeV/c. Each of the seven layers will be constructed using 50 μm, respectively 100 μm thin silicon chips on a very light weight carbon fibre based support structure for the innermost and the outer layers. The material budget for the first three layers corresponds to 0.3% X0/layer while the four outer layers will have an average material budget of 1% X0/layer. The innermost layer will be placed at 23 mm radius, compared to presently 39 mm. Furthermore, the readout rate of the new ITS will increase from presently 1 kHz to 50 kHz for Pb-Pb collisions and 400 kHz for p-p collisions, thus matching the expected event rate for Pb-Pb collisions after LS2. This contribution will provide an overview of the upgrade of the ALICE ITS and the expected performance improvement and will present the actual status of the R&D.

  8. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  9. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  10. Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC

    SciTech Connect

    Oleg A. Grachov et al.

    2004-05-04

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  11. Luminosity enhancement in relativistic jets and altered luminosity functions for beamed objects

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Shafer, R. A.

    1983-01-01

    Due to relativistic effects, the observed emission from relativistic jets is quite different from the rest frame emission. Systematic differences between the observed and intrinsic intensities of sources in which jet phenomena are occurring are discussed. Assuming that jets have a power law luminosity function of a slope B, the observed luminosity distribution as a function of the velocity of the jet, the spectral index of the rest frame emission, and the range of angles of the jets relative to our line of sight are calculated. The results is well-approximated by two power laws, the higher luminosity end having the original power law index X and the lower luminosity end having a flattened exponent independent of B and only slightly greater than 1. A model consisting of beamed emission from a jet and unbeamed emission from a stationary central component is investigated. The luminosity functions for these two-component sources are calculated for two ranges of angles. For sources in which beaming is important, the luminosity function is much flatter. Because of this, the relative numbers of ""beamed'' and ""unbeamed'' sources detected on the sky depend strongly on the luminosity at which the comparison is made.

  12. Recent improvements in luminosity at PEP

    SciTech Connect

    Helm, R.; Allen, M.; Chao, A.

    1983-03-01

    We will describe improvements which have led to new records for peak and average luminosity at PEP. Comparison of recent results with several earlier lattice and optical modifications shows rather good correlation with the predictions of a beam-beam simulation program.

  13. RHIC Proton Luminosity and Polarization Improvement

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    The RHIC proton beam polarization can be improved by raising the Booster scraping, which also helps to reduce the RHIC transverse emittance, and therefore to improve the luminosity. By doing this, the beam-beam effect would be enhanced. Currently, the RHIC working point is constrained between 2/3 and 7/10, the 2/3 resonance would affect intensity and luminosity lifetime, and the working point close to 7/10 would enhance polarization decay in store. Run 2013 shows that average polarization decay is merely 1.8% in 8 hours, and most fills have the luminosity lifetime better than 14 hours, which is not a problem. Therefore, even without beam-beam correction, there is room to improve for RHIC polarization and luminosity. The key to push the Booster scraping is to raise the Booster input intensity; for that, two approaches can be used. The first is to extend the LINAC tank 9 pulse width, which has been successfully applied in run 2006. The second is to raise the source temperature, which has been successfully applied in run 2006 and run 2012.

  14. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    SciTech Connect

    Hirotani, Kouichi

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity of rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.

  15. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  16. Parton distributions with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration

    2013-02-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.

  17. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  18. A Solar-luminosity Model and Climate

    NASA Technical Reports Server (NTRS)

    Perry, Charles A.

    1990-01-01

    Although the mechanisms of climatic change are not completely understood, the potential causes include changes in the Sun's luminosity. Solar activity in the form of sunspots, flares, proton events, and radiation fluctuations has displayed periodic tendencies. Two types of proxy climatic data that can be related to periodic solar activity are varved geologic formations and freshwater diatom deposits. A model for solar luminosity was developed by using the geometric progression of harmonic cycles that is evident in solar and geophysical data. The model assumes that variation in global energy input is a result of many periods of individual solar-luminosity va