Science.gov

Sample records for lhc magnet system

  1. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  2. The LHC magnet system and its status of development

    NASA Technical Reports Server (NTRS)

    Bona, Maurizio; Perin, Romeo; Vlogaert, Jos

    1995-01-01

    CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.

  3. Instrumentation status of the low-b magnet systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; Balle, C.; Casas-Cubillos, J.; Perin, A.; Vauthier, N.; /CERN

    2011-05-01

    The low-{beta} magnet systems are located in the Large Hadron Collider (LHC) insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process allowing proton collisions at luminosity up to 10{sup 34}cm{sup -2}s{sup -1}. Those systems are a contribution of the US-LHC Accelerator project. The systems are mainly composed of the quadrupole magnets (triplets), the separation dipoles and their respective electrical feed-boxes (DFBX). The low-{beta} magnet systems operate in an environment of extreme radiation, high gradient magnetic field and high heat load to the cryogenic system due to the beam dynamic effect. Due to the severe environment, the robustness of the diagnostics is primordial for the operation of the triplets. The hardware commissioning phase of the LHC was completed in February 2010. In the sake of a safer and more user-friendly operation, several consolidations and instrumentation modifications were implemented during this commissioning phase. This paper presents the instrumentation used to optimize the engineering process and operation of the final focusing/defocusing quadrupole magnets for the first years of operation.

  4. Post-LHC accelerator magnets

    SciTech Connect

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  5. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  6. Status of superconducting magnet development (SSC, RHIC, LHC)

    SciTech Connect

    Wanderer, P.

    1993-12-31

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented.

  7. Commissioning the cryogenic system of the first LHC sector

    SciTech Connect

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; Ronayette, L.; Rabehl, R.; /Fermilab

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.

  8. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2011-08-01

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  9. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  10. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  11. LHC RF System Time-Domain Simulation

    SciTech Connect

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  12. Single-pass beam measurements for the verification of the LHC magnetic model

    SciTech Connect

    Calaga, R.; Giovannozzi, M.; Redaelli, S.; Sun, Y.; Tomas, R.; Venturini-Delsolaro, W.; Zimmermann, F.

    2010-05-23

    During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.

  13. Retraining of the 1232 Main Dipole Magnets in the LHC

    SciTech Connect

    Verweij, A.; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S.; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  14. PROCEEDINGS OF THE WORKSHOP ON LHC INTERACTION REGION CORRECTION SYSTEMS

    SciTech Connect

    FISCHER,W.; WEI,J.

    1999-09-02

    The Workshop on LHC Interaction Region Correction Systems was held at Brookhaven National Laboratory, Upton, New York, on 6 and 7 May 1999. It was attended by 25 participants from 5 institutions. The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region quadrupoles and dipoles. In three sessions the workshop addressed the field quality of the these magnets, reviewed the principles and efficiency of global and local correction schemes and finalized a corrector layout. The session on Field Quality Issues, chaired by J. Strait (FNAL), discussed the progress made by KEK and FNAL in achieving the best possible field quality in the interaction region quadrupoles. Results of simulation studies were presented that assess the effects of magnetic field errors with simulation studies. Attention was given to the uncertainties in predicting and measuring field errors. The session on Global Correction, chaired by J.-P. Koutchouk (CERN), considered methods of reducing the nonlinear detuning or resonance driving terms in the accelerator one-turn map by either sorting or correcting. The session also discussed the crossing angle dependence of the dynamic aperture and operational experience from LEP. The session on Local Correction, chaired by T. Taylor (CERN), discussed the location, strength and effectiveness of multipole correctors in the interaction regions for both proton and heavy ion operation. Discussions were based on technical feasibility considerations and dynamic aperture requirements. The work on linear corrections in the interaction regions was reviewed.

  15. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  16. Experimental overview on small collision systems at the LHC

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin

    2016-12-01

    These conferences proceedings summarize the experimental findings obtained in small collision systems at the LHC, as presented in the special session on "QGP in small systems?" at the Quark Matter 2015 conference.

  17. Changes to the Transfer Line Collimation System for the High-Luminosity LHC Beams

    SciTech Connect

    Kain, V.; Aberle, O.; Bracco, C.; Fraser, M.; Galleazzi, F.; Gianfelice-Wendt, E.; Kosmicki, A.; Maciariello, F.; Meddahi, M.; Nuiry, F. X.; Steele, G.; Velotti, F.

    2015-06-01

    The current LHC transfer line collimation system will not be able to provide enough protection for the high brightness beams in the high-luminosity LHC era. The new collimation system will have to attenuate more and be more robust than its predecessor. The active jaw length of the new transfer line collimators will therefore be 2.1 m instead of currently 1.2 m. The transfer line optics will have to be adjusted for the new collimator locations and larger beta functions at the collimators for absorber robustness reasons. In this paper the new design of the transfer line collimation system will be presented with its implications on transfer line optics and powering, maintainability, protection of transfer line magnets in case of beam loss on a collimator and protection of the LHC aperture.

  18. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (lhc)

    NASA Astrophysics Data System (ADS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  19. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  20. Comparison of Carbon and Hi-Z Primary Collimators for the LHC Phase II Collimation System

    SciTech Connect

    Keller, Lewis; Markiewicz, Thomas; Smith, Jeffrey; Assmann, Ralph; Bracco, Chiara; Weiler, Thomas; /Karlsruhe, Inst. Technol.

    2011-10-31

    A current issue with the LHC collimation system is single-diffractive, off-energy protons from the primary collimators that pass completely through the secondary collimation system and are absorbed immediately downbeam in the cold magnets of the dispersion suppressor section. Simulations suggest that the high impact rate could result in quenching of these magnets. We have studied replacing the 60 cm primary graphite collimators, which remove halo mainly by inelastic strong interactions, with 5.25 mm tungsten, which remove halo mainly by multiple coulomb scattering and thereby reduce the rate of single-diffractive interactions that cause losses in the dispersion suppressor.

  1. Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...

    2017-01-10

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis andmore » the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less

  2. Magnetic Measurements of the First Nb$_3$Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    SciTech Connect

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; Ferracin, P.; Holik, E.; Sabbi, G.; Stoynev, S.; Strauss, T.; Sylvester, C.; Tartaglia, M.; Todesco, E.; Velev, G.; Wang, X.

    2016-09-06

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  3. MSSM extension with a mirror fourth generation, neutrino magnetic moments, and CERN LHC signatures

    SciTech Connect

    Ibrahim, Tarek; Nath, Pran

    2008-10-01

    Recent analyses have shown that a sequential fourth generation can be consistent with precision electroweak data. We consider the possibility that the new generation could be a mirror generation with V+A rather than V-A interactions. Specifically we consider an extension of the minimal supersymmetric standard model with a light mirror generation. Implications of this extension are explored. One consequence is an enhancement of the {tau} neutrino magnetic moment by several orders of magnitude consistent with the current limits on the magnetic moment of the {tau}. The masses of the mirror generation arise due to electroweak symmetry breaking, and if a mirror generation exists its mass spectrum must lie below a TeV, and thus should be discovered at the LHC. Mirror particles and mirror sparticles produce many characteristic signatures which should be detectable at the LHC. Heavy Higgs boson decays into mirror particles and an analysis of the forward-backward asymmetries can distinguish a mirror generation from a sequential fourth generation. The validity of the model can thus be tested at the LHC. A model of the type discussed here could arise from a more unified structure such as grand unification or strings where a mirror generation escapes the survival hypothesis, i.e., a generation and a mirror generation do not tie up to acquire a mass of size M{sub GUT} or M{sub string} due to a symmetry, and thus remain massless down to the electroweak scale.

  4. Design and test of the benches for the magnetic measurement of the LHC dipoles

    NASA Astrophysics Data System (ADS)

    Billan, J.; Buckley, J.; Saban, R.; Sievers, P.; Walckiers, L.

    1994-07-01

    The magnetic measurement of more than 1300 LHC dipoles comprises the content of higher harmonic field components, field direction and field integrals. The measurements will be carried out along a warm bore installed inside the magnet cold bore, thus allowing the use of rotating coils at room temperature. This coil, together with Hall and NMR detectors is mounted at one end of a 12.5 m long shaft which is specially designed for very high rotational stiffness and which is controlled from its far end by a motor, an angular encoder and a level meter, all standard components placed outside the magnetic field without space restrictions. Particular emphasis has been put on the user-friendliness of the bench and its automated, computer-controlled operation requiring a minimum of staff, an important issue during production measurements of large series of magnets. The bench and its performance and precision achieved during its commissioning are described.

  5. Conductor Specification and Validation for High-Luminosity LHC Quadrupole Magnets

    DOE PAGES

    Cooley, L. D.; Ghosh, A. K.; Dietderich, D. R.; ...

    2017-06-01

    The High Luminosity Upgrade of the Large Hadron Collider (HL-LHC) at CERN will replace the main ring inner triplet quadrupoles, identified by the acronym MQXF, adjacent to the main ring intersection regions. For the past decade, the U.S. LHC Accelerator R&D Program, LARP, has been evaluating conductors for the MQXFA prototypes, which are the outer magnets of the triplet. Recently, the requirements for MQXF magnets and cables have been published in P. Ferracin et al., IEEE Trans. Appl. Supercond., vol. 26, no. 4, 2016, Art. no.4000207, along with the final specification for Ti-alloyed Nb3Sn conductor determined jointly by CERN andmore » LARP. This paper describes the rationale beneath the 0.85 mm diameter strand’s chief parameters, which are 108 or more sub-elements, a copper fraction not less than 52.4%, strand critical current at 4.22 K not less than 631 A at 12 T and 331 A at 15 T, and residual resistance ratio of not less than 150. This paper also compares the performance for ~100 km production lots of the five most recent LARP conductors to the first 163 km of strand made according to the HL-LHC specification. Two factors emerge as significant for optimizing performance and minimizing risk: a modest increase of the sub-element diameter from 50 to 55 μm, and a Nb:Sn molar ratio of 3.6 instead of 3.4. Furthermore, the statistics acquired so far give confidence that the present conductor can balance competing demands in production for the HL-LHC project.« less

  6. LHC: The Emptiest Space in the Solar System

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2011-01-01

    Proton beams have been colliding at 7 TeV in the Large Hadron Collider (LHC) since 30 March 2010, meaning that the LHC research programme is underway. Particle physicists around the world are looking forward to using the data from these collisions, as the LHC is running at an energy three and a half times higher than previously achieved at any…

  7. LARP Long Quadrupole: A "Long" Step Toward an LHC Luminosity Upgrade with Nb3Sn Magnets

    SciTech Connect

    Ambrosio, Giorgio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960's. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  8. Structure for an LHC 90mm Nb3Sn Quadrupole Magnet

    SciTech Connect

    Hafalia, A.R.; Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Higley, H.; Lietzke, A.F.; Lau, B.; Liggins, N.; Mattafirri, S.; McInturff, A.D.; Nyman, M.; Sabbi,G.L.; Scanlan, R.M.; Swanson, J.

    2005-04-16

    A full-scale mechanical model of the LHC Nb{sub 3}Sn quadrupole magnet structure has been designed, built and tested. The structure will support a 90mm bore, 1m long magnet prototype as part of the US LHC Accelerator Research Program (LARP). The structure utilizes Bladder and Key Technology to control and transfer pre-stress from an outer aluminum shell to an inner coil. Axial aluminum rods take care of pre-stress at the ends--ensuring that the coil is fully constrained along all three axes. The outer aluminum shell and an inner ''dummy coil'' (aluminum tube) were extensively instrumented with strain gauges. The gauges were used to monitor and map the effectiveness of the stress relation between the loading structure and a ''dummy'' coil through varying mechanical load conditions --from bladder and key pre-stress at room temperature through cool-down. Test results of the stress distribution in the structure and the in dummy coil is reported and compared with expected results calculated with the structural analysis program ANSYS.

  9. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  10. The CMS Level-1 trigger system for LHC Run II

    NASA Astrophysics Data System (ADS)

    Cadamuro, L.

    2017-03-01

    The Compact Muon Solenoid (CMS) experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC has increased the centre-of-mass energy of proton-proton collisions up to 13 TeV and may progressively reach an instantaneous luminosity of 2×1034 cm‑2 s‑1 or higher. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition system has been upgraded. The upgraded CMS Level-1 (L1) trigger benefits from the recent μTCA technology and is designed to maintain the performance under high instantaneous luminosity conditions. More sophisticated, innovative algorithms are now the core of the first decision layer of CMS: this drastically reduces the trigger rate and improves the trigger efficiency for a wide variety of physics processes. In this document, we present the overall architecture of the upgraded Level-1 trigger system. The performance of single object triggers, measured on collision data recorded during the 2016 running period, are also summarised.

  11. New data visualization of the LHC Era Monitoring (Lemon) system

    NASA Astrophysics Data System (ADS)

    Ivan, Fedorko; Veronique, Lefebure; Daniel, Lenkes; Omar, Pera Mira

    2012-12-01

    In the last few years, new requirements have been received for visualization of monitoring data: advanced graphics, flexibility in configuration and decoupling of the presentation layer from the monitoring repository. Lemonweb is the data visualization component of the LHC Era Monitoring (Lemon) system. Lemonweb consists of two subcomponents: a data collector and a web visualization interface. The data collector is a daemon, implemented in Python, responsible for data gathering from the central monitoring repository and storing into time series data structures. Data is stored on disk in Round Robin Database (RRD) files: one file per monitored entity, with set of entity related metrics. Entities may be grouped into a hierarchical structure, called “clusters” and supporting mathematical operations over entities and clusters (e.g. cluster A + cluster B /clusters C - entity XY). Using the configuration information, a cluster definition is evaluated in the collector engine and, at runtime, a sequence of data selects is built, to optimize access to the central monitoring repository. In this article, an overview of the design and architecture as well as highlights of some implemented features will be presented.

  12. Performance of the LHCb tracking system in Run I of the LHC

    NASA Astrophysics Data System (ADS)

    Davis, Adam C. S.

    2016-07-01

    The LHCb tracking system consists of a Vertex Locator around the interaction point, a tracking station with four layers of silicon strip detectors in front of the magnet, and three straw-tube and silicon strip tracking stations behind the magnet. This system allows reconstruction of charged particles with a high efficiency (> 95 % for particles with momentum p > 5 GeV) and excellent momentum resolution (0.5% for particles with p < 20 GeV). The high momentum resolution results in narrow mass peaks, leading to a high signal-to-background ratio in such key channels as Bs0 → μμ. The excellent performance of the tracking system yields a decay time resolution of 50 fs, allowing to resolve the fast B0s oscillation with a mixing frequency of 17.7 ps-1. Such a decay time resolution is an essential element in studies of time dependent CP violation. I present an overview of the track reconstruction in LHCb and its performance in Run I of the LHC. I highlight the challenges and improvements of the track reconstruction from Run II onward, including efforts to improve the timing of the online reconstruction and approaches to unify the online and offline reconstruction.

  13. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  14. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  15. Magnetic Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Richmond, A. D.

    2017-03-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  16. Magnetic Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Richmond, A. D.

    2016-07-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  17. Modular tokamak magnetic system

    DOEpatents

    Yang, Tien-Fang

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  18. Preparing the hardware of the CMS Electromagnetic Calorimeter control and safety systems for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Holme, O.; Adzic, P.; Di Calafiori, D.; Cirkovic, P.; Dissertori, G.; Djambazov, L.; Jovanovic, D.; Lustermann, W.; Zelepoukine, S.

    2016-01-01

    The Detector Control System of the CMS Electromagnetic Calorimeter has undergone significant improvements during the first LHC Long Shutdown. Based on the experience acquired during the first period of physics data taking of the LHC, several hardware projects were carried out to improve data accuracy, to minimise the impact of failures and to extend remote control possibilities in order to accelerate recovery from problematic situations. This paper outlines the hardware of the detector control and safety systems and explains in detail the requirements, design and commissioning of the new hardware projects.

  19. Magnetic heating and cooling systems

    SciTech Connect

    Burnett, J.E.

    1993-08-03

    A method is described for pumping heat for heating or refrigeration, comprising the steps of: exposing a system comprising a magnetic fluid to a magnetic field; causing the magnetic fluid to absorb heat of magnetization; transferring heat from the system to a heat sink; causing the magnetic fluid to exit the magnetic field, undergoing the cooling effect therefrom; and transferring heat to the system from a heat source.

  20. The LHC Run 2 ATLAS trigger system: design, performance and plans

    NASA Astrophysics Data System (ADS)

    zur Nedden, M.

    2017-03-01

    In many high-energy physics experiments, online selection is vital to collect the most interesting collisions out of the large data volume. The ATLAS experiment at the Large Hadron Collider (LHC) utilizes a trigger system that consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT), reducing the event rate from the LHC bunch-crossing rate of 40 MHz to an average recording rate of around 1000 Hz. In Run 2 of the LHC, started in spring 2015, the LHC is operating at a centre-of-mass energy of 13 TeV providing an instantaneous luminosity up to 1.4 ṡ 1034 cm‑2s‑1 so far. The ATLAS trigger system has to cope with these challenges, while maintaining or improving upon the efficiency to select relevant physics processes. In this paper, the ATLAS trigger system for the LHC Run 2 is reviewed. Secondly, the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy is shown. Electron, muon and photon triggers covering transverse energies from a few GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model (SM) processes and to search for new phenomena. Finally, further developments planned for the rest of the LHC Run 2 are discussed. These include two new hardware subsystems for topological selections at L1 and full-scan tracking at the input to the HLT.

  1. Commissioning of the cryogenics of the LHC long straight sections

    SciTech Connect

    Perin, A.; Casas-Cubillos, J.; Claudet, S.; Darve, C.; Ferlin, G.; Millet, F.; Parente, C.; Rabehl, R.; Soubiran, M.; van Weelderen, R.; Wagner, U.; /CERN

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  2. Active Tensor Magnetic Gradiometer System

    DTIC Science & Technology

    2007-11-01

    Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the

  3. A flexible and configurable system to test accelerator magnets

    SciTech Connect

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  4. DC Magnetics Measurement System Design

    NASA Technical Reports Server (NTRS)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  5. ALS superbend magnet system

    SciTech Connect

    Zbasnik, J.; Wang, S.T.; Chen, J.Y.; DeVries, G.J.; DeMarco, R.; Fahmie, M.; Geyer, A.; Green, M.A.; Harkins, J.; Henderson, T.; Hinkson, J.; Hoyer, E.H.; Krupnick, J.; Marks, S.; Ottens, F.; Paterson, J.A.; Pipersky, P.; Portmann, G.; Robin, D.A.; Schlueter, R.D.; Steier, C.; Taylor, C.E.; Wahrer, R.

    2000-09-15

    The Lawrence Berkeley National Laboratory is preparing to upgrade the Advanced Light Source (ALS) with three superconducting dipoles (Superbends). In this paper we present the final magnet system design which incorporates R&D test results and addresses the ALS operational concerns of alignment, availability, and economy. The design incorporates conduction-cooled Nb-Ti windings and HTS current leads, epoxy-glass suspension straps, and a Gifford-McMahon cryocooler to supply steady state refrigeration. We also present the current status of fabrication and testing.

  6. Magnetic Membrane System

    DOEpatents

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  7. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hils, Maximilian

    2016-07-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2 s-1. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb-1. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  8. The possibility to measure the magnetic moments of short-lived particles (charm and beauty baryons) at LHC and FCC energies using the phenomenon of spin rotation in crystals

    NASA Astrophysics Data System (ADS)

    Baryshevsky, V. G.

    2016-06-01

    The use of spin rotation effect in bent crystals for measuring the magnetic moment of short-lived particles in the range of LHC and FCC energies is considered. It is shown that the estimated number of produced baryons that are captured into a bent crystal grows as ∼γ 3 / 2 with increasing particle energy. Hence it may be concluded that the experimental measurement of magnetic moments of short-lived particles using the spin rotation effect is feasible at LHC and higher energies (for LHC energies, e.g., the running time required for measuring the magnetic moment of Λc+ is 2 ÷ 16 hours).

  9. Development of a Detector Control System for the ATLAS Pixel detector in the HL-LHC

    NASA Astrophysics Data System (ADS)

    Lehmann, N.; Karagounis, M.; Kersten, S.; Zeitnitz, C.

    2016-11-01

    The upgrade of the LHC to the HL-LHC requires a new ITk detector. The innermost part of this new tracker is a pixel detector. The University of Wuppertal is developing a new DCS to monitor and control this new pixel detector. The current concept envisions three parallel paths of the DCS. The first path, called security path, is hardwired and provides an interlock system to guarantee the safety of the detector and human beings. The second path is a control path. This path is used to supervise the entire detector. The control path has its own communication lines independent from the regular data readout for reliable operation. The third path is for diagnostics and provides information on demand. It is merged with the regular data readout and provides the highest granularity and most detailed information. To reduce the material budget, a serial power scheme is the baseline for the pixel modules. A new ASIC used in the control path is in development at Wuppertal for this serial power chain. A prototype exists already and a proof of principle was demonstrated. Development and research is ongoing to guarantee the correct operation of the new ASIC in the harsh environment of the HL-LHC. The concept for the new DCS will be presented in this paper. A focus will be made on the development of the DCS chip, used for monitoring and control of pixel modules in a serial power chain.

  10. Test Results of 15 T Nb3Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Schmalzle, J.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D.W.; Chlachidze, G.; Dietderich, D.R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Kashikhin, V.V.; Sabbi, G.L.; Schmalzle, J.; Wanderer,; P.l Xiaorong, W.; Zlobin, A.V.

    2011-08-03

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  11. Test Results of 15 T Nb{sub 3}Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D. W.; Chlachidze, G.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Kashikhin, V. V.; Sabbi, G. L.; Schmalzle, J.; Wang, X.; Zlobin, A. V.

    2010-08-01

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3 Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  12. Series-Produced Helium II Cryostats for the Lhc Magnets: Technical Choices, Industrialisation, Costs

    NASA Astrophysics Data System (ADS)

    Poncet, A.; Parma, V.

    2008-03-01

    Assembled in 8 continuous segments of approximately 2.7 km length each, the He II cryostats for the 1232 cryodipoles and 474 Short Straight Sections (SSS housing the quadrupoles) must fulfill tight technical requirements. They have been produced by industry in large series according to cost-effective industrial production methods to keep expenditure within the financial constraints of the project and assembled under contract at CERN. The specific technical requirements of the generic systems of the cryostat (vacuum, cryogenic, electrical distribution, magnet alignment) are briefly recalled, as well as the basic design choices leading to the definition of their components (vacuum vessels, thermal shielding, supporting systems). Early in the design process emphasis was placed on the feasibility of manufacturing techniques adequate for large series production of components, optimal tooling for time-effective assembly methods, and reliable quality assurance systems. An analytical review of the costs of the cryostats from component procurement to final assembly, tests and interconnection in the machine is presented and compared with initial estimates, together with an appraisal of the results and lessons learned.

  13. Commissioning of the LHC Low Level RF System Remote Configuration Tools

    SciTech Connect

    Van Winkle, Daniel; Fox, John; Mastorides, Themis; Rivetta, Claudio; Baudrenghien, Philippe; Butterworth, Andrew; Molendijk, John; /CERN

    2010-08-26

    The LHC Low Level RF system (LLRF) is a complex multi-loop system used to regulate the superconductive cavity gap voltage as well as to reduce the impedance presented by RF stations to the beam. The RF system can have a profound impact on the stability of the beam; a mis-configured RF system has the potential of causing longitudinal instabilities, beam diffusion and beam loss. To configure the RF station for operation, a set of parameters in the LLRF multi-loop system have to be defined. Initial system commissioning as well as ongoing operation requires a consistent method of computer based remote measurement and model-based design of each RF station feedback system. This paper describes the suite of Matlab tools used for configuring the LHC RF system during the start up in Nov2009-Feb2010. We present a brief overview of the tool, examples of commissioning results, and basics of the model-based design algorithms. This work complements our previous presentation, where the algorithms and methodology followed in the tools were described.

  14. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; /ESS, Lund

    2011-02-01

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gating system. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron and Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  15. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    NASA Astrophysics Data System (ADS)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  16. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    NASA Astrophysics Data System (ADS)

    Rapsevicius, Valdas; Juska, Evaldas

    2014-02-01

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  17. Intelligent operations of the data acquisition system of the ATLAS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Anders, G.; Avolio, G.; Lehmann Miotto, G.; Magnoni, L.

    2015-05-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data obtained at unprecedented energy and rates. The Run Control (RC) system is the component steering the data acquisition by starting and stopping processes and by carrying all data-taking elements through well-defined states in a coherent way. Taking into account all the lessons learnt during LHC's Run 1, the RC has been completely re-designed and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS data taking, take operational decisions and handle abnormal conditions. In this paper, the design, implementation and performances of the RC/CHIP system will be described. A particular emphasis will be put on the way the RC and CHIP cooperate and on the huge benefits brought by the Complex Event Processing engine. Additionally, some error recovery scenarios will be analysed for which the intervention of human experts is now rendered unnecessary.

  18. The new CMS DAQ system for LHC operation after 2014 (DAQ2)

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Bawej, Tomasz; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Coarasa, Jose Antonio; Darlea, Georgiana-Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Ceballos, Guillelmo; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, Andre; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Morovic, Srecko; Nunez-Barranco-Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Ozga, Wojciech; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Cristian Spataru, Andrei; Stieger, Benjamin; Sumorok, Konstanty; Veverka, Jan; Wakefield, Christopher Colin; Zejdl, Petr

    2014-06-01

    The Data Acquisition system of the Compact Muon Solenoid experiment at CERN assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GByte/s. We are presenting the design of the 2nd generation DAQ system, including studies of the event builder based on advanced networking technologies such as 10 and 40 Gbit/s Ethernet and 56 Gbit/s FDR Infiniband and exploitation of multicore CPU architectures. By the time the LHC restarts after the 2013/14 shutdown, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime. In order to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increase the number of readout channels and replace the off-detector readout electronics with a μTCA implementation. The second generation DAQ system, foreseen for 2014, will need to accommodate the readout of both existing and new off-detector electronics and provide an increased throughput capacity. Advances in storage technology could make it feasible to write the output of the event builder to (RAM or SSD) disks and implement the HLT processing entirely file based.

  19. Readiness of the ATLAS Trigger and Data Acquisition system for the first LHC beams

    NASA Astrophysics Data System (ADS)

    Vandelli, W.; Atlas Tdaq Collaboration

    2009-12-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is based on O(2k) processing nodes, interconnected by a multi-layer Gigabit network, and consists of a combination of custom electronics and commercial products. In its final configuration, O(20k) applications will provide the needed capabilities in terms of event selection, data flow, local storage and data monitoring. In preparation for the first LHC beams, many TDAQ sub-systems already reached the final configuration and roughly one third of the final processing power has been deployed. Therefore, the current system allows for a sensible evaluation of the performance and scaling properties. In this paper we introduce the ATLAS TDAQ system requirements and architecture and we discuss the status of software and hardware component. We moreover present the results of performance measurements validating the system design and providing a figure for the ATLAS data acquisition capabilities in the initial data taking period.

  20. Tribology of magnetic storage systems

    NASA Technical Reports Server (NTRS)

    Bhushan, Bharat

    1992-01-01

    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  1. Compact magnetic levitation transportation system

    SciTech Connect

    Suppes, G.J.

    1992-09-15

    This patent describes a magnetic levitation transportation system, it comprises: vehicle loading and unloading stations, at least one primary pair of laterally spaced rails comprises of magnetically interactive material extending between the vehicle loading and unloading stations, a vehicle of a size, a magnetic levitation means, energy conversion means for energizing the magnetic levitation means on the vehicle and for maintaining the speed and acceleration of the vehicle during travel, braking control means for creating a net braking force on the vehicle in a braking condition, and speed control means on the vehicle for accelerating and decelerating the vehicle.

  2. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    SciTech Connect

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  3. LARP LHC 4.8 GHZ Schottky System Initial Commissioning with Beam

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; Jones, O.Rhodri; Caspers, Fritz; /CERN

    2011-03-18

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 10{sup 11} protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system. The Schottky system for the LHC was proposed in 2004 under the auspices of the LARP collaboration. Similar systems were commissioned in 2003 in the Fermilab Tevatron and Recycler accelerators as a means of measuring tunes noninvasively. The Schottky detector is based on the stochastic cooling pickups that were developed for the Fermilab Antiproton Source Debuncher cooling upgrade completed in 2002. These slotted line waveguide pickups have the advantage of large aperture coupled with high beam coupling characteristics. For stochastic cooling, wide bandwidths are integral to cooling performance. The bandwidth of slotted waveguide pickups can be tailored by choosing the length of the pickup and slot spacing. The Debuncher project covered the 4-8 GHz band with eight bands of pickups, each with approximately 500 MHz of bandwidth. For use as a Schottky detector, bandwidths of 100-200 MHz are required for gating, resulting in higher transfer impedance than those used for stochastic cooling. Details of hardware functionality are reported previously.

  4. The new CMS DAQ system for run-2 of the LHC

    DOE PAGES

    Bawej, Tomasz; Behrens, Ulf; Branson, James; ...

    2015-05-21

    The data acquisition (DAQ) system of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high level trigger (HLT) farm. The HLT farm selects interesting events for storage and offline analysis at a rate of around 1 kHz. The DAQ system has been redesigned during the accelerator shutdown in 2013/14. The motivation is twofold: Firstly, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime by the time the LHC restarts. Secondly, in ordermore » to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increasing the number of readout channels and replacing the off-detector readout electronics with a μTCA implementation. The new DAQ architecture will take advantage of the latest developments in the computing industry. For data concentration, 10/40 Gb/s Ethernet technologies will be used, as well as an implementation of a reduced TCP/IP in FPGA for a reliable transport between custom electronics and commercial computing hardware. A Clos network based on 56 Gb/s FDR Infiniband has been chosen for the event builder with a throughput of ~ 4 Tb/s. The HLT processing is entirely file based. This allows the DAQ and HLT systems to be independent, and to use the HLT software in the same way as for the offline processing. The fully built events are sent to the HLT with 1/10/40 Gb/s Ethernet via network file systems. Hierarchical collection of HLT accepted events and monitoring meta-data are stored into a global file system. As a result, this paper presents the requirements, technical choices, and performance of the new system.« less

  5. The new CMS DAQ system for run-2 of the LHC

    SciTech Connect

    Bawej, Tomasz; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana -Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Forrest, Andrew; Gigi, Dominique; Glege, Frank; Gomez-Ceballos, Guillelmo; Gomez-Reino, Robert; Hegeman, Jeroen; Holzner, Andre; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K.; Morovic, Srecko; Nunez-Barranco-Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Sakul, Hannes; Schwick, Christoph; Stieger, Benjamin; Sumorok, Konstanty; Veverka, Jan; Zejdl, Petr

    2015-05-21

    The data acquisition (DAQ) system of the CMS experiment at the CERN Large Hadron Collider assembles events at a rate of 100 kHz, transporting event data at an aggregate throughput of 100 GB/s to the high level trigger (HLT) farm. The HLT farm selects interesting events for storage and offline analysis at a rate of around 1 kHz. The DAQ system has been redesigned during the accelerator shutdown in 2013/14. The motivation is twofold: Firstly, the current compute nodes, networking, and storage infrastructure will have reached the end of their lifetime by the time the LHC restarts. Secondly, in order to handle higher LHC luminosities and event pileup, a number of sub-detectors will be upgraded, increasing the number of readout channels and replacing the off-detector readout electronics with a μTCA implementation. The new DAQ architecture will take advantage of the latest developments in the computing industry. For data concentration, 10/40 Gb/s Ethernet technologies will be used, as well as an implementation of a reduced TCP/IP in FPGA for a reliable transport between custom electronics and commercial computing hardware. A Clos network based on 56 Gb/s FDR Infiniband has been chosen for the event builder with a throughput of ~ 4 Tb/s. The HLT processing is entirely file based. This allows the DAQ and HLT systems to be independent, and to use the HLT software in the same way as for the offline processing. The fully built events are sent to the HLT with 1/10/40 Gb/s Ethernet via network file systems. Hierarchical collection of HLT accepted events and monitoring meta-data are stored into a global file system. As a result, this paper presents the requirements, technical choices, and performance of the new system.

  6. Evolution of the ATLAS distributed computing system during the LHC long shutdown

    NASA Astrophysics Data System (ADS)

    Campana, S.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.

  7. Status of the 11 T Nb$_{3}$Sn Dipole Project for the LHC

    SciTech Connect

    Savary, F.; et al.

    2015-01-01

    The planned upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators could be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. A joint development program with the goal of building a 5.5 m long two-in-one aperture Nb_3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN magnet groups. As part of the first phase of the program, 1 m long and 2 m long single aperture models are being built and tested, and the collared coils from these magnets will be assembled and tested in two-in-one configuration in both laboratories. In parallel with the short model magnet activities, the work has started on the production line in view of the scale-up to 5.5 m long prototype magnet. The development of the final cryo-assembly comprising two 5.5 m long 11 T dipole cold masses and the warm collimator in the middle, fully compatible with the LHC main systems and the existing machine interfaces, has also started at CERN. This paper summarizes the progress made at CERN and FNAL towards the construction of 5.5 m long 11 T Nb_3Sn dipole prototype and the present status of the activities related to the integration of the 11 T dipole and collimator in the LHC.

  8. Magnetically coupled system for mixing

    SciTech Connect

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  9. Magnetically coupled system for mixing

    DOEpatents

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  10. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Simulations of a fast feedback system for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Daw, Aron; Mastoridis, Themistoklis; Nguyen, Philippe

    2017-01-01

    The High-Luminosity LHC upgrade, expected to be finished by 2025, will generate a tenfold increase in the number of recorded collisions. Part of this improvement will come from the implementation of crab cavities, which exert transverse momentum kicks on the bunches of particles just before they collide, in order to have head-on collisions. The crab cavity field will include amplitude and phase noise, leading to undesirable consequences, such as the increase of the particle cloud size (emittance). Simulations were performed to evaluate the performance improvement with a proposed fast feedback system acting through the crab cavities. This work is supported by the National Science Foundation under Grant No. PHY-1535536.

  12. Heat Exchanger Design Studies for AN Lhc Inner Triplet Upgrade

    NASA Astrophysics Data System (ADS)

    Rabehl, R. J.; Huang, Y.

    2008-03-01

    A luminosity upgrade of the CERN Large Hadron Collider (LHC) is planned to coincide with the expected end of life of the existing inner triplet quadrupole magnets. The upgraded inner triplet will have much larger heat loads to be removed from the magnets by the cryogenics system. A number of cryogenics design studies have been completed under the LHC Accelerator Research Program (LARP), including investigations of required heat exchanger characteristics to transfer this heat from the pressurized He II bath to the saturated He II system. This paper discusses heat exchangers both external to the magnet cold mass and internal to the magnet cold mass. A possible design for a heat exchanger external to the magnet cold mass is also presented.

  13. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration

    2017-02-01

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  14. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    PubMed

    Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  15. Designing magnetic systems for reliability

    SciTech Connect

    Heitzenroeder, P.J.

    1991-01-01

    Designing magnetic system is an iterative process in which the requirements are set, a design is developed, materials and manufacturing processes are defined, interrelationships with the various elements of the system are established, engineering analyses are performed, and fault modes and effects are studied. Reliability requires that all elements of the design process, from the seemingly most straightforward such as utilities connection design and implementation, to the most sophisticated such as advanced finite element analyses, receives a balanced and appropriate level of attention. D.B. Montgomery's study of magnet failures has shown that the predominance of magnet failures tend not to be in the most intensively engineered areas, but are associated with insulation, leads, ad unanticipated conditions. TFTR, JET, JT-60, and PBX are all major tokamaks which have suffered loss of reliability due to water leaks. Similarly the majority of causes of loss of magnet reliability at PPPL has not been in the sophisticated areas of the design but are due to difficulties associated with coolant connections, bus connections, and external structural connections. Looking towards the future, the major next-devices such as BPX and ITER are most costly and complex than any of their predecessors and are pressing the bounds of operating levels, materials, and fabrication. Emphasis on reliability is a must as the fusion program enters a phase where there are fewer, but very costly devices with the goal of reaching a reactor prototype stage in the next two or three decades. This paper reviews some of the magnet reliability issues which PPPL has faced over the years the lessons learned from them, and magnet design and fabrication practices which have been found to contribute to magnet reliability.

  16. Tevatron electron lens magnetic system

    SciTech Connect

    Vladimir Shiltsev et al.

    2001-07-12

    In the framework of collaboration between IHEP and FNAL, a magnetic system of the Tevatron Electron Lens (TEL) has been designed and built. The TEL is currently installed in the superconducting ring of the Tevatron proton-antiproton collider and used for experimental studies of beam-beam compensation [1].

  17. Flightweight Electro-Magnet Systems

    NASA Technical Reports Server (NTRS)

    Goodrich, Roy G.; Litchford, Ron; Robertson, Tony; Schmidt, Dianne; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    NASA has a need for lightweight high performance magnets to be used in propulsion systems involving plasmas. We report the design, construction, and testing of a six inch diameter by twelve inch long solenoid using high purity aluminum wire operating at a temperature of 77 Kelvin (K) for the current carrying element. High purity aluminum is the material of choice because of three properties that make it optimal for magnetic construction. At 77 K high purity aluminum has one of the lowest resistivities at 77 K of any metal (p = 0.254 muOMEGA-cm), thus reducing the power requirements for creating magnetic fields. Aluminum is a low-density (2.6989 g/cc) material and the end product magnet will be of low total mass compared to similar designs involving copper or other elements. The magneto-resistance of aluminum saturates at low magnetic fields and does not increase indefinitely as is the case in copper. The magnet consists of four layers of closely wound wire and is approximately 150 mm in diameter by 300 mm long. A cylinder made from G - 10 was machined with a spiral groove to hold the high purity Al wire and the wire wound on it. Following the winding, each layer was potted in STYCAST high thermal conductivity epoxy to provide insulation between the turns of the coil and mechanical strength. The magneto-resistance of the coil has been measured at the National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL in externally applied fields to 10 tesla. Following these tests it was energized to the full 2 tesla field it can produce using the facilities of the NHMFL at the Los Alamos National Laboratory. The results of all of these tests will be presented.

  18. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  19. Toroidal magnet system

    DOEpatents

    Ohkawa, Tihiro; Baker, Charles C.

    1981-01-01

    In a plasma device having a toroidal plasma containment vessel, a toroidal field-generating coil system includes fixed linking coils each formed of first and second sections with the first section passing through a central opening through the containment vessel and the second section completing the linking coil to link the containment vessel. A plurality of removable unlinked coils are each formed of first and second C-shaped sections joined to each other at their open ends with their bights spaced apart. The second C-shaped section of each movable coil is removably mounted adjacent the second section of a linking coil, with the containment vessel disposed between the open ends of the first and second C-shaped sections. Electric current is passed through the linking and removable coils in opposite sense in the respective adjacent second sections to produce a net toroidal field.

  20. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Küchler, D.

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  1. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  2. Magnetic suspension systems for space applications

    NASA Technical Reports Server (NTRS)

    Havenhill, Douglas G.; Wolke, Patrick J.

    1991-01-01

    An overview of techniques is presented used in the described magnetic suspension systems. Also a review is presented of the systems already developed, which demonstrate the usefulness, applicability, and flight readiness of magnetic suspension to a broad range of payloads and environments. The following subject areas are covered: programs overview; key concepts; magnetic suspension as an isolator and as a pointer; pointing and isolation systems; magnetic actuator control techniques; and test data.

  3. Magnetic levitation self-regulating systems

    SciTech Connect

    Tozoni, O.

    1993-06-08

    A magnet levitation self-regulating system is described comprising monotypic magnetic devices combined together by rigid nonmagnetic couplers; said magnetic device comprising two cylindrical parts extended along a cylinder generatrix: a. an iron core having a symmetrical C-shaped cross section and an air gap between its core shoes; and b. a permanent magnet having a rectangular cross-section disposed in said air gap; wherein all the iron cores of said magnetic devices are fixed on a common foundation by a first plurality of rigid nonmagnetic couplers and formed a stator assembly; all the permanent magnets of said magnetic devices are connected together by a second plurality of rigid non-magnetic couplers and form a levitator assembly; said permanent magnets of said levitator generate an original magnetic field and magnetize the stator cores; said stator cores create a secondary magnetic field; both said original and secondary magnetic fields create a magnetic levitation force that provides a stable hovering of said levitator in a resulting magnetic field of said system.

  4. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  5. Active magnetic bearings give systems a lift

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1992-07-01

    While the active magnetic bearings currently being used in such specialized applications as centrifugal compressors for natural gas pumps are more expensive than conventional bearings, they furnish improved machine service life, controlled damping of high-speed rotors to eliminate critical-speed vibrations, and the obviation of lubrication systems. Attention is presently given to magnetic bearings used by the electric power industry, homopolar magnetic radial and thrust bearings, weapon-system and gas turbine engine applications of magnetic bearings, and the benefits of magnetic bearings for energy-storage flywheels.

  6. Magnetic hysteresis based on dipolar interactions in granular magnetic systems

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Coisson, Marco; Knobel, Marcelo; Tiberto, Paola; Vinai, Franco

    1999-11-01

    The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T>> blocking temperature of magnetic nanoparticles). Measurements of magnetization curves have been performed at room temperature on various samples of granular bimetallic alloys of the family Cu100-xCox (x=5-20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to different thermal treatments. The loop amplitude and shape, which are functions of sample composition and thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme, by introducing a memory term in the argument of the Langevin function which describes the anhysteretic behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumulative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of a major symmetric hysteresis loop. The theory's self-consistence and adequacy have been properly tested at room temperature on all examined systems. The agreement with experimental results is always striking, indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle, rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the high-temperature limit for low Co content (x<=10). For higher concentrations of magnetic metal, the experimental results indicate that additional hysteretic mechanisms have to be introduced.

  7. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  8. Chiral magnetic effect in condensed matter systems

    SciTech Connect

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.

  9. Magnetic Susceptibility Measurement System for Small and Weak Magnetic Substances

    NASA Astrophysics Data System (ADS)

    Grant, Julius Reynard

    In this study a system is constructed which uses a force method for taking magnetic susceptibility measurements of small (< 100 mg) and weak (< 100x 10-6 emu/g) magnetic substances. The system is constructed with several pieces of readily available hardware. Some of the hardware includes a stable frame structure, a CAHN electrobalance, electromagnet, a thermocouple, a power supply, interfaces, and a personal computer. Each of these components is tested individually as well as together with other devices. Since the electrobalance is extremely sensitive the balance must be placed on a stable frame. The completed system is capable of studying the magnetic properties from room temperature to 77 K of a variety of samples. In addition, a novel method is developed to produce hysteresis loops for especially small and weak magnetic samples. Extensive testing is done to ensure the magnetization results obtained on known samples compare with what has been reported. Some of the samples that have been measured are MnO (TN was 122 K), CdSe (magnetic susceptibility was -0.3 x 10-6 emu/g) with iron attached ligands, FexTeyOz type samples with and without nickel, a YBaCuO superconductor, and cells doped with magnetite nanoparticles. The results are compared to measurements made with SQUID magnetometers.

  10. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  11. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  12. The history of the LHC

    SciTech Connect

    2010-05-11

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  13. The history of the LHC

    ScienceCinema

    None

    2016-07-12

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  14. Design consideration for magnetically suspended flywheel systems

    NASA Technical Reports Server (NTRS)

    Anand, D.; Kirk, J. A.; Frommer, D. A.

    1985-01-01

    Consideration is given to the design, fabrication, and testing of a magnetically suspended flywheel system for energy storage applications in space. The device is the prototype of a system combining passive suspension of the flywheel plate by samarium cobalt magnets and active control in the radial direction using eight separate magnetic coils. The bearing assembly was machined from a nickel-iron alloy, and the machine parts are all hydrogen annealed. Slots in the magnetic plate allow four independent quadrants for control. The motor/generator component of the system is a brushless dc-permanent magnetic/ironless engine using electronic communication. The system has been tested at over 2500 rpm with satisfactory results. The system characteristics of the flywheel for application in low earth orbit (LEO) are given in a table.

  15. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  16. Attractive and repulsive magnetic suspension systems overview

    NASA Technical Reports Server (NTRS)

    Cope, David B.; Fontana, Richard R.

    1992-01-01

    Magnetic suspension systems can be used in a wide variety of applications. The decision of whether to use an attractive or repulsive suspension system for a particular application is a fundamental one which must be made during the design process. As an aid to the designer, we compare and contrast attractive and repulsive magnetic suspension systems and indicate whether and under what conditions one or the other system is preferred.

  17. Experimental Results Obtained with Air Liquide Cold Compression System: CERN LHC and SNS Projects

    NASA Astrophysics Data System (ADS)

    Delcayre, F.; Courty, J.-C.; Hamber, F.; Hilbert, B.; Monneret, E.; Toia, J.-L.

    2006-04-01

    Large scale collider facilities will make intensive use of superconducting magnets, operating below 2.0 K. This dictates high-capacity refrigeration systems operating below 2.0 K. These systems, making use of cryogenic centrifugal compressors in a series arrangement with room temperature screw compressors will be coupled to a refrigerator, providing a certain power at 4.5 K. A first Air Liquide Cold Compression System (CCS) unit was built and delivered to CERN in 2001. Installed at the beginning of 2002, it was commissioned and tested successfully during year 2002. A series of four sets of identical CCS were then tested in 2004. Another set of four cryogenic centrifugal compressors (CCC) has been delivered to Thomas Jefferson National Accelerator Facility (JLAB) for the Spallation Neutron Source (SNS) in 2002. These compressors were tested and commissioned from December 2004 to July 2005. The experimental results obtained with these systems will be presented and discussed: the characteristics of the CCC will be detailed. The principles of control for the CCC in series will be detailed.

  18. Vortices in Low-Dimensional Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Costa, B. V.

    2011-05-01

    Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.

  19. Modular transportable superconducting magnetic energy systems

    NASA Technical Reports Server (NTRS)

    Lieurance, Dennis; Kimball, Foster; Rix, Craig

    1995-01-01

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  20. Modular transportable superconducting magnetic Energy Systems

    SciTech Connect

    Lieurance, D.; Kimball, F.; Rix, C.

    1994-12-31

    Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.

  1. Functional Nanomaterials Useful for Magnetic Refrigeration Systems

    NASA Astrophysics Data System (ADS)

    Aslani, Amir

    Magnetic refrigeration is an emerging energy efficient and environmentally friendly refrigeration technology. The principle of magnetic refrigeration is based on the effect of varying a magnetic field on the temperature change of a magnetocaloric material (refrigerant). By applying a magnetic field, the magnetic moments of a magnetic material tend to align parallel to it, and the thermal energy released in this process heats the material. Reversibly, the magnetic moments become randomly oriented when the magnetic field is removed, and the material cools down. The heating and the cooling of a refrigerant in response to a changing magnetic field is similar to the heating and the cooling of a gaseous medium in response to an adiabatic compression and expansion in a conventional refrigeration system. One requirement to make a practical magnetic refrigerator is to have a large temperature change per unit of applied magnetic field, with sufficiently wide operating temperature. So far, no commercially viable magnetic refrigerator has been built primarily due to the low temperature change of bulk refrigerants, the added burden of hysteresis, and the system's low cooling capacity. The purpose of this dissertation is to explore magnetic refrigeration system. First, the Active Magnetic Regenerator (AMR) system built by Shir et al at the GWU's Institute for Magnetics Research (IMR) is optimized by tuning the heat transfer medium parameters and system's operating conditions. Next, by reviewing literature and works done so far on refrigerants, a number of materials that may be suitable to be used in magnetic refrigeration technology were identified. Theoretical work by Bennett et al showed an enhancement in magnetocaloric effect of magnetic nanoparticles. Research was performed on functional magnetic nanoparticles and their use in magnetic refrigeration technology. Different aspects such as the size, shape, chemical composition, structure and interaction of the nanoparticle with

  2. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  3. LHC Computing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  4. Microfluidic biosensing systems using magnetic nanoparticles.

    PubMed

    Giouroudi, Ioanna; Keplinger, Franz

    2013-09-09

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

  5. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    PubMed Central

    Giouroudi, Ioanna; Keplinger, Franz

    2013-01-01

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles. PMID:24022689

  6. MICE Spectrometer Magnet System Progress

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  7. Magnetic suspension and balance system study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1984-01-01

    A compact design for a superconducting magnetic suspension and balance system is developed for a 8 ft. x 8 ft. transonic wind tunnel. The main features of the design are: a compact superconducting solenoid in the suspended airplane model; permanent magnet wings; one common liquid helium dewar for all superconducting coils; efficient new race track coils for roll torques; use of established 11 kA cryostable AC conductor; acceptable AC losses during 10 Hz control even with all steel structure; and a 560 liter/hour helium liquefier. Considerable design simplicity, reduced magnet weights, and reduced heat leak results from using one common dewar which eliminates most heavy steel structure between coils and the suspended model. Operational availability is thought to approach 100% for such magnet systems. The weight and cost of the magnet system is approximately one-third that of previous less compact designs.

  8. A permanent magnet system for gyrotrons

    SciTech Connect

    Moebius, A.

    1995-12-31

    Currently known configurations of permanent magnet systems for gyrotrons create an axial guiding field with a change of direction along the electron beam path causing problems for the beam stability. In this paper a novel configuration is shown leading to an axial magnetic field with no such change of sign and hence being usable for currently existing tubes.

  9. Estimate of radiation damage to low-level electronics of the RF system in the LHC cavities arising from beam gas collisions.

    PubMed

    Butterworth, A; Ferrari, A; Tsoulou, E; Vlachoudis, V; Wijnands, T

    2005-01-01

    Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements-vacuum chambers, cryogenic cavities, wideband pickups and cryomodule beam tubes-have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions.

  10. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  11. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOEpatents

    Jiles, David C.

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  12. Common Coil Magnet System for VLHC

    SciTech Connect

    Gupta, R.

    1999-02-12

    This paper introduces the common coil magnet system for the proposed very large hadron collider (VLHC). In this system, the high energy booster (HEB), the injector to VLHC, is integrated as the iron dominated low field aperture within the coldmass of the common coil magnet design introduced earlier. This 4-in-1 magnet concept for a 2-in-1 machine should provide a major cost reduction in building and operating VLHC. Moreover, the proposed design reduces the field quality problems associated with the large persistent currents in Nb{sub 3}Sn magnets. The paper also shows that the geometric field harmonics can be made small. In this preliminary magnetic design. the current dependence in harmonics is significant but not umnanageable.

  13. Superconducting magnet system for HERA

    SciTech Connect

    Meinke, R. )

    1991-03-01

    The HERA accelerator facility, is a collider for electrons and protons. It consists of two independent accelerators designed to store respectively 820 GeV protons and 30 GeV electrons. The two counter-rotating beams collide head on in up to four interaction regions which are distributed uniformly around the accelerator circumference of 6336 m. It is the first time that such a large number of superconducting magnets has been fabricated in industry. The experience of the series production and a detailed discussion of the magnet performance will be presented in this paper.

  14. Magnetic multi-lens focusing optical system

    NASA Astrophysics Data System (ADS)

    Trejbal, Z.; Bejšovec, V.; S̆tursa, J.; Hanc̆l, P.

    1996-02-01

    A magnetic focusing system called B-channel is introduced. Three methods of ion optical calculation are presented and a comparison with experimental results is shown. The properties of B-channel are discussed in comparison with a classical solenoid.

  15. Geometrically Frustrated Magnets as Model Systems

    DTIC Science & Technology

    2007-11-02

    and a kagome lattice of corner sharing triangles. In both of these systems we are examining the evolution of frustration as a function of dilution of the frustrated lattice with non-magnetic impurities.

  16. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  17. Magnetic suspension and balance system advanced study

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.

    1985-01-01

    An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.

  18. The 11 T dipole for HL-LHC: Status and plan

    SciTech Connect

    Savary, F.; Barzi, E.; Bordini, B.; Bottura, L.; Chlachidze, G.; Ramos, D.; Bermudez, S. Izquierdo; Karppinen, M.; Lackner, F.; Loffler, C. H.; Moron-Ballester, R.; Nobrega, A.; Perez, J. C.; Prin, H.; Smekens, D.; de Rijk, G.; Redaelli, S.; Rossi, L.; Willering, G.; Zlobin, A. V.; Giovannozzi, M.

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.

  19. Energy deposited in the high luminosity inner triplets of the LHC by collision debris

    SciTech Connect

    Wildner, E.; Broggi, F.; Cerutti, F.; Ferrari, A.; Hoa, C.; Koutchouk, J.-P.; Mokhov, N.V.; /Fermilab

    2008-06-01

    The 14 TeV center of mass proton-proton collisions in the LHC produce not only debris interesting for physics but also showers of particles ending up in the accelerator equipment, in particular in the superconducting magnet coils. Evaluations of this contribution to the heat, that has to be transported by the cryogenic system, have been made to guarantee that the energy deposition in the superconducting magnets does not exceed limits for magnet quenching and the capacity of the cryogenic system. The models of the LHC base-line are detailed and include description of, for energy deposition, essential elements like beam-pipes and corrector magnets. The evaluations made using the Monte-Carlo code FLUKA are compared to previous studies using MARS. For the consolidation of the calculations, a dedicated comparative study of these two codes was performed for a reduced setup.

  20. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. Magnetic bearing systems for gas turbine engines

    SciTech Connect

    Iannello, V.

    1995-12-31

    As the thrust-to-weight ratio for next generation gas turbine engines is increased, engine designers are requiring lower weight, higher temperature lubrication systems. Magnetic bearing systems are under development to meet these needs. This paper describes some of the advanced features of these systems.

  2. Chiral magnetic effect in condensed matter systems

    DOE PAGES

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less

  3. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  4. Simplified definition system: magnetic products fabrication

    SciTech Connect

    Morris, R.S.

    1981-06-01

    The Simplified Definition System, a product definition approach that differentiates between design and production agency manufacturing requirements, has been used in producing 50 types of magnetic products. This system was formed as a result of cooperative work and proposed modifications by engineers from Bendix Kansas City and Sandia National Laboratories Albuquerque (SNLA) to reduce product costs. The system places responsibility for production-related requirements with a production agency, a procedure that has realized both direct and indirect cost savings. This report is a documentation of the system's description and projected savings on magnetic products.

  5. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  6. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, R.F.

    1996-02-27

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.

  7. Dynamically stable magnetic suspension/bearing system

    DOEpatents

    Post, Richard F.

    1996-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.

  8. Optimal design of hybrid magnet in maglev system with both permanent and electro magnets

    SciTech Connect

    Onuki, Takashi; Toda, Yasushi )

    1993-03-01

    A magnetic levitation system with both permanent magnets and electromagnets has less power loss than a conventional attractive-type system. In this paper, the authors propose an analysis procedure of the hybrid magnet in the experimental levitation system. First, they make a two-dimensional analysis of the hybrid magnet. Though the vector potential A method is often adopted to solve magnetic problems, they propose the magnetic field intensity H method. Second, utilizing the sequential quadratic programming method, they attempt to optimize the arrangement of permanent magnets, which have the maximum guidance force. Finally, they investigate the responses of the experimental magnet levitation system by simulations.

  9. Permanent-magnet-less synchronous reluctance system

    DOEpatents

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  10. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  11. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  12. Scaling up ATLAS production system for the LHC Run 2 and beyond: project ProdSys2

    NASA Astrophysics Data System (ADS)

    Borodin, M.; De, K.; Garcia, J.; Navarro; Golubkov, D.; Klimentov, A.; Maeno, T.; Vaniachine, A.

    2015-12-01

    The Big Data processing needs of the ATLAS experiment grow continuously, as more data and more use cases emerge. For Big Data processing the ATLAS experiment adopted the data transformation approach, where software applications transform the input data into outputs. In the ATLAS production system, each data transformation is represented by a task, a collection of many jobs, submitted by the ATLAS workload management system (PanDA) and executed on the Grid. Our experience shows that the rate of task submission grows exponentially over the years. To scale up the ATLAS production system for new challenges, we started the ProdSys2 project. PanDA has been upgraded with the Job Execution and Definition Interface (JEDI). Patterns in ATLAS data transformation workflows composed of many tasks provided a scalable production system framework for template definitions of the many-tasks workflows. These workflows are being implemented in the Database Engine for Tasks (DEfT) that generates individual tasks for processing by JEDI. We report on the ATLAS experience with many-task workflow patterns in preparation for the LHC Run 2.

  13. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  14. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  15. Towards a Decentralized Magnetic Indoor Positioning System

    PubMed Central

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-01-01

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145

  16. Towards a Decentralized Magnetic Indoor Positioning System.

    PubMed

    Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg

    2015-12-04

    Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.

  17. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  18. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  19. Triaxial magnetic field gradient system for microcoil magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Seeber, D. A.; Hoftiezer, J. H.; Daniel, W. B.; Rutgers, M. A.; Pennington, C. H.

    2000-11-01

    There is a great advantage in signal to noise ratio (S/N) that can be obtained in nuclear magnetic resonance (NMR) experiments on very small samples (having spatial dimensions ˜100 μm or less) if one employs NMR "micro" receiver coils, "microcoils," which are of similarly small dimensions. The gains in S/N could enable magnetic resonance imaging (MRI) microscopy with spatial resolution of ˜1-2 μm, much better than currently available. Such MRI microscopy however requires very strong (>10 T/m), rapidly switchable triaxial magnetic field gradients. Here, we report the design and construction of such a triaxial gradient system, producing gradients substantially greater than 15 T/m in all three directions, x, y, and z (and as high as 50 T/m for the x direction). The gradients are switchable within time ˜10 μs and adequately uniform (within 5% over a volume of [600μm3] for microcoil MRI of small samples.

  20. Broadband antenna systems for lightning magnetic fields

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Noggle, R. C.

    1975-01-01

    Broadband magnetic antenna systems suitable for recording submicrosecond field changes are described, and typical data from distant lightning are presented. Two types of systems are described, one with a high-impedance antenna loop connected to the integrator by a twisted pair of coaxial cables and another with the antenna loop and twisted signal loops formed from a single piece of coaxial cable. Data for correlated magnetic and electric field waveforms from lightning at a distance of 50 to 100 km are presented and are shown to be almost identical.

  1. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  2. Magnetic Thin Films for Perpendicular Magnetic Recording Systems

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Hachisu, Takuma; Osaka, Tetsuya

    In the advanced information society of today, information storage technology, which helps to store a mass of electronic data and offers high-speed random access to the data, is indispensable. Against this background, hard disk drives (HDD), which are magnetic recording devices, have gained in importance because of their advantages in capacity, speed, reliability, and production cost. These days, the uses of HDD extend not only to personal computers and network servers but also to consumer electronics products such as personal video recorders, portable music players, car navigation systems, video games, video cameras, and personal digital assistances.

  3. Molecular systems in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.

    2007-04-01

    Brief overview of one-two electron molecular systems made out of protons and/or α-particles in a strong magnetic field B≤4.414×1013 G is presented. A particular emphasis is given to the one-electron exotic ions H 3 ++ (pppe), He 2 3+ (α α e) and to two-electron ionsH 3 + (pppee), He 2 ++ (α α ee). Quantitative studies in a strong magnetic field are very complicated technically. Novel approach to the few-electron Coulomb systems in magnetic field, which provides accurate results, based on variational calculus with physically relevant trial functions is briefly described.

  4. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2016-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  5. Theory of orbital magnetization in disordered systems

    NASA Astrophysics Data System (ADS)

    Zhu, Guobao; Yang, Shengyuan A.; Fang, Cheng; Liu, W. M.; Yao, Yugui

    2012-12-01

    We present a general formula of the orbital magnetization of disordered systems based on the Keldysh Green's function theory in the gauge-covariant Wigner space. In our approach, the gauge invariance of physical quantities is ensured from the very beginning, and the vertex corrections are easily included. Our formula applies not only for insulators but also for metallic systems where the quasiparticle behavior is usually strongly modified by the disorder scattering. In the absence of disorders, our formula recovers the previous results obtained from the semiclassical theory and the perturbation theory. As an application, we calculate the orbital magnetization of a weakly disordered two-dimensional electron gas with Rashba spin-orbit coupling. We find that for the short-range disorder scattering, its major effect is to the shifting of the distribution of orbital magnetization corresponding to the quasiparticle energy renormalization.

  6. Magnetic denture retention systems: inexpensive and efficient.

    PubMed

    Gillings, B R

    1984-09-01

    A magnetic retention system has been used in more than 6000 complete and partial overdentures, sectional dentures and implant overdentures, with excellent clinical results and patient acceptability. For the overdenture application, decoronated, root-treated teeth are fitted with preformed or cast magnetisable alloy root elements, or 'keepers'. Following conventional denture construction, paired cobalt/samarium magnets in a special configuration are cured into the denture base so that with the denture inserted, the magnets grip the root elements with a retentive force of approximately 300 g per root. The paired magnet arrangement eliminates any external magnetic field and doubles the available retention. Magnetic retention has few of the problems encountered with other retention devices. It offers simplicity, low cost, self-adjustment, inherent stress-breaking, automatic repositioning after denture displacement, comparative freedom of lateral denture movement, reduces trauma to retained roots and eliminates the need for adjustment in service. For the sectional denture application, undesirable undercuts on the abutment teeth are used to provide passive, positive retention. The separate buccal and lingual sections are joined together by parallel pins fitting into matching tubes, assembly being maintained by magnetic attraction between a retention element in one section and a keeper in the other. Insertion and removal are more difficult than with a conventional denture but soft tissue coverage is minimal. There are no visible retainer arms and food traps are eliminated. Abutment tooth preparation is negligible, the laboratory procedures simple, and the treatment inexpensive and reversible. A clinical trial of magnetic overdenture retention in conjunction with osseointegrated titanium implants is now in progress. After 21 months acceptable clinical results have been obtained. An improved implant with an alumina core and a sintered hydroxyapatite coating is at present

  7. Magnetic Launch Assist System Demonstration Test

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Magnetoresistive phenomena in nanoscale magnetic systems

    NASA Astrophysics Data System (ADS)

    Burton, John D.

    Nanomagnetic materials are playing an increasingly important role in modern technologies. A particular area of interest involves the interplay between magnetism and electric transport, i.e. magnetoresistive properties. Future generations of field sensors and memory elements will have to be on a length scale of a few nanometers or smaller. Magnetoresistive properties of such nanoscale objects exhibit novel features due to reduced dimensionality, complex surfaces and interfaces, and quantum effects. In this dissertation theoretical aspects of three such nanoscale magnetoresistive phenomena are discussed. Very narrow magnetic domain walls can strongly scatter electrons leading to an increased resistance. Specifically, this dissertation will cover the newly predicted effect of magnetic moment softening in magnetic nanocontacts or nanowires. Atomically thin domain walls in Ni exhibit a reduction, or softening, of the local magnetic moments due to the noncollinearity of the magnetization. This effect leads to a strong enhancement of the resistance of a domain wall. Magnetic tunnel junctions (MTJs) consist of two ferromagnetic electrodes separated by a thin layer of insulating material through which current can be carried by electron tunneling. The resistance of an MTJ depends on the relative orientation of the magnetization of the two ferromagnetic layers, an effect known as tunneling magnetoresistance (TMR). A first-principles analysis of CoFeB|MgO|CoFeB MTJs will be presented. Calculations reveal that it is energetically favorable for interstitial boron atoms to reside at the interface between the electrode and MgO tunneling barrier, which can be detrimental to the TMR effect. Anisotropic magnetoresistance (AMR) is the change in resistance of a ferromagnetic system as the orientation of the magnetization is altered. In this dissertation, the focus will be on AMR in the tunneling regime. Specifically we will present new theoretical results on tunneling AMR (TAMR) in two

  9. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  10. System characterization of a magnetically suspended flywheel

    NASA Technical Reports Server (NTRS)

    Kirk, James A.; Anand, Dave K.; Plant, David P.

    1988-01-01

    The purpose of flywheel energy storage is to provide a means to save energy during times when the satellite is in sunlight, and then return the energy during the time when the satellite is in darkness. Typically, an energy storage device operates cyclically, where for satellites in Low Earth Orbit (LEO) the typical period is 60 minutes of sunlight followed by 30 minutes of darkness. If a lifetime of 17 years is required the energy storage system must be capable of sustaining approximately 100,000 cycles. The recent developments at the University of Maryland and how these progressions apply to a 500 Watt-hour magnetically suspended flywheel stack energy storage system are covered. The work includes hardware testing results from a stack flywheel energy storage system, improvements in the area of non-contacting displacement transducers, and performance enhancements of magnetic bearings. The experimental results show that a stack flywheel energy storage system is a feasible technology.

  11. Biological systems in high magnetic field

    NASA Astrophysics Data System (ADS)

    Yamagishi, A.

    1990-12-01

    Diamagnetic orientation of biological systems have been investigated theoretically and experimentally. Fibrinogen, one of blood proteins, were polymerized in static high magnetic fields up to 8 T. Clotted gels composed of oriented fibrin fibers were obtained even in a field as low as 1 T. Red blood cells (RBC) show full orientation with their plane parallel to the applied field of 4 T. It is confirmed experimentally that the magnetic orientation of RBC is caused by diamagnetic anisotropy. Full orientation is also obtained with blood platelet in a field of 3 T.

  12. Propulsion and stabilization system for magnetically levitated vehicles

    DOEpatents

    Coffey, Howard T.

    1993-06-29

    A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

  13. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  14. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  15. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  16. Magnetic correlations in a classic Mott system

    SciTech Connect

    Bao, W.; Broholm, C.; Aeppli, G.; Carter, S.A.; Dai, D.; Frost, C.D.; Honig, J.M.; Metcalf, P.

    1997-07-01

    The metal-insulator transition in V{sub 2}O{sub 3} causes a fundamental change in its magnetism. While the antiferromagnetic insulator (AFI) is a Heisenberg localized spin system, the antiferromagnetism in the strongly correlated metal is determined by a Fermi surface instability. Paramagnetic fluctuations in the metal and insulator represent similar spatial spin correlations, but are unrelated to the long range order in the AFI. The phase transition to the AFI induces an abrupt switching of magnetic correlations to a different magnetic wave vector. The AFI transition, therefore, is not a conventional spin order-disorder transition. Instead it is accounted for by an ordering in the occupation of the two degenerate d-orbitals at the Fermi level.

  17. Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms.

    PubMed

    Cao, Quanliang; Han, Xiaotao; Li, Liang

    2014-08-07

    The use of a magnetic field for manipulating the motion of magnetic particles in microchannels has attracted increasing attention in microfluidic applications. Generation of a flexible and controllable magnetic field plays a crucial role in making better use of the particle manipulation technology. Recent advances in the development of magnet systems and magnetic field control methods have shown that it has great potential for effective and accurate manipulation of particles in microfluidic systems. Starting with the analysis of magnetic forces acting on the particles, this review gives the configurations and evaluations of three main types of magnet system proposed in microfluidic applications. The interaction mechanisms of magnetic particles with magnetic fields are also discussed.

  18. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    DOE PAGES

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; ...

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data frommore » the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.« less

  19. The long journey to the Higgs boson and beyond at the LHC: Emphasis on ATLAS

    NASA Astrophysics Data System (ADS)

    Jenni, Peter

    2016-09-01

    The journey in search for the Higgs boson with the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN started more than two decades ago. But the first discussions motivating the LHC project dream date back even further into the 1980s. This article will recall some of these early historical considerations, mention some of the LHC machine milestones and achievements, focus as an example of a technological challenge on the unique ATLAS superconducting magnet system, and then give an account of the physics results so far, leading to, and featuring particularly, the Higgs boson results, and sketching finally prospects for the future. With its emphasis on the ATLAS experiment it is complementary to the preceding article by Tejinder S. Virdee which focused on the CMS experiment.

  20. Cost comparisons for SSC magnet dependent systems

    SciTech Connect

    1985-08-15

    An SSC Cost Estimating Task Force was appointed by the SSC Director in May, 1985. The charge to the task force was to perform a detailed review of costs for all superconducting magnet design styles that are under consideration for the SSC. Cost information on five magnet styles was reviewed in detail by the task force members. The basic cost information was developed by participating laboratories and by industry. Details of the procedure and analysis are presented in Chapter III. The purpose of this report is to provide a comparison of all SSC construction project cost information that is dependent on the various magnet styles. It is emphasized that the costs displayed in the tables of this report are not the total costs for an SSC construction project. Only those systems for which costs vary with magnet style are included. In Appendix E, current results are compared with the relevant parts of the 1984 SSC Reference Designs Study (RDS) cost estimate. Following the method used in the RDS, the costs that are developed here are non-site specific. The labor rates utilized are based on a national average for the various labor categories. The Conventional Systems costs for underground structures are derived from an extension of the ``median-site`` model as described in the RDS.

  1. Optics of a 1.5 TeV injector for the LHC

    SciTech Connect

    Johnstone, John A.; /Fermilab

    2006-07-01

    A concept is being developed to install a second, low energy ring (LER) above the LHC to accelerate protons from 450 GeV to 1.5 TeV prior to injection into the LHC. The arc and dispersion suppresser optics of the LHC would be replicated in the LER using combined function ''transmission line'' magnets originally proposed for the VLHC. To avoid costly civil construction, in the straight sections housing detectors at least, the LER and LHC must share beampipes and some magnets through the detector portion of the straights. Creating the appropriate optics for these LER-LHC transition regions is very challenging: In addition to matching to the nominal LHC lattice functions at these locations the changes in altitude of 1.35 m separating the LER and LHC must be performed achromatically to avoid emittance blowup arising from vertical dispersion when the beams are transferred to the LHC.

  2. Adaptive automatic balancing of magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Sun

    Rotating machinery including magnetic bearings are usually persistently excited by the rotation related disturbances such as mass unbalance; hence there exists a residual vibration in the steady state response even if the closed loop system is asymptotically stable. In order to control the periodic disturbances, a disturbance accommodating controller (DAC) is designed based on the disturbance estimator and applied to the forced balancing of magnetic bearing system. The control objective is to minimize the synchronous component of shaft displacement or control current. In order to account for the variation of the disturbance model due to the shaft of operating speed, an adaptive disturbance accommodating control scheme is developed based on a certain optimality criterion. The continuous time design discretized to implement the controller in the digital computer and the merits and demerits are studied numerically. It is shown that the proposed method is efficient in reducing rotor unbalance and automatic balancing.

  3. Magnetic System for the CLAS12 Proposal

    SciTech Connect

    Statera, Marco; Contalbrigo, Marco M.; Pappalardo, Luciano Libero; Barion, Luca; Bertelli, S.; Ciullo, Giuseppe; Lenisa, Paolo

    2013-06-01

    The conceptual design of a magnetic system for an experiment to measure the transverse spin effects in semi-inclusive Deep Inelastic Scattering (SIDIS) at 11 GeV with a transversely polarized target using the CLAS12 detector at Jefferson Lab is presented. A proposal has been submitted to study spin azimuthal asymmetries in SIDIS using an 11-GeV polarized electron beam from the upgraded CEBAF facility and the CLAS12 detector equipped with a transversely polarized target. The main focus of the experiment will be the measurement of transverse target single and double spin asymmetries in the reaction ep{up_arrow} -> ehX, where e is an electron, p{up_arrow} is transversely polarized proton, h is a meson (e.g., a pion or a kaon) and X is the undetected final state. The details of the conceptual design of the shielding magnetic system and transverse dipole are reported.

  4. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  5. Performance of the new small-strip Thin Gap Chamber for the ATLAS Muon System at the LHC

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain; Atlas Nsw Stgc Group Collaboration

    2016-03-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program. The largest phase-1 upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward region with the so-called New Small Wheel (NSW). The NSW consists of layers of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities. The precision reconstruction of tracks requires a spatial resolution of about 100 microns, and the trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads for triggering. The pads are used to produce a 3-out-of-4 coincidence to identify muon tracks in an sTGC quadruplet. A full size sTGC quadruplet has been constructed and equipped with the first prototype of dedicated front-end electronics. The design of the sTGC will be described. The performance of the sTGC quadruplet has been characterized with data collected at the Fermilab and CERN test beam facilities. Spatial resolution and trigger efficiency results will be presented. An overview of the simulation and digitization model of the sTGC will also be summarized.

  6. Integrated semiconductor-magnetic random access memory system

    NASA Technical Reports Server (NTRS)

    Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)

    2001-01-01

    The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.

  7. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    SciTech Connect

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred; Novitski, Igor; Karppinen, Mikko

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  8. Anharmonic Oscillations of a Spring-Magnet System inside a Magnetic Coil

    ERIC Educational Resources Information Center

    Ladera, Celso L.; Donoso, Guillermo

    2012-01-01

    We consider the nonlinear oscillations of a simple spring-magnet system that oscillates in the magnetic field of an inductive coil excited with a dc current. Using the relations for the interaction of a coil and a magnet we obtain the motion equation of the system. The relative strengths of the terms of this equation can be adjusted easily by…

  9. Non-linear advanced control of the LHC inner triplet heat exchanger test unit

    NASA Astrophysics Data System (ADS)

    Viñuela, E. Blanco; Cubillos, J. Casas; de Prada Moraga, C.; Cristea, S.

    2002-05-01

    The future Large Hadron Collider (LHC) at CERN will include eight interaction region final focus magnet systems, the so-called "Inner Triplet," one on each side of the four beam collision points. The Inner Triplets will be cooled in a static bath of pressurized He II nominally at 1.9 K. This temperature is a control parameter and has very severe constraints in order to avoid the transition from the superconducting to normal resistive state. The main difference in these special zones with respect to a regular LHC cell is higher dynamic heat load unevenly distributed which modifies largely the process characteristics and hence the controller performance. Several control strategies have already been tested at CERN in a pilot plant (LHC String Test) which reproduced a LHC half-cell. In order to validate a common control structure along the whole LHC ring, a Nonlinear Model Predictive Control (NMPC) has been developed and implemented in the Inner Triplet Heat Exchanger Unit (IT-HXTU) at CERN. Automation of the Inner Triplet setup and the advanced control techniques deployed based on the Model Based Predictive Control (MBPC) principle are presented.

  10. Chiral magnetic effect in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  11. Iron free permanent magnet systems for charged particle beam optics

    SciTech Connect

    Lund, S.M.; Halbach, K.

    1995-09-03

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability.

  12. Magnetic field regulation control system analysis

    SciTech Connect

    Badelt, Steven W.

    1996-05-01

    This study comprises (1) an analytical characterization of the Cameca ion microscope`s magnetic field regulation circuitry and (2) comparisons between the analytical predictions and the measured performance of the control system. It is the first step in a project to achieve routine field regulation better than 10ppm. The control loop was decomposed into functional subcircuits and simulated in SPICE to determine DC, AC, and transient response. Transfer functions were extracted from SPICE, simplified, and analyzed in MATLAB. Both SPICE and MATLAB simulations were calculated for step inputs, and these results were compared to actual measurements. Magnetic field fluctuations were measured at high mass resolving power. The frequency spectrum of the fluctuations was analyzed by FFT. Difficulties encountered and implications for future work are discussed.

  13. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  14. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  15. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  16. High Luminosity LHC: Challenges and plans

    SciTech Connect

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Bruning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, Massimo; Iadarola, G.; Li, K.; Lechner, A.; Medrano, L. Medina; Metral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomas, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  17. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  18. A portable magnetic induction measurement system (PIMS).

    PubMed

    Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen

    2012-02-22

    For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).

  19. Magnetic Field Experiment Data Analysis System

    NASA Technical Reports Server (NTRS)

    Holland, D. B.; Zanetti, L. J.; Suther, L. L.; Potemra, T. A.; Anderson, B. J.

    1995-01-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) Magnetic Field Experiment Data Analysis System (MFEDAS) has been developed to process and analyze satellite magnetic field experiment data from the TRIAD, MAGSAT, AMPTE/CCE, Viking, Polar BEAR, DMSP, HILAT, UARS, and Freja satellites. The MFEDAS provides extensive data management and analysis capabilities. The system is based on standard data structures and a standard user interface. The MFEDAS has two major elements: (1) a set of satellite unique telemetry processing programs for uniform and rapid conversion of the raw data to a standard format and (2) the program Magplot which has file handling, data analysis, and data display sections. This system is an example of software reuse, allowing new data sets and software extensions to be added in a cost effective and timely manner. Future additions to the system will include the addition of standard format file import routines, modification of the display routines to use a commercial graphics package based on X-Window protocols, and a generic utility for telemetry data access and conversion.

  20. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy.

    PubMed

    Amemiya, Yosuke; Tanaka, Tsuyoshi; Yoza, Brandon; Matsunaga, Tadashi

    2005-11-21

    A system for streptavidin detection using biotin conjugated to nano-sized bacterial magnetic particles (BMPs) has been developed. BMPs, isolated from magnetic bacteria, were used as magnetic markers for magnetic force microscopy (MFM) imaging. The magnetic signal was obtained from a single particle using MFM without application of an external magnetic field. The number of biotin conjugated BMPs (biotin-BMPs) bound to streptavidin immobilized on the glass slides increased with streptavidin concentrations up to 100 pg/ml. The minimum streptavidin detection limit using this technique is 1 pg/ml, which is 100 times more sensitive than a conventional fluorescent detection system. This is the first report using single domain nano-sized magnetic particles as magnetic markers for biosensing. This assay system can be used for immunoassay and DNA detection with high sensitivities.

  1. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  2. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  3. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  4. 21 CFR 882.5805 - Repetitive transcranial magnetic stimulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Repetitive transcranial magnetic stimulation....5805 Repetitive transcranial magnetic stimulation system. (a) Identification. A repetitive transcranial magnetic stimulation system is an external device that delivers transcranial repetitive pulsed...

  5. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, R.F.

    1998-07-21

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described. 7 figs.

  6. Development of superconducting magnet systems for HIFExperiments

    SciTech Connect

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  7. Self-adjusting magnetic bearing systems

    DOEpatents

    Post, Richard F.

    1998-01-01

    A self-adjusting magnetic bearing automatically adjusts the parameters of an axially unstable magnetic bearing such that its force balance is maintained near the point of metastable equilibrium. Complete stabilization can be obtained with the application of weak restoring forces either from a mechanical bearing (running at near-zero load, thus with reduced wear) or from the action of residual eddy currents in a snubber bearing. In one embodiment, a torque is generated by the approach of a slotted pole to a conducting plate. The torque actuates an assembly which varies the position of a magnetic shunt to change the force exerted by the bearing. Another embodiment achieves axial stabilization by sensing vertical displacements in a suspended bearing element, and using this information in an electrical servo system. In a third embodiment, as a rotating eddy current exciter approaches a stationary bearing, it heats a thermostat which actuates an assembly to weaken the attractive force between the two bearing elements. An improved version of an electromechanical battery utilizing the designs of the various embodiments is described.

  8. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  9. Touchdown Ball-Bearing System for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kingsbury, Edward P.; Price, Robert; Gelotte, Erik; Singer, Herbert B.

    2003-01-01

    The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force).

  10. Advanced Docking System With Magnetic Initial Capture

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Carroll, Monty B.; Morales, Ray; Le, Thang

    2004-01-01

    An advanced docking system is undergoing development to enable softer, safer docking than was possible when using prior docking systems. This system is intended for original use in docking of visiting spacecraft and berthing the Crew Return Vehicle at the International Space Station (ISS). The system could also be adapted to a variety of other uses in outer space and on Earth, including mating submersible vehicles, assembling structures, and robotic berthing/handling of payloads and cargo. Heretofore, two large spacecraft have been docked by causing the spacecraft to approach each other at a speed sufficient to activate capture latches - a procedure that results in large docking loads and is made more difficult because of the speed. The basic design and mode of operation of the present advanced docking system would eliminate the need to rely on speed of approach to activate capture latches, thereby making it possible to reduce approach speed and thus docking loads substantially. The system would comprise an active subsystem on one spacecraft and a passive subsystem on another spacecraft with which the active subsystem will be docked. The passive subsystem would include an extensible ring containing magnetic striker plates and guide petals. The active subsystem would include mating guide petals and electromagnets containing limit switches and would be arranged to mate with the magnetic striker plates and guide petals of the passive assembly. The electromagnets would be carried on (but not rigidly attached to) a structural ring that would be instrumented with load sensors. The outputs of the sensors would be sent, along with position information, as feedback to an electronic control subsystem. The system would also include electromechanical actuators that would extend or retract the ring upon command by the control subsystem.

  11. Magnetic reconnection process in accretion disk systems

    NASA Astrophysics Data System (ADS)

    Piovezan, P.; de Gouveia Dal Pino, E. M.

    2009-08-01

    At the present study, we investigate the role of magnetic reconnection in three different astrophysical systems, namely young stellar objects (YSO's), microquasars, and active galactic nuclei (AGN's). In the case of microquasars and AGN's, violent reconnection episodes between the magnetic field lines of the inner disk region (which are established by a turbulent dynamo) and those anchored into the black hole are able to heat the coronal/disk gas and accelerate particles to relativistic velocities through a diffusive first-order Fermi-like process within the reconnection site that will produce relativistic blobs. The heating of the coronal/disk gas is able to produce a steep X-ray spectrum with a luminosity that is consistent with the observations and we argue that it is being produced mainly at the foot of the reconnection zone, while the Fermi-like acceleration process within the reconnection site results a power-law electron distribution with N(E) ∝ E-α, with α=5/2, and a corresponding synchrotron radio power-law spectrum with a spectral index that is compatible with that observed during the radio flares in microquasars (Sν ∝ ν-0.75). The scaling laws that we derive for AGN's indicate that the same mechanism may be occurring there. Finally, in the case of the YSO's, a similar magnetic configuration can be reached. The amount of magnetic energy that can be extracted from the inner disk region can heat the coronal gas to temperatures of the order of 10^8 K and could explain the observed X-ray flaring emission.

  12. Laboratory experiments on magnetic reconnection and current systems

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Gekelman, W.; Pfister, H.

    After a brief review of laboratory experiments involving magnetic reconnection a series of basic physics experiments on reconnection phenomena is described. These include magnetic annihilation, transport of magnetic energy by waves, stable and unstable current sheets, energy conversion mechanisms, and the role of global current systems vs. local reconnection processes. Current systems driven by electric fields resulting in particle flows are examined. Also, the role of a magnetic field component B(y) along the separator has been investigated.

  13. Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression

    NASA Astrophysics Data System (ADS)

    Giffin, A.; Shneider, M. N.; Miles, R. B.

    2010-08-01

    A system for using a magnetic field in conjunction with conventional shielding configurations to protect against micrometeoroid and orbital debris is presented. Analytical, numerical, and experimental studies of a conductor moving through a gradient magnetic field have been performed. The results show that in the high magnetic Reynolds number regime a conducting object will experience large forces that tend to deform it while moving through the gradient field. Additionally a configuration using magnetic flux compression is introduced to act as a magnetic shock absorber. Separately or together, this technology may augment or replace current protection designs for space systems.

  14. Application concepts of small regenerative cryocoolers in superconducting magnet systems

    NASA Astrophysics Data System (ADS)

    van der Laan, M. T. G.; Tax, R. B.; ten Kate, H. H. J.

    Superconducting magnets are in growing use outside laboratories for example MRI scanners in hospitals. Other applications under development are magnet systems for separation, levitated trains and ship propulsion. The application of cryocoolers can make these systems more practical. Interfacing these cryocoolers to the magnets can be designed in several different ways. The four basic methods will be dealt with. Test results of a realized GM cryocooler-SC magnet system will be shown. It handles about a 1:3 scale MRI magnet of which one of the six coils has been successfully tested at temperatures between 10 and 14 K.

  15. Feedback Configuration Tools for LHC Low Level RF

    SciTech Connect

    Van Winkle, D.; Fox, J.; Mastorides, T.; Rivetta, C.; Baudrenghien, P.; Butterworth, A.; Molendijk, J.; /CERN

    2009-12-16

    The LHC Low Level RF System (LLRF) is a complex multi-VME crate system which is used to regulate the superconductive cavity gap voltage as well as to lower the impedance as seen by the beam through low latency feedback. This system contains multiple loops with several parameters to be set before the loops can be closed. In this paper, we present a suite of MATLAB based tools developed to perform the preliminary alignment of the RF stations and the beginnings of a closed loop model based alignment routine. We briefly introduce the RF system and in particular the base band (time domain noise based) network analyzer system built into the LHC LLRF. The main focus of this paper is the methodology of the algorithms used by the routines within the context of the overall system. Measured results are presented that validate the technique. Because the RF systems are located in a cavern 120 m underground in a location which is relatively un-accessible without beam and completely un-accessible with beam present or magnets are energized, these remotely operated tools are a necessity for the CERN LLRF team to maintain and tune their LLRF systems in a similar fashion as to what was done very successfully in PEP-II at SLAC.

  16. THE SUPERCONDUCTION MAGNETS OF THE ILC BEAM DELIVERY SYSTEM.

    SciTech Connect

    PARKER,B.; ANEREELA, M.; ESCALLIE, J.; HE, P.; JAIN, A.; MARONE, A.; NOSOCHKOV, Y.; SERYI, A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  17. A Two-Magnet System to Push Therapeutic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  18. A Two-Magnet System to Push Therapeutic Nanoparticles.

    PubMed

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B

    2010-12-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically "inject", or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier.

  19. A Two-Magnet System to Push Therapeutic Nanoparticles

    PubMed Central

    Shapiro, Benjamin; Dormer, Kenneth; Rutel, Isaac B.

    2010-01-01

    Magnetic fields can be used to direct magnetically susceptible nanoparticles to disease locations: to infections, blood clots, or tumors. Any single magnet always attracts (pulls) ferro- or para-magnetic particles towards it. External magnets have been used to pull therapeutics into tumors near the skin in animals and human clinical trials. Implanting magnetic materials into patients (a feasible approach in some cases) has been envisioned as a means of reaching deeper targets. Yet there are a number of clinical needs, ranging from treatments of the inner ear, to antibiotic-resistant skin infections and cardiac arrhythmias, which would benefit from an ability to magnetically “inject”, or push in, nanomedicines. We develop, analyze, and experimentally demonstrate a novel, simple, and effective arrangement of just two permanent magnets that can magnetically push particles. Such a system might treat diseases of the inner ear; diseases which intravenously injected or orally administered treatments cannot reach due to the blood-brain barrier. PMID:21243119

  20. Superconductivity in Magnetic and Proximity Effect Systems.

    NASA Astrophysics Data System (ADS)

    Stephan, Walter Hugo

    Some aspects of the theory of superconductors containing paramagnetic impurities in the model of Shiba and Rusinov (SR) are examined. The critical magnetic field deviation function is shown to be very sensitive to the SR scattering parameter varepsilon_0 , with improved agreement with experiment for Zn -Mn as compared to the theory of Abrikosov and Gor'Kov (AG). Optical absorption and thermal conductivity experiments involving a variety of transition metal alloys are reanalyzed including up to three scattering phase shifts, with no significant improvement found over the agreement obtained with only a single phase shift. The electromagnetic coherence length with SR impurities is also considered. Model calculations for superconducting spin-glasses show that systems such as Gd{_ {x}Ce}_{1-{rm x} }{rm Ru_2}, which exhibit significant deviations from the AG prediction for the reduction of the critical temperature with impurity concentration, are also expected to exhibit significant deviations from AG behavior for properties such as the thermodynamic critical field and the electromagnetic penetration depth. The model of Lee for reentrant ferromagnetic superconductors is shown to be only in qualitative agreement with the free energy difference and thermal conductivity determined experimentally for ErRh_{4}B _{4}. A variety of properties of proximity effect junctions are considered within the McMillan model. The temperature dependence of the free energy difference differs significantly from that of a BCS superconductor, with the deviation function becoming much more negative than the BCS prediction. The optical absorption and the low temperature magnetic penetration depth of the normal side of a proximity effect junction with magnetic impurities are also calculated. Finally, the temperature dependence of the zero bias tunneling conductance of a proximity effect induced superconducting spin glass is calculated and found to be in reasonable agreement with experiments

  1. Fundamental design paradigms for systems of three interacting magnetic nanodiscs

    NASA Astrophysics Data System (ADS)

    Forrester, D. M.; Kürten, K. E.; Kusmartsev, F. V.

    2011-04-01

    The magnetic properties of a system of three interacting magnetic elliptical disks are examined. For the various levels of uniaxial anisotropy investigated a complicated series of phase transitions exist. These are marked by the critical lines of stability that are demonstrated in an applied magnetic field plane diagram.

  2. The CMS muon system: status and upgrades for LHC Run-2 and performance of muon reconstruction with 13 TeV data

    NASA Astrophysics Data System (ADS)

    Battilana, C.

    2017-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV centre-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  3. Kapitza problem for the magnetic moments of synthetic antiferromagnetic systems

    SciTech Connect

    Dzhezherya, Yu. I.; Demishev, K. O.; Korenivskii, V. N.

    2012-08-15

    The dynamics of magnetization in synthetic antiferromagnetic systems with the magnetic dipole coupling in a rapidly oscillating field has been examined. It has been revealed that the system can behave similar to the Kapitza pendulum. It has been shown that an alternating magnetic field can be efficiently used to control the magnetic state of a cell of a synthetic antiferromagnet. Analytical relations have been obtained between the parameters of such an antiferromagnet and an external magnetic field at which certain quasistationary states are implemented.

  4. Passive Magnetic Attitude Control System for the Munin Nanosatellite

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Penkov, V. I.

    2002-03-01

    The instrumental and applied problems related to the design of a passive magnetic attitude control system for the Munin nanosatellite are considered. The system is constructed from a strong permanent magnet and a set of hysteresis rods. These rods are made of magnetically soft material using a special technology, and they allow us to support the satellite orientation with respect to the local magnetic field vector with a given accuracy and time response. By using asymptotic and numerical methods, we investigate the satellite dynamics for different models of hysteresis. The issues concerning the arrangement of the rods and their interaction with the fields of permanent magnets mounted onboard the satellite are discussed.

  5. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  6. Nuclear magnetic resonance studies of biological systems

    SciTech Connect

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T{sub 1} relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by {sup 31}P NMR.

  7. JT-60SA superconducting magnet system

    NASA Astrophysics Data System (ADS)

    Koide, Y.; Yoshida, K.; Wanner, M.; Barabaschi, P.; Cucchiaro, A.; Davis, S.; Decool, P.; Di Pietro, E.; Disset, G.; Genini, L.; Hajnal, N.; Heller, R.; Honda, A.; Ikeda, Y.; Kamada, Y.; Kashiwa, Y.; Kizu, K.; Kamiya, K.; Murakami, H.; Michel, F.; Marechal, J. L.; Phillips, G.; Polli, G. M.; Rossi, P.; Shibanuma, K.; Takahata, K.; Tomarchio, V.; Tsuchiya, K.; Usui, K.; Verrecchia, M.; Zani, L.

    2015-08-01

    The most distinctive feature of the superconducting magnet system for JT-60SA is the optimized coil structure in terms of the space utilization as well as the highly accurate coil manufacturing, thus meeting the requirements for the steady-state tokamak research: a conceptually new outer inter-coil structure separated from the casing is introduced to the toroidal field coils to realize their slender shape, allowing large-bore diagnostic ports for detailed plasma measurements. A method to minimize the manufacturing error of the equilibrium-field coils has been established, aiming at the precise plasma shape/position control. A compact butt-joint has been successfully developed for the Central Solenoid, which allows an optimized utilization of the limited space for the Central Solenoid to extend the duration of the plasma pulse.

  8. The Magnet view: pursuing ANCC Magnet recognition as a system or individual organization.

    PubMed

    Pinkerton, SueEllen

    2008-01-01

    Systems comprising more than one organization at some point think about whether or not to pursue Magnet recognition for each individual organization or as a system. There are several considerations when making this decision in each of the Model Components for the Magnet Recognition Program. Magnet recognition is not a checklist of achievements, but rather an enculturation of values, standards, vision, commitment, and pride. It is important to remember that each organization is different and is at a different place in their development at any one time. Making the decision to pursue system Magnet recognition should consider all important factors since if one organization in the system doesn't make the grade, the system is not Magnet recognized.

  9. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  10. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  11. Medical protein separation system using high gradient magnetic separation by superconducting magnet

    NASA Astrophysics Data System (ADS)

    Kamioka, Y.; Agatsuma, K.; Kajikawa, K.; Ueda, H.; Furuse, M.; Fuchino, S.; Iitsuka, T.; Nakamura, S.

    2014-01-01

    A high gradient magnetic separation system for medical protein using affinity magnetic nano-beads has been developed. Medical protein such as monoclonal antibody or immunoglobulin is an important substance as a medicine for cancer etc. However; the separation system of these medical protein has very low separation rate and the cost of product is extremely high. The developed system shows very high separation efficiency and can achieve low cost by large production rate compared to the system now using in this field. The system consists of a 3T superconducting magnet cooled by a cryo-cooler, a filter made of fine magnetic metal wires of about 30μm diameter and a demagnetization circuit and a liquid circulation pump for solvent containing medical protein. Affinity magnetic nano-beads is covered with the medical protein after agitation of solvent containing the protein and nano-beads, then the solvent flows through the system and the beads are trapped in the filters by high gradient magnetic field. The beads are released and flow out of the system by the AC demagnetization of the filters using LC resonance circuits after discharge of the magnet. The test results shows 97.8% of the magnetic nano-beads in pure water were captured and 94.1% of total beads were collected.

  12. Globally Optimal Segmentation of Permanent-Magnet Systems

    NASA Astrophysics Data System (ADS)

    Insinga, A. R.; Bjørk, R.; Smith, A.; Bahl, C. R. H.

    2016-06-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast into this form, the globally optimal solution can be easily computed employing dynamic programming.

  13. Gilbert damping in magnetic layered systems

    NASA Astrophysics Data System (ADS)

    Barati, E.; Cinal, M.; Edwards, D. M.; Umerski, A.

    2014-07-01

    The Gilbert damping constant present in the phenomenological Landau-Lifshitz-Gilbert equation describing the dynamics of magnetization is calculated for ferromagnetic metallic films as well as Co/nonmagnet (NM) bilayers. The calculations are done within a realistic nine-orbital tight-binding model including spin-orbit coupling. The convergence of the damping constant expressed as a sum over the Brillouin zone is remarkably improved by introducing finite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. We investigate how the Gilbert damping constant depends on the ferromagnetic film thickness as well as on the thickness of the nonmagnetic cap in Co/NM bilayers (NM=Cu, Pd, Ag, Pt, and Au). The obtained theoretical dependence of the damping constant on the electron-scattering rate, describing the average lifetime of electronic states, varies substantially with the ferromagnetic film thickness and it differs significantly from the dependence for bulk ferromagnetic metals. The presence of nonmagnetic caps is found to largely enhance the magnetic damping in Co/NM bilayers in accordance with experimental data. Unlike Cu, Ag, and Au a particularly strong enhancement is obtained for Pd and Pt caps. This is attributed to the combined effect of the large spin-orbit couplings of Pd and Pt and the simultaneous presence of d states at the Fermi level in these two metals. The calculated Gilbert damping constant also shows an oscillatory dependence on the thicknesses of both ferromagnetic and nonmagnetic parts of the investigated systems which is attributed to quantum-well states. Finally, the expression for contributions to the damping constant from individual atomic layers is derived. The obtained distribution of layer contributions in Co/Pt and Co/Pd bilayers proves that the enhanced damping which affects the dynamics of the magnetization in the Co film originates mainly from a region within the nonmagnetic part of the

  14. 3D sensors for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Vázquez Furelos, D.; Carulla, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; Lange, J.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.

    2017-01-01

    In order to increase its discovery potential, the Large Hadron Collider (LHC) accelerator will be upgraded in the next decade. The high luminosity LHC (HL-LHC) period requires new sensor technologies to cope with increasing radiation fluences and particle rates. The ATLAS experiment will replace the entire inner tracking detector with a completely new silicon-only system. 3D pixel sensors are promising candidates for the innermost layers of the Pixel detector due to their excellent radiation hardness at low operation voltages and low power dissipation at moderate temperatures. Recent developments of 3D sensors for the HL-LHC are presented.

  15. Corridor guided transport system utilizing permanent magnet levitation

    SciTech Connect

    Geraghty, J.J.; Poland, A.P.; Lombardi, J.A.

    1995-07-01

    The invention relates to a corridor guided transport system including a guided goods conveyance container utilizing permanent magnet levitation. The transport system of the invention eliminates the need for the wheel and track arrangement presently required by known and utilized conventional train systems and also required by some conventional magnetic levitation transport systems and, as a result, is safer to operate and maintain than either of these known transportation systems.

  16. Fault diagnosis for magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; King, Yueh-Hsun; Lee, Rong-Mao

    2009-05-01

    A full fault diagnosis for active magnetic bearing (AMB) and rotor systems to monitor the closed-loop operation and analyze fault patterns on-line in case any malfunction occurs is proposed in this paper. Most traditional approaches for fault diagnosis are based on actuator or sensor diagnosis individually and can solely detect a single fault at a time. This research combines two diagnosis methodologies by using both state estimators and parameter estimators to detect, identify and analyze actuators and sensors faults in AMB/rotor systems. The proposed fault diagnosis algorithm not only enhances the diagnosis accuracy, but also illustrates the capability to detect multiple sensors faults which occur concurrently. The efficacy of the presented algorithm has been verified by computer simulations and intensive experiments. The test rig for experiments is equipped with AMB, interface module (dSPACE DS1104), data acquisition unit MATLAB/Simulink simulation environment. At last, the fault patterns, such as bias, multiplicative loop gain variation and noise addition, can be identified by the algorithm presented in this work. In other words, the proposed diagnosis algorithm is able to detect faults at the first moment, find which sensors or actuators under failure and identify which fault pattern the found faults belong to.

  17. Magnetic mirror fusion systems: Characteristics and distinctive features

    SciTech Connect

    Post, R.F.

    1987-08-10

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

  18. Superconducting magnetic energy storage for asynchronous electrical systems

    DOEpatents

    Boenig, H.J.

    1984-05-16

    It is an object of the present invention to provide superconducting magnetic energy storage for a plurality of asynchronous electrical systems. It is a further object of the present invention to provide load leveling and stability improvement in a plurality of independent ac systems using a single superconducting magnetic energy storage coil.

  19. Optical position measurement for a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.

    1991-01-01

    This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.

  20. Final prototype of magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.

    1991-01-01

    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  1. Magnetic actuator intended for left ventricular assist system

    NASA Astrophysics Data System (ADS)

    Saotome, H.; Okada, T.

    2006-04-01

    With the goal of developing an artificial heart, the authors fabricated a prototype pump employing a linear motion magnetic actuator, and carried out performance tests. The actuator is composed of two disk-shaped Nd-Fe-B magnets having a diameter of 80 mm and a thickness of 7 mm. The disks are magnetized in the direction normal to the circular surface, and are formed by semicircular pieces; one semicircle serves as a N pole and the other as a S pole. The magnets face each other in the actuator. One magnet is limited to spin around its axis while the second magnet is limited to move in linear motion along its axis. In this way, the circumferential rotation of one of the magnets produces reciprocating forces on the other magnet, causing it to move back and forth. This coupled action produces a pumping motion. Because the two magnets are magnetically coupled without any mechanical contact, the rotating magnet does not have to be implanted and should be placed outside the body. The rotating magnet is driven by a motor. The motor power is magnetically conveyed, via the rotating magnet, to the implanted linear motion magnet through the skin. The proposed system yields no problems with infection that would otherwise require careful treatment in a system employing a tube penetrating the skin for power transmission. Comparison of the proposed system with another system using a transcutaneous transformer shows that our system has good potential to occupy a smaller space in the body, because it obviates implantation of a secondary part of the transformer, a power supply, and armature windings. The dimensions of the trial pump are designed in accordance with the fluid mechanical specifications of a human left ventricle, by computing magnetic fields that provide the magnetic forces on the magnets. The output power of the trial pump, 1.0 W at 87 beats/min, is experimentally obtained under the pressure and flow conditions of water, 100 mm Hg and 4.5 l/min.

  2. Magnetic motion capture system using LC resonant magnetic marker composed of Ni-Zn ferrite core

    SciTech Connect

    Hashi, S.; Toyoda, M.; Ohya, M.; Okazaki, Y.; Yabukami, S.; Ishiyama, K.; Arai, K. I.

    2006-04-15

    We have proposed a magnetic motion capture system using an LC resonant magnetic marker. The proposed system is composed of an exciting coil, an LC marker, and a 5x5-matrix search coil array (25 search coils). The LC marker is small and has a minimal circuit with no battery and can be driven wirelessly by the action of electromagnetic induction. It consists of a Ni-Zn ferrite core (3 mm{phi}x10 mm) with a wound coil and a chip capacitor, forming an LC series circuit with a resonant frequency of 186 kHz. The relative position accuracy of the system is less than 1 mm within the area of 100 mm{sup 3} up to 150 mm from the search coil array. Compared with dc magnetic systems, the proposed system is applicable for precision motion capture in optically isolated spaces without magnetic shielding because the system is not greatly influenced by earth field noise.

  3. Turning the LHC ring into a new physics search machine

    NASA Astrophysics Data System (ADS)

    Orava, Risto

    2017-03-01

    The LHC Collider Ring is proposed to be turned into an ultimate automatic search engine for new physics in four consecutive phases: (1) Searches for heavy particles produced in Central Exclusive Process (CEP): pp → p + X + p based on the existing Beam Loss Monitoring (BLM) system of the LHC; (2) Feasibility study of using the LHC Ring as a gravitation wave antenna; (3) Extensions to the current BLM system to facilitate precise registration of the selected CEP proton exit points from the LHC beam vacuum chamber; (4) Integration of the BLM based event tagging system together with the trigger/data acquisition systems of the LHC experiments to facilitate an on-line automatic search machine for the physics of tomorrow.

  4. Magnetic levitation system for moving objects

    DOEpatents

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  5. Magnetic levitation system for moving objects

    DOEpatents

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  6. NMR system and method having a permanent magnet providing a rotating magnetic field

    DOEpatents

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  7. Lawrence Berkeley Laboratory magnetic-moment sorting system

    NASA Astrophysics Data System (ADS)

    Nelson, D. H.; Barale, P. J.; Green, M. I.; Vandyke, D. A.

    1985-07-01

    The Magnetic Measurements Engineering Group at Lawrence Berkeley Laboratory (LBL) has designed and built, and is currently using, a Magnetic-moment Measurement and Sorting System (MMSS). The MMSS measures magnetic moments of permanent-magnet material and sorts the material according to selected criteria. The MMSS represents the latest application of the LBL General Purpose Magnetic Measurement Data Acquisition System reported on a MT-8. We describe the theoretical basis for the MMSS, the analog and digital components, and a unique method of calibrating the MMSS using only measured electrical quantities. We also discuss the measurement and sorting of permanent-magnet material to be incorporated in beam-line elements (dipoles and quadrupoles) in the Lawrence Livermore National Laboratory Advanced Test Accelerator Beam Director.

  8. Open-ended magnetic confinement systems for fusion

    SciTech Connect

    Post, R.F.; Ryutov, D.D.

    1995-05-01

    Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

  9. Catheter steering using a Magnetic Resonance Imaging system.

    PubMed

    Lalande, Viviane; Gosselin, Frederick P; Martel, Sylvain

    2010-01-01

    A catheter is successfully bent and steered by applying magnetic gradients inside a Magnetic Resonance Imaging system (MRI). One to three soft ferromagnetic spheres are attached at the distal tip of the catheter with different spacing between the spheres. Depending on the interactions between the spheres, progressive or discontinuous/jumping displacement was observed for increasing magnetic load. This phenomenon is accurately predicted by a simple theoretical dipole interaction model.

  10. Reactions of the nervous system to magnetic fields

    NASA Technical Reports Server (NTRS)

    Kholodov, Y. A.

    1974-01-01

    This magnetobiological survey considers sensory, nervous, stress and genetic effects of magnetic fields on man and animals. It is shown that the nervous system plays an important role in the reactions of the organism to magnetic fields; the final biological effect is a function of the strength of the magnetic fields, the gradient, direction of the lines of force, duration and location of the action, and the functional status of the organism.

  11. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  12. Evaluation of Stress Distribution in Magnetic Materials Using a Magnetic Imaging System

    SciTech Connect

    Lo, C.C.H.; Paulsen, J.A.; Jiles, D.C.

    2004-02-26

    The feasibility of detecting stress distribution in magnetic materials by magnetic hysteresis and Barkhausen effect measurements has been evaluated using a newly developed magnetic imaging system. The system measured hysteresis loops and Barkhausen effect signals with the use of a surface sensor that was scanned over the material. The data were converted into a two-dimensional image showing spatial variations of the magnetic properties from which mechanical conditions of the materials can be inferred. In this study a nickel plate machined into a shear-beam load cell configuration was used. By applying a stress along the neutral axis, various stress patterns such as shear stress and stress concentration could be produced in different regions of the sample. The scanned images of magnetic properties such as coercivity and rms value of Barkhausen effect signal exhibited patterns similar to the stress distribution calculated using finite element model (FEM), in particular in the regions where a high stress level and a high stress gradient existed. For direct comparison, images of magnetic properties were simulated based on the results of FEM stress calculation and experimental calibration of the magnetomechanical effect. The simulated images were found to closely resemble the scanned images, indicating the possibility of measuring stress distribution by mapping magnetic properties using the magnetic imaging system.

  13. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  14. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic

  15. Volume magnetization for system-level testing of magnetic materials within small satellites

    NASA Astrophysics Data System (ADS)

    Gerhardt, David T.; Palo, Scott E.

    2016-10-01

    Passive Magnetic Attitude Control (PMAC) is a popular among small satellites due to its low resource cost and simplicity of installation. However, predicting the performance of these systems can be a challenge, chiefly due to the difficulty of measurement and simulation of hysteresis materials. We present a low-cost method of magnetic measurement allowing for characterization of both hard and soft magnetic materials. A Helmholtz cage uniformly magnetizes a 30 cm×30 cm×30 cm test volume. The addition of a thin sense coil allows this system to characterize individual hysteresis rod performance when in close proximity to other hard and/or soft magnetic materials. This test setup is applied to hard and soft magnetic materials used aboard the Colorado Student Space Weather Experiment (CSSWE), a 3U CubeSat for space weather investigation which used a PMAC system. The measured hard magnet dipole of 0.80±0.017 A m2 is in good agreement with the dynamics-based satellite dipole moment fits. Five hysteresis rods from the same set as the CSSWE flight rods are tested; significant differences in dampening abilities are found. In addition, a limitation of the widely-used Flatley model is described. The interaction of two hysteresis rods in a variety of relative geometries are tested; perpendicular rods are found to have no significant interaction while parallel rods could have their dampening ability reduced by half, depending on the rod separation distance. Finally, the performance of the hysteresis rods are measured in their flight configuration, with hard and soft magnetic material dispersed as it is on CSSWE itself. For the CSSWE PMAC system design, interactions between rods have a greater affect than the magnetic flux density offset due to the onboard bar magnet.

  16. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  17. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    SciTech Connect

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  18. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  19. Microseconds-scale magnetic actuators system for plasma feedback stabilization

    NASA Astrophysics Data System (ADS)

    Kogan, K.; Be'ery, I.; Seemann, O.

    2016-10-01

    Many magnetic confinement machines use active feedback stabilization with magnetic actuators. We present a novel magnetic actuators system with a response time much faster than previous ones, making it capable of coping with the fast plasma instabilities. The system achieved a response time of 3 μs with maximal current of 500 A in a coil with inductance of 5.2 μH. The system is based on commercial solid-state switches and FPGA state machine, making it easily scalable to higher currents or higher inductivity.

  20. Magnetically insulated electron flows in pulsed power systems

    NASA Astrophysics Data System (ADS)

    Lawconnell, Robert I.

    1989-08-01

    Magnetic insulation is crucial in the operation of large pulsed power systems. Particular attention will be paid to describing magnetic insulation in realistic pulsed power systems. A theoretical model is developed that allows the production of self consistent magnetically insulated laminar flows in perturbed cylindrical systems given only the electron density profile. The theory is checked and justified by detailed comparisons with results from a 2-dimensional electromagnetic code, MASK. The procedure followed in the theoretical development is to use the relativistic Vlasov equation, Ampere's law and Gauss' law, to obtain a relation between the density profile and the velocity profile for insulated flows. Given the density profile and the corresponding derived velocity profile, a self consistent flow solution is obtained by means of Maxwell's equations. It is checked by taking a special case (corresponding to no perturbations) which results in the well known Brillouin flow theory. Emphasis is placed on determining the magnetic insulation threshold of a pulsed power system employing a plasma erosion opening switch. The procedure employed in the computational study is to vary critical aspects of the pulsed power system and then note whether magnetic insulation breaks down. The point at which magnetic insulation breaks down (as a function of geometry, load impedance, and applied voltage) is the magnetic insulation threshold for the system.

  1. Radiation hard electronics for LHC

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Millmore, M.; Hall, G.; Sachdeva, R.; French, M.; Nygård, E.; Yoshioka, K.

    1995-02-01

    A CMOS front end electronics chain is being developed by the RD20 collaboration for microstrip detector readout at LHC. It is based on a preamplifier and CR-RC filter, analogue pipeline and an analogue signal processor. Amplifiers and transistor test structures have been constructed and evaluated in detail using a Harris 1.2 μm radiation hardened CMOS process. Progress with larger scale elements, including 32 channel front end chips, is described. A radiation hard 128 channel chip, with a 40 MHz analogue multiplexer, is to be submitted for fabrication in July 1994 which will form the basis of the readout of the tracking system of the CMS experiment.

  2. Failure modes and effects analysis of fusion magnet systems

    SciTech Connect

    Zimmermann, M; Kazimi, M S; Siu, N O; Thome, R J

    1988-12-01

    A failure modes and consequence analysis of fusion magnet system is an important contributor towards enhancing the design by improving the reliability and reducing the risk associated with the operation of magnet systems. In the first part of this study, a failure mode analysis of a superconducting magnet system is performed. Building on the functional breakdown and the fault tree analysis of the Toroidal Field (TF) coils of the Next European Torus (NET), several subsystem levels are added and an overview of potential sources of failures in a magnet system is provided. The failure analysis is extended to the Poloidal Field (PF) magnet system. Furthermore, an extensive analysis of interactions within the fusion device caused by the operation of the PF magnets is presented in the form of an Interaction Matrix. A number of these interactions may have significant consequences for the TF magnet system particularly interactions triggered by electrical failures in the PF magnet system. In the second part of this study, two basic categories of electrical failures in the PF magnet system are examined: short circuits between the terminals of external PF coils, and faults with a constant voltage applied at external PF coil terminals. An electromagnetic model of the Compact Ignition Tokamak (CIT) is used to examine the mechanical load conditions for the PF and the TF coils resulting from these fault scenarios. It is found that shorts do not pose large threats to the PF coils. Also, the type of plasma disruption has little impact on the net forces on the PF and the TF coils. 39 refs., 30 figs., 12 tabs.

  3. Biological effects of magnetic fields from superconducting magnetic energy storage systems

    SciTech Connect

    Tenforde, T.S.

    1989-12-01

    Physical interaction mechanisms and potential biological effects of static and slowly time-varying magnetic fields are summarized. The results of laboratory and human health studies on this topic are related to the fringe magnetic field levels anticipated to occur in the proximity of superconducting magnetic energy storage (SMES) systems. The observed biological effects of magnetic fields include: (1) magnetic induction of electrical potentials in the circulatory system and other tissues, (2) magneto-orientation of macromolecules and membranes in strong magnetic fields, and (3) Zeeman interactions with electronic spin states in certain classes of charge transfer reactions. In general, only the first of these interactions is relevant to the establishment of occupational exposure guidelines. Physical hazards posed by the interactions of magnetic fields with cardiac pacemakers and other implanted medical devices, e.g., aneurysm clips and prostheses, are important factors that must also be considered in establishing exposure guidelines. Proposed guidelines for limiting magnetic field exposure are discussed. 50 refs., 1 fig.

  4. Magnetic nanoparticles as targeted delivery systems in oncology

    PubMed Central

    Prijic, Sara; Sersa, Gregor

    2011-01-01

    Background Many different types of nanoparticles, magnetic nanoparticles being just a category among them, offer exciting opportunities for technologies at the interfaces between chemistry, physics and biology. Some magnetic nanoparticles have already been utilized in clinical practice as contrast enhancing agents for magnetic resonance imaging (MRI). However, their physicochemical properties are constantly being improved upon also for other biological applications, such as magnetically-guided delivery systems for different therapeutics. By exposure of magnetic nanoparticles with attached therapeutics to an external magnetic field with appropriate characteristics, they are concentrated and retained at the preferred site which enables the targeted delivery of therapeutics to the desired spot. Conclusions The idea of binding chemotherapeutics to magnetic nanoparticles has been around for 30 years, however, no magnetic nanoparticles as delivery systems have yet been approved for clinical practice. Recently, binding of nucleic acids to magnetic nanoparticles has been demonstrated as a successful non-viral transfection method of different cell lines in vitro. With the optimization of this method called magnetofection, it will hopefully become another form of gene delivery for the treatment of cancer. PMID:22933928

  5. Status of the ALICE experiment at the LHC

    SciTech Connect

    Herrera Corral, G.

    2008-11-13

    The Large Hadron Collider will provide soon, beams of protons and collisions at high energy to the experiments. ALICE stands for A Large Ion Collider Experiment. It is one of the experiments at the Large Hadron Collider. ALICE will be dedicated to the study of heavy ion collisions. The main goal of ALICE is the observation of the transition of ordinary matter into a plasma of quarks and gluons. ALICE consists of 16 systems of detection. Two of them were designed and constructed in Mexico: i) The V0A detector, located at 3.2 mts. from the interaction point and ii) The cosmic ray detector on the top of the magnet. After a quick review of the LHC and the ALICE experiment we will focus on the description of these systems.

  6. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  7. Moessbauer effect: Study of disordered magnetic systems

    SciTech Connect

    Chang, Xiao Sha.

    1989-01-01

    This dissertation describes Moessbauer spectroscopy studies of two chemically disordered binary, crystalline alloys having the composition A{sub 1-x}B{sub x}. Both systems are random 3d Heisenberg ferromagnets. In each case both A and B atoms carry a magnetic moment. The first study concerns a Moessbauer absorber experiment on Fe{sub 1-x} V{sub x}, in which the disorder in the critical region is of the annealed random exchange type. To eliminate the effect of concentration inhomogeneity, the measurement of the critical exponent {beta} was done on the alloy with x = 0.125, where dT{sub C}/dx = 0, yielding {beta} = 0.362(8) over the reduced temperature range 1.4 {times} 10{sup {minus}3} < t < 4.88 {times} 10{sup {minus}1}. This result confirms the theoretical prediction that the annealed disorder is irrelevant to critical behavior in this case. As expected the critical exponent {beta} is consistent with the expectation for the 3d Heisenberg model as well as the measured exponent of pure Fe. The second study involves a Moessbauer source experiment on {sup 57} CoPd{sub 0.80}Co{sub 0.20}, in which disorder is of the quenched random exchange type perturbed by a very weak random anisotropy interaction. The critical exponent {beta} deduced over the range 1 {times} 10{sup {minus}2} < t < 2 {times} 10{sup {minus}1} is 0.385(20), and is consistent with the theoretical prediction for quenched disordered 3d Heisenberg systems: the disorder is irrelevant to the critical behavior. However, because of the restricted range of reduced temperature, the result is insufficiently asymptotic to serve as a conclusive test of the theory. Outside the critical region the distribution of Fe{sup 57} hyperfine field in Pd{sub 0.80}Co{sub 0.20} is observed to have an anomalous temperature dependence characterized by a linear increase in the width of the field distribution for T/T{sub C} {ge} 0.6.

  8. A proposal to use microstrip gas counters in a LHC tracker

    NASA Astrophysics Data System (ADS)

    Geijsberts, M.; Hartjes, F. G.; Pannekoek, J. G.; Schmitz, J.; Udo, F.

    1991-06-01

    An LHC (Large Hadron Collider) tracker constructed from microstrip gas counters is described. The system occupies a cylinder around the beam between r = 400 mm and r = 900 mm. The instrument measured 12 points on a track with an accuracy of 30 microns. The occupancy is below 1 pct. at a luminosity of L = 10 to the power of 34/sq cm. Operation at high magnetic field and a fast large collection process are possible by using Xe/DME/CO2 mixtures and reducing the gap with between substrate and drift cathode to 1.6 mm. Hits from low energetic tracks are suppressed and hard tracks stand out. The (r,z) coordinate can be measured with an accuracy of 1 mm. The charge collected per strip is calculated and shows that the tracker can withstand the LHC radiation for many years.

  9. Bionanocomposites containing magnetic graphite as potential systems for drug delivery.

    PubMed

    Ribeiro, Lígia N M; Alcântara, Ana C S; Darder, Margarita; Aranda, Pilar; Herrmann, Paulo S P; Araújo-Moreira, Fernando M; García-Hernández, Mar; Ruiz-Hitzky, Eduardo

    2014-12-30

    New magnetic bio-hybrid matrices for potential application in drug delivery are developed from the assembly of the biopolymer alginate and magnetic graphite nanoparticles. Ibuprofen (IBU) intercalated in a Mg-Al layered double hydroxide (LDH) was chosen as a model drug delivery system (DDS) to be incorporated as third component of the magnetic bionanocomposite DDS. For comparative purposes DDS based on the incorporation of pure IBU in the magnetic bio-hybrid matrices were also studied. All the resulting magnetic bionanocomposites were processed as beads and films and characterized by different techniques with the aim to elucidate the role of the magnetic graphite on the systems, as well as that of the inorganic brucite-like layers in the drug-loaded LDH. In this way, the influence of both inorganic components on the mechanical properties, the water uptake ability, and the kinetics of the drug release from these magnetic systems were determined. In addition, the possibility of modulating the levels of IBU release by stimulating the bionanocomposites with an external magnetic field was also evaluated in in vitro assays.

  10. Multipole Analysis of Circular Cylindircal Magnetic Systems

    SciTech Connect

    Selvaggi, Jerry P.

    2005-12-01

    This thesis deals with an alternate method for computing the external magnetic field from a circular cylindrical magnetic source. The primary objective is to characterize the magnetic source in terms of its equivalent multipole distribution. This multipole distribution must be valid at points close to the cylindrical source and a spherical multipole expansion is ill-equipped to handle this problem; therefore a new method must be introduced. This method, based upon the free-space Green's function in cylindrical coordinates, is developed as an alternative to the more familiar spherical harmonic expansion. A family of special functions, called the toroidal functions or Q-functions, are found to exhibit the necessary properties for analyzing circular cylindrical geometries. In particular, the toroidal function of zeroth order, which comes from the integral formulation of the free-space Green's function in cylindrical coordinates, is employed to handle magnetic sources which exhibit circular cylindrical symmetry. The toroidal functions, also called Q-functions, are the weighting coefficients in a ''Fourier series-like'' expansion which represents the free-space Green's function. It is also called a toroidal expansion. This expansion can be directly employed in electrostatic, magnetostatic, and electrodynamic problems which exhibit cylindrical symmetry. Also, it is shown that they can be used as an alternative to the Elliptic integral formulation. In fact, anywhere that an Elliptic integral appears, one can replace it with its corresponding Q-function representation. A number of problems, using the toroidal expansion formulation, are analyzed and compared to existing known methods in order to validate the results. Also, the equivalent multipole distribution is found for most of the solved problems along with its corresponding physical interpretation. The main application is to characterize the external magnetic field due to a six-pole permanent magnet motor in terms of

  11. Magnetic field effects in electron systems with imperfect nesting

    NASA Astrophysics Data System (ADS)

    Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Rozhkov, A. V.; Nori, Franco

    2017-01-01

    We analyze the effects of an applied magnetic field on the phase diagram of a weakly correlated electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due to doping. These types of models are often used in the analysis of magnetic states in chromium and its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic field, the uniform ground state of the system turns out to be unstable against electronic phase separation. The applied magnetic field affects the phase diagram in several ways. In particular, the Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives rise to oscillations of the order parameters and of the Néel temperature as a function of the magnetic field.

  12. Self-generated magnetic dipoles in weakly magnetized beam-plasma system.

    PubMed

    Jia, Qing; Mima, Kunioki; Cai, Hong-bo; Taguchi, Toshihiro; Nagatomo, Hideo; He, X T

    2015-02-01

    A self-generation mechanism of magnetic dipoles and the anomalous energy dissipation of fast electrons in a magnetized beam-plasma system are presented. Based on two-dimensional particle-in-cell simulations, it is found that the magnetic dipoles are self-organized and play important roles in the beam electron energy dissipation. These dipoles drift slowly in the direction of the return flow with a quasisteady velocity, which depends upon the magnetic amplitude of the dipole and the imposed external magnetic field. This dipole formation provides a mechanism for the anomalous energy dissipation of a relativistic electron beam, which would play an important role in collisionless shock and ion shock acceleration.

  13. Transverse-displacement stabilizer for passive magnetic bearing systems

    DOEpatents

    Post, Richard F

    2017-03-07

    The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to the system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.

  14. Targeted magnetic delivery and tracking of cells using a magnetic resonance imaging system.

    PubMed

    Riegler, Johannes; Wells, Jack A; Kyrtatos, Panagiotis G; Price, Anthony N; Pankhurst, Quentin A; Lythgoe, Mark F

    2010-07-01

    The success of cell therapies depends on the ability to deliver the cells to the site of injury. Targeted magnetic cell delivery is an emergent technique for localised cell transplantation therapy. The use of permanent magnets limits such a treatment to organs close to the body surface or an implanted magnetic source. A possible alternative method for magnetic cell delivery is magnetic resonance targeting (MRT), which uses magnetic field gradients inherent to all magnetic resonance imaging system, to steer ferromagnetic particles to their target region. In this study we have assessed the feasibility of such an approach for cell targeting, using a range of flow rates and different super paramagnetic iron oxide particles in a vascular bifurcation phantom. Using MRT we have demonstrated that 75% of labelled cells could be guided within the vascular bifurcation. Furthermore we have demonstrated the ability to image the labelled cells before and after magnetic targeting, which may enable interactive manipulation and assessment of the distribution of cellular therapy. This is the first demonstration of cellular MRT and these initial findings support the potential value of MRT for improved targeting of intravascular cell therapies.

  15. Magnetic resonance urography in evaluation of duplicated renal collecting systems.

    PubMed

    Adeb, Melkamu; Darge, Kassa; Dillman, Jonathan R; Carr, Michael; Epelman, Monica

    2013-11-01

    Duplex renal collecting systems are common congenital anomalies of the upper urinary tract. In most cases they are incidental findings and not associated with additional pathologies. They demonstrate, however, higher incidences of hydroureteronephrosis, ureteroceles, and ectopic ureters. The most comprehensive morphologic and functional evaluation of duplex systems can be achieved using magnetic resonance urography. Functional magnetic resonance urography allows better separation of the renal poles, thus more accurate calculation of the differential renal functions compared with renal scintigraphy. Magnetic resonance urography is the study of choice when upper urinary tract anatomy is complex or when functional evaluation is needed.

  16. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  17. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  18. Surface cooled, vacuum impregnated superconducting magnet systems: Design, construction, applications

    NASA Astrophysics Data System (ADS)

    Dam, Jacobus Adrianus Maria; Pieterman, Karel

    The design and construction of three superconducting magnet systems for applications in the fields of medical imaging, plasma physics and nuclear physics are described. All three systems have vacuum impregnated, intrinsically stable coils with cooling at the outer surfaces of the winding package with liquid helium, and are all coupled in some way to closed cycle cooling systems. General theories are discussed. The techniques used in both the design and the construction of the different magnet systems, are given. The use of numerical methods for the calculation of thermal and mechanical properties of superconducting coil systems, is emphasized. The experimental results obtained with the Delft magnetic resonance imaging system are described and examples of images showing sagittal sections of the human head, successfully produced with this system, are given.

  19. Material characterisation and preliminary mechanical design for the HL-LHC shielded beam screens operating at cryogenic temperatures.

    NASA Astrophysics Data System (ADS)

    Garion, C.; Dufay-Chanat, L.; Koettig, T.; Machiocha, W.; Morrone, M.

    2015-12-01

    The High Luminosity LHC project (HL-LHC) aims at increasing the luminosity (rate of collisions) in the Large Hadron Collider (LHC) experiments by a factor of 10 beyond the original design value (from 300 to 3000 fb-1). It relies on new superconducting magnets, installed close to the interaction points, equipped with new beam screen. This component has to ensure the vacuum performance together with shielding the cold mass from physics debris and screening the cold bore cryogenic system from beam induced heating. The beam screen operates in the range 40-60 K whereas the magnet cold bore temperature is 1.9 K. A tungsten-based material is used to absorb the energy of particles. In this paper, measurements of the mechanical and physical properties of such tungsten material are shown at room and cryogenic temperature. In addition, the design and the thermal mechanical behaviour of the beam screen assembly are presented also. They include the heat transfer from the tungsten absorbers to the cooling pipes and the supporting system that has to minimise the heat inleak into the cold mass. The behaviour during a magnet quench is also presented.

  20. Ex vivo investigation of magnetically targeted drug delivery system

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Fukui, S.; Fujimoto, S.; Mishima, F.; Takeda, S.; Izumi, Y.; Ohtani, S.; Fujitani, Y.; Nishijima, S.

    2007-03-01

    In conventional systemic drug delivery the drug is administered by intravenous injection; it then travels to the heart from where it is pumped to all regions of the body. When the drug is aimed at a small target region, this method is extremely inefficient and leads to require much larger doses than those being necessary. In order to overcome this problem a number of targeted drug delivery methods are developed. One of these, magnetically targeted drug delivery system (MT-DDS) will be a promising way, which involves binding a drug to small biocompatible magnetic particles, injecting these into the blood stream and using a high gradient magnetic field to pull them out of suspension in the target region. In the present paper, we describe an ex vivo experimental work. It is also reported that navigation and accumulation test of the magnetic particles in the Y-shaped glass tube was performed in order to examine the threshold of the magnetic force for accumulation. It is found that accumulation of the magnetic particles was succeeded in the blood vessel when a permanent magnet was placed at the vicinity of the blood vessel. This result indicates the feasibility of the magnetically drug targeting in the blood vessel.

  1. Engineered magnetic domain textures in exchange bias bilayer systems

    NASA Astrophysics Data System (ADS)

    Gaul, Alexander; Hankemeier, Sebastian; Holzinger, Dennis; Müglich, Nicolas David; Staeck, Philipp; Frömter, Robert; Oepen, Hans Peter; Ehresmann, Arno

    2016-07-01

    A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.

  2. Reconstruction of magnetic source images using the Wiener filter and a multichannel magnetic imaging system.

    PubMed

    Leyva-Cruz, J A; Ferreira, E S; Miltão, M S R; Andrade-Neto, A V; Alves, A S; Estrada, J C; Cano, M E

    2014-07-01

    A system for imaging magnetic surfaces using a magnetoresistive sensor array is developed. The experimental setup is composed of a linear array of 12 sensors uniformly spaced, with sensitivity of 150 pT*Hz(-1/2) at 1 Hz, and it is able to scan an area of (16 × 18) cm(2) from a separation of 0.8 cm of the sources with a resolution of 0.3 cm. Moreover, the point spread function of the multi-sensor system is also studied, in order to characterize its transference function and to improve the quality in the restoration of images. Furthermore, the images are generated by mapping the response of the sensors due to the presence of phantoms constructed of iron oxide, which are magnetized by a pulse of 80 mT. The magnetized phantoms are linearly scanned through the sensor array and the remanent magnetic field is acquired and displayed in gray levels using a PC. The images of the magnetic sources are reconstructed using two-dimensional generalized parametric Wiener filtering. Our results exhibit a very good capability to determine the spatial distribution of magnetic field sources, which produce magnetic fields of low intensity.

  3. Development of closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.

    1982-01-01

    This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.

  4. Optimization of active magnetic bearings for automotive flywheel energy storage systems based on soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Recheis, M.; Schweighofer, B.; Fulmek, P.; Wegleiter, H.

    2013-01-01

    For active magnetically suspended rotors in mobile flywheel energy storage systems the lowest possible weight, smallest size and a low price is required. Since the flywheel is operated in vacuum and very little heat can be dissipated from the rotor, the bearing's magnetic losses have to be as minimal as well. This paper compares the design and optimization of homopolar radial active magnetic bearings with 3 different types of laminated steel. The first type is a standard transformer steel, the second one is high flux cobalt steel and the third one is high flux cobalt steel with high tensile strength.

  5. System and method for magnetic current density imaging at ultra low magnetic fields

    SciTech Connect

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  6. Computational analysis of enhanced magnetic bioseparation in microfluidic systems with flow-invasive magnetic elements.

    PubMed

    Khashan, S A; Alazzam, A; Furlani, E P

    2014-06-16

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer.

  7. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.

    2003-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.

  8. The LHCb Detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.

    2008-08-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

  9. Distributed magnetic field positioning system using code division multiple access

    NASA Technical Reports Server (NTRS)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  10. A magnetic emergency release system for halo traction.

    PubMed

    Augsburger, Sam; White, Hank; Iwinski, Henry; Tylkowski, Chester M

    2010-01-01

    A magnetic emergency release system was developed for use in halo traction systems. Commercially available rare earth mounting magnets, with selected weight-carrying capacities, along with ferromagnetic receptacles, were used in line between halos and overhead pulleys to both carry the prescribed traction force and provide an emergency release in the event of excessive applied force due to a transportation accident and/or sudden application of full body weight when using overhead walkers equipped with traction systems. The magnet-receptacle pairs were calibrated with an in-line digital scale. Load rate dependencies were noted, indicating that prescribed magnet-receptacle pairs should be chosen to carry at least 110% body weight. This weight capacity is reduced to approximately 88% of body weight during higher loading rates, such as transportation accidents and accidental falls.

  11. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Brown, Gerald; Johnson, Dexter

    1997-01-01

    Abstract Magnetic bearings offer significant advantages because of their noncontact operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. This paper discusses the use of a neural network as a nonlinear controller that circumvents system nonlinearity. A neural network controller was well trained and successfully demonstrated on a small magnetic bearing rig. This work demonstrated the feasibility of using a neural network to control nonlinear magnetic bearings and systems with unknown dynamics.

  12. Magnetic suspension and balance system advanced study, phase 2

    NASA Technical Reports Server (NTRS)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1990-01-01

    The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.

  13. Failure Accommodation Tested in Magnetic Suspension Systems for Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Provenza, Andy J.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field and Texas A&M University are developing techniques for accommodating certain types of failures in magnetic suspension systems used in rotating machinery. In recent years, magnetic bearings have become a viable alternative to rolling element bearings for many applications. For example, industrial machinery such as machine tool spindles and turbomolecular pumps can today be bought off the shelf with magnetically supported rotating components. Nova Gas Transmission Ltd. has large gas compressors in Canada that have been running flawlessly for years on magnetic bearings. To help mature this technology and quiet concerns over the reliability of magnetic bearings, NASA researchers have been investigating ways of making the bearing system tolerant to faults. Since the potential benefits from an oil-free, actively controlled bearing system are so attractive, research that is focused on assuring system reliability and safety is justifiable. With support from the Fast Quiet Engine program, Glenn's Structural Mechanics and Dynamics Branch is working to demonstrate fault-tolerant magnetic suspension systems targeted for aerospace engine applications. The Flywheel Energy Storage Program is also helping to fund this research.

  14. A review of Magnetic Suspension and Balance Systems

    NASA Technical Reports Server (NTRS)

    Boyden, Richmond P.

    1988-01-01

    This paper traces the development of Magnetic Suspension and Balance Systems (MSBSs) for use in wind tunnels. The expression MSBS implies a system that can both suspend a model and also measure the forces and moments acting on the model. This avoids the need for any mechanical support of the model. An MSBS uses electromagnets located outside the test section walls to create magnetic fields inside the test section. Measurement of the electrical current flowing in each of the electromagnets can be used to determine the forces and moments acting on the suspended model. An MSBS is capable of supporting a model with an internal magnetized core subject to gravity, aerodynamic, and inertial loads. The model must have a core made of either a permanent magnet, magnetized soft iron, or a solenoid. The position of the suspended body is inherently unstable. A closed-loop control system which includes a position sensing system has to control the position of the body by controlling the applied magnetic fields. This paper includes a discussion of all the known MSBSs and the outlook for larger systems.

  15. Engineering of the Magnetized Target Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.; Philips, A.

    2002-01-01

    Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Structural, thermal and radiation-management design details are presented. Propellant storage and supply options are also discussed and a propulsion system mass estimate is given.

  16. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  17. Tandem mirror magnet system for the mirror fusion test facility

    SciTech Connect

    Bulmer, R.H.; Van Sant, J.H.

    1980-10-14

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper.

  18. Photoemission microscopy from magnetically coupled thin-film systems

    NASA Astrophysics Data System (ADS)

    Schneider, C. M.; de Haas, O.; Muschiol, U.; Cramer, N.; Oelsner, A.; Klais, M.; Schmidt, O.; Fecher, G. H.; Jark, W.; Schönhense, G.

    2001-07-01

    The magnetic microstructure and magnetic coupling phenomena in thin-film systems, relevant for applications in magneto-electronics, are investigated by means of photoemission electron microscopy. Element-selective magnetic information is obtained by exploiting magnetic circular dichroism in the soft X-ray regime. The domain shape and sizes found at the surface of antiferromagnetically coupled metallic multilayers indicate the presence of a ferromagnetic coupling contribution, presumably caused by a build-up of roughness during the growth process. The magnetic domain patterns in FeNi microstructures on sputtered NiO films reflect the presence of a local exchange anisotropy, causing the phenomenon of exchange biasing or pinning of the ferromagnetic layer.

  19. A magnetic suspension system with a large angular range

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.; Ghofrani, Mehran

    1993-01-01

    The paper describes a small-scale laboratory system, called the Large-Angle Magnetic Suspension Test Fixture (LAMSTF), constructed at NASA Langley Research Center in order to explore and develop technology required for the magnetic suspension of objects over large ranges of orientation. The LAMSTF hardware comprises five electromagnets in a circular arrangement, each driven from a separate bipolar power amplifier. The suspended element is a cylindrical axially magnetized permanent magnet core, within an aluminum tube. The element, which is 'levitated' by repulsive forces, is stabilized in five degrees-of-freedom, with rotation about the cylinder axis not controlled. The controller accommodates the changes in magnetic coupling between the electromagnets and the suspended element by real-time adaptation of a decoupling matrix. The paper presents performance measurements demonstrating that the major design objective of the 360 deg rotation was accomplished.

  20. Magnetic Responsive Hydrogel Material Delivery System II

    DTIC Science & Technology

    2010-08-29

    aqueous solutions dispersed with poly (NIPAAm)-MNPs showed magnetic heating due to a super paramagnetic property, and the poly (NIPAAm) shell shrank...particles. The undetectable hysteresis and coercivity suggests that the synthesized MNPs have super paramagnetic properties. The S3 MNPs showed...14. ABSTRACT We have developed a novel route for the synthesis of the thermoresponsive core-shell nanoparticles that consist of the magnetite core

  1. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  2. Present Status of the KSTAR Superconducting Magnet System Development

    NASA Astrophysics Data System (ADS)

    Kim, Keeman; H, K. Park; K, R. Park; B, S. Lim; S, I. Lee; M, K. Kim; Y, Chu; W, H. Chung; S, H. Baek; J Y, Choi; H, Yonekawa; A, Chertovskikh; Y, B. Chang; J, S. Kim; C, S. Kim; D, J. Kim; N, H. Song; K, P. Kim; Y, J. Song; I, S. Woo; W, S. Han; D, K. Lee; Y, K. Oh; K, W. Cho; J, S. Park; G, S. Lee; H, J. Lee; T, K. Ko; S, J. Lee

    2004-10-01

    The mission of Korea Superconducting Tokamak Advanced Research (KSTAR) project is to develop an advanced steady-state superconducting tokamak for establishing a scientific and technological basis for an attractive fusion reactor. Because one of the KSTAR mission is to achieve a steady-state operation, the use of superconducting coils is an obvious choice for the magnet system. The KSTAR superconducting magnet system consists of 16 Toroidal Field (TF) coils and 14 Poloidal Field (PF) coils. Internally-cooled Cable-In-Conduit Conductors (CICC) are put into use in both the TF and PF coil systems. The TF coil system provides a field of 3.5 T at the plasma center and the PF coil system is able to provide a flux swing of 17 V-sec. The major achievement in KSTAR magnet-system development includes the development of CICC, the development of a full-size TF model coil, the development of a coil system for background magnetic-field generation, the construction of a large-scale superconducting magnet and CICC test facility. TF and PF coils are in the stage of fabrication to pave the way for the scheduled completion of KSTAR by the end of 2006.

  3. Behavior of multi-component magnetic colloidal systems in tunable magnetic fields and applications in biosensing

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Li, Zhengcao; Ko, Pil Ju; Sandhu, Adarsh

    2012-03-01

    A system consisting of multiple-component beads, such as superparamagnetic beads, nonmagnetic beads and magnetorheological (MR) fluid, can display some very amazing and special properties when subjected to an external magnetic field because the MR fluid can act on both types of beads synchronously as a magnetic medium. Some novel structures and phenomena were discovered and are discussed in our work, including 'ring-structures', 'small-ring' and 'ring-chains' in static or rotational magnetic fields. If both probe and target molecules are attached consisting of functionalized superparamagnetic beads and non-magnetic beads, respectively, the ring-structure could be maintained due to biomolecular bonding, even after removing the external magnetic field. Using these remnant rings, we raised two protocols for biosensing: a two-dimensional biosensor using a magnetic self-assembled colloidal ring-structure, and an improved magneto-optical transmittance (MT) method. In the former protocol, we define the small nonmagnetic particles as "petals" because the whole structure looks like a flower. It was proved that the number of remnant ring petals was a function of the concentration of the target molecules', with a concentration range from 0.0768 ng/mL ~ 3.8419 ng/mL, making it a promising technology for applications involving biosensing. In the latter protocol, the use of larger individual units made the magnetic particle chain longer, which was considered to be a promising way of improving the sensitivity of the MT method.

  4. Scenarios for sLHC and vLHC

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Zimmermann, F.

    2008-03-01

    The projected lifetime of the LHC low-beta quadrupoles and evolution of the statistical error halving time call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the EU CARE-HHH network, two scenarios have been developed for increasing the LHC peak luminosity by a factor 10, to 10 cms ("sLHC"). Both scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges differ substantially. In either scenario luminosity leveling during a store would be advantageous for the physics experiments. Longer-term R&D efforts are devoted to a higher-energy hadron collider ("vLHC"), which could be realized on a green field or as a later and more radical LHC upgrade.

  5. Pulsed field magnetization in rare-earth kagome systems.

    PubMed

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-03

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  6. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  7. ADVANCES TOWARDS THE MEASUREMENT AND CONTROL LHC TUNE AND CHROMATICITY

    SciTech Connect

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; DELLAPENNA, A.; HOFF, L.; MEAD, J.; SIKORA, R.

    2005-06-06

    Requirements for tune and chromaticity control in most superconducting hadron machines, and in particular the LHC, are stringent. In order to reach nominal operation, the LHC will almost certainly require feedback on both tune and chromaticity. Experience at RHIC has also shown that coupling control is crucial to successful tune feedback. A prototype baseband phase-locked loop (PLL) tune measurement system has recently been brought into operation at RHIC as part of the US LHC Accelerator Research Program (LARP). We report on the performance of that system and compare it with the extensive accumulation of data from the RHIC 245MHz PLL.

  8. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  9. A design approach for systems based on magnetic pulse compression.

    PubMed

    Kumar, D Durga Praveen; Mitra, S; Senthil, K; Sharma, D K; Rajan, Rehim N; Sharma, Archana; Nagesh, K V; Chakravarthy, D P

    2008-04-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results.

  10. Improved Mirnov Magnetic Coils System for the TCABR Tokamak

    NASA Astrophysics Data System (ADS)

    Vannucci, Alvaro; Olschewski, Erich; Kuznetsov, Yuri; Kucinski, Mutsuko; Tadeu Degasperi, Francisco; Araujo, Mauro Sergio; Galvao, Ricardo; Okano, Valdir; Nascimento, Ivan

    2000-10-01

    The Mirnov magnetic coils system for the TCABR was recently reconstructed. The most interesting aspect of this system is that the measured experimental signals already incorporate the influence of the toroidal geometry. This means that the usual fast Fourier transform analysis done on the magnetic experimental data is able to indicate, more precisely and in a straightforward way, the MHD mode contribution to the detected signals during a plasma discharge. The influence of the toroidal geometry on the Fourier analysis of the magnetic signals was investigated by carring a series of simulations, considering the Merezhkin correction expressed only as a function of the inverse of the tokamak aspect ratio (calculated at the position of interest). The results obtained clearly showed the existence of a phase modulation on the Mirnov signals which is not usually considered when the magnetic signals are Fourier analyzed in the frame of cylindrical approximation, that is, by neglecting the existing toroidal effect.

  11. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  12. LHC forward physics

    SciTech Connect

    Akiba, K.; Akbiyik, M.; Albrow, M.; Arneodo, M.; Avati, V.; Baechler, J.; Baillie, O. Villalobos; Bartalini, P.; Bartels, J.; Baur, S.; Baus, C.; Beaumont, W.; Behrens, U.; Berge, D.; Berretti, M.; Bossini, E.; Boussarie, R.; Brodsky, S.; Broz, M.; Bruschi, M.; Bussey, P.; Byczynski, W.; Noris, J. C. Cabanillas; Villar, E. Calvo; Campbell, A.; Caporale, F.; Carvalho, W.; Chachamis, G.; Chapon, E.; Cheshkov, C.; Chwastowski, J.; Ciesielski, R.; Chinellato, D.; Cisek, A.; Coco, V.; Collins, P.; Contreras, J. G.; Cox, B.; Damiao, D. de Jesus; Davis, P.; Deile, M.; D’Enterria, D.; Druzhkin, D.; Ducloué, B.; Dumps, R.; Dzhelyadin, R.; Dziurdzia, P.; Eliachevitch, M.; Fassnacht, P.; Ferro, F.; Fichet, S.; Figueiredo, D.; Field, B.; Finogeev, D.; Fiore, R.; Forshaw, J.; Medina, A. Gago; Gallinaro, M.; Granik, A.; Gersdorff, G. von; Giani, S.; Golec-Biernat, K.; Goncalves, V. P.; Göttlicher, P.; Goulianos, K.; Grosslord, J-Y; Harland-Lang, L. A.; Haevermaet, H. Van; Hentschinski, M.; Engel, R.; Corral, G. Herrera; Hollar, J.; Huertas, L.; Johnson, D.; Katkov, I.; Kepka, O.; Khakzad, M.; Kheyn, L.; Khachatryan, V.; Khoze, V. A.; Klein, S.; Klundert, M. van; Krauss, F.; Kurepin, A.; Kurepin, N.; Kutak, K.; Kuznetsova, E.; Latino, G.; Lebiedowicz, P.; Lenzi, B.; Lewandowska, E.; Liu, S.; Luszczak, A.; Luszczak, M.; Madrigal, J. D.; Mangano, M.; Marcone, Z.; Marquet, C.; Martin, A. D.; Martin, T.; Hernandez, M. I. Martinez; Martins, C.; Mayer, C.; Nulty, R. Mc; Mechelen, P. Van; Macula, R.; Costa, E. Melo da; Mertzimekis, T.; Mesropian, C.; Mieskolainen, M.; Minafra, N.; Monzon, I. L.; Mundim, L.; Murdaca, B.; Murray, M.; Niewiadowski, H.; Nystrand, J.; Oliveira, E. G. de; Orava, R.; Ostapchenko, S.; Osterberg, K.; Panagiotou, A.; Papa, A.; Pasechnik, R.; Peitzmann, T.; Moreno, L. A. Perez; Pierog, T.; Pinfold, J.; Poghosyan, M.; Pol, M. E.; Prado, W.; Popov, V.; Rangel, M.; Reshetin, A.; Revol, J-P; Rijssenbeek, M.; Rodriguez, M.; Roland, B.; Royon, C.; Ruspa, M.; Ryskin, M.; Vera, A. Sabio; Safronov, G.; Sako, T.; Schindler, H.; Salek, D.; Safarik, K.; Saimpert, M.; Santoro, A.; Schicker, R.; Seger, J.; Sen, S.; Shabanov, A.; Schafer, W.; Silveira, G. Gil Da; Skands, P.; Soluk, R.; Spilbeeck, A. van; Staszewski, R.; Stevenson, S.; Stirling, W. J.; Strikman, M.; Szczurek, A.; Szymanowski, L.; Takaki, J. D. Tapia; Tasevsky, M.; Taesoo, K.; Thomas, C.; Torres, S. R.; Tricomi, A.; Trzebinski, M.; Tsybychev, D.; Turini, N.; Ulrich, R.; Usenko, E.; Varela, J.; Vetere, M. Lo; Tello, A. Villatoro; Pereira, A. Vilela; Volyanskyy, D.; Wallon, S.; Wilkinson, G.; Wöhrmann, H.; Zapp, K. C.; Zoccarato, Y.

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  13. LHC forward physics

    DOE PAGES

    Akiba, K.; Akbiyik, M.; Albrow, M.; ...

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  14. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  15. Wind Tunnel Magnetic Suspension and Balance Systems With Transversely Magnetized Model Cores

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1998-01-01

    This paper discusses the possibility of using vertically magnetized model cores for wind tunnel Magnetic Suspension and Balance Systems (MSBS) in an effort to resolve the traditional "roll control" problem. A theoretical framework is laid out, based on previous work related to generic technology development efforts at NASA Langley Research Center. The impact of the new roll control scheme on traditional wind tunnel MSBS configurations is addressed, and the possibility of demonstrating the new scheme with an existing electromagnet assembly is explored. The specific system considered is the ex- Massachusetts Institute of Technology (MIT), ex-NASA, 6-inch MSBS currently in the process of recommissioning at Old Dominion University. This system has a sufficiently versatile electromagnet configuration such that straightforward "conversion" to vertically magnetized cores appears possible.

  16. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    SciTech Connect

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G. L.

    2011-06-03

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  17. ADC's Insertion Devices and Magnetic Measurement Systems Capabilities

    NASA Astrophysics Data System (ADS)

    Deyhim, A.; Kulesza, J.

    2013-03-01

    In this paper Advance Design Consulting USA, Inc. (ADC) will discuss ADC's major improved capabilities for building Wiggler Insertion Devices, Undulator Planar Devices, Elliptical Polarizing Undulators (EPU), In-Vacuum Undulators (IVU), Cryogenically Cooled in-vacuum Undulators (CPMU), Super Conductive Undulator, and Insertion Device Magnetic Measurement Systems. ADC has designed, built and delivered Insertion Devices and Magnetic Measurement Systems to such facilities as MAX-lab (two EPUs, a Planar, and Measurement System), ALBA and ASP (Wigglers), BNL (CPMU), SSRF (two IVUs and a Measurement System), PAL (one IVU and Measurement System), NSRRC (one 4m EPU), and SRC (Planar and EPU). ADC's magnetic field measurement system is a sophisticated and sensitive machine for the measurement of magnetic fields in undulators (Planar and EPU), wigglers and in-vacuum ID units. The magnetic fields are measured using 3 axis hall-effect probes, mounted orthogonally, to a thin wand. The wand is mounted to a carriage that rides on vacuum air bearings. The base is granite. A flip coil is provided on two vertical towers with X, Y and Theta axes. Special software is provided to assist in homing, movement, and data collection and analysis.

  18. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  19. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  20. Estimator Based Controller for High Speed Flywheel Magnetic Bearing System

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.

    2002-01-01

    A flywheel system and its operator interface are described. Measurements of magnetic bearing negative stiffness are performed. Two digital magnetic bearing control algorithms (PD and estimator based) are defined and their implementations are described. Tuning of each controller is discussed. Comparison of the two controllers' stability, damping noise, and operating current are described. Results describing the superiority of the estimator-based controller are presented and discussed.

  1. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  2. Magnetic fields of the solar system: A comparative planetology toolkit

    NASA Astrophysics Data System (ADS)

    Nicholas, J. B.; Purucker, M. E.; Johnson, C. L.; Sabaka, T. J.; Olsen, N.; Sun, Z.; Al Asad, M.; Anderson, B. J.; Korth, H.; Slavin, J. A.; Alexeev, I. I.; Belenkaya, E. S.; Phillips, R. J.; Solomon, S. C.; Lillis, R. J.; Langlais, B.; Winslow, R. M.; Russell, C. T.; Dougherty, M. K.; Zuber, M. T.

    2011-12-01

    Magnetic fields within the solar system provide a strong organizing force for processes active both within a planet or moon, and outside of it. In the interest of stimulating research and education in the field of comparative planetology, we present documented Fortran and MATLAB source codes and benchmarks to the latest models for planets and satellites that host internal magnetic fields. This presentation is made in the context of an interactive website: http://planetary-mag.net. Models are included for Earth (Comprehensive model CM4 of Sabaka et al., 2004, Geophysics J. Int.), Mercury (Anderson et al, 2011, Science), the Moon (Purucker and Nicholas, 2010, JGR), Mars (Lillis et al., 2010, JGR), and the outer planets Jupiter, Saturn, Uranus, and Neptune (Russell and Dougherty, 2010, Space Science Reviews). All models include magnetic fields of internal origin, and fields of external origin are included in the models for Mercury, the Earth, and the Moon. As models evolve, we intend to include magnetic fields of external origin for the other planets and moons. The website allows the user to select a coordinate system, such as planet-centered, heliocentric, or boundary normal, and the location within that coordinate system, and the vector magnetic field due to each of the component source fields at that location is then calculated and presented. Alternatively, the user can input a range as well as a grid spacing, and the vector magnetic field will be calculated for all points on that grid and be made available as a file for downloading.

  3. Magnetic field effects in flavoproteins and related systems

    PubMed Central

    Evans, Emrys W.; Dodson, Charlotte A.; Maeda, Kiminori; Biskup, Till; Wedge, C. J.; Timmel, Christiane R.

    2013-01-01

    Within the framework of the radical pair mechanism, magnetic fields may alter the rate and yields of chemical reactions involving spin-correlated radical pairs as intermediates. Such effects have been studied in detail in a variety of chemical systems both experimentally and theoretically. In recent years, there has been growing interest in whether such magnetic field effects (MFEs) also occur in biological systems, a question driven most notably by the increasing body of evidence for the involvement of such effects in the magnetic compass sense of animals. The blue-light photoreceptor cryptochrome is placed at the centre of this debate and photoexcitation of its bound flavin cofactor has indeed been shown to result in the formation of radical pairs. Here, we review studies of MFEs on free flavins in model systems as well as in blue-light photoreceptor proteins and discuss the properties that are crucial in determining the magnetosensitivity of these systems. PMID:24511388

  4. Computer program simulating the quench of superconducting magnet systems

    SciTech Connect

    Eckert, D.; Lange, F.; Moebius, A.

    1981-09-01

    A computer program for testing coil and protection design of a composed magnet system is presented. Small high field magnets composed of two uniaxial cylindrical oils of different superconducting materials (e.g., NbTi and V/sub 3/Ga or Nb/sub 3/Sn) are considered. Each coil consists of several sections protected by shunts. The system is driven by one power supply. In order to take into account quench propagation due to thermal conduction and to rapid current increase, which is important in inductively coupled systems, a one-dimensional thermodiffusion equation is solved. Field and temperature dependence of the critical current of every layer of the magnet system are regarded. Current sharing as well as the temperature dependence of specific heat, of resistivity and of thermal conductivity are taken into account. 8 refs.

  5. Neural Network Control of a Magnetically Suspended Rotor System

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    1998-01-01

    Magnetic bearings offer significant advantages because they do not come into contact with other parts during operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. At the NASA Lewis Research Center, a neural network was selected as a nonlinear controller because it generates a neural model without any detailed information regarding the internal working of the magnetic bearing system. It can be used even for systems that are too complex for an accurate system model to be derived. A feed-forward architecture with a back-propagation learning algorithm was selected because of its proven performance, accuracy, and relatively easy implementation.

  6. Comments on open-ended magnetic systems for fusion

    SciTech Connect

    Post, R.F.

    1990-09-24

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux).

  7. Nonlinear Control of Large Disturbances in Magnetic Bearing Systems

    NASA Technical Reports Server (NTRS)

    Jiang, Yuhong; Zmood, R. B.

    1996-01-01

    In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.

  8. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  9. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia.

    PubMed

    Huang, Chi-Fang; Chao, Hsuan-Yi; Chang, Hsun-Hao; Lin, Xi-Zhang

    2016-01-01

    Based on the characteristics of cancer cells that cannot survive in an environment with temperature over 42 °C, a magnetic induction heating system for cancer treatment is developed in this work. First, the methods and analyses for designing the multi-cascaded coils magnetic induction hyperthermia system are proposed, such as internal impedance measurement of power generator, impedance matching of coils, and analysis of the system. Besides, characteristics of the system are simulated by a full-wave package for engineering optimization. Furthermore, by considering the safety factor of patients, a two-sectional needle is designed for hyperthermia. Finally, this system is employed to test the liver of swine in ex-vivo experiments, and through Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay, the feasibility of this system is verified.

  10. Efficient implementation of the Lanczos method for magnetic systems

    SciTech Connect

    Schnack, Juergen Hage, Peter; Schmidt, Heinz-Juergen

    2008-04-20

    Numerically exact investigations of interacting spin systems provide a major tool for an understanding of their magnetic properties. For medium size systems the approximate Lanczos diagonalization is the most common method. In this article we suggest two improvements: efficient basis coding in subspaces and simple restructuring for openMP parallelization.

  11. Mirror fusion test facility magnet system. Final design report

    SciTech Connect

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  12. Technical background for a demonstration magnetic levitation system

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1987-01-01

    A preliminary technical assessment of the feasibility of a demonstration Magnetic Levitation system, required to support aerodynamic models with a specified clear air volume around them, is presented. Preliminary calculations of required sizes of electromagnets and power supplies are made, indicating that the system is practical. Other aspects, including model position sensing and controller design, are briefly addressed.

  13. Prototype of a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Plant, David P.; Kirk, J. A.; Anand, D. K.

    1989-01-01

    The authors describe recent progress in the development of a 500-Wh magnetically suspended flywheel stack energy storage system. The design of the system and a critical study of the noncontacting displacement transducers and their placement in the stack system are discussed. The storage system has been designed and constructed and is currently undergoing experimental analysis. The results acquired from the noncontacting displacement transducer study show that currently available transducers will not function as desired and that further research is essential.

  14. Magnetic viscosity: outbursts and outflows in accretion driven systems

    NASA Astrophysics Data System (ADS)

    Meintjes, P. J.; Breedt, E.

    In this paper magnetic viscosity is investigated in magnetized accretion discs. It will be shown that the effective coupling between the magnetic field of a slow-rotator and an accretion disc, can be a very effective mechanism to drive episodes of high mass accretion onto the surface of a compact object. Outside the corotation radius, angular momentum is effectively transferred outwards through a propeller-type process from the magnetospheric field and magnetic bubbles that are formed as a result of a Kelvin-Helmholtz instability, which can result in a centrifugal barrier and accumulation of disc matter outside the corotation radius which will become unstable at some point, triggering enhanced inward mass advection as a result of a magneto-gravitational instability. This may lead to periods of enhanced mass accretion and associated disc brightening, which may explain the dwarf novae phenomenon in certain disc accreting cataclysmic variables. This may be accompanied by mass outflows from the disc and possible non-thermal emission. The description of magnetic viscosity presented in this paper will rely on the values of two constants, i.e. the Hartmann and Reynolds numbers of the magnetized disc plasma. For both these numbers above unity, magnetic stresses in the disc can play a very important role in the kinematics of the plasma in disc accreting systems.

  15. Magnetically driven microrobotic system for cancer cell manipulation.

    PubMed

    Lucarini, G; Iacovacci, V; Ricotti, L; Comisso, N; Dario, P; Menciassi, A

    2015-08-01

    Lab-on-a-chip applications, such as single cell manipulation and targeted delivery of chemicals, could greatly benefit from mobile untethered microdevices able to move in fluidic environments by using magnetic fields. In this paper a magnetically driven microrobotic system enabling the controlled locomotion of objects placed at the air/liquid interface is proposed and exploited for cell manipulation. In particular authors report the design, fabrication and testing of a polymeric thin film-based magnetic microrobot (called "FilmBot") used as a support for navigating cancer cells. By finely controlling magnetic film locomotion, it is possible to navigate the cells by exploiting their adhesion to the film without affecting their integrity. Preliminary in vitro tests demonstrated that the magnetic thin film is able to act as substrate for T24 bladder cancer cells without affecting their viability and that film locomotion can be magnetically controlled (with a magnetic field and a gradient of 6 mT and 0.6 T/m, respectively) along specific directions, with a mean speed of about 3 mm/s.

  16. Oscillation damping means for magnetically levitated systems

    DOEpatents

    Post, Richard F.

    2009-01-20

    The present invention presents a novel system and method of damping rolling, pitching, or yawing motions, or longitudinal oscillations superposed on their normal forward or backward velocity of a moving levitated system.

  17. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  18. Magnetic suspension and balance system (MSBS) advanced study.I - System design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Abdelsalam, Mostafa K.; Eyssa, Yehia M.; Mcintosh, Glen E.

    1987-01-01

    A magnetic suspension and balance system is designed to support models of aircraft or other objects in wind tunnels by means of magnetic forces. Major design improvements have been achieved, resulting in reductions of the system size, weight, and cost. These improvements are due to: (1) the use of holmium in the model core to increase its magnetic moment, (2) the use of a powerful new permanent magnet material in the model wings, (3) a new arrangement for the roll coils, and (4) the use of a nonmetallic structure to eliminate eddy current losses. The conceptual design of the holmium core superconductive solenoid and of the new permanent magnet wing assembly is described in detail. The discussion includes comparisons of the pole strengths for different model core magnets, the design of a superconducting solenoid and cryostat, and the analysis of model wing magnetic requirements.

  19. Magnetic properties driven by local structure in quasi-1D Ising chain system cobaltate system

    NASA Astrophysics Data System (ADS)

    Kim, Bongjae; Kim, Beom Hyun; Kim, Kyoo; Choi, Hong Chul; Park, Sang-Yeon; Jeong, Y.-H.; Min, B. I.

    2012-02-01

    Using ab-initio band structure method and the microscopic model calculation, the origins of the large orbital magnetic moment and unique magnetic anisotropy in the quasi-1D magnetic cobaltate, α-CoV2O6, is investigated. Unique crystal electric field effect in α-CoV2O6 is combined with the strong spin-orbit coupling, results in intriguing magnetic properties of the system. Based on the estimated strengths of the intra- and the inter-chain exchange interaction, experimentally found 1/3 magnetization plateau in the MH curve can be attributed to spin-flop mechanism. Origin of the reduced magnetic entropy behavior is found to be the strong uniaxial magnetic anisotropy in the quasi-1D Ising chain system.

  20. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  1. Regulation of autonomic nervous system in space and magnetic storms

    NASA Astrophysics Data System (ADS)

    Baevsky, R. M.; Petrov, V. M.; Chernikova, A. G.

    Variations in the earth's magnetic field and magnetic storms are known to be a risk factor for the development of cardiovascular disorders. The main ``targets'' for geomagnetic perturbations are the central nervous system and the neural regulation of vascular tone and heart rate variability. This paper presents the data about effect of geomagnetic fluctuations on human body in space. As a method for research the analysis of heart rate variability was used, which allows evaluating the state of the sympathetic and parasympathetic parts of the autonomic nervous system, vasomotor center and subcortical neural centers activity. Heart rate variability data were analyzed for 30 cosmonauts at the 2-nd day of space flight on transport spaceship Soyuz (32nd orbit). There were formed three groups of cosmonauts: without magnetic storm (n=9), on a day with magnetic storm (n=12) and 1-2 days after magnetic storm (n=9). The present study was the first to demonstrate a specific impact of geomagnetic perturbations on the system of autonomic circulatory control in cosmonauts during space flight. The increasing of highest nervous centers activity was shown for group with magnetic storms, which was more significant on 1-2 days after magnetic storm. The use of discriminate analysis allowed to classify indicated three groups with 88 % precision. Canonical variables are suggested to be used as criterions for evaluation of specific and non-specific components of cardiovascular reactions to geomagnetic perturbations. The applied aspect of the findings from the present study should be emphasized. They show, in particular, the need to supplement the medical monitoring of cosmonauts with predictions of probable geomagnetic perturbations in view of the prevention of unfavorable states appearances if the adverse reactions to geomagnetic perturbations are added to the tension experienced by regulatory systems during various stresses situations (such as work in the open space).

  2. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  3. Magnetic Leviation System Design and Implementation for Wind Tunnel Application

    NASA Technical Reports Server (NTRS)

    Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long

    1996-01-01

    This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.

  4. Small animal electric and magnetic field exposure systems. Final report

    SciTech Connect

    Patterson, R.C.; Dietrich, F.M.

    1993-10-01

    Laboratory evaluation of electric and magnetic fields (EMF) and cancer in animals requires exposure of relatively large numbers of animals, usually rats or mice, to 60-Hz fields under very well controlled conditions for periods of up to two years. This report describes two exposure systems, the first of which is based on modifications of an existing electric field exposure system to include magnetic field exposure capability. In this system, each module houses 576--768 mice, which can be exposed to electric field levels of up to 100 kV/m and magnetic field levels of up to 10 Gauss. When a module was operated at 10 Gauss, measured levels of noise and vibration fell substantially below the detection threshold for humans. Moreover, temperature rise in the coils did not exceed 12{degrees}C at the 10 Gauss level. Specifications and test results for the second system, which provides magnetic field exposure capability only, are similar, except that each module houses 624--780 mice. After installation of the second system at the West Los Angeles Veterans Medical Center in Los Angeles, California, additional results were obtained. This report provides a complete description of the engineering design, specifications, and test results for the completed systems.

  5. A fixed-target programme at the LHC (AFTER@LHC)

    NASA Astrophysics Data System (ADS)

    Trzeciak, Barbara; AFTER@LHC study group

    2017-01-01

    We report on the perspectives for hadron, heavy-ion and spin physics with a multi-purpose fixed-target programme using the LHC multi-TeV proton and heavy-ion beams (AFTER@LHC). This would be the most energetic fixed-target experiment opening new domains of particle and nuclear physics and complementing current and future collider programmes. Thanks to the large boost, one can fully access –with conventional detectors– the backward hemisphere in the center-of-mass system which allows for studies of the largely uncharted high-x region (xF → -1).

  6. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  7. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  8. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  9. Theory - LHC Phenomenology

    NASA Astrophysics Data System (ADS)

    Gori, Stefania

    2017-01-01

    The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.

  10. Progress Report on the g-2 Storage Ring Magnet System

    SciTech Connect

    Bunce, G.A.; Cullen, J.; Danby, G.; Green, M.A.; Jackson, J.; Jia, L.; Krienen, F.; Meier, R.; Meng, W.; Morse, W.; Pai, C.; Polk, I.; Prodell, A.; Shutt, R.; Snydstrup, L.; Yamamoto, A.

    1995-06-01

    The 3.1 GeV muon storage ring for the g-2 experiment at Brookhaven National Laboratory has three large solenoid magnets that form a continuous 1.451 tesla storage ring dipole with an average beam bend radius of 7.1 meters. In addition to the three storage ring solenoids, there is an inflector dipole with nested dipole coils that create very little stray magnetic field. A superconducting shield on the inflector gets rid of most of the remaining stray flux. This paper reports on the progress made on the storage ring solenoid magnet system and the inflector as of June 1995. The results of cryogenic system tests are briefly reported.

  11. Selected experimental results from heavy-ion collisions at LHC

    DOE PAGES

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; ...

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  12. Theoretical studies to elucidate the influence of magnetic dipolar interactions occurring in the magnetic nanoparticle systems, for biomedical applications

    NASA Astrophysics Data System (ADS)

    Osaci, M.; Cacciola, M.

    2016-02-01

    In recent years, the study of magnetic nanoparticles has been intensively developed not only for their fundamental theoretical interest, but also for their many technological applications, especially biomedical applications, ranging from contrast agents for magnetic resonance imaging to the deterioration of cancer cells via hyperthermia treatment. The theoretical and experimental research has shown until now that the magnetic dipolar interactions between nanoparticles can have a significant influence on the magnetic behaviour of the system. But, this influence is not well understood. It is clear that the magnetic dipolar interaction intensity is correlated with the nanoparticle concentration, volume fraction and magnetic moment orientations. In this paper, we try to understand the influence of magnetic dipolar interactions on the behaviour of magnetic nanoparticle systems, for biomedical applications. For the model, we considered spherical nanoparticles with uniaxial anisotropy and lognormal distribution of the sizes. The model involves a simulation stage of the spatial distribution and orientation of the nanoparticles and their easy axes of magnetic anisotropy, and an evaluation stage of the Néel relaxation time. To assess the Néel relaxation time, we are going to discretise and adapt, to the local magnetic field, the Coffey analytical solution for the equation Fokker-Planck describing the dynamics of magnetic moments of nanoparticles in oblique external magnetic field. There are three fundamental aspects of interest in our studies on the magnetic nanoparticles: their spatial & orientational distributions, concentrations and sizes.

  13. Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars

    NASA Astrophysics Data System (ADS)

    Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.

    2013-01-01

    Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.

  14. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  15. An electrostatically and a magnetically confined electron gun lens system

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Man, Kin F.; Chutjian, Ara

    1988-01-01

    Focal properties, electron trajectory calculations, and geometries are given for two electron 'gun' lens systems that have a variety of applications in, for example, electron-neutral and electron-ion scattering experiments. One nine-lens system utilizes only electrostatic confinement and is capable of focusing electrons onto a fixed target with extremely small divergence angles, over a range of final energies 1-790 eV. The second gun lens system is a simpler three-lens system suitable for use in a uniform, solenoidal magnetic field. While the focusing properties of such a magnetically confined lens systenm are simpler to deal with, the system does illustrate features of electron extraction and Brillouin flow that have not been suitably emphasized in the literature.

  16. Magnetic suspension system for an Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.

  17. Magnetic flow sorting using a model system of human lymphocytes and a colloidal magnetic label.

    PubMed

    Zborowski, M; Moore, L R; Reddy, S; Chen, G H; Sun, L; Chalmers, J J

    1996-01-01

    Cells of identical physical properties that differ in the expression of surface proteins can be sorted conveniently using immunospecific stains conjugated to fluorescent, or magnetic, labels. Immunomagnetic cell sorting using commercial batch sorters offers advantages of high sorting capacity, high viability of sorted fractions, and high depletion rates; its disadvantages are low enrichment rate and batch processing. The authors developed and tested a continuous, flow-through magnetic cell sorter for small volume, experimental cell enrichment. Freshly isolated human peripheral lymphocytes were labeled using an immunofluoromagnetic sandwich consisting of mouse anti human CD8 monoclonal antibody-fluorescein conjugate and rat anti mouse polyclonal antibody-colloidal iron-dextran conjugate. A total of 2-3 min lymphocytes were sorted per hour using a saturation magnetic field of 1.334 T and a five channel sorter. The fluorescent cells were distributed among the channels in relation to their fluorescence intensity and magnetic susceptibility. The purity (68-85%) and enrichment rates (16-34x) were comparable to those of commercial batch magnetic separators; sorting capacity and recovery of the enriched fractions (up to 32%) were limited by the small scale of the sorter. Future direction is focused on increasing the resolution, recovery, and sorting capacity of the enriched fractions, and testing the sorter on other cell systems.

  18. System architecture for a magnetically guided endovascular microcatheter.

    PubMed

    Sincic, Ryan S; Caton, Curtis J; Lillaney, Prasheel; Goodfriend, Scott; Ni, Jason; Martin, Alastair J; Losey, Aaron D; Shah, Neel; Yee, Erin J; Evans, Lee; Malba, Vincent; Bernhardt, Anthony F; Settecase, Fabio; Cooke, Daniel L; Saeed, Maythem; Wilson, Mark W; Hetts, Steven W

    2014-02-01

    Magnetic resonance imaging (MRI) guided minimally invasive interventions are an emerging technology. We developed a microcatheter that utilizes micro-electromagnets manufactured on the distal tip, in combination with the magnetic field of a MRI scanner, to perform microcatheter steering during endovascular surgery. The aim of this study was to evaluate a user control system for operating, steering and monitoring this magnetically guided microcatheter. The magnetically-assisted remote control (MARC) microcatheter was magnetically steered within a phantom in the bore of a 1.5 T MRI scanner. Controls mounted in an interventional MRI suite, along with a graphical user interface at the MRI console, were developed with communication enabled via MRI compatible hardware modules. Microcatheter tip deflection measurements were performed by evaluating MRI steady-state free precession (SSFP) images and compared to models derived from magnetic moment interactions and composite beam mechanics. The magnitude and direction of microcatheter deflections were controlled with user hand, foot, and software controls. Data from two different techniques for measuring the microcatheter tip location within a 1.5 T MRI scanner showed correlation of magnetic deflections to our model (R(2): 0.88) with a region of linear response (R(2): 0.98). Image processing tools were successful in autolocating the in vivo microcatheter tip within MRI SSFP images. Our system showed good correlation to response curves and introduced low amounts of MRI noise artifact. The center of the artifact created by the energized microcatheter solenoid was a reliable marker for determining the degree of microcatheter deflection and auto-locating the in vivo microcatheter tip.

  19. System architecture for a magnetically guided endovascular microcatheter

    PubMed Central

    Sincic, Ryan S.; Caton, Curtis J.; Lillaney, Prasheel; Goodfriend, Scott; Niemi, Jason; Martin, Alastair J.; Losey, Aaron D.; Shah, Neel; Yee, Erin J.; Evans, Lee; Malba, Vincent; Bernhardt, Anthony F.; Settecase, Fabio; Cooke, Daniel L.; Saeed, Maythem; Wilson, Mark W.; Hetts, Steven W.

    2013-01-01

    Magnetic resonance imaging (MRI) guided minimally invasive interventions are an emerging technology. We developed a microcatheter that utilizes micro-electromagnets manufactured on the distal tip, in combination with the magnetic field of a MRI scanner, to perform microcatheter steering during endovascular surgery. The aim of this study was to evaluate a user control system for operating, steering and monitoring this magnetically guided microcatheter. The magnetically-assisted remote control (MARC) microcatheter was magnetically steered within a phantom in the bore of a 1.5 Tesla MRI scanner. Controls mounted in an interventional MRI suite, along with a graphical user interface at the MRI console, were developed with communication enabled via MRI compatible hardware modules. Microcatheter tip deflection measurements were performed by evaluating MRI steady-state free precession (SSFP) images and compared to models derived from magnetic moment interactions and composite beam mechanics. The magnitude and direction of microcatheter deflections were controlled with user hand, foot, and software controls. Data from two different techniques for measuring the microcatheter tip location within a 1.5 Tesla MRI scanner showed correlation of magnetic deflections to our model (R2: 0.88) with a region of linear response (R2: 0.98). Image processing tools were successful in autolocating the in vivo microcatheter tip within MRI SSFP images. Our system showed good correlation to response curves and introduced low amounts of MRI noise artifact. The center of the artifact created by the energized microcatheter solenoid was a reliable marker for determining the degree of microcatheter deflection and auto-locating the in vivo microcatheter tip. PMID:24132857

  20. Magnetism in a graphene-4 f -3 d hybrid system

    NASA Astrophysics Data System (ADS)

    Huttmann, Felix; Klar, David; Atodiresei, Nicolae; Schmitz-Antoniak, Carolin; Smekhova, Alevtina; Martínez-Galera, Antonio J.; Caciuc, Vasile; Bihlmayer, Gustav; Blügel, Stefan; Michely, Thomas; Wende, Heiko

    2017-02-01

    We create an interface of graphene with a metallic and magnetic support that leaves its electronic structure largely intact. This is achieved by exposing epitaxial graphene on ferromagnetic thin films of Co and Ni to vapor of the rare earth metal Eu at elevated temperatures, resulting in the intercalation of an Eu monolayer in between graphene and its substrate. The system is atomically well defined, with the Eu monolayer forming a (√{3 }×√{3 }) R 30∘ superstructure with respect to the graphene lattice. Thereby, we avoid the strong hybridization with the (Ni,Co) substrate 3 d states that otherwise drastically modify the electronic structure of graphene. This picture is suggested by our x-ray absorption spectroscopy measurements which show that after Eu intercalation the empty 2 p states of C atoms resemble more the ones measured for graphite in contrast to graphene directly bound to 3 d ferromagnetic substrates. We use x-ray magnetic circular dichroism at the Co and Ni L2 ,3 and Eu M4 ,5 as an element-specific probe to investigate magnetism in these systems. An antiferromagnetic coupling between Eu and Co/Ni moments is found, which is so strong that a magnetic moment of the Eu layer can be detected at room temperature. Density functional theory calculations confirm the antiferromagnetic coupling and provide an atomic insight into the magnetic coupling mechanism.

  1. Calibrating and Measuring Bedload Transport Using a Magnetic Detection System

    NASA Astrophysics Data System (ADS)

    Rempel, J.; Hassan, M. A.

    2004-12-01

    One of the problems in bedload transport research is that no measurement technique has been commonly accepted as superior, and there are no standard protocols. There is a need for continuous bedload measurement to adequately resolve patterns in temporal and spatial variability, especially at high transport rates. Magnetic detection systems are a promising method as they can sense the movement of natural stones, and provide high frequency data in both time and space. A number of magnetic systems have been deployed in the field, but they have not been adequately calibrated. This has limited the analysis to counting the number of pulses, and not allowed confident estimations of the true amount of sediment transport, sediment texture or particle velocities. We developed a series of lab and flume experiments to calibrate the BMD system used by Tunnicliffe et al (2000). Experiments were run with both artificial and natural stones to isolate the effects of particle size, velocity and magnetic content (susceptibility and moment) on the shape of the recorded signal. A large number of experiments were conducted to cover wide range of flow conditions, particle sizes, and particle velocities. The results show that the system is sensitive enough to detect particles down to at least 8mm. Using artificial stones we were able to relate the signal amplitude, width and area to particle size, velocity and magnetic content. These results suggest that the magnetic system can be used to estimate transport rates in natural streams. Work is continuing with natural stones both in the laboratory and the field to further develop of the system. Tunnicliffe, J., Gottesfeld, A.S., and Mohamed, M. 2000. High-resolution measurement of bedload transport, Hydrological Processes, 14, 2631-2643.

  2. Control of flexible rotor systems with active magnetic bearings

    NASA Astrophysics Data System (ADS)

    Lei, Shuliang; Palazzolo, Alan

    2008-07-01

    An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.

  3. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces.

  4. Magnetic field in the Lobachevsky space and related integrable systems

    SciTech Connect

    Kurochkin, Yu. A. Otchik, V. S.; Ovsiyuk, E. M.

    2012-10-15

    Various possibilities to define analogs of the uniform magnetic field in the Lobachevsky space are considered using different coordinate systems in this space. Quantum mechanical problem of motion in the defined fields is also treated. Variables in the Schroedinger equation are separated and diagonal operators are found. For some cases, exact solutions are obtained.

  5. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2016-07-12

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  6. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  7. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  8. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  9. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  10. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  11. Superconducting magnet system for the WENDELSTEIN 7-X Stellarator

    SciTech Connect

    Sapper, Joerg

    1996-12-31

    The WENDELSTEIN 7-X Stellator is a further experiment in the small group of next-step fusion devices in the world. An essential goal of this machine is to demonstrate concept improvement towards the development of fusion devices. The magnet system is designed for optimum stellator plasma performance and the technical layout will allow steady-state plasma operation. The whole magnet is encapsulated by an inner and outer toroidal cryostat tube for cold operation. The schedule for the experimental device aims at a start of technical operation in 2002 and plasma operation two years later. 4 refs., 9 figs.

  12. Magnetic resonance imaging of the central nervous system

    SciTech Connect

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This text provides an introduction to magnetic resonance imaging (MRI) of disorders of the central nervous system, spine, neck, and nasopharynx. The book offers guidance in performing and interpreting MRI studies for specific clinical problems. Included are more than 800 images showing pathologic findings for various disorders and demonstrating how abnormalities detected in MRI scans can aid both in differential diagnosis and in clinical staging. The book summarizes the basic principles of MRI and describes the major equipment components and contrast agents. A review of the principles and potential applications of magnetic resonance spectroscopy is also included.

  13. Electrostatic stabilizer for a passive magnetic bearing system

    DOEpatents

    Post, Richard F

    2016-10-11

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  14. Electrostatic stabilizer for a passive magnetic bearing system

    SciTech Connect

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  15. Transient coherent synchrotron radiation in magnetic bending systems

    SciTech Connect

    Li, R.; Bohn, L; Bisognano, J.J.

    1996-08-01

    Transient evolution of the power radiated coherently by a charged- particle bunch orbiting between two infinite, parallel conducting plates is calculated. The plates comprise an idealized vacuum pipe in a bending magnet. The bunch moves on a trajectory such that it suddenly diverts from a straight-line path to a circular orbit and begins radiating. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. The effect of the radiation field on beam emittance in a magnetic bending system is also quantified. 18 refs., 1 fig.

  16. The superconducting magnet system for the Tokamak Physics Experiment

    SciTech Connect

    Lang, D.D.; Bulmer, R.J.; Chaplin, M.R.

    1994-06-18

    The superconducting magnet system for the Tokamak Physics experiment (TPX) will be the first all superconducting magnet system for a Tokamak, where the poloidal field coils, in addition to the toroidal field coils are superconducting. The magnet system is designed to operate in a steady state mode, and to initiate the plasma discharge ohmically. The toroidal field system provides a peak field of 4.0 Tesla on the plasma axis at a plasma major radius of 2.25 m. The peak field on the niobium 3-tin, cable-in-conduit (CIC) conductor is 8.4 Tesla for the 16 toroidal field coils. The toroidal field coils must absorb approximately 5 kW due to nuclear heating, eddy currents, and other sources. The poloidal field system provides a total of 18 volt seconds to initiate the plasma and drive a plasma current up to 2 MA. The poloidal field system consists of 14 individual coils which are arranged symmetrically above and below the horizontal mid plane. Four pairs of coils make up the central solenoid, and three paris of poloidal ring coils complete the system. The poloidal field coils all use a cable-in-conduit conductor, using either niobium 3-tin (NB{sub 3}Sn) or niobium titanium (NbTi) superconducting strands depending on the operating conditions for that coil. All of the coils are cooled by flowing supercritical helium, with inlet and outlet connections made on each double pancake. The superconducting magnet system has gone through a conceptual design review, and is in preliminary design started by the LLNL/MIT/PPPL collaboration. A number of changes have been made in the design since the conceptual design review, and are described in this paper.

  17. Magnetic confinement system using charged ammonia targets

    DOEpatents

    Porter, Gary D.; Bogdanoff, Anatoly

    1979-01-01

    A system for guiding charged laser targets to a predetermined focal spot of a laser along generally arbitrary, and especially horizontal, directions which comprises a series of electrostatic sensors which provide inputs to a computer for real time calculation of position, velocity, and direction of the target along an initial injection trajectory, and a set of electrostatic deflection means, energized according to a calculated output of said computer, to change the target trajectory to intercept the focal spot of the laser which is triggered so as to illuminate the target of the focal spot.

  18. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    SciTech Connect

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab.

  19. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, R.G.

    1998-05-05

    Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

  20. High performance magnetic bearing systems using high temperature superconductors

    DOEpatents

    Abboud, Robert G.

    1998-01-01

    A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

  1. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE PAGES

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; ...

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  2. Solenoid Magnet System for the Fermilab Mu2e Experiment

    SciTech Connect

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; Ostojic, R.; Page, T.; Peterson, T.; Popp, J.; Pronskikh, V.; Tang, Z.; Tartaglia, M.; Wake, M.; Wands, R.; Yamada, R.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  3. Design of an opposing pair magnet system for ASTROMAG

    NASA Astrophysics Data System (ADS)

    Marston, P. G.; Hale, J. R.; Vieira, R. F.; Zhukovsky, A.; Titus, P.

    1991-03-01

    A magnet system comprising a pair of self-supporting disk-shaped coils has been designed for the ASTROMAG facility on the space station Freedom. The coils are connected in a quadrupole configuration in order to eliminate their dipole moment. One of the primary requirements of this design is that the magnet coils must have near-perfect structural integrity. To this end, each coil would be manufactured as a monolithic composite in which the superconducting wire is incorporated as one of the components. By utilizing a precision X-Y numerically controlled wiring machine, the coil can be built up in pancake layers by alternating prepreg sheets of fiber/epoxy (e.g., carbon or Kevlar fiber) with a layer of NbTi wire that spirals from OD to ID in one layer, from ID to OD in the next, and so on. Each disk magnet will have an ID of 0.4 m and an OD of 1.7 m. The peak field at the winding will be 7.2 T. The system is to operate at 1.8 K, and Iop/Ic = 0.5. Results of magnetic field and force calculations are presented, and the structural characteristics of the system are described.

  4. Low Inductance pulser system drives a fast magnet at DARHT.

    SciTech Connect

    Rose, E. A.; Bartsch, R. R.; Custer, D. M.; Ekdahl, C. A.; Montoya, R. R.; Smith, J. R.

    2002-01-01

    The DARHT facility [Dual Axis Radiographic Hydrodynamic Test] uses bremsstrahlung radiation from focused electron beams to produce radiographs. To produce a smaller spot size and, thus, a higher quality radiograph, one must be able to control the emittance of the electron beam. To that end, it is necessary to measure emittance. Emittance is measured by focusing the electron beam to a small size, such that the size is dominated by the emittance, as opposed to the space charge. Our electron beam, at 2 kA, 18 MV and 2 ps, would destroy any imaging target, were the full beam to be focused to minimal spot size for the full beam duration. The solution is to focus the beam for a short duration, a few tens of nanoseconds, using a fast solenoid magnet. This paper reports details of the pulsed power system used to drive the segmented magnet. The system consists of twenty pulsers, driving 60 cables to feed two headers on the magnet. The magnet itself consists of 12 individual loops, each segmented in three parts, for inductance reduction. The system is designed to produce one kilogauss over a 15-cm diameter and 60-cm length. The pulsers incorporate spark gaps that produce the main pulse with a half sine period of 125 ns and also clip the tail of the pulse to prevent refocusing of the beam. A five-to-one ratio between the first and second current peaks has been demonstrated [same polarity peaks].

  5. Magnetic resonance imaging of living systems by remote detection

    DOEpatents

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  6. Corrosion of coupled metals in a dental magnetic attachment system.

    PubMed

    Iimuro, F T; Yoneyama, T; Okuno, O

    1993-12-01

    Implants and magnetic attachments are becoming widespread in dental treatment. Their associated use, implants and magnetic attachments, can be seen often too. In those cases, it is difficult to avoid coupling of different metals. The corrosion behavior of the metals is expected to be different depending on whether it is found in an isolated or a coupled condition. Potential corrosion couples in a dental magnetic attachment system among titanium, ferromagnetic stainless steel, gold alloy type IV, and gold-silver-palladium alloy were studied by an immersion test in 1% lactic acid for 7 days and potential/current density curves were measured. Corrosion of titanium and ferromagnetic stainless steel seemed to be accelerated by coupling with gold alloys or gold-silver-palladium alloys. On the other hand, the corrosion amount of gold alloy and gold-silver-palladium alloys were attenuated by coupling.

  7. Flux line depinning in a magnet-superconductor levitation system

    NASA Astrophysics Data System (ADS)

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude ≈2 Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold, dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field. A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  8. Ideal of the perfect magnet-superconducting systems

    SciTech Connect

    Shoaee, H.; Spencer, J.E.

    1983-04-01

    In this report, we study an iron-free, superconducting, elliptical coil quadrupole which has been proposed by General Atomics for use in the SLC final focus system. Beth has shown that such coils might provide a pure quadrupole field ignoring 3-D effects. Similarly, recent studies of rare earth permanent magnets have shown that, at least in principle, these magnets can also be made arbitrarily pure. Since similar claims can be made for conventional iron-core electromagnets either by demanding pure hyperbolic pole contours or using tricks, it is interesting to consider just how wide the gulf between principle and practice really is for each type of magnet and what it takes to bridge it (and where one is most likely to fall off). Here we consider only the superconducting option because its greater strength, variability and linearity make it potentially useful for the SLC and the low-beta insertions of the high energy storage rings such as PEP.

  9. Thermomagnetic recording and magnetic-optic playback system

    NASA Technical Reports Server (NTRS)

    Lewicki, G. W.; Guisinger, J. E. (Inventor)

    1971-01-01

    A magnetic recording and magneto-optic playback system is disclosed wherein thermomagnetic recording is employed. A transparent isotropic film is heated along a continuous path by a focused laser beam. As each successive area of the path is heated locally to the vicinity of its Curie point in the presence of an applied magnetic field, a magneto-optic density is established proportional to the magnetic field and fixed in place as the area cools once the laser beam moves on to an adjacent area. To play back the recorded data, the intensity of the laser beam is reduced to avoid reaching the vicinity of the Curie point of the film as it is scanned by the laser beam in the same manner as for recording. A Faraday effect analyzer and photo detector are employed as a transducer for producing an output signal.

  10. Modeling and Identification of a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Cox, David E. (Editor); Groom, Nelson J. (Editor); Hsiao, Min-Hung; Huang, Jen-Kuang

    1996-01-01

    This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.

  11. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  12. Improved operation of magnetic bearings for flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Zmood, R. B.; Pang, D.; Anand, D. K.; Kirk, J. A.

    1990-01-01

    Analysis and operation of prototype 500-Wh flywheel at low speeds have shown that many factors affect the correct functioning of the magnetic bearings. An examination is made of a number of these, including magnetic bearing control system nonlinearities and displacement transducer positioning, and their effects upon the successful operation of the suspension system. It is observed that the bearing control system is extremely sensitive to actuator parameters such as coil inductance. As a consequence of the analysis of bearing relaxation oscillations, the bearing actuator design methodology which has previously been used, where coil parameter selection is based upon static considerations, has been revised. Displacement transducer sensors which overcome the collocation problem are discussed.

  13. A double magnetic solar cycle and dynamical systems

    NASA Astrophysics Data System (ADS)

    Popova, H.

    Various solar activity data have indicated that along with the well-known 22-year cycle there is a shorter periodicity of about 2 years. To simulate this phenomenon, we constructed a dynamical system, which reproduced double-periodic behaviour of the solar cycle. Such nonlinear dynamical system described the solar αω-dynamo process with variable intensities Rα and Rω of the α-effect and the differential rotation, respectively. We have plotted the time distribution and butterfly diagrams for the poloidal and toroidal magnetic fields with dipole and quadrupole symmetries. The dynamical system with dipole symmetry of the magnetic field reproduces a regime similar to the double cycle at -450 < RαRω < -210. In the case of quadrupole symmetry, this regime exists at -220 < RαRω < -190.

  14. Coarse-fine residual gravity cancellation system with magnetic levitation

    NASA Technical Reports Server (NTRS)

    Salcudean, S. E.; Davis, H.; Chen, C. T.; Goertz, D. E.; Tryggvason, B. V.

    1992-01-01

    Aircraft flight along parabolic trajectories have been proposed and executed in order to achieve low cost, near free fall conditions of moderate duration. This paper describes a six degree of freedom experiment isolation system designed to cancel out residual accelerations due to mechanical vibrations and errors in aircraft trajectory. The isolation system consists of a fine motion magnetic levitator whose stator is transported by a conventional coarse motion stage. The levitator uses wide gap voice coil actuators and has the dual purpose of isolating the experiment platform from aircraft vibrations and actively cancelling residual accelerations through feedback control. The course motion stage tracks the levitated platform in order to keep the levitator's coils centered within their matching magnetic gaps. Aspects of system design, an analysis of the proposed control strategy and simulation results are presented. Feasibility experiments are also discussed.

  15. Magnetically switched power supply system for lasers

    NASA Technical Reports Server (NTRS)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  16. Magnetic systems for wide-aperture neutron polarizers and analyzers

    NASA Astrophysics Data System (ADS)

    Gilev, A. G.; Pleshanov, N. K.; Bazarov, B. A.; Bulkin, A. P.; Schebetov, A. F.; Syromyatnikov, V. G.; Tarnavich, V. V.; Ulyanov, V. A.

    2016-10-01

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4‧ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm2 beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm2 window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm2 window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  17. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  18. PDF4LHC recommendations for LHC Run II

    SciTech Connect

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  19. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; ...

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  20. Magnetic interactions in strongly correlated systems: Spin and orbital contributions

    SciTech Connect

    Secchi, A.; Lichtenstein, A.I.; Katsnelson, M.I.

    2015-09-15

    We present a technique to map an electronic model with local interactions (a generalized multi-orbital Hubbard model) onto an effective model of interacting classical spins, by requiring that the thermodynamic potentials associated to spin rotations in the two systems are equivalent up to second order in the rotation angles, when the electronic system is in a symmetry-broken phase. This allows to determine the parameters of relativistic and non-relativistic magnetic interactions in the effective spin model in terms of equilibrium Green’s functions of the electronic model. The Hamiltonian of the electronic system includes, in addition to the non-relativistic part, relativistic single-particle terms such as the Zeeman coupling to an external magnetic field, spin–orbit coupling, and arbitrary magnetic anisotropies; the orbital degrees of freedom of the electrons are explicitly taken into account. We determine the complete relativistic exchange tensors, accounting for anisotropic exchange, Dzyaloshinskii–Moriya interactions, as well as additional non-diagonal symmetric terms (which may include dipole–dipole interaction). The expressions of all these magnetic interactions are determined in a unified framework, including previously disregarded features such as the vertices of two-particle Green’s functions and non-local self-energies. We do not assume any smallness in spin–orbit coupling, so our treatment is in this sense exact. Finally, we show how to distinguish and address separately the spin, orbital and spin–orbital contributions to magnetism, providing expressions that can be computed within a tight-binding Dynamical Mean Field Theory.

  1. LHC Computing: The First Run and Beyond

    SciTech Connect

    Fisk, Ian

    2012-10-10

    Even in between the last two generations of high energy physics detectors there has been a tremendous amount of progress in the area of computing. The distributed computing systems used in the LHC are composed of large-scale facilities on 5 continents, executing over a million processing requests a day, and moving peta-bytes of data a month. In this presentation I will discuss the operational experience of the LHC experiments and the challenges faced in the first run. I will discuss how the techniques have evolved and I will cover future projects to improve the distributed computing infrastructure and services. I will close by speaking of some potential new technologies being explored.

  2. Stability Issues in Ambient-Temperature Passive Magnetic Bearing Systems

    SciTech Connect

    Post, R.F.

    2000-02-17

    The ambient-temperature passive magnetic bearing system developed at the Lawrence Livermore National Laboratory achieves rotor-dynamic stability by employing special combinations of levitating and stabilizing elements. These elements, energized by permanent magnet material, create the magnetic and electrodynamic forces that are required for the stable levitation of rotating systems, such as energy-storage flywheels. Stability criteria, derived from theory, describe the bearing element parameters, i.e., stiffnesses and damping coefficients, that are required both to assure stable levitation (''Earnshaw-stability''), and stability against whirl-type rotor-dynamic instabilities. The work described in this report concerns experimental measurements and computer simulations that address some critical aspects of this overall stability problem. Experimentally, a test device was built to measure the damping coefficient of dampers that employ eddy currents induced in a metallic disc. Another test device was constructed for the purpose of measuring the displacement-dependent drag coefficient of annular permanent magnet bearing elements. In the theoretical developments a computer code was written for the purpose of simulating the rotor-dynamics of our passive bearing systems. This code is capable of investigating rotor-dynamic stability effects for both small-amplitude transient displacements (i.e., those within the linear regime), and for large-amplitude displacements, where non-linear effects can become dominant. Under the latter conditions a bearing system that is stable for small-amplitude displacements may undergo a rapidly growing rotor-dynamic instability once a critical displacement is exceeded. A new result of the study was to demonstrate that stiffness anisotropy of the bearing elements (which can be designed into our bearing system) is strongly stabilizing, not only in the linear regime, but also in the non-linear regime.

  3. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOEpatents

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  4. Avulsed Nasoenteric Bridle System Magnet as an Intranasal Foreign Body.

    PubMed

    Puricelli, Michael D; Newberry, Christopher Ian; Gov-Ari, Eliav

    2016-02-01

    Nasoenteric tubes provide short-term nutrition support to patients unable to take an adequate oral diet. Bridling systems may be used to secure tubes to guard against displacement. We present the first case of an avulsed magnet from a bridling system to raise awareness of this potential complication. The primary methods of securing a nasogastric tube are reviewed, and comparative assessment of the 3 main systems is presented. Diagnosis and management of nasal foreign bodies relevant to this case are reviewed and prevention/safety considerations discussed.

  5. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.

    PubMed

    Fang, Kun; Song, Lina; Gu, Zhuxiao; Yang, Fang; Zhang, Yu; Gu, Ning

    2015-12-01

    Controlled drug delivery systems have been extensively investigated for cancer therapy in order to obtain better specific targeting and therapeutic efficiency. Herein, we developed doxorubicin-loaded magnetic PLGA microspheres (DOX-MMS), in which DOX was encapsulated in the core and high contents (28.3 wt%) of γ-Fe2O3 nanoparticles (IOs) were electrostatically assembled on the surface of microsphere to ensure the high sensitivity to response of an external alternating current magnetic field (ACMF). The IOs in PLGA shell can both induce the heat effect and trigger shell permeability enhancement to release drugs when DOX-MMs was activated by ACMF. Results show that the cumulative drug release from DOX-MMs exposed to ACMF for 30 min (21.6%) was significantly higher (approximately 7 times higher) than that not exposed to ACMF (2.8%). The combination of hyperthermia and enhanced DOX release from DOX-MMS is beneficial for in vitro 4T1 breast cancer cell apoptosis as well as effective inhibition of tumor growth in 4T1 tumor xenografts. Therefore, the DOX-MMS can be optimized as powerful delivery system for efficient magnetic responsive drug release and chemo-thermal therapy.

  6. Pattern formation in stochastic systems: Magnetized billiards and mitotic spindles

    NASA Astrophysics Data System (ADS)

    Schaffner, Stuart C.

    Physical systems that exhibit chaotic behavior or are subject to thermal noise are treated as random processes, especially if the state of the system cannot be measured precisely. Here we examine two such systems. The first is a single electron confined to a wedge-shaped section of a disk, called a billiard, in the presence of a uniform transverse magnetic field. The system exhibits a mixture of chaotic and nonchaotic behavior at different values of the magnetic field strength. If the size of the billiard is on the order of micrometers, as in a quantum dot, both quantum and classical analyses are necessary. The second system is a collection of stiff fibers, called microtubules, suspended in a fluid called the cytoplasm, and lying over chromosomes in a cell. The cytoplasm supplies molecular motors and fuel for the motors. The chromosomes supply motor attachment points. The combination causes the microtubules to self-assemble into a coherent structure called the mitotic spindle. This structure is vital to cell division in plants and animals. Elements of the mitotic spindle have sizes ranging from nanometers to micrometers, and all are subject to considerable thermal agitation. Mitotic spindle self-assembly occurs despite the randomizing effect of this thermal motion. We studied both systems by constructing physical models described by mathematical equations. From these we were able to perform computer simulations. For the billiard problem, we made innovative use of geometric symmetries. These symmetries allowed us to construct efficient representations of both classical and quantum systems. We found a new region of integrable trajectories for a magnetic field above that required to produce completely chaotic orbits. For the mitotic spindle, we were the first to demonstrate spindle self-assembly in a model that matches conditions reported by experimental biologists. Our simulations have shed significant light on which of the many elements in this complex system are

  7. Chaotic behavior of magnetic field lines near simplest current systems

    NASA Astrophysics Data System (ADS)

    Veselovsky, I. S.; Lukashenko, A. T.

    2016-12-01

    In the context of studying the problem of simulation of magnetic fields on the Sun, the structure of the field in the vicinity of two circular current loops with different mutual arrangement in space is considered. When the symmetry in the arrangement is sufficient, a system of magnetic surfaces created by the closed field lines arises. With a reduction in symmetry, isolated closed lines may exist. For the case of two identical current loops coupled perpendicularly, it is shown that the subsystems of these lines may be ordered in space in a complex manner. At large distances, a system of loops is equivalent to a dipole with a high degree of accuracy, while an approximate winding of the lines on the deformed toroids, encircling each of the loops, occurs at small distances. At intermediate distances, there are regions of both ordered and chaotic behavior of field lines. Results were obtained with the use of the numerical simulation method.

  8. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  9. The 13-inch magnetic suspension and balance system wind tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, William G., Jr.; Dress, David A.

    1989-01-01

    NASA Langley has a small, subsonic wind tunnel in use with the 13-inch Magnetic Suspension and Balance System (MSBS). The tunnel is capable of speeds up to Mach 0.5. This report presents tunnel design and construction details. It includes flow uniformity, angularity, and velocity fluctuation data. It also compares experimental Mach number distribution data with computed results for the General Electric Streamtube Curvature Program.

  10. Superconducting Magnet System for a Low Temperature Laser Scanning Microscope

    DTIC Science & Technology

    2006-09-22

    Our initial studies with the LTLSM bought with this equipment grant show that the intragrain critical current density crosses over with the...SUBTITLE 5a. CONTRACT NUMBER Superconducting Magnet System for a Low Temperature Laser Scanning Microscope 5b. GRANT NUMBER FA9550-05-1-0425 5c...ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Applied Superconductivity Center 1500 Engineering Drive University of Wisconsin -Madison Room 909

  11. New power-conditioning systems for superconducting magnetic energy storage

    NASA Astrophysics Data System (ADS)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  12. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation.

    PubMed

    Sun, Zhen-Jun; Ye, Bo; Sun, Yi; Zhang, Hong-Hai; Liu, Sheng

    2014-07-01

    This article describes a novel magnetically maneuverable capsule endoscope system with direction reference for image navigation. This direction reference was employed by utilizing a specific magnet configuration between a pair of external permanent magnets and a magnetic shell coated on the external capsule endoscope surface. A pair of customized Cartesian robots, each with only 4 degrees of freedom, was built to hold the external permanent magnets as their end-effectors. These robots, together with their external permanent magnets, were placed on two opposite sides of a "patient bed." Because of the optimized configuration based on magnetic analysis between the external permanent magnets and the magnetic shell, a simplified control strategy was proposed, and only two parameters, yaw step angle and moving step, were necessary for the employed robotic system. Step-by-step experiments demonstrated that the proposed system is capable of magnetically maneuvering the capsule endoscope while providing direction reference for image navigation.

  13. Technicolor walks at the LHC

    SciTech Connect

    Belyaev, Alexander; Foadi, Roshan; Frandsen, Mads T.; Jaervinen, Matti; Sannino, Francesco; Pukhov, Alexander

    2009-02-01

    We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable walking technicolor models. We study and compare the Drell-Yan and vector boson fusion mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the Drell-Yan processes. The composite Higgs phenomenology is also studied. If technicolor walks at the LHC, its footprints will be visible and our analysis will help in uncovering them.

  14. Superconducting and hybrid systems for magnetic field shielding

    NASA Astrophysics Data System (ADS)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  15. Output feedback control of a mechanical system using magnetic levitation.

    PubMed

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals.

  16. Design of a three-axis magnetic field measurement system for the magnetic shield of the ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Rong, Chuiyu; Yao, Xu

    2015-10-01

    The magnetic field is one of the main causes of zero drift in a Ring Laser Gyroscope (RLG), which should be avoided by adopting a magnetic shielding system. The Gauss Meter is usually used to measure the magnetic shielding effectiveness. Generally, the traditional Gauss Meter has advantages of high measure range and high reliability, however, its drawbacks such as complex structure, high price and the PC client software cannot be customized at will, are also obvious. In this paper, aiming at a type of experimental magnetic shielding box of RLG, we design a new portable three-axis magnetic field measurement system. This system has both high modularity degree and reliability, with measuring range at ±48Gs, max resolution at 1.5mGs and can measure the magnetic field in x, y and z direction simultaneously. Besides, its PC client software can be easily customized to achieve the automatic DAQ, analysis, plotting and storage functions. The experiment shows that, this system can meet the measuring requirements of certain type of experimental magnetic shielding box for RLG, meanwhile, for the measurement of some other magnetic shielding effectiveness, this system is also applicable.

  17. Pulsed Magnetic Field System for Magnetized Target Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rhodes, M. A.; Solberg, J. M.; Logan, B. G.; Perkins, L. J.

    2014-10-01

    High-magnitude magnetic fields applied to inertially confined targets may improve fusion yield and enable basic science applications. We discuss the development of a pulsed magnetic field system for NIF with the goal of applying 10--70 T to various NIF targets. While the driver may be little more than a spark-gap switched capacitor, numerous complex challenges exist in fielding such a system on NIF. The coil surrounding the metallic hohlraum drives induced current in the hohlraum wall. Both the coil and hohlraum wall must survive ohmic heating and J × B forces for several microseconds. Pulsed power must couple to the coil in the NIF environment. The system must not cause late-time optics damage due to debris. There is very limited volume for the driver in a NIF Diagnostic Instrument Manipulator (DIM). We are modeling the coil and hohlraum MHD effects with the LLNL code, ALE3D. However, the simulations lack complete and accurate data for all the required thermo-physical material properties over the expected range of temperatures (below vaporization) and pressures. Therefore, substantial experimental development is planned in the coming year. We present coil and hohlraum simulations results, overall system design, and progress towards an operational prototype test-stand. LLNL is operated by LLNS, LLC, for the U.S. D.O.E., NNSA under Contract DE-AC52-07NA27344. This work was supported by LLNL LDRD 14-ER-028.

  18. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  19. Status of 11 T 2-in-1 Nb$_3$Sn Dipole Development for LHC

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Apollinari, Giorgio; Barzi, Emanuela; Bossert, Rodger; Buehler, Marc; Chlachidze, Guram; DiMarco, Joseph; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Velev, Gueorgui; Auchmann, Bernhard; Karppinen, Mikko; Rossi, Lucio; Smekens, David

    2014-07-01

    The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.

  20. Impedance simulations and measurements on the LHC collimators with embedded beam position monitors

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Caspers, F.; Kuczerowski, J.; Métral, E.; Mounet, N.; Salvant, B.; Mostacci, A.; Frasciello, O.; Zobov, M.

    2017-01-01

    The LHC collimation system is a critical element for the safe operation of the LHC machine. The necessity of fast accurate positioning of the collimator's jaws, recently introduced the need to have button beam position monitors directly embedded in the jaws extremities of the LHC tertiary collimators and some secondary collimators. This addition led to a new design of these collimators including ferrites to damp higher order modes instead of rf fingers. In this work we will present the impedance bench measurements and simulations on a TCT (Transverse Tertiary Collimator) prototype including estimations for beam stability for the LHC.

  1. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    NASA Astrophysics Data System (ADS)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  2. Reliability analysis for LEB ring magnet power system in SSC

    SciTech Connect

    Smedley, K.

    1991-11-01

    The LEB ring magnet power system contains six subsystems, supervisory control, power supplies, regulation, DC bus, resonant cells, and fault sensing network. The system availability of the total LEB RMPS is required to be 0.999. The work in this paper is to allocate the overall LEB RMPS reliability requirement into reliability requirements for each of the subsystems and lower-tier items. The Feasibility-of-Objective technique combining with engineering experience is the key for the allocation. MIL-HDBK-217F is used to derate SCR components. 7 refs., 5 figs.

  3. System having unmodulated flux locked loop for measuring magnetic fields

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  4. New Magnetically Uniaxial Phases in the Samarium, Iron Binary System.

    NASA Astrophysics Data System (ADS)

    Rani, Raj

    1995-01-01

    For the first time, films magnets of binary rm Sm_5Fe_{17}, and SmFe_{12}, magnetically uniaxial phases have been sputter synthesized without any addition of a phase stabilizing third element. Perpendicular to the film plane, the room temperature saturation magnetization for highly (002) aligned film samples of SmFe_ {12} phase were measured to be 14.3 +/- 0.5 kG and the estimated anisotropy field was 130 +/- 10 kOe. X-ray diffraction studies, hysterisis loop measurements, composition measurements, and projection of moment calculations allowed to identify the SmFe_{12} phase as ThMn_{12} type tetragonal structure with a = 8.438 +/- 0.006 A, and c = 4.805 +/- 0.006 A. Film samples of this phase were synthesized by depositing the material on preheated substrates. For rm Sm_5Fe_{17} phase, the material was first deposited in amorphous form and subsequently crystallized. rm Sm_5Fe_{17 } film samples were synthesized with record high room temperature coercivity of 14.1 kOe for the two element Sm, Fe system. On nitriding rm Sm _2Fe_{17}, profound changes in magnetic properties have occurred, room temperature inplane coercivity rose from 0.75 kOe to 23 kOe. The rm Sm_2Fe_{17}N_ {x} compound retained its parent structure with the cell volume increase of ~7%. The room temperature coercivity as a function of the Sm concentration reached a maximum value of ~23 kOe at a slightly richer than stoichiometric Sm composition. High anisotropy (002) textured film samples of rm Pr(Fe_{12-y-z},Co_{y},Mo _{z})N_{x}, where y = 0-2.5, and z = 0.4-1.0 compounds were synthesized with so far the highest coercivity of 9.4 kOe. X-ray diffraction data showed that the ThMn_{12} type tetragonal structure was retained with a saturation increase in the cell volume over the first 15 minutes of nitriding time at 750 K. The coercivity reached a maximum for nitriding time of 25 minutes of nitriding time. For rm Pr_{1.04}Fe_{10.36 }Co_{1.16}Mo_{0.44}N _{x} sample measured at 293 K, perpendicular to the

  5. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    SciTech Connect

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  6. LBL Magnetic-Measurements Data-Acquisition System

    SciTech Connect

    Green, M.I.; Nelson, D.H.

    1983-03-01

    The LBL Magnetic Measurements Engineering (MME) Group has developed a Real-Time Data Acquisition System (DAS) for magnetic measurements. The design objective was for a system that was versatile, portable, modular, expandable, quickly and easily reconfigurable both in hardware and software, and inexpensive. All objectives except the last were attained. An LSI 11/23 microcomputer is interfaced to a clock-calendar, printer, CRT control terminal, plotter with hard copy, floppy and hard disks, GPIB, and CAMAC buses. Off-the-shelf hardware and software have been used where possible. Operational capabilities include: (1) measurement of high permeability materials; (2) harmonic error analysis of (a) superconducting dipoles and (b) rare earth cobalt (REC) and conventional quadrupole magnets; and (3) 0.1% accuracy x-y mapping with Hall probes. Results are typically presented in both tabular and graphical form during measurements. Only minutes are required to switch from one measurement capability to another. Brief descriptions of the DAS capabilities, some of the special instrumentation developed to implement these capabilities, and planned developments are given below.

  7. Status of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    SciTech Connect

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Araoka, O.; Fugii, Y.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Olamura, T.; Sakashita, K.; Shibata, M.; Suzuki, S.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; Ghosh, A.; Muratore, J.; Parker, B.; Wanderer, P.

    2011-08-03

    The superconducting magnet system for the J-PARC neutrino beam line for the T2K experiment has been served for the beam operation without serious disturbance since April 2009. Present most concern of the system is the operational current limit of superconducting corrector magnets for beam steering due to systematic quenches at lower currents. Operational experience of the magnet system and examples of troubleshoot including countermeasures against the corrector magnet quenches are presented.

  8. A magnetic-resonance-imaging-compatible remote catheter navigation system.

    PubMed

    Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria

    2013-04-01

    A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.

  9. Eruption of huge magnetic systems from the sun

    NASA Astrophysics Data System (ADS)

    Rompolt, B.

    Data are cited to prove that eruptive prominences (EPs) and white light transients (WLTs) of solar flares are both generated by eruptions of large magnetic field systems (MFS) from the solar surface to interplanetary space. Prominence plasma is frozen into the neutral lines before and during an eruption. Complicated interactions occur among the magnetic field lines of the MFS present during a flare event, causing twisting, stretching, breaking and reconnecting of the lines and carrying plasma along in the movement. Skylab, P-78 and SMM data located EPs in the lower part of WLT loops. Photographic plates are reproduced to trace the evolution of an EP and the processes which transfer surface materials into the corona.

  10. Energy and magnetization transport in nonequilibrium macrospin systems

    NASA Astrophysics Data System (ADS)

    Borlenghi, Simone; Iubini, Stefano; Lepri, Stefano; Chico, Jonathan; Bergqvist, Lars; Delin, Anna; Fransson, Jonas

    2015-07-01

    We investigate numerically the magnetization dynamics of an array of nanodisks interacting through the magnetodipolar coupling. In the presence of a temperature gradient, the chain reaches a nonequilibrium steady state where energy and magnetization currents propagate. This effect can be described as the flow of energy and particle currents in an off-equilibrium discrete nonlinear Schrödinger (DNLS) equation. This model makes transparent the transport properties of the system and allows for a precise definition of temperature and chemical potential for a precessing spin. The present study proposes a setup for the spin-Seebeck effect, and shows that its qualitative features can be captured by a general oscillator-chain model.

  11. Strong localization effect in magnetic two-dimensional hole systems

    NASA Astrophysics Data System (ADS)

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Schuh, D.; Hansen, W.; Wegscheider, W.

    2010-01-01

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  12. Magnetic phenomena in nonrigid metal-nitroxide systems

    NASA Astrophysics Data System (ADS)

    Ovcharenko, V.; Fursova, E.; Fokin, S.; Romanenko, G.; Ikorskii, V.

    2004-04-01

    For NiL{2} heterospin bischelates, stereochemical nonrigidity in solution has been found, which leads to solids with varying structure and composition. While investigating the products of Cu(hfac){2} interaction with spin-labeled pyrazole 4,4,5,5-tetramethyl-2-(1-methyl-1H-pyrazol-4-yl)-imidazoline-3-oxide-1-oxyl we have isolated a family of heterospin compounds differing in the structure and composition in the solid state. In synthetic systems, these compounds often co-crystallize and must be separated mechanically. It is also shown that minor variations in the structure of solid heterospin complexes substantially change the magnetic properties of the compounds. Key words. Nitroxides - metal complexes structure - magnetic properties.

  13. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    PubMed

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  14. Tuning the magnetic ground state of a triangular lattice system

    SciTech Connect

    Garlea, Vasile O; Savici, Andrei T; Jin, Rongying

    2011-01-01

    The anisotropic triangular lattice of the crednerite system Cu(Mn$_{1-x}$Cu$_{x}$)O$_{2}$ is used as a basic model for studying the influence of spin disorder on the ground state properties of a two-dimensional frustrated antiferromagnet. Neutron diffraction measurements show that the undoped phase (x=0) undergoes a transition to antiferromagnetic long-range order that is stabilized by a frustration-relieving structural distortion. Small deviation from the stoichiometric composition alters the magnetoelastic characteristics and reduces the effective dimensionality of the magnetic lattice. Upon increasing the doping level, the interlayer coupling changes from antiferromagnetic to ferromagnetic, while the structural distortion is fully suppressed. Concomitantly, the long-range magnetic order is gradually transformed into a two-dimensional order.

  15. Strong localization effect in magnetic two-dimensional hole systems

    SciTech Connect

    Wurstbauer, U.; Knott, S.; Zolotaryov, A.; Hansen, W.; Schuh, D.; Wegscheider, W.

    2010-01-11

    We report an extensive study of the magnetotransport properties of magnetically doped two-dimensional hole systems. Inverted manganese modulation doped InAs quantum wells with localized manganese ions providing a magnetic moment of S=5/2 were grown by molecular beam epitaxy. Strong localization effect found in low-field magnetotransport measurements on these structures can either be modified by the manganese doping density or by tuning the two-dimensional hole density p via field effect. The data reveal that the ratio between p and manganese ions inside or in close vicinity to the channel enlarges the strong localization effect. Moreover, asymmetric broadening of the doping layer due to manganese segregation is significantly influenced by strain in the heterostructure.

  16. Equations for Nonlinear MHD Convection in Shearless Magnetic Systems

    SciTech Connect

    Pastukhov, V.P.

    2005-07-15

    A closed set of reduced dynamic equations is derived that describe nonlinear low-frequency flute MHD convection and resulting nondiffusive transport processes in weakly dissipative plasmas with closed or open magnetic field lines. The equations obtained make it possible to self-consistently simulate transport processes and the establishment of the self-consistent plasma temperature and density profiles for a large class of axisymmetric nonparaxial shearless magnetic devices: levitated dipole configurations, mirror systems, compact tori, etc. Reduced equations that are suitable for modeling the long-term evolution of the plasma on time scales comparable to the plasma lifetime are derived by the method of the adiabatic separation of fast and slow motions.

  17. Design of an opposing pair magnet system for ASTROMAG

    SciTech Connect

    Marston, P.G.; Hale, J.R.; Vieira, R.F.; Zhukovsky, A.; Titus, P.; Sullivan, J.; Dawson, A. . Plasma Fusion Center)

    1991-03-01

    This paper reports on a magnet system comprising a pair of self-supporting disk-shaped coils designed for the ASTROMAG facility on the space station Freedom. The coils are connected in a quadrupole configuration in order to eliminate their dipole moment. One of the primary requirements of this design is that the magnet coils must have near-perfect structural integrity. To this end, each coil would be manufactured as a monolithic composite, in which the superconducting wire is incorporated as one of the components. By utilizing a precision X-Y numerically controlled wiring machine, the coil can be built up in pancake layers, alternating prepreg sheets of fiber/epoxy (e.g., carbon or kevlar fiber) with a layer of NbTi wire that spirals form OD to ID in one layer, from ID to OD in the next, and so on.

  18. Four tops for LHC

    NASA Astrophysics Data System (ADS)

    Alvarez, Ezequiel; Faroughy, Darius A.; Kamenik, Jernej F.; Morales, Roberto; Szynkman, Alejandro

    2017-02-01

    We design a search strategy for the Standard Model t t bar t t bar production at the LHC in the same-sign dilepton and trilepton channels. We study different signal features and, given the small expected number of signal events, we scrutinize in detail all reducible and irreducible backgrounds. Our analysis shows that by imposing a basic set of jet and lepton selection criteria, the SM pp → t t bar t t bar process could be evidenced in the near future, within Run-II, when combining both multi-lepton search channels. We argue that this search strategy should also be used as a guideline to test New Physics coupling predominantly to top-quarks. In particular, we show that a non-resonant New Physics enhancement in the four-top final state would be detectable through this search strategy. We study two top-philic simplified models of this kind, a neutral scalar boson and a Z‧, and present current and future exclusion limits on their mass and couplings.

  19. Alpha Channeling in Open-System Magnetic Devices

    SciTech Connect

    Fisch, Nathaniel

    2016-06-19

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasma were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.

  20. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  1. Optics Studies of the LHC Beam Transfer Line TI8

    SciTech Connect

    J. Wenninger; G. Arduini; B. Goddard; D. Jacquet; V. Kain; M. Lamont; V. Mertens; J.A. Uythoven; Y.-C. Chao

    2005-05-16

    The optics of the newly commissioned LHC beam transfer line TI 8 was studied with beam trajectories, dispersion and profile measurements. Steering magnet response measurements were used to analyze the quality of the steering magnets and of the beam position monitors. A simultaneous fit of the quadrupole strengths was used to search for setting or calibration errors. Residual coupling between the planes was evaluated using high statistics samples of trajectories. Initial conditions for the optics at the entrance of the transfer line were reconstructed from beam profile measurements with Optical Transition Radiation monitors. The paper presents the various analysis methods and their errors. The expected emittance growth arising from optical mismatch into the LHC is evaluated.

  2. Numerical methods and measurement systems for nonlinear magnetic circuits (abstract)

    NASA Astrophysics Data System (ADS)

    Heitbrink, Axel; Dieter Storzer, Hans; Beyer, Adalbert

    1994-05-01

    In the past years an increasing interest in calculation methods of circuits containing magnetic nonlinearities could be observed. For this reason a new method was developed which makes it possible to calculate the steady state solution of such circuits by the help of an interactive cad program. The modular concept of the software allows to separate the circuit into nonlinear and linear subnetworks. When regarding nonlinear magnetic elements one can choose between several numerical models for the description of the hysteresis loops or an inbuilt realtime measurement system can be activated to get the dynamic hysteresis loops. The measurement system is also helpful for the parameter extraction for the numerical hysteresis models. A modified harmonic-balance algorithm and a set of iteration schemes is used for solving the network function. The combination of the realtime measurement system and modern numerical methods brings up a productive total concept for the exact calculation of nonlinear magnetic circuits. A special application class will be discussed which is given by earth-leakage circuit breakers. These networks contain a toroidal high permeable NiFe alloy and a relay as nonlinear elements (cells) and some resistors, inductors, and capacitors as linear elements. As input dc signals at the primary winding of the core any curveform must be regarded, especially 135° phasecutted pulses. These signals with extreme higher frequency components make it impossible to use numerical models for the description of the nonlinear behavior of the core and the relays. So for both elements the realtime measurement system must be used during the iteration process. During each iteration step the actual magnetization current is sent to the measurement system, which measures the dynamic hysteresis loop at the probe. These values flow back into the iteration process. A graphic subsystem allows a look at the waveforms of all voltages and current when the iterations take place. One

  3. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  4. Magnetically damped vibration isolation system for a space shuttle payload

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.; Smith, Christian A.; Haile, William B.

    1996-05-01

    A new vibration isolation system for a Space Shuttle payload is described. Designed for a large optical instrument to be launched aboard the next Hubble Telescope servicing mission, the system uses a set of eight telescoping struts to mount the payload to a shuttle pallet. Each strut is a combination of a titanium coil spring and a passive damper. The latter dissipates energy through eddy currents induced in a conductor moving in a dc magnetic field. The result is a simple, robust, all-metal isolation mount that is linear over a long stroke, relatively insensitive to temperature, and contains no fluids. Design of the system is described and strut- level test results are given along with predictions for system-level isolation under flight loads.

  5. Magnetic Suspension and Balance Systems: A Selected, Annotated Bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle Marie H.; Kilgore, Robert A.; Boyden, Richmond P.

    1983-01-01

    This publication, containing 206 entries, supersedes an earlier bibliography, NASA TM-80225 (April 1980). Citations for 18 documents have been added in this updated version. Most of the additions report results of recent studies aimed at increasing the research capabilities of magnetic suspension and balance systems, e.g., increasing force and torque capability, increasing angle of attack capability, and increasing overall system reliability. Some of the additions address the problem of scaling from the relatively small size of existing systems to much larger sizes. The purpose of this bibliography is to provide an up-to-date list of publications that might be helpful to persons interested in magnetic suspension and balance systems for use in wind tunnels. The arrangement is generally chronological by date of publication. However, papers presented at conferences or meetings are placed under dates of presentation. The numbers assigned to many of the citations have been changed from those used in the previous bibliography. This has been done in order to allow outdated citations to be removed and some recently discovered older works to be included in their proper chronological order.

  6. Development of a micro nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Goloshevsky, Artem

    Application of Nuclear Magnetic Resonance (NMR) to on-line/in-line control of industrial processes is currently limited by equipment costs and requirements for installation. A superconducting magnet generating strong fields is the most expensive part of a typical NMR instrument. In industrial environments, fringe magnetic fields make accommodation of NMR instruments difficult. However, a portable, low-cost and low-field magnetic resonance system can be used in virtually any environment. Development of a number of hardware components for a portable, low-cost NMR instrument is reported in this dissertation. Chapter one provides a discussion on a miniaturized Helmholtz spiral radio-frequency (RF) coil (average diameter equal to 3.5 mm) and an NMR probe built around a capillary (outer diameter = 1.59 mm and inner diameter = 1.02 mm) for flow imaging. Experiments of NMR spectroscopy, static and dynamic (flow) imaging, conducted with the use of the miniaturized coil, are described. Chapter two presents a microfabricated package of two biaxial gradient coils and a Helmholtz RF coil. Planar configuration of discrete wires was used to create magnetic field gradients. Performance of the microfabricated gradient coils while imaging water flow compared well with a commercial gradient set of much larger size. Chapter three reports on flow imaging experiments with power law fluids (aqueous solutions of sodium salt of carboxymethyl cellulose (CMC)) of different viscosities, carried out in the NMR probe with the miniaturized RF coil and capillary. Viscosities of the CMC solutions were determined based on the curve fits of the velocity profiles and simultaneous measurements of the flow rates. The curve fits were carried out according to the power law model equations. The NMR viscosity measurements compared well with measurements of the same CMC samples, performed on a conventional rotational rheometer. A portable, home-built transceiver, designed for NMR applications utilizing a

  7. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    NASA Astrophysics Data System (ADS)

    Valero-Biot, A.

    2014-06-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. The current planning in ATLAS also foresees significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acquisition. This presentation summarizes the various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC instantaneous luminosity during this decade and the next.

  8. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, Thomas D.

    1993-01-01

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The sidewalls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging sidewalls so that the cuts have a substantially dove-tail shape.

  9. The hobbyhorse of magnetic systems: the Ising model

    NASA Astrophysics Data System (ADS)

    Ibarra-García-Padilla, Eduardo; Gerardo Malanche-Flores, Carlos; Poveda-Cuevas, Freddy Jackson

    2016-11-01

    In undergraduate statistical mechanics courses the Ising model always plays an important role because it is the simplest non-trivial model used to describe magnetic systems. The one-dimensional model is easily solved analytically, while the two-dimensional one can be solved exactly by the Onsager solution. For this reason, numerical simulations are usually used to solve the two-dimensional model. Keeping in mind that the two-dimensional model is the platform for studying phase transitions, it is usually an exercise in computational undergraduate courses because its numerical solution is relatively simple to implement and its critical exponents are perfectly known. The purpose of this article is to present a detailed numerical study of the second-order phase transition in the two-dimensional Ising model at an undergraduate level, allowing readers not only to compare the mean-field solution, the exact solution and the numerical one through a complete study of the order parameter, the correlation function and finite-size scaling, but to present the techniques, along with hints and tips, for solving it themselves. We present the elementary theory of phase transitions and explain how to implement Markov chain Monte Carlo simulations and perform them for different lattice sizes with periodic boundary conditions. Energy, magnetization, specific heat, magnetic susceptibility and the correlation function are calculated and the critical exponents determined by finite-size scaling techniques. The importance of the correlation length as the relevant parameter in phase transitions is emphasized.

  10. Molten metal feed system controlled with a traveling magnetic field

    DOEpatents

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  11. Magnetic fields, plasmas, and coronal holes: The inner solar system

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1978-01-01

    In situ magnetic field and plasma observations within 1 AU which describe MDH stream flows and Alfvenic fluctuations, the latest theories of those phenomena are discussed. Understanding of streams and fluctuations was enhanced by the acquisition of nearly complete sets of high resolution plasma and magnetic data simultaneously at two or more points by IMPs 6, 7, and 8, Mariner-Venus-Mercury, HELIOS 1, and HELIOS 2. Observations demonstrate that streams can have very thin boundaries in latitude and longitude near the sun. This has necessitated a revision of earlier views of stream dynamics, for it is now clear that magnetic pressure is a major factor in the dynamics of stream in the inner solar system and that nonlinear phenomena are significant much closer to the sun than previously believed. Simultaneous IMP 6, 7, and 8 observations of Alfvenic fluctuations indicate that they are probably not simply transverse Alfven waves and suggest that Alfvenic fluctuations are better described as nonplanar, large-amplitude, general Alfven waves moving through an inhomogeneous and discontinuous medium, and coupled to a compressive mode.

  12. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  13. Expansion joint for guideway for magnetic levitation transportation system

    DOEpatents

    Rossing, T.D.

    1993-02-09

    An expansion joint that allows a guideway of a magnetic levitation transportation system to expand and contract while minimizing transients occurring in the magnetic lift and drag forces acting on a magnetic levitation vehicle traveling over the joint includes an upper cut or recess extending downwardly from the upper surface of the guideway and a non-intersecting lower cut or recess that extends upwardly from the lower surface of the guideway. The side walls of the cuts can be parallel to each other and the vertical axis of the guideway; the depth of the lower cut can be greater than the depth of the upper cut; and the overall combined lengths of the cuts can be greater than the thickness of the guideway from the upper to lower surface so that the cuts will overlap, but be spaced apart from each other. The distance between the cuts can be determined on the basis of the force transients and the mechanical behavior of the guideway. A second pair of similarly configured upper and lower cuts may be disposed in the guideway; the expansion joint may consist of two upper cuts and one lower cut; or the cuts may have non-parallel, diverging side walls so that the cuts have a substantially dove-tail shape.

  14. Parton distributions with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration

    2013-02-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.

  15. New levitation scheme with AC superconducting magnet for EDS MAGLEV system

    SciTech Connect

    Kim, D.H.; Lee, J.K.; Hahn, S.Y.; Cha, G.

    1996-09-01

    This paper proposes a new magnetic levitation scheme which is able to generate levitation force for all speeds including a standstill. Auxiliary wheels which are needed in EDS MAGLEV vehicle can be eliminated. This scheme uses AC superconducting magnets to generate levitation force. In this paper, magnetic fields, forces and power dissipations generated by AC magnets moving above a conducting slab are calculated analytically. Results of calculation show characteristics of EDS system with AC magnet, such as levitation force and loss, are superior to those of EDS system with DC magnets for all speeds.

  16. 13th International Conference on Magnetically Levitated Systems and Linear Drives

    SciTech Connect

    Not Available

    1993-09-01

    This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.

  17. Broadband ferromagnetic resonance system and methods for ultrathin magnetic films

    NASA Astrophysics Data System (ADS)

    Montoya, Eric; McKinnon, Tommy; Zamani, Atieh; Girt, Erol; Heinrich, Bret

    2014-04-01

    Spintronics requires the development of magnetic thin film structures having a wide range of magnetic properties. Ferromagnetic resonance (FMR) is a well understood experimental technique that has proven to be an invaluable tool to probe the static and dynamic magnetic properties of ultrathin films, multilayer nanostructures, and superlattices. In order to achieve a full characterization of thin film materials, one needs to carry out FMR measurements at a wide range of microwave frequencies. In this paper, we show that one does not have to use a broadband vector network analyzer; similar performance can be achieved by using a broadband microwave signal generator, a coplanar waveguide, and a broadband microwave detector. To obtain a good signal to noise ratio, one needs to employ a modulation technique in order to use lock-in detection; in this paper, we use low frequency external field modulation (105 Hz) and microwave power amplitude pulse modulation (10 kHz). The sensitivity and the performance of this broadband microwave system is demonstrated on two types of samples: molecular beam epitaxy grown single crystal GaAs(001)/Fe/Au and sputter deposited textured Si(111)/Ta/Ru/Co/Ru superlattice structures. The samples were mounted on a coplanar waveguide, allowing one a broadband measurement, ~0.1-50 GHz, of DC field swept FMR signals. The results are compared to traditional field swept, field modulated measurements in microwave cavity resonators. Despite the fact that the FMR signal can be very different from that obtained by standard microwave cavities, we show that the analysis of the FMR signal is fairly simple using an admixture of the in-phase and out-of-phase components of rf susceptibility and that the resulting fitted magnetic parameters are in excellent agreement. Additionally, we demonstrate that microwave power amplitude pulse modulation can be used to greatly speed up data collection times, especially for very weak and broad FMR signals.

  18. DEVELOPMENT OF A PRECISE MAGNETIC FIELD MEASUREMENT SYSTEM FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    WANDERER,P.; ESCALLIER,J.; GANETIS,G.; JAIN,A.; LOUIE,W.; MARONE,A.; THOMAS,R.

    2003-06-15

    Several recent applications for fast ramped magnets have been found that require precise measurement of the time-dependent fields. In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the typical level of accuracy for accelerators, {Delta} B/B better than 0.01%. To meet this need, we have begun development of a system containing 16 stationary pickup windings that will be sampled at a high rate. It is hoped that harmonics through the decapole can be measured with this system. Precise measurement of the time-dependent harmonics requires that both the pickup windings and the voltmeters be nearly identical. To minimize costs, printed circuit boards are being used for the pickup windings and a combination of amplifiers and ADC's for voltmeters. In addition, new software must be developed for the analysis. The paper will present a status report on this work.

  19. Magnet-Based System for Docking of Miniature Spacecraft

    NASA Technical Reports Server (NTRS)

    Howard, Nathan; Nguyen, Hai D.

    2007-01-01

    A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.

  20. Cluster analysis in systems of magnetic spheres and cubes

    NASA Astrophysics Data System (ADS)

    Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

  1. High throughput SNP detection system based on magnetic nanoparticles separation.

    PubMed

    Liu, Bin; Jia, Yingying; Ma, Man; Li, Zhiyang; Liu, Hongna; Li, Song; Deng, Yan; Zhang, Liming; Lu, Zhuoxuan; Wang, Wei; He, Nongyue

    2013-02-01

    Single-nucleotide polymorphism (SNP) was one-base variations in DNA sequence that can often be helpful to find genes associations for hereditary disease, communicable disease and so on. We developed a high throughput SNP detection system based on magnetic nanoparticles (MNPs) separation and dual-color hybridization or single base extension. This system includes a magnetic separation unit for sample separation, three high precision robot arms for pipetting and microtiter plate transferring respectively, an accurate temperature control unit for PCR and DNA hybridization and a high accurate and sensitive optical signal detection unit for fluorescence detection. The cyclooxygenase-2 gene promoter region--65G > C polymorphism locus SNP genotyping experiment for 48 samples from the northern Jiangsu area has been done to verify that if this system can simplify manual operation of the researchers, save time and improve efficiency in SNP genotyping experiments. It can realize sample preparation, target sequence amplification, signal detection and data analysis automatically and can be used in clinical molecule diagnosis and high throughput fluorescence immunological detection and so on.

  2. Simplified Analytical Model of a Six-Degree-of-Freedom Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    A simplified analytical model of a six-degree-of-freedom large-gap magnetic suspension system is presented. The suspended element is a cylindrical permanent magnet that is magnetized in a direction which is perpendicular to its axis of symmetry. The actuators are air core electromagnets mounted in a planar array. The analytical model consists of an open-loop representation of the magnetic suspension system with electromagnet currents as inputs.

  3. Design and construction of a hyperthermia system with improved interaction of magnetic induction-heating.

    PubMed

    Huang, Chi-Fang; Lin, Xi-Zhang; Lo, Wei-Hung

    2010-01-01

    For the applications of localized hyperthermia, an improved magnetic induction-heating system is described. The associated components of this system, for example, coils for generating magnetic field, magnetic circuit for flux path, and ferrite needles for generating heat by magnetic induction, all have been explained. An animal experiment of induction-heating hyperthermia for rat's liver is also carried out, and the consequent pathology of Hematoxylin and Eosin (H&E) stain and NADPH oxidase activity assay are also conducted for evaluation.

  4. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    SciTech Connect

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander V.

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  5. Performance of the LHCb RICH detector at the LHC.

    PubMed

    Adinolfi, M; Aglieri Rinella, G; Albrecht, E; Bellunato, T; Benson, S; Blake, T; Blanks, C; Brisbane, S; Brook, N H; Calvi, M; Cameron, B; Cardinale, R; Carson, L; Contu, A; Coombes, M; D'Ambrosio, C; Easo, S; Egede, U; Eisenhardt, S; Fanchini, E; Fitzpatrick, C; Fontanelli, F; Forty, R; Frei, C; Gandini, P; Gao, R; Garra Tico, J; Giachero, A; Gibson, V; Gotti, C; Gregson, S; Gys, T; Haines, S C; Hampson, T; Harnew, N; Hill, D; Hunt, P; John, M; Jones, C R; Johnson, D; Kanaya, N; Katvars, S; Kerzel, U; Kim, Y M; Koblitz, S; Kucharczyk, M; Lambert, D; Main, A; Maino, M; Malde, S; Mangiafave, N; Matteuzzi, C; Mini', G; Mollen, A; Morant, J; Mountain, R; Morris, J V; Muheim, F; Muresan, R; Nardulli, J; Owen, P; Papanestis, A; Patel, M; Patrick, G N; Perego, D L; Pessina, G; Petrolini, A; Piedigrossi, D; Plackett, R; Playfer, S; Powell, A; Rademacker, J H; Ricciardi, S; Rogers, G J; Sail, P; Sannino, M; Savidge, T; Sepp, I; Sigurdsson, S; Soler, F J P; Solomin, A; Soomro, F; Sparkes, A; Spradlin, P; Storaci, B; Thomas, C; Topp-Joergensen, S; Torr, N; Ullaland, O; Vervink, K; Voong, D; Websdale, D; Wilkinson, G; Wotton, S A; Wyllie, K; Xing, F; Young, R

    The LHCb experiment has been taking data at the Large Hadron Collider (LHC) at CERN since the end of 2009. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2-100 GeV/c. The operation and control, software, and online monitoring of the RICH system are described. The particle identification performance is presented, as measured using data from the LHC. Excellent separation of hadronic particle types (π, K, p) is achieved.

  6. An Introduction to the LHC Olympics

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew; Armour, Kyle; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is an introduction to how such an LHC Olympics study is done. Various basic analysis tools and techniques are discussed.

  7. Baseline review of the U.S. LHC Accelerator project

    SciTech Connect

    1998-02-01

    The Department of Energy (DOE) Review of the U.S. Large Hadron Collider (LHC) Accelerator project was conducted February 23--26, 1998, at the request of Dr. John R. O`Fallon, Director, Division of High Energy Physics, Office of Energy Research, U.S. DOE. This is the first review of the U.S. LHC Accelerator project. Overall, the Committee found that the U.S. LHC Accelerator project effort is off to a good start and that the proposed scope is very conservative for the funding available. The Committee recommends that the project be initially baselined at a total cost of $110 million, with a scheduled completion data of 2005. The U.S. LHC Accelerator project will supply high technology superconducting magnets for the interaction regions (IRs) and the radio frequency (rf) straight section of the LHC intersecting storage rings. In addition, the project provides the cryogenic support interface boxes to service the magnets and radiation absorbers to protect the IR dipoles and the inner triplet quadrupoles. US scientists will provide support in analyzing some of the detailed aspects of accelerator physics in the two rings. The three laboratories participating in this project are Brookhaven National Laboratory, Fermi National Accelerator Laboratory (Fermilab), and Lawrence Berkeley National Laboratory. The Committee was very impressed by the technical capabilities of the US LHC Accelerator project team. Cost estimates for each subsystem of the US LHC Accelerator project were presented to the Review Committee, with a total cost including contingency of $110 million (then year dollars). The cost estimates were deemed to be conservative. A re-examination of the funding profile, costs, and schedules on a centralized project basis should lead to an increased list of deliverables. The Committee concluded that the proposed scope of US deliverables to CERN can be readily accomplished with the $110 million total cost baseline for the project. The current deliverables should serve as

  8. A Magnetic Bumper-Tether System Using ZFC Y123

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad; Obot, Victor; Liu, Jianxiong; Arndt, G. D.

    1996-01-01

    We consider the use of magnetic forces in a bumper system, to soften docking procedures. We investigate a system which exhibits no magnetic field except during the docking process, which, if desired, can automatically tether two craft together, and which provides lateral stability during docking. A system composed of zero field cooled Y(1.7)Ba2Cu3O(7-delta) (Y123) tiles and electromagnets is proposed. The Y123 high temperature superconductor (HTS) is mounted on one craft, and the electromagnet on the other. Results of small prototype laboratory experiments are reported. The electromagnet has, for convenience, been replaced by a permanent SmCo ferromagnet in these measurements. When the two craft approach, a mirror image of the ferromagnet is induced in the Y123, and a repulsive bumper force, F(sub B), results. F(sub B) is velocity dependent, and increases with v. For presently available HTS materials, bumper pressure of approx. 3.7 N/cm(exp 2) is achieved using SmCo. This extrapolates to approx. 18 N/cm(exp 2) for an electromagnet, or a force of up to 20 tons for a 1 m(exp 2) system. After reaching a minimum distance of approach, the two colliding craft begin to separate. However, the consequent change of SmCo magnetic field at the Y123 results in a reversal of current in the Y123 so that the Y123 is attractive to the SmCo. The attractive (tether) force, F(sub T), is a function of R = B(sub Fe)/B(sub t, max), where B(sub Fe) is the field at the surface of the ferromagnet, and B(sub t, max) is the maximum trapped field of the Y123, i.e., the trapped field in the so-called critical state. For R greater than or equal to 2, F(sub T) saturates at a value comparable to F(sub B). For a range of initial approach velocities the two craft are tethered following the bumper sequence. Most of the kinetic energy of the collision is first converted to magnetic field energy in the Y123, and then into heat via the creep mechanism. About 15% of the work done against magnetic forces

  9. Testing the Muon g-2 Anomaly at the LHC

    DOE PAGES

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; ...

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  10. Testing the Muon g-2 Anomaly at the LHC

    SciTech Connect

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment, $a_{\\mu} = (g_{\\mu}-2)/2$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $a_{\\mu}$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.

  11. Tank waste remediation system milestone report magnetic separation of tank waste: Surrogate system separations report

    SciTech Connect

    Avens, L.R.; Worl, L.A.; Schake, A.R.; Padilla, D.D.; de Aguero, K.J.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.

    1994-01-14

    High-level radioactive waste (HLW) has been stored in large underground storage tanks (UST) at the US Department of Energy`s Hanford Site since 1944. More than 253,000 m{sup 3} of waste have been accumulated in 177 tanks. The waste consists of many different chemicals and are in the form of liquids, slurries, salt cakes and sludges. A magnetic separation effort at Los Alamos National Laboratory is funded through the Tank Waste Remediation System (TWRS) to explore the use of high-gradient magnetic separation (HGMS) for tank waste segregation. The concept is to concentrate into a low volume waste stream, all or most of the magnetic components, which include actinide compounds, most of the fission products and precious metals. As a first step in this process investigations were made on surrogate systems. This milestone report discusses the HGMS results on these systems.

  12. Evolving Requirements for Magnetic Tape Data Storage Systems

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  13. Of magnetic imaging system experiments and micro electro-mechanical systems "of mise and MEMS"

    NASA Astrophysics Data System (ADS)

    Patterson, William C.

    Magnetic fields can occur over an extremely broad range of amplitudes, and spatial and temporal scales. Practical scientific and engineering systems have fields ranging in strength from pico-tesla to hundreds of tesla. Furthermore, spatial variations can range in scale from nanometers to tens of meters, and temporal variations can range from picoseconds to hours. Due to these large variations, many different devices and methods have been previously designed for measuring and mapping magnetic fields. The primary application area for the systems developed here is magnetic microsystems. Such systems make use of one or more microscale electromagnets, soft magnets, and/or permanent magnets for sensors, actuators, inductors, electronics, biomedical devices, etc. A single magnet dimension may range from one mum to hundreds of mum, and the overall area of interest may span over distances of millimeters to centimeters. To map the stray fields from such structures, a field measurement tool must be capable of measuring fields ranging from mT to T, while mapping over distances of millimeters with a spatial resolution of approximately one mum. This current study is focused only on static fields, but time-varying fields are of great interest and could be addressed in further research. This research focuses on the development of two tools that meet the requirements of microscale magnetic measurements. The first tool is based on an optical method and excels at extremely rapid measurements of large spatial regions. The second tool is a raster based system that focuses on high magnetic and spatial accuracy. The optical system quantitatively maps the stray magnetic fields of microscale magnetic structures with field resolution down to 50 muT and spatial resolution down to 4 mum. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane

  14. L'Aventure du LHC

    SciTech Connect

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  15. Electroweak physics at the LHC

    NASA Astrophysics Data System (ADS)

    Berryhill, J.; Oh, A.

    2017-02-01

    The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of proton-proton collisions at center-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5 and 20 {{fb}}-1, respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This article reviews the status of electroweak measurements of the ATLAS, CMS and LHCb experiments at the LHC.

  16. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  17. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  18. LHC Symposium 2003: Summary Talk

    SciTech Connect

    Jeffrey A. Appel

    2003-08-12

    This summary talk reviews the LHC 2003 Symposium, focusing on expectations as we prepare to leap over the current energy frontier into new territory. We may learn from what happened in the two most recent examples of leaping into new energy territory. Quite different scenarios appeared in those two cases. In addition, they review the status of the machine and experiments as reported at the Symposium. Finally, I suggest an attitude which may be most appropriate as they look forward to the opportunities anticipated for the first data from the LHC.

  19. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  20. Calibration and Data Analysis for the KCIF Fast Magnetics System

    SciTech Connect

    Heeter, R. F.; Fasoli, A. F.; Ali-Arshad, A. S.; Moret, J, M.

    2000-03-01

    Alfven Eigenmodes (AEs) and other magnetohydrodynamic (MHD) phenomena have been studied at the Joint European Torus (JET) using a new 8-channel, 4 s, 1 MHz, 12-bit data acquisition system KC1F in conjunction with the JET fast Mirnov magnetic fluctuation pickup coils. The JET magnetic pickup coils were calibrated for the first time in the range 30-460 kHz using a new remote calibration technique which accounts for the presence of the first few LRC circuit resonances. A data-processing system has been developed within the MATLAB software environment to produce spectrograms of fluctuation amplitude and toroidal mode number versus frequency and time. The analysis software has been automated to allow routine overnight production of spectrogram web pages. Modes with amplitudes {delta}B/B {ge} 10{sup -8} and toroidal mode numbers |n| < 32 are now routinely detected. A pulse-characterization database has also been developed to select for the analysis of various useful subsets of the 4000+ JET discharges for which KC1F data is now available. Based on the work presented here and recent advances in data-acquisition technology, it should now be possible to obtain complete diagnostic data on the AEs.

  1. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    NASA Astrophysics Data System (ADS)

    Enemark, Søren; Santos, Ilmar F.

    2016-02-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved in the frequency domain by the methods of Finite Difference and pseudo-arclength continuation. The theoretical findings are validated against experiments carried out using a dedicated test-rig and a special device for characterisation of the magnetic anisotropy. The characterisation of the magnetic anisotropy shows that it can be quantified as magnetic eccentricities having an amplitude and a phase, which result in linear and parametric excitation. The magnetic eccentricities are also determined using the steady-state response of the rotor-bearing system due to forcing from the magnetic anisotropies and several levels of mass imbalance. Discrepancies in the results from the two methods in terms of magnetic eccentricity magnitude are due to additional geometric eccentricities in the shaft. The steady-state system response shows clear nonlinear phenomena, e.g. bent resonance peaks, jump phenomena and nonlinear cross-coupling between the two orthogonal directions, especially during counter-phase motion between shaft and bearings. The clear nonlinear behaviour is facilitated by the lack of damping resulting in relatively large vibrations. The overall nonlinear dynamic behaviour is well captured by the theoretical model, thereby validating the modelling approach.

  2. The design considerations for a superconducting magnetic bearing system

    NASA Astrophysics Data System (ADS)

    Cansiz, Ahmet; Yildizer, Irfan

    2014-09-01

    In this paper a high temperature superconducting magnetic bearing is studied with various design considerations. The design of the bearing consists of a rotor with 7.5 kg mass. The stable levitation of the rotor is provided with the Evershed type and superconducting components. The dynamic stability of the rotor is strengthened with the electromagnetic and electrodynamic levitation techniques. The force on the rotor is predicted in terms of semi-analytical frozen image model. The designed driving system sustains stable levitation during the rotation of the rotor and achieves higher rotational speed than that of the torque driver. The results indicate that the designed rotor and driving system have potential solutions for the development of the superconducting flywheel energy storage.

  3. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  4. Nanoscale magnetic stirring bars for heterogeneous catalysis in microscopic systems.

    PubMed

    Yang, Shuliang; Cao, Changyan; Sun, Yongbin; Huang, Peipei; Wei, Fangfang; Song, Weiguo

    2015-02-23

    Nanometer-sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3 O4 -NC-PZS-Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two-step process. In the hydrogenation of styrene, Fe3 O4 -NC-PZS-Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3 O4 -NC-PZS-Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3 O4 -NC-PZS-Pd could be used as nanoscale stirring bars in nanoreactors.

  5. An assessment of the performance of the Spanwise Iron Magnet rolling moment generating system for magnetic suspension and balance systems using the finite element computer program GFUN

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1982-01-01

    The development of a powerful method of magnetic roll torque generation is essential before construction of a large magnetic suspension and balance system (LMSBS) can be undertaken. Some preliminary computed data concerning a relatively new dc scheme, referred to as the spanwise iron magnet scheme are presented. Computations made using the finite element computer program 'GFUN' indicate that adequate torque is available for at least a first generation LMSBS. Torque capability appears limited principally by current electromagnet technology.

  6. A Digital Control Algorithm for Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britton, Thomas C.

    1996-01-01

    An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.

  7. Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Agiotis, L.; Theodorakos, I.; Samothrakitis, S.; Papazoglou, S.; Zergioti, I.; Raptis, Y. S.

    2016-03-01

    Magnetic nanoparticles (MNPs), such as superparamagnetic iron oxide nanoparticles (SPIONS), have attracted major interest, due to their small size and unique magnetic properties, for drug delivery applications. In this context, iron oxide nanoparticles of magnetite (Fe3O4) (150 nm magnetic core diameter), were used as drug carriers, aiming to form a magnetically controlled nano-platform. The navigation capabilities of the iron oxide nanoparticles in a microfluidic channel were investigated by simulating the magnetic field and the magnetic force applied on the magnetic nanoparticles inside a microfluidic chip. The simulations have been performed using finite element method (ANSY'S software). The optimum setup which intends to simulate the magnetic navigation of the nanoparticles, by the use of MRI-type fields, in the human circulatory system, consists of two parallel permanent magnets to produce a homogeneous magnetic field, in order to ensure the maximum magnetization of the magnetic nanoparticles, an electromagnet for the induction of the magnetic gradients and the creation of the magnetic force and a microfluidic setup so as to simulate the blood flow inside the human blood vessels. The magnetization of the superparamagnetic nanoparticles and the consequent magnetic torque developed by the two permanent magnets, together with the mutual interactions between the magnetized nanoparticles lead to the creation of rhabdoid aggregates in the direction of the homogeneous field. Additionally, the magnetic gradients introduced by the operation of the electromagnet are capable of directing the aggregates, as a whole, to the desired direction. By removing the magnetic fields, the aggregates are disrupted, due to the super paramagnetic nature of the nanoparticles, avoiding thus the formation of undesired thrombosis.

  8. Magnetic polaritons in four-sublattice magnetic systems of the G zF x type

    NASA Astrophysics Data System (ADS)

    Barnaś, J.; Stasch, A.

    1983-12-01

    Magnetic polaritons in four-sublattice magnetic compounds of the space symmetry D162 h with magnetic ordering of the G zF x and G z types, like KMnF 3, RbFeF 3 etc., are considered. Dispersion curves of mixed states of photons and all four magnetic modes are given for some peculiar directions of propagation. The interaction between photons and high-frequency (optic) magnetic modes is shown to be significantly weaker than that between photons and low-frequency spin waves.

  9. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  10. Digital Control Analysis and Design of a Field-Sensed Magnetic Suspension System

    PubMed Central

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-01-01

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems. PMID:25781508

  11. Digital control analysis and design of a field-sensed magnetic suspension system.

    PubMed

    Li, Jen-Hsing; Chiou, Juing-Shian

    2015-03-13

    Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.

  12. High temperature superconducting current leads for fusion magnet systems

    SciTech Connect

    Wu, J.L.; Dederer, J.T.; Singh, S.K. . Science and Technology Center); Hull, J.R. )

    1991-01-01

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  13. Particle Physics on the Eve of Lhc

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2009-01-01

    Fundamentals of particle physics. The quantum number of color, colored quarks and dynamic models of Hadrons composed of quasifree quarks / V. Matveev, A. Tavkhelidze. Discovery of the color degree of freedom in particle physics: a personal perspective / O. W. Greenberg. The evolution of the concepts of energy, momentum, and mass from Newton and Lomonosov to Einstein and Feynman / L. Okun -- Physics at accelerators and studies in SM and beyond. Search for new physics at LHC (CMS) / N. Krasnikov. Measuring the Higgs Boson(s) at ATLAS / C. Kourkoumelis. Beyond the standard model physics reach of the ATLAS experiment / G. Unel. The status of the International Linear Collider / B. Foster. Review of results of the electron-proton collider HERA / V. Chekelian. Recent results from the Tevatron on CKM matrix elements from Bs oscillations and single top production, and studies of CP violation in Bs Decays / J. P. Fernández. Direct observation of the strange b Barion [symbol] / L. Vertogradov. Search for new physics in rare B Decays at LHCb / V. Egorychev. CKM angle measurements at LHCb / S. Barsuk. Collider searches for extra spatial dimensions and black holes / G. Landsberg -- Neutrino Physics. Results of the MiniBooNE neutrino oscillation experiment / Z. Djurcic. MINOS results and prospects / J. P. Ochoa-Ricoux. The new result of the neutrino magnetic moment measurement in the GEMMA experiment / A. G. Beda ... [et al.]. The Baikal neutrino experiment: status, selected physics results, and perspectives / V. Aynutdinov ... [et al.]. Neutrino telescopes in the deep sea / V. Flaminio. Double beta decay: present status / A. S. Barabash. Beta-beams / C. Volpe. T2K experiment / K. Sakashita. Non-standard neutrino physics probed by Tokai-to-Kamioka-Korea two-detector complex / N. Cipriano Ribeiro ... [et al.]. Sterile neutrinos: from cosmology to the LHC / F. Vannucci. From Cuoricino to Cuore towards the inverted hierarchy region / C. Nones. The MARE experiment: calorimetric

  14. Methods, systems and devices for detecting threatening objects and for classifying magnetic data

    DOEpatents

    Kotter, Dale K [Shelley, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Spencer, David F [Idaho Falls, ID

    2012-01-24

    A method for detecting threatening objects in a security screening system. The method includes a step of classifying unique features of magnetic data as representing a threatening object. Another step includes acquiring magnetic data. Another step includes determining if the acquired magnetic data comprises a unique feature.

  15. Spin Measurement in Top Quark Events at the LHC

    SciTech Connect

    Linacre, Jacob

    2015-01-01

    Measurements of polarisation and spin correlations are presented in events with top quarks produced in pp collisions at the LHC. The data correspond to integrated luminosities of $5 fb^{-1}$ at $\\sqrt{s}$ = 7 TeV and 20 $fb^{-1}$ at $\\sqrt{s}$ = 8 TeV collected with the ATLAS and CMS detectors. The top quark polarization is measured in both single top quark production in the t-channel and $t\\bar{t}$ pair-production, from the angular distributions of charged leptons in the rest frame of their parent top quark. The spin correlations are measured in $t\\bar{t}$ events using various angular distributions of the decay products. The measurements are made using both template fitting methods and by unfolding the distributions to the parton-level, where differential measurements with respect to the invariant mass, rapidity, and transverse momentum of the $t\\bar{t}$ system are also made. The spin correlation measurements are used to search for new physics in the form of a light top squark or an anomalous top quark chromo-magnetic dipole moment. All measurements are found to be in agreement with predictions of the standard model.

  16. Development of a temperature-variable magnetic resonance imaging system using a 1.0 T yokeless permanent magnet

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Tamada, D.; Kose, K.

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5 °C to 45 °C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.

  17. Development of a temperature-variable magnetic resonance imaging system using a 1.0T yokeless permanent magnet.

    PubMed

    Terada, Y; Tamada, D; Kose, K

    2011-10-01

    A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties.

  18. First Attempts at using Active Halo Control at the LHC

    SciTech Connect

    Wagner, Joschka; Bruce, Roderik; Garcia Morales, Hector; Höfle, Wolfgang; Kotzian, Gerd; Kwee-Hinzmann, Regina; Langner, Andy; Mereghetti, Alessio; Quaranta, Elena; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen; Stancari, Giulio; Tomás, Rogelio; Valentino, Gianluca; Valuch, Daniel

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  19. Magnetic reversal dynamics of a quantum system on a picosecond timescale.

    PubMed

    Klenov, Nikolay V; Kuznetsov, Alexey V; Soloviev, Igor I; Bakurskiy, Sergey V; Tikhonova, Olga V

    2015-01-01

    We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.

  20. Robustness and control of a magnetically levitated transportation system

    NASA Astrophysics Data System (ADS)

    Oleszczuk, Grzegorz

    2006-04-01

    Electromagnetic suspension of Magnetic Levitation Vehicles (Maglev) has been studied for many years as an alternative to wheel-on rail transportation systems. In this work, design and implementation of control systems for a Maglev laboratory experiment and a Maglev vehicle under development at Old Dominion University are described. Both plants are modeled and simulated with consideration of issues associated with system non-linearity, structural flexibility and electromagnetic force modeling. Discussion concerning different control strategies, namely centralized and decentralized approaches are compared and contrasted in this work. Different types of electromagnetic non-linearities are considered and described to establish a convenient method for modeling such a system. It is shown how a Finite Element structural model can be incorporated into the system to obtain transfer function notation. Influence of the dynamic interaction between the Maglev track and the Maglev vehicle is discussed and supported by both analytical results and theoretical examples. Finally, several control laws designed to obtain stable and robust levitation are explored in detail.

  1. Characterization of the ELIMED prototype permanent magnet quadrupole system

    NASA Astrophysics Data System (ADS)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  2. Ultra-fast parallel magnetic resonance imaging of granular systems

    NASA Astrophysics Data System (ADS)

    Penn, Alexander; Pruessmann, Klaas P.; Müller, Christoph

    2015-03-01

    Several non-intrusive techniques have been applied to probe the dynamics of two-phase granular systems, with the most prominent examples being X-ray tomography, positron emission particle tracking (PEPT), electrical capacitance tomography and magnetic resonance imaging (MRI). MRI comes with the particular advantage that by implementing suitable pulse sequences not only spin densities (i.e. voidage), but also velocity, acceleration, diffusion and chemical reactions can be measured. However, so far the investigation of two-phase granular systems has been performed on relatively small-bore systems (max. diameter 60 mm). Such systems are, however, heavily influenced by wall effects. Furthermore, largely only single-coil detection has been employed, limiting severely the temporal resolution of the data acquisition. Here, we report the acquisition of ultra-fast MRI measurements in large volume vessels using medical MRI scanners. Specifically, parallel MRI, i.e. the simultaneous use of multiple receiver coils, has been exploited to speed up the data acquisition. In combination with advanced pulse sequences, we were able to probe the rapid dynamics (voidage and velocity measurements) of gas-solid systems.

  3. Pixel DAQ and trigger for HL-LHC

    NASA Astrophysics Data System (ADS)

    Morettini, P.

    2017-03-01

    The read-out is one of the challenges in the design of a pixel detector for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), that is expected to operate from 2026 at a leveled luminosity of 5 × 1034 cm‑2 s‑1. This is especially true if tracking information is needed in a low latency trigger system. The difficulties of a fast read-out will be reviewed, and possible strategies explained. The solutions that are being evaluated by the ATLAS and CMS collaborations for the upgrade of their trackers will be outlined and ideas on possible development beyond HL-LHC will be presented.

  4. PHOBOS in the LHC era

    SciTech Connect

    Steinberg, Peter

    2015-01-15

    The PHOBOS experiment ran at the RHIC collider from 2000 to 2005, under the leadership of Wit Busza. These proceedings summarize selected PHOBOS results, highlighting their continuing relevance amidst the wealth of new results from the lead–lead program at the Large Hadron Collider (LHC)

  5. Heavy Quark Photoproduction at LHC

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Meneses, A. R.; Machado, M. V.

    2010-11-01

    In this work we calculate the inclusive and difractive photoproduction of heavy quarks in proton-proton collisions at LHC energies within the color dipole picture employing three phenomenological saturation models based on the color glass condensate formalism. Our results demonstrate that the experimental analyzes of these reactions is feasible and that the cross sections are sensitive to the underlying parton dynamics.

  6. Inelastic diffraction at the LHC

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-03-01

    The relativistic scattering was one of the scientific fields where Academician V.G. Kadyshevsky has made an important and highly cited contribution [1]. In this paper we discuss the high-energy dependencies of diffractive and non-diffractive inelastic cross-sections in view of the recent LHC data which reveal a presence of the reflective scattering mode.

  7. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Izquierdo Bermudez, S.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Tartaglia, M.; Turrioni, D.; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  8. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  9. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  10. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    SciTech Connect

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.; Ferracin, P.; Sabbi, G.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  11. Influence of an electric field on the ferromagnetic resonance in a plane-layered magnetic system

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2016-11-01

    The influence of an electric field on the ferromagnetic resonance (FMR) in a multilayer magnetic system consisting of two magnetic layers separated by a thin nonmagnetic interlayer has been investigated. It has been shown that, upon the excitation of magnetization oscillations by a microwave magnetic field, the eigenfrequencies of the ferromagnetic resonance depend on the stationary electric field applied in the plane of the layers. It has also been demonstrated that, in this system, high-frequency magnetization oscillations can be excited by an electric microwave field. The results of the investigation of the polarization properties of the excitation mechanism indicate that this effect can be observed experimentally.

  12. Analysis and evaluation of magnetism of black toners on documents printed by electrophotographic systems.

    PubMed

    Biedermann, A; Bozza, S; Taroni, F; Fürbach, M; Li, B; Mazzella, W D

    2016-10-01

    This paper reports on a study to assess the potential of measurements of magnetism, using a proprietary magnetic analysis system, for the routine analysis of toners on documents printed by black and white electrophotographic systems. Magnetic properties of black toners on documents printed by a number of different devices were measured and compared. Our results indicate that the analysis of magnetism is complementary to traditional methods for analysing black toners, such as FTIR. Further, we find that the analysis of magnetism is realistically applicable in closed set cases, that is when the number of potential printing devices can be clearly defined.

  13. Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR

    NASA Astrophysics Data System (ADS)

    Yudin, Ivan P.

    2016-02-01

    The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.

  14. Expanded Equations for Torque and Force on a Cylindrical Permanent Magnet Core in a Large-Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1997-01-01

    The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.

  15. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    PubMed Central

    Kim, Dong-Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung-Chul; Kim, Jae-Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-01-01

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices. PMID:27151368

  16. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    DOE PAGES

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; ...

    2016-05-06

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry inmore » magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.« less

  17. Asymmetric magnetic proximity effect in a Pd/Co/Pd trilayer system

    SciTech Connect

    Kim, Dong -Ok; Song, Kyung Mee; Choi, Yongseong; Min, Byoung -Chul; Kim, Jae -Sung; Choi, Jun Woo; Lee, Dong Ryeol

    2016-05-06

    In spintronic devices consisting of ferromagnetic/nonmagnetic systems, the ferromagnet-induced magnetic moment in the adjacent nonmagnetic material significantly influences the spin transport properties. In this study, such magnetic proximity effect in a Pd/Co/Pd trilayer system is investigated by x-ray magnetic circular dichroism and x-ray resonant magnetic reflectivity, which enables magnetic characterizations with element and depth resolution. We observe that the total Pd magnetic moments induced at the top Co/Pd interface are significantly larger than the Pd moments at the bottom Pd/Co interface, whereas transmission electron microscopy and reflectivity analysis indicate the two interfaces are nearly identical structurally. Furthermore, such asymmetry in magnetic proximity effects could be important for understanding spin transport characteristics in ferromagnetic/nonmagnetic systems and its potential application to spin devices.

  18. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  19. Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation

    SciTech Connect

    Redaelli, S.; Bertarelli, A.; Bruce, R.; Perini, D.; Rossi, A.; Salvachua, B.; Stancari, G.; Valishev, A.

    2015-06-01

    Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes are also discussed.

  20. A localized ELF magnetic field exposure system for microscope cover-slips.

    PubMed

    Wang, Paul K C

    2014-07-01

    In extremely low frequency (ELF) magnetic field exposure systems for the inverted microscope stage where the cells grown on the entire microscope cover-slip are exposed to the magnetic field, the effects of variations in cell characteristics from one cover-slip to another on the experimental data cannot be readily identified. To overcome this drawback, a localized ELF magnetic field exposure system for cells grown on cover-slips was designed. The basic idea is to expose only a marked portion of the cover-slip to the magnetic field so that the effect of the ELF magnetic field on the cells grown on the same cover-slip can be observed under a microscope. A prototype system was built and tested. Experimental test results pertaining to the prototype system performance validate the proposed design approach. The paper concludes with a discussion of alternative approaches to the design of localized ELF magnetic field exposure systems.