Science.gov

Sample records for lhc synchrotron light

  1. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  2. Expected Performance of the LHC Synchrotron-Light Telescope (BSRT) and Abort-Gap Monitor (BSRA)

    SciTech Connect

    Fisher, Alan; /SLAC

    2010-06-07

    This Report presents calculations of the synchrotron light from proton and lead-ion beams in the LHC at all energies from 0.45 to 7 TeV. It computes the emission from three sources: the uniform-field region of the D3 dipole, the dipole's edge field, and the short undulator just upstream. Light emitted at or near visible wavelengths is assessed for making optical measurements of transverse beam profiles and for monitoring the emptiness of the abort gap in the fill pattern. There is sufficient light for both applications, although both species pass through energy ranges in the ramp with small photon counts. Effects limiting image resolution are examined, including geometric optics, depth of field, and diffraction. The Report also considers recent suggestions that the undulator, intended to supplement the dipole for low energies, should not be ramped off at high energies and perhaps should not be used at all. We conclude that the undulator is essential at low energy for both species, but that it is possible to leave the undulator on at the cost of some blurring at intermediate energies.

  3. Synchrotron light

    SciTech Connect

    Craievich, A. )

    1990-01-01

    Several developed countries such as the USA, URSS, England, France, Italy, Sweden and Japan have one or more of these synchrotron light facilities operating or under construction. Some developing countries have constructed (China) or are building (Taiwan, India, Korea, Brazil) synchrotron light facilities. The construction of the Brazilian synchrotron source began in June, 1987. After two years of activities, the injector linac for the electron storage ring is in its final stage of construction. These Proceedings contain the Invited Lectures presented at the Workshop by specialists working on synchrotron light applications and related instrumentation and by members of LNLS regarding technical details of the Brazilian project. The II Workshop Synchrotron Light: Applications and Related Instrumentation was dedicated to oral presentations about applications of synchrotron light, most of which were not covered during the I Workshop, organized by LNLS in 1988, and the Proceedings of which were published by World Scientific. The II Workshop included discussions on the application possibilities for the newly designed LNLS 1.15 GeV storage ring, and on the modifications which would eventually be necessary for the work-station and instrumentation projects currently in progress at LNLS and at various external user laboratories.

  4. National Synchrotron Light Source

    ScienceCinema

    None

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  5. National Synchrotron Light Source

    SciTech Connect

    2009-03-10

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  6. National Synchrotron Light Source

    ScienceCinema

    BNL

    2016-07-12

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  7. Synchrotron light source data book

    SciTech Connect

    Murphy, J.

    1989-01-01

    The ''Synchrotron Light Source Data Book'' is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-ray Data Booklet, edited by D. Vaughan (LBL PUB-490), address the 'use' of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in 'practical units' and a brief description of many of the existing and planned light source lattices.

  8. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  9. National Synchrotron Light Source II

    SciTech Connect

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-04-25

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  10. National Synchrotron Light Source II

    ScienceCinema

    Hill, John; Dooryhee, Eric; Wilkins, Stuart; Miller, Lisa; Chu, Yong

    2016-07-12

    NSLS-II is a synchrotron light source helping researchers explore solutions to the grand energy challenges faced by the nation, and open up new regimes of scientific discovery that will pave the way to discoveries in physics, chemistry, and biology — advances that will ultimately enhance national security and help drive the development of abundant, safe, and clean energy technologies.

  11. National Synchrotron Light Source II

    ScienceCinema

    Steve Dierker

    2016-07-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  12. National Synchrotron Light Source II

    SciTech Connect

    Steve Dierker

    2008-03-12

    The National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory is a proposed new state-of-the-art medium energy storage ring designed to deliver world-leading brightness and flux with top-off operation

  13. National Synchrotron Light Source annual report 1988

    SciTech Connect

    Hulbert, S.; Lazarz, N.; Williams, G.

    1988-01-01

    This report discusses the experiment done at the National Synchrotron Light Source. Most experiments discussed involves the use of the x-ray beams to study physical properties of solid materials. (LSP)

  14. Proposals for synchrotron light sources

    SciTech Connect

    Teng, L.C.

    1985-06-01

    Ever since it was first applied in the 1960's synchrotron radiation from an accelerating electron beam has been gaining popularity as a powerful tool for research and development in a wide variety of fields of science and technology. By now there are some 20 facilities operating either parasitically or dedicatedly for synchrotron radiation research in different parts of the world. In addition there are another 20 facilities either in construction or in various stages of proposal and design. The experiences gained from the operating facilities and the recent development of insertion devices such as wigglers and undulators as radiation sources led to a new set of requirements on the design of synchrotron radiation storage rings for optimum utility. The surprisingly uniform applicability and unanimous acceptance of these criteria give assurance that they are indeed valid criteria derived form mature considerations and experiences. Instead of describing the design of each of these new facilities it is, thus, more effective to discuss these desirable design features and indicate how they are incorporated in the design using machines listed as examples. 9 refs., 7 figs., 2 tabs.

  15. Remote Synchrotron Light Instrumentation Using Optical Fibers

    SciTech Connect

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  16. Third-generation synchrotron light sources

    SciTech Connect

    Schlachter, A.S.; Wuilleumier, F.J.

    1993-09-01

    X rays are a powerful probe of matter because they interact with electrons in atoms, molecules, and solids. They are commonly produced by relativistic electrons or positrons stored in a synchrotron. Recent advances in technology are leading to the development of a new third generation of synchrotron radiation sources that produce vacuum-ultraviolet and x-ray beams of unprecedented brightness. These new sources are characterized by a very low electron-beam emittance and by long straight sections to accommodate permanent-magnet undulators and wigglers. Several new low-energy light sources, including the Advanced Light Source, presently under construction at the Lawrence Berkeley Laboratory, and ELETTRA, presently being constructed in Trieste, will deliver the world`s brightest synchrotron radiation in the VUV and soft x-ray regions of the spectrum. Applications include atomic and molecular physics and chemistry, surface and materials science, microscopy, and life sciences.

  17. The Stanford Synchrotron Radiation Laboratory, 20 years of synchrotron light

    SciTech Connect

    Cantwell, K.

    1993-08-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) is now operating as a fully dedicated light source with low emittance electron optics, delivering high brightness photon beams to 25 experimental stations six to seven months per year. On October 1, 1993 SSRL became a Division of the Stanford Linear Accelerator Center, rather than an Independent Laboratory of Stanford University, so that high energy physics and synchrotron radiation now function under a single DOE contract. The SSRL division of SLAC has responsibility for operating, maintaining and improving the SPEAR accelerator complex, which includes the storage ring and a 3 GeV injector. SSRL has thirteen x-ray stations and twelve VUV/Soft x-ray stations serving its 600 users. Recently opened to users is a new spherical grating monochromator (SGM) and a multiundulator beam line. Circularly polarized capabilities are being exploited on a second SGM line. New YB{sub 66} crystals installed in a vacuum double-crystal monochromator line have sparked new interest for Al and Mg edge studies. One of the most heavily subscribed stations is the rotation camera, which has been recently enhanced with a MAR imaging plate detector system for protein crystallography on a multipole wiggler. Under construction is a new wiggler-based structural molecular biology beam line with experimental stations for crystallography, small angle scattering and x-ray absorption spectroscopy. Plans for new developments include wiggler beam lines and associated facilities specialized for environmental research and materials processing.

  18. Status of the Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Sternemann, C.; Tolan, M.; Westphal, C.; Weis, T.; Wille, K.

    2007-01-19

    The Dortmund Electron Accelerator DELTA, a 1.5 GeV synchrotron light source located at University of Dortmund, is operated for 3000 h per year including 2000 h beam time for synchrotron radiation use and 1000 h for machine physics, optimisation and maintenance. The status of the synchrotron light source is presented with emphasis on the operation, commissioning and installation of beamlines and insertion devices. The soft X-ray undulator beamlines provide photon energies between 5 to 400 eV (U250) and 55 and 1500 eV (U55), respectively. One dipole beamline covers soft X-rays between 6 to 200 eV, and a second dipole beamline is used without a monochromator at 2.2 keV critical energy of the dipole spectrum. For photons in the hard X-ray regime, a superconducting asymmetric wiggler (SAW) with a field of 5.3 T and 7.9 keV critical energy was installed, providing circularly polarized X-rays in the range of 2 to 30 keV. Due to its broad radiation fan, three beamlines are simultaneously served. The first SAW-beamline with an energy range between 4 to 30 keV is in full operation, the second is under commissioning, serving the energy range between 2 to 30 keV. The third SAW beamline is near completion, additional dipole beamlines are under construction.

  19. Status of SESAME Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Tarawneh, Hamed

    2013-04-01

    During this presentation, I will talk about the current status of the SESAME synchrotron radiation source (SESAME: Synchrotron light for Experimental Science and Application in the Middle East). SESAME is an international research center located in Allan, Jordan and the accelerator complex consists of new storage ring of an energy of 2.5 GeV injected at 800 MeV and the injector is based on the upgraded 22.5 MeV Microtron and 800 MeV booster from the BESSY-I machine donated by Germany. The results of the design work and the optimizations of the beam optics for the SESAME storage ring and booster accelerators' lattices will be presented. I will also report on the status of the storage ring main sub-systems and the scientific case of the SESAME facility with the planned day-one beamlines.

  20. Synchrotron Light Interferometry at Jefferson Lab

    SciTech Connect

    Arne Freyberger; Pavel Chevtsov; Anthony Day; William Hicks

    2004-07-01

    The hyper-nuclear physics program at JLAB requires an upper limit on the RMS momentum spread of {delta}p/p < 3 x 10{sup -5}. The momentum spread is determined by measuring the beam width at a dispersive location (D {approx} 4m) in the transport line to the experimental halls. Ignoring the epsilon-beta contribution to the intrinsic beam size, this momentum spread corresponds to an upper bound on the beam width of {sigma}{sub beam} < 120 {micro}m. Typical techniques to measure and monitor the beam size are either invasive or do not have the resolution to measure such small beam sizes. Using interferometry of the synchrotron light produced in the dispersive bend, the resolution of the optical system can be made very small. The non-invasive nature of this measurement allows continuous monitoring of the momentum spread. Two synchrotron light interferometers have been built and installed at JLAB, one each in the Hall-A and Hall-C transport lines. The devices operate over a beam current range from 20 {micro}A to 120 {micro}A and have a spatial resolution of 10um. The structure of the interferometers, the experience gained during its installation, beam measurements and momentum spread stability are presented. The dependence of the measured momentum spread on beam current will be presented.

  1. Status Of The Synchrotron Light Source DELTA

    SciTech Connect

    Berges, U.; Friedl, J.; Hartmann, P.; Schirmer, D.; Schmidt, G.; Sternemann, C.; Tolan, M.; Weis, T.; Westphal, C.; Wille, K.

    2004-05-12

    The Dortmund Electron Accelerator DELTA, located at the University of Dortmund, changed its scope during the last years into a 1.5 GeV synchrotron light source. DELTA is now operated for 3000 h per year including 2000 h dedicated beam time for synchrotron radiation use and 1000 h for machine physics, optimization and maintenance. The status of the accelerator complex is presented together with the beam operation, the installation and commissioning of beamlines and insertion devices. To serve user demands of photon energies up to more than 10 keV a 5.3 T superconducting asymmetric multipole wiggler (SAW) with a critical energy of 7.9 keV has been installed serving three beamlines in the hard X-ray regime with also circular polarization. Two undulator beamlines for photon energies between 5 and 400 eV (U250) and between 55 and 1500 eV (U55) and several dipole beamlines up to 200 eV are under operation. The construction and operation of the different beamlines is done by various universities and laboratories in Nordrhein-Westfalen.

  2. Synchrotron radiation damping, intrabeam scattering and beam-beam simulations for HE-LHC

    SciTech Connect

    Valishev, A.; /Fermilab

    2011-03-01

    The proposed High-Energy LHC project presents an unusual combination of strong synchrotron radiation damping and intrabeam scattering, which is not seen in present-day hadron colliders. The subject of investigation reported in this paper was the simulation of beam-beam effect for the HE-LHC parameters. Parameters of SR and IBS are calculated, and the luminosity evolution is simulated in the absence of beam-beam interaction. Then, a weak-strong numerical simulation is used to predict the effect of beam-beam interaction on particle losses and emittance evolution.

  3. National Synchrotron Light Source 2008 Activity Report

    SciTech Connect

    Nasta,K.

    2009-05-01

    Funded by the U.S. Department of Energy's Office of Basic Energy Sciences, the National Synchrotron Light Source (NSLS) is a national user facility that operates two electron storage rings: X-Ray (2.8 GeV, 300 mA) and Vacuum Ultraviolet (VUV) (800 mev, 1.0A). These two rings provide intense light spanning the electromagnetic spectrum -- from very long infrared rays to ultraviolet light and super-short x-rays -- to analyze very small or highly dilute samples. The properties of this light, and the specially designed experimental stations, called beamlines, allow scientists in many diverse disciplines of research to perform experiments not possible at their own laboratories. Each year, about 2,200 scientists from more than 400 universities and companies use the NSLS for research in such diverse fields as biology, physics, chemistry, geology, medicine, and environmental and materials sciences. For example, researchers have used the NSLS to examine the minute details of computer chips, decipher the structures of viruses, probe the density of bone, determine the chemical composition of moon rocks, and reveal countless other mysteries of science. The facility has 65 operating beamlines, with 51 beamlines on the X-Ray Ring and 14 beamlines on the VUV-Infrared Ring. It runs seven days a week, 24 hours a day throughout the year, except during periods of maintenance and studies. Researchers are not charged for beam time, provided that the research results are published in open literature. Proprietary research is conducted on a full-cost-recovery basis. With close to 1,000 publications per year, the NSLS is one of the most prolific scientific facilities in the world. Among the many accolades given to its users and staff, the NSLS has won nine R&D 100 Awards for innovations ranging from a closed orbit feedback system to the first device able to focus a large spread of high-energy x-rays. In addition, a visiting NSLS researcher shared the 2003 Nobel Prize in Chemistry for work

  4. National Synchrotron Light Source 2010 Activity Report

    SciTech Connect

    Rowe, M.; Snyder, K. J.

    2010-12-29

    This is a very exciting period for photon sciences at Brookhaven National Laboratory. It is also a time of unprecedented growth for the Photon Sciences Directorate, which operates the National Synchrotron Light Source (NSLS) and is constructing NSLS-II, both funded by the Department of Energy's Office of Science. Reflecting the quick pace of our activities, we chose the theme 'Discovery at Light Speed' for the directorate's 2010 annual report, a fiscal year bookended by October 2009 and September 2010. The year began with the news that NSLS users Venki Ramakrishnan of Cambridge University (also a former employee in Brookhaven's biology department) and Thomas A. Steitz of Yale University were sharing the 2009 Nobel Prize in Chemistry with Ada E. Yonath of the Weizmann Institute of Science. Every research project has the potential for accolades. In 2010, NSLS users and staff published close to 900 papers, with about 170 appearing in premiere journals. Those are impressive stats for a facility nearly three decades old, testament to the highly dedicated team keeping NSLS at peak performance and the high quality of its user community. Our NSLS users come from a worldwide community of scientists using photons, or light, to carry out research in energy and environmental sciences, physics, materials science, chemistry, biology and medicine. All are looking forward to the new capabilities enabled by NSLS-II, which will offer unprecedented resolution at the nanoscale. The new facility will produce x-rays more than 10,000 times brighter than the current NSLS and host a suite of sophisticated instruments for cutting-edge science. Some of the scientific discoveries we anticipate at NSLS-II will lead to major advances in alternative energy technologies, such as hydrogen and solar. These discoveries could pave the way to: (1) catalysts that split water with sunlight for hydrogen production; (2) materials that can reversibly store large quantities of electricity or hydrogen; (3

  5. Compact synchrotron light source of the HSRC.

    PubMed

    Yoshida, K; Takayama, T; Hori, T

    1998-05-01

    A 700 MeV synchrotron radiation source optimized in order to be incorporated in the university laboratory is under commissioning at Hiroshima University. The storage ring is of a racetrack type with two long straight sections for installing undulators. The bending field is as strong as 2.7 T, produced by normal-conducting magnet technology, and delivers synchrotron radiation with a critical wavelength of 1.42 nm. The strong magnetic field also enables a low-energy injection scheme to be employed owing to the fast radiation damping. A 150 MeV microtron has been adopted as the injector.

  6. National Synchrotron Light Source safety-analysis report

    SciTech Connect

    Batchelor, K.

    1982-07-01

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  7. Automated Image Quality Optimization for Synchrotron Light Interferometers

    SciTech Connect

    Pavel Chevtsov

    2005-10-10

    Jefferson Lab has been using Synchrotron Light Interferometers (SLI) for real time high resolution, non-invasive measurement of electron beam energy spread in two experimental halls for over two years. An SLI is a classic device, which generates synchrotron light interference patterns by means of a double slit. The beam energy spread is calculated on the basis of the visibility (contrast) of the interference pattern produced by the SLI. The results of the calculations are sensitive to the position of the double slit with respect to the synchrotron light beam illuminating it. Even small changes of the electron beam trajectory in the accelerator can significantly distort the shape of the interference pattern and decrease the reliability of these results. To improve this situation, we developed a state machine control application, which automatically adjusts the positions of the SLI double slits and the mirrors directing light on these slits. The paper describes the main ideas implemented in this application and its performance.

  8. Brazilian Synchrotron Light Source: current results and future perspectives

    NASA Astrophysics Data System (ADS)

    Roque da Silva, Antonio Jose

    2013-03-01

    The application of synchrotron radiation in a great variety of fields in general, and condensed matter in particular, has increased steadily worldwide. This, to a large extent, is a result of the availability of the much brighter third-generation light sources, which opened up new experimental techniques. Brazil gave an important contribution to science in Latin America through the development of the necessary technology and the construction of the first synchrotron in the southern hemisphere, still the only one in Latin America. The Laboratório Nacional de Luz Síncrotron - LNLS, operates this installation as an open facility since 1997, having today more than 1300 users yearly. Despite all this success, the current Brazilian light source is a second-generation machine, with relatively low electron energy, high emittance and few straight sections for insertion devices. LNLS is currently engaged in the design and construction of a new, third-generation synchrotron light source. It is being planned to be a state of the art machine, providing tools for cutting edge research that are non existent today in Brazil. In this talk an overview of the status of the current Brazilian light source will be provided, illustrated with some experimental results from users, as well as the future perspectives of the new synchrotron source.

  9. Research by industry at the National Synchrotron Light Source

    SciTech Connect

    1995-05-01

    The world`s foremost facility for research using x-rays and ultraviolet and infrared radiation, is operated by the National Synchrotron Light Source dept. This pamphlet described the participating research teams that built most of the beam lines, various techniques for studying materials, treatment of materials, and various industrial research (catalysis, pharmaceuticals, etc.).

  10. Synchrotron Light Sources in Developing Countries

    NASA Astrophysics Data System (ADS)

    Winick, Herman; Pianetta, Piero

    2017-01-01

    The more than 50 light sources now in operation around the world include facilities in Brazil, Korea, and Taiwan which started their programs in the 1980's when they were developing countries. They came on line in the 1990's and have since trained hundreds of graduate students locally, without sending them abroad and losing many of them. They have also attracted dozens of mid-career diaspora scientists to return. Their growing user communities have demanded more advanced facilities, leading to the funding of higher performance new light sources that are now coming into operation. Light sources in the developing world now include the following: SESAME in the Middle East which is scheduled to start research in 2017 (www.sesame.org); The African Light Source, in the planning stage (www.africanlightsource.org); and The Mexican Light Source, in the planning stage (http://www.aps.org/units/fip/newsletters/201509/mexico.cfm). See: http://wpj.sagepub.com/content/32/4/92.full.pdf +html; http://www.lightsources.org/press-release/2015/11/20/grenoble-resolutions-mark-historical-step-towards-african-light-source. SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  11. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  12. NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 1998.

    SciTech Connect

    ROTHMAN,E.

    1999-05-01

    thereafter for half of the running time in FY 1998. In combination with the development of narrow gap undulators this mode opens the possibility of new undulators which could produce hard X-rays in the fundamental, perhaps up to 10 keV. On 27 September 1998, a low horizontal emittance lattice became operational at 2.584 GeV. This results in approximately a 50% decrease in the horizontal beam-size on dipole bending magnet beamlines, and somewhat less of a decrease on the insertion device lines. The beam lifetime is not degraded by the low emittance lattice. This represents an important achievement, enhancing for all users the x-ray ring brightness. The reduced horizontal emittance electron beam will produce brighter x-ray beams for all the beamlines, both bending magnets and insertion devices, adding to other recent increases in the X-Ray ring brightness. During FY 1999 users will gain experience of the new running mode and plans are in place to do the same at 2.8GeV during further studies sessions. Independent evidence of the reduced emittance is shown in Figure 2. This is a pinhole camera scan showing the X-ray beam profile, obtained on the diagnostic beamline X28. Finally, work has begun to update and refine the proposal of the Phase III upgrade endorsed by the Birgeneau panel and BESAC last year. With the whole NSLS facility in teenage years and with many demonstrated enhancements available, the time has come to herald in the next stage of life at the Light Source.

  13. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, this paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  14. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  15. Producing terahertz coherent synchrotron radiation at the Hefei Light Source

    NASA Astrophysics Data System (ADS)

    Xu, De-Rong; Xu, Hong-Liang; Shao, Yan

    2015-07-01

    This paper theoretically proves that an electron storage ring can generate coherent radiation in the THz region using a quick kicker magnet and an AC sextupole magnet. When the vertical chromaticity is modulated by the AC sextupole magnet, the vertical beam collective motion excited by the kicker produces a wavy spatial structure after a number of longitudinal oscillation periods. The radiation spectral distribution was calculated from the wavy bunch parameters at the Hefei Light Source (HLS). When the electron energy is reduced to 400 MeV, extremely strong coherent synchrotron radiation (CSR) at 0.115 THz should be produced. Supported by National Natural Science Foundation of China (11375176)

  16. Higgs boson decay to light jets at the LHC

    NASA Astrophysics Data System (ADS)

    Carpenter, Linda M.; Han, Tao; Hendricks, Khalida; Qian, Zhuoni; Zhou, Ning

    2017-03-01

    We study the Higgs boson (h ) decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet (j ) represents any nonflavor-tagged jet from the observational point of view. The decay mode h →g g is chosen as the benchmark since it is the dominant channel in the Standard Model, but the bound obtained is also applicable to the light quarks (j =u , d , s ). We estimate the achievable bounds on the decay branching fractions through the associated production V h (V =W±,Z ). Events of the Higgs boson decaying into heavy (tagged) or light (untagged) jets are correlatively analyzed. We find that with 3000 fb-1 data at the HL-LHC, we should expect approximately 1 σ statistical significance on the SM V h (g g ) signal in this channel. This corresponds to a reachable upper bound BR (h →j j )≤4 BRSM(h →g g ) at 95% confidence level. A consistency fit also leads to an upper bound BR (h →c c )<15 BRSM(h →c c ) at 95% confidence level. The estimated bound may be further strengthened by adopting multiple variable analyses or adding other production channels.

  17. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, W.C.

    1996-04-30

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors. 9 figs.

  18. Condenser for illuminating a ringfield camera with synchrotron emission light

    DOEpatents

    Sweatt, William C.

    1996-01-01

    The present invention relates generally to the field of condensers for collecting light from a synchrotron radiation source and directing the light into a ringfield of a lithography camera. The present invention discloses a condenser comprising collecting, processing, and imaging optics. The collecting optics are comprised of concave and convex spherical mirrors that collect the light beams. The processing optics, which receive the light beams, are comprised of flat mirrors that converge and direct the light beams into a real entrance pupil of the camera in a symmetrical pattern. In the real entrance pupil are located flat mirrors, common to the beams emitted from the preceding mirrors, for generating substantially parallel light beams and for directing the beams toward the ringfield of a camera. Finally, the imaging optics are comprised of a spherical mirror, also common to the beams emitted from the preceding mirrors, images the real entrance pupil through the resistive mask and into the virtual entrance pupil of the camera. Thus, the condenser is comprised of a plurality of beams with four mirrors corresponding to a single beam plus two common mirrors.

  19. SESAME, a Synchrotron Light Source for the Middle East Region

    SciTech Connect

    Einfeld, D.; Sarraf, R.H.; Attal, M.; Tavakoli, K.; Hashemi, H.; Hassanzadegan, H.; Elsisi, A.; Amro, A.; Foudeh, D.; Kalantari, B.; Aladwan, A.; Varnasery, S.; Al-Dmour, E.; Tarawneh, H.

    2003-08-26

    Developed under the auspices of UNESCO, SESAME (Synchrotron light for Experimental Science and Application in the Middle East) will be a major international research centre in the Middle East / Mediterranean region. Most of the applications require hard x-rays up to 20 keV photons. SESAME will be a 2GeV 3rd Generation Ligth Source with an emittance of 17 nmrad and 13 places for the installation of insertion devices with a length around 3 meter. The circumference of the machine will be 120m. As injector the 800 MeVBooster Synchrotron will be used with small changes. Furthermore also the BESSY I quadrupoles and sextupoles can be used. In a later stage these new ones will be replaced in order to increase the length of the straight sections and to introduce mini beta sections for the reduction of the beam cross section. At SESAME around 35 % of the circumference can be used for the installation of insertion devices.

  20. Ozone production at the National Synchrotron Light Source

    SciTech Connect

    Weilandics, C.; Rohrig, N.; Gmur, N.F.

    1987-01-01

    Ozone production by synchrotron radiation as a function of power density in air was investigated using a white beam at the BNL National Synchrotron Light Source (NSLS) x-ray ring. Power densities were calculated from the energy spectrum at 2.52 GeV. Ozone concentrations in small beam pipes were measured for power densities between I = 10/sup 12/ and 10/sup 15/ eV . cm/sup -3/ . sec/sup -1/. The measured ozone half-life was 37 +- 2 min. The measured G-value was 2.69 +- 0.14 mol/100 eV and the ozone destruction factor k was less than 7 x 10/sup -19/ cm/sup 3/ . eV/sup -1/. The random uncertainties stated are approximately one standard error. The large departure of the values for G and k from previous values suggest that some undiscovered systematic error may exist in the experiment. Ozone concentration in excess of the 0.1 ppM ACGIH TLV can be generated in the experimental hutches but can readily be controlled. Industrial hygiene aspects of operation and possible control measures will be discussed. 19 refs., 7 figs., 3 tabs.

  1. DEVELOPMENTS IN SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY AT THE NATIONAL SYNCHROTRON LIGHT SOURCE.

    SciTech Connect

    DOWD,B.A.

    1999-07-23

    Last year, the X27A beamline at the National Synchrotron Light Source (NSLS) became dedicated solely to X-Ray Computed Microtomography (XCMT). This is a third-generation instrument capable of producing tomographic volumes of 1-2 micron resolution over a 2-3mm field of view. Recent enhancements will be discussed. These have focused on two issues: the desire for real-time data acquisition and processing and the need for highly monochromatic beam (.1 % energy bandpass). The latter will permit k-edge subtraction studies and will provide improved image contrast from below the Cr (6 keV) up to the Cs (36 keV) k-edge. A range of applications that benefit from these improvements will be discussed as well. These two goals are somewhat counterproductive, however; higher monochromaticity yields a lower flux forcing longer data acquisition times. To balance the two, a more efficient scintillator for X-ray conversion is being developed. Some testing of a prototype scintillator has been performed; preliminary results will be presented here. In the meantime, data reconstruction times have been reduced, and the entire tomographic acquisition, reconstruction and volume rendering process streamlined to make efficient use of synchrotron beam time. A Fast Filtered Back Transform (FFBT) reconstruction program recently developed helped to reduce the time to reconstruct a volume of 150 x 150 x 250 pixels{sup 3} (over 5 million voxels) from the raw camera data to 1.5 minutes on a dual R10,000 CPU. With these improvements, one can now obtain a ''quick look'' of a small tomographic volume ({approximately}10{sup 6}voxels) in just over 15 minutes from the start of data acquisition.

  2. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D.; Jones, K.W.; Spanne, P.; Sweet, R.M.; Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y.; Singer, P.T.; Westbrook, E.M.

    1992-12-31

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  3. Laue diffraction protein crystallography at the National Synchrotron Light Source

    SciTech Connect

    Getzoff, E.D.; McRee, D. ); Jones, K.W.; Spanne, P.; Sweet, R.M. ); Moffat, K.; Ng, K.; Rivers, M.L.; Schildkamp, W.; Teng, T.Y. ); Singer, P.T.; Westbrook, E.M. )

    1992-01-01

    A new facility for the study of protein crystal structure using Laue diffraction has been established at the X26 beam line of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The characteristics of the beam line and diffraction apparatus are described. Selected results of some of the initial experiments are discussed briefly by beam line users to illustrate the scope of the experimental program. Because the Laue method permits the recording of large data sets in a single shot, one goal in establishing this facility has been to develop the means to study time-resolved structures within protein crystals. Systems being studied include: the reactions catalyzed by trypsin; photolysis of carbonmonoxy myoglobin; and the photocycle of photoactive yellow protein.

  4. The ORNL beamline at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Habenschuss, Anton; Ice, Gene E.; Sparks, Cullier J.; Neiser, Richard A.

    1988-04-01

    The Oak Ridge National Laboratory's (ORNL) beamline at the National Synchrotron Light Source (NSLS) incorporates several novel features, including X-ray optics based on sagittal focusing with crystals and a cantilevered mirror whose center becomes the pivot for all downstream optical elements. Crystal focusing accepts a much larger horizontal divergence of radiation than a mirror while maintaining excellent momentum transfer and energy resolution [C.J. Sparks, G.E. Ice, J. Wong and B.W. Batterman, Nucl. Instr. and Meth. 194 (1982) 73]. This sagitally bent crystal serves as the second element of a two-crystal, nondispersive monochromator. The cantilevered mirror provides a simple design for vertical focusing of the radiation. The beamline is suitable for both X-ray scattering and spectroscopy experiments requiring good energy resolution and high intensity in the energy range from 2.5 to 40 keV. This paper describes the optics of the ORNL beamline and reports its performance to date.

  5. Biological infrared microspectroscopy at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Carr, G. Lawrence; Williams, Gwyn P.; Sullivan, Michael; Chance, Mark R.

    2000-06-01

    Beamline U2B at the National Synchrotron Light Source has been designed and built as an infrared beamline dedicated to the study of biomedical problems. In 1997, the horizontal and vertical acceptances of Beamline U2B were increased in order to increase the overall flux of the beamline. A wedged, CVD diamond window separates the UHV vacuum of the VUV ring from the rough vacuum of the beamline. The endstation consists of a Nicolet Magna 860 step-scan FTIR and a NicPlan infrared microscope. The spectrometer is equipped with beamsplitter/detector combinations that permit data collection in the mid-and far-infrared regions. We have also made provisions for mounting an external detector (e.g. bolometer) for far infrared microspectroscopy. Thus far, Beamline U2B has been used to (1) perform chemical imaging of bone tissue and brain cells to address issues related to bone disease and epilepsy, respectively, and (2) examine time-resolved protein structure in the sub-millisecond folding of cytochrome c.

  6. Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources

    SciTech Connect

    Sayyar-Rodsari, B.; Schweiger, C.; Hartman, E.; Corbett, J.; Lee, M.; Lui, P.; Paterson, E.; /SLAC

    2007-11-28

    Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstrahlung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

  7. National synchrotron light source. [Annual report], October 1, 1992--September 30, 1993

    SciTech Connect

    Rothman, E.Z.; Hulbert, S.L.; Lazarz, N.M.

    1994-04-01

    This report contains brief discussions on the research being conducted at the National Synchrotron Light source. Some of the topics covered are: X-ray spectroscopy; nuclear physics; atomic and molecular science; meetings and workshops; operations; and facility improvements.

  8. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2016-07-12

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  9. Synchrotron light source data book: Version 4, Revision 05/96

    SciTech Connect

    Murphy, J.B.

    1996-05-01

    This book is as its name implies a collection of data on existing and planned synchrotron light sources. The intention was to provide a compendium of tools for the design of electron storage rings as synchrotron radiation sources. The slant is toward the accelerator physicist as other booklets such as the X-Ray Data Booklet address the use of synchrotron radiation. It is hoped that the booklet serves as a pocket sized reference to facilitate back of the envelope type calculations. It contains some useful formulae in practical units and a brief description of many of the existing and planned light source lattices.

  10. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  11. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-10-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 X 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target.

  12. Advanced Materials Research with 3RD Generation Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Soukiassian, P.; D'angelo, M.; Enriquez, H.; Aristov, V. Yu.

    H and D surface nanochemistry on an advanced wide band gap semiconductor, silicon carbide is investigated by synchrotron radiation-based core level and valence band photoemission, infrared absorption and scanning tunneling spectroscopy, showing the 1st example of H/D-induced semiconductor surface metallization, that also occurs on a pre-oxidized surface. These results are compared to recent state-of-the-art ab-initio total energy calculations. Most interestingly, an amazing isotopic behavior is observed with a smaller charge transfer from D atoms suggesting the role of dynamical effects. Such findings are especially exciting in semiconductor physics and in interface with biology.

  13. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    PubMed Central

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  14. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  15. National Synchrotron Light Source angiography personnel protection interlock

    SciTech Connect

    Gmuer, N.; Larson, R.; Thomlinson, W.

    1992-06-01

    This document has been written to describe the safety system operation at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). The angiography exposure process involves scanning a patient up and down through dual fixed-position x-ray beams; exposure is controlled by opening and closing a fast-acting Safety Shutter mechanism at precise times in relation to the up and down motion of the scan chair. The fast-acting Safety Shutter mechanism is the primary radiation-stopping element protecting the patient while the chair is at rest and while it is reversing directions during the scan. Its fail-safe and fast operation is essential for the safety of the patient. Operation of X17B2 as a human subject angiography station necessitates the implementation of a personnel protection interlock system that, in conjunction with the Safety Shutters: permits safe access to the patient exposure area while the synchrotron radiation beam is illuminating the upstream dual energy monochromator; allows a patient to be imaged by the monochromatized beam under the supervision of a Responsible Physician, with scan chair motion and precision shutter actuation regulated by an angiography control computer, while providing a suitable number of safeguards against accidental radiation exposure; has different modes of operation to accommodate equipment set-up, test, and calibration; and patient exposure; and ensures the quick extinction of the beam if a potentially unsafe condition is detected. The interlock system which performs these safety functions is called the Angiography Personnel Protection Interlock (APPI). The APPI Document is organized such that the level of detail changes from a general overview to detailed engineering drawings of the hardware system.

  16. 1994 Activity Report, National Synchrotron Light Source. Annual report, October 1, 1993-September 30, 1994

    SciTech Connect

    Rothman, E.Z.

    1995-05-01

    This report is a summary of activities carried out at the National Synchrotron Light Source during 1994. It consists of sections which summarize the work carried out in differing scientific disciplines, meetings and workshops, operations experience of the facility, projects undertaken for upgrades, administrative reports, and collections of abstracts and publications generated from work done at the facility.

  17. Application of electron linacs in medicine, food sterilization and synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Tran, Duc-Tien

    1989-04-01

    A review of the state of the art and new trends in electron linac technology is given with emphasis on three particular applications: radiotherapy, food sterilization and synchrotron light sources. The requirements on linac performances that these applications call for, namely energy variation flexibility, high power, high energy and low cost, will open linacs to new applications to come.

  18. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    SciTech Connect

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  19. Conceptual design of the Argonne 6-GeV synchrotron light source

    SciTech Connect

    Cho, Y.; Crosbie, E.; Khoe, T.; Knott, M.; Kramer, S.; Kustom, R.; Lari, R.; Martin, R.; Mavrogenes, G.; Moenich, J.

    1985-01-01

    The Argonne National Laboratory Synchrotron Light Source Storage Ring is designed to have a natural emittance of 6.5 x 10/sup -9/ m for circulating 6-GeV positrons. Thirty of the 32 long straight sections, each 6.5-m long, will be available for synchrotron light insertion devices. A circulating positron current of 300 mA can be injected in about 8 min. from a booster synchrotron operating with a repetition time of 1.2 sec. The booster synchrotron will contain two different rf systems. The lower frequency system (38.97 MHz) will accept positrons from a 360-MeV linac and will accelerate them to 2.25 GeV. The higher frequency system (350.76 MHz) will accelerate the positrons to 6 GeV. The positrons will be produced from a 300-MeV electron beam on a tungsten target. A conceptual layout is shown. 5 refs., 4 figs., 3 tabs.

  20. Experiences from nonevaporable getter-coated vacuum chambers at the MAX II synchrotron light source

    SciTech Connect

    Hansson, A.; Wallen, E.; Berglund, M.; Kersevan, R.; Hahn, M.

    2010-03-15

    Vacuum chambers coated with nonevaporable getter (NEG) materials have been used in straight sections of synchrotron light sources for the past 10 years. The MAX II storage ring, where four NEG-coated insertion device vacuum chambers and three NEG-coated dipole vacuum chambers have been installed, is the first synchrotron light source to also use NEG-coated dipole vacuum chambers. In connection with the installation of the latest two NEG-coated dipole chambers in April 2009, the evolution of the pressure and lifetime-limiting effects in MAX II has been determined from measurements with movable scrapers. The results have been compared with results from scraper measurements done in 2003, before any NEG-coated vacuum chambers were installed in the storage ring. Less than three months after the installation of the latest dipole chambers the vacuum system in MAX II was performing well with a pressure already lower than the pressure measured in 2003.

  1. Low-Level Radio Frequency System Development for the National Synchrotron Light Source II

    SciTech Connect

    Ma,H.; Rose, J.

    2009-05-04

    The National Synchrotron Light Source-II (NSLS-II) is a new ultra-bright 3GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. The position and timing specifications of the ultra-bright photon beam imposes a set of stringent requirements on the performance of radio frequency (RF) control. In addition, commissioning and staged installation of damping wigglers and insertion devices requires the flexibility of handling varying beam conditions. To meet these requirements, a digital implementation of the LLRF is chosen, and digital serial links are planned for the system integration. The first prototype of the controller front-end hardware has been built, and is currently being tested.

  2. Control system features of the argonne 6 GeV synchrotron light source

    SciTech Connect

    Knott, M.; Gunderson, G.; Lenkszus, F.; McDowell, W.

    1985-10-01

    The Argonne 6 GeV synchrotron light source design consists of an electron/positron linac, a fast-cycling 6 GeV synchrotron, and the storage ring itself. The design attributes are presented elsewhere in this conference. Three aspects of the overall design call for special attention in the control system design: First, the operation of a high energy positron accelerator in a fast cycling mode may demand high processing performance and high data throughput rates. Second, the high energy and small beam size projected (100 x 200 microns) will call for high resolution data processing and control precision in many areas. Finally, the necessity to provide independent, orthogonal control for each of up to 32 insertion device light beams both from the point of view of the experimental requirements and from the need to remove the effects of component vibration will require dedicated, high performance processors.

  3. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M.

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  4. A light Higgs scalar in the NMSSM confronted with the latest LHC Higgs data

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Ding, Fangfang; Han, Chengcheng; Yang, Jin Min; Zhu, Jingya

    2013-11-01

    In the Next-to-Minimal Supersymemtric Standard Model (NMSSM), one of the neutral Higgs scalars (CP-even or CP-odd) may be lighter than half of the SM-like Higgs boson. In this case, the SM-like Higgs boson h can decay into such a light scalar pair and consequently the γγ and ZZ * signal rates at the LHC will be suppressed. In this work, we examine the constraints of the latest LHC Higgs data on such a possibility. We perform a comprehensive scan over the parameter space of the NMSSM by considering various experimental constraints and find that the LHC Higgs data can readily constrain the parameter space and the properties of the light scalar, e.g., at 3 σ level this light scalar should be highly singlet dominant and the branching ratio of the SM-like Higgs boson decay into the scalar pair should be less than 30%. Also we investigate the detection of this scalar at various colliders. Through a detailed Monte Carlo simulation we find that under the constraints of the current Higgs data this light scalar can be accessible at the LHC-14 with an integrated luminosity over 300 fb-1.

  5. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  6. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-04-26

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons producedmore » in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. Here, this shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.« less

  7. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  8. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  9. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  10. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  11. Magnetic properties of the ALS (Advanced Light Source) booster synchrotron engineering model magnets

    SciTech Connect

    Keller, R.; Green, M.I.; Hoyer, E.; Koo, Y.M.; Luchini, K.; Marks, S.; Milburn, J.; Nelson, D.H.

    1989-03-01

    The Advanced Light Source (ALS) at Lawrence Berkeley Laboratory is designed to be a third-generation electron storage ring producing high-brightness VUV and X-ray radiation from wiggler and undulator insertion devices. Engineering models of all lattice magnets that are to be installed in the storage ring and its booster synchrotron have been built and are being tested to verify their performance. This paper is concerned with the magnets that form the booster lattice: dipoles, quadrupoles, sextupoles, and corrector dipoles (steerers). After a brief outline of measurement techniques and equipment, the major design parameters of these magnets are listed. Measured effective lengths and multipole field errors are then given for each type. All engineering models meet the specifications, and tracking studies including the measured systematic field errors show acceptable performance of the booster synchrotron; hence the designs are qualified for production. 3 refs., 7 figs., 4 tabs.

  12. Fast mapping of terahertz bursting thresholds and characteristics at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Brosi, Miriam; Steinmann, Johannes L.; Blomley, Edmund; Bründermann, Erik; Caselle, Michele; Hiller, Nicole; Kehrer, Benjamin; Mathis, Yves-Laurent; Nasse, Michael J.; Rota, Lorenzo; Schedler, Manuel; Schönfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Weber, Marc; Müller, Anke-Susanne

    2016-11-01

    Dedicated optics with extremely short electron bunches enable synchrotron light sources to generate intense coherent THz radiation. The high degree of spatial compression in this so-called low-αc optics entails a complex longitudinal dynamics of the electron bunches, which can be probed studying the fluctuations in the emitted terahertz radiation caused by the microbunching instability ("bursting"). This article presents a "quasi-instantaneous" method for measuring the bursting characteristics by simultaneously collecting and evaluating the information from all bunches in a multibunch fill, reducing the measurement time from hours to seconds. This speed-up allows systematic studies of the bursting characteristics for various accelerator settings within a single fill of the machine, enabling a comprehensive comparison of the measured bursting thresholds with theoretical predictions by the bunched-beam theory. This paper introduces the method and presents first results obtained at the ANKA synchrotron radiation facility.

  13. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  14. SESAME-A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2010-02-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research center in construction in Jordan. It will enable world class research by scientists from the region, reversing the brain drain. It will also build bridges between diverse societies, contributing to a culture of peace through international cooperation in science. The centerpiece is a synchrotron light source originating from BESSY I, a gift by Germany. The upgraded machine, a 2.5 GeV 3rd Generation Light Source (133m circumference, 26nm-rad emittance and 12 places for insertion devices), will provide light from infra-red to hard X-rays, offering excellent opportunities to train local scientists and attract those working abroad to return. The SESAME Council meets twice each year and presently has nine Members (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority, Turkey). Members have responsibility for the project and provide the annual operations budget (1.5M US dollars in 2009, expected to rise to about 5M when operation starts in 2012-13). Jordan provided the site, building, and infrastructure. A staff of 20 is installing the 0.8 GeV BESSY I injection system. The facility will have the capacity to serve 30 or more experiments operating simultaneously. See www.sesame.org.jo )

  15. Closing up a light stop window in natural SUSY at LHC

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Liu, Ning; Wu, Lei; Yang, Jin Min; Zhang, Mengchao

    2016-04-01

    Top squark (stop) plays a key role in the radiative stability of the Higgs boson mass in supersymmetry (SUSY). In this work, we use the LHC Run-1 data to determine the lower mass limit of the right-handed stop in a natural SUSY scenario, where the higgsinos χ˜1,20 and χ˜1± are light and nearly degenerate. We find that the stop mass has been excluded up to 430 GeV for mχ˜10 ≲ 250 GeV and to 540 GeV for mχ˜10 ≃ 100 GeV by the Run-1 SUSY searches for 2 b + ETmiss and 1 ℓ +jets + ETmiss, respectively. In a small strip of parameter space with mχ˜10 ≳ 190 GeV, the stop mass can still be as light as 210 GeV and compatible with the Higgs mass measurement and the monojet bound. The 14 TeV LHC with a luminosity of 20 fb-1 can further cover such a light stop window by monojet and 2 b + ETmiss searches and push the lower bound of the stop mass to 710 GeV. We also explore the potential to use the Higgs golden ratio, Dγγ = σ (pp → h → γγ) / σ (pp → h → ZZ* → 4ℓ±), as a complementary probe for the light and compressed stop. If this golden ratio can be measured at percent level at the high luminosity LHC (HL-LHC) or future e+e- colliders, the light stop can be excluded for most of the currently allowed parameter region.

  16. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  17. SESAME — A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    Å°lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ˜133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  18. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    NASA Astrophysics Data System (ADS)

    U˝Lkü, Dinçer; Rahighi, Javad; Winick, Herman

    2007-01-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference ~133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member countries

  19. The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light

    PubMed Central

    Collingwood, Joanna F.; Davidson, Mark R.

    2014-01-01

    There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, Friedreich’s ataxia, and amyotrophic lateral sclerosis. PMID:25191270

  20. Single bunch and multi-bunch injection schemes for Iranian Light Source Facility booster synchrotron

    NASA Astrophysics Data System (ADS)

    Sadeghipanah, A.; Feghhi, S. A. H.; Rahighi, J.; Ghasem, H.

    2017-01-01

    In this paper, the design proposal for the Iranian Light Source Facility (ILSF) chopper is presented and the expected performance of both single bunch and multi-bunch modes of beam injection into the booster synchrotron is described. For the multi-bunch mode, a 100 MHz sub-harmonic pre-buncher is proposed to be employed next to the electron gun particularly to reduce the particle loss during the energy ramp of the booster. The results indicated significant improvement of the injection efficiency into the booster. The total particle loss rate for the multi-bunch injection is reduced from 35% to 4%.

  1. Diamond anvil cell radial x-ray diffraction program at the National Synchrotron Light Source.

    PubMed

    Hu, J Z; Mao, H K; Shu, J F; Guo, Q Z; Liu, H Z

    2006-06-28

    During the past decade, the radial x-ray diffraction method using a diamond anvil cell (DAC) has been developed at the X17C beamline of the National Synchrotron Light Source. The detailed experimental procedure used with energy dispersive x-ray diffraction is described. The advantages and limitations of using the energy dispersive method for DAC radial diffraction studies are also discussed. The results for FeO at 135 GPa and other radial diffraction experiments performed at X17C are discussed in this report.

  2. The Advanced Light Source: A third-generation Synchrotron Radiation Source

    SciTech Connect

    Robinson, Arthur L.

    2002-08-14

    The Advanced Light Source (ALS) at the E.O. Lawrence Berkeley National Laboratory (Berkeley Lab) of the University of California is a ''third-generation'' synchrotron radiation source optimized for highest brightness at ultraviolet and soft x-ray photon energies. It also provides world-class performance at hard x-ray photon energies. Berkeley Lab operates the ALS for the United States Department of Energy as a national user facility that is available 24 hours/day around the year for research by scientists from industrial, academic, and government laboratories primarily from the United States but also from abroad.

  3. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii.

    PubMed

    Teramoto, Haruhiko; Nakamori, Akira; Minagawa, Jun; Ono, Taka-aki

    2002-09-01

    Excessive light conditions repressed the levels of mRNAs accumulation of multiple Lhc genes encoding light-harvesting chlorophyll-a/b (LHC) proteins of photosystem (PS)II in the unicellular green alga, Chlamydomonas reinhardtii. The light intensity required for the repression tended to decrease with lowering temperature or CO(2) concentration. The responses of six LhcII genes encoding the major LHC (LHCII) proteins and two genes (Lhcb4 and Lhcb5) encoding the minor LHC proteins of PSII (CP29 and CP26) were similar. The results indicate that the expression of these Lhc genes is coordinately repressed when the energy input through the antenna systems exceeds the requirement for CO(2) assimilation. The Lhc mRNA level repressed under high-light conditions was partially recovered by adding the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting that redox signaling via photosynthetic electron carriers is involved in the gene regulation. However, the mRNA level was still considerably lower under high-light than under low-light conditions even in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Repression of the Lhc genes by high light was prominent even in the mutants deficient in the reaction center(s) of PSII or both PSI and PSII. The results indicate that two alternative processes are involved in the repression of Lhc genes under high-light conditions, one of which is independent of the photosynthetic reaction centers and electron transport events.

  4. Time-resolved synchrotron radiation excited optical luminescence: light-emission properties of silicon-based nanostructures.

    PubMed

    Sham, Tsun-Kong; Rosenberg, Richard A

    2007-12-21

    The recent advances in the study of light emission from matter induced by synchrotron radiation: X-ray excited optical luminescence (XEOL) in the energy domain and time-resolved X-ray excited optical luminescence (TRXEOL) are described. The development of these element (absorption edge) selective, synchrotron X-ray photons in, optical photons out techniques with time gating coincide with advances in third-generation, insertion device based, synchrotron light sources. Electron bunches circulating in a storage ring emit very bright, widely energy tunable, short light pulses (<100 ps), which are used as the excitation source for investigation of light-emitting materials. Luminescence from silicon nanostructures (porous silicon, silicon nanowires, and Si-CdSe heterostructures) is used to illustrate the applicability of these techniques and their great potential in future applications.

  5. Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source.

    PubMed

    Schleede, Simone; Bech, Martin; Achterhold, Klaus; Potdevin, Guillaume; Gifford, Martin; Loewen, Rod; Limborg, Cecile; Ruth, Ronald; Pfeiffer, Franz

    2012-07-01

    The Compact Light Source is a miniature synchrotron producing X-rays at the interaction point of a counter-propagating laser pulse and electron bunch through the process of inverse Compton scattering. The small transverse size of the luminous region yields a highly coherent beam with an angular divergence of a few milliradians. The intrinsic monochromaticity and coherence of the produced X-rays can be exploited in high-sensitivity differential phase-contrast imaging with a grating-based interferometer. Here, the first multimodal X-ray imaging experiments at the Compact Light Source at a clinically compatible X-ray energy of 21 keV are reported. Dose-compatible measurements of a mammography phantom clearly demonstrate an increase in contrast attainable through differential phase and dark-field imaging over conventional attenuation-based projections.

  6. Same-sign diboson signature from supersymmetry models with light Higgsinos at the LHC.

    PubMed

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Sreethawong, Warintorn; Tata, Xerxes

    2013-04-12

    In supersymmetric models with light Higgsinos (which are motivated by electroweak naturalness arguments), the direct production of Higgsino pairs may be difficult to search for at the LHC due to the low visible energy release from their decays. However, the wino pair production reaction W2(±)Z4→(W(±)Z1,2)+(W(±)W1(∓)) also occurs at substantial rates and leads to final states including equally opposite-sign and same-sign diboson production. We propose a novel search channel for LHC14 based on the same-sign diboson plus missing ET final state which contains only modest jet activity. Assuming gaugino mass unification, and an integrated luminosity ≳100  fb(-1), this search channel provides a reach for supersymmetry well beyond that from usual gluino pair production.

  7. Pseudo-single-bunch with adjustable frequency: a new operation mode for synchrotron light sources.

    PubMed

    Sun, C; Portmann, G; Hertlein, M; Kirz, J; Robin, D S

    2012-12-28

    We present the concept and results of pseudo-single-bunch (PSB) operation--a new operational mode at the advanced light source--that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel "kick-and-cancel" scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  8. Pseudo-Single-Bunch with Adjustable Frequency: A New Operation Mode for Synchrotron Light Sources

    NASA Astrophysics Data System (ADS)

    Sun, C.; Portmann, G.; Hertlein, M.; Kirz, J.; Robin, D. S.

    2012-12-01

    We present the concept and results of pseudo-single-bunch (PSB) operation—a new operational mode at the advanced light source—that can greatly expand the capabilities of synchrotron light sources to carry out dynamics and time-of-flight experiments. In PSB operation, a single electron bunch is displaced transversely from the other electron bunches using a short-pulse, high-repetition-rate kicker magnet. Experiments that require light emitted only from a single bunch can stop the light emitted from the other bunches using a collimator. Other beam lines will only see a small reduction in flux due to the displaced bunch. As a result, PSB eliminates the need to schedule multibunch and timing experiments during different running periods. Furthermore, the time spacing of PSB pulses can be adjusted from milliseconds to microseconds with a novel “kick-and-cancel” scheme, which can significantly alleviate complications of using high-power choppers and substantially reduce the rate of sample damage.

  9. In-situ shearing interferometry of National Synchrotron Light Source mirrors

    SciTech Connect

    Qian, S.N.; Rarback, H.; Shu, D.; Takacs, P.Z.

    1987-01-01

    In situ mirror distortion measurements were made with a lateral shearing interferometer on three mirrors in beam line X17T at the National Syn203hrotron Light Source. Lateral shearing interference is insensitive to vibrational motion in five of the six degrees of freedom, so it is well-suited for investigations in the synchrotron radiation (SR) environment. No distortion was seen in an uncooled silicon carbide mirror and in a colled copper alloy mirror on X17TB, but a change in the radius of an uncooled electroless nickel-plated aluminium cylinder mirror of about 6.2% was observed on X17TA. Angular vibrations in the 2 to 3 arc second range were easily observed on one of the beam lines, as was an overall mirror rotation in the arc second range.

  10. Environmental Remediation Science at Beamline X26A at the National Synchrotron Light Source- Final Report

    SciTech Connect

    Bertsch, Paul

    2013-11-07

    The goal of this project was to provide support for an advanced X-ray microspectroscopy facility at the National Synchrotron Light Source, Brookhaven National Laboratory. This facility is operated by the University of Chicago and the University of Kentucky. The facility is available to researchers at both institutions as well as researchers around the globe through the general user program. This facility was successfully supported during the project period. It provided access to advanced X-ray microanalysis techniques which lead to fundamental advances in understanding the behavior of contaminants and geochemistry that is applicable to environmental remediation of DOE legacy sites as well as contaminated sites around the United States and beyond.

  11. Synchrotron radiation shielding design for the Brockhouse sector at the Canadian light source

    NASA Astrophysics Data System (ADS)

    Bassey, Bassey; Moreno, Beatriz; Gomez, Ariel; Ahmed, Asm Sabbir; Ullrich, Doug; Chapman, Dean

    2014-05-01

    At the Canadian Light Source (CLS), the plans for the construction of three beamlines under the Brockhouse Project are underway. The beamlines, to be classified under the CLS Phase III beamlines, will comprise of a wiggler and an undulator, and will be dedicated to x-ray diffraction and scattering experiments. The energy range of these beamlines will be 7-22 keV (low energy wiggler beamline), 20-94 keV (high energy wiggler beamline), and 5-21 keV (undulator beamline). The beamlines will have a total of five hutches. Presented is the shielding design against target scattered white and monochromatic synchrotron radiations for these beamlines. The shielding design is based on: scatter target material-water, dose object-anthropomorphic phantom of the adult human (anteroposterior-AP geometry), and shielding thicknesses of steel and lead that will drop the radiation leakage from the hutches to below 0.5 μSv/h.

  12. Storage Rings for Science with: Electron-Positron Collisions, Hadron Collisions and Synchrotron Light

    SciTech Connect

    Ozaki,S.

    2009-05-04

    The author is honored to receive the 2009 Robert Wilson Prize and the recognition that comes with it. The citation for the prize reads, 'For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents and his promotion of international collaboration.' In this article, he will discuss the two construction projects, which he led, one (TRISTAN e{sup +}e{sup -} Collider at KEK) in Japan and the other (RHIC at BNL) in the USA, covering project issues and lessons learned from these projects. Although both of them were built on separate continents, it is interesting to note that they are both built on long off-shore islands. He will also add comments on his recent engagement in the development of the Conceptual Design for the National Synchrotron Light Source II (NSLS-II).

  13. X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT

    SciTech Connect

    Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.; Cecchi-Pestellini, C.; Chen, Y.-J.; Huang, C.-H. E-mail: ciarave@astropa.inaf.it E-mail: cecchi-pestellini@astropa.inaf.it E-mail: 101222023@cc.ncu.edu.tw

    2016-03-20

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  14. X-Ray Irradiation of H2O + CO Ice Mixtures with Synchrotron Light

    NASA Astrophysics Data System (ADS)

    Jiménez-Escobar, A.; Chen, Y.-J.; Ciaravella, A.; Huang, C.-H.; Micela, G.; Cecchi-Pestellini, C.

    2016-03-01

    We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250-1200 eV) were employed. During the irradiation, the H2O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistry is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.

  15. A new synchrotron light source at Louisiana State University's Center for Advanced Microstructures and Devices

    NASA Astrophysics Data System (ADS)

    Stockbauer, Roger L.; Ajmera, Pratul; Poliakoff, Erwin D.; Craft, Ben C.; Saile, Volker

    1990-05-01

    A 1.2-GeV synchrotron light source is being constructed at the Center for Advanced Microstructures and Devices (CAMD) at Louisiana State University. The expressed purpose of the center, which has been funded by a grant from the US Department of Energy, is to develop X-ray lithography techniques for manufacturing microcircuits, although basic science programs are also being established. The storage ring will be optimized for the soft-X-ray region and will be the first commercially manufactured electron storage ring in the United States. The magnetic lattice is based on a design developed by Chasman and Green and will allow up to three insertion devices to be installed for higher-energy and higher-intensity radiation. In addition to the lithography effort, experimental programs are being established in physics, chemistry, and related areas.

  16. National synchrotron light source. Activity report, October 1, 1994--September 30, 1995

    SciTech Connect

    Rothman, E.Z.; Hastings, J.

    1996-05-01

    This report discusses research conducted at the National Synchrotron Light Source in the following areas: atomic and molecular science; energy dispersive diffraction; lithography, microscopy, and tomography; nuclear physics; scattering and crystallography studies of biological materials; time resolved spectroscopy; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; the 1995 NSLS annual users` meeting; 17th international free electron laser conference; micro bunches workshop; VUV machine; VUV storage ring parameters; beamline technical improvements; x-ray beamlines; x-ray storage ring parameters; the NSLS source development laboratory; the accelerator test facility (ATF); NSLS facility improvements; NSLS advisory committees; NSLS staff; VUV beamline guide; and x-ray beamline guide.

  17. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-12-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature.

  18. A MODEL STUDY OF TRANSVERSE MODE COUPLING INSTABILITY AT NATIONAL SYNCHROTRON LIGHT SOURCE-II (NSLS-II).

    SciTech Connect

    BLEDNYKH, A.; WANG, J.M.

    2005-05-15

    The vertical impedances of the preliminary designs of National Synchrotron Light Source II (NSLS-II) Mini Gap Undulators (MGU) are calculated by means of GdfidL code. The Transverse Mode Coupling Instability (TMCI) thresholds corresponding to these impedances are estimated using an analytically solvable model.

  19. National synchrotron light source. Activity report, October 1, 1995--September 30, 1996

    SciTech Connect

    Rothman, E.Z.; Hastings, J.B.

    1997-05-01

    The hard work done by the synchrotron radiation community, in collaboration with all those using large-scale central facilities during 1995, paid off in FY 1996 through the DOE`s Presidential Scientific Facilities Initiative. In comparison with the other DOE synchrotron radiation facilities, the National Synchrotron Light Source benefited least in operating budgets because it was unable to increase running time beyond 100%-nevertheless, the number of station hours was maintained. The major thrust at Brookhaven came from a 15% increase in budget which allowed the recruitment of seven staff in the beamlines support group and permitted a step increment in the funding of the extremely long list of upgrades; both to the sources and to the beamlines. During the December 1995 shutdown, the VUV Ring quadrant around U10-U12 was totally reconstructed. New front ends, enabling apertures up to 90 mrad on U10 and U12, were installed. During the year new PRTs were in formation for the infrared beamlines, encouraged by the investment the lab was able to commit from the initiative funds and by awards from the Scientific Facilities Initiative. A new PRT, specifically for small and wide angle x-ray scattering from polymers, will start work on X27C in FY 1997 and existing PRTs on X26C and X9B working on macromolecular crystallography will be joined by new members. Plans to replace aging radio frequency cavities by an improved design, originally a painfully slow six or eight year project, were brought forward so that the first pair of cavities (half of the project for the X-Ray Ring) will now be installed in FY 1997. Current upgrades to 350 mA initially and to 438 mA later in the X-Ray Ring were set aside due to lack of funds for the necessary thermally robust beryllium windows. The Scientific Facilities Initiative allowed purchase of all 34 windows in FY 1996 so that the power upgrade will be achieved in FY 1997.

  20. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  1. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    SciTech Connect

    Lea, Ramona

    2016-01-22

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, {sup 3}He and {sup 4}He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p–Pb and Pb–Pb collision and of light (anti-)nuclei and (anti-)hypertritons in Pb–Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.

  2. SESAME -- A third generation synchrotron light source for the Middle East

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2012-03-01

    Developed under the auspices of UNESCO and modeled on CERN, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is an international research centre in construction in Jordan, enabling world-class research while promoting peace through scientific cooperation. Its centerpiece, a new 2.5 GeV 3rd Generation Electron Storage Ring (133m circumference, 26nm-rad emittance, 12 places for insertion devices), will provide intense light from infra-red to hard X-rays. Members of the Council (Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestinian Authority,Turkey) provide the operations budget. Voluntary contributions by several Council Members that could amount to over 20 million over 5 years are now being finalized. This, plus funds from other sources, will enable acquisition of the technical components of the new ring and the upgrading of beamline equipment donated by several European and US labs. All concrete shielding is complete. The 0.8 GeV BESSY I injector system, a gift from Germany, is now being installed. A training program has been underway since 2000. SESAME is on track to start operation with four day-one beam lines in 2015.

  3. Local transverse coupling impedance measurements in a synchrotron light source from turn-by-turn acquisitions

    NASA Astrophysics Data System (ADS)

    Carlà, Michele; Benedetti, Gabriele; Günzel, Thomas; Iriso, Ubaldo; Martí, Zeus

    2016-12-01

    Transverse beam coupling impedance is a source of beam instabilities that limits the machine performance in circular accelerators. Several beam based techniques have been used to measure the transverse impedance of an accelerator, usually based on the optics distortion produced by the impedance source itself. Beam position monitor turn-by-turn analysis for impedance characterization has been usually employed in large circumference machines, while synchrotron light sources have mainly used slow orbit based techniques. Instead, the work presented in this paper uses for the first time turn-by-turn data at ALBA to advance the measurement technique into the range of the typically small impedance values of modern light sources. We have measured local impedance contributions through the observation of phase advance versus bunch charge using the betatron oscillations excited with a fast dipole kicker. The ALBA beam position monitor system and the precision of the turn-by-turn analysis allowed to characterize the main sources of transverse impedance, in good agreement with the model values, including the impedance of an in-vacuum undulator.

  4. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  5. Monojet plus soft dilepton signal from light higgsino pair production at LHC14

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Mustafayev, Azar; Tata, Xerxes

    2014-12-01

    Naturalness arguments imply the existence of higgsinos lighter than 200-300 GeV. However, because these higgsinos are nearly mass degenerate, they release very little visible energy in their decays, and (even putting aside triggering issues) signals from electroweak higgsino pair production typically remain buried under Standard Model backgrounds. Prospects for detecting higgsino pair production via events with monojets or monophotons from initial state radiation are also bleak because of signal-to-background rates typically at the 1% level. Here, we consider the possibility of reducing backgrounds by requiring the presence of soft daughter leptons from higgsino decays in monojet events. We find that LHC14 experiments with an integrated luminosity of 300 fb-1 should be sensitive to light higgsinos at the 5 σ level for μ <170 GeV with a S /B ˜8.5 % . For an integrated luminosity of 1000 fb-1 (which should be possible at a high-luminosity LHC) the corresponding sensitivity to μ extends to over 200 GeV though the systematic uncertainty would have to be controlled to considerably better than 5%. The corresponding reach from measurements of the rate asymmetry between monojet events with same flavor vs opposite flavor dileptons is ˜10 - 15 GeV smaller, but does not suffer the systematic uncertainty from the normalization of the background.

  6. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect

    Fewell, N.

    1993-12-01

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  7. Design of a fast electron beam scanning system for compact synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Lehr, H.

    1989-07-01

    The design of an electron beam scanning system for compact storage ring synchrotron light sources is described. The main features are a scan frequency of 100 Hz and an angular amplitude of ±5 mrad. Different configurations of scan dipoles permit confining the scan to one cell using four dipoles or to repeat the scan periodically along the whole circumference by means of two scan dipoles per cell. Combinations of these basic configurations are possible. The location of the nodes of the pivoting electron beam can be optimized with respect to the maximum scan angle by slightly unbalancing the field strength in different scan dipoles. The scan dipoles are H-shaped magnets made from laminated iron. Their gap width is 68 mm. They are powered by fast transistor-bridge supplies which are controlled by freely programmable function generators capable of realizing a triangular current waveform with a deviation of less than 0.1% except for a 1% neighborhood of the apex. Estimates of the influence of the scanning on both quantum and Coulomb lifetime indicate acceptable lifetime reductions provided the minimum distance between distorted closed orbit and aperture exceeds about six standard deviations of the spatial electron distribution.

  8. Synchrotron X-Ray Microdiffraction Studies of Electromigration in Interconnect lines at the Advanced Light Source

    SciTech Connect

    Tamura, Nobumichi; Chen, Kai; Kunz, Martin

    2009-05-01

    Synchrotron polychromatic X-ray microdiffraction is a particularly suitable technique to study in situ the effect of electromigration in metal interconnects as add spatial resolution to grain orientation and strain sensitivity. This technique has been extensively used at the Advanced Light Source to monitor changes in aluminum and copper interconnect test structures while high-density current is passed into them during accelerated tests at elevated temperature. One of the principal findings is the observation of electromigration-induced plasticity in the metal lines that appear during the very early stages of electromigration. In some of the lines, high density of geometrically necessary dislocation are formed leading to additional diffusion paths causing an enhancement of electromigration effect at test temperature. This paper presents an overview of the principal results obtained from X-ray microdiffraction studies of electromigration effects on aluminum and copper interconnects at the ALS throughout continuous efforts that spanned over a decade (1998-2008) from approximately 40 weeks of combined beamtime.

  9. Industrial applications of micro/nanofabrication at Singapore Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Casse, B. D. F.; Heussler, S. P.; Kong, J. R.; Saw, B. T.; Mahmood, Shahrain bin; Moser, H. O.

    2006-04-01

    SSLS (Singapore Synchrotron Light Source) has set up a complete one-stop shop for micro/nanofabrication in the framework of the LIGA process. It is dubbed LiMiNT for Lithography for Micro and Nanotechnology and allows complete prototyping using the integral cycle of the LIGA process for producing micro/nanostructures from mask design/fabrication over X-ray lithography to electroplating in Ni, Cu, or Au, and, finally, hot embossing in a wide variety of plastics as one of the capabilities to cover a wide range of application fields and to go into higher volume production. The process chain also includes plasma cleaning and sputtering as well as substrate preparation processes including metal buffer layers, plating bases, and spin coating, polishing, and dicing. Furthermore, metrology using scanning electron microscopy (SEM), optical profilometry, and optical microscopy is available. LiMiNT is run as a research lab as well as a foundry. In this paper, several industrial applications will be presented, in which LiMiNT functions as a foundry to provide external customers the micro/nano fabrication services. These services include the fabrication of optical or X-ray masks, of micro/nano structures from polymers or from metals and of moulds for hot embossing or injection moulding.

  10. Computed tomography with monochromatic X rays from the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Dilmanian, F. A.; Garrett, R. F.; Thomlinson, W. C.; Berman, L. E.; Chapman, L. D.; Hastings, J. B.; Luke, P. N.; Oversluizen, T.; Siddons, D. P.; Slatkin, D. N.; Stojanoff, V.; Thompson, A. C.; Volkow, N. D.; Zeman, H. D.

    1991-05-01

    A multiple-energy computed tomography (MECT) system that employs monochromatic and tunable 33-100 keV X rays from a superconducting wiggler at the National Synchrotron Light Source is being developed at Brookhaven National Laboratory. The CT configuration is that of a fixed, horizontal fan-shape beam and a subject seated in a rotating chair. Two quantitative CT methods will be used: a) K-edge subtraction of intravenously administered iodine (or a heavier element) to image brain tumors, large blood vessels of the lower head and neck, and arteriovenous malformations; and b) dual photon absorptiometry to obtain two brain CT images that map the low- Z elements and the intermediate- Z elements (i.e. P, S, Cl, K, Ca, and Fe) separately. The system is expected to provide 0.5 mm spatial resolution, horizontally, with unprecedented image contrast and accuracy of quantification. The system will employ a two-crystal monochromator and a high-purity Ge linear array detector.

  11. XUV synchrotron optical components for the Advanced Light Source: Summary of the requirements and the developmental program

    SciTech Connect

    McKinney, W.; Irick, S.; Lunt, D.

    1992-07-01

    We give a brief summary of the requirements for water cooled optical components for the Advanced Light Source (ALS), a third generation synchrotron radiation source under construction at Lawrence Berkeley Laboratory (LBL). Materials choices, surface figure and smoothness specifications, and metrology systems for measuring the plated metal surfaces are discussed. Results from a finished water cooled copper alloy mirror will be used to demonstrate the state of the art in optical metrology with the Takacs Long Trace Profiler (LTP II).

  12. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye.

    PubMed

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-15

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  13. Gravitino decays and the cosmological lithium problem in light of the LHC Higgs and supersymmetry searches

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Luo, Feng; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: fluo@physics.umn.edu E-mail: spanos@inp.demokritos.gr

    2013-05-01

    We studied previously the impact on light-element abundances of gravitinos decaying during or after Big-Bang nucleosynthesis (BBN). We found regions of the gravitino mass m{sub 3/2} and abundance ζ{sub 3/2} plane where its decays could reconcile the calculated abundance of {sup 7}Li with observation without perturbing the other light-element abundances unacceptably. Here we revisit this issue in light of LHC measurements of the Higgs mass and constraints on supersymmetric model parameters, as well as updates in the astrophysical measurements of light-element abundances. In addition to the constrained minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses at the GUT scale (the CMSSM) studied previously, we also study models with universality imposed below the GUT scale and models with non-universal Higgs masses (NUHM1). We calculate the total likelihood function for the light-element abundances, taking into account the observational uncertainties. We find that gravitino decays provide a robust solution to the cosmological {sup 7}Li problem along strips in the (m{sub 3/2},ζ{sub 3/2}) plane along which the abundances of deuterium, {sup 4}He and {sup 7}Li may be fit with χ{sup 2}{sub min}∼<3, compared with χ{sup 2} ∼ 34 if the effects of gravitino decays are unimportant. The minimum of the likelihood function is reduced to χ{sup 2} < 2 when the uncertainty on D/H is relaxed and < 1 when the lithium abundance is taken from globular cluster data.

  14. Vibrational dynamics of plant light-harvesting complex LHC II investigated by quasi- and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Golub, Maksym; Irrgang, Klaus-Dieter; Rusevich, Leonid; Pieper, Jörg

    2015-01-01

    Vibrational dynamics of the light-harvesting complex II (LHC II) from spinach was investigated by quasi- and inelastic neutron scattering (QENS and INS) at three different temperatures of 80, 160, and 285 K. QENS/INS spectra of solubilised LHC II and of the corresponding buffer solution were obtained separately and exhibit characteristic inelastic features. After subtraction of the buffer contribution, the INS spectrum of LHC II reveals a distinct Boson peak at ˜ 2.5 meV at 80 K that shifts towards lower energies if the temperature is increased to 285 K. This effect is interpreted in terms of a "softening" of the protein matrix along with the dynamical transition at ˜ 240 K. Our findings indicate that INS is a valuable method to obtain the density of vibrational states not only at cryogenic, but also at physiological temperatures.

  15. NSLS 2007 Activity Report (National Synchrotron Light Source Activity Report 2007)

    SciTech Connect

    Miller ,L.; Nasta, K.

    2008-05-01

    The National Synchrotron Light Source is one of the world's most productive and cost-effective user facilities. With 2,219 individual users, about 100 more than last year, and a record-high 985 publications, 2007 was no exception. In addition to producing an impressive array of science highlights, which are included in this Activity Report, many NSLS users were honored this year for their scientific accomplishments. Throughout the year, there were major strides in the development of the scientific programs by strengthening strategic partnerships with major research resources and with the Center for Functional Nanomaterials (CFN). Of particular note, the Consortium for Materials Properties Research in Earth Sciences (COMPRES) received renewed funding for the next five years through the National Science Foundation. COMPRES operates four high-pressure NSLS beamlines--X17B2, X17B3, X17C, and U2A--and serves the earth science community as well as the rapidly expanding segment of researchers using high-pressure techniques in materials, chemical, and energy-related sciences. A joint appointment was made between the NSLS and Stony Brook University to further enhance interactions with COMPRES. There was major progress on two key beamline projects outlined in the Five-Year Strategic Plan: the X25 beamline upgrade and the construction of the X9 small angle scattering (SAXS) beamline. The X25 overhaul, which began with the installation of the in-vacuum mini-gap undulator (MGU) in January 2006, is now complete. X25 is once again the brightest beamline for macromolecular crystallography at the NSLS, and in tandem with the X29 undulator beamline, it will keep the NSLS at the cutting edge in this important area of research. Upgrade work associated with the new MGU and the front end for the X9 SAXS beamline--jointly developed by the NSLS and the CFN--also was completed. Beamline X9 will host the SAXS program that currently exists at beamline X21 and will provide new microbeam SAXS

  16. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    PubMed

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.

  17. Comment [on “Synchrotron sheds new light on geophysical materials”

    NASA Astrophysics Data System (ADS)

    Charlie, Wayne; Dumford, Deanna

    Thank you for the excellent synchrotron article (Eos, February 11, 1997, pp. 61-62). However, the “first light” experiments at the Advanced Photon Source (APS) at Argonne National Laboratory on December 20, 1996, do not “mark the dawn of a new era of rock and mineral physics.” Third-generation synchrotron radiation sources have been used at the Cornell CHESS facility for geoscience research for many years. For example, we used this facility with Barnes Bierck and Tammo Steenhuis to study consolidation and flow in geophysical materials in 1994.

  18. Bringing Physics, Synchrotron Light and Probing Neutrons to the Public: A Collaborative Outreach

    ERIC Educational Resources Information Center

    Micklavzina, Stanley; Almqvist, Monica; Sörensen, Stacey L.

    2014-01-01

    Stanley Micklavzina, a US physics educator on sabbatical, teams up with a Swedish national research laboratory, a synchrotron radiation experimental group and a university science centre to develop and create educational and public outreach projects. Descriptions of the physics, science centre displays and public demonstrations covering the…

  19. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  20. Support for the Advanced Polymers Beamline at the National Synchrotron Light Source

    SciTech Connect

    Hsiao, Benjamin S

    2008-10-01

    The primary focus of the X27C beamline is to investigate frontier polymer science and engineering problems with emphasis on real-time studies of structures, morphologies and dynamics from atomic, nanoscopic, microscopic to mesoscopic scales using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. The scientific merit of this project is as follows. Currently, many unique sample chambers for in-situ synchrotron studies, developed by the PI (B. Hsiao) and Co-PI (B. Chu), are available for general users of X27C at NSLS. These instruments include a gel/melt spinning apparatus, a continuous fiber drawing apparatus, a tensile stretching apparatus, a high pressure X-ray cell using supercritical carbon dioxide, a parallel plate strain-controlled shear stage and a dynamic rheometer for small-strain oscillatory deformation study. Based on the use of these instruments in combination with synchrotron X-rays, many new insights into the relationships between processing and structure have been obtained in recent years. The broader impact of this project is as follows. The X27C beamline is the first synchrotron facility in the United States dedicated to chemistry/materials research (with emphasis on polymers). The major benefit of this facility to the materials community is that no extensive synchrotron experience and equipment preparation are required from general users to carry out cutting-edge experiments.

  1. Measurement of Photon Statistics of Wiggler Radiation from AN Electron Storage Ring at the National Synchrotron Light Source.

    NASA Astrophysics Data System (ADS)

    Tanabe, Toshiya

    1990-01-01

    The photon statistics of wiggler light from the vacuum ultraviolet (VUV) storage ring at the National Synchrotron Light Source (NSLS) in Brookhaven National Laboratory (BNL) have been measured using an analog photon-counting technique. The linear wiggler produces fundamental wavelength light and the third harmonic light at 532 nm for ring energies ~650 MeV and 375 MeV, respectively. The average ring current was ~50 mA for one-electron-bunch operation. The bunch was ~480 psec long and the wiggler light was emitted every 170.2 nsec. The number of photons emitted by an electron bunch was repetitively measured for a given coherence volume. The photon counting distribution, which is the probability of finding n photons versus n, was obtained. The experimental results show that the wiggler radiation is consistent with multi-mode thermal radiation, whereas the bending magnet light gives rise to a distribution consistent with a Neyman Type-A distribution instead of Poisson when the light of large bandwith through a Pyrex window is collected. Near field and electron beam emittance effects have proven to have an important influence on the transverse coherence of the emitted radiation.

  2. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  3. Developments in synchrotron x-ray micro-tomography for in-situ materials analysis at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Venkatakrishnan, S. V.; Panerai, F.; Mansour, N. N.

    2016-10-01

    The Advanced Light Source (ALS) is a third-generation synchrotron X-ray source that operates as a user facility with more than 40 beamlines hosting over 2000 users per year. Synchrotron sources like the ALS provide high quality X-ray beams, with flux that is several orders of magnitude higher than lab-based sources. This is particularly advantageous for dynamic applications because it allows for high-speed, high-resolution imaging and microscale tomography. The hard X-ray beamline 8.3.2 at the Advanced Light Source enables imaging of samples at high temperatures and pressures, with mechanical loading and other realistic conditions using environmental test cells. These test cells enable experimental observation of samples undergoing dynamic microstructural changes in-situ. We present recent instrumentation developments that allow for continuous tomography with scan rates approaching 1 Hz per 3D image. In addition, our use of iterative reconstruction techniques allows for improved image quality despite fewer images and low exposure times used during fast tomography compared to traditional Fourier reconstruction methods.

  4. Status of the High Brilliance Synchrotron Light Source BESSY-II

    NASA Astrophysics Data System (ADS)

    Jaeschke, E.

    1997-05-01

    The construction of BESSY-II at Berlin-Adlershof has entered the decisive phase: The injector complex comprising a 50 MeV racetrack microtron and a booster synchrotron with 10 Hz repetition rate and a final energy of 1.9 GeV has been set up ready for commissioning in the 2nd quarter of 1997. All major storage ring components are in house and the assembly of the 240 m DBA storage ring in 16-fold symmetry has started. Stored beam is expected for the 2nd quarter of 1998. The paper describes the status of the project.

  5. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  6. The radiation hardness and temperature stability of Planar Light-wave Circuit splitters for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.

    2011-10-01

    High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( < 0.1 dB) in reducing the operating temperature from 25°C to -25°C. The silica based splitters from all manufacturers did not exhibit significant radiation induced insertion losses, despite the high dose they were exposed to. The glass based sample, however, had a per channel radiation induced insertion loss of up to 1.16 dB. Whilst the silica based splitters can be considered as qualified for HL-LHC use with regards to radiation hardness, the glass technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.

  7. Development of soft X-ray polarized light beamline on Indus-2 synchrotron radiation source

    SciTech Connect

    Phase, D. M. Gupta, Mukul Potdar, S. Behera, L. Sah, R. Gupta, Ajay

    2014-04-24

    This article describes the development of a soft x-ray beamline on a bending magnet source of Indus-2 storage ring (2.5 GeV) and some preliminary results of x-ray absorption spectroscopy (XAS) measurements using the same. The beamline layout is based on a spherical grating monochromator. The beamline is able to accept synchrotron radiation from the bending magnet port BL-1 of the Indus-2 ring with a wide solid angle. The large horizontal and vertical angular acceptance contributes to high photon flux and selective polarization respectively. The complete beamline is tested for ultrahigh vacuum (UHV) ∼ 10{sup −10} mbar. First absorption spectrum was obtained on HOPG graphite foil. Our performance test indicates that modest resolving power has been achieved with adequate photon flux to carry out various absorption experiments.

  8. Initial feasibility study of a dedicated synchrotron radiation light source for ultrafast X-ray science

    SciTech Connect

    Corlett, John N.; DeSantis, S.; Hartman, N.; Heimann, P.; LaFever, R.; Li, D.; Padmore, H.; Rimmer, R.; Robinson, K.; Schoenlein, R.; Tanabe, J.; Wang, S.; Zholents, A.; Kairan, D.

    2001-10-26

    We present an initial feasibility summary of a femtosecond synchrotron radiation x-ray source based on a flat-beam rf gun and a recirculating superconducting linac that provides beam to an array of undulators and bend magnets. Optical pulse durations of < 100 fs are obtained by a combination of electron pulse compression, transverse temporal correlation of the electrons, and x-ray pulse compression. After an introduction and initial scientific motivation, we cover the following aspects of the design: layout and lattice, ultra-fast x-ray pulse production, flat electron-beam production, the rf gun, rf systems, cryogenic systems, collective effects, photon production, and synchronization of x-ray and laser pulses. We conclude with a summary of issues and areas of development that remain to be addressed.

  9. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    SciTech Connect

    Gmuer, N.F.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  10. X-ray photonic microsystems for the manipulation of synchrotron light

    DOE PAGES

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; ...

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractivemore » optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.« less

  11. Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.

    PubMed

    Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B

    2015-03-21

    How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems.

  12. Synchrotron radiation and high pressure: new light on materials under extreme conditions.

    PubMed

    Hemley, Russell J; Mao, Ho-kwang; Struzhkin, Viktor V

    2005-03-01

    With the steady development of static high-pressure techniques in recent years, it is now possible to probe in increasing detail the novel behavior of materials subjected to extreme conditions of multimegabar pressures (>300 GPa) and temperatures from cryogenic states to thousands of degrees. By and large, the growth in this area has been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in high-pressure powder and single-crystal diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. A brief overview of selected highlights in each of these classes of experiments is presented that illustrate both the state-of-the-art as well as current technical and scientific challenges. The experiments have been made possible by the development of a spectrum of new techniques at both third- and second-generation high-energy sources together with key advances in high-pressure technology. The results have implications for a variety of problems in physics, chemistry, materials science, geoscience, planetary science, and biology.

  13. Conceptual Design Report for a Phase 3 upgrade of the National Synchrotron Light Source

    SciTech Connect

    Foyt, W.; Krinsky, S.; Hastings, J.; Finlay, L.

    1994-03-01

    Considerable investment by both the Department of Energy and the facility`s Participating Research teams has permitted the NSLS to offer a national facility to a wide range of scientific pursuits. The purpose of the NSLS Phase III project is to maximize the scientific output of this premier 2nd generation synchrotron radiation facility through a number of distinct projects. Over the years the NSLS has made significant improvements in the area of beam reliability which has resulted in deliverable, reproducible beam during 98% and 97% of scheduled operations on the VUV and X-ray rings respectively. This project will focus on improving beam intensity and stability by upgrading the optics and detector systems on a number of beamlines as well as upgrading radio frequency (rf) and beam position monitoring systems in the storage rings. In addition, the project includes plans for the design and procurement of a utility isolation system that would guard against voltage transients that disrupt the facility`s electrical system. Also a new insertion device will be installed at beamline X25 and a 2nd floor will be constructed over the X6 -- X16 region which will provide sorely needed laboratory and office space for the user community. This project requests funding of 22.5 million dollars over a three year period: FY 1996 ($6.3M), FY 1997 ($13.4M) and FY 1998 ($2.8M).

  14. Beam stability in a 6 GeV synchrotron light source

    SciTech Connect

    Norem, J.; Knott, M.; Rauchas, A.

    1985-01-01

    Future synchrotron radiation sources designed to produce low emittance electron beams for wigglers and undulators will present beam position control problems essentially similar to those encountered by users of existing accelerators, however tolerances will be tighter due to: (1) the small emittance (7 x 10/sup -9/ mrad) proposed for the electron beam and the correspondingly small emittances (sizes) of secondary photon beams, (2) the sensitivity of the electron beam closed orbit to quadrupole motion and dipole roll, (3) the high power levels associated with undulator and wiggler beams which will permit (and probably require) high precision and stability of the photon beam position measurements, in addition, (4) the large number of users on the roughly sixty beam lines will demand beams capable of producing the best experimental results. For the present paper, we assume the accelerator control function, which would initially involve making and coordinating all changes, would eventually evolve to setting and verifying the limits of user control: within these limits the beam position would be controlled by users. This paper describes the effects of motion of beam components (quads, rf cavities and dipoles) on the beam and considers the properties of a compensation system from the perspective of users. The system departs from standard practice in considering active perturbation of the electron beam to verify beam corrections. The effects of local closed orbit perturbations to direct undulator beams at different experimental setups are also considered. 8 refs., 3 figs.

  15. Developing EnviroSuite Resources at the National Synchrotron Light Source

    SciTech Connect

    Paul Northrup; Jeffrey Fitts; Mark Fuhrmann; Paul Kalb

    2006-06-01

    The objective of Brookhaven National Laboratory's EnviroSuite Initiative is to develop the facilities, user support infrastructure, and techniques necessary to conduct world-class molecular environmental science research at the NSLS. This is intended to benefit the research of ERSD-supported scientists, both through direct access and assistance and through the indirect benefits of a broader network of environmental scientists as collaborators and users. Much of the EnviroSuite research involves close collaboration with members of the Center for Environmental Molecular Science (CEMS), an EMSI based at BNL and nearby Stony Brook University and jointly supported by ERSD (Project 1023761, P. Kalb) and NSF. This offers unique opportunities to benefit from both national laboratory facilities and university resources. Other collaborators, from around the US and the world, investigate various aspects of the underlying molecular-scale processes in complex natural systems. In general, synchrotron techniques are ideal for studying the molecular-scale structures, chemical/physical interactions, and transformations that govern the macroscopic properties and processes (e.g. transport, bioavailability) of contaminants in the environment. These techniques are element-specific, non-destructive, and sensitive to the very low concentrations found in real-world samples.

  16. X-ray photonic microsystems for the manipulation of synchrotron light

    PubMed Central

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-01-01

    Photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing. PMID:25940542

  17. X-ray photonic microsystems for the manipulation of synchrotron light

    SciTech Connect

    Mukhopadhyay, D.; Walko, D. A.; Jung, I. W.; Schwartz, C. P.; Wang, Jin; López, D.; Shenoy, G. K.

    2015-05-05

    In this study, photonic microsystems played an essential role in the development of integrated photonic devices, thanks to their unique spatiotemporal control and spectral shaping capabilities. Similar capabilities to markedly control and manipulate X-ray radiation are highly desirable but practically impossible due to the massive size of the silicon single-crystal optics currently used. Here we show that micromechanical systems can be used as X-ray optics to create and preserve the spatial, temporal and spectral correlation of the X-rays. We demonstrate that, as X-ray reflective optics they can maintain the wavefront properties with nearly 100% reflectivity, and as a dynamic diffractive optics they can generate nanosecond time windows with over 100-kHz repetition rates. Since X-ray photonic microsystems can be easily incorporated into lab-based and next-generation synchrotron X-ray sources, they bring unprecedented design flexibility for future dynamic and miniature X-ray optics for focusing, wavefront manipulation, multicolour dispersion, and pulse slicing.

  18. Preliminary studies of enhanced contrast radiography in anatomy and embryology of insects with Elettra synchrotron light

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Foerster, L. A.; Navarro-Silva, M. A.; Menk, R.-H.; Rigon, L.; Cusatis, C.

    2005-08-01

    Enhanced contrast X-ray imaging is achieved by exploiting the real part of the refraction index, which is responsible for the phase shifts, in addition to the imaginary part, which is responsible for the absorption. Such techniques are called X-ray phase contrast imaging. An analyzer-based X-ray phase contrast imaging set-up with Diffraction Enhanced Imaging processing (DEI) were used for preliminary studies in anatomy and embryology of insects. Parasitized stinkbug and moth eggs used as control agents of pests in vegetables and adult stinkbugs and mosquitoes ( Aedes aegypti) were used as samples. The experimental setup was mounted in the SYRMEP beamline at ELETTRA. Images were obtained using a high spatial resolution CCD detector (pixel size 14×14 μm 2) coupled with magnifying optics. Analyzer-based X-ray phase contrast images (PCI) and edge detection images show contrast and details not observed with conventional synchrotron radiography and open the possibility for future study in the embryonic development of insects.

  19. Study of the interfacial structures and behavior of smectic liquid crystals using synchrotron light source

    NASA Astrophysics Data System (ADS)

    Hu, Yufei

    2003-10-01

    Grazing Incidence X-ray Scattering with a synchrotron X-ray source is used to study the depth dependence of the interfacial structure of smectic liquid crystal (8CB) hybrid films. The advancement and market potential of liquid crystal technologies lead to inventions of new materials and surface treatments. The knowledge of interfacial structures and behavior is very critical to these thin film devices such as Liquid Crystal Display. Photolithography in a clean room is adopted to make gratings on very thin glass, which offers better quality than conventional methods in terms of uniformity, reproducibility, reliability, and endurance. Liquid crystal thin films are bounded by a grated glass substrate and air, and have been studied as a function of both temperature and thickness. Experimental measurements indicate the existence of chevron, tilt, and bookshelf structure, as well as Twisted Grain Boundary (TGB) structure that has not previously been observed by X-ray in non-chiral smectic liquid crystals. These structures are a result of liquid crystal anchoring at two dissimilar competing confining surfaces, air-smectics and smectics-grating substrate. With deeper grating, smectic liquid crystals are more constrained in structure and more resilient to temperature change. The smectic phase also persisted at a higher temperature above the smectic-nematic transition point on a deeper grating substrate. When the thickness of liquid crystal samples is beyond a certain point, the smectic liquid crystal begins to form different layers. Chevron structures appear in most situations, which is consistent with previous research A TGB structure is not tamable in a thicker sample where liquid crystals tend to realign themselves in a more stable structure.

  20. NSLS 2006 ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE ACTIVITY REPORT 2006)

    SciTech Connect

    MILLER, L.

    2006-12-31

    This past year has seen both challenges and fantastic new opportunities for the user community at the NSLS. The fantastic new opportunities are clear and abundant. We now have a five-year strategic plan for new development and continued operation of the NSLS. The NSLS continues to be an extremely productive facility, and the UEC is delighted at how NSLS Chair Chi-Chang Kao has consulted widely within the user community to develop a five-year plan for strategic upgrades and continued operation of the facility. The NSLS-II project, led by Associate Lab Director Steve Dierker, has done very well in its Department of Energy (DOE) reviews and will hopefully soon receive Critical Decision-1 (CD-1) approval, which in DOE lingo gives a go-ahead to launch the detailed design of the facility. We also held the first joint user meeting between the NSLS and Brookhaven's Center for Functional Nanomaterials (CFN), for which the building is near completion. The joint user meeting is an important step toward the close collaboration of the two facilities. The CFN, led by Emilio Mendez, promises to provide capabilities and research foci that are complementary to those at the NSLS. Together, all of these developments give a clear path to an exciting future of synchrotron radiation research at Brookhaven! However, with opportunities come challenges! One of the largest of these faced in the past year involved congressional support for scientific research in general, and DOE user facilities in particular. As you likely know, Congress did not complete its usual budget process in 2006, with the exceptions of the departments of Defense and Homeland Security. This left science funding at the budget levels enacted in late 2005 for FY2006, and unfortunately, FY2006 was not a particularly memorable vintage for science support. The good news is that you, the user community, have spoken up with unprecedented vigor about this, and Congress appears to be listening. As we look at the FY2007 budget

  1. Elucidation of structure-function relationships in plant major light-harvesting complex (LHC II) by nonlinear spectroscopy.

    PubMed

    Lokstein, Heiko; Betke, Alexander; Krikunova, Maria; Teuchner, Klaus; Voigt, Bernd

    2012-03-01

    Conventional linear and time-resolved spectroscopic techniques are often not appropriate to elucidate specific pigment-pigment interactions in light-harvesting pigment-protein complexes (LHCs). Nonlinear (laser-) spectroscopic techniques, including nonlinear polarization spectroscopy in the frequency domain (NLPF) as well as step-wise (resonant) and simultaneous (non-resonant) two-photon excitation spectroscopies may be advantageous in this regard. Nonlinear spectroscopies have been used to elucidate substructure(s) of very complex spectra, including analyses of strong excitonic couplings between chlorophylls and of interactions between (bacterio)chlorophylls and "optically dark" states of carotenoids in LHCs, including the major antenna complex of higher plants, LHC II. This article shortly reviews our previous study and outlines perspectives regarding the application of selected nonlinear laser-spectroscopic techniques to disentangle structure-function relationships in LHCs and other pigment-protein complexes.

  2. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    SciTech Connect

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light.

  3. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  4. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    DOE PAGES

    Hung, Pham Q.

    2013-01-01

    The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0 + scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale aroundmore » 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.« less

  5. Synchrotron Radiation Sheds Fresh Light on Plant Research: The Use of Powerful Techniques to Probe Structure and Composition of Plants.

    PubMed

    Vijayan, Permual; Willick, Ian R; Lahlali, Rachid; Karunakaran, Chithra; Tanino, Karen K

    2015-07-01

    While synchrotron radiation is a powerful tool in material and biomedical sciences, it is still underutilized in plant research. This mini review attempts to introduce the potential of synchrotron-based spectroscopic and imaging methods and their applications to plant sciences. Synchrotron-based Fourier transform infrared spectroscopy, X-ray absorption and fluorescence techniques, and two- and three-dimensional imaging techniques are examined. We also discuss the limitations of synchrotron-based research in plant sciences, specifically the types of plant samples that can be used. Despite limitations, the unique features of synchrotron radiation such as high brightness, polarization and pulse properties offer great advantages over conventional spectroscopic and imaging tools and enable the correlation of the structure and chemical composition of plants with biochemical function. Modern detector technologies and experimental methodologies are thus enabling plant scientists to investigate aspects of plant sciences such as ultrafast kinetics of biochemical reactions, mineral uptake, transport and accumulation, and dynamics of cell wall structure and composition during environmental stress in unprecedented ways using synchrotron beamlines. The potential for the automation of some of these synchrotron technologies and their application to plant phenotyping is also discussed.

  6. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    SciTech Connect

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L. )

    2007-01-22

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10{sup 2} picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  7. The Advanced Light Source at Lawrence Berkeley Laboratory: A high-brightness soft x-ray synchrotron-radiation facility

    SciTech Connect

    Schlachter, A.S.; Robinson, A.L.

    1990-07-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30--50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 20 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. 8 refs., 7 figs., 3 tabs.

  8. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  9. An updated analysis of Inert Higgs Doublet Model in light of the recent results from LUX, PLANCK, AMS-02 and LHC

    SciTech Connect

    Arhrib, Abdesslam; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang; Yuan, Qiang E-mail: yue-lin.tsai@ipmu.jp E-mail: tcyuan@phys.sinica.edu.tw

    2014-06-01

    In light of the recent discovery by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) of a Higgs-like particle with a narrow mass range of 125–126 GeV, we perform an updated analysis on one of the popular scalar dark matter models, the Inert Higgs Doublet Model (IHDM). We take into account in our likelihood analysis of various experimental constraints, including recent relic density measurement, dark matter direct and indirect detection constraints as well as the latest collider constraints on the invisible decay width of the Higgs boson and monojet search at the LHC. It is shown that if the invisible decay of the standard model Higgs boson is open, LHC as well as direct detection experiments like LUX and XENON100 could put stringent limits on the Higgs boson couplings to dark matter. We find that the most favoured parameter space for IHDM corresponds to dark matter with a mass less than 100 GeV or so. In particular, the best-fit points are at the dark matter mass around 70 GeV where the invisible Higgs decay to dark matter is closed. Scalar dark matter in the higher mass range of 0.5–4 TeV is also explored in our study. Projected sensitivities for the future experiments of monojet at LHC-14, XENON1T and AMS-02 one year antiproton flux are shown to put further constraints on the existing parameter space of IHDM.

  10. Introducing Synchrotrons Into the Classroom

    ScienceCinema

    None

    2016-07-12

    Brookhaven's Introducing Synchrotrons Into the Classroom (InSynC) program gives teachers and their students access to the National Synchrotron Light Source through a competitive proposal process. The first batch of InSynC participants included a group of students from Islip Middle School, who used the massive machine to study the effectiveness of different what filters.

  11. Induction synchrotron

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Kishiro, Junichi

    2000-08-01

    A novel proton synchrotron employing induction cells instead of radio frequency cavities is proposed. The major feature of the barrier bucket acceleration, where acceleration and longitudinal focusing are independently achieved is theoretically discussed with the help of multi-particle simulations. It is proved that barrier bucket acceleration allows ultimate use of longitudinal phase-space and is quite effective to substantially increase the beam intensity in synchrotrons. Engineering aspects of key devices to realize the novel synchrotron, a ferri/ferro-magnetic material loaded induction cell and a modulator being rapidly switched in synchronization with beam acceleration are described in detail. The idea is applied to an existing machine (the KEK 12 GeV-PS) and high-intensity proton rings such as JHF, ESS, and SNS and their predicted improvement in machine performance is given with numerical values for each case.

  12. The advanced photon source X-ray transmitting beam-position-monitor tests at the national synchrotron light source X-25 beamline

    NASA Astrophysics Data System (ADS)

    Shu, D.; Collins, J. T.; Barraza, J.; Kuzay, T. M.

    1994-08-01

    A synthetic-diamond-based X-ray transmitting beam-position monitor has been studied using focused white beam at the National Synchrotron Light Source X-25 wiggler beamline. Of particular interest are the possibilities to design an integral window and filter/photon beam-position monitor for the Advanced Photon Source high-heat-flux insertion-device beamlines. The preliminary measurements were taken using two synthetic-diamond blade samples with different thicknesses and cooling configurations. The monitor (consisting of a vacuum vessel, an ion pump, a water-cooling base, a blade mounting block, and electric feedthroughs) was mounted on a three-dimensional ( x, y, φ) stepping-motor-driven stage with a 0.064-μm stepping size and a 0.1-μm linear encoder resolution. An infrared camera system was used to monitor and record the diamond blade surface temperature field through a sapphire window and test results are presented.

  13. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  14. Design for a Longitudinal Density Monitor for the LHC

    SciTech Connect

    Jeff, Adam; Bart Pedersen, Stephane; Boccardi, Andrea; Bravin, Enrico; Lefevre, Thibaut; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; Welsch, Carsten; /Liverpool U.

    2012-07-13

    Synchrotron radiation is currently used on the LHC for beam imaging and for monitoring the proton population in the 3 microsecond abort gap. In addition to these existing detectors, a study has been initiated to provide longitudinal density profiles of the LHC beams with a high dynamic range and a 50ps time resolution. This would allow for the precise measurement both of the bunch shape and the number of particles in the bunch tail or drifting into ghost bunches. A solution is proposed based on counting synchrotron light photons with two fast avalanche photo-diodes (APD) operated in Geiger mode. One is free-running but heavily attenuated and can be used to measure the core of the bunch. The other is much more sensitive, for measurement of the bunch tails, but must be gated off during the passage of the bunch to prevent the detector from being swamped. An algorithm is then applied to combine the two measurements and correct for the detector dead-time, afterpulsing and pile-up effects. Initial results from laboratory testing of this system are described here.

  15. Synchrotron radiation in biosciences

    NASA Astrophysics Data System (ADS)

    Marinkovic, Nebojsa S.; Gupta, Sayan; Zhan, Chenyang; Chance, Mark R.

    2005-12-01

    The Center for Synchrotron Biosciences (CSB) operates five beamlines at the National Synchrotron Light Source (NSLS). Infrared (IR) micro-spectroscopy, X-ray absorption spectroscopy, structural proteomics and macromolecular footprinting are among the major technologies available through the Center. IR micro-spectroscopy is used to examine protein-folding in the microsecond time regime, image bone, neurons, seeds and other biological tissues, as well as image samples of interest in the chemical and environmental sciences. Structural proteomics research of New York Structural Genomics Research Consortium (NYSGRC) is steadily increasing the number of solved protein structures, with a goal to solve 100-200 structures per year. To speed up the research, a high-throughput method called 'metallomics' was implemented for NYSGRC crystallographers to detect intrinsic anomalous scatterers using X-ray absorption spectroscopy. Hydroxyl radical mediated X-ray footprinting is capable of resolving folding events of RNA, at single base resolution on millisecond timescales using a synchrotron white beam. The high brightness of synchrotron source is essential for CSB projects as it permits the use of smaller sample sizes and/or concentration, and allows studies of more complicated biological systems than with conventional sources.

  16. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach

    SciTech Connect

    Bittner, T.; Wasielewski, M.R. ); Irrgang, K.D.; Renger, G. )

    1994-11-17

    Excitation energy transfer and exciton-exciton annihilation in the isolated light-harvesting chlorophyll a/b protein complex of spinach photosystem II (LHC II) has been studied by two-color absorption difference spectroscopy with femtosecond time resolution. After selectively exciting Chl b at 645 nm, the transient absorption changes were monitored at wavelengths where either Chl b (655 nm) or Chl a (680 nm) dominates the absorption of LHC II. From the good correspondence of the lifetimes obtained from a numerical analysis of the very fast relaxation in the Chl b absorption band (160 [+-] 20 fs) and the rise kinetics in the Chl a absorption band (145 [+-] 20 fs), it is suggested that the Chl b [yields] Chl a excitation energy transfer occurs on a time scale of about 150 fs. In addition, at both probe wavelengths (655 and 680 nm) lifetimes of 3-7 ps were observed which likely arise from excitation energy transfer processes connected with spectral shifting. The kinetic curves of the transient absorption changes at 680 nm show a remarkable intensity dependence which is ascribed to exciton-exciton annihilation. Since at a probe wavelength of 655 nm no intensity effect on the kinetics was observed, it is concluded that annihilation processes preferably occur among excited singlet states of Chl a molecules. 28 refs., 6 figs.

  17. Excluding the light dark matter window of a 331 model using LHC and direct dark matter detection data

    SciTech Connect

    Cogollo, D.; Gonzalez-Morales, Alma X.; Queiroz, Farinaldo S.; Teles, P. Rebello E-mail: alxogonz@ucsc.edu E-mail: patricia.rebello.teles@cern.ch

    2014-11-01

    We sift the impact of the recent Higgs precise measurements, and recent dark matter direct detection results, on the dark sector of an electroweak extension of the Standard Model that has a complex scalar as dark matter. We find that in this model the Higgs decays with a large branching ratio into dark matter particles, and charged scalars when these are kinematically available, for any coupling strength differently from the so called Higgs portal. Moreover, we compute the abundance and spin-independent WIMP-nucleon scattering cross section, which are driven by the Higgs and Z{sup '} boson processes. We decisively exclude the 1–500 GeV dark matter window and find the most stringent lower bound in the literature on the scale of symmetry breaking of the model namely 10 TeV, after applying the LUX-2013 limit. Interestingly, the projected XENON1T constraint will be able to rule out the entire 1 GeV–1000 GeV dark matter mass range. Lastly, for completeness, we compute the charged scalar production cross section at the LHC and comment on the possibility of detection at current and future LHC runnings.

  18. The advanced light source at Lawrence Berkeley Laboratory—A high-brightness soft x-ray synchrotron-radiation facility

    NASA Astrophysics Data System (ADS)

    Schlachter, Alfred S.; Robinson, Arthur L.

    1990-12-01

    The Advanced Light Source, a third-generation national synchrotron-radiation facility now under construction at the Lawrence Berkeley Laboratory, is scheduled to begin serving qualified users across a broad spectrum of research areas in the spring of 1993. Based on a low-emittance electron storage ring optimized to operate at 1.5 GeV, the ALS will have 10 long straight sections available for insertion devices (undulators and wigglers) and 24 high-quality bend-magnet ports. The short pulse width (30-50 ns) will be ideal for time-resolved measurements. Undulators will generate high-brightness soft x-ray and ultraviolet (XUV) radiation from below 10 eV to above 2 keV. Wigglers and bend magnets will extend the spectrum by generating high fluxes of hard x-rays to photon energies above 10 keV. The ALS will support an extensive research program in which XUV radiation is used to study matter in all its varied gaseous, liquid, and solid forms. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets.

  19. Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Cecilia, A.; Gerstl, S.; Glamann, N.; Grau, A. W.; Holubek, T.; Meuter, C.; de Jauregui, D. Saez; Voutta, R.; Boffo, C.; Gerhard, Th.; Turenne, M.; Walter, W.

    2016-11-01

    A new cryogen-free full scale (1.5 m long) superconducting undulator with a period length of 15 mm (SCU15) has been successfully tested in the ANKA storage ring. This represents a very important milestone in the development of superconducting undulators for third and fourth generation light sources carried on by the collaboration between the Karlsruhe Institute of Technology and the industrial partner Babcock Noell GmbH. SCU15 is the first full length device worldwide that with beam reaches a higher peak field than what expected with the same geometry (vacuum gap and period length) with an ideal cryogenic permanent magnet undulator built with the best material available PrFeB. After a summary on the design and main parameters of the device, we present here the characterization in terms of spectral properties and the long term operation of the SCU15 in the ANKA storage ring.

  20. Design and project status of the National Synchrotron Light Source; storage rings (2. 5 GeV, 0. 7 GeV) for the generation of bright synchrotron radiation sources

    SciTech Connect

    van Steenbergen, A

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given.

  1. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    SciTech Connect

    Yu,P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure {alpha}-helices, {beta}-sheets, and others such as {beta}-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted {alpha}-helices, {beta}-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm{sup -1}, the results show that barley protein consisted of approximately 18-34% of {alpha}-helices, 14-25% of {beta}-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P < 0.05) proportions of {alpha}-helices (30-34%) than Dolly and Valier ({alpha}-helices 18-23%). Harrington was in between which was 25%. For protein {beta}-sheets, AC Metcalfe, and LP955 consisted of higher proportions (22-25%) than Dolly and Valier (13-17%). Different barley varieties contained different {alpha}-helix to {beta}-sheet ratios, ranging from 1.4 to 2.0, although the difference were

  2. Low-temperature energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of photosystem II.

    PubMed Central

    Savikhin, S; van Amerongen, H; Kwa, S L; van Grondelle, R; Struve, W S

    1994-01-01

    Temperature dependence in electronic energy transfer steps within light-harvesting antenna trimers from photosystem II was investigated by studying Chl a pump-probe anisotropy decays at several wavelengths from 675 to 682 nm. The anisotropy lifetime is markedly sensitive to temperature at the longest wavelengths (680-682 nm), increasing by factors of 5 to 6 as the trimers are cooled from room temperature to 13 K. The temperature dependence is muted at 677 and 675 nm. This behavior is modeled using simulations of temperature-broadened Chl a absorption and fluorescence spectra in spectral overlap calculations of Förster energy transfer rates. In this model, the 680 nm anisotropy decays are dominated by uphill energy transfers from 680 nm Chl a pigments at the red edge of the LHC-II spectrum; the 675 nm anisotropy decays reflect a statistical average of uphill and downhill energy transfers from 676-nm pigments. The measured temperature dependence is consistent with essentially uncorrelated inhomogeneous broadening of donor and acceptor Chl a pigments. PMID:8061208

  3. Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments

    NASA Astrophysics Data System (ADS)

    Bertone, Gianfranco; Calore, Francesca; Caron, Sascha; Ruiz, Roberto; Kim, Jong Soo; Trotta, Roberto; Weniger, Christoph

    2016-04-01

    We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass 0~ 80-10 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass 0~ 180-20 GeV annihilating into bar tt with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II—notably through searches for charginos and neutralinos, squarks and light smuons—and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.

  4. Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments

    SciTech Connect

    Bertone, Gianfranco; Calore, Francesca; Caron, Sascha; Ruiz, Roberto; Weniger, Christoph

    2016-04-18

    We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass ∼80−100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass ∼180−200 GeV annihilating into t-bart with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II — notably through searches for charginos and neutralinos, squarks and light smuons — and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.

  5. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  6. Mircobeam X-ray total scattering experiments at the high-pressure beamline X17B3 at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2013-12-01

    Structure of minerals under extreme conditions of high pressure and temperature is very important in Geosciences. The total scattering pair distribution function (PDF) technique using high energy X-ray microbeam to access a large range of scattering vector, e.g. 20Å-1-40Å-1, is an emerging structural analysis method in high pressure research, which allows simultaneous probing of local, intermediate and long-range structure in crystalline, amorphous or complex materials[1-3]. Using high-energy X-rays of 80 keV at X17B3 beamline, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, PDF measurements has been carried out by users from multiple disciplines [4]. At this AGU meeting, we will present the current status of high-pressure total scattering pair distribution function (PDF) measurements and recent achievements on the availability of high energy X-ray microbeam at X17B3 beamline, NSLS. Accurate X-ray energy calibration is indispensable for X-ray energy-sensitive scattering and diffraction experiments, but there is still a lack of effective methods to precisely calibrate the high energy X-ray beam, because precise energy calibration XAS is problematic due to the lack of suitable X-ray absorption edges at the desired high energy. We have recently proposed an iterative method [5] for a precise and fast X-ray energy calibration over a wide range, including high energy X-ray beam for PDF measurements. Some PDF measurements on the geophysical important materials, such as GeO2 and SiO2 materials, under ambient and high-pressure using diamond anvil cell will be presented. References: 1. Billinge, S.J.L., The atomic pair distribution function: past and present. Zeitschrift für Kristallographie, 2004. 219(3-2004): p. 117-121. 2. Billinge, S.J. and I. Levin, The problem with determining atomic structure at the nanoscale. Science, 2007. 316(5824): p. 561-5. 3. Billinge, S.J.L., et al., Characterisation of amorphous and nanocrystalline molecular

  7. LHC Computing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  8. Search for a light-charged Higgs in a two-Higgs-doublet type II seesaw model at the LHC

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hung; Nomura, Takaaki

    2017-04-01

    A charged Higgs in the type II two-Higgs-doublet model (THDM) has been bounded to be above a few hundred GeV by the radiative B decays. A Higgs triplet extension of the THDM not only provides an origin of neutrino masses and a completely new doubly-charged Higgs decay pattern, but it also achieves a light-charged Higgs with a mass of O (100) GeV through the new scalar couplings in the scalar potential. It was found that these light-charged Higgs decays depend on its mass mH±, tan ⁡ β, and mixing effect sin ⁡θ±: at tan ⁡ β = 1, if mH± >mW +mZ, b bar bW±, W± Z, and τν are the main decay modes; however, if mH± mH± +mb, we found that the ATLAS and CMS recent upper bounds on the product of BR (t →H+ b) BR (H+ →τ+ ν) can be directly applied and will give a strict constraint on the correlation of mH± and sin ⁡θ±. If the upper bound of BR (t →H+ b) BR (H+ →τ+ ν) is satisfied (escaped) for mt > (<)mH± +mb, it was found that the significance of discovering the charged Higgs through H± →W± Z is much lower than that through H± → b bar bW±. With a luminosity of 100 fb-1 at √{ s} = 13 TeV and including the experimental bounds, the significance of the H± → b bar bW± signal can reach around 6.2 (2.4) σ for mH± < (>)mW +mZ.

  9. Theory - LHC Phenomenology

    NASA Astrophysics Data System (ADS)

    Gori, Stefania

    2017-01-01

    The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.

  10. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    SciTech Connect

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.; Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Alberty, L.; Artoos, K.; Calaga, R.; Capatina, O.; Capelli, T.; Carra, F.; Leuxe, R.; Kuder, N.; Zanoni, C.; Li, Z.; Ratti, A.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  11. Report of the Synchrotron Radiation Vacuum Workshop

    SciTech Connect

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well.

  12. COMPRES X-ray beamlines (X17B3 and X17C) for the diamond anvil cell at the National Synchrotron Light Source

    NASA Astrophysics Data System (ADS)

    Hong, X.; Chen, Z.; Sengupta, A.; Goncharov, A. F.; Ehm, L.; Duffy, T. S.; Weidner, D. J.

    2011-12-01

    The laser heated diamond anvil cell technique can readily achieve the pressure and temperature domain of Earth from upper mantle to outer core. The laser heating diamond anvil cell X-ray facilities (X17-DAC), consists of X17B3 and X17C stations on a superconducting wiggler beamline and a sample preparation/spectroscopy laboratory at the National Synchrotron Light Source). As the first dedicated high-pressure (HP) beamline in the world, X17-DAC has been a workhorse for HP research for two decades, and has led the way in many developments, Here we report current capabilities and recent developments at X17-DAC beamlines including a new double-side laser heating system . At the X17B3 station, high-temperature high-pressure X-ray diffraction experiments can be carried out either with monochromatic beam (~30 keV or ~80 keV), or with white beam for energy dispersive x-ray diffraction. In-situ laser heating system will be available for users in Geosciences starting from September, 2011. With a monochromatic beam at 30 keV, the X-ray beam can be focused to a beam size of ~10 μm. By combing with the laser heating technique, we can support in-situ X-ray diffraction experiments at the domain of temperature and pressure up to Earth's outer core. With high energy at 80 keV, total scattering pair distribution function (PDF) measurements are performed. Originally, this method was used to study amorphous and highly disordered materials, but more recently, it has been used for the analysis of crystalline and nanostructured materials. This novel technique provides useful information about the long- and short-range ordering of the atoms in the materials. It is promising to combine laser heating and total scattering PDF measurements so as to probe phase transitions and phase relations for geophysical important materials at X17B3 station. At X17C, we conduct angle and energy dispersive x-ray diffraction on polycrystalline samples in either axial or radial geometry. Energy dispersive

  13. Infrared microspectroscopy with synchrotron radiation

    SciTech Connect

    Carr, G.L.; Williams, G.P.

    1997-09-01

    Infrared microspectroscopy with a high brightness synchrotron source can achieve a spatial resolution approaching the diffraction limit. However, in order to realize this intrinsic source brightness at the specimen location, some care must be taken in designing the optical system. Also, when operating in diffraction limited conditions, the effective spatial resolution is no longer controlled by the apertures typically used for a conventional (geometrically defined) measurement. Instead, the spatial resolution depends on the wavelength of light and the effective apertures of the microscope`s Schwarzchild objectives. The authors have modeled the optical system from the synchrotron source up to the sample location and determined the diffraction-limited spatial distribution of light. Effects due to the dependence of the synchrotron source`s numerical aperture on wavelength, as well as the difference between transmission and reflection measurement modes, are also addressed. Lastly, they examine the benefits (when using a high brightness source) of an extrinsic germanium photoconductive detector with cone optics as a replacement for the standard MCT detector.

  14. 3 GeV Booster Synchrotron Conceptual Design Report

    SciTech Connect

    Wiedemann, Helmut

    2009-06-02

    Synchrotron light cna be produced from a relativistic particle beam circulating in a storage ring at extremely high intensity and brilliance over a large spectral region reaching from the far infrared regime to hard x-rays. The particles, either electrons or positrons, radiate as they are deflected in the fields of the storage ring bending magnets or of magnets specially optimized for the production of synchrotron light. The synchrotron light being very intense and well collimated in the forward direction has become a major tool in a large variety of research fields in physics, chemistry, material science, biology, and medicine.

  15. EBIS, an option for medical synchrotrons

    SciTech Connect

    Prelec, K.

    1993-12-31

    Light ion beams have been used for cancer therapy for about twenty years; several dedicated facilities are presently either planned or under construction. In addition, several synchrotrons designed for other purposes are now considered for medical applications as well. A medical synchrotron needs a preaccelerator to produce and inject a range of different light ions, preferably fully stripped, into the ring. The size, cost and complexity of the preaccelerator depend on the performance of its first element, the ion source, and these features will be optimized if the source itself produces fully stripped ions. An EBIS (Electron Beam Ion Source) is capable of producing fully stripped light ions up to argon with intensities sufficient for medical applications. As it has been pointed out in the past, this source option may require just one stage of preacceleration, an RFQ linac, thus making it very simple and compact. The AGS Department has a separate project already under way to develop a very high intensity EBIS for our nuclear physics program. It is, however, our plan first to construct and test an intermediate size device and then to proceed to the design of the final, full scale device. Parameters of that intermediate model are close to those that would be needed for a medical synchrotron. This paper describes the BNL program and considers parameters of EBIS devices for possible use in synchrotron facilities serving as sources of high energy light ions for cancer therapy.

  16. Melting-solidification transition of Zn nanoparticles embedded in SiO2: Observation by synchrotron x-ray and ultraviolet-visible-near-infrared light

    NASA Astrophysics Data System (ADS)

    Amekura, H.; Tanaka, M.; Katsuya, Y.; Yoshikawa, H.; Ohnuma, M.; Matsushita, Y.; Kobayashi, K.; Kishimoto, N.

    2010-11-01

    Melting-solidification transition of Zn nanoparticles (NPs) with the mean diameter of 11.5 nm, embedded in silica glass, was investigated by glancing incident x-ray diffraction (GIXRD) at high temperatures using synchrotron radiation (SR). With increasing temperature, 101Zn diffraction peak gradually decreases up to ˜360 °C and then steeply decreases. This is due to the melting of Zn NPs, which completes around 420 °C. With decreasing temperature, the solidification of the NPs begins around ˜310 °C. The temperature hysteresis with a width of ˜110 °C was observed. With temperature, the diffraction angle shows a shift without hysteresis, which is ascribed to thermal expansion of Zn NP lattice. Thermal expansion coefficient of Zn NPs was determined as 24.4×10-6 K-1 along the ⟨101⟩ direction. Optical absorption spectroscopy shows a broad ultraviolet (UV) peak which was observed at even higher temperatures than the melting temperature but shifts to the low-energy side with the melting. The energy shift in the UV peak also shows the temperature hysteresis which resembles with the melting-solidification hysteresis recorded by SR-GIXRD. The melting-solidification transition is also detectable by the optical absorption spectroscopy in the UV-visible-near-infrared region.

  17. The LHC Confronts the pMSSM

    DOE PAGES

    Cahill-Rowley, Matthew

    2016-05-31

    Here we explore the impact of current (7+8 TeV) and future (14 TeV) LHC searches on the range of viable sparticle spectra within the 19/20 – dimensional phenomenological MSSM (pMSSM). Considering both neutralino and gravitino LSPs, we compare our results with simplified model exclusion limits and describe important cases where the pMSSM results differ significantly from the simplified model descriptions. We also consider models that are poorly constrained by LHC data because of unusual decay topologies and/or displaced decays, and discuss ways to improve the LHC sensitivity in these scenarios. Finally, motivated by naturalness, we examine the sensitivity of currentmore » searches to models with light stops and to a specialized set of models with fine-tuning better than 1%. We show that the 14 TeV LHC will be a very powerful probe of natural pMSSM models.« less

  18. The LHC Confronts the pMSSM

    SciTech Connect

    Cahill-Rowley, Matthew

    2016-05-31

    Here we explore the impact of current (7+8 TeV) and future (14 TeV) LHC searches on the range of viable sparticle spectra within the 19/20 – dimensional phenomenological MSSM (pMSSM). Considering both neutralino and gravitino LSPs, we compare our results with simplified model exclusion limits and describe important cases where the pMSSM results differ significantly from the simplified model descriptions. We also consider models that are poorly constrained by LHC data because of unusual decay topologies and/or displaced decays, and discuss ways to improve the LHC sensitivity in these scenarios. Finally, motivated by naturalness, we examine the sensitivity of current searches to models with light stops and to a specialized set of models with fine-tuning better than 1%. We show that the 14 TeV LHC will be a very powerful probe of natural pMSSM models.

  19. Grazing incidence synchrotron radiation optics: correlation of performance with metrology

    SciTech Connect

    Takacs, P.Z.; Hewitt, R.C.; Church, E.L.

    1986-06-01

    Image distortions produced by a cylinder mirror at the National Synchrotron Light Source are compared with performance predictions based on measurements of surface slope errors in the millimeter spatial period regime made with an optical surface profiler.

  20. R-axion detection at LHC

    SciTech Connect

    Goh, Hock-Seng; Ibe, Masahiro; /SLAC

    2009-06-19

    Supersymmetric models with spontaneously broken approximate R-symmetry contains a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.

  1. Metrology of reflection optics for synchrotron radiation

    SciTech Connect

    Takacs, P.Z.

    1985-09-01

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community.

  2. The ISAS Synchrotron Microprobe at DELTA

    SciTech Connect

    Bohlen, Alex von; Kraemer, Markus; Hergenroeder, Roland; Berges, Ulf

    2007-01-19

    Since 2004 ISAS operates a dipole beamline at the synchrotron radiation facility DELTA at University of Dortmund. Synchrotron radiation is used at this beamline as an excellent excitation source for X-ray fluorescence spectrometry (XRF). Among others, the high brilliance of the synchrotron radiation in contrast to conventional X-ray tubes, the strong polarization of the synchrotron radiation and the low divergence of the electron beam can be applied to XRF offering several advantages for spectroscopy. These outstanding features encouraged us to develop and operate a synchrotron radiation induced X-ray micro fluorescence probe connected to a wavelength dispersive spectrometer (SR-WDXRF). A relevant characteristic of such a device, namely, good lateral resolution at high spectral resolution can be applied for single spot-, line-scan and area map analyses of a variety of objects. The instrumentation of the SR-WDXRF and the performed experiments will be presented. Main task is the detection of light elements by their fluorescence K-lines and the specification of element compounds.

  3. Electron-cloud simulation results for the SPS and recent results for the LHC

    SciTech Connect

    Furman, M.A.; Pivi, M.T.F.

    2002-06-19

    We present an update of computer simulation results for some features of the electron cloud at the Large Hadron Collider (LHC) and recent simulation results for the Super Proton Synchrotron (SPS). We focus on the sensitivity of the power deposition on the LHC beam screen to the emitted electron spectrum, which we study by means of a refined secondary electron (SE) emission model recently included in our simulation code.

  4. A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin.

    PubMed

    Puthiyaveetil, Sujith

    2011-06-23

    State transitions are acclimatory responses to changes in light quality in photosynthesis. They involve the redistribution of absorbed excitation energy between photosystems I and II. In plants and green algae, this redistribution is produced by reversible phosphorylation of the chloroplast light harvesting complex II (LHC II). The LHC II kinase is activated by reduced plastoquinone (PQ) in photosystem II-specific low light. In high light, when PQ is also reduced, LHC II kinase becomes inactivated by thioredoxin. Based on newly identified amino acid sequence features of LHC II kinase and other considerations, a mechanism is suggested for its redox regulation.

  5. Coherent Synchrotron Radiation: Theory and Simulations.

    SciTech Connect

    Novokhatski, Alexander; /SLAC

    2012-03-29

    achievable emittance in the synchrotron light sources for short bunches.

  6. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  7. LHC II system sensitivity to magnetic fluids

    NASA Astrophysics Data System (ADS)

    Cotae, Vlad; Creanga, Ioan

    2005-03-01

    Experiments have been designed to reveal the influences of ferrofluid treatment and static magnetic field exposure on the photosynthetic system II, where the light harvesting complex (LHC II) controls the ratio chlorophyll a/ chlorophyll b (revealing, indirectly, the photosynthesis rate). Spectrophotometric measurement of chlorophyll content revealed different influences for relatively low ferrofluid concentrations (10-30 μl/l) in comparison to higher concentrations (70-100 μl/l). The overlapped effect of the static magnetic field shaped better the stimulatory ferrofluid action on LHC II system in young poppy plantlets.

  8. Lessons from LHC elastic and diffractive data

    SciTech Connect

    Martin, A.D.; Khoze, V.A.; Ryskin, M.G.

    2015-04-10

    In the light of LHC data, we discuss the global description of all high-energy elastic and diffractive data, using a one-pomeron model, but including multi-pomeron interactions. The LHC data indicate the need of a k{sub t}(s) behaviour, where k{sub t} is the gluon transverse momentum along the partonic ladder structure which describes the pomeron. We also discuss tensions in the data, as well as the t dependence of the slope of dσ{sub el}/dt in the small t domain.

  9. Analysis of stray radiation produced by the advanced light source (1.9 GeV synchrotron radiation source) at Lawrence Berkeley Laboratory

    SciTech Connect

    Ajemian, Robert C.

    1995-01-01

    The yearly environmental dose equivalent likely to result at the closest site boundary from the Advanced Light Source was determined by generating multiple linear regressions. The independent variables comprised quantified accelerator operating parameters and measurements from synchronized, in-close (outside shielding prior to significant atmospheric scattering), state-of-the-art neutron remmeters and photon G-M tubes. Neutron regression models were more successful than photon models due to lower relative background radiation and redundant detectors at the site boundary. As expected, Storage Ring Beam Fill and Beam Crashes produced radiation at a higher rate than gradual Beam Decay; however, only the latter did not include zero in its 95% confidence interval. By summing for all three accelerator operating modes, a combined yearly DE of 4.3 mRem/yr with a 90% CI of (0.04-8.63) was obtained. These results fall below the DOE reporting level of 10 mRem/yr and suggest repeating the study with improved experimental conditions.

  10. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  11. Assessing noise sources at synchrotron infrared ports

    PubMed Central

    Lerch, Ph.; Dumas, P.; Schilcher, T.; Nadji, A.; Luedeke, A.; Hubert, N.; Cassinari, L.; Boege, M.; Denard, J.-C.; Stingelin, L.; Nadolski, L.; Garvey, T.; Albert, S.; Gough, Ch.; Quack, M.; Wambach, J.; Dehler, M.; Filhol, J.-M.

    2012-01-01

    Today, the vast majority of electron storage rings delivering synchrotron radiation for general user operation offer a dedicated infrared port. There is growing interest expressed by various scientific communities to exploit the mid-IR emission in microspectroscopy, as well as the far infrared (also called THz) range for spectroscopy. Compared with a thermal (laboratory-based source), IR synchrotron radiation sources offer enhanced brilliance of about two to three orders of magnitude in the mid-IR energy range, and enhanced flux and brilliance in the far-IR energy range. Synchrotron radiation also has a unique combination of a broad wavelength band together with a well defined time structure. Thermal sources (globar, mercury filament) have excellent stability. Because the sampling rate of a typical IR Fourier-transform spectroscopy experiment is in the kHz range (depending on the bandwidth of the detector), instabilities of various origins present in synchrotron radiation sources play a crucial role. Noise recordings at two different IR ports located at the Swiss Light Source and SOLEIL (France), under conditions relevant to real experiments, are discussed. The lowest electron beam fluctuations detectable in IR spectra have been quantified and are shown to be much smaller than what is routinely recorded by beam-position monitors. PMID:22186638

  12. Synchrotron X-ray footprinting on tour

    PubMed Central

    Bohon, Jen; D’Mello, Rhijuta; Ralston, Corie; Gupta, Sayan; Chance, Mark R.

    2014-01-01

    Synchrotron footprinting is a valuable technique in structural biology for understanding macromolecular solution-state structure and dynamics of proteins and nucleic acids. Although an extremely powerful tool, there is currently only a single facility in the USA, the X28C beamline at the National Synchrotron Light Source (NSLS), dedicated to providing infrastructure, technology development and support for these studies. The high flux density of the focused white beam and variety of specialized exposure environments available at X28C enables footprinting of highly complex biological systems; however, it is likely that a significant fraction of interesting experiments could be performed at unspecialized facilities. In an effort to investigate the viability of a beamline-flexible footprinting program, a standard sample was taken on tour around the nation to be exposed at several US synchrotrons. This work describes how a relatively simple and transportable apparatus can allow beamlines at the NSLS, CHESS, APS and ALS to be used for synchrotron footprinting in a general user mode that can provide useful results. PMID:24365913

  13. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  14. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  15. Private Higgs at the Lhc

    NASA Astrophysics Data System (ADS)

    Bentov, Yoni; Zee, A.

    2013-11-01

    We study the LHC phenomenology of a general class of "Private Higgs" (PH) models, in which fermions obtain their masses from their own Higgs doublets with {O}(1) Yukawa couplings, and the mass hierarchy is translated into a dynamical chain of vacuum expectation values. This is accomplished by introducing a number of light gauge-singlet scalars, the "darkons," some of which could play the role of dark matter. These models allow for substantial modifications to the decays of the lightest Higgs boson, for instance through mixing with TeV-scale PH fields and light darkons: in particular, one could accommodate {O}(10%) flavor-uncorrelated deviations from the SM hf\\bar f vertices with TeV-scale degrees of freedom. We also discuss a new implementation of the PH framework, in which the quark and neutrino mixing angles arise as one-loop corrections to the leading order picture.

  16. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  17. Production of stoponium at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Chul; Idilbi, Ahmad; Mehen, Thomas; Yoon, Yeo Woong

    2014-04-01

    Although the Large Hadron Collider (LHC) has not observed supersymmetric (SUSY) partners of the Standard Model particles, their existence is not ruled out yet. One recently explored scenario in which there are light SUSY partners that have evaded current bounds from the LHC is that of a light long-lived stop quark. In this paper we consider light stop pair production at the LHC when the stop mass is between 200 and 400 GeV. If the stops are long-lived they can form a bound state, stoponium, which then undergoes two-body decays to Standard Model particles. By considering the near-threshold production of such a pair through the gluon-gluon fusion process and taking into account the strong Coulombic interactions responsible for the formation of this bound state, we obtain factorization theorems for the stop pair inclusive and differential production cross sections. We also perform a resummation of large threshold logarithms up to next-to-next-to-leading logarithmic accuracy using well-established renormalization group equations in an effective field theory methodology. These results are used to calculate the invariant mass distributions of two photons or two Z bosons coming from the decay of the stoponium at the LHC. For our choices of SUSY model parameters, the stoponium is not detectable above Standard Model backgrounds in γγ or ZZ at 8 TeV, but will be visible with 400 fb-1 of accumulated data if its mass is below 500 GeV when the LHC runs at 14 TeV.

  18. Design of the KHIMA synchrotron

    NASA Astrophysics Data System (ADS)

    Yim, Heejoong; An, Dong Hyun; Hahn, Garam; Park, Chawon; Kim, Geun-Beom

    2015-10-01

    The Korea Heavy Ion Medical Accelerator project (KHIMA) has been proposed as an ion-beam synchrotron facility for cancer therapy. The facility will be installed at Gijang, Busan with completion in 2017. The proposed maximum energy of the ions is 430 MeV/u (for carbon) to cover various tumor depths up to 30 cm. For the synchrotron design, we optimized the lattice configuration to fit the therapy. We discuss here the status of the synchrotron's design.

  19. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  20. National Synchrotron Light Source. Annual report 1992

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1993-04-01

    This report contains seven sections discussing the following: (1) scientific research at the NSLS; (2) symposia and workshops held at the NSLS; (3) a facility report; (4) NSLS projects; (5) NSLS operational highlights; (6) informational guides to the VUV and X-ray beamlines; and (7) appendices which include abstracts on projects carried out at the VUV and X-ray beamlines.

  1. National Synchrotron Light Source annual report 1991

    SciTech Connect

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLS computer system.

  2. Commissioning of the medical synchrotron HIMAC

    SciTech Connect

    Yamada, S.

    1994-12-31

    A heavy ion synchrotron complex, HIMAC, has been constructed for medical use at National Institute of Radiological Sciences (NIRS), Japan. The heavy ion therapy is adopted because it has the merits of the excellent dose localization and the high biological effectiveness on both aerobic and anaerobic cancer cells. The maximum energy of the HIMAC synchrotron is designed to be 800 MeV/u for light ions with q/A=1/2 so that the residual range of silicon ions reaches about 30 cm in human body. There are three treatment rooms two of which have a vertical and a horizontal beam line, respectively. The third treatment room is equipped with both beams lines. The beam tests of the accelerator system started in last November and is successfully completed in February. After about four months tests of the irradiation system including the biological experiments, the clinical trials started on June 21 using a 290 MeV/u carbon beam.

  3. Synchrotron masers and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  4. On the implementation of computed laminography using synchrotron radiation

    SciTech Connect

    Helfen, L.; Pernot, P.; Elyyan, M.; Myagotin, A.; Mikulik, P.; Voropaev, A.; Di Michiel, M.; Baruchel, J.; Baumbach, T.

    2011-06-15

    Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

  5. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    SciTech Connect

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, this paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.

  6. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  7. SPS Beam Steering for LHC Extraction

    SciTech Connect

    Gianfelice-Wendt, Eliana; Bartosik, Hannes; Cornelis, Karel; Norderhaug Drøsdal, Lene; Goddard, Brennan; Kain, Verena; Meddahi, Malika; Papaphilippou, Yannis; Wenninger, Jorg

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  8. Synchrotron based proton drivers

    SciTech Connect

    Weiren Chou

    2002-09-19

    Proton drivers are the proton sources that produce intense short proton bunches. They have a wide range of applications. This paper discusses the proton drivers based on high-intensity proton synchrotrons. It gives a review of the high-intensity proton sources over the world and a brief report on recent developments in this field in the U.S. high-energy physics (HEP) community. The Fermilab Proton Driver is used as a case study for a number of challenging technical design issues.

  9. Synchrotrons for Hadrontherapy

    NASA Astrophysics Data System (ADS)

    Pullia, Marco G.

    Since 1990, when the world's first hospital-based proton therapy center opened in Loma Linda, California, interest in dedicated proton and carbon ion therapy facilities has been growing steadily. Today, many proton therapy centers are in operation, but the number of centers offering carbon ion therapy is still very low. This difference reflects the fact that protons are well accepted by the medical community, whereas radiotherapy with carbon ions is still experimental. Furthermore, accelerators for carbon ions are larger, more complicated and more expensive than those for protons only. This article describes the accelerator performance required for hadrontherapy and how this is realized, with particular emphasis on carbon ion synchrotrons.

  10. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  11. Light

    NASA Astrophysics Data System (ADS)

    Vernon, C. G.

    2016-09-01

    Preface; 1. Historical; 2. Waves and wave-motion; 3. The behaviour of ripples; 4. The behaviour of light; 5. Refraction through glass blocks and prisms; 6. The imprinting of curvatures; 7. Simple mathematical treatment; 8. More advanced mathematical treatment; 9. The velocity of light; 10. The spectrum and colour; 11. Geometrical optics; 12. The eye and optical instruments; 13. Sources of light; 14. Interference, diffraction and polarisation; 15. Suggestions for class experiments; Index.

  12. Phenomenology of flavon fields at the LHC

    SciTech Connect

    Tsumura, Koji; Velasco-Sevilla, Liliana

    2010-02-01

    We study low energy constraints from flavor violating processes, production, and decay at the LHC of a scalar field {phi} (flavon) associated to the breaking of a nonsupersymmetric Abelian family symmetry at the TeV scale. This symmetry is constrained to reproduce fermion masses and mixing, up to O(1) coefficients. The nonsupersymmetric gauged U(1) models considered are severely restricted by cancellation of anomalies and LEP bounds on contact interactions; consequently its phenomenology is out of the LHC reach. We therefore introduce an effective U(1) which is not gauged and is broken explicitly by a CP-odd term at the TeV scale. This helps us to explore flavor violating processes, production, and decay at the LHC for these kind of light scalars. In this context we first study the constraints on the flavon mass and its vacuum expectation value from low energy flavor changing processes such as {mu}{yields}e{gamma}. We find that a flavon of about m{sub {phi}}< or approx. 150 GeV could be experimentally allowed. These kinds of flavons could be significantly generated at the LHC via the gluon fusion mechanism and the single top production channel gu{yields}t{phi}. The produced flavons can have characteristic decay modes such as tc for m{sub {phi}}> or approx. m{sub t}, and {tau}{mu} for m{sub {phi}}< or approx. m{sub t}, which could be effectively useful to detect flavons.

  13. Wakefields in Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.

    2016-06-01

    When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.

  14. Laser Synchrotron Source (LSS)

    NASA Astrophysics Data System (ADS)

    Sprangle, Philip; Ting, Antonio; Esarey, Eric; Fisher, Amon; Mourou, Gerald

    1993-02-01

    The Laser Synchrotron Source (LSS) utilizes a high peak power or high average power laser to generate within a vacuum chamber a laser beam travelling in one direction to interact with an electron beam traveling in an opposite direction in order to generate high-power x-rays. A ring resonator formed by a plurality of mirrors directs the laser beam in a closed loop to impact with the electron beam to produce x-rays. Concave mirrors in the ring resonator focus the laser beam upon the point where the laser beam interacts with the electron beam to intensify the laser energy at that point. When a Radio Frequency Linear Accelerator (RF linac) is used to produce the electron beam, x-rays having a short pulse length are generated. When a betatron is used as an electron source, x-rays having a long pulse length are generated.

  15. Transfiguration of extracting mirror in synchrotron radiation system at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, GuoQing; Zhou, WeiMin; Ye, KaiRong; Leng, YongBin

    2011-12-01

    The first extracting mirror is very important for synchrotron radiation monitor (SRM). The SRM system of SSRF (Shanghai Synchrotron Radiation Facility) should extract the visible light with low optical distortion. The analysis of SR power spectrum and heat transfiguration based on Matlab is introduced in this paper, which will be used in calibration. One beryllium mirror with water-cooling is used to transmit X-ray and reflect visible light to satisfy the measurement request. The existing system suffers from a dynamic problem in some beam physics study. The system includes optics, image acquisition and interferometers. One of the instruments is a digital camera providing the image of the beam transverse profile. The hardware configuration will be summarized. The synchrotron radiation measurement system has been in operation in SSRF for more than one year.

  16. Spatial Coherence of Synchrotron Radiation

    SciTech Connect

    Marchesini, S; Coisson, R

    2003-10-30

    Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.

  17. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    SciTech Connect

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  18. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing thismore » dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  19. LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching.

    PubMed

    Breitholtz, Hanna-Leena; Srivastava, Renu; Tyystjärvi, Esa; Rintamäki, Eevi

    2005-06-01

    Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b(6)f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.

  20. Synchrotron-Radiation-based Investigationsof the Electronic Structure of Pu

    SciTech Connect

    Tobin, J; Chung, B; Terry, J; Schulze, R; Farr, J; Heinzelman, K; Rotenberg, E; Shuh, D

    2004-09-27

    Synchrotron radiation from the Advanced Light Source has been used to investigate the electronic structure of {alpha}-Pu and {delta}-Pu. Measurements include core level and valence band photoelectron spectroscopy, Resonant Photoelectron Spectroscopy (REPES), and X-ray Absorption Spectroscopy (XAS).

  1. Compressed electroweakino spectra at the LHC

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Zurita, José

    2014-03-01

    In this work, we examine the sensitivity of monojet searches at the LHC to directly produced charginos and neutralinos (electroweakinos) in the limit of small mass splitting, where the traditional multilepton plus missing energy searches loose their sensitivity. We first recast the existing 8 TeV monojet search at CMS in terms of a SUSY simplified model with only light gauginos (winos and binos) or only light Higgsinos. The current searches are not sensitive to MSSM-like production cross sections, but would be sensitive to models with 2-20 times enhanced production cross section, for particle masses between 100 GeV and 250 GeV. Then we explore the sensitivity in the 14 TeV run of the LHC. Here we emphasise that in addition to the pure monojet search, soft leptons present in the samples can be used to increase the sensitivity. Exclusion of electroweakino masses up to 200 GeV is possible with 300 fb-1 at the LHC, if the systematic error can be reduced to the 1% level. Discovery is possible with 3000 fb-1 in some regions of parameter space.

  2. Scenarios for sLHC and vLHC

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Zimmermann, F.

    2008-03-01

    The projected lifetime of the LHC low-beta quadrupoles and evolution of the statistical error halving time call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the EU CARE-HHH network, two scenarios have been developed for increasing the LHC peak luminosity by a factor 10, to 10 cms ("sLHC"). Both scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges differ substantially. In either scenario luminosity leveling during a store would be advantageous for the physics experiments. Longer-term R&D efforts are devoted to a higher-energy hadron collider ("vLHC"), which could be realized on a green field or as a later and more radical LHC upgrade.

  3. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  4. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  5. Cataclysmic Variables as Synchrotron Sources?

    SciTech Connect

    Harrison, Thomas E.

    2008-05-23

    Evidence is mounting that cataclysmic variables are weak sources of synchrotron emission. If true, it demonstrates that accretion powered interacting binaries produce such emission whether their primaries are white dwarfs, neutron stars, or black holes.

  6. Single-bunch synchrotron shutter

    DOEpatents

    Norris, James R.; Tang, Jau-Huei; Chen, Lin; Thurnauer, Marion

    1993-01-01

    An apparatus for selecting a single synchrotron pulse from the millions of pulses provided per second from a synchrotron source includes a rotating spindle located in the path of the synchrotron pulses. The spindle has multiple faces of a highly reflective surface, and having a frequency of rotation f. A shutter is spaced from the spindle by a radius r, and has an open position and a closed position. The pulses from the synchrotron are reflected off the spindle to the shutter such that the speed s of the pulses at the shutter is governed by: s=4.times..pi..times.r.times.f. such that a single pulse is selected for transmission through an open position of the shutter.

  7. Mossbauer spectroscopy with synchrotron radiation

    SciTech Connect

    Alp, E.E.; Mooney, T.M.; Toellner, T.; Sturhahn, W.

    1993-07-01

    The principles underlying observation of the Mossbauer effect with synchrotron radiation are explained. The current status of the field is reviewed, and prospects for dedicated experimental stations on third generation machines are discussed.

  8. LHC forward physics

    SciTech Connect

    Akiba, K.; Akbiyik, M.; Albrow, M.; Arneodo, M.; Avati, V.; Baechler, J.; Baillie, O. Villalobos; Bartalini, P.; Bartels, J.; Baur, S.; Baus, C.; Beaumont, W.; Behrens, U.; Berge, D.; Berretti, M.; Bossini, E.; Boussarie, R.; Brodsky, S.; Broz, M.; Bruschi, M.; Bussey, P.; Byczynski, W.; Noris, J. C. Cabanillas; Villar, E. Calvo; Campbell, A.; Caporale, F.; Carvalho, W.; Chachamis, G.; Chapon, E.; Cheshkov, C.; Chwastowski, J.; Ciesielski, R.; Chinellato, D.; Cisek, A.; Coco, V.; Collins, P.; Contreras, J. G.; Cox, B.; Damiao, D. de Jesus; Davis, P.; Deile, M.; D’Enterria, D.; Druzhkin, D.; Ducloué, B.; Dumps, R.; Dzhelyadin, R.; Dziurdzia, P.; Eliachevitch, M.; Fassnacht, P.; Ferro, F.; Fichet, S.; Figueiredo, D.; Field, B.; Finogeev, D.; Fiore, R.; Forshaw, J.; Medina, A. Gago; Gallinaro, M.; Granik, A.; Gersdorff, G. von; Giani, S.; Golec-Biernat, K.; Goncalves, V. P.; Göttlicher, P.; Goulianos, K.; Grosslord, J-Y; Harland-Lang, L. A.; Haevermaet, H. Van; Hentschinski, M.; Engel, R.; Corral, G. Herrera; Hollar, J.; Huertas, L.; Johnson, D.; Katkov, I.; Kepka, O.; Khakzad, M.; Kheyn, L.; Khachatryan, V.; Khoze, V. A.; Klein, S.; Klundert, M. van; Krauss, F.; Kurepin, A.; Kurepin, N.; Kutak, K.; Kuznetsova, E.; Latino, G.; Lebiedowicz, P.; Lenzi, B.; Lewandowska, E.; Liu, S.; Luszczak, A.; Luszczak, M.; Madrigal, J. D.; Mangano, M.; Marcone, Z.; Marquet, C.; Martin, A. D.; Martin, T.; Hernandez, M. I. Martinez; Martins, C.; Mayer, C.; Nulty, R. Mc; Mechelen, P. Van; Macula, R.; Costa, E. Melo da; Mertzimekis, T.; Mesropian, C.; Mieskolainen, M.; Minafra, N.; Monzon, I. L.; Mundim, L.; Murdaca, B.; Murray, M.; Niewiadowski, H.; Nystrand, J.; Oliveira, E. G. de; Orava, R.; Ostapchenko, S.; Osterberg, K.; Panagiotou, A.; Papa, A.; Pasechnik, R.; Peitzmann, T.; Moreno, L. A. Perez; Pierog, T.; Pinfold, J.; Poghosyan, M.; Pol, M. E.; Prado, W.; Popov, V.; Rangel, M.; Reshetin, A.; Revol, J-P; Rijssenbeek, M.; Rodriguez, M.; Roland, B.; Royon, C.; Ruspa, M.; Ryskin, M.; Vera, A. Sabio; Safronov, G.; Sako, T.; Schindler, H.; Salek, D.; Safarik, K.; Saimpert, M.; Santoro, A.; Schicker, R.; Seger, J.; Sen, S.; Shabanov, A.; Schafer, W.; Silveira, G. Gil Da; Skands, P.; Soluk, R.; Spilbeeck, A. van; Staszewski, R.; Stevenson, S.; Stirling, W. J.; Strikman, M.; Szczurek, A.; Szymanowski, L.; Takaki, J. D. Tapia; Tasevsky, M.; Taesoo, K.; Thomas, C.; Torres, S. R.; Tricomi, A.; Trzebinski, M.; Tsybychev, D.; Turini, N.; Ulrich, R.; Usenko, E.; Varela, J.; Vetere, M. Lo; Tello, A. Villatoro; Pereira, A. Vilela; Volyanskyy, D.; Wallon, S.; Wilkinson, G.; Wöhrmann, H.; Zapp, K. C.; Zoccarato, Y.

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  9. LHC forward physics

    DOE PAGES

    Akiba, K.; Akbiyik, M.; Albrow, M.; ...

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  10. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  11. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; /ESS, Lund

    2011-02-01

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gating system. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron and Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  12. Angiography by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Rubenstein, E.; Brown, G. S.; Giacomini, J. C.; Gordon, H. J.; Hofstadter, R.; Kernoff, R. S.; Otis, J. N.; Thomlinson, W.; Thompson, A. C.; Zeman, H. D.

    1987-01-01

    Because coronary disease represents the principal health problem in the Western, industrialized world, and because of the risks and costs associated with conventional methods of visualizing the coronary arteries, an effort has been underway at the Stanford Synchrotron Radiation Laboratory to develop a less invasive coronary imaging procedure based on iodine K-edge dichromography. A pair of line images, recorded within a few milliseconds of each other, is taken with two monochromatic X-ray beams whose energy closely brackets the K-edge of iodine, 33.17 keV. The logarithmic subtraction of the images produced by these beams results in an image which greatly enhances signals arising from attenuation by iodine and almost totally suppresses signals arising from attenuation by soft tissue and bone. The high sensitivity to iodine allows the visualization of arterial structures after an intravenous injection of contrast agent and its subsequent 20-30 fold dilution. The experiments began in 1979, with initial studies done on phantoms and excised pig hearts. The first images of anesthetized dogs were taken in 1982. The results of experiments on dogs will be reviewed, showing the stepwise evolution of the imaging system, leading to the use of the system on human subjects in 1986. The images recorded on human subjects will be described and the remaining problems discussed.

  13. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  14. Laser-synchrotron hybrid experiments: ``A photon to tickle, a photon to poke``

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R.; Shuker, R.; O`Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A.; Carr, G.L.; Williams, G.P.; Hirschmugl, C.J.; Etemad, S.; Inam, A.; Tanner, D.B.

    1991-12-31

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  15. Laser-synchrotron hybrid experiments: A photon to tickle, a photon to poke''

    SciTech Connect

    Ederer, D.L.; Rubensson, J.E.; Mueller, D.R. ); Shuker, R. ); O'Brien, W.L.; Jai, J.; Dong, Q.Y.; Callcott, T.A. ); Carr, G.L. . Corporate Research Center); Williams, G.P.; Hirschmugl, C.J

    1991-01-01

    In this paper we present the preliminary results from a new experimental technique to synchronize the pulses from a mode-locked NdYAG laser to the light pulses in the VUV storage ring at the National Synchrotron Light Source (NSLS). We describe a method to electronically change the delay time between the laser pulses and the synchrotron pulses. We also illustrate a method to overlap the synchrotron pulses with the laser pulses in space and time. Preliminary results will be presented for two experiments.

  16. Fluorescence dynamics of biological systems using synchrotron radiation

    SciTech Connect

    Gratton, E.; Mantulin, W.W.; Weber, G.; Royer, C.A.; Jameson, D.M.; Reininger, R.; Hansen, R.

    1996-09-01

    A beamline for time-resolved fluorescence spectroscopy of biological systems is under construction at the Synchrotron Radiation Center. The fluorometer, operating in the frequency domain, will take advantage of the time structure of the synchrotron radiation light pulses to determine fluorescence lifetimes. Using frequency-domain techniques, the instrument can achieve an ultimate time resolution on the order of picoseconds. Preliminary experiments have shown that reducing the intensity of one of the fifteen electron bunches in the storage ring allows measurement of harmonic frequencies equivalent to the single-bunch mode. This mode of operation of the synchrotron significantly extends the range of lifetimes that can be measured. The wavelength range (encompassing the visible and ultraviolet), the range of measurable lifetimes, and the stability and reproducibility of the storage ring pulses should make this beamline a versatile tool for the investigation of the complex fluorescence decay of biological systems. {copyright} {ital 1996 American Institute of Physics.}

  17. Transvenous coronary angiography in humans with synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1994-10-01

    The transvenous coronary angiography project at the National Synchrotron Light Source (NSLS) is presently undergoing a significant upgrade to the hardware and software in the synchrotron medical facility. When completed, the project will have reached a level of maturity in the imaging technology which will allow the research team to begin to concentrate on medical research programs. This paper will review the status of the project and imaging technology and will discuss the current upgrades and future advanced technology initiatives. The advantages of using the radiation from a synchrotron, over that from a standard x-ray source, were the motivation for the project. A total of 23 human imaging sessions have been carried out with in the project. The primary goals have been to establish the imaging parameters and protocol necessary to obtain clinically useful images.

  18. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  19. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  20. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    PubMed Central

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-01-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source. PMID:28181544

  1. Spin echo in synchrotrons

    NASA Astrophysics Data System (ADS)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  2. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  3. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  4. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  5. Bystander Effects During Synchrotron Imaging Procedures?

    NASA Astrophysics Data System (ADS)

    Schültke, Elisabeth; Bewer, Brian; Wysokinski, Tomasz; Chapman, Dean; Nikkhah, Guido

    2010-07-01

    Using monochromatic beam and synchrotron phase-contrast technique at the biomedical beamline of the Italian synchrotron facility Elettra (SYRMEP), we have shown in a small animal model of malignant brain tumor that it is possible to obtain high-resolution images of very small tumors when they have developed from implanted tumor cells loaded with colloidal gold nanoparticles (GNP). All previous experiments were conducted in post-mortem samples. We have now designed a cell culture experiment to investigate the effects of synchrotron radiation with an energy and dose profile similar to that expected in our first in vivo imaging studies according to the protocol developed at SYRMEP. Materials and Methods: Culture flasks containing either gold-loaded or naïve C6 glioma cells were exposed to a dose of 0.5 Gy at 24 keV. The irradiated medium was aspirated and replaced with fresh growth medium. Twenty-four hours later this non-irradiated medium exposed to irradiated cells was aspirated, then added to non-irradiated C6 cells in order to investigate whether bystander effects are seen under the conditions of our image acquisition protocol. The irradiated medium was added to a number of other non-irradiated cell cultures. Cell counts were followed until 72 hrs after irradiation. Western blots were conducted with H2AX antibodies. This experiment was one of the first biomedical experiments conducted at BMIT, the new biomedical imaging and therapy beamline of the Canadian Light Source. Results: No significant differences in proliferation were seen between cells that were directly irradiated, exposed to irradiated medium or exposed to the non-irradiated 24-hr-medium from the irradiated cells. However, there was a tendency towards a higher number of double strand breaks in previously irradiated cells when they were exposed to non-irradiated medium that had been in contact with irradiated cells for 24 hrs.

  6. Towards synchrotron-based nanocharacterization

    NASA Astrophysics Data System (ADS)

    Bleuet, Pierre; Arnaud, Lucile; Biquard, Xavier; Cloetens, Peter; Doyen, Lise; Gergaud, Patrice; Lamontagne, Patrick; Lavayssière, Maylis; Micha, Jean-Sébastien; Renault, Olivier; Rieutord, François; Susini, Jean; Ulrich, Olivier

    2009-09-01

    The advent of 3rd generation synchrotron sources coupled with high efficiency x-ray focusing optics opened new nanocharacterization possibilities. This paper is an overview of synchrotron-based techniques that may be of interest for nanotechnology researchers. Although not exhaustive, it includes a general background of synchrotron principle and main x-ray interactions before addressing nanoimaging possibilities. Three-dimensional (3D) hard x-ray multimodal tomography is now doable that allows producing 3D morphological, chemical and crystalline images with a sub-100 nm resolution. Although the resolution is still limited with respect to electron imaging, it presents attractive features like depth resolution and non-destructive exam. Besides imaging, diffraction also allows strain determination within microstructures and is illustrated here on 100 nm copper lines. Surface analysis is illustrated through X-ray Photoelectron Emission Microscopy (XPEEM).

  7. Contact microscopy with synchrotron radiation

    SciTech Connect

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs.

  8. Optimized IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  9. A Natural Nightmare for the LHC?

    SciTech Connect

    Underwood, Thomas E. J.

    2007-11-20

    A minimal lepton number conserving extension to the Standard Model is considered providing light Dirac neutrinos without resorting to tiny Yukawa couplings. Successful baryogenesis through leptogenesis is not only possible in this case, but even suggests an electroweak scale vacuum expectation value for a gauge singlet scalar in the model. The spectrum contains two massive Higgs bosons and a massless Nambu-Goldstone boson. The existence of the Nambu-Goldstone boson suppresses the Higgs to bb-bar branching ratio and instead Higgs bosons will decay mainly into invisible Goldstone bosons. We consider the constraints on the potential and the implications for the LHC.

  10. A Natural Nightmare for the LHC?

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas E. J.

    2007-11-01

    A minimal lepton number conserving extension to the Standard Model is considered providing light Dirac neutrinos without resorting to tiny Yukawa couplings. Successful baryogenesis through leptogenesis is not only possible in this case, but even suggests an electroweak scale vacuum expectation value for a gauge singlet scalar in the model. The spectrum contains two massive Higgs bosons and a massless Nambu-Goldstone boson. The existence of the Nambu-Goldstone boson suppresses the Higgs to bb¯ branching ratio and instead Higgs bosons will decay mainly into invisible Goldstone bosons. We consider the constraints on the potential and the implications for the LHC.

  11. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2016-07-12

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  12. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  13. Lighting

    SciTech Connect

    Audin, L.

    1994-12-31

    EPAct covers a vast territory beyond lighting and, like all legislation, also contains numerous {open_quotes}favors,{close_quotes} compromises, and even some sleight-of-hand. Tucked away under Title XIX, for example, is an increase from 20% to 28% tax on gambling winnings, effective January 1, 1993 - apparently as a way to help pay for new spending listed elsewhere in the bill. Overall, it is a landmark piece of legislation, about a decade overdue. It remains to be seen how the Federal Government will enforce upgrading of state (or even their own) energy codes. There is no mention of funding for {open_quotes}energy police{close_quotes} in EPAct. Merely creating such a national standard, however, provides a target for those who sincerely wish to create an energy-efficient future.

  14. Jet charge at the LHC.

    PubMed

    Krohn, David; Schwartz, Matthew D; Lin, Tongyan; Waalewijn, Wouter J

    2013-05-24

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the standard model and for characterizing potential beyond-the-standard-model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pileup, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as standard model tests, such as jet charge in dijet events or in hadronically decaying W bosons in tt[over ¯] events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multihadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte Carlo fragmentation models.

  15. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C.

    1991-12-31

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  16. Infrared Synchrotron Radiation instrumentation and applications

    SciTech Connect

    Hirschmugl, C. . Dept. of Applied Physics)

    1991-01-01

    Infrared Synchrotron Radiation (IRSR) is a blossoming field which has three working beamlines, U4IR at the National Synchrotron Light Source, Brookhaven National Laboratory, USA, and two at the Institute of Molecular Sciences in Okasaki, Japan with extensive research projects. There are also several new beamlines in the planning and development stages, both in the United States and abroad. IRSR offers a unique way to access the far infrared (30 {mu} to approx 1 mm) which is a notoriously difficult region to work in. In particular, experiments that demand high brightness are well suited to IRSR just as they are in the x-ray region. The central issue in all of the experiments to data has been good signal to noise, which has been the focus of the instrumentation improvements at the U4IR beamline. A commercial Fourier transform instrument was the chosen spectrometer. Then modifications were made in order to expand the usable region of the existing experiments, in both the far and near infrared. As an example of the performance of this beamline, I will focus on the reflection absorption spectroscopy results for adsorbates on clean surfaces in ultra-high vacuum. 15 refs.

  17. Impact system for ultrafast synchrotron experiments

    SciTech Connect

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-15

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 {+-} 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  18. Three energy computed tomography with synchrotron radiation

    SciTech Connect

    Menk, R.H.; Thomlinson, W.; Zhong, Z.; Charvet, A.M.; Arfelli, F. |; Chapman, L.

    1997-09-01

    Preliminary experiments for digital subtraction computed tomography (CT) at the K-edge of iodine (33.1 keV) were carried out at SMERF (Synchrotron Medical Research Facility X17B2) at the National Synchrotron Light Source, Brookhaven National Laboratory. The major goal was to evaluate the availability of this kind of imaging for in vivo neurological studies. Using the transvenous coronary angiography system, CT images of various samples and phantoms were taken simultaneously at two slightly different energies bracketing the K-absorption edge of iodine. The logarithmic subtraction of the two images resulted in the contrast enhancement of iodine filled structures. An additional CT image was taken at 99.57 keV (second harmonic of the fundamental wave). The third energy allowed the calculation of absolute iodine, tissue and bone images by means of a matrix inversion. A spatial resolution of 0.8 LP/mm was measured in single energy images and iodine concentrations down to 0.082 mg/ml in a 1/4 diameter detail were visible in the reconstructed subtraction image.

  19. Impact system for ultrafast synchrotron experiments

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Iverson, A. J.; Luo, S. N.; Fezzaa, K.; Hooks, D. E.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  20. New Detector Technologies for the LHC Experiments: Prospects, Strategies and Technologies for the HL-LHC Upgrades

    SciTech Connect

    Mannelli, Marcello

    2013-03-06

    We review the prospects, strategies and technologies for the High Luminosity (HL-LHC) upgrades of the ATLAS and CMS detectors, in the light of a very successful two year-long first physics run, and the discovery of a new 126 GeV boson with properties consistent with those of the Standard Model Higgs boson.

  1. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Winick, Herman

    2015-03-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Although South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give thousands of African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several sub-Saharan African countries. An interim Steering Committee has been formed. SESAME, now nearing completion in Jordan as a collaboration of 9 countries in the Middle East (www.sesame.org.jo) may be the example followed. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions''. It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  2. A Synchrotron Radiation Research Facility for Africa

    NASA Astrophysics Data System (ADS)

    Evans-Lutterodt, Kenneth; Mtingwa, Sekazi; Wague, Ahmadou; Tessema, Guebre; Winick, Herman

    2015-04-01

    Africa is the only habitable continent without a synchrotron light source. Dozens of African scientists use facilities abroad. Even though South Africa has become a member of ESRF, the number of users is limited by distance and travel cost. A light source in Africa would give many more African scientists access to this tool. Momentum is now building for an African light source, as a collaboration involving several African countries. An interim Steering Committee has been formed, with a mandate to plan a conference. SESAME, now nearing completion in Jordan, is a collaboration of 9 countries in the Middle East (www.sesame.org.jo) is an example to follow. UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002, as it did in the case of CERN in the 1950s. UNESCO's Executive Board described SESAME as ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions.'' It is likely that UNESCO, if asked, would play a similar role as a facilitator for an African light source.

  3. Hints for a nonstandard Higgs boson from the LHC

    SciTech Connect

    Raidal, Martti; Strumia, Alessandro

    2011-10-01

    We reconsider Higgs boson invisible decays into Dark Matter in the light of recent Higgs searches at the LHC. Present hints in the Compact Muon Solenoid and ATLAS data favor a nonstandard Higgs boson with approximately 50% invisible branching ratio, and mass around 143 GeV. This situation can be realized within the simplest thermal scalar singlet Dark Matter model, predicting a Dark Matter mass around 50 GeV and direct detection cross section just below present bound. The present runs of the Xenon100 and LHC experiments can test this possibility.

  4. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: a novel approach.

    PubMed

    Yu, Peiqiang; Doiron, Kevin; Liu, Dasen

    2008-05-14

    The objective of this study was to use advanced synchrotron-sourced FTIR microspectroscopy (SFTIRM) as a novel approach to identify the differences in protein and carbohydrate molecular structure (chemical makeup) between these two varieties of barley and illustrate the exact causes for their significantly different degradation kinetics. Items assessed included (1) molecular structural differences in protein amide I to amide II intensities and their ratio within cellular dimensions, (2) molecular structural differences in protein secondary structure profile and their ratios, and (3) molecular structural differences in carbohydrate component peak profile. Our hypothesis was that molecular structure (chemical makeup) affects barley quality, fermentation, and degradation behavior in both humans and animals. Using SFTIRM, the protein and carbohydrate molecular structural chemical makeup of barley was revealed and identified. The protein molecular structural chemical makeup differed significantly between the two varieties of barleys. No difference in carbohydrate molecular structural chemical makeup was detected. Harrington was lower than Valier in protein amide I, amide II, and protein amide I to amide II ratio, while Harrington was relatively higher in model-fitted protein alpha-helix and beta-sheet, but lower in the others (beta-turn and random coil). These results indicated that it is the molecular structure of protein (chemical makeup) that may play a major role in the different degradation kinetics between the two varieties of barleys (not the molecular structure of carbohydrate). It is believed that use of the advanced synchrotron technology will make a significant step and an important contribution to research in examining the molecular structure (chemical makeup) of plant, feed, and seeds.

  5. Medical Applications of Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Prezado, Yolanda; Martínez-Rovira, Immaculada

    This chapter describes the state-of-art of synchrotron radiation therapies in the treatment of radioresistant tumors. The tolerance of the surrounding healthy tissue severely limits the achievement of a curative treatment for some brain tumors, like gliomas. This restriction is especially important in children, due to the high risk of complications in the development of the central nervous system. In addition, the treatment of tumors close to an organ at risk, like the spinal cord, is also restrained. One possible solution is the development of new radiotherapy techniques would exploit radically different irradiation modes, as it is the case of synchrotron radiotherapies. Their distinct features allow to modify the biological equivalent doses. In this chapter the three new approaches under development at the European Synchrotron Radiation Facility (ESRF), in Grenoble (France), will be described, namely: stereotactic synchrotron radiation therapy, microbeam radiation therapy and minibeam radiation therapy. The promising results obtained in the treatment of high grade brain tumors in preclinical studies have paved the way to the forthcoming clinical trials, currently in preparation.

  6. Tandems as injectors for synchrotrons

    SciTech Connect

    Ruggiero, A.G.

    1992-08-01

    This is a review on the use of Tandem electrostatic accelerators for injection and filling of synchrotrons to accelerate intense beams of heavy-ions to relativistic energies. The paper emphasizes the need of operating the Tandems in pulsed mode for this application. It has been experimentally demonstrated that at the present this type of accelerators still provides the most reliable and best performance.

  7. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  8. PDF4LHC recommendations for LHC Run II

    SciTech Connect

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  9. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; ...

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  10. Optical components and systems for synchrotron radiation: an introduction

    SciTech Connect

    Howells, M.R.

    1981-01-01

    A brief description of the nature and origins of synchrotron radiation is given with special reference to its geometrical optical properties and the use of storage rings as light souces. The geographical distribution of SR sources in the world is reviewed and some discussion of the level of experimental activity is given. Estimates of future levels of experimental activity are also made both for existing storage rings and those planned for the future. Calculations of the approximate number of mirrors and gratings that will be required are offered. Some general considerations are outlined showing how synchrotron radiation optical systems couple to the light source and indicating which parameters need to be maximized for best overall performance.

  11. MSSM Electroweak Baryogenesis and LHC Data

    SciTech Connect

    Carena, Marcela; Nardini, Germano; Quiros, Mariano; Wagner, Carlos E.M.

    2013-02-01

    Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.

  12. Polymer research at synchrotron radiation sources: symposium proceedings

    SciTech Connect

    Russell, T.P.; Goland, A.N.

    1985-01-01

    The twenty-two papers are arranged into eleven sessions entitled: general overviews; time-resolved x-ray scattering; studies using fluorescence, ion-containing polymers; time-resolved x-ray scattering; novel applications of synchrotron radiation; phase transitions in polymers; x-ray diffraction on polymers; recent detector advances; complementary light, x-ray and neutron studies; and neutron scattering studies. Seven of the papers are processed separately; three of the remainder have been previously processed. (DLC)

  13. Particle Physics on the Eve of Lhc

    NASA Astrophysics Data System (ADS)

    Studenikin, Alexander I.

    2009-01-01

    a lattice / O. V. Pavlovsky. String-like electrostatic interaction from QED with infinite magnetic field / A. E. Shabad, V. V. Usov. QFT systems with 2D spatial defects / I. V. Fialkovsky, V. N. Markov, Yu. M. Pismak. Bound state problems and radiative effects in extended electrodynamics with Lorentz violation / I. E. Frolov, O. G. Kharlanov, V. Ch. Zhukovsky. Particles with low binding energy in a strong stationary magnetic field / E. V. Arbuzova, G. A. Kravtsova, V. N. Rodionov. Triangle anomaly and radiatively induced Lorentz and CPT violation in electrodynamics / A. E. Lobanov, A. P. Venediktov. The comparative analysis of the angular distribution of synchrotron radiation for a spinless particle in classic and quantum theories / V. G. Bagrov, A. N. Burimova, A. A. Gusev. Problem of the spin light identification / V. A. Bordovitsyn, V. V. Telushkin. Simulation the nuclear interaction / T. F. Kamalov. Unstable leptons and (u - e - [symbol])-universality / O. Kosmachev. Generalized Dirac equation describing the quark structure of nucleons / A. Rabinowitch. Unique geometrization of material and electromagnetic wave fields / O. Olkhov -- Problems of intelligentsia. The conscience of the intelligentsia / J. K. Bleimaier.

  14. Technicolor walks at the LHC

    SciTech Connect

    Belyaev, Alexander; Foadi, Roshan; Frandsen, Mads T.; Jaervinen, Matti; Sannino, Francesco; Pukhov, Alexander

    2009-02-01

    We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable walking technicolor models. We study and compare the Drell-Yan and vector boson fusion mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the Drell-Yan processes. The composite Higgs phenomenology is also studied. If technicolor walks at the LHC, its footprints will be visible and our analysis will help in uncovering them.

  15. Cloning and expression analysis of two different LhcSR genes involved in stress adaptation in an Antarctic microalga, Chlamydomonas sp. ICE-L.

    PubMed

    Mou, Shanli; Zhang, Xiaowen; Ye, Naihao; Dong, Meitao; Liang, Chengwei; Liang, Qiang; Miao, Jinlai; Xu, Dong; Zheng, Zhou

    2012-03-01

    Light-harvesting complexes (LHCs) play essential roles in light capture and photoprotection. Although the functional diversity of individual LHCs in many plants has been well described, knowledge regarding the extent of this family in the majority of green algal groups is still limited. In this study, two different LhcSR genes, LhcSR1 and LhcSR2 from Chlamydomonas sp. ICE-L, were cloned from the total cDNA and characterized in response to high light (HL), low light (LL), UV-B radiation and high salinity. The lower F (v)/F (m) as well as the associated induction of non-photochemical quenching (NPQ), observed under those conditions, indicated that Chlamydomonas sp. ICE-L was under stress. Under HL stress, the expression of LhcSR1 and LhcSR2 increased rapidly from 0.5 h HL and reached a maximum after 3 h. In LL, LhcSR2 expression was up-regulated during the first 0.5 h after which it decreased, while the expression of LhcSR1 decreased gradually from the beginning of the experiment. In addition, the transcript levels of LhcSR1 and LhcSR2 increased under UV-B radiation and high salinity. These results showed that both genes were inducible and up-regulated under stress conditions. A higher NPQ was accompanied by the up-regulated LhcSR genes, suggesting that LhcSR plays a role in thermal energy dissipation. Overall, the results presented here suggest that LhcSR1 and LhcSR2 play a primary role in photoprotection in Chlamydomonas sp. ICE-L under stress conditions and provide an important basis for investigation of the adaptation mechanism of LhcSR in Antarctic green algae.

  16. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    SciTech Connect

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  17. Dynamic full-field infrared imaging with multiple synchrotron beams

    PubMed Central

    Stavitski, Eli; Smith, Randy J.; Bourassa, Megan W.; Acerbo, Alvin S.; Carr, G. L.; Miller, Lisa M.

    2013-01-01

    Microspectroscopic imaging in the infrared (IR) spectral region allows for the examination of spatially resolved chemical composition on the microscale. More than a decade ago, it was demonstrated that diffraction limited spatial resolution can be achieved when an apertured, single pixel IR microscope is coupled to the high brightness of a synchrotron light source. Nowadays, many IR microscopes are equipped with multi-pixel Focal Plane Array (FPA) detectors, which dramatically improve data acquisition times for imaging large areas. Recently, progress been made toward efficiently coupling synchrotron IR beamlines to multi-pixel detectors, but they utilize expensive and highly customized optical schemes. Here we demonstrate the development and application of a simple optical configuration that can be implemented on most existing synchrotron IR beamlines in order to achieve full-field IR imaging with diffraction-limited spatial resolution. Specifically, the synchrotron radiation fan is extracted from the bending magnet and split into four beams that are combined on the sample, allowing it to fill a large section of the FPA. With this optical configuration, we are able to oversample an image by more than a factor of two, even at the shortest wavelengths, making image restoration through deconvolution algorithms possible. High chemical sensitivity, rapid acquisition times, and superior signal-to-noise characteristics of the instrument are demonstrated. The unique characteristics of this setup enabled the real time study of heterogeneous chemical dynamics with diffraction-limited spatial resolution for the first time. PMID:23458231

  18. The Advanced Light Source: Technical Design

    SciTech Connect

    Authors, Various

    1984-05-01

    The Advanced Light Source (ALS) is a synchrotron radiation source consisting of a 50-MeV linear accelerator, a 1.3-GeV 'booster' synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines, as shown in Figure 1. As an introduction to a detailed description of the Advanced Light Source, this section provides brief discussions on the characteristics of synchrotron radiation and on the theory of storage rings. Appendix A contents: Introduction to Synchrotron-Radiation Sources; Storage Ring; Injection System; Control System; Insertion Devices; Photon Beam Lines; and References.

  19. Medical Applications of Synchrotron Radiation

    DOE R&D Accomplishments Database

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  20. Medical applications of synchrotron radiation

    SciTech Connect

    Thomlinson, W.

    1991-10-01

    Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

  1. Color changes in modern and fossil teeth induced by synchrotron microtomography.

    PubMed

    Richards, Gary D; Jabbour, Rebecca S; Horton, Caroline F; Ibarra, Caitlin L; MacDowell, Alastair A

    2012-10-01

    Studies using synchrotron microtomography have shown that this radiographic imaging technique provides highly informative microanatomical data from modern and fossil bones and teeth without the need for physical sectioning. The method is considered to be nondestructive; however, researchers using the European Synchrotron Radiation Facility have reported that color changes sometimes occur in teeth during submicron scanning. Using the Advanced Light Source, we tested for color changes during micron-level scanning and for postexposure effects of ultraviolet light. We exposed a 2.0-mm wide strip (band) to synchrotron light in 32 specimens, using multiple energy levels and scan durations. The sample included modern and fossilized teeth and bone. After scanning, the specimens were exposed to fluorescent and direct ultraviolet light. All teeth showed color changes caused by exposure to synchrotron radiation. The resulting color bands varied in intensity but were present even at the lowest energy and shortest duration of exposure. Color bands faded during subsequent exposure to fluorescent and ultraviolet light, but even after extensive ultraviolet exposure, 67% (8/12) of UV-exposed teeth retained some degree of induced color. We found that the hydroxyapatite crystals, rather than the organic component, are the targets of change, and that diagenesis appears to impact color retention. Color changes have significance beyond aesthetics. They are visible indicators of ionization (chemical change) and, therefore, of potential physical damage. It is important for researchers to recognize that synchrotron microtomography may damage specimens, but adopting suitable safeguards and procedures may moderate or eliminate this damage.

  2. Laser undulated synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Baine, Michael A. J.

    2000-07-01

    This work will address the practicality of using lasers to undulate electron beams for the production of tunable, short pulsed, monochromatic, synchrotron radiation. An x-ray source based on this mechanism, referred to as a Laser Synchrotron Source (LSS), has several attractive features: (1)x-rays can be generated with an electron beam whose energy is a factor of 100 smaller than competing synchrotron sources that use magnetic undulators, (2)the pulse length can be made extremely short (<100fs) by using short pulsed lasers, (3)the polarization can be controlled by changing the polarization of the incident laser, (4)the bandwidth can be quite narrow (<1%), and (5)the resultant x-rays are well collimated (θ < .1 rad for γ > 10) in the direction of the electron beam. These factors combine to produce one of the brightest (>1018 J/s mrad mm2 1%BW) sources of x-rays available. The most attractive feature, however, is its compact size and low cost, which suit it well for applications in Medicine, Biology, and Physics. The problem will be treated in two parts: analysis of nonlinear Thomson scattering for arbitrary interaction geometry of intense lasers and relativistic electron beams, and description of a proof-of-principle experiment carried out at the Naval Research Laboratory.

  3. Four tops for LHC

    NASA Astrophysics Data System (ADS)

    Alvarez, Ezequiel; Faroughy, Darius A.; Kamenik, Jernej F.; Morales, Roberto; Szynkman, Alejandro

    2017-02-01

    We design a search strategy for the Standard Model t t bar t t bar production at the LHC in the same-sign dilepton and trilepton channels. We study different signal features and, given the small expected number of signal events, we scrutinize in detail all reducible and irreducible backgrounds. Our analysis shows that by imposing a basic set of jet and lepton selection criteria, the SM pp → t t bar t t bar process could be evidenced in the near future, within Run-II, when combining both multi-lepton search channels. We argue that this search strategy should also be used as a guideline to test New Physics coupling predominantly to top-quarks. In particular, we show that a non-resonant New Physics enhancement in the four-top final state would be detectable through this search strategy. We study two top-philic simplified models of this kind, a neutral scalar boson and a Z‧, and present current and future exclusion limits on their mass and couplings.

  4. Supersymmetric Dark Matter after LHC Run 1

    DOE PAGES

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; ...

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  5. Supersymmetric dark matter after LHC run 1.

    PubMed

    Bagnaschi, E A; Buchmueller, O; Cavanaugh, R; Citron, M; De Roeck, A; Dolan, M J; Ellis, J R; Flächer, H; Heinemeyer, S; Isidori, G; Malik, S; Martínez Santos, D; Olive, K A; Sakurai, K; de Vries, K J; Weiglein, G

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, [Formula: see text], assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau [Formula: see text], stop [Formula: see text] or chargino [Formula: see text], resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the [Formula: see text] coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for [Formula: see text] events and long-lived charged particles, whereas their H / A funnel, focus-point and [Formula: see text] coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is [Formula: see text] coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  6. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  7. Transmission grating goniometer elements for use at synchrotron radiation facilities

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Lindau, I.

    1982-04-01

    In this paper we show analytically that accurate detection of the positions of the diffracted orders from a holographic transmission grating can be used to compute the angle of incidence of the light onto the grating, irrespective of the light's frequency. Since such a device may be employed as a goniometer, and since beam height may be measured independently, we show that such grating may be employed as beam attitude/altitude detectors at synchrotron radiation facilities where beam steering and positioning are problematical.

  8. Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro.

    PubMed

    Tsiavos, Theodoros; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2012-05-01

    Dissipation of excess excitation energy within the light-harvesting complex of Photosystem II (LHC II) is a main process in plants, which is measured as the non-photochemical quenching of chlorophyll fluorescence or qE. We showed in previous works that polyamines stimulate qE in higher plants in vivo and in eukaryotic algae in vitro. In the present contribution we have tested whether polyamines can stimulate quenching in trimeric LHC II and monomeric light-harvesting complex b proteins from higher plants. The tetramine spermine was the most potent quencher and induced aggregation of LHC II trimers, due to its highly cationic character. Two transients are evident at 100 μM and 350 μM for the fluorescence and absorbance signals of LHC II respectively. On the basis of observations within this work, some links between polyamines and the activation of qE in vivo is discussed.

  9. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  10. Synchrotron radiation applications in medical research at Brookhaven National Laboratory

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    In the relatively short time that synchrotrons have been available to the scientific community, their characteristic beams of UV and X-ray radiation have been applied to virtually all areas of medical science which use ionizing radiation. The ability to tune intense monochromatic beams over wide energy ranges clearly differentiates these sources from standard clinical and research tools. The tunable spectrum, high intrinsic collimation of the beams, polarization and intensity of the beams make possible in-vitro and in-vivo research and therapeutic programs not otherwise possible. From the beginning of research operation at the National Synchrotron Light Source (NSLS), many programs have been carrying out basic biomedical research. At first, the research was limited to in-vitro programs such as the x-ray microscope, circular dichroism, XAFS, protein crystallography, micro-tomography and fluorescence analysis. Later, as the coronary angiography program made plans to move its experimental phase from SSRL to the NSLS, it became clear that other in-vivo projects could also be carried out at the synchrotron. The development of SMERF (Synchrotron Medical Research Facility) on beamline X17 became the home not only for angiography but also for the MECT (Multiple Energy Computed Tomography) project for cerebral and vascular imaging. The high energy spectrum on X17 is necessary for the MRT (Microplanar Radiation Therapy) experiments. Experience with these programs and the existence of the Medical Programs Group at the NSLS led to the development of a program in synchrotron based mammography. A recent adaptation of the angiography hardware has made it possible to image human lungs (bronchography). Fig. 1 schematically depicts the broad range of active programs at the NSLS.

  11. First Operation of the Abort Gap Monitor for LHC

    SciTech Connect

    Lefevre, Thibaut; Bart Pedersen, Stephane; Boccardi, Andrea; Bravin, Enrico; Goldblatt, A.; Jeff, Adam; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-06

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

  12. Parton distributions with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration

    2013-02-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.

  13. CERN LHC signals from warped extra dimensions

    SciTech Connect

    Agashe, Kaustubh; Belyaev, Alexander; Krupovnickas, Tadas; Perez, Gilad; Virzi, Joseph

    2008-01-01

    We study production of Kaluza-Klein (KK) gluons at the Large Hadron Collider (LHC) in the framework of a warped extra dimension with the standard model fields propagating in the bulk. We show that the detection of the KK gluon is challenging since its production is suppressed by small couplings to the proton's constituents. Moreover, the KK gluon decays mostly to top pairs due to an enhanced coupling and hence is broad. Nevertheless, we demonstrate that for M{sub KKG} < or approx. 4 TeV, 100 fb{sup -1} of data at the LHC can provide discovery of the KK gluon. We utilize a sizable left-right polarization asymmetry from the KK gluon resonance to maximize the signal significance, and we explore the novel feature of extremely highly energetic 'top-jets'. We briefly discuss how the detection of electroweak gauge KK states (Z/W) faces a similar challenge since their leptonic decays (golden modes) are suppressed. Our analysis suggests that other frameworks, for example, little Higgs, which rely on UV completion via strong dynamics might face similar challenges, namely, (1) suppressed production rates for the new particles (such as Z{sup '}), due to their 'light-fermion-phobic' nature, and (2) difficulties in detection since the new particles are broad and decay predominantly to third generation quarks and longitudinal gauge bosons.

  14. Scaling behavior of circular colliders dominated by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2015-08-01

    RF cavities that restore the lost energy. To the contrary, until now, the large proton to electron mass ratio has caused synchrotron radiation to be negligible in proton accelerators. The LHC beam energy has still been low enough that synchrotron radiation has little effect on beam dynamics; but the thermodynamic penalty in cooling the superconducting magnets has still made it essential for the radiated power not to be dissipated at liquid helium temperatures. Achieving this has been a significant challenge. For the next generation p, p collider this will be even more true. Furthermore, the radiation will effect beam distributions on time scales measured in minutes, for example causing the beams to be flattened, wider than they are high. In this regime scaling relations previously valid only for electrons will be applicable also to protons.

  15. An Introduction to the LHC Olympics

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew; Armour, Kyle; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is an introduction to how such an LHC Olympics study is done. Various basic analysis tools and techniques are discussed.

  16. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  17. Optical Synchrotron Radiation Beam Imaging with a Digital Mask

    SciTech Connect

    Fiorito, R. B.; Zhang, H. D.; Corbett, W. J.; Fisher, A. S.; Mok, W. Y.; Tian, K.; Douglas, D.; Wilson, F. G.; Zhang, S.; Mitsuhashi, T. M.; Shkvarunets, A. G.

    2012-11-01

    We have applied a new imaging/optical masking technique, which employs a digital micro-mirror device (DMD) and optical synchrotron radiation (OSR), to perform high dynamic range (DR) beam imaging at the JLAB Energy Recovery Linac and the SLAC/SPEAR3 Synchrotron Light Source. The OSR from the beam is first focused onto the DMD to produce a primary image; selected areas of this image are spatially filtered by controlling the state of individual micro-mirrors; and finally, the filtered image is refocused onto a CCD camera. At JLAB this technique has been used successfully to view the beam halo with a DR ~ 105. At SPEAR3 the DMD was used to filter out the bright core of the stored beam to study the turn-by-turn dynamics of the 10-3 weaker injected beam. We describe the optical performance, present limitations and our plans to improve the DR of both experimental systems.

  18. New synchrotron powder diffraction facility for long-duration experiments.

    PubMed

    Murray, Claire A; Potter, Jonathan; Day, Sarah J; Baker, Annabelle R; Thompson, Stephen P; Kelly, Jon; Morris, Christopher G; Yang, Sihai; Tang, Chiu C

    2017-02-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world's first dedicated facility for long-term studies (weeks to years) using synchrotron radiation.

  19. New synchrotron powder diffraction facility for long-duration experiments

    PubMed Central

    Murray, Claire A.; Potter, Jonathan; Day, Sarah J.; Baker, Annabelle R.; Thompson, Stephen P.; Kelly, Jon; Morris, Christopher G.; Tang, Chiu C.

    2017-01-01

    A new synchrotron X-ray powder diffraction instrument has been built and commissioned for long-duration experiments on beamline I11 at Diamond Light Source. The concept is unique, with design features to house multiple experiments running in parallel, in particular with specific stages for sample environments to study slow kinetic systems or processes. The instrument benefits from a high-brightness X-ray beam and a large area detector. Diffraction data from the commissioning work have shown that the objectives and criteria are met. Supported by two case studies, the results from months of measurements have demonstrated the viability of this large-scale instrument, which is the world’s first dedicated facility for long-term studies (weeks to years) using synchrotron radiation. PMID:28190992

  20. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE PAGES

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  1. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    SciTech Connect

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  2. The SAGA Light Source

    SciTech Connect

    Yoshida, K.; Iwasaki, Y.; Koda, S.; Okajima, S.; Setoyama, H.; Takabayashi, Y.; Tomimasu, T.; Yoshimura, D.; Ohgaki, H.

    2007-01-19

    Saga prefectural government operates a synchrotron light facility mainly for industrial applications of the synchrotron light. The facility comprises a 1.4 GeV storage ring, a 250 MeV linac as an electron injector and beamlines. The lattice of the storage ring is designed to perform as small emittance as 25 nm-radian and has long straight sections of 2.9 m length for installing insertion devices. Three beam lines have been prepared by Saga prefectural government and one by Saga University.

  3. Charged Higgs Probes of Dark Bosons at the LHC

    SciTech Connect

    Kong, Kyoungchul; Lee, Hye-Sung; Park, Myeonghun

    2014-08-01

    A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6σ deviation in the muon g-2 measurement. We suggest top quark decays as a venue to search for light dark force carriers at the LHC. Such Z's can be easily boosted, and they can decay into highly collimated leptons (lepton-jet) with large branching ratio. We investigate a scenario where a top quark decays to bW accompanied by one or multiple dark force carriers and find that such a scenario could be easily probed at the early stage of LHC Run 2.

  4. L'Aventure du LHC

    SciTech Connect

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  5. Electroweak physics at the LHC

    NASA Astrophysics Data System (ADS)

    Berryhill, J.; Oh, A.

    2017-02-01

    The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of proton-proton collisions at center-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5 and 20 {{fb}}-1, respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This article reviews the status of electroweak measurements of the ATLAS, CMS and LHCb experiments at the LHC.

  6. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  7. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  8. LHC Symposium 2003: Summary Talk

    SciTech Connect

    Jeffrey A. Appel

    2003-08-12

    This summary talk reviews the LHC 2003 Symposium, focusing on expectations as we prepare to leap over the current energy frontier into new territory. We may learn from what happened in the two most recent examples of leaping into new energy territory. Quite different scenarios appeared in those two cases. In addition, they review the status of the machine and experiments as reported at the Symposium. Finally, I suggest an attitude which may be most appropriate as they look forward to the opportunities anticipated for the first data from the LHC.

  9. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  10. Multiple energy synchrotron biomedical imaging system

    NASA Astrophysics Data System (ADS)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  11. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  12. Sirepo for Synchrotron Radiation Workshop

    SciTech Connect

    Nagler, Robert; Moeller, Paul; Rakitin, Maksim

    2016-10-25

    Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure and widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.

  13. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  14. From Rindler horizon to mini black holes at LHC

    NASA Astrophysics Data System (ADS)

    Ghaffary, Tooraj

    2017-02-01

    Recently researchers (A. Sepehri et al., Astrophys. Space Sci. 344, 79 (2013)) have considered the signature of superstring balls near mini black holes at LHC and calculate the information loss for these types of strings. Motivated by their work, we consider the evolution of events in high energy experiments from lower energies for which the Rindler horizon is formed to higher energies in which mini black holes and string balls are emerged. Extending the Gottesman and Preskill method to string theory, we find the information loss for excited strings "string balls" in mini black holes at LHC and calculate the information transformation from the collapsing matter to the state of outgoing Hawking radiation for strings. We come to the conclusion that information transformation for high energy strings is complete. Then the thermal distribution of excited strings near mini black holes at LHC is calculated. In order to obtain the total string cross section near black holes produced in proton-proton collision, we multiply the black hole production cross section by the thermal distribution of strings. It is observed that many high energy excited strings are produced near the event horizon of TeV black holes. These excited strings evaporate to standard model particles like Higgs boson and top quark at Hagedorn temperature. We derive the production cross section for these particles due to string ball decay at LHC and consider their decay to light particles like bottom quarks and gluons.

  15. 125 GeV Technidilaton at the LHC

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya

    The technidilaton (TD) is a composite scalar predicted in walking technicolor (WTC), arising as a pseudo Nambu-Goldstone boson associated with the spontaneous breaking of the approximate scale invariance. Due to the Nambu-Goldstone boson's nature, the TD can be as light as the LHC boson that has been discovered at around 125 GeV. We discuss the size of the TD mass and the coupling properties relevant to the LHC study. It turns out that the TD couplings to the standard model (SM) particles take the same form as those of the SM Higgs boson, except the essentially distinguishable two ingredients: i) the overall coupling strengths set by the decay constant related to the spontaneous breaking of the scale invariance, which is in general not equal to the electroweak scale; ii) the couplings to photons and gluons which can include extra contributions from technifermion loops and hence can be enhanced compared to the SM Higgs case. To be concrete, we take the one-family technicolor model to explore the TD LHC phenomenology at 125 GeV. It is shown that the TD gives the signal consistent with the currently reported LHC data, notably can explain the excess in the diphoton channel, due to the extra contributions to digluon and diphoton couplings coming from the one-family technifermion loops.

  16. PHOBOS in the LHC era

    SciTech Connect

    Steinberg, Peter

    2015-01-15

    The PHOBOS experiment ran at the RHIC collider from 2000 to 2005, under the leadership of Wit Busza. These proceedings summarize selected PHOBOS results, highlighting their continuing relevance amidst the wealth of new results from the lead–lead program at the Large Hadron Collider (LHC)

  17. Heavy Quark Photoproduction at LHC

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Meneses, A. R.; Machado, M. V.

    2010-11-01

    In this work we calculate the inclusive and difractive photoproduction of heavy quarks in proton-proton collisions at LHC energies within the color dipole picture employing three phenomenological saturation models based on the color glass condensate formalism. Our results demonstrate that the experimental analyzes of these reactions is feasible and that the cross sections are sensitive to the underlying parton dynamics.

  18. Inelastic diffraction at the LHC

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-03-01

    The relativistic scattering was one of the scientific fields where Academician V.G. Kadyshevsky has made an important and highly cited contribution [1]. In this paper we discuss the high-energy dependencies of diffractive and non-diffractive inelastic cross-sections in view of the recent LHC data which reveal a presence of the reflective scattering mode.

  19. The history of the LHC

    SciTech Connect

    2010-05-11

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  20. The history of the LHC

    ScienceCinema

    None

    2016-07-12

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  1. Post-LHC accelerator magnets

    SciTech Connect

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  2. Workshop on detectors for synchrotron radiation

    SciTech Connect

    Robinson, Arthur L.

    2000-11-22

    Forefront experiments in many scientific areas for which synchrotron sources provide sufficient flux are nonetheless hindered because detectors cannot collect data fast enough, do not cover sufficiently solid angle, or do no have adequate resolution. Overall, the synchrotron facilities, each of which represents collective investments from funding agencies and user institutions ranging from many hundreds of millions to more than a billion dollars, are effectively significantly underutilized. While this chronic and growing problem plagues facilities around the world, it is particularly acute in the United States, where detector research often has to ride on the coat tails of explicitly science-oriented projects. As a first step toward moving out of this predicament, scientists from the U.S. synchrotron facilities held a national workshop in Washington, DC, on October 30-31, 2000. The Workshop on Detectors for Synchrotron Research aimed to create a national ''roadmap'' for development of synchrotron-radiation detectors.

  3. Imaging using synchrotron radiation for forensic science

    NASA Astrophysics Data System (ADS)

    Cervelli, F.; Carrato, S.; Mattei, A.; Jerian, M.; Benevoli, L.; Mancini, L.; Zanini, F.; Vaccari, L.; Perucchi, A.; Aquilanti, G.

    2011-03-01

    Forensic science is already taking benefits from synchrotron radiation (SR) sources in trace evidence analysis. In this contribution we show a multi-technique approach to study fingerprints from the morphological and chemical point of view using SR based techniques such as Fourier transform infrared microspectroscopy (FTIRMS), X-ray fluorescence (XRF), X-ray absorption structure (XAS), and phase contrast microradiography. Both uncontaminated and gunshot residue contaminated human fingerprints were deposited on lightly doped silicon wafers and on poly-ethylene-terephthalate foils. For the uncontaminated fingerprints an univariate approach of functional groups mapping to model FT-IRMS data was used to get the morphology and the organic compounds map. For the gunshot residue contaminated fingerprints, after a preliminary elemental analysis using XRF, microradiography just below and above the absorption edge of the elements of interest has been used to map the contaminants within the fingerprint. Finally, XAS allowed us to determine the chemical state of the different elements. The next step will be fusing the above information in order to produce an exhaustive and easily understandable evidence.

  4. Considerations for the use of synchrotron radiation sources to measure sub-keV x-ray photoabsorption cross sections in transmission

    SciTech Connect

    Tirsell, K.G.; Del Grande, N.K.

    1988-02-01

    Sub-keV x-ray photoabsorption cross section measurements in transmission have been made using synchrotron radiation beam lines on the VUV storage ring at the National Synchrotron Light Source (NSLS) and on the SPEAR storage ring at Stanford. The experimental considerations associated with making absolute measurements are reviewed, along with techniques for resolving difficulties. Suggestions for future measurements are included.

  5. A water-cooled mirror system for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    DiGennaro, Richard; Gee, Bruce; Guigli, Jim; Hogrefe, Henning; Howells, Malcolm; Rarback, Harvey

    1988-04-01

    This paper describes the design and performance of a directly-cooled soft X-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance . Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T miniundulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with a peak absorbed power density of 520 W/cm 2. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract #DE-AC03-76SF00098.

  6. A water-cooled mirror system for synchrotron radiation

    SciTech Connect

    DiGennaro, R.; Gee, B.; Guigli, J.; Hogrefe, H.; Howells, M.; Rarback, H.

    1987-06-01

    This paper describes the design and performance of a directly-cooled soft x-ray mirror system which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines in which mirror thermal distortion must be minimized for acceptable optical performance. Two similar mirror systems are being built: the first mirror has been installed and operated at the National Synchrotron Light Source on the X-17T mini-undulator beam line and will be moved to the permanent X-1 beam line when a new, more powerful undulator is installed there. The second system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam Line VI, where the total absorbed power on the mirror may be as high as 2400 W with peak absorbed power density of 520 W/cm/sup 2/. Direct cooling by convection is achieved using internal water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide for mirror positioning about two rotational axes that coincide with the optical surface. Surface figure metrology, optical configurations, and tolerancing are also discussed. 11 refs., 8 figs.

  7. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  8. Real world issues for the new soft x-ray synchrotron sources

    SciTech Connect

    Kincaid, B.M.

    1991-05-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray and hard x-ray spectral regions is under construction in several countries. They are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. An introduction to the properties of undulator radiation is followed by a discussion of some of the challenges to be faced at the new facilities. Examples of predicted undulator output from the Advanced Light Source, a third generation 1--2 GeV storage ring optimized for undulator use, are used to highlight differences from present synchrotron radiation sources, including high beam power, partial coherence, harmonics, and other unusual spectral and angular properties of undulator radiation. 8 refs., 2 figs.

  9. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching.

    PubMed

    Dreuw, Andreas; Wormit, Michael

    2008-03-01

    Recently, a mechanism for the energy-dependent component (qE) of non-photochemical quenching (NPQ), the fundamental photo-protection mechanism in green plants, has been suggested. Replacement of violaxanthin by zeaxanthin in the binding pocket of the major light harvesting complex LHC-II may be sufficient to invoke efficient chlorophyll fluorescence quenching. Our quantum chemical calculations, however, show that the excited state energies of violaxanthin and zeaxanthin are practically identical when their geometry is constrained to the naturally observed structure of violaxanthin in LHC-II. Therefore, since violaxanthin does not quench LHC-II, zeaxanthin should not either. This theoretical finding is nicely in agreement with experimental results obtained by femtosecond spectroscopy on LHC-II complexes containing violaxanthin or zeaxanthin.

  10. Reconstitution of LHC phosphorylation by a protein kinase isolated from spinach thylakoids

    SciTech Connect

    Hind, G.; Coughlan, S.

    1986-01-01

    Protein kinase activity is responsible for phosphorylating the (LHC) light-harvesting chlorophyll a/b protein complex of photosystem II, leading to its migration in the thylakoid membrane, the fractional redistribution of excitation energy between photosystems II and I, and the phenomenon of state transition. Previous work from this laboratory described the purification to homogeneity of a thylakoid protein kinase which catalyzes the phosphorylation of isolated LHC at 1-10% of a rate estimated for this enzyme and substrate when resident together in the thylakoid membrane. In this communication, we report rates of LHC phosphorylation that are close to physiological, in a system comprised of isolated purified protein kinase (LHCK) and native LHC. 9 refs., 1 fig., 2 tabs.

  11. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  12. Optical synchrotron radiation beam imaging with a digital mask

    SciTech Connect

    Zhang, Hao; Fiorito, Ralph; Corbett, Jeff; Shkvarunets, Anatoly; Tian, Kai; Fisher, Alan; Douglas, D.; Wilson, F.; Zhang, S.; Mok, W.; Mitsuhashi, T.

    2016-01-01

    The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500mA circulating in the storage ring (equivalently 392nC). Each injection pulse contains only 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during User operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by re-imaging visible synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera makes it is possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.

  13. Calculations of synchrotron radiation emission in the transverse coherent limit

    SciTech Connect

    Hulbert, S.L.; Williams, G.P.

    2009-10-14

    We present approximations for the synchrotron radiation emission for low emittance light sources, which provide a connection between user needs and the electron beam parameters. The results and calculations are a consequence of the phase coherence in the emission from the electrons. We derive the remarkable result that if the electron beam is energetic enough, the emitted flux is independent of the photon energy, electron beam energy, or bending radius in the transverse coherent limit. Similarly the brightness is identical for all machines at a given current.

  14. Facilities for small-molecule crystallography at synchrotron sources.

    PubMed

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  15. An X-ray microprobe facility using synchrotron radiation.

    PubMed

    Gordon, B M; Jones, K W; Hanson, A L; Pounds, J G; Rivers, M L; Spanne, P; Sutton, S R

    1990-01-01

    An X-ray microprobe for trace elemental analysis at micrometer spatial resolutions, using synchrotron radiation (SR), is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present, "white light" is used for excitation of the characteristic X-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 microns2 areas in 5 min irradiation times. Scanning techniques, as well as microtomography and chemical speciation, are discussed. Application to a specific biomedical study is included.

  16. An x-ray microprobe facility using synchrotron radiation

    SciTech Connect

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Spanne, P.; Sutton, S.R.

    1989-01-01

    A x-ray microprobe for trace elemental analysis at micrometer spatial resolutions using synchrotron radiation (SR) is under development. The facility consists of two beamlines, one including a 1:1 focusing mirror and the other an 8:1 ellipsoidal mirror. At present ''white light''' is used for excitation of the characteristic x-ray fluorescence lines. Sensitivities in thin biological samples are in the range of 2-20 fg in 100 ..mu..m/sup 2/ areas in 5 min irradiation times. Scanning techniques as well as microtomography and chemical speciation are discussed. Application to a specific biomedical study is included. 13 refs., 2 figs.

  17. Electron correlation explored through electron spectrometry using synchrotron radiation

    SciTech Connect

    Caldwell, C.D.; Whitfield, S.B.; Flemming, M.G. . Dept. of Physics); Krause, M.O. )

    1991-01-01

    The development of synchrotron radiation facilities as a research tool has made possible experiments which provide new insights into the role which correlation plays in electron dynamics and atomic and molecular structure. Features such as autoionizing resonances, normal and resonant Auger decay modes, and ionization threshold structure have become visible in a wealth of new detail. Some aspects of this information drawn from recent experiments on the alkaline earth metals and the rare gases are presented. The potential for increased flux and resolution inherent in insertion device-based facilities like the Advanced Light Source should advance this understanding even further, and some future directions are suggested. 8 refs., 8 figs.

  18. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2016-07-12

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  19. CP asymmetries in the supersymmetric trilepton signal at the LHC

    NASA Astrophysics Data System (ADS)

    Bornhauser, S.; Drees, M.; Dreiner, H.; Éboli, O. J. P.; Kim, J. S.; Kittel, O.

    2012-03-01

    In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.

  20. High Speed Measurements of the LHC Luminosity Monitor

    NASA Astrophysics Data System (ADS)

    Beche, J. F.; Byrd, J. M.; Monroy, M.; Ratti, A.; Turner, W.; Bravin, E.

    2006-11-01

    The LHC luminosity monitor is a gas ionization chamber designed to operate in the high radiation environment present in the TAN neutral absorbers at the LHC. One of the challenges is to measure the luminosity of individual bunch crossings with a minimum separation of 25 nsec. To test the time response and other aspects of a prototype chamber, we have performed a test using an x-ray beam of 40-60 keV with pulse spacing of 26 nsec as an ionizing beam. The tests were made at BL 8.3.2 at the Advanced Light Source (ALS). This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  1. L'Aventure du LHC

    ScienceCinema

    None

    2016-07-12

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  2. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  3. Catching Collisions in the LHC

    ScienceCinema

    Fruguiele, Claudia; Hirschauer, Jim

    2016-07-12

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  4. Observation of Synchrotron Sidebands in a Storage-Ring-Based Seeded Free-Electron Laser

    SciTech Connect

    Labat, M.; Hosaka, M.; Yamamoto, N.; Shimada, M.; Katoh, M.; Couprie, M. E.

    2009-01-09

    Seeded free-electron lasers (FELs) are among the future fourth-generation light sources in the vacuum ultraviolet and x-ray spectral regions. We analyze the seed temporal coherence preservation in the case of coherent harmonic generation FELs, including spectral narrowing and structure degradation. Indeed, the electron synchrotron motion driven by the seeding laser can cause sideband growth in the FEL spectrum.

  5. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  6. hhjj production at the LHC

    DOE PAGES

    Dolan, Matthew J.; Englert, Christoph; Greiner, Nicolas; ...

    2015-08-25

    The search for di-Higgs production at the LHC in order to set limits on the Higgs trilinear coupling and constraints on new physics is one of the main motivations for the LHC high-luminosity phase. Recent experimental analyses suggest that such analyses will only be successful if information from a range of channels is included. We therefore investigate di-Higgs production in association with two hadronic jets and give a detailed discussion of both the gluon- and the weak boson-fusion (WBF) contributions, with a particular emphasis on the phenomenology with modified Higgs trilinear and quartic gauge couplings. We perform a detailed investigationmore » of the full hadronic final state and find that hhjj production should add sensitivity to a di-Higgs search combination at the HL-LHC with 3 ab-1. Since the WBF and GF contributions are sensitive to different sources of physics beyond the Standard Model, we devise search strategies to disentangle and isolate these production modes. In addition, while gluon fusion remains non-negligible in WBF-type selections, sizeable new physics contributions to the latter can still be constrained. As an example of the latter point we investigate the sensitivity that can be obtained for a measurement of the quartic Higgs–gauge boson couplings.« less

  7. Strong dynamics at the LHC

    NASA Astrophysics Data System (ADS)

    Ittisamai, Pawin

    The limitations of the Standard Model of particle physics, despite its being a well-established theory, have prompted various proposals for new physics capable of addressing its shortcomings. The particular issue to be explored here is the mechanism of electroweak symmetry breaking, the probing of which lies within the TeV-scale physics accessible to the Large Hadron Collider (LHC). This thesis focuses on the phenomenology of a class of models featuring a dynamical breaking of the electroweak symmetry via strong dynamics. Consequences of recent experiments and aspects of near-future experiments are presented. We study the implications of the LHC Higgs searches available at the time the related journal article was written for technicolor models that feature colored technifermions. Then we discuss the properties of a technicolor model featuring strong-top dynamics that is viable for explaining the recently discovered boson of mass 126 GeV. We introduce a novel method of characterizing the color structure of a new massive vector boson, often predicted in various new physics models, using information that will be promptly available if it is discovered in the near-future experiments at the LHC. We generalize the idea for more realistic models where a vector boson has flavor non-universal couplings to quarks. Finally, we discuss the possibilities of probing the chiral structure of a new color-octet vector boson.

  8. Highlights from LHC experiments and future perspectives

    SciTech Connect

    Campana, P.

    2016-01-22

    The experiments at LHC are collecting a large amount of data in a kinematic of the (x, Q{sup 2}) variables never accessed before. Boosted by LHC analyses, Quantum Chromodynamics (QCD) is experiencing an impressive progress in the last few years, and even brighter perspectives can be foreseen for the future data taking. A subset of the most recent results from the LHC experiments in the area of QCD (both perturbative and soft) are reviewed.

  9. QCD and hard diffraction at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-09-01

    As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

  10. THE RAPID CYCLING MEDICAL SYNCHROTRON RCMS.

    SciTech Connect

    PEGGS,S.; BARTON,D.; BEEBE-WANG,J.; CARDONA,J.; BRENNAN,M.; FISCHER,W.; GARDNER,C.; GASSNER,D.; ET AL

    2002-06-02

    Thirteen hadron beam therapy facilities began operation between 1990 and 2001 - 5 in Europe, 4 in North America, 3 in Japan, and 1 in South Africa [l]. Ten of them irradiate tumors with protons, 2 with Carbon- 12 ions, and 1 with both protons and Carbon-12. The facility with the highest patient throughput - a total of 6 174 patients in 11 years and as many as 150 patient treatments per day -is the Loma Linda University Medical Center, which uses a weak focusing slow cycling synchrotron to accelerate beam for delivery to passive scattering nozzles at the end of rotatable gantries [2, 3,4]. The Rapid Cycling Medical Synchrotron (RCMS) is a second generation synchrotron that, by contrast with the Loma Linda synchrotron, is strong focusing and rapid cycling, with a repetition rate of 30 Hz. Primary parameters for the RCMS are listed in Table 1.

  11. Molecular photoemission studies using synchrotron radiation

    SciTech Connect

    Truesdale, C.M.

    1983-04-01

    The angular distributions of photoelectrons and Auger electrons were measured by electron spectroscopy using synchrotron radiation. The experimental results are compared with theoretical calculations to interpret the electronic behavior of photoionization for molecular systems.

  12. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1997-08-01

    Over the past two decades there has been a phenomenal growth in the number of dedicated synchrotron radiation facilities and a corresponding growth in the number of applications in both basic and applied sciences. The high flux and brightness, tunable beams, time structure and polarization of synchrotron radiation provide an ideal x- ray source for many applications in the medical sciences. There is a dual aspect to the field of medical applications of synchrotron radiation. First there are the important in-vitro programs such as structural biology, x-ray microscopy, and radiation cell biology. Second there are the programs that are ultimately targeted at in-vivo applications. The present status of synchrotron coronary angiography, bronchography, multiple energy computed tomography, mammography and radiation therapy programs at laboratories around the world is reviewed.

  13. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  14. Abort Gap Cleaning for LHC Run 2

    SciTech Connect

    Uythoven, Jan; Boccardi, Andrea; Bravin, Enrico; Goddard, Brennan; Hemelsoet, Georges-Henry; Höfle, Wolfgang; Jacquet, Delphine; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika; Valuch, Daniel; Gianfelice-Wendt, Eliana

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  15. Empirical deadtime corrections at synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  16. Empirical deadtime corrections for synchrotron sources.

    SciTech Connect

    Walko, D. A.; Arms, D. A.; Landahl, E. C.; X-Ray Science Division

    2008-01-01

    An experimental comparison of models for performing dead-time corrections of photon-counting detectors at synchrotron sources is presented. The performance of several detectors in the three operating modes of the Advanced Photon Source is systematically compared, with particular emphasis on asymmetric fill patterns. Several simple and well known correction formulas are evaluated. The results demonstrate the critical importance of detector speed and synchrotron fill pattern in selecting the proper dead-time correction.

  17. High-energy thermal synchrotron emission

    NASA Technical Reports Server (NTRS)

    Imamura, J. N.; Epstein, R. I.; Petrosian, V.

    1985-01-01

    It is shown how the thermal synchrotron emission spectrum is modified when the photon energy is greater than the mean energy of the radiating particles. The effect if applying this energy conservation constraint is to produce spectra which have less high-energy photon emission than had been previously estimated. The thermal synchrotron spectra provide satisfactory fits to recently observed very high energy gamma ray spectra of certain burst sources.

  18. Nanoparticles and nanowires: synchrotron spectroscopy studies

    SciTech Connect

    Sham, T.K.

    2008-08-11

    This paper reviews the research in nanomaterials conducted in our laboratory in the last decade using conventional and synchrotron radiation techniques. While preparative and conventional characterisation techniques are described, emphasis is placed on the analysis of nanomaterials using synchrotron radiation. Materials of primary interests are metal nanoparticles and semiconductor nanowires and nanoribbons. Synchrotron techniques based on absorption spectroscopy such as X-ray absorption fine structures (XAFS), which includes X-ray absorption near edge structures (XANES) and extended X-ray absorption fine structures (EXFAS), and de-excitation spectroscopy, including X-ray excited optical luminescence (XEOL), time-resolved X-ray excited optical luminescence (TRXEOL) and X-ray emission spectroscopy (XES) are described. We show that the tunability, brightness, polarisation and time structure of synchrotron radiation are providing unprecedented capabilities for nanomaterials analysis. Synchrotron studies of prototype systems such as gold nanoparticles, 1-D nanowires of group IV materials, C, Si and Ge as well as nanodiamond, and compound semiconductors, ZnS, CdS, ZnO and related materials are used to illustrate the power and unique capabilities of synchrotron spectroscopy in the characterisation of local structure, electronic structure and optical properties of nanomaterials.

  19. Synchrotron based X-ray fluorescence activities at Indus-2: An overview

    SciTech Connect

    Tiwari, M. K.

    2014-04-24

    X-Ray fluorescence (XRF) spectrometry is a powerful non-destructive technique for elemental analysis of materials at bulk and trace concentration levels. Taking into consideration several advantages of the synchrotron based XRF technique and to fulfill the requirements of Indian universities users we have setup a microfocus XRF beamline (BL-16) on Indus-2 synchrotron light source. The beamline offers a wide range of usages – both from research laboratories and industries; and for researchers working in diverse fields. A brief overview of the measured performance of the beamline, design specifications including various attractive features and recent research activities carried out on the BL-16 beamline are presented.

  20. National Institute of Standards and Technology Synchrotron Radiation Facilities for Materials Science

    PubMed Central

    Long, Gabrielle G.; Allen, Andrew J.; Black, David R.; Burdette, Harold E.; Fischer, Daniel A.; Spal, Richard D.; Woicik, Joseph C.

    2001-01-01

    Synchrotron Radiation Facilities, supported by the Materials Science and Engineering Laboratory of the National Institute of Standards and Technology, include beam stations at the National Synchrotron Light Source at Brookhaven National Laboratory and at the Advanced Photon Source at Argonne National Laboratory. The emphasis is on materials characterization at the microstructural and at the atomic and molecular levels, where NIST scientists, and researchers from industry, universities and government laboratories perform state-of-the-art x-ray measurements on a broad range of materials. PMID:27500070

  1. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  2. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  3. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  4. Synchrotron radiation in transactinium research report of the workshop

    SciTech Connect

    Not Available

    1992-11-01

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source: a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.

  5. On-line control of the nonlinear dynamics for synchrotrons

    NASA Astrophysics Data System (ADS)

    Bengtsson, J.; Martin, I. P. S.; Rowland, J. H.; Bartolini, R.

    2015-07-01

    We propose a simple approach to the on-line control of the nonlinear dynamics in storage rings, based on compensation of the nonlinear resonance driving terms using beam losses as the main indicator of the strength of a resonance. The correction scheme is built on the analysis of the resonance driving terms in first perturbative order and on the possibility of using independent power supplies in the sextupole magnets, which is nowadays present in many synchrotron light sources. Such freedom allows the definition of "smart sextupole knobs" attacking each resonance separately. The compensation scheme has been tested at the Diamond light source and proved to be effective in opening up the betatron tune space, resonance free, available to the electron beam and to improve the beam lifetime.

  6. MSSM forecast for the LHC

    NASA Astrophysics Data System (ADS)

    Cabrera, Maria Eugenia; Casas, J. Alberto; de Austri, Roberto Ruiz

    2010-05-01

    We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of M Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e + e - data) is considered, the preferred region (for μ > 0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative- μ possibilities.

  7. Mirage models confront the LHC. III. Deflected mirage mediation

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd; Kaufman, Bryan L.; Nelson, Brent D.

    2016-03-01

    We complete the study of a class of string-motivated effective supergravity theories in which modulus-induced soft supersymmetry breaking is sufficiently suppressed in the observable sector so as to be competitive with anomaly-mediated supersymmetry breaking. Here we consider deflected "mirage mediation" (DMM), where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. We update previous work that surveyed the rich parameter space of such theories, in light of data from the CERN Large Hadron Collider (LHC) and recent dark matter detection experiments. Constraints arising from LHC superpartner searches at √{s }=8 TeV are considered, and discovery prospects at √{s }=14 TeV are evaluated. We find that deflected mirage mediation generally allows for S U (3 )-charged superpartners of significantly lower mass (given current knowledge of the Higgs mass and neutralino relic density) than was found for the "pure" mirage mediation models of Kachru et al. [Phys. Rev. D 68, 046005 (2003)]. Consequently, discovery prospects are enhanced for many combinations of matter multiplet modular weights. We examine the experimental challenges that will arise due to the prospect of highly compressed spectra in DMM, and the correlation between accessibility at the LHC and discovery prospects at large-scale liquid xenon dark matter detectors.

  8. A 1200 element detector system for synchrotron-based coronary angiography

    SciTech Connect

    Thompson, A.C.; Lavender, W.M.; Rubenstein, E.; Giacomini, J.C.; Rosso, V.; Schulze, C.; Chapman, D.; Thomlinson, W.

    1993-08-23

    A 1200 channel Si(Li) detector system has been developed for transvenous coronary angiography experiments using synchrotron radiation. It is part of the synchrotron medical imaging facility at the National Synchrotron Light Source. The detector is made from a single crystal of lithium-drifted silicon with an active area 150 mm long {times} 11 mm high {times} 5 mm thick. The elements are arranged in two parallel rows of 600 elements with a center-to-center spacing of 0.25 mm. All 1200 elements are read out simultaneously every 4 ms. A Intel 80486 based computer with a high speed digital signal processing interface is used to control the beamline hardware and to acquire a series of images. The signal-to-noise, linearity and resolution of the system have been measured. Human images have been taken with this system.

  9. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Center. Final Report

    SciTech Connect

    Gooden, R.

    2000-03-21

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility.

  10. Left- and right-handed LHC II macroaggregates revealed by circularly polarized chlorophyll luminescence.

    PubMed

    Gussakovsky, Eugene E; Ionov, Maksim V; Giller, Yuri E; Ratner, Kira; Aripov, Takhir F; Shahak, Yosepha

    2006-03-01

    Circularly polarized chlorophyll luminescence (CPL) may serve as a measure of chiral macroaggregates of the light-harvesting chlorophyll-protein complexes (LHC II) in both isolated chloroplasts and intact leaves (Gussakovsky et al (2000) Photosynth Res 65: 83-92). In the present work, we applied the CPL approach to study the effect of fast (1-2 min) thermal impacts on LHC II macroaggregates. The results revealed unexpected temperature-response kinetics, composed of initial bell-shaped changes in the CPL signal, followed by degradation down to a steady state (equilibrium). The bell-shape effect was dependent upon illumination, and vanished in the dark. A mathematical analysis of the temperature-response kinetics uniquely indicated that LHC II chiral macroaggregates may persist in both left- and right-handed forms. These forms differ in their response to high temperatures. Both forms are more thermostable in leaves than in isolated chloroplasts. The cooperative degradation of LHC II macroaggregates, which is induced by the thermal impact, is irreversible. It is therefore suggested that the native LHC II macroaggregates are stable, stationary, non-equilibrium, spatially heterogeneous (dissipative) structures. The dissipative properties probably allow the interconversion between left- and right-handed forms under perturbation by certain factors. Illumination probably serves as one such perturbation factor, initiating the interconversion of dark-adapted, left-handed to light-dependent, right-handed LHC II macroaggregates. The chiral heterogeneity of the LHC II macroaggregates is a newly revealed aspect which needs to be taken into consideration in future circular dichroism or CPL studies.

  11. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants.

    PubMed

    Klimmek, Frank; Sjödin, Andreas; Noutsos, Christos; Leister, Dario; Jansson, Stefan

    2006-03-01

    We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.

  12. Radiation hard electronics for LHC

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Millmore, M.; Hall, G.; Sachdeva, R.; French, M.; Nygård, E.; Yoshioka, K.

    1995-02-01

    A CMOS front end electronics chain is being developed by the RD20 collaboration for microstrip detector readout at LHC. It is based on a preamplifier and CR-RC filter, analogue pipeline and an analogue signal processor. Amplifiers and transistor test structures have been constructed and evaluated in detail using a Harris 1.2 μm radiation hardened CMOS process. Progress with larger scale elements, including 32 channel front end chips, is described. A radiation hard 128 channel chip, with a 40 MHz analogue multiplexer, is to be submitted for fabrication in July 1994 which will form the basis of the readout of the tracking system of the CMS experiment.

  13. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  14. Z' Phenomenology and the LHC

    SciTech Connect

    Rizzo, Thomas G.

    2006-10-17

    A brief pedagogical overview of the phenomenology of Z{prime} gauge bosons is ILC in determining Z{prime} properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z{prime} nature of these new particles. We provide an overview of the Z{prime} studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z{prime}.

  15. First data from TOTEM experiment at LHC

    SciTech Connect

    Ferro, F.

    2011-07-15

    The TOTEM experiment at the LHC is mainly dedicated to the measurement of the total proton-proton cross section, elastic scattering and to the study of the diffractive processes. This contribution reviews the physics goals of the experiment, the status of the experimental apparatus and of the analysis of the first data from the LHC.

  16. Diffraction from HERA to the LHC

    SciTech Connect

    Newman, Paul

    2011-07-15

    Following a 15 year programme of intensive research into diffractive electron-proton scattering at HERA, it is important to transfer the knowledge and experience gained into the LHC programme. This contribution raises some current issues in diffraction at the LHC and suggests ways in which they might be addressed using HERA results.

  17. New Perspectives for QCD Physics at the LHC

    SciTech Connect

    Brodsky, Stanley J.; /SLAC /Stanford U. /Southern Denmark U., CP3-Origins

    2011-02-07

    I review a number of topics where conventional wisdom relevant to hadron physics at the LHC has been challenged. For example, the initial-state and final-state interactions of the quarks and gluons entering perturbative QCD hard-scattering subprocesses lead to the breakdown of traditional concepts of factorization and universality for transverse-momentum-dependent observables at leading twist. These soft-gluon rescattering effect produce single-spin asymmetries, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as diffractive deep inelastic scattering, The antishadowing of nuclear structure functions is predicted to depend on the flavor quantum numbers of each quark and antiquark. Isolated hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation, even at the LHC. Such 'direct' processes can explain the observed deviations from pQCD predictions of the power-law fall-off of inclusive hadron cross sections as well as the 'baryon anomaly' seen in high-centrality heavy-ion collisions at RHIC. The intrinsic charm contribution to the proton structure function at high x can explain the large rate for high p{sub T} photon plus charm-jet events observed at the Tevatron and imply a large production rate for charm and bottom jets at high p{sub T} at the LHC, as well as a novel mechanism for Higgs and Z{sup 0} production at high x{sub F}. The light-front wavefunctions derived in AdS/QCD can be used to calculate jet hadronization at the amplitude level. The elimination of the renormalization scale ambiguity for the QCD coupling using the scheme-independent BLM method will increase the sensitivity of searches for new physics at the LHC. The implications of 'in-hadron condensates' for the QCD contribution to the cosmological constant are also discussed.

  18. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  19. SUNY beam line X3, National Synchrotron Light Source

    SciTech Connect

    Not Available

    1991-01-01

    This report discusses: beamline change and upgrades at NSLS; crystallography; surface structure; small angle scattering; EXAFS, glazing angle and fluorescence studies; and high temperature superconductors. (LSP).

  20. Fullerene-Encapsulated Atoms in the Light of Synchrotron Radiation

    SciTech Connect

    Mueller, A.; Schippers, S.; Esteves, D.; Habibi, M.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Aguilar, A.; Dunsch, L.

    2009-12-03

    Mass-selected beams of endohedral fullerene Ce-C{sub 82}{sup +} ions, of atomic Ce{sup q+} ions (q = 2, 3, 4), and of empty fullerene-cage C{sub 82}{sup +} ions were employed to study photoionization of fullerene-encapsulated and free cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce-C{sub 82}{sup +} fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to Ce 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength is apparently diverted to additional decay channels of the Ce-C{sub 82}{sup +} complex.

  1. BNL National Synchrotron Light Source activity report 1997

    SciTech Connect

    1998-05-01

    During FY 1997 Brookhaven National Laboratory celebrated its 50th Anniversary and 50 years of outstanding achievement under the management of Associated Universities, Inc. This progress report is divided into the following sections: (1) introduction; (2) science highlights; (3) meetings and workshops; (4) operations; (5) projects; (6) organization; and (7) abstracts and publications.

  2. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J.; Murray, J.

    1992-12-31

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  3. Dipole power supply for National Synchrotron Light Source Booster upgrade

    SciTech Connect

    Olsen, R.; Dabrowski, J. ); Murray, J. )

    1992-01-01

    The booster at the NSLS is being upgraded from .75 to 2 pulses per second. To accomplish this, new power supplies for the dipole, quadrupole, and sextupole magnets have been designed and are being constructed. This paper will outline the design of the dipole power supply and control system, and will present results obtained thus far.

  4. National Synchrotron Light Source guidelines for the conduct of operations

    SciTech Connect

    Fewell, N.

    1990-03-01

    This report briefly discusses the following topics: NSLS operations organization and administration; shift routines and operating practices; NSLS control room activities; communications; control of on-shift training; investigation of abnormal events; notifications; control of equipment and system status; lock-out tagout; independent verification; logkeeping; shift turnover; required reading; shift orders; equipment operations guides; operator aid postings; and equipment labeling.

  5. 2001 NSLS ACTIVITY REPORT (NATIONAL SYNCHROTRON LIGHT SOURCE).

    SciTech Connect

    CORWIN, M.A.

    2002-05-01

    The year 2001 has been another highly productive year at the NSLS, with over 2500 users, including 720 first time users, conducting nearly 1200 experiments in fields ranging from the life, materials, chemical, and environmental sciences to applied science and technology. An impressive array of highlights from this scientific activity is included in this Activity Report. They include the first demonstration of a direct structural probe of the superconducting ground state in the cuprates by utilizing anomalous soft x-ray resonance effects to selectively enhance the scattering from doped holes. Another highly significant result was the determination of the structure of the potassium channel membrane protein. This is especially significant as it provides insight into how the channel functions and how it selects a particular kind of ion. In the nanoscience area, small angle x-ray scattering measurements played an essential role in determining that preferential sequestering of tailored metal nanocrystals into a self-assembled lamellar diblock copolymer can produce high quality metallodielectric photonic bandgap structures, demonstrating the potential of these nanocomposites for photonic crystal engineering. The infrared microscopy program continued to yield noteworthy results, including an important study that characterized the types and abundances of organic materials in contaminated and uncontaminated sediments from the New York/New Jersey Harbor. These results will be useful in devising improved methods for the destruction or removal of these environmental contaminants.

  6. Fast ferrite tuner for the BNL synchrotron light source

    SciTech Connect

    Pivit, E. ); Hanna, S.M.; Keane, J. )

    1991-01-01

    A new type of ferrite tuner has been tested at the BNL. The ferrite tuner uses garnet slabs partially filling a stripline. One of the important features of the tuner is that the ferrite is perpendicularly biased for operation above FMR, thus reducing the magnetic losses. A unique design was adopted to achieve the efficient cooling. The principle of operation of the tuner as well as our preliminary results on tuning a 52 MHz cavity are reported. Optimized conditions under which we demonstrated linear tunability of 80 KHz are described. The tuner's losses and its effect on higher-order modes in the cavity are discussed. 2 refs., 8 figs.

  7. Synchrotron radiation applications in medical research

    SciTech Connect

    Thomlinson, W.

    1995-12-31

    The medical projects employing synchrotron radiation as discussed in this paper are, for the most part, still in their infancies and no one can predict the direction in which they will develop. Both the basic research and applied medical programs are sure to be advanced at the new facilities coming on line, especially the ESRF and Spring- 8. However, success is not guaranteed. There is a lot of competition from advances in conventional imaging with the development of digital angiography, computed tomography, functional magnetic resonance imaging and ultrasound. The synchrotron programs will have to provide significant advantages over these modalities in order to be accepted by the medical profession. Advances in image processing and potentially the development of compact sources will be required in order to move the synchrotron developed imaging technologies into the clinical world. In any event, it can be expected that the images produced by the synchrotron technologies will establish ``gold standards`` to be targeted by conventional modalities. A lot more work needs to be done in order to bring synchrotron radiation therapy and surgery to the level of human studies and, subsequently, to clinical applications.

  8. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect

    Not Available

    1989-04-01

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  9. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  10. Coherent synchrotron radiation for broadband terahertz spectroscopy.

    PubMed

    Barros, J; Evain, C; Manceron, L; Brubach, J-B; Tordeux, M-A; Brunelle, P; Nadolski, L; Loulergue, A; Couprie, M-E; Bielawski, S; Szwaj, C; Roy, P

    2013-03-01

    We present the first high resolution (10(-3) cm(-1)) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10(5) times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  11. 12 Experimental Techniques at Synchrotron Lightsource Beamlines

    SciTech Connect

    Lee, Peter L; Rhyne, James J

    2015-01-01

    The unique properties of synchrotron radiation are its continuous spectrum, high flux and brightness, and high coherence, which make it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions from the atomic level to biological cells, thereby providing incisive probes for advanced research in materials science, physical and chemical sciences, metrology, geosciences, environmental sciences, biosciences, medical sciences, and pharmaceutical sciences. The features of synchrotron radiation are especially well matched to the needs of nanoscience.

  12. Coherent synchrotron radiation for broadband terahertz spectroscopy

    SciTech Connect

    Barros, J.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Brunelle, P.; Nadolski, L.; Loulergue, A.; Couprie, M.-E.; Roy, P.; Evain, C.; Bielawski, S.; Szwaj, C.

    2013-03-15

    We present the first high resolution (10{sup -3} cm{sup -1}) interferometric measurements in the 200-750 GHz range using coherent synchrotron radiation, achieved with a low momentum compaction factor. The effect of microbunching on spectra is shown, depending on the bunch current. A high signal-to-noise ratio is reached thanks to an artifact correction system based on a double detection scheme. Combined to the broad emitted spectral range and high flux (up to 10{sup 5} times the incoherent radiation), this study demonstrates that coherent synchrotron radiation can now be used for stability-demanding applications, such as gas-phase studies of unstable molecules.

  13. Synchrotron characterization of functional tin dioxide nanowires

    SciTech Connect

    Domashevskaya, E. P. Chuvenkova, O. A.; Turishchev, S. Yu.

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  14. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  15. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  16. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  17. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  18. Magnetic Reconnection with Strong Synchrotron Cooling in Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Spitkovsky, Anatoly

    2012-10-01

    The magnetosphere of a rotating pulsar naturally develops a current sheet beyond the light cylinder (LC). Magnetic reconnection in this current sheet inevitably dissipates a nontrivial fraction of the pulsar spin-down power within a few LC radii. In this presentation, a basic physical picture of reconnection in this environment is developed. It is shown that reconnection proceeds in the plasmoid-dominated regime, via an hierarchical chain of multiple secondary islands/flux ropes. The inter-plasmoid reconnection layers are subject to strong synchrotron cooling, leading to significant plasma compression. The basic parameters of these current layers --- temperature, density, and layer thickness --- are estimated in terms of the upstream magnetic field. It is argued that, after accounting for the bulk Doppler boosting, the synchrotron and inverse-Compton emission mechanisms can explain the observed pulsed high-energy (GeV) and VHE (˜ 100 GeV) radiation, respectively. The motions of the secondary plasmoids may contribute to the pulsar's radio emission.

  19. The Properties of Light

    NASA Astrophysics Data System (ADS)

    Haglund, Richard F.

    The mystery of light has formed the core of creation stories in every culture, and attracted the earnest attentions of philosophers since at least the fifth century BCE. Their questions have ranged from how and what we see, to the interaction of light with material bodies, and finally to the nature of light itself. This chapter begins with a brief intellectual history of light from ancient Greece to the end of the 19th century. After introducing the physical parameterization of light in terms of standard units, three concepts of light are introduced: light as a wave, light as a quantum particle, and light as a quantum field. After highlighting the distinctive characteristics of light beams from various sources - thermal radiation, luminescence from atoms and molecules, and synchrotron light sources - the distinctive physical characteristics of light beams are examined in some detail. The chapter concludes with a survey of the statistical and quantum-mechanical properties of light beams. In the appropriate limits, this treatment not only recovers the classical description of light waves and the semiclassical view of light as a stream of quanta, but also forms a consistent description of quantum phenomena - such as interference phenomena generated by single photons - that have no classical analogs.

  20. CERN LHC signals for warped electroweak neutral gauge bosons

    SciTech Connect

    Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Soni, Amarjit; Han Tao; Huang, G.-Y.; Perez, Gilad; Si Zongguo

    2007-12-01

    We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z{sup '} cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2){sub L}xSU(2){sub R}xU(1){sub X} gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to {approx}2(3) TeV KK scale with an integrated luminosity of {approx}100 fb{sup -1} ({approx}1 ab{sup -1}). Since current theoretical framework(s) favor KK masses > or approx. 3 TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.

  1. Gluino polarization at the LHC

    SciTech Connect

    Kraemer, M.; Popenda, E.; Spira, M.; Zerwas, P. M.

    2009-09-01

    Gluinos are produced pairwise at the LHC in quark-antiquark and gluon-gluon collisions: qq, gg{yields}g-tildeg-tilde. While the individual polarization of gluinos vanishes in the limit in which the small mass difference between L and R squarks of the first two generations is neglected, nonzero spin-spin correlations are predicted within gluino pairs. If the squark/quark charges in Majorana gluino decays are tagged, the spin correlations have an impact on the energy and angular distributions in reconstructed final states. On the other hand, the gluino polarization in single gluino production in the supersymmetric Compton process gq{yields}g-tildeq-tilde{sub R,L} is predicted to be nonzero, and the polarization affects the final-state distributions in super-Compton events.

  2. Critical behavior of cross sections at LHC

    NASA Astrophysics Data System (ADS)

    Dremin, I. M.

    2016-07-01

    Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.

  3. Overview of LHC physics results at ICHEP

    ScienceCinema

    None

    2016-07-12

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  4. Radiation properties of Turkish light source facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Zafer

    2015-09-01

    The synchrotron light source TURKAY, which is one of the sub-project of Turkish Accelerator Center (TAC), has been supported by Ministry of Development of Turkey since 2006. The facility is designed to generate synchrotron radiation (SR) in range 0.01-60 keV from a 3 GeV storage ring with a beam emittance of 0.51 nm rad. Synchrotron radiation will be produced from the bending magnets and insertion devices in the storage ring. In this paper design studies for possible devices to produce synchrotron radiation and radiation properties of these devices with TURKAY storage ring parameters are presented.

  5. Signature of sub GeV dark matter particles at the LHC and the Tevatron

    NASA Astrophysics Data System (ADS)

    Albornoz Vásquez, Daniel; Bœhm, Céline; Idárraga, John

    2011-06-01

    In this letter, we investigate the production of light dark matter particles at LHC in a N=2 SUSY inspired model and demonstrate that particles will be copiously produced if the colored messengers Fq are lighter than 1 TeV. We expect up to 106 events if mFq≃500GeV, assuming a ˜1fb-1 luminosity. In addition, we show that, even if mFq>O(1)TeV, searches for Fq production at LHC are promising because a kinematical signature can be used to separate the signal from background. This signature is similar to that expected in supersymmetric scenarios. Hence, our study shows that most of the mFq range could be constrained using LHC data. This should encourage further studies since they could infirm/confirm the MeV DM scenario.

  6. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  7. Molecular electronics studies by synchrotron radiation

    SciTech Connect

    Wee, Andrew T. S.; Chen Wei; Chi Dongchen; Chen Shi; Wang Li; Gao Xingyu

    2009-01-29

    In molecular electronics research, the molecule-metal interfacial properties crucially control the electronic properties of the devices fabricated. We use synchrotron radiation techniques of PES and NEXAFS, complemented by STM, to study the molecular orientation and interfacial charge transfer processes of model molecule-metal systems.

  8. PRINCIPLES OF SYNCHROTRON TECHNIQUES, POTENTIAL AND LIMITATIONS

    EPA Science Inventory

    Once environmental contaminants, such as arsenic, chromium, cadmium and lead, are detected, the problem becomes how to deal with them. For the past decade, researchers at the US EPA in Cincinnati have been employing synchrotron speciation methods to determine the exact chemical f...

  9. Laboratory source of synchrotron radiation: TROLL-2

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasjuk, V. S.; Khromchenko, V. B.

    1987-11-01

    A laboratory synchrotron radiation (SR) source TROLL-2 is described. Its main parameters are as follows: the energy of the accelerated particles = 24 MeV; the orbit radius = 20 mm; the SR pulse half-width = 2 ms, the maximum spectral radiant power (at λ = 350 nm) = 1.2×10 6 W/m.

  10. Synchrotron emission from runaway electron distributions

    SciTech Connect

    Winske, D.; Peter, T.; Boyd, D.A.

    1983-12-01

    Synchrotron emission from a relativistic anti-loss-cone (runaway) distribution is investigated numerically and compared with various analytical approximations. The results are applied to recent measurements of enhanced emission during current-drive experiments on the Princeton Large Torus (PLT) as well as to impulsive solar microwave bursts.

  11. Dynamics of synchrotron VUV-induced intracluster reactions

    SciTech Connect

    Grover, J.R.

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  12. Survey of surface roughness properties of synchrotron radiation optics

    SciTech Connect

    Takacs, P.Z.; Colbert, J.; Church, E.L.

    1986-03-01

    Measurements of surface roughness were made on a large number of grazing incidence mirrors delivered for use at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The measurements were made with a WYKO optical profiler using a 2.5X and a 10X objective and analyzed with our PROFILE code to generate an average periodogram representation for each surface. The data is presented in the form of representative profiles with all of the periodogram curves arranged according to figure type. Analysis of the periodograms allows one to compute bandwidth-limited values for RMS roughness and slope, to provide valuable feedback information to manufacturers regarding compliance with specifications, and to predict the performance of the optic at x-ray wavelengths.

  13. Synchrotron radiation in strongly coupled conformal field theories

    SciTech Connect

    Athanasiou, Christiana; Chesler, Paul M.; Liu, Hong; Rajagopal, Krishna; Nickel, Dominik

    2010-06-15

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle {alpha}{approx}1/{gamma}. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  14. High density terahertz frequency comb produced by coherent synchrotron radiation.

    PubMed

    Tammaro, S; Pirali, O; Roy, P; Lampin, J-F; Ducournau, G; Cuisset, A; Hindle, F; Mouret, G

    2015-07-20

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  15. Development of an x-ray microprobe using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Albert C.; Chapman, Karen L.; Underwood, James H.

    1993-01-01

    An X-ray microprobe is being built that will use a bending magnet port on the new Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory. A pair of elliptical multi-layer mirrors will be used to focus and monochromatize the white radiation beam from the synchrotron. A beam spot size of 1 micrometers X 1 micrometers will be produced with a bandwidth of 1 keV at 10 keV. The energy of the beam will be variable from 3 keV to 12 keV. With a counting time of 30 sec it should be possible to simultaneously measure femtogram amounts of elements from potassium to zinc.

  16. Error reduction techniques for measuring long synchrotron mirrors

    SciTech Connect

    Irick, S.

    1998-07-01

    Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP.

  17. Experiments in atomic and applied physics using synchrotron radiation

    SciTech Connect

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs.

  18. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  19. Orbit stability and feedback control in synchrotron radiation rings

    SciTech Connect

    Yu, L.H.

    1989-01-01

    Stability of the electron orbit is essential for the utilization of a low emittance storage ring as a high brightness radiation source. We discuss the development of the measurement and feedback control of the closed orbit, with emphasis on the activities as the National Synchrotron Light Source of BNL. We discuss the performance of the beam position detectors in use and under development: the PUE rf detector, split ion chamber detector, photo-emission detector, solid state detector, and the graphite detector. Depending on the specific experiments, different beamlines require different tolerances on the orbit motion. Corresponding to these different requirements, we discuss two approaches to closed orbit feedback: the global and local feedback systems. Then we describe a new scheme for the real time global feedback by implementing a feedback system based upon a harmonic analysis of both the orbit movements and the correction magnetic fields. 14 refs., 6 figs., 2 tabs.

  20. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    PubMed Central

    Nogly, Przemyslaw; James, Daniel; Wang, Dingjie; White, Thomas A.; Zatsepin, Nadia; Shilova, Anastasya; Nelson, Garrett; Liu, Haiguang; Johansson, Linda; Heymann, Michael; Jaeger, Kathrin; Metz, Markus; Wickstrand, Cecilia; Wu, Wenting; Båth, Petra; Berntsen, Peter; Oberthuer, Dominik; Panneels, Valerie; Cherezov, Vadim; Chapman, Henry; Schertler, Gebhard; Neutze, Richard; Spence, John; Moraes, Isabel; Burghammer, Manfred; Standfuss, Joerg; Weierstall, Uwe

    2015-01-01

    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway. PMID:25866654

  1. Evaluation of RBC aggregation using synchrotron X-ray speckles

    NASA Astrophysics Data System (ADS)

    Ha, Hojin; Nam, Kwon-Ho; Lee, Sang Joon

    2010-11-01

    When a coherent beam illuminates spatially-disordered particles, speckles are usually generated by the inference of the scattered light waves. The speckle has been known to contain the information of the objects under near-field condition. In this study, we hypothesized that the speckle patterns of the red blood cells are related to the aggregation shape and the size of RBCs in the medium. The speckle patterns of RBCs in static condition were investigated by transmitting the monochromatic synchrotron X-ray beam to the sample with varying hematocrit(10-80 %) and medium type(phosphate buffered saline, autologous plasma and 0.75 % polyvinylpyrrolidone 360 in phosphate buffered saline). The temporal variation of speckle patterns after sudden removal of shear rate was observed by stopping the blood flow in a tube. The size of aggregated RBCs is closely correlated with the characteristic features of the speckle patterns.

  2. Tension in the LHC diffractive data?

    SciTech Connect

    Gotsman, Errol

    2015-04-10

    I discuss the LHC diffractive data, and compare it to predicted energy behaviour of various models. I suggest that the so called 'tension' between the experimental results, maybe due to the different Monte Carlo programs used.

  3. Supersymmetry Breaking, Gauge Mediation, and the LHC

    SciTech Connect

    Shih, David

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  4. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  5. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  6. Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC

    SciTech Connect

    Oleg A. Grachov et al.

    2004-05-04

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  7. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  8. Considerations on Energy Frontier Colliders after LHC

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  9. Composite dark matter and LHC interplay

    NASA Astrophysics Data System (ADS)

    Marzocca, David; Urbano, Alfredo

    2014-07-01

    The actual realization of the electroweak symmetry breaking in the context of a natural extension of the Standard Model (SM) and the nature of Dark Matter (DM) are two of the most compelling questions in high-energy particle physics. Composite Higgs models may provide a unified picture in which both the Higgs boson and the DM particle arise as pseudo Nambu-Goldstone bosons of a spontaneously broken global symmetry at a scale f ˜ TeV. In this paper we analyze a general class of these models based on the coset SO(6) /SO(5). Assuming the existence of light and weakly coupled spin-1 and spin-1/2 resonances which mix linearly with the elementary SM particles, we are able to compute the effective potential of the theory by means of some generalized Weinberg sum rules. The properties of the Higgs boson, DM, top quark and the above resonances are thus calculable and tightly connected. We perform a wide phenomenological analysis, considering both collider physics at the LHC and astrophysical observables. We find that these models are tightly constrained by present experimental data, which are able to completely exclude the most natural setup with f ≃ 800 GeV. Upon increasing the value of f , an allowed region appears. In particular for f ≃ 1 .1 TeV we find a concrete realization that predicts m DM ≃ 200 GeV for the DM mass. This DM candidate lies close to the present sensitivity of direct detection experiments and will be ruled out — or discovered — in the near future.

  10. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    SciTech Connect

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab.

  11. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    PubMed

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  12. Synchrotron imaging techniques for bone and cartilage tissue engineering: potential, current trends, and future directions.

    PubMed

    Olubamiji, Adeola Deborah; Izadifar, Zohreh; Chen, Daniel Xiongbiao

    2014-10-01

    Biomedical imaging is crucial to the success of bone/cartilage tissue engineering (TE) by providing detailed three-dimensional information on tissue-engineered scaffolds and associated bone/cartilage growth during the healing process. Synchrotron radiation (SR)-based biomedical imaging is an emerging technique for this purpose that has been drawing considerable recent attention. Due to the unique properties of synchrotron light, SR biomedical imaging can provide information that conventional X-ray imaging is not able to capture. SR biomedical imaging techniques notably differ from conventional imaging in both physics and implementation, thus varying with regard to both capability and popularity for biomedical imaging applications. In the earlier decade, synchrotron-based imaging was used in bone/cartilage TE to characterize bone/cartilage scaffolds and tissues as well as the varying degrees of success in reconstruction. However, several key issues should be addressed through research before SR biomedical imaging can be advanced to a noninvasive method for application to live animals and eventually to human patients. This review briefly presents recent developments in this area, focusing on different synchrotron-based biomedical imaging techniques and their advantages and limitations, as well as reported applications to bone and cartilage TE. Key issues and challenges are also identified and discussed along with recommendations for future research.

  13. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  14. Revised LHC deal quiets congress

    SciTech Connect

    Lawler, A.

    1997-05-23

    The roughest part of the ride may be over for U.S. physicists who want to participate in the Large Hadron Collider (LHC), the $5 billion accelerator planned for CERN in Geneva. They have found themselves on a political roller coaster for the past few months. This week, U.S. and European negotiators were putting the final touches on a revamped agreement that should pave the way for the United States to help pay for construction of the accelerator and its two main detectors, and guarantee U.S. scientists a role in research on the machine. The trouble began in March, when Representative Joe Barton (R-TX) declared war on a proposed $530 million U.S. contribution to the new facility, slated for completion in 2005. Barton and many other members of Congress were still smarting from what they said was a lack of European support for the canceled Superconducting Super Collider that was being built in Barton`s backyard. Representative James Sensenbrenner (R-WI), who chairs the House Science Committee, led the charge to alter a draft agreement initialed this winter by Department of Energy (DOE) and CERN officials that spelled out the details of U.S. participation. After hurried negotiations, both sides have sharpened the agreement to address the lawmakers` concerns. The new deal, says Energy Secretary Federico Pena, {open_quotes}has made that project even better.{close_quotes}

  15. Synchrotron Cooling in Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Fish, Jake; Werner, Gregory; Uzdensky, Dmitri

    2016-10-01

    Radiative processes are typically unimportant to the dynamics of plasmas investigated by most magnetic reconnection studies. However, some astrophysical phenomena exhibit conditions in which radiative cooling is significant over dynamic timescales. For example, strong synchrotron cooling controls the energetics of reconnection in magnetospheres of pulsars with strong magnetic fields, including the Crab pulsar. We performed a series of simulations of reconnection in the presence of radiative cooling using the particle-in-cell code Zeltron which self-consistently includes the synchrotron radiation reaction force. We examine the resulting global particle energy distribution, which is strongly cooled by radiation over time at high energies. Basic plasma parameters, such as the average particle energy and density in the reconnection layer and at magnetic O-points, are also measured as functions of radiative cooling's importance. Our results show strong plasma cooling and compression in plasmoids due to radiation well before the reconnecting layer is significantly affected. This work is supported by DOE and NASA.

  16. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  17. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  18. Radiation protection at synchrotron radiation facilities.

    PubMed

    Liu, J C; Vylet, V

    2001-01-01

    A synchrotron radiation (SR) facility typically consists of an injector, a storage ring, and SR beamlines. The latter two features are unique to SR facilities, when compared to other types of accelerator facilities. The SR facilities have the characteristics of low injection beam power, but high stored beam power. The storage ring is generally above ground with people occupying the experimental floor around a normally thin concrete ring wall. This paper addresses the radiation issues, in particular the shielding design, associated with the storage ring and SR beamlines. Normal and abnormal beam losses for injection and stored beams, as well as typical storage ring operation, are described. Ring shielding design for photons and neutrons from beam losses in the ring is discussed. Radiation safety issues and shielding design for SR beamlines, considering gas bremsstrahlung and synchrotron radiation, are reviewed. Radiation source terms and the methodologies for shielding calculations are presented.

  19. Synchrotron Radiation, Polarization, Devices and New Sources

    NASA Astrophysics Data System (ADS)

    Couprie, Marie-Emmanuelle; Valléau, Mathieu

    Synchrotron radiation is emitted by accelerated relativistic charged particles. In accelerators, it is produced when the particle trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators or wigglers) made of an alternated succession of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. Synchrotron radiation, tunable from infra-red to x-rays, has a low divergence and small size source, and it can provide different types of polarization. It produces radiation pulses, whose duration results from that of the electron bunch from which they are generated. The repetition rate also depends on the accelerator type: high (typically MHz for storage rings, kHz for superconducting linear accelerators) and 10 to 100 Hz (for normal conducting linear accelerators). Longitudinally coherent radiation can also be generatedf or long bunches with respect to the emitted wavelength or thanks to the Free Electron Laser process.

  20. Diffraction imaging (topography) with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.

  1. The time variability of Jupiter's synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bolton, Scott Jay

    1991-02-01

    The time variability of the Jovian synchrotron emission is investigated by analyzing radio observations of Jupiter at decimetric wavelengths. The observations are composed from two distinct sets of measurements addressing both short term (days to weeks) and long term (months to years) variability. The study of long term variations utilizes a set of measurements made several times each month with the NASA Deep Space Network (DNS) antennas operating at 2295 MHz (13.1 cm). The DSN data set, covering 1971 through 1985, is compared with a set of measurements of the solar wind from a number of Earth orbiting spacecraft. The analysis indicates a maximum correlation between the synchrotron emission and the solar wind ram pressure with a two year time lag. Physical mechanisms affecting the synchrotron emission are discussed with an emphasis on radial diffusion. Calculations are performed that suggest the correlation is consistent with inward adiabatic diffusion of solar wind particles driven by Brice's model of ionospheric neutral wind convection (Brice 1972). The implication is that the solar wind could be a source of particles of Jupiter's radiation belts. The investigation of short term variability focuses on a three year Jupiter observing program using the University of California's Hat Creek radio telescope operating at 1400 MHz (21 cm). Measurements are made every two days during the months surrounding opposition. Results from the three year program suggest short term variability near the 10-20 percent level but should be considered inconclusive due to scheduling and observational limitations. A discussion of magneto-spheric processes on short term timescales identifies wave-particle interactions as a candidate source. Further analysis finds that the short term variations could be related to whistler mode wave-particles interactions in the radiation belts associated with atmospheric lightning on Jupiter. However, theoretical calculations on wave particle interactions

  2. Microangiography in Living Mice Using Synchrotron Radiation

    SciTech Connect

    Yuan Falei; Wang Yongting; Xie Bohua; Tang Yaohui; Guan Yongjing; Lu Haiyan; Yang Guoyuan; Xie Honglan; Du Guohao; Xiao Tiqiao

    2010-07-23

    Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 {mu}m/pixel. The optimal dose of contrast agent is 100 {mu}l per injection and the injecting rate is 33 {mu}l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43{+-}6.8 {mu}m. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

  3. Coherent synchrotron radiation: Theory and experiments

    SciTech Connect

    Courtland L. Bohn

    2002-07-19

    Our understanding of the generation of coherent synchrotron radiation in magnetic bending systems and its impact on beam dynamics has grown considerably over the past few years. The search for understanding has brought a number of surprises, all related to the complexity of the fully self-consistent problem. Herein I survey the associated phenomenology, theory, and experiments while emphasizing important subtleties that have recently been uncovered. I conclude by speculating on courses of future investigations that may prove fruitful.

  4. Theory of the Alternating-Gradient Synchrotron

    NASA Astrophysics Data System (ADS)

    Courant, E. D.; Snyder, H. S.

    2000-04-01

    The equations of motion of the particles in a synchrotron in which the field gradient indexn=-(r/B) ∂B/∂rvaries along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors; these lead to resonance excitation of oscillations and consequent instability if 2νx or 2νz or νx+νz is integral, where νx and νz are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution. The mechanism of phase stability is essentially the same as in a conventional synchrotron, but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at a "transition energy" E1≈νxMc2 the stable and unstable equilibrium phases exchange roles, necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations indicate that the manner in which this jump is performed is not very critical.

  5. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    SciTech Connect

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possible chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.

  6. Theory of the alternating-gradient synchrotron

    SciTech Connect

    Courant, E. D.; Snyder, H. S.

    2000-04-10

    The equations of motion of the particles in a synchrotron in which the field gradient index n=-(r/B){partial_derivative}B/{partial_derivative}r varies along the equilibrium orbit are examined on the basis of the linear approximation. It is shown that if n alternates rapidly between large positive and large negative values, the stability of both radial and vertical oscillations can be greatly increased compared to conventional accelerators in which n is azimuthally constant and must lie between 0 and 1. Thus aperture requirements are reduced. For practical designs, the improvement is limited by the effects of constructional errors: these lead to resonance excitation of oscillations and consequent instability if 2v{sub x} or 2v{sub z} or v{sub x}+v{sub z} is integral, where v{sub x} and v{sub z} are the frequencies of horizontal and vertical betatron oscillations, measured in units of the frequency of revolution. The mechanism of phase stability is essentially the same as in a conventional synchrotron, but the radial amplitude of synchrotron oscillations is reduced substantially. Furthermore, at a ''transition energy'' E{sub 1}{approx_equal}v{sub x}Mc{sup 2} the stable and unstable equilibrium phases exchange roles, necessitating a jump in the phase of the radiofrequency accelerating voltage. Calculations indicate that the manner in which this jump is performed is not very critical. (c) 2000 Academic Press, Inc.

  7. Small-amplitude synchrotron tune near transition

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-05-01

    The separatrices of the rf buckets near transition are mapped when the synchronous phase is neither 0 or {pi}. The small-amplitude synchronous tune is derived when the rf frequency is changed. Synchrotron radiation is present in all electron storage ring. As a result, the synchronous phase is always offset from {phi}{sub s} = {pi} to compensate for the power loss. Even for proton storage rings with negligible synchrotron radiation, the synchronous phase is also required to be offset from {phi}{sub s} = 0 or {pi} slightly to compensate for beam loading. Thus for all storage rings operating near transition, beam particles reside in accelerating buckets instead of stationary bucket. It is of interest to map these buckets and see how they evolve near transition. When the rf frequency is varied, the closed orbit is pushed radially inward or outward. The momentum of the particle synchronous with the rf is thus changed. By measuring the small-amplitude synchrotron tune as a function of the rf frequency, the lowest first few orders of the slip factor can be inferred. Here, we derive this relationship up to the lowest first three orders of the slip factor when the particle velocity is not ultra-relativistic.

  8. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  9. Elemental concentrations in skin of patients with fibroeptelial polip using synchrotron radiation total reflection x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Soares, Júlio C. A. C. R.; Anjos, Marcelino J.; Canellas, Catarine G. L.; Lopes, Ricardo T.

    2012-05-01

    In this work, the concentrations of trace elements were measured in acrochordon, a skin lesion also known as skin tag or fibroepithelial polyp, as well as in normal skin from the same patient. The samples were analyzed by Synchrotron Radiation Total Reflection X-ray Fluorescence (SRTXRF) in the Synchrotron Light National Laboratory (LNLS) in Campinas/São Paulo-Brazil. The collection of lesion and healthy skin samples, including papillary dermis and epidermis, has involved 17 patients. It was evaluated the presence of P, S, Cl, K, Ca, Fe, Cu and Zn in the paired samples, which were compared, and significant differences were found in some of them.

  10. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  11. High Luminosity LHC: Challenges and plans

    SciTech Connect

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Bruning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, Massimo; Iadarola, G.; Li, K.; Lechner, A.; Medrano, L. Medina; Metral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomas, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  12. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  13. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Baris; Hou, Wei-Shu; Kao, Chung; Kohda, Masaya; McCoy, Brent

    2015-12-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 → t c bar + t bar c, where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 125 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos ⁡ (β - α), while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin ⁡ (β - α) ∼ 1. We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies.

  14. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    McCoy, Brent; Altunkaynak, Baris; Kao, Chung; Hou, Wei-Shou; Kohda, Masaya

    2016-03-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 --> t c + t c , where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 126 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such a limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos (β - α) , while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin (β - α) ~ 1 . We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies. Academia Sinica, National Taiwan University; OU Supercomputing Center for Education & Research; U.S. Department of Energy, Grant No. DEFG01-13ER41979; Academic Summit Grants: MOST 103-2745-M-002-001-ASP, NTU-EPR-103R8915, and NSC 102-2112-M-033-007-MY3.

  15. Gravitino LSP and leptogenesis after the first LHC results

    SciTech Connect

    Heisig, Jan

    2014-04-01

    Supersymmetric scenarios where the lightest superparticle (LSP) is the gravitino are an attractive alternative to the widely studied case of a neutralino LSP. A strong motivation for a gravitino LSP arises from the possibility of achieving higher reheating temperatures and thus potentially allow for thermal leptogenesis. The predictions for the primordial abundances of light elements in the presence of a late decaying next-to-LSP (NSLP) as well as the currently measured dark matter abundance allow us to probe the cosmological viability of such a scenario. Here we consider a gravitino-stau scenario. Utilizing a pMSSM scan we work out the implications of the 7 and 8 TeV LHC results as well as other experimental and theoretical constraints on the highest reheating temperatures that are cosmologically allowed. Our analysis shows that points with T{sub R}∼>10{sup 9} GeV survive only in a very particular corner of the SUSY parameter space. Those spectra feature a distinct signature at colliders that could be looked at in the upcoming LHC run.

  16. Regulation of Light-Harvesting Chlorophyll Protein Biosynthesis in Greening Seedlings 1

    PubMed Central

    Mathis, James N.; Burkey, Kent O.

    1987-01-01

    The biosynthesis of the chlorophyll a/b binding protein associated with photosystem II (LHC-II) was characterized during light-induced greening of etiolated barley (Hordeum vulgare [L.] cv Boone), maize (Zea mays [L.] Pioneer 3148), pea (Pisum sativum [L.] cv Progress 9), and soybean (Glycine max [L.] Merr. cv Ransom 2). Northern blot analysis revealed that pea LHC-II mRNA was present in dark-grown seedlings and accumulated rapidly within 1 hour following illumination with white light. In contrast, the accumulation of LHC-II mRNA was delayed in barley and soybean until 2 to 4 hours after illumination began. Single radial immunodiffusion analysis revealed that LHC-II polypeptides began to accumulate in all species between 4 and 8 hours although the protein was present in detectable levels at earlier times in certain species. In a pattern similar to the LHC-II protein accumulation, chlorophyll accumulated at increased rates between 4 and 8 hours of greening in all species following an initial delay. The absence of coordination between LHC-II mRNA and LHC-II protein accumulation that was clearly observed in pea suggested that transcription is not the factor that limits LHC-II complex formation during chloroplast development. The accumulation of chlorophyll and LHC-II protein appeared to coincide suggesting that chlorophyll biosynthesis may be a factor that limits LHC-II complex formation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16665840

  17. Biological applications of synchrotron radiation infrared spectromicroscopy.

    PubMed

    Marcelli, Augusto; Cricenti, Antonio; Kwiatek, Wojciech M; Petibois, Cyril

    2012-01-01

    Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (<10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral

  18. New Perspectives for QCD Physics at the LHC

    SciTech Connect

    Brodsky, S. J.

    2011-04-26

    confinement for quark and gluon condensates and the implications for the QCD contribution to the cosmological constant. The light-front wavefunctions derived in AdS/QCD can be used to calculate jet hadronization at the amplitude level. I also note that the elimination of the renormalization scale ambiguity for the QCD coupling using the scheme-independent BLM method will greatly improve the precision of QCD predictions and thus greatly increase the sensitivity of searches for new physics at the LHC.

  19. New Perspectives for QCD Physics at the LHC

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.

    2011-04-01

    the implications for the QCD contribution to the cosmological constant. The light-front wavefunctions derived in AdS/QCD can be used to calculate jet hadronization at the amplitude level. I also note that the elimination of the renormalization scale ambiguity for the QCD coupling using the scheme-independent BLM method will greatly improve the precision of QCD predictions and thus greatly increase the sensitivity of searches for new physics at the LHC.

  20. Pump-probe and other timing experiments in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Rehn, Victor; Rosenberg, Richard A.; Williams, R. Stanley

    1990-05-01

    There are many transient, kinetic, intermediate-state and other time-dependent scientific phenomena that remain poorly understood. Intense undulator radiation (UR) from insertion devices in third-generation synchrotron radiation sources creates new possibilities for high energy pump-probe-timing research. We propose a VUV/SXR dual beam, two-color facility for (1) pump-probe-type experiments with continuously variable pump-pulse-to-probe-pulse interval, (2) harmonic phase-shift experiments that should achieve a time resolution of better than 1 ps [1], and (3) Michelson-type interferometric experiments, such as Fourier-transform stimulated-emission spectroscopy [2] for wavelengths shorter than 1000 Å. As conceived for the Advanced Light Source (ALS). Lawrence Berkeley Laboratory, the proposed beamline utilizes a pump beam of high-intensity UR from a 61-period undulator with 8-cm periods, and a probe beam of monochromatized synchrotron radiation (SR) from the following bending magnet. A unique optical variable delay unit (which also greatly reduces the higher-order content of the SR) is used to delay the arrival of the SR pulse at the crossing point of the two beams. The SR pulse may be delayed to arrive between 0.1 and 2.5 ns after the UR pulse. Because the UR pulse from the next electron bucket of the ALS is emitted 2.0 ns later, delay of the SR pulse by 2.0 ns allows superposition of two pulses, and utilization of the coherence properties of UR.

  1. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  2. Synchrotron Self-Compton Emission from the Crab and Other Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Kalapotharakos, Konstantinos

    2015-01-01

    Results of a simulation of synchrotron-self Compton (SSC) emission from a rotation-powered pulsar are presented. The radiating particles are assumed to be both accelerated primary electrons and a spectrum of electron-positron pairs produced in cascades near the polar cap. They follow trajectories in a slot gap using 3D force-free magnetic field geometry, gaining pitch angles through resonant cyclotron absorption of radio photons, radiating and scattering synchrotron emission at high altitudes out to and beyond the light cylinder. Full angular dependence of the synchrotron photon density is simulated in the scattering and all processes are treated in the inertial observer frame. Spectra for the Crab and Vela pulsars as well as two energetic millisecond pulsars, B1821-24 and B1937+21 are simulated using this model. The simulation of the Crab pulsar radiation can reproduce both the flux level and the shape of the observed optical to hard X-ray emission assuming a pair multiplicity of M+ = 3x10(exp 5), as well as the very-high- energy emission above 50 GeV detected by MAGIC and VERITAS, with both the synchrotron and SSC components reflecting the shape of the pair spectrum. Simulations of Vela, B1821-24 and B1937+21, for M+ up to 10(exp 5), do not produce pair SSC emission that is detectable by current telescopes, indicating that only Crab-like pulsars produce significant SSC components. The pair synchrotron emission matches the observed X-ray spectrum of the millisecond pulsars and the predicted peak of this emission at 1-10 MeV would be detectable with planned Compton telescopes.

  3. Advanced light source

    NASA Astrophysics Data System (ADS)

    Sah, R. C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which was proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most of all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths.

  4. Parton distribution benchmarking with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Carrazza, Stefano; Del Debbio, Luigi; Forte, Stefano; Gao, Jun; Hartland, Nathan; Huston, Joey; Nadolsky, Pavel; Rojo, Juan; Stump, Daniel; Thorne, Robert S.; Yuan, C.-P.

    2013-04-01

    We present a detailed comparison of the most recent sets of NNLO PDFs from the ABM, CT, HERAPDF, MSTW and NNPDF collaborations. We compare parton distributions at low and high scales and parton luminosities relevant for LHC phenomenology. We study the PDF dependence of LHC benchmark inclusive cross sections and differential distributions for electroweak boson and jet production in the cases in which the experimental covariance matrix is available. We quantify the agreement between data and theory by computing the χ 2 for each data set with all the various PDFs. PDF comparisons are performed consistently for common values of the strong coupling. We also present a benchmark comparison of jet production at the LHC, comparing the results from various available codes and scale settings. Finally, we discuss the implications of the updated NNLO PDF sets for the combined PDF+ α s uncertainty in the gluon fusion Higgs production cross section.

  5. LHC RF System Time-Domain Simulation

    SciTech Connect

    Mastorides, T.; Rivetta, C.; /SLAC

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  6. Search for Light New Physics at B Factories

    DOE PAGES

    Echenard, Bertrand

    2012-01-01

    Many extensions of the Standard Model include the possibility of light new particles, such as light Higgs bosons or dark matter candidates. These scenarios can be probed using the large datasets collected by B factories, complementing measurements performed at the LHC. This paper summarizes recent searches for light new physics conducted by the BABAR and Belle experiments.

  7. Supersymmetry and dark matter post LHC8: Why we may expect both axion and WIMP detection

    SciTech Connect

    Baer, Howard

    2014-01-01

    In the post-LHC8 era, it is perceived that what is left of SUSY model parameter space is highly finetuned in the EW sector (EWFT). We discuss how conventional measures overestimate EWFT in SUSY theory. Radiatively-driven natural SUSY (RNS) models maintain the SUSY GUT paradigm with low EWFT at 10% level, but are characterized by light higgsinos ~100–300 GeV and a thermal underabundance of WIMP dark matter. Implementing the SUSY DFSZ solution to the strong CP problem explains the small μ parameter but indicates dark matter should be comprised mainly of axions with a small admixture of higgsino-like WIMPs. While RNS might escape LHC14 searches, we would expect ultimately direct detection of both WIMPs and axions. An e⁺e⁻ collider with √(s)~500–600 GeV should provide a thorough search for the predicted light higgsinos.

  8. STATISTICAL CHALLENGES FOR SEARCHES FOR NEW PHYSICS AT THE LHC.

    SciTech Connect

    CRANMER, K.

    2005-09-12

    Because the emphasis of the LHC is on 5{sigma} discoveries and the LHC environment induces high systematic errors, many of the common statistical procedures used in High Energy Physics are not adequate. I review the basic ingredients of LHC searches, the sources of systematics, and the performance of several methods. Finally, I indicate the methods that seem most promising for the LHC and areas that are in need of further study.

  9. New Physics Undercover at the LHC

    NASA Astrophysics Data System (ADS)

    Lou, Hou Keong

    With the completion of 7 TeV and 8 TeV data taking at the Large Hadron Collider (LHC), the physics community witnessed one of the great triumphs of modern physics: the completion of the Standard Model (SM) as an effective theory. The final missing particle, the Higgs boson, was observed and its mass was measured. However, many theoretical questions remain unanswered. What is the source of electroweak symmetry breaking? What is the nature of dark matter? How does gravity fit into the picture? With no definitive hints of new physics at the LHC, we must consider the possibility that our search strategies need to be expanded. Conventional LHC searches focus on theoretically motivated scenarios, such as the Minimal Supersymmetric Standard Models and Little Higgs Theories. However, it is possible that new physics may be entirely different from what we might expect. In this thesis, we examine a variety of scenarios that lead to new physics undercover at the LHC. First we look at potential new physics hiding in Quantum Chromo-Dynamics backgrounds, which may be uncovered using jet substructure techniques in a data-driven way. Then we turn to new long-lived particles hiding in Higgs decay, which may lead to displaced vertices. Such a signal can be unearthed through a data-driven analysis. Then we turn to new physics with ``semi-visible jets'', which lead to missing momentum aligned with jet momentum. These events are vetoed in traditional searches and we demonstrate ways to uncover these signals. Lastly, we explore performance of future colliders in two case studies: Stops and Higgs Portal searches. We show that a 100 TeV collider will lead to significant improvements over 14 TeV LHC runs. Indeed, new physics may lie undercover at the LHC and future colliders, waiting to be discovered.

  10. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy: An Emerging Method in Structural Biology for Examining Protein Conformations and Protein Interactions

    SciTech Connect

    Wallace, B.A.; Sutherland, J.; Gekko, K.; Hoffmann, S. V.; Lin, Y.-H.; Tao, Y.; Wien, F.; Janes, R. W.

    2011-09-01

    Circular dichroism (CD) spectroscopy is a well-established technique in structural biology. The use of synchrotron radiation as an intense light source for these measurements extends the applications possible using lab-based instruments. In recent years, there has been a major growth in synchrotron radiation circular dichroism (SRCD) beamlines worldwide, including ones at the NSLS, ISA, SRS, HiSOR, BSRF, NSRRC, SOLEIL, Diamond, TERAS, BESSYII, and ANKA synchrotrons. Through the coordinated efforts of beamline scientists and users at these sites, important proof-of-principle studies have been done enabling the method to be developed for novel and productive studies on biological systems. This paper describes the characteristics of SRCD beamlines and some of the new types of applications that have been undertaken using these beamlines.

  11. Using tevatron magnets for HE-LHC or new ring in LHC tunnel

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2011-08-01

    Two injector accelerator options for HE-LHC of p{sup +} - p{sup +} collisions at 33 TeV cms energy are briefly outlined. One option is based on the Super-SPS (S-SPS) accelerator in the SPS tunnel, and the other one is based on the LER (Low-Energy-Ring) accelerator in the LHC tunnel. Expectations of performance of the main arc accelerator magnets considered for the construction of the S-SPS and of the LER accelerators are used to tentatively devise some selected properties of these accelerators as potential injectors to HE-LHC.

  12. Bigger, Better, Faster, More at the LHC

    SciTech Connect

    Izaguirre, Eder; Manhart, Michael; Wacker, Jay G.; /SLAC

    2010-08-26

    Multijet plus missing energy searches provide universal coverage for theories that have new colored particles that decay into a dark matter candidate and jets. These signals appear at the LHC further out on the missing energy tail than two-to-two scattering indicates. The simplicity of the searches at the LHC contrasts sharply with the Tevatron where more elaborate searches are necessary to separate signal from background. The searches presented in this article effectively distinguish signal from background for any theory where the LSP is a daughter or granddaughter of the pair-produced colored parent particle without ever having to consider missing energies less than 400 GeV.

  13. Production of hhjj at the LHC.

    PubMed

    Dolan, Matthew J; Englert, Christoph; Greiner, Nicolas; Spannowsky, Michael

    2014-03-14

    Until now, a phenomenologically complete analysis of the hh+2j channel at the LHC has been missing. This is mostly due to the high complexity of the involved one-loop gluon fusion contribution and the fact that a reliable estimate thereof cannot be obtained through simplified calculations in the mt→∞ limit. In this Letter, we report on the LHC's potential to access di-Higgs production in association with two jets in a fully showered hadron-level analysis. Our study includes the finite top and bottom mass dependencies for the gluon fusion contribution.

  14. Charged-particle multiplicity at LHC energies

    ScienceCinema

    None

    2016-07-12

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  15. Techni-Dilaton Signatures at LHC

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Shinya; Yamawaki, Koichi

    2013-03-01

    We explore LHC discovery signatures of techni-dilaton (TD) arising as a composite pseudo Nambu-Goldstone boson (pNGB), associated with the spontaneous breaking of the approximate scale symmetry in the walking technicolor (WTC). We explicitly evaluate the TD 7 TeV LHC production cross sections times the branching ratios in terms of the TD mass MTD as an input parameter for the region 200 GeV < MTD < 1000 GeV in the typical WTC models. It turns out that the TD signatures are quite different from those of the standard model (SM) Higgs.

  16. LHC: The Emptiest Space in the Solar System

    ERIC Educational Resources Information Center

    Cid-Vidal, Xabier; Cid, Ramon

    2011-01-01

    Proton beams have been colliding at 7 TeV in the Large Hadron Collider (LHC) since 30 March 2010, meaning that the LHC research programme is underway. Particle physicists around the world are looking forward to using the data from these collisions, as the LHC is running at an energy three and a half times higher than previously achieved at any…

  17. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus

    2016-11-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  18. Exclusive photoproduction of quarkonium at the LHC energies within the color dipole approach

    SciTech Connect

    Ducati, M. B. Gay; Griep, M. T.; Machado, M. V. T.

    2015-04-10

    The exclusive photoproduction of ψ(2S) meson was investigated and the coherent and the incoherent contributions were evaluated. The light-cone dipole formalism was considered in this analysis and predictions are done for PbPb collisions at the CERN-LHC energy of 2.76 TeV. A comparison is done to the recent ALICE Collaboration data for the ψ(1S) state photoproduction with good agreement.

  19. Improvements of the TROLL-2 synchrotron and new developments

    NASA Astrophysics Data System (ADS)

    Anevsky, S. I.; Vernyi, A. E.; Panasyuk, V. S.; Khromchenko, V. B.

    1991-10-01

    Information on radical improvements of the TROLL-2 synchrotron, a specialized pulsed synchrotron radiation source, is presented in this article. Two new variants for particle injection from a solid electromagnet to a ring one, as a specialized continuous synchrotron radiation source are considered. Particle pre-acceleration from thermal velocities to injection energy herewith may take place both in the synchronous and in the isochrone regime.

  20. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    SciTech Connect

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  1. Impact of synchrotron radiation on macromolecular crystallography: a personal view

    PubMed Central

    Dauter, Zbigniew; Jaskolski, Mariusz; Wlodawer, Alexander

    2010-01-01

    The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. PMID:20567074

  2. A Higgs in the warped bulk and LHC signals

    NASA Astrophysics Data System (ADS)

    Mahmoudi, F.; Maitra, U.; Manglani, N.; Sridhar, K.

    2016-11-01

    Warped models with the Higgs in the bulk can generate light Kaluza-Klein (KK) Higgs modes consistent with the electroweak precision analysis. The first KK mode of the Higgs ( h 1) could lie in the 1-2 TeV range in the models with a bulk custodial symmetry. We find that the h 1 is gaugephobic and decays dominantly into a toverline{t} pair. We also discuss the search strategy for h 1 decaying to toverline{t} at the Large Hadron Collider. We used substructure tools to suppress the large QCD background associated with this channel. We find that h 1 can be probed at the LHC run-2 with an integrated luminosity of 300 fb-1.

  3. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  4. Distinguishing standard model extensions using monotop chirality at the LHC

    NASA Astrophysics Data System (ADS)

    Allahverdi, Rouzbeh; Dalchenko, Mykhailo; Dutta, Bhaskar; Flórez, Andrés; Gao, Yu; Kamon, Teruki; Kolev, Nikolay; Mueller, Ryan; Segura, Manuel

    2016-12-01

    We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.

  5. IKNO, a user facility for coherent terahertz and UV synchrotron radiation

    SciTech Connect

    Sannibale, Fernando; Marcelli, Augusto; Innocenzi, Plinio

    2008-04-26

    IKNO (Innovation and KNOwledge) is a proposal for a multi-user facility based on an electron storage ring optimized for the generation of coherent synchrotron radiation (CSR) in the terahertz frequency range, and of broadband incoherent synchrotron radiation (SR) ranging from the IR to the VUV. IKNO can be operated in an ultra-stable CSR mode with photon flux in the terahertz frequency region up to nine orders of magnitude higher than in existing 3rd generation light sources. Simultaneously to the CSR operation, broadband incoherent SR up to VUV frequencies is available at the beamline ports. The main characteristics of the IKNO storage and its performance in terms of CSR and incoherent SR are described in this paper. The proposed location for the infrastructure facility is in Sardinia, Italy.

  6. Residual Stress Analysis of Boronized AISI 1018 Steel by Synchrotron Radiation

    SciTech Connect

    Payne, J A; Petrova, R S; White, H J; Chauhan, A; Bai, Jianming

    2008-01-01

    AISI 1018 steel substrates were powder-pack, diffusion boronized at 850 C for 4 h, followed by air quenching. Optical microscopy in conjunction with color etching was used to obtain the average penetration depth of the iron monoboride layer (9 {micro}m) and the iron diboride layer (57 {micro}m). X-ray diffraction by synchrotron radiation, conducted at the National Synchrotron Light Source in Brookhaven National Laboratory, confirmed the presence of iron monoboride and iron diboride in the boronized plain steel substrates. The sin{sup 2} {Psi} technique was employed to calculate the residual stress found in the iron monoboride layer (-237 MPa) and in the substrate layer (-150 MPa) that is intertwined with the needle-like, iron diboride penetration.

  7. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    SciTech Connect

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  8. Biomedical elemental analysis and imaging using synchrotron x-ray microscopy

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue ); Bockman, R.S. ); Saubermann, A.J. . Health Science Center)

    1990-01-01

    The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

  9. Orbit correction using an eigenvector method with constraints for synchrotron radiation sources

    NASA Astrophysics Data System (ADS)

    Harada, Kentaro; Obina, Takashi; Kobayashi, Yukinori; Nakamura, Norio; Takaki, Hiroyuki; Sakai, Hiroshi

    2009-06-01

    An eigenvector method with constraints (EVC) is proposed as a new orbit correction scheme for synchrotron light sources. EVC efficiently corrects the global orbit in a storage ring, and can simultaneously perform exact correction of local orbits without deterioration of the global orbit. To demonstrate the advantages of EVC over the ordinary eigenvector method (EV), we carried out experimental studies at the Photon Factory storage ring (PF-ring) and the Photon Factory Advanced Ring (PF-AR) at the High Energy Accelerator Research Organization (KEK). The performance of EVC was systematically examined at PF-ring and PF-AR. The experimental results agreed well with the simulated ones. Consequently, we confirmed that EVC easily realized orbit correction for both global and local orbits, and that it was very effective for the beam stabilization of synchrotron radiation (SR) sources.

  10. Tracing X-rays through an L-shaped laterally graded multilayer mirror: a synchrotron application.

    PubMed

    Honnicke, Marcelo Goncalves; Huang, Xianrong; Keister, Jeffrey W; Kodituwakku, Chaminda Nalaka; Cai, Yong Q

    2010-05-01

    A theoretical model to trace X-rays through an L-shaped (nested or Montel Kirkpatrick-Baez mirrors) laterally graded multilayer mirror to be used in a synchrotron application is presented. The model includes source parameters (size and divergence), mirror figure (parabolic and elliptic), multilayer parameters (reflectivity, which depends on layer material, thickness and number of layers) and figure errors (slope error, roughness, layer thickness fluctuation Deltad/d and imperfection in the corners). The model was implemented through MATLAB/OCTAVE scripts, and was employed to study the performance of a multilayer mirror designed for the analyzer system of an ultrahigh-resolution inelastic X-ray scattering spectrometer at National Synchrotron Light Source II. The results are presented and discussed.

  11. Characterization of the synchrotron-based 0.3-NA EUV microexposuretool at the ALS

    SciTech Connect

    Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik; Dean,Kim; Denham, Paul; Cain, Jason P.; Hoef, Brian; Jackson, Keith

    2005-06-01

    Synchrotron-based EUV exposure tools continue to play a crucial roll in the development of EUV lithography. Utilizing a programmable-pupil-fill illuminator, the 0.3-NA microexposure tool at Lawrence Berkeley National Laboratory's Advanced Light Source synchrotron radiation facility provides the highest resolution EUV projection printing capabilities available today. This makes it ideal for the characterization of advanced resist and mask processes. The Berkeley tool also serves as a good benchmarking platform for commercial implementations of 0.3-NA EUV microsteppers because its illuminator can be programmed to emulate the coherence conditions of the commercial tools. Here we present the latest resist and tool characterization results from the Berkeley EUV exposure station.

  12. Multielemental analysis of samples from patients with dermatological pathologies using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Soares, J. C. A. C. R.; Canellas, C. G. L.; Anjos, M. J.; Lopes, R. T.

    2014-02-01

    Using synchrotron radiation total X-ray fluorescence (SRTXRF) technique, the concentrations of trace elements were measured in four skin lesions: seborrheic keratosis, fibroepithelial polyp, cherry angioma and dermatosis papulosa nigra. The concentrations of P, S, K, Ca, Fe, Cu, Zn and Rb were evaluated in 62 pairs of lesions and healthy samples, each one having been collected from the same patient. The results revealed significant differences of P, Ca, K, Fe and Cu levels as well as a common trend in their variations between lesion and control samples among the skin diseases. This study revealed a powerful tool that can be useful for skin disorders research. The measurements were conducted at Brazilian National Synchrotron Light Laboratory (LNLS).

  13. Hydration-dependent far-infrared absorption in lysozyme detected using synchrotron radiation.

    PubMed Central

    Moeller, K D; Williams, G P; Steinhauser, S; Hirschmugl, C; Smith, J C

    1992-01-01

    Using the National Synchrotron Light Source (NSLS) at Brookhaven far-infrared absorption in the frequency range 15-45 cm-1 was detected in samples of lysozyme at different hydrations and in water. The absorption is due to the presence of low-frequency (picosecond timescale) motion in the samples, such as are calculated in molecular dynamics simulations. The form of the transmission profile is temperature independent but varies significantly with the degree of hydration of the protein. At higher hydrations the profile resembles closely that of pure water in the region 20-45 cm-1. At a low hydration marked differences are seen with, in particular, the appearance of a transmission minimum at 19 cm-1. The possible origins of the hydration dependence are discussed. The results demonstrate the usefulness of long-wavelength synchrotron radiation for the characterisation of biologically-important low-frequency motions in protein samples. PMID:1540696

  14. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    SciTech Connect

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  15. Laser synchrotron radiation and beam cooling

    SciTech Connect

    Esarey, E.; Sprangle, P.; Ting, A.

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  16. Mirage models confront the LHC. II. Flux-stabilized type IIB string theory

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan L.; Nelson, Brent D.

    2014-04-01

    We continue the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In this installment we consider type IIB string theory compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by Kachru et al. We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model field content into D3-and D7-brane configurations. We find that an uplift sector independent of the Kähler moduli, as is the case with anti-D3-branes, is inconsistent with data unless the matter and Higgs sectors are localized on D7 branes exclusively, or are confined to twisted sectors between D3-and D7-branes. We identify regions of parameter space for all possible D-brane configurations that remain consistent with Planck observations on the dark matter relic density and measurements of the CP-even Higgs mass at the LHC. Constraints arising from LHC searches at √s =8 TeV and the LUX dark matter detection experiment are discussed. The discovery prospects for the remaining parameter space at dark matter direct-detection experiments are described, and signatures for detection of superpartners at the LHC with √s =14 TeV are analyzed.

  17. Variable-Period Undulators for Synchrotron Radiation

    SciTech Connect

    Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

    2005-02-22

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  18. Emittance growth from transient coherent synchrotron radiation

    SciTech Connect

    Bohn, C.L.; Li, R.; Bisognano, J.J.

    1996-10-01

    If the energies of individual particles in a bunch change as the bunch traverses a bending system, even if it is achromatic, betatron oscillations can be excited. Consequently, the transverse emittance of the bunch will grow as it moves downstream. Short bunches may be particularly susceptible to emission of coherent synchrotron radiation which can act back on the particles to change their energies and trajectories. Because a bend spans a well-defined length and angle, the bunch-excited wakefield and its effect back on the bunch are inherently transient. We outline a recently developed theory of this effect and apply it to example bending systems.

  19. Metal foam evolution studied by synchrotron radioscopy

    NASA Astrophysics Data System (ADS)

    Banhart, John; Stanzick, Heiko; Helfen, Lukas; Baumbach, Tilo

    2001-02-01

    High-intensity synchrotron x-ray radioscopy was used to obtain real-time images of foaming metals, thus allowing the formation, growth, and decay of such systems to be studied. Bubble generation, foam coalescence and drainage of an aluminum-based alloy foam were investigated. Although the foaming process appears to be very similar to the formation of aqueous foams, the observed rupture behavior of thin metal films suggests that the processes responsible for metal foam stabilization and destabilization must be quite different.

  20. Synchrotron radiation stimulated gas desorption from metals

    NASA Astrophysics Data System (ADS)

    Marin, P. C.

    1994-05-01

    The main trends of photon stimulated desorption, from vacuum chamber walls in synchrotron radiation sources and e + e - circular colliders are shortly reminded as well as its relevance to the machine performances. The results of a detailed study performed with a beam of critical energy 3.75 keV on an OFHC test chamber, at the X-ray radiation source, DCI, at Orsay are then presented. Other experiments carried out elsewhere are shortly discussed. In conclusion, a few remarks are made on what could be the future trends in such investigations.