Science.gov

Sample records for lhc upgrade tests

  1. Mechanical and Thermal Prototype Testing for a Rotatable Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results.

  2. Prototype Testing for a Copper Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Anzalone, Gene; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Rogers, Reggie; /SLAC

    2009-01-20

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and testing of this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. A prototype collimator jaw referred to as RC0 has been tested for both mechanical and thermal compliance with the design goals. Thermal expansion bench-top tests are compared to ANSYS simulation results. The prototype has also been tested in vacuum bake-out to confirm compliance with the LHC vacuum spec. CMM equipment has been used to verify the flatness of the jaw surface after heat tests and bake-out.

  3. Cryogenic test of double quarter wave crab cavity for the LHC High luminosity upgrade

    SciTech Connect

    Xiao, B.; Alberty, L.; Belomestnykh, S.; Ben-Zvi, I.; Calaga, R.; Cullen, C.; Capatina, O.; Hammons, L.; Li, Z.; Marques, C.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Proof-of-Principle (PoP) Double Quarter Wave Crab Cavity (DQWCC) was designed and fabricated for the Large Hadron Collider (LHC) luminosity upgrade. A vertical cryogenic test has been done at Brookhaven National Lab (BNL). The cavity achieved 4.5 MV deflecting voltage with a quality factor above 3×109. We report the test results of this design.

  4. Results of FE65-P2 Stability Tests for the High Luminosity LHC Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, Katherine; Atlas Collaboration

    2017-01-01

    The high luminosity upgrade of the LHC sets an imperative for readout technology capable of handling the consequences of higher particle interaction rates. Increased luminosity exists hand-in-hand with unprecedented levels of radiation and the need for exceptional logic density to store hit information during a trigger latency period on the order of 10 μs. The RD53 collaboration has developed specifications for the new generation of hybrid pixel readout chips to be included in the ATLAS and CMS Phase 2 upgrades. The FE65-P2 is a test readout chip fabricated on 65 nm CMOS technology that prototypes these design variants. Objectives of FE65-P2 include demonstrating the novel process of isolated analog front ends embedded in a digital design, known as ``analog islands in a digital sea.'' In addition, the innermost layer of the pixel detector in the upgraded ATLAS experiment will reach doses approaching 1 Mrad per run, and a single FE65-P2 should be tolerant to a lifetime dose near 500 Mrad. This talk will cover the test results of FE65-P2 calibration and stability. The experience gained from such tests will advise the development of RD53A, a large format readout chip to be fabricated in early 2017.

  5. ASSEMBLY AND TEST OF A 120 MM BORE 15 T NB3SN QUADRUPOLE FOR THE LHC UPGRADE

    SciTech Connect

    Felice, H.; Caspi, S.; Cheng, D.; Dietderich, D.; Ferracin, P.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Sabbi, G. L.; Wang, X.; Anerella, M.; Ghosh, A. K.; Schmalzle, J.; Wanderer, P.; Ambrosio, G.; Bossert, R.; Zlobin, A. V.

    2010-05-23

    In support of the Large Hadron Collider (LHC) luminosity upgrade, the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a design short sample gradient of 219 T/m at 1.9 K and a peak field approaching 15 T, one of the main challenges of this magnet is to provide appropriate mechanical support to the coils. Compared to the previous LARP Technology Quadrupole and Long Quadrupole magnets, the purpose of HQ is also to demonstrate accelerator quality features such as alignment and cooling. So far, 8 HQ coils have been fabricated and 4 of them have been assembled and tested in HQ01a. This paper presents the mechanical assembly and test results of HQ01a.

  6. LHC Status and Upgrade Challenges

    NASA Astrophysics Data System (ADS)

    Smith, Jeffrey

    2009-11-01

    The Large Hadron Collider has had a trying start-up and a challenging operational future lays ahead. Critical to the machine's performance is controlling a beam of particles whose stored energy is equivalent to 80 kg of TNT. Unavoidable beam losses result in energy deposition throughout the machine and without adequate protection this power would result in quenching of the superconducting magnets. A brief overview of the machine layout and principles of operation will be reviewed including a summary of the September 2008 accident. The current status of the LHC, startup schedule and upgrade options to achieve the target luminosity will be presented.

  7. Test Results of 15 T Nb3Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Schmalzle, J.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D.W.; Chlachidze, G.; Dietderich, D.R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Joseph, J.; Kashikhin, V.V.; Sabbi, G.L.; Schmalzle, J.; Wanderer,; P.l Xiaorong, W.; Zlobin, A.V.

    2011-08-03

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb{sub 3}Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  8. Test Results of 15 T Nb{sub 3}Sn Quadrupole Magnet HQ01 with a 120 mm Bore for the LHC Luminosity Upgrade

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Anerella, M.; Barzi, E.; Bingham, B.; Bossert, R.; Cheng, D. W.; Chlachidze, G.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Kashikhin, V. V.; Sabbi, G. L.; Schmalzle, J.; Wang, X.; Zlobin, A. V.

    2010-08-01

    In support of the luminosity upgrade of the Large Hadron Collider (LHC), the US LHC Accelerator Research Program (LARP) has been developing a 1-meter long, 120 mm bore Nb3 Sn IR quadrupole magnet (HQ). With a short sample gradient of 219 T/m at 1.9 K and a conductor peak field of 15 T, the magnet will operate under higher forces and stored-energy levels than that of any previous LARP magnet models. In addition, HQ has been designed to incorporate accelerator quality features such as precise coil alignment and adequate cooling. The first 6 coils (out of the 8 fabricated so far) have been assembled and used in two separate tests-HQ01a and HQ01b. This paper presents design parameters, summary of the assemblies, the mechanical behavior as well as the performance of HQ01a and HQ01b.

  9. US-LARP progress on LHC IR upgrades

    SciTech Connect

    Sen, Tanaji; Johnstone, John; Mokhov, Nikolai; Fischer, Wolfram; Gupta, Ramesh; Qiang, Ji; /LBL, Berkeley

    2006-03-01

    We review the progress on LHC IR upgrades made by the US-LARP collaboration since the last CARE meeting in November 2004. We introduce a new optics design with doublet focusing, and discuss energy deposition calculations with an open mid-plane dipole. We present the results of a beam-beam experiment at RHIC. This experiment was the first phase of a planned test of the wire compensation principle at RHIC.

  10. Test results of the first 3D-IC prototype chip developed in the framework of HL-LHC/ATLAS hybrid pixel upgrade

    NASA Astrophysics Data System (ADS)

    Pangaud, P.; Arutinov, D.; Barbero, M.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Garcia-Sciveres, M.; Godiot, S.; Hemperek, T.; Krüger, H.; Obermann, T.; Rozanov, S.; Wermes, N.

    2014-02-01

    To face new challenges brought by the upgrades of the Large Hadron Collider at CERN and of the ATLAS pixels detector, for which high spatial resolution, very good signal to noise ratio and high radiation hardness is needed, 3D integrated technologies are investigated. In the years to come, the Large Hadron Collider will be upgraded to Higher Luminosity (HL-LHC). The ATLAS pixel detector needs to handle this new challenging environment. As a consequence, 3D integrated technologies are pursued with the target of offering higher spatial resolution, very good signal to noise ratio and unprecedented radiation hardness. We present here the test results of the first 3D prototype chip developed in the GlobalFoundries 130 nm technology processed by the Tezzaron Company, submitted within the 3D-IC consortium for which a qualification program was developed. Reliability and influence on the behavior of the integrated devices due to the presence of the Bond Interface (BI) and of the Through Silicon Via (TSV) connections, both needed for the 3D integration process, have also been addressed by the tests.

  11. Upgrades of the CMS Outer Tracker for HL-LHC

    NASA Astrophysics Data System (ADS)

    Sguazzoni, Giacomo

    2017-02-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 5 ×1034cm-2s-1 around 2028, to possibly reach an integrated luminosity of 3000 fb-1 in the following decade. This High Luminosity LHC scenario, HL-LHC, will require a preparation program of the LHC detectors known as Phase-2 upgrade. The current CMS Outer Tracker, already running close to its design limits, will not be able to survive HL-LHC radiation conditions and CMS will need a completely new device, in order to fully exploit the highly demanding operating conditions and the delivered luminosity. The new Tracker should have also L1 trigger capabilities. To achieve such goals, R&D activities are ongoing to explore options and develop solutions that would allow including tracking information at Level-1. The design choices for the CMS Outer Tracker upgrades are discussed along with some highlights of the R&D activities.

  12. HL-LHC and HE-LHC Upgrade Plans and Opportunities for US Participation

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio

    2017-01-01

    The US HEP community has identified the exploitation of physics opportunities at the High Luminosity-LHC (HL-LHC) as the highest near-term priority. Thanks to multi-year R&D programs, US National Laboratories and Universities have taken the leadership in the development of technical solutions to increase the LHC luminosity, enabling the HL-LHC Project and uniquely positioning this country to make critical contributions to the LHC luminosity upgrade. This talk will describe the shaping of the US Program to contribute in the next decade to HL-LHC through newly developed technologies such as Nb3Sn focusing magnets or superconducting crab cavities. The experience gained through the execution of the HL-LHC Project in the US will constitute a pool of knowledge and capabilities allowing further developments in the future. Opportunities for US participations in proposed hadron colliders, such as a possible High Energy-LHC (HE-LHC), will be described as well.

  13. Heat Exchanger Design Studies for AN Lhc Inner Triplet Upgrade

    NASA Astrophysics Data System (ADS)

    Rabehl, R. J.; Huang, Y.

    2008-03-01

    A luminosity upgrade of the CERN Large Hadron Collider (LHC) is planned to coincide with the expected end of life of the existing inner triplet quadrupole magnets. The upgraded inner triplet will have much larger heat loads to be removed from the magnets by the cryogenics system. A number of cryogenics design studies have been completed under the LHC Accelerator Research Program (LARP), including investigations of required heat exchanger characteristics to transfer this heat from the pressurized He II bath to the saturated He II system. This paper discusses heat exchangers both external to the magnet cold mass and internal to the magnet cold mass. A possible design for a heat exchanger external to the magnet cold mass is also presented.

  14. SMALL ANGLE CRAB COMPENSATION FOR LHC IR UPGRADE

    SciTech Connect

    CALAGA,R.; DORDA, U.; OHMI, D.; OIDE, K.; TOMAS, R.; ZIMMERMANN, F.

    2007-06-25

    A small angle (< 1 mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle [I]. The luminosity loss increases steeply to unacceptable levels as the IP beta function is reduced below its nominal value (see Fig. 1 in Ref. [2]). The crab compensation in the LHC can be accomplished using only two sets of deflecting RF cavities, placed in collision-free straight sections of the LHC to nullify the effective crossing angles at IPI & IP5. We also explore a 400 MHz superconducting cavity design and discuss the pertinent RF challenges. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, and crab RF noise sources.

  15. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  16. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  17. Upgrade of the LHC magnet interconnections thermal shielding

    SciTech Connect

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Craen, Arnaud Vande; Villiger, Gilles; Chrul, Anna; Damianoglou, Dimitrios; Strychalski, Michał; Wright, Loren

    2014-01-29

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  18. Upgrade of the LHC magnet interconnections thermal shielding

    NASA Astrophysics Data System (ADS)

    Musso, Andrea; Barlow, Graeme; Bastard, Alain; Charrondiere, Maryline; Chrul, Anna; Damianoglou, Dimitrios; Deferne, Guy; Dib, Gaëlle; Duret, Max; Guinchard, Michael; Prin, Hervé; Strychalski, Michał; Craen, Arnaud Vande; Villiger, Gilles; Wright, Loren

    2014-01-01

    The about 1700 interconnections (ICs) between the Large Hadron Collider (LHC) superconducting magnets include thermal shielding at 50-75 K, providing continuity to the thermal shielding of the magnet cryostats to reduce the overall radiation heat loads to the 1.9 K helium bath of the magnets. The IC shield, made of aluminum, is conduction-cooled via a welded bridge to the thermal shield of the adjacent magnets which is actively cooled. TIG welding of these bridges made in the LHC tunnel at installation of the magnets induced a considerable risk of fire hazard due to the proximity of the multi-layer insulation of the magnet shields. A fire incident occurred in one of the machine sectors during machine installation, but fortunately with limited consequences thanks to prompt intervention of the operators. LHC is now undergoing a 2 years technical stop during which all magnet's ICs will have to be opened to consolidate the magnet electrical connections. The IC thermal shields will therefore have to be removed and re-installed after the work is completed. In order to eliminate the risk of fire hazard when re-welding, it has been decided to review the design of the IC shields, by replacing the welded bridges with a mechanical clamping which also preserves its thermal function. An additional advantage of this new solution is the ease in dismantling for maintenance, and eliminating weld-grinding operations at removal needing radioprotection measures because of material activation after long-term operation of the LHC. This paper describes the new design of the IC shields and in particular the theoretical and experimental validation of its thermal performance. Furthermore a status report of the on-going upgrade work in the LHC is given.

  19. Current Lead Design for the Accelerator Project for Upgrade of LHC

    SciTech Connect

    Brandt, Jeffrey S.; Cheban, Sergey; Feher, Sandor; Kaducak, Marc; Nobrega, Fred; Peterson, Tom

    2010-01-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. In collaboration with Brookhaven National Laboratory, Fermilab is developing sub-systems for an upgrade of the LHC final focus magnet systems. A concept of main and auxiliary helium flow was developed that allows the superconductor to remain cold while the lead body warms up to prevent upper section frosting. The auxiliary flow will subsequently cool the thermal shields of the feed box and the transmission line cryostats. A thermal analysis of the current lead central heat exchange section was performed using analytic and FEA techniques. A method of remote soldering was developed that allows the current leads to be field replaceable. The remote solder joint was designed to be made without flux or additional solder, and able to be remade up to ten full cycles. A method of upper section attachment was developed that allows high pressure sealing of the helium volume. Test fixtures for both remote soldering and upper section attachment for the 13 kA lead were produced. The cooling concept, thermal analyses, and test results from both remote soldering and upper section attachment fixtures are presented.

  20. 800MHz Crab Cavity Conceptual Design For the LHC Upgrade

    SciTech Connect

    Xiao, Liling; Li, Zenghai; Ng, Cho-Kuen; Seryi, Andrei; /SLAC

    2009-05-26

    In this paper, we present an 800 MHz crab cavity conceptual design for the LHC upgrade. The cell shape is optimized for lower maximum peak surface fields as well as higher transverse R/Q. A compact coax-to-coax coupler scheme is proposed to damp the LOM/SOM modes. A two-stub antenna with a notch filter is used as the HOM coupler to damp the HOM modes in the horizontal plane and rejects the operating mode at 800MHz. Multipacting (MP) simulations show that there are strong MP particles at the disks. Adding grooves along the short axis without changing the operating mode's RF characteristics can suppress the MP activities. Possible input coupler configurations are discussed.

  1. OPEN MIDPLANE DIPOLE DESIGN FOR LHC IR UPGRADE.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; SCHMALZLE,J.; MOKHOV,N.

    2004-01-21

    The proposed luminosity upgrade of the Large Hadron Collider (LHC), now under construction, will bring a large increase in the number of secondary particles from p-p collisions at the interaction point (IP). Energy deposition will be so large that the lifetime and quench performance of interaction region (IR) magnets may be significantly reduced if conventional designs are used. Moreover, the cryogenic capacity of the LHC will have to be significantly increased as the energy deposition load on the interaction region (IR) magnets by itself will exhaust the present capacity. We propose an alternate open midplane dipole design concept for the dipole-first optics that mitigates these issues. The proposed design takes advantage of the fact that most of the energy is deposited in the midplane region. The coil midplane region is kept free of superconductor, support structure and other material. Initial energy deposition calculations show that the increase in temperature remains within the quench tolerance of the superconducting coils. In addition, most of the energy is deposited in a relatively warm region where the heat removal is economical. We present the basic concept and preliminary design that includes several innovations.

  2. Pixel sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    NASA Astrophysics Data System (ADS)

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2017-02-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC experiments. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2×1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  3. Pixel Sensors with slim edges and small pitches for the CMS upgrades for HL-LHC

    SciTech Connect

    Vernieri, Caterina; Bolla, Gino; Rivera, Ryan; Uplegger, Lorenzo; Zoi, Irene

    2016-01-01

    Planar n-in-n silicon detectors with small pitches and slim edges are being investigated for the innermost layers of tracking devices for the foreseen upgrades of the LHC. Sensor prototypes compatible with the CMS readout, fabricated by Sintef, were tested in the laboratory and with a 120 GeV/c proton beam at the Fermilab test beam facility before and after irradiation with up to 2x1015 neq/cm2 fluence. Preliminary results of the data analysis are presented.

  4. Performance of the first short model 150 mm aperture Nb$_3$Sn Quadrupole MQXFS for the High- Luminosity LHC upgrade

    SciTech Connect

    Chlachidze, G.; et al.

    2016-08-30

    The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was built with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.

  5. ATLAS Upgrades Towards the High Luminosity LHC: extending the discovery potential

    NASA Astrophysics Data System (ADS)

    Valero-Biot, A.

    2014-06-01

    After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. The current planning in ATLAS also foresees significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data acquisition. This presentation summarizes the various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC instantaneous luminosity during this decade and the next.

  6. LHC luminosity upgrade with large Piwinski angle scheme: a recent look

    SciTech Connect

    Bhat, C.M.; Zimmermann, f.; /CERN

    2011-09-01

    Luminosity upgrade at the LHC collider using longitudinally flat bunches in combination with the large crossing angle (large Piwinski angle scheme) is being studied with renewed interest in recent years. By design, the total beam-beam tune shift at the LHC is less than 0.015 for two interaction points together. But the 2010-11 3.5 TeV collider operation and dedicated studies indicated that the beam-beam tune shift is >0.015 per interaction point. In view of this development we have revisited the requirements for the Large Piwinski Angle scheme at the LHC. In this paper we present a new set of parameters and luminosity calculations for the desired upgrade by investigating: (1) current performance of the LHC injectors, (2) e-cloud issues on nearly flat bunches and (3) realistic beam particle distributions from longitudinal beam dynamics simulations. We also make some remarks on the needed upgrades on the LHC injector accelerators.

  7. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    SciTech Connect

    Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred; Novitski, Igor; Karppinen, Mikko

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  8. Upgrades to the CMS Cathode Strip Chambers for 2017 and the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Morse, David; CMS Collaboration

    2017-01-01

    An overview will be given of upgrades to the CMS Cathode Strip Chambers (CSC) during the extended technical stop 2016-2017 and plans for future upgrades targeting the HL-LHC. HL-LHC conditions will surpass the physical capabilities of the present detector, and require novel hardware to cope with increased rates and maintain the high performance of the CSC achieved up to now.

  9. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    NASA Astrophysics Data System (ADS)

    Bilki, Burak; CMS HCAL Collaboration

    2011-04-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 1034cm-2s-1, the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm × 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R&D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  10. New Detector Technologies for the LHC Experiments: Prospects, Strategies and Technologies for the HL-LHC Upgrades

    SciTech Connect

    Mannelli, Marcello

    2013-03-06

    We review the prospects, strategies and technologies for the High Luminosity (HL-LHC) upgrades of the ATLAS and CMS detectors, in the light of a very successful two year-long first physics run, and the discovery of a new 126 GeV boson with properties consistent with those of the Standard Model Higgs boson.

  11. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  12. Development of pixel sensors with 25 × 500 μm2 pitch for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Burdin, S.; Casse, G.; Dervan, P.; Forshaw, D.; Hayward, H.; Tsurin, I.; Wormald, M.

    2014-11-01

    Upgrade of the ATLAS tracker detector for high-luminosity LHC conditions requires novel approaches to the pixel sensor design. Tests of different pitch layouts represent significant part of the ATLAS upgrade program. Better momentum resolution and multiple track reconstruction in the r - ϕ plane could be achieved with finer ϕ-segmentation. Changing the pitch from 50 × 250 μm2 to 25 × 500 μm2 in the outer pixel modules would improve the tracking performance of the upgraded ATLAS detector. The pixel sensors with 25 × 500 μm2 readout by FE-I4 chips have been designed at the University of Liverpool. The sensors were measured in the laboratory and test-beam. Results of these tests will be presented together with geometry characteristics of other novel pixel layouts, compatible with the FE-I4 floor-plan, which have been designed and produced.

  13. Planar pixel sensors for the ATLAS tracker upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Gallrapp, C.; Atlas Planar Pixel Sensor R&D Project

    2013-08-01

    The ATLAS Planar Pixel Sensor R&D Project is a collaboration of 17 institutes and more than 80 scientists. Their goal is to explore the operation of planar pixel sensors for the tracker upgrade at the High Luminosity-Large Hadron Collider (HL-LHC). This work will give a summary of the achievements on radiation studies with n-in-n and n-in-p pixel sensors, bump-bonded to ATLAS FE-I3 and FE-I4 read-out chips. The summary includes results from tests with radioactive sources and tracking efficiencies extracted from test beam measurements. Analysis results of 2 ×1016neqcm-2 and 1 ×1016neqcm-2 (1 MeV neutron equivalent) irradiated n-in-n and n-in-p modules confirm the operation of planar pixel sensors for future applications.

  14. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  15. Upgrades to the CSC Cathode Strip Chamber electronics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Bravo, C.

    2017-01-01

    The luminosity, latency, and trigger rate foreseen at the High Luminosity LHC (HL-LHC) present challenges to efficient readout of the Cathode Strip Chambers (CSCs, [1]) of the CMS end cap muon detector. Upgrades to the electronics are targeted for the inner rings of CSCs in each station, which have the highest flux of particles. The upgrades comprise digital cathode front end boards for nearly deadtimeless and long trigger latency operating capability, new DAQ boards that transmit data from the detectors with higher-bandwidth links, and a new data concentrator/interface to the central DAQ system that can receive the higher input rates.

  16. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  17. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  18. Design and Fabrication of a Single-Aperture 11T Nb3Sn Dipole Model for LHC Upgrades

    SciTech Connect

    Andreev, N.; Apollinari, G.; Barzi, E.; Bossert, R.; Nobrega, F.; Novitski, I.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; Auchmann, B.; Karppinen, M.; /CERN

    2011-11-28

    The planned upgrade of the LHC collimation system includes additional collimators to be installed in the dispersion suppressor areas of points 2, 3 and 7. To provide the necessary longitudinal space for the collimators, a replacement of 8.33 T Nb-Ti LHC main dipoles with 11 T dipoles based on Nb{sub 3}Sn superconductor compatible with the LHC lattice and main systems is being considered. To demonstrate this possibility FNAL and CERN have started a joint program to develop a 2 m long single-aperture dipole magnet with the nominal field of 11 T at {approx}11.85 kA current and 60 mm bore. This paper describes the demonstrator magnet magnetic and mechanical designs and analysis, coil fabrication procedure. The Nb{sub 3}Sn strand and cable parameters and test results are also reported.

  19. Silicon strip staves and petals for the ATLAS Upgrade tracker of the HL-LHC

    NASA Astrophysics Data System (ADS)

    Díez, Sergio; Atlas Collaboration

    2013-01-01

    This paper describes the baseline integration structures for the silicon strip sensors to be used in the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC) machine, the so-called High Luminosity LHC (HL-LHC). Highly modular structures have been developed for the integration of the silicon strips sensors, readout electronics, cooling, and support structures, called 'staves' for the barrel region and 'petals' for the end-caps of the ATLAS strips tracker. This work describes the status of the current prototypes, the building procedure, designed for mass production even at a prototyping stage, and their electrical performances.

  20. Thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Savic, N.; Bergbreiter, L.; Breuer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Terzo, S.

    2017-02-01

    The ATLAS experiment will undergo a major upgrade of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) foreseen to start around 2025. Thin planar pixel modules are promising candidates to instrument the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. New designs of the pixel cells, with an optimized biasing structure, have been implemented in n-in-p planar pixel productions with sensor thicknesses of 270 μm. Using beam tests, the gain in hit efficiency is investigated as a function of the received irradiation fluence. The outlook for future thin planar pixel sensor productions will be discussed, with a focus on thin sensors with a thickness of 100 and 150 μm and a novel design with the optimized biasing structure and small pixel cells (50×50 and 25×100 μm2). These dimensions are foreseen for the new ATLAS read-out chip in 65 nm CMOS technology and the fine segmentation will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. To predict the performance of 50×50 μm2 pixels at high η, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle with respect to the short pixel direction. Results on cluster shapes, charge collection- and hit efficiency will be shown.

  1. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  2. Bench-Top Impedance Measurements for a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Bane, Karl; Doyle, Eric; Keller, Lew; Lundgren, Steve; Markiewicz, Tom; Ng, Cho-Kuen; Xiao, Liling; /SLAC

    2010-08-26

    Simulations have been performed in Omega3P to study both trapped modes and impedance contributions of a rotatable collimator for the LHC phase II collimation upgrade. Bench-top stretched coil probe impedance methods are also being implemented for measurements on prototype components to directly measure the low frequency impedance contributions. The collimator design also calls for a RF contact interface at both jaw ends with contact resistance much less than a milliohm in order to limit transverse impedance. DC resistance measurements in a custom built test chamber have been performed to test the performance of this interface.

  3. 11 T Twin-Aperture Nb$_3$Sn Dipole Development for LHC Upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Auchmann, B.; Barzi, E.; Izquierdo Bermudez, S.; Bossert, R.; Buehler, M.; Chlachidze, G.; DiMarco, J.; Karppinen, M.; Nobrega, F.; Novitski, I.; Rossi, L.; Smekens, D.; Tartaglia, M.; Turrioni, D.; Velev, Genadi

    2015-01-01

    FNAL and CERN are developing a twin-aperture 11 T Nb3Sn dipole suitable for installation in the LHC. This paper describes the design and parameters of the 11 T dipole developed at FNAL for the LHC upgrades in both single-aperture and twin-aperture configurations, and presents details of the constructed dipole models. Results of studies of magnet quench performance, quench protection and magnetic measurements performed using short 1 m long coils in the dipole mirror and single-aperture configurations are reported and discussed.

  4. Upgrade of the cryogenic CERN RF test facility

    SciTech Connect

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-29

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  5. Upgrades for the Precision Proton Spectrometer at the LHC: Precision timing and tracking detectors

    NASA Astrophysics Data System (ADS)

    Gallinaro, Michele

    2017-03-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) is an approved project to add tracking and timing information at approximately ±210 m from the interaction point around the CMS detector. It is designed to operate at high luminosity with up to 50 interactions per 25 ns bunch crossing to perform measurements of e.g. the quartic gauge couplings and search for rare exclusive processes. During 2016, CT-PPS took data in normal high-luminosity proton-proton LHC collisions. In the coming years, high radiation doses and large multiple-vertex interactions will represent difficult challenges that resemble those of the high-luminosity LHC program. A coordinated effort of detector upgrades with the goal of reaching the physics goals while mitigating the degradation effects is under way. Upgrades to the tracking and timing detectors are discussed.

  6. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    DOE PAGES

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; ...

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data frommore » the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.« less

  7. Mechanical Analysis of the 400 MHz RF-Dipole Crabbing Cavity Prototype for LHC High Luminosity Upgrade

    SciTech Connect

    De Silva, Subashini U.; Park, HyeKyoung; Delayen, Jean R.; Li, Z.

    2013-12-01

    The proposed LHC high luminosity upgrade requires two crabbing systems in increasing the peak luminosity, operating both vertically and horizontally at two interaction points of IP1 and IP5. The required system has tight dimensional constraints and needs to achieve higher operational gradients. A proof-of-principle 400 MHz crabbing cavity design has been successfully tested and has proven to be an ideal candidate for the crabbing system. The cylindrical proof-of-principle rf-dipole design has been adapted in to a square shaped design to further meet the dimensional requirements. The new rf-dipole design has been optimized in meeting the requirements in rf-properties, higher order mode damping, and multipole components. A crabbing system in a cryomodule is expected to be tested on the SPS beam line prior to the test at LHC. The new prototype is required to achieve the mechanical and thermal specifications of the SPS test followed by the test at LHC. This paper discusses the detailed mechanical and thermal analysis in minimizing Lorentz force detuning and sensitivity to liquid He pressure fluctuations.

  8. LARP Long Quadrupole: A "Long" Step Toward an LHC Luminosity Upgrade with Nb3Sn Magnets

    SciTech Connect

    Ambrosio, Giorgio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960's. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  9. A Versatile Link for High-Speed, Radiation Resistant Optical Transmission in LHC Upgrades

    NASA Astrophysics Data System (ADS)

    Xiang, A.; Gong, D.; Hou, S.; Huffman, T.; Kwan, S.; Liu, K.; Liu, T.; Prosser, A.; Soos, C.; Su, D.; Teng, P.; Troska, J.; Vasey, F.; Weidberg, T.; Ye, J.

    The Versatile Link project is developing a general purpose physical layer optical link with high bandwidth, radiation resistance and magnetic-field tolerance that meets the requirements of LHC upgrade experiments. This paper presents recent work on system specifications, front-end transceiver prototypes, passive components studies and commercial back-end transceiver evaluations. System optical power budgets are specified for single mode (1310nm) and multi-mode (850nm) links, with a target data rate of 4.8 Gbps and a transmission length of 150 meters. Noise and interference penalties are simulated using the 10GbE link model and verified by bit error ratio measurement on reference links. The power margin is particularly constrained by radiation degradation of the front-end receivers. We report the power budgets for all link variants where at least 1.8 dB safety margins are maintained. The Versatile Transceiver (VTRx) - the front-end module to be installed on-detector - is based on a commercial small form pluggable (SFP+) package, modified to optimize size and mass, assembled to host a qualified laser, PIN photodiode, custom-designed radiation tolerant laser driver and receiving amplifier. A set of VTRxs with validated components have been prototyped and compliance tested. We also present the radiation test results on front-end components and passive components. The total fluence tests for lasers and PINs have been carried out with pions and neutrons up to 4 x 1015/cm2. SEU tests have been performed on PIN photodiodes and the full receiver optical subassembly. Radiation induced absorption in a number of single mode and multi-mode fibers, at -25¡C and up to 500 kGy, have been measured and high performance candidates identified. Commercial off-of-the-shelf parts have been examined for use as back-end transceivers. Compliance tests on SFP+, 4+4 parallel optical engines and SNAP 12 transmitter/receivers have been completed.

  10. Operational test report integrated system test (ventilation upgrade)

    SciTech Connect

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  11. Next linear collider test accelerator injector upgrade

    SciTech Connect

    Yeremian, A.D.; Miller, R.H.

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  12. Testing of FMI's Coal Upgrading Process

    SciTech Connect

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  13. Development of planar pixel modules for the ATLAS high luminosity LHC tracker upgrade

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Ashby, J.; Bates, R. L.; Blue, A.; Burdin, S.; Buttar, C. M.; Casse, G.; Dervan, P.; Doonan, K.; Forshaw, D.; Lipp, J.; McMullen, T.; Pater, J.; Stewart, A.; Tsurin, I.

    2014-11-01

    The high-luminosity LHC will present significant challenges for tracking systems. ATLAS is preparing to upgrade the entire tracking system, which will include a significantly larger pixel detector. This paper reports on the development of large area planar detectors for the outer pixel layers and the pixel endcaps. Large area sensors have been fabricated and mounted onto 4 FE-I4 readout ASICs, the so-called quad-modules, and their performance evaluated in the laboratory and testbeam. Results from characterisation of sensors prior to assembly, experience with module assembly, including bump-bonding and results from laboratory and testbeam studies are presented.

  14. Design of a Rotatable Copper Collimator for the LHC Phase II Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Doyle, Eric; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas Walter; Lari, Luisella; /LPHE, Lausanne

    2010-02-15

    The Phase II upgrade to the LHC collimation system calls for complementing the robust Phase I graphite collimators with high Z, low impedance Phase II collimators. The design for the collimation upgrade has not been finalized. One option is to use metallic rotatable collimators and this design will be discussed here. The Phase II collimators must be robust in various operating conditions and accident scenarios. Design issues include: (1) Collimator jaw deflection and sagitta due to heating must be small when operated in the steady state condition, (2) Collimator jaws must withstand transitory periods of high beam impaction with no permanent damage, (3) Jaws must recover from accident scenario where up to 8 full intensity beam pulses impact on the jaw surface and (4) The beam impedance contribution due to the collimators must be small to minimize coherent beam instabilities.

  15. DACS upgrade acceptance test report

    SciTech Connect

    Zuehlke, A.C.

    1994-12-21

    The DACS, which is housed in a trailer located just outside of the north fence at the SY tank farm, receives input signals from a variety of sensors located in and around the SY-101 tank. These sensors provide information such as: (1) tank vapor space and ventilation system H{sub 2} concentration; (2) tank waste temperature; (3) tank pressure; (4) waste density; (5) operating pump parameters such as speed, flow, rotational position, discharge pressure, and internal temperature; (6) strain (for major equipment); and (7) waste level. The output of these sensors is conditioned and transmitted to the DACS computers where these signals are displayed, recorded, and monitored for out-of-specification conditions. If abnormal conditions are detected, then, in certain situations, the DACS automatically generates alarms and causes the system to abort pump operations. The report documents testing performed per WHC-SD-WM-ATP-082. Rev. 0-13.

  16. Tests of the CMS Phase 1 Upgrade FPIX Half Cylinders

    NASA Astrophysics Data System (ADS)

    Chen, Xuan; CMS Collaboration

    2017-01-01

    The pixel detector is an integral part of the CMS silicon tracker, designed to measure the position and momentum of charged particles produced in high-energy collisions at the Large Hadron Collider (LHC). The phase 1 upgrade of the CMS forward pixel detector will replace the existing forward pixel detector at the end of 2016. This upgrade will include three forward disks on each end, and is organized in four mechanical support structures, called half-cylinders. Each half-cylinder contains frontend readout electronic boards, power regulators, cables and fibers in addition to the three half disks with the active pixel modules. Full system tests are being performed on the half cylinders after each step of assembly and after its completion. I will describe the various steps of the testing and qualification procedure, focusing on the final assembly and the full system test for the integrated half-cylinder. I will also discuss the results obtained for the completed detector before its shipment to CERN.

  17. Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

    DOE PAGES

    Marinozzi, Vittorio; Ambrosio, Giorgio; Ferracin, Paolo; ...

    2016-06-01

    In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close tomore » the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.« less

  18. Quench protection study of the updated MQXF for the LHC luminosity upgrade (HiLumi LHC)

    SciTech Connect

    Marinozzi, Vittorio; Ambrosio, Giorgio; Ferracin, Paolo; Izquierdo Bermudez, Susana; Rysti, Juho; Salmi, Tiina; Sorbi, Massimo; Todesco, Ezio

    2016-06-01

    In 2023, the LHC luminosity will be increased, aiming at reaching 3000 fb-1 integrated over ten years. To obtain this target, new Nb3Sn low-β quadrupoles (MQXF) have been designed for the interaction regions. These magnets present a very large aperture (150 mm, to be compared with the 70 mm of the present NbTi quadrupoles) and a very large stored energy density (120 MJ/m3). For these reasons, quench protection is one of the most challenging aspects of the design of these magnets. In fact, protection studies of a previous design showed that the simulated hot spot temperature was very close to the maximum allowed limit of 350 K; this challenge motivated improvements in the current discharge modeling, taking into account the so-called dynamic effects on the apparent magnet inductance. Moreover, quench heaters design has been studied to be going into more details. In this study, a protection study of the updated MQXF is presented, benefiting from the experience gained by studying the previous design. As a result, a study of the voltages between turns in the magnet is also presented during both normal operation and most important failure scenarios.

  19. Upgraded Trigger Readout Electronics for the ATLAS LAr Calorimeters for Future LHC Running

    NASA Astrophysics Data System (ADS)

    Ma, Hong; ATLAS Liquid Argon Calorimeter Group

    2015-02-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that are digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first- level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 1034cm-2s-1. In order to retain the capability to trigger on low energy electrons and photons when the LHC is upgraded to higher luminosity, an improved LAr calorimeter trigger readout is proposed and being constructed. The new trigger readout system makes available the fine segmentation of the calorimeter at the L1 trigger with high precision in order to reduce the QCD jet background in electron, photon and tau triggers, and to improve jet and missing ET trigger performance. The new LAr Trigger Digitizer Board is designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new Digital Processing System. The reconstructed energies of trigger readout channels after digital filtering are transmitted to the L1 system, allowing the extraction of improved trigger signatures. This contribution presents the motivation for the upgrade, the concept for the new trigger readout and the expected performance of the new trigger, and describes the components being developed for the new system.

  20. First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC

    SciTech Connect

    Ambrosio, G.; Chlachidze, G.; Wanderer, P.; Ferracin, P.; Sabbi, G.

    2016-10-06

    The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to address them are also presented and discussed.

  1. Higher order mode filter design for double quarter wave crab cavity for the LHC high luminosity upgrade

    SciTech Connect

    Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Burt, G.; Calaga, R.; Capatina, O.; Hall, B.; Jones, T.; Skaritka, J.; Verdu-Andres, S.; Wu, Q.

    2015-05-03

    A Double Quarter Wave Crab Cavity (DQWCC) was designed for the Large Hadron Collider (LHC) luminosity upgrade. A compact Higher Order Mode (HOM) filter with wide stop band at the deflecting mode is developed for this cavity. Multiphysics finite element simulation results are presented. The integration of this design to the cavity cryomodule is described.

  2. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  3. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    SciTech Connect

    Toivanen, V. Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-15

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  4. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  5. Test of the photon detection system for the LHCb RICH Upgrade in a charged particle beam

    NASA Astrophysics Data System (ADS)

    Baszczyk, M. K.; Benettoni, M.; Calabrese, R.; Cardinale, R.; Carniti, P.; Cassina, L.; Cavallero, G.; Cojocariu, L.; Cotta Ramusino, A.; D'Ambrosio, C.; Dorosz, P. A.; Easo, S.; Eisenhardt, S.; Fiorini, M.; Frei, C.; Gambetta, S.; Gibson, V.; Gotti, C.; Harnew, N.; He, J.; Keizer, F.; Kucewicz, W.; Maciuc, F.; Maino, M.; Malaguti, R.; Matteuzzi, C.; McCann, M.; Morris, A.; Muheim, F.; Papanestis, A.; Pessina, G.; Petrolini, A.; Piedigrossi, D.; Pistone, A.; Placinta, V. M.; Sigurdsson, S.; Simi, G.; Smith, J.; Spradlin, P.; Tomassetti, L.; Wotton, S. A.

    2017-01-01

    The LHCb detector will be upgraded to make more efficient use of the available luminosity at the LHC in Run III and extend its potential for discovery. The Ring Imaging Cherenkov detectors are key components of the LHCb detector for particle identification. In this paper we describe the setup and the results of tests in a charged particle beam, carried out to assess prototypes of the upgraded opto-electronic chain from the Multi-Anode PMT photosensor to the readout and data acquisition system.

  6. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    SciTech Connect

    Smith, Jeffrey Claiborne; Keller, Lewis; Lundgren, Steven; Markiewicz, Thomas; Young, Andrew; /SLAC

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

  7. Upgrade of the ATLAS muon spectrometer for operation at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Kortner, Oliver

    2017-02-01

    The High-Luminosity Large Hadron Collider will increase the sensitivity of the ATLAS experiment to rare physics processes. In order to cope with a 10 times higher instantaneous luminosity compared to the LHC, the trigger system of ATLAS needs to be upgraded. The ATLAS experiment plans to increase the maximum rate capability of the 1st trigger level to 1 MHz at 6 μ s latency. This requires new on- and off-chamber electronics for its muon spectrometer. The replacement of the precision chamber read-out electronics will make it possible to include their data in the 1st level trigger decision and thus to increase the selectivity of the 1st level muon trigger. The acceptance of the present RPC trigger system in the barrel region will be increased from 75% to 95% by the installation of additional thin-gap RPC with a substantially increased high-rate capability compared to the current RPCs.

  8. Submission of the first full scale prototype chip for upgraded ATLAS pixel detector at LHC, FE-I4A

    NASA Astrophysics Data System (ADS)

    Barbero, Marlon; Arutinov, David; Beccherle, Roberto; Darbo, Giovanni; Dube, Sourabh; Elledge, David; Fleury, Julien; Fougeron, Denis; Garcia-Sciveres, Maurice; Gensolen, Fabrice; Gnani, Dario; Gromov, Vladimir; Jensen, Frank; Hemperek, Tomasz; Karagounis, Michael; Kluit, Ruud; Kruth, Andre; Mekkaoui, Abderrezak; Menouni, Mohsine; Schipper, Jan David; Wermes, Norbert; Zivkovic, Vladimir

    2011-09-01

    A new ATLAS pixel chip FE-I4 is being developed for use in upgraded LHC luminosity environments, including the near-term Insertable B-Layer (IBL) upgrade. FE-I4 is designed in a 130 nm CMOS technology, presenting advantages in terms of radiation tolerance and digital logic density compared to the 0.25 μm CMOS technology used for the current ATLAS pixel IC, FE-I3. The FE-I4 architecture is based on an array of 80×336 pixels, each 50×250 μm2, consisting of analog and digital sections. In the summer 2010, a first full scale prototype FE-I4A was submitted for an engineering run. This IC features the full scale pixel array as well as the complex periphery of the future full-size FE-I4. The FE-I4A contains also various extra test features which should prove very useful for the chip characterization, but deviate from the needs for standard operation of the final FE-I4 for IBL. In this paper, focus will be brought to the various features implemented in the FE-I4A submission, while also underlining the main differences between the FE-I4A IC and the final FE-I4 as envisioned for IBL.

  9. The Upgrade of the ATLAS Electron and Photon Triggers for LHC Run 2 and their Performance

    NASA Astrophysics Data System (ADS)

    Thomson, Evelyn; Atlas Collaboration

    2016-03-01

    Electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential for signal selection in a wide variety of ATLAS physics analyses to study Standard Model processes and to search for new phenomena. Final states including leptons and photons had, for example, an important role in the discovery and measurement of the Higgs particle. Dedicated triggers are also used to collect data for calibration, efficiency and fake rate measurements. The ATLAS trigger system is divided in a hardware-based (Level 1) and a software based high level trigger (HLT), both of which were upgraded during the long shutdown of the LHC in preparation for data taking in 2015. The increasing luminosity and more challenging pile-up conditions as well as the planned higher center-of-mass energy demanded the optimisation of the trigger selections at each level, to control the rates and keep efficiencies high. To improve the performance multivariate analysis techniques are introduced at the HLT. The evolution of the ATLAS electron and photon triggers and their performance will be presented, including new results from the 2015 LHC Run 2 operation. Submitted on behalf of ATLAS electron and photon combined performance group. Speaker is yet to be chosen.

  10. Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades

    SciTech Connect

    Strauss, T.; Apollinari, G.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Di Marco, J.; Nobrega, F.; Novitski, I.; Stoynev, S.; Turrioni, D.; Velev, G.; Zlobin, A. V.; Auchmann, B.; Izquierdo Bermudez, S,; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2016-11-08

    FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.

  11. Performance of the ATLAS Tile Hadronic Calorimeter at LHC in Run 1 and planned upgrades

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.

    2014-10-01

    The Tile Calorimeter (TileCal) is the central section of the ATLAS hadronic calorimeter at the Large Hadron Collider, a key detector for the measurements of hadrons, jets, tau leptons and missing transverse energy. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from approximately 10000 PMTs are digitized before being transferred to off-detector data-acquisition systems. The data quality procedures used during the LHC data-taking and the evolution of the detector status are explained in the presentation. The energy and the time reconstruction performance of the digitized signals is presented and the noise behaviour and its improvement during the detector consolidation in maintenance periods are shown. A set of calibration systems allow monitoring and equalization of the calorimeter channels responses via signal sources that act at every stage of the signal path, from scintillation light to digitized signal. These partially overlapping systems are described in detail, their individual performance is discussed as well as the comparative results from measurements of the evolution of the calorimeter response with time during the full LHC data-taking period. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals will be directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. For the off-detector electronics a special pre-processor board is being developed, which will take care of the initial trigger processing, while the main data are temporarily stored in the pipeline and de-randomiser memories.

  12. Testing of the front-end hybrid circuits for the CMS Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Gadek, T.; Blanchot, G.; Honma, A.; Kovacs, M.; Raymond, M.; Rose, P.

    2017-01-01

    The upgrade of the CMS Tracker for the HL-LHC requires the design of new double-sensor, silicon detector modules, which implement Level 1 trigger functionality in the increased luminosity environment. These new modules will contain two different, high-density front-end hybrid circuits, equipped with flip-chip ASICs, auxiliary electronic components and mechanical structures. The hybrids require qualification tests before they are assembled into modules. Test methods are proposed together with the corresponding test hardware and software. They include functional tests and signal injection in a cold environment to find possible failure modes of the hybrids under real operating conditions.

  13. Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades

    SciTech Connect

    Zlobin, A. V.; Andreev, N.; Apollinari, G.; Barzi, E.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Stoynev, S.; Turrioni, D.; Auchmann, B.; Izquierdo Bermudez, S.; Karppinen, M.; Rossi, L.; Savary, F.; Smekens, D.

    2015-06-01

    FNAL and CERN are developing a twin-aperture 11 T $Nb_{3}Sn$ dipole suitable for installation in the LHC. A single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been fabricated and tested at FNAL in 2012-2014. The two 1 m long collared coils were then assembled into the first twin-aperture $Nb_{3}Sn$ demonstrator dipole and tested. Test results of this twin-aperture $Nb_{3}Sn$ dipole model are reported and discussed.

  14. Design and Analysis of TQS01, a 90 mm Nb3Sn Model Quadrupole for LHC Luminosity Upgrade Based on a Key and Bladder Assembly

    SciTech Connect

    Caspi, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.C.; Dietderich, D.R.; Ferracin, P.; Ghosh, A.; Gourlay, S.A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Novitsky, I.V.; Sabbi, G.L.; Turrioni, D.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    The US LHC Accelerator Research Program (LARP) is developing Nb{sub 3}Sn accelerator magnet technology for the LHC luminosity upgrade. Two 90 mm 'Technology Quadrupole' models (TQS01, TQC01) are being developed in close collaboration between LBNL and FNAL, using identical coil design, but two different support structures. The TQS01 structure was developed and tested at LBNL. With this approach coils are supported by an outer aluminum shell and assembled using keys and bladders. In contrast, the second model TQC01, utilize stainless steel collars and a thick stainless steel skin. This paper describes the TQS01 model magnet, its 3D ANSYS stress analysis, and anticipated instrumentation and assembly procedure.

  15. A time-multiplexed track-trigger for the CMS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Hall, G.

    2016-07-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2025. It includes an outer tracker based on special modules of two different types which will construct track stubs using spatially coincident clusters in two closely spaced sensor layers, to reject low transverse momentum track hits and reduce the data volume before data transmission to the Level-1 trigger. The tracker data will be used to reconstruct track segments in dedicated processors before onward transmission to other trigger processors which will combine tracker information with data originating from the calorimeter and muon detectors, to make the final L1 trigger decision. The architecture for processing the tracker data outside the detector is under study, using several alternative approaches. One attractive possibility is to exploit a Time Multiplexed design similar to the one which is currently being implemented in the CMS calorimeter trigger as part of the Phase I trigger upgrade. The novel Time Multiplexed Trigger concept is explained, the potential benefits for processing future tracker data are described and a feasible design based on currently existing hardware is outlined.

  16. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  17. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Terzo, S.; Macchiolo, A.; Nisius, R.; Paschen, B.

    2014-12-01

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 μm, produced at CiS, and 100-200 μm thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of 1.4 × 1016 neq/cm2.

  18. Test beam results of 3D silicon pixel sensors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Grenier, P.; Alimonti, G.; Barbero, M.; Bates, R.; Bolle, E.; Borri, M.; Boscardin, M.; Buttar, C.; Capua, M.; Cavalli-Sforza, M.; Cobal, M.; Cristofoli, A.; Dalla Betta, G.-F.; Darbo, G.; Da Vià, C.; Devetak, E.; DeWilde, B.; Di Girolamo, B.; Dobos, D.; Einsweiler, K.; Esseni, D.; Fazio, S.; Fleta, C.; Freestone, J.; Gallrapp, C.; Garcia-Sciveres, M.; Gariano, G.; Gemme, C.; Giordani, M.-P.; Gjersdal, H.; Grinstein, S.; Hansen, T.; Hansen, T.-E.; Hansson, P.; Hasi, J.; Helle, K.; Hoeferkamp, M.; Hügging, F.; Jackson, P.; Jakobs, K.; Kalliopuska, J.; Karagounis, M.; Kenney, C.; Köhler, M.; Kocian, M.; Kok, A.; Kolya, S.; Korokolov, I.; Kostyukhin, V.; Krüger, H.; La Rosa, A.; Lai, C. H.; Lietaer, N.; Lozano, M.; Mastroberardino, A.; Micelli, A.; Nellist, C.; Oja, A.; Oshea, V.; Padilla, C.; Palestri, P.; Parker, S.; Parzefall, U.; Pater, J.; Pellegrini, G.; Pernegger, H.; Piemonte, C.; Pospisil, S.; Povoli, M.; Roe, S.; Rohne, O.; Ronchin, S.; Rovani, A.; Ruscino, E.; Sandaker, H.; Seidel, S.; Selmi, L.; Silverstein, D.; Sjøbæk, K.; Slavicek, T.; Stapnes, S.; Stugu, B.; Stupak, J.; Su, D.; Susinno, G.; Thompson, R.; Tsung, J.-W.; Tsybychev, D.; Watts, S. J.; Wermes, N.; Young, C.; Zorzi, N.

    2011-05-01

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS inner detector solenoid field. Sensors were bump-bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance.

  19. Large area thinned planar sensors for future high-luminosity-LHC upgrades

    NASA Astrophysics Data System (ADS)

    Wittig, T.; Lawerenz, A.; Röder, R.

    2016-12-01

    Planar hybrid silicon sensors are a well proven technology for past and current particle tracking detectors in HEP experiments. However, the future high-luminosity upgrades of the inner trackers at the LHC experiments pose big challenges to the detectors. A first challenge is an expected radiation damage level of up to 2ṡ 1016 neq/cm2. For planar sensors, one way to counteract the charge loss and thus increase the radiation hardness is to decrease the thickness of their active area. A second challenge is the large detector area which has to be built as cost-efficient as possible. The CiS research institute has accomplished a proof-of-principle run with n-in-p ATLAS-Pixel sensors in which a cavity is etched to the sensor's back side to reduce its thickness. One advantage of this technology is the fact that thick frames remain at the sensor edges and guarantee mechanical stability on wafer level while the sensor is left on the resulting thin membrane. For this cavity etching technique, no handling wafers are required which represents a benefit in terms of process effort and cost savings. The membranes with areas of up to ~ 4 × 4 cm2 and thicknesses of 100 and 150 μm feature a sufficiently good homogeneity across the whole wafer area. The processed pixel sensors show good electrical behaviour with an excellent yield for a suchlike prototype run. First sensors with electroless Ni- and Pt-UBM are already successfully assembled with read-out chips.

  20. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect

    Snyder, Isabelle B

    2014-01-01

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  1. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  2. Development of n-in-p pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Nisius, R.; Savic, N.; Terzo, S.

    2016-09-01

    Thin planar pixel modules are promising candidates to instrument the inner layers of the new ATLAS pixel detector for HL-LHC, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. 100-200 μm thick sensors, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests at the CERN-SPS and DESY. The results of these measurements are reported for devices before and after irradiation up to a fluence of 14 ×1015 neq /cm2 . The charge collection and tracking efficiency of the different sensor thicknesses are compared. The outlook for future planar pixel sensor production is discussed, with a focus on sensor design with the pixel pitches (50×50 and 25×100 μm2) foreseen for the RD53 Collaboration read-out chip in 65 nm CMOS technology. An optimization of the biasing structures in the pixel cells is required to avoid the hit efficiency loss presently observed in the punch-through region after irradiation. For this purpose the performance of different layouts have been compared in FE-I4 compatible sensors at various fluence levels by using beam test data. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50×50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angle (80°) with respect to the short pixel direction. Results on cluster shapes, charge collection and hit efficiency will be shown.

  3. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    NASA Astrophysics Data System (ADS)

    Spoor, Matthew

    2017-02-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  4. Commissioning of the upgraded ATLAS Pixel Detector for Run2 at LHC

    NASA Astrophysics Data System (ADS)

    Dobos, Daniel

    2016-07-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to the surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer, a fourth layer of pixel detectors, installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. An overview of the refurbishing of the Pixel Detector and of the IBL project as well as early performance tests using cosmic rays and beam data will be presented.

  5. Test Beam Results for The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Collaboration

    2016-09-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. In the present ALICE detector, there are two sub-detectors, (the T0 and V0), that provide minimum bias trigger, multiplicity trigger, beam-gas event rejection, collision time for other sub-detectors, online multiplicity and event plane determination. In order to adapt these functionalities to the collision rates expected for the LHC upgrade after 2020, it is planned to replace these systems with a single system, called the Fast Interaction Trigger (FIT). In this poster we describe the FIT upgrade; show the proposed characteristics of the FIT detectors and present test beam performance results that support the current design parameters. This material is based upon work supported by the National Science Foundation under Grants NSF-PHY-1407051 and NSF-PHY-1305280.

  6. Design and testing of a four rod crab cavity for High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Hall, B.; Burt, G.; Apsimon, R.; Lingwood, C. J.; Tutte, A.; Grudiev, A.; Macpherson, A.; Navarro-Tapia, M.; Calaga, R.; Hernández-Chahín, K. G.; Appleby, R. B.; Goudket, P.

    2017-01-01

    A 4-rod deflecting structure is proposed as a possible crab cavity design for the LHC high luminosity upgrade. Crab cavities are required for the LHC luminosity upgrade to provide a greater bunch overlap in the presence of a crossing angle, but must fit in the existing limited space. The structure has two parallel sections consisting of two longitudinally opposing quarter-wave rods, where each rod has the opposite charge from each of its nearest neighbors. The structure is transversely compact because the frequency is dependent on the rod lengths rather than the cavity radius. Simulations were undertaken to investigate the effect of rod shape on surface fields, higher order multipole terms and induced wakefields in order to obtain the optimal rod shape. The simulation results presented show that the addition of focus electrodes or by shaping the rods the sextupole contribution of the cavity voltage can be negated; the sextupole contribution is 321.57 mTm /m2 , Epeak=27.7 MV /m , and Bpeak=63.9 mT at the design voltage of 3 MV. The damping requirements for the LHC are critical and suitable couplers to damp all modes but the operating mode are presented. The results of various testing cycles of the first SRF 4 rod prototype cavity are presented and show that the cavity has reached the required transverse voltage of 3 MV.

  7. Quench protection studies of the 11-T Nb3Sn dipole for the LHC upgrade

    SciTech Connect

    Bermudez, Susana Izquierdo; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander V.

    2016-06-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb3Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb3Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb3Sn dipole models. Here, the validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  8. Hurricane tested, underwater platform structural upgrade

    SciTech Connect

    Couch, W.J.

    1995-10-01

    In 1991 Conoco performed a reservoir re-evaluation of the Grand Isle 41``B`` platform. The decision was made to work over the existing wells to extend the production life. A drilling rig mounted on the jacket was selected as the desired method to work over the wells. The condition of the jacket was considered to be inadequate for the workover drilling operations and the anticipated extended well life based on a 100 year storm criteria. Upgrading the structural integrity of the platform was divided into three phases. During Phase 1, a complete subsea inspection was performed to investigate each of the proposed sites for new bracing. An Ultrasonic flooded member check of all existing structural bracing was performed. On the bottom elevation of the platform near the mudline, each site for the new bracing was inspected for burial by mud and debris. The final task of Phase 1 was to remove metal samples from each of the existing braces that required wet welding. Samples were given identification labels to allow traceability to specific members and location of removal. Samples were analyzed to ensure that the carbon equivalent did not exceed the maximum allowable for normal wet welding operations.

  9. CMS Tracker upgrade for HL-LHC: R&D plans, present status and perspectives

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-07-01

    During the high luminosity phase of the LHC (HL-LHC), the machine is expected to deliver an instantaneous luminosity of 5 ×1034cm-2s-1. A total of 3000 fb-1 of data is foreseen to be delivered, with the opening of new physics potential for the LHC experiments, but also new challenges from the point of view of both detector and electronics capabilities and radiation hardness. In order to maintain its physics reach, CMS will build a new Tracker, including a completely new Pixel Detector and Outer Tracker. The ongoing R&D activities on both pixel and strip sensors will be presented. The present status of the Inner and Outer Tracker projects will be illustrated, and the possible perspectives will be discussed.

  10. Experience with 3D integration technologies in the framework of the ATLAS pixel detector upgrade for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Aruntinov, D.; Barbero, M.; Gonella, L.; Hemperek, T.; Hügging, F.; Krüger, H.; Wermes, N.; Breugnon, P.; Chantepie, B.; Clemens, J. C.; Fei, R.; Fougeron, D.; Godiot, S.; Pangaud, P.; Rozanov, A.; Garcia-Sciveres, M.; Mekkaoui, A.

    2013-12-01

    3D technologies are investigated for the upgrade of the ATLAS pixel detector at the HL-LHC. R&D focuses on both, IC design in 3D, as well as on post-processing 3D technologies such as Through Silicon Via (TSV). The first one uses a so-called via first technology, featuring the insertion of small aspect ratio TSV at the pixel level. As discussed in the paper, this technology can still present technical challenges for the industrial partners. The second one consists of etching the TSV via last. This technology is investigated to enable 4-side abuttable module concepts, using today's pixel detector technology. Both approaches are presented in this paper and results from first available prototypes are discussed.

  11. A Proposal for the Upgrade of the Muon Drift Tubes Trigger for the CMS Experiment at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Zotto, Pierluigi; Montecassiano, Fabio

    2016-11-01

    A major upgrade of the readout and trigger electronics of the CMS Drift Tubes muon detector is foreseen in order to allow its efficient operation at the High Luminosity LHC. A proposal for a new L1 Trigger Primitives Generator for this detector is presented, featuring an algorithm operating on the time of charge collection measurements provided by the asynchronous readout of the new TDC system being developed. The algorithm is being designed around the implementation in state-of-the-art FPGA devices of the original development of a Compact Hough Transform (CHT) algorithm combined with a Majority Mean-Timer, to identify both the parent bunch crossing and the muon track parameters. The current state of the design is presented along with the performance requirements, focusing on the future developments.

  12. Acceptance test report 2721-Z upgrades

    SciTech Connect

    Keck, R.D.

    1998-02-03

    This test procedure provides instructions for acceptance testing of modifications to the 2721-Z diesel-generator system made by Project C-189. The modifications include (1) replacing the generator NUMA-LOGIC controller with connection to the PFP distributed control system (DCS), (2) replacing ATSI with a breaker switching scheme for 2736-ZB backup power and (3) providing a method for generator load and system testing.

  13. Upgraded Analytical Model of the Cylinder Test

    SciTech Connect

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  14. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Kureba, C. O.; Govender, M.; Hofsajer, I.; Ruan, X.; Sandrock, C.; Spoor, M.

    2015-10-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade.

  15. Status of Centralized Environmental Creep Testing Facility Preparation and Upgrade

    SciTech Connect

    Ren, Weiju; Battiste, Rick

    2006-10-01

    Because the ASME Codes do not cover environmental issues that are crucial in the design and construction of VHTR system, investigation of long-term impure helium effects on metallurgical stability and properties becomes very important. The present report describes the development of centralized environmental creep testing facility, its close collaborations with the experiments in low velocity helium recirculation loop, important lessons learned, upgrades in system design in FY06, and current status of the development.

  16. Testing the Muon g-2 Anomaly at the LHC

    DOE PAGES

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; ...

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment,more » $$a_{\\mu} = (g_{\\mu}-2)/2$$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $$a_{\\mu}$$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.« less

  17. Testing the Muon g-2 Anomaly at the LHC

    SciTech Connect

    Freitas, Ayres; Lykken, Joseph; Kell, Stefan; Westhoff, Susanne

    2014-05-29

    The long-standing difference between the experimental measurement and the standard-model prediction for the muon's anomalous magnetic moment, $a_{\\mu} = (g_{\\mu}-2)/2$, may be explained by the presence of new weakly interacting particles with masses of a few 100 GeV. Particles of this kind can generally be directly produced at the LHC, and thus they may already be constrained by existing data. In this work, we investigate this connection between $a_{\\mu}$ and the LHC in a model-independent approach, by introducing one or two new fields beyond the standard model with spin and weak isospin up to one. For each case, we identify the preferred parameter space for explaining the discrepancy of a_mu and derive bounds using data from LEP and the 8-TeV LHC run. Furthermore, we estimate how these limits could be improved with the 14-TeV LHC. We find that the 8-TeV results already rule out a subset of our simplified models, while almost all viable scenarios can be tested conclusively with 14-TeV data.

  18. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    SciTech Connect

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  19. Optimization of thin n-in-p planar pixel modules for the ATLAS upgrade at HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Beyer, J.; La Rosa, A.; Nisius, R.; Savic, N.

    2017-01-01

    The ATLAS experiment will undergo around the year 2025 a replacement of the tracker system in view of the high luminosity phase of the LHC (HL-LHC) with a new 5-layer pixel system. Thin planar pixel sensors are promising candidates to instrument the innermost region of the new pixel system, thanks to the reduced contribution to the material budget and their high charge collection efficiency after irradiation. The sensors of 50-150 μm thickness, interconnected to FE-I4 read-out chips, have been characterized with radioactive sources and beam tests. In particular active edge sensors have been investigated. The performance of two different versions of edge designs are compared: the first with a bias ring, and the second one where only a floating guard ring has been implemented. The hit efficiency at the edge has also been studied after irradiation at a fluence of 1015 neq/cm2. Highly segmented sensors will represent a challenge for the tracking in the forward region of the pixel system at HL-LHC. In order to reproduce the performance of 50x50 μm2 pixels at high pseudo-rapidity values, FE-I4 compatible planar pixel sensors have been studied before and after irradiation in beam tests at high incidence angles with respect to the short pixel direction. Results on the hit efficiency in this configuration are discussed for different sensor thicknesses.

  20. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  1. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  2. Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Macchiolo, A.; Andricek, L.; Ellenburg, M.; Moser, H. G.; Nisius, R.; Richter, R. H.; Terzo, S.; Weigell, P.

    2013-12-01

    This R&D activity is focused on the development of new modules for the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The performance after irradiation of n-in-p pixel sensors of different active thicknesses is studied, together with an investigation of a novel interconnection technique offered by the Fraunhofer Institute EMFT in Munich, the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with an active thickness of 75 μm or 150 μm, produced at the MPI Semiconductor Laboratory (MPI HLL) and on 100 μm thick sensors with active edges, fabricated at VTT, Finland. Hit efficiencies are derived from beam test data for thin devices irradiated up to a fluence of 4×1015 neq/cm2. For the active edge devices, the charge collection properties of the edge pixels before irradiation are discussed in detail, with respect to the inner ones, using measurements with radioactive sources. Beyond the active edge sensors, an additional ingredient needed to design four side buttable modules is the possibility of moving the wire bonding area from the chip surface facing the sensor to the backside, avoiding the implementation of the cantilever extruding beyond the sensor area. The feasibility of this process is under investigation with the FE-I3 SLID modules, where Inter Chip Vias are etched, employing an EMFT technology, with a cross section of 3 μm×10 μm, at the positions of the original wire bonding pads.

  3. A new ATLAS pixel front-end IC for upgraded LHC luminosity

    NASA Astrophysics Data System (ADS)

    Barbero, M.; Arutinov, D.; Beccherle, R.; Darbo, G.; Ely, R.; Fougeron, D.; Garcia-Sciveres, M.; Gnani, D.; Hemperek, T.; Karagounis, M.; Kluit, R.; Kostioukhine, V.; Mekkaoui, A.; Menouni, M.; Schipper, J.-D.

    2009-06-01

    A new pixel Front-End (FE) IC is being developed in a 130 nm technology for use in the upgraded ATLAS pixel detector. The new pixel FE will be made of smaller pixels (50×250 μm vs. 50×400 μm for the present FE, FE-I3), a much improved active area over inactive area ratio, and a new analog pixel chain tuned for low power and new detector input capacitance. The higher luminosity for which this IC is tuned implies a complete redefinition of the digital architecture logic, which will not be based on End-of-Column data buffering but on local pixel logic and local pixel data storage. An overview of the new FE is given with particular emphasis on the new digital logic architecture and possible architecture variations.

  4. Nb3Sn High Field Magnets for the High Luminosity LHC Upgrade Project

    SciTech Connect

    Ambrosio, Giorgio

    2015-06-01

    The High Luminosity upgrade of the Large Hadron Collider at CERN requires a new generation of high field superconducting magnets. High field large aperture quadrupoles (MQXF) are needed for the low-beta triplets close to the ATLAS and CMS detectors, and high field two-in-one dipoles (11 T dipoles) are needed to make room for additional collimation. The MQXF quadrupoles, with a field gradient of 140 T/m in 150 mm aperture, have a peak coil field of 12.1 T at nominal current. The 11 T dipoles, with an aperture of 60 mm, have a peak coil field of 11.6 T at nominal current. Both magnets require Nb3Sn conductor and are the first applications of this superconductor to actual accelerator magnets.

  5. Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers

    NASA Astrophysics Data System (ADS)

    Bochenek, M.; Dabrowski, W.; Faccio, F.; Michelis, S.

    2010-12-01

    The High Luminosity Upgrade of the ATLAS Inner Tracker puts demanding requirements on the powering system of the silicon strip detector modules due to 10-fold increase of the channel count compared to the existing SemiConductor Tracker. Therefore, new solutions for the powering scheme must be elaborated. Currently two possible approaches, the serial powering and the parallel powering scheme using the DC-DC conversion technique, are under development. This paper describes two switched capacitor DC-DC converters designed in a 130 nm technology. For the optimized step-down converter, foreseen for the parallel powering scheme, power efficiency of 97% has been achieved, while for the charge pump, designed for the serial powering scheme, power efficiency of 85% has been achieved.

  6. The ALICE high-level trigger read-out upgrade for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Engel, H.; Alt, T.; Breitner, T.; Gomez Ramirez, A.; Kollegger, T.; Krzewicki, M.; Lehrbach, J.; Rohr, D.; Kebschull, U.

    2016-01-01

    The ALICE experiment uses an optical read-out protocol called Detector Data Link (DDL) to connect the detectors with the computing clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The interfaces of the clusters to these optical links are realized with FPGA-based PCI-Express boards. The High-Level Trigger is a computing cluster dedicated to the online reconstruction and compression of experimental data. It uses a combination of CPU, GPU and FPGA processing. For Run 2, the HLT has replaced all of its previous interface boards with the Common Read-Out Receiver Card (C-RORC) to enable read-out of detectors at high link rates and to extend the pre-processing capabilities of the cluster. The new hardware also comes with an increased link density that reduces the number of boards required. A modular firmware approach allows different processing and transport tasks to be built from the same source tree. A hardware pre-processing core includes cluster finding already in the C-RORC firmware. State of the art interfaces and memory allocation schemes enable a transparent integration of the C-RORC into the existing HLT software infrastructure. Common cluster management and monitoring frameworks are used to also handle C-RORC metrics. The C-RORC is in use in the clusters of ALICE DAQ and HLT since the start of LHC Run 2.

  7. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-01-14

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  8. Space reactor fuel element testing in upgraded TREAT

    SciTech Connect

    Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

    1993-05-01

    The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

  9. Quench performance and field quality of FNAL twin-aperture 11 T Nb3Sn dipole model for LHC upgrades

    DOE PAGES

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperturemore » configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less

  10. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  11. Development of a modular test system for the silicon sensor R&D of the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Liu, H.; Benoit, M.; Chen, H.; Chen, K.; Di Bello, F. A.; Iacobucci, G.; Lanni, F.; Peric, I.; Ristic, B.; Barreto Pinto, M. Vicente; Wu, W.; Xu, L.; Jin, G.

    2017-01-01

    High Voltage CMOS sensors are a promising technology for tracking detectors in collider experiments. Extensive R&D studies are being carried out by the ATLAS Collaboration for a possible use of HV-CMOS in the High Luminosity LHC upgrade of the Inner Tracker detector. CaRIBOu (Control and Readout Itk BOard) is a modular test system developed to test Silicon based detectors. It currently includes five custom designed boards, a Xilinx ZC706 development board, FELIX (Front-End LInk eXchange) PCIe card and a host computer. A software program has been developed in Python to control the CaRIBOu hardware. CaRIBOu has been used in the testbeam of the HV-CMOS sensor AMS180v4 at CERN. Preliminary results have shown that the test system is very versatile. Further development is ongoing to adapt to different sensors, and to make it available to various lab test stands.

  12. Design and prototyping of HL-LHC double quarter wave crab cavities for SPS test

    SciTech Connect

    Verdu-Andres, S.; Skaritka, J.; Wu, Q.; Xiao, B.; Belomestnykh, S.; Ben-Zvi, I.; Alberty, L.; Artoos, K.; Calaga, R.; Capatina, O.; Capelli, T.; Carra, F.; Leuxe, R.; Kuder, N.; Zanoni, C.; Li, Z.; Ratti, A.

    2015-05-03

    The LHC high luminosity project envisages the use of the crabbing technique for increasing and levelling the LHC luminosity. Double Quarter Wave (DQW) resonators are compact cavities especially designed to meet the technical and performance requirements for LHC beam crabbing. Two DQW crab cavities are under fabrication and will be tested with beam in the Super Proton Synchrotron (SPS) at CERN by 2017. This paper describes the design and prototyping of the DQW crab cavities for the SPS test.

  13. LHC crab-cavity aspects and strategy

    SciTech Connect

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  14. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; Lunsford, Charles B.; Popenack, Thomas G.; Colbert, Scott E.; Hoad, Danny; Becker, Lawrence; Stead, Dan; Kuchta, Dennis; Yeh, Les

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  15. First Cryogenic Tests with Jlab's New Upgrade cavities

    SciTech Connect

    Peter Kneisel; Gianluigi Ciovati; Juergen Halbritter; Ganapati Rao Myneni; Jacek Sekutowicz; Genfa Wu

    2004-08-01

    Two types of 7-cell cavities have been developed for the upgrade of CEBAF to 12 GeV. The High Gradient type (HG) has been optimized with respect to the ratio of E{sub peak}/E{sub acc}. The Low Loss (LL) type has optimized shunt impedance and improved geometric factor. Each cavity type features four DESY-type coaxial Higher Order Mode (HOM) couplers and a waveguide input coupler. Design goals for these cavities have been set to E{sub acc} = 20 MV/m with an intrinsic Q{sub o} of 8 {center_dot} 10{sup 9} at 2.05 K. A niobium prototype of each cavity has been fabricated at JLab and both cavities have been evaluated at cryogenic temperatures after appropriate surface treatment. In addition, pressure sensitivity as well as Lorentz force detuning were evaluated. The damping of approximately 20 HOMs has been measured to verify the room temperature data. Several single cell cavities were tested in addition to multi cell cavities. We present in this contribution a summary of tests performed on the prototypes of the proposed cavities.

  16. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  17. Status of LHC crab activity simulations and beam studies

    SciTech Connect

    Calaga,R.; Assman, R.; Barranco, J.; Barranco, J.; Calaga, R.; Caspers, F.; Ciapala, E.; De-Maria, R.; Koutchouk, J. P.; Linnecar, T.; Metral, E.; Morita, A.; Solyak, N.; Sun, Y.; Tomas, R.; Tuckmantel, J.; Weiler, T.; Zimmermann, F.

    2009-05-04

    The LHC crab cavity program is advancing rapidly towards a first prototype which is anticipated to be tested during the early stages of the LHC phase I upgrade and commissioning. The general project status and some aspects related to crab optics, collimation, aperture constraints, impedances, noise effects. beam transparency and machine protection critical for a safe and robust operation of LHC beams with crab cavities are addressed here.

  18. Options to upgrade the Mirror Fusion Test Facility

    SciTech Connect

    Thomassen, K.I.; Doggett, J.N.

    1983-04-01

    In this document we describe three options for upgrading MFTF-B, and the nomenclature used for these options is shown on the chart, MFTF-B Upgrade Options. We propose to add a 4-m-long reactor-like insert to the central cell, or to change the end plugs to the new MARS-type configuration, or both. LLNL prefers the third option, labeled MFTF-..cap alpha../sup +/T in the chart, in which both the central cell insert is added and the end plugs are modified. All options are long-pulse or steady-state DT burning experiments. Those upgrades with the insert would be constructed beginning in FY 86, with operation beginning in mid-FY 92. Confirmation of our intent to modify the end plugs would be sought in FY 88 based on positive results from MFTF-B experiments. The upgrade with only the end plug modification would not start until MFTF-B data are available. The timeline for constructing and operating the MFTF-B Upgrade included at the end of this preface is for reference while reading the text. The various modes of operation shown on the chart are described later.

  19. Radiation Hard Silicon Particle Detectors for Phase-II LHC Trackers

    NASA Astrophysics Data System (ADS)

    Oblakowska-Mucha, A.

    2017-02-01

    The major LHC upgrade is planned after ten years of accelerator operation. It is foreseen to significantly increase the luminosity of the current machine up to 1035 cm‑2s‑1 and operate as the upcoming High Luminosity LHC (HL-LHC) . The major detectors upgrade, called the Phase-II Upgrade, is also planned, a main reason being the aging processes caused by severe particle radiation. Within the RD50 Collaboration, a large Research and Development program has been underway to develop silicon sensors with sufficient radiation tolerance for HL-LHC trackers. In this summary, several results obtained during the testing of the devices after irradiation to HL-LHC levels are presented. Among the studied structures, one can find advanced sensors types like 3D silicon detectors, High-Voltage CMOS technologies, or sensors with intrinsic gain (LGAD). Based on these results, the RD50 Collaboration gives recommendation for the silicon detectors to be used in the detector upgrade.

  20. Upgrade of the LHCb VELO detector

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2017-01-01

    The LHCb experiment is a single-arm forward spectrometer optimised for performing heavy-flavour physics analyses, using proton-proton collisions provided by the LHC machine. A major upgrade of the LHCb experiment will take place prior to the start of Run 3 operations in 2021. The upgraded Vertex Locator (VELO) is an essential component of this upgrade. Its main role is to enable high precision track and vertex reconstruction, with data-driven readout to the software trigger at 40 MHz, in the higher-luminosity environment of Run 3. To achieve this goal, significant improvements are planned with respect to the current detector, including a switch from microstrips to pixels, upgraded electronics, and a new cooling system. I will briefly motiviate the need for an upgrade, describe the main aspects of the VELO upgrade design, and show highlights of recent sensor characterisation studies using the CERN SPS test beam.

  1. The CMS muon system: status and upgrades for LHC Run-2 and performance of muon reconstruction with 13 TeV data

    NASA Astrophysics Data System (ADS)

    Battilana, C.

    2017-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV centre-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  2. Acceptance test report for project C-157 ``T-Plant electrical upgrade``

    SciTech Connect

    Jeppson, L.A.

    1997-08-05

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

  3. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    DOE PAGES

    Pan, H.; Felice, H.; Cheng, D. W.; ...

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less

  4. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  5. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    SciTech Connect

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

  6. Non-linear advanced control of the LHC inner triplet heat exchanger test unit

    NASA Astrophysics Data System (ADS)

    Viñuela, E. Blanco; Cubillos, J. Casas; de Prada Moraga, C.; Cristea, S.

    2002-05-01

    The future Large Hadron Collider (LHC) at CERN will include eight interaction region final focus magnet systems, the so-called "Inner Triplet," one on each side of the four beam collision points. The Inner Triplets will be cooled in a static bath of pressurized He II nominally at 1.9 K. This temperature is a control parameter and has very severe constraints in order to avoid the transition from the superconducting to normal resistive state. The main difference in these special zones with respect to a regular LHC cell is higher dynamic heat load unevenly distributed which modifies largely the process characteristics and hence the controller performance. Several control strategies have already been tested at CERN in a pilot plant (LHC String Test) which reproduced a LHC half-cell. In order to validate a common control structure along the whole LHC ring, a Nonlinear Model Predictive Control (NMPC) has been developed and implemented in the Inner Triplet Heat Exchanger Unit (IT-HXTU) at CERN. Automation of the Inner Triplet setup and the advanced control techniques deployed based on the Model Based Predictive Control (MBPC) principle are presented.

  7. Upgrading Engine Test Cells for Improved Troubleshooting and Diagnostics

    DTIC Science & Technology

    2002-01-01

    being developed. To enable this, test cell fault detection and isolation capabilities will need to utilize all of the relevant engine and test...improved engine fault detection and isolation capabilities, various approaches for automated sensor validation, performance diagnostics and

  8. Testing sTGC with small angle wire edges for the ATLAS new small wheel muon detector upgrade

    SciTech Connect

    Roth, Itamar; Klier, Amit; Duchovni, Ehud

    2015-07-01

    The LHC upgrade scheduled for 2018 is expected to significantly increase the accelerator's luminosity, and as a result the radiation background rates in the ATLAS Muon Spectrometer will increase too. Some of its components will have to be replaced in order to cope with these high rates. Newly designed small-strip Thin Gap chambers (sTGC) will replace them at the small wheel region. One of the differences between the sTGC and the currently used TGC is the alignment of the wires along the azimuthal direction. As a result, the outermost wires approach the detector's edge with a small angle. Such a configuration may be a cause for various problems. Two small dedicated chambers were built and tested in order to study possible edge effects that may arise from the new configuration. The sTGC appears to be stable and no spark have been observed, yet some differences in the detector response near the edge is seen and further studies should be carried out. (authors)

  9. Testing the Technicolor Interpretation of CDF's Dijet Excess at the LHC

    SciTech Connect

    Eichten, Estia; Lane, Kenneth; Martin, Adam; Pilon, Eric

    2012-01-01

    Under the assumption that the dijet excess seen by the CDF Collaboration near 150 Gev in Wjj production is due to the lightest technipion of the low-scale technicolor process $\\rho_T \\rightarrow W \\pi_T$, we study its observability in LHC detectors with 1--20 inverse femtobarns of data. We describe interesting new kinematic tests that can provide independent confirmation of this LSTC hypothesis. We find that cuts similar to those employed by CDF, and recently by ATLAS, cannot confirm the dijet signal. We propose cuts tailored to the LSTC hypothesis and its backgrounds at the LHC that may reveal $\\rho_T \\rightarrow \\ell\

  10. Quench performance and field quality of FNAL twin-aperture 11 T Nb3Sn dipole model for LHC upgrades

    SciTech Connect

    Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; Auchmann, Bernhard; Barzi, Emanuela; Bermudez, Susana Izquierdo; Bossert, Rodger; Chlachidze, Guram; DiMarco, Joseph; Karppinen, Mikko; Nobrega, Alfred; Novitski, Igor; Rossi, Lucio; Savary, Frederic; Smekens, David; Strauss, Thomas; Turrioni, Daniele; Velev, Gueorgui V.; Zlobin, Alexander V.

    2016-12-07

    A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coils in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.

  11. Test beam performance of the CDF plug upgrade hadron calorimeter

    SciTech Connect

    de Barbaro, P.; CDF Plug Upgrade Group

    1998-01-13

    We report on the performance of the CDF End Plug Hadron Calorimeter in a test beam. The sampling calorimeter is constructed using 2 inch iron absorber plates and scintillator planes with wavelength shifting fibers for readout. The linearity and energy resolution of the calorimeter response to pions, and the transverse uniformity of the response to muons and pions are presented. The parameter e/h, representing the ratio of the electromagnetic to hadronic response, is extracted from the data.

  12. Integration and testing of the DAQ system for the CMS Phase 1 pixel upgrade

    NASA Astrophysics Data System (ADS)

    Akgün, B.

    2017-02-01

    The CMS pixel detector phase 1 upgrade in 2017 requires an upgraded data acquisition (DAQ) system to accept higher data rates. A new DAQ system has been developed based on a combination of custom and standard μTCA parts. Custom mezzanines on FC7 AMCs [1] provide a front-end driver for readout, and a front-end controller for configuration, clock and trigger. The DAQ system is undergoing a series of integration tests including readout of the pilot pixel detector already installed in CMS, checkout of the phase 1 detector during its assembly, and testing with the CMS central DAQ. This paper describes the DAQ system, integration tests and results, and an outline of the activities up to commissioning the final system at CMS in 2017.

  13. Decisive test of color coherence in proton-nucleus collisions at the LHC.

    PubMed

    Bzdak, Adam; Skokov, Vladimir

    2013-11-01

    Proton-nucleus collisions (p+A) at LHC energies provide a rigorous test of color glass condensate (CGC), a model proposed to describe the high energy limit of quantum chromodynamics. In the CGC the average multiplicity of charged particles at midrapidity in p+A collisions depends logarithmically on the number of participants, N(part). In contrast, the wounded nucleon model of independent nucleon-nucleon scatterings, verified at RHIC energies, predicts that multiplicity in p+A depends linearly on N(part). We argue that the dependence of mean multiplicity on N(part) in p+A collisions at LHC energies can single out a model of particle production, thus offering a stringent test of the CGC and the wounded nucleon model. Based on this observation we propose a novel experimental test of color coherence in p+A collisions.

  14. ATLAS IBL Pixel Upgrade

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Atlas Ibl Collaboration

    2011-06-01

    The upgrade for ATLAS detector will undergo different phases towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on the pixel module is presented in this paper.

  15. Test results of the Chrysler upgraded automotive gas turbine engine: Initial design

    NASA Technical Reports Server (NTRS)

    Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.

    1981-01-01

    The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.

  16. Tests and Evaluation of Upgraded Flat-Plate and Waffle-Slab Floor Systems

    DTIC Science & Technology

    1983-12-01

    slab floor center portion. Therefore, in the case of Crisis Relocation Planning implementation involving the upgrading of floor systems, allowances...L. Huff managed the project. Mr. M. K. McVay planned and supervised the experiments and Mr. S. C. Woodson analyzed the test results and prepared this...Relocation Planning (CRP). CRP would call for the following actions by FEMA during a time of developing interna- tional crisis when a nuclear war is imminent

  17. Test results of the Chrysler upgraded automotive gas turbine engine: Initial design

    NASA Astrophysics Data System (ADS)

    Horvath, D.; Ribble, G. H., Jr.; Warren, E. L.; Wood, J. C.

    1981-07-01

    The upgraded engine as built to the original design was deficient in power and had excessive specific fuel consumption. A high instrumented version of the engine was tested to identify the sources of the engine problems. Analysis of the data shows the major problems to be low compressor and power turbine efficiency and excessive interstage duct losses. In addition, high HC and CO emission were measured at idle, and high NOx emissions at high energy speeds.

  18. Prototypes and system test stands for the Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Hasegawa, S.

    2016-09-01

    The CMS pixel phase-1 upgrade project replaces the current pixel detector with an upgraded system with faster readout electronics during the extended year-end technical stop of 2016/2017. New electronics prototypes for the system have been developed, and tests in a realistic environment for a comprehensive evaluation are needed. A full readout test stand with either the same hardware as used in the current CMS pixel detector or the latest prototypes of upgrade electronics has been built. The setup enables the observation and investigation of a jitter increase in the data line associated with trigger rate increases. This effect is due to the way in which the clock and trigger distribution is implemented in CMS. A new prototype of the electronics with a PLL based on a voltage controlled quartz crystal oscillator (QPLL), which works as jitter filter, in the clock distribution path was produced. With the test stand, it was confirmed that the jitter increase is not seen with the prototype, and also good performance was confirmed at the expected detector operation temperature (-20 °C).

  19. Status of 11 T 2-in-1 Nb$_3$Sn Dipole Development for LHC

    SciTech Connect

    Zlobin, Alexander; Andreev, Nicolai; Apollinari, Giorgio; Barzi, Emanuela; Bossert, Rodger; Buehler, Marc; Chlachidze, Guram; DiMarco, Joseph; Nobrega, Alfred; Novitski, Igor; Turrioni, Daniele; Velev, Gueorgui; Auchmann, Bernhard; Karppinen, Mikko; Rossi, Lucio; Smekens, David

    2014-07-01

    The LHC upgrade plans foresee installation of additional collimators in the LHC lattice. To provide the necessary longitudinal space for these collimators, shorter and stronger Nb3Sn dipoles compatible with the LHC lattice and main systems could be used. This paper describes the design and status of the twin-aperture Nb3Sn dipole being developed by FNAL and CERN for the LHC, and reports test results of two collared coils to be used in the first 1 m long twin-aperture dipole model.

  20. Vibration Response Testing of the CEBAF 12GeV Upgrade Cryomodules

    SciTech Connect

    Davis, G. Kirk; Matalevich, Joseph R.; Wiseman, Mark A.; Powers, Thomas J.

    2012-09-01

    The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modelled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and latest results from this multi-stage process will be reviewed.

  1. Radiation tests of real-sized prototype RPCs for the Phase-2 Upgrade of the CMS Muon System

    NASA Astrophysics Data System (ADS)

    Lee, K. S.; Cho, S. W.; Choi, S. Y.; Hong, B.; Go, Y.; Kang, M. H.; Lim, J. H.; Park, S. K.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumarl, R.; Metha, A.; Singh, J.; Ahmad, A.; Ahmad, M.; Ahmed, W.; Asghar, M. I.; Awan, I. M.; Hassan, Q.; Hoorani, H.; Khan, W. A.; Khurshid, T.; Muhammad, S.; Shah, M. A.; Shahzad, H.; Kim, M. S.; Goutzvitz, M.; Grenier, G.; Lagarde, F.; Laktineh, I. B.; Carpinteyro Bernardino, S.; Uribe Estrada, C.; Pedraza, I.; Severiano, C. B.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Orso, I.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-08-01

    We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with 137Cs sources providing maximum gamma rates of about 1.5 kHz cm-2. For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).

  2. Testing the littlest Higgs model with T-parity at the LHC Run-II

    NASA Astrophysics Data System (ADS)

    Cao, Qing-Hong; Chen, Chuan-Ren; Liu, Yandong

    2016-09-01

    We study the littlest Higgs model with T-parity (LHT) in the process of p p →WH+WH-→W+W-AHAH at the 14 TeV LHC. With the W -jet tagging technique, we demonstrate that the bulk of the model parameter space can be probed at the level of more than 5 σ in the signature of two fat W jets plus large missing energy. Furthermore, we propose a novel strategy of measuring the principle parameter f that is crucial to test the LHT model and to fix mass spectrum, including the dark matter particle. Our proposal can be easily incorporated into the current experimental program of diboson searches at the LHC Run-II.

  3. Testing the Technicolor Interpretation of the CDF Dijet Excess at the 8-TeV LHC

    SciTech Connect

    Eichten, Estia; Lane, Kenneth; Martin, Adam; Pilon, Eric

    2012-10-01

    Under the assumption that the dijet excess seen by the CDF Collaboration near 150 Gev in Wjj production is due to the lightest technipion of the low-scale technicolor process $\\rho_T \\rightarrow W \\pi_T$, we study its observability in LHC detectors for 8 TeV collisions and 20 inverse femtobarns of integrated luminosity. We describe interesting new kinematic tests that can provide independent confirmation of this LSTC hypothesis. We show that cuts similar to those employed by CDF, and recently by ATLAS, cannot confirm the dijet signal. We propose cuts tailored to the LSTC hypothesis and its backgrounds at the LHC that may reveal $\\rho_T \\rightarrow \\ell\

  4. ATLAS Detector Upgrade Prospects

    NASA Astrophysics Data System (ADS)

    Dobre, M.; ATLAS Collaboration

    2017-01-01

    After the successful operation at the centre-of-mass energies of 7 and 8 TeV in 2010-2012, the LHC was ramped up and successfully took data at the centre-of-mass energies of 13 TeV in 2015 and 2016. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, which will deliver of the order of five times the LHC nominal instantaneous luminosity along with luminosity levelling. The ultimate goal is to extend the dataset from about few hundred fb ‑1 expected for LHC running by the end of 2018 to 3000 fb ‑1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extensions to larger pseudorapidity, particularly in tracking and muon systems. This report summarizes various improvements to the ATLAS detector required to cope with the anticipated evolution of the LHC luminosity during this decade and the next. A brief overview is also given on physics prospects with a pp centre-of-mass energy of 14 TeV.

  5. Evaluation of Young’s modulus of MgB2 filaments in composite wires for the superconducting links for the high-luminosity LHC upgrade

    NASA Astrophysics Data System (ADS)

    Sugano, Michinaka; Ballarino, Amalia; Bartova, Barbora; Bjoerstad, Roger; Gerardin, Alexandre; Scheuerlein, Christian

    2016-02-01

    MgB2 wire is a promising superconductor for the superconducting links for the high-luminosity upgrade of the large Hadron collider at CERN. The mechanical properties of MgB2 must be fully quantified for the cable design, and in this study, we evaluate the Young’s modulus of MgB2 filaments in wires with a practical level of critical current. The Young’s moduli of MgB2 filaments by two different processes, in situ and ex situ, were compared. Two different evaluation methods were applied to an in situ MgB2 wire, a single-fiber tensile test and a tensile test after removing Monel. In addition, the Young’s modulus of the few-micron-thick Nb-Ni reaction layer in an ex situ processed wire was evaluated using a nanoindentation testing technique to improve the accuracy of analysis based on the rule of mixtures. The Young’s moduli of the in situ and ex situ MgB2 wires were in the range of 76-97 GPa and no distinct difference depending on the fabrication process was found.

  6. Universality test of the charged Higgs boson couplings at the LHC and at B factories

    SciTech Connect

    Cornell, Alan S.; Deandrea, Aldo; Gaur, Naveen; Itoh, Hideo; Klasen, Michael; Okada, Yasuhiro

    2010-06-01

    Many extensions of the standard model of particle physics predict the existence of charged Higgs bosons with substantial couplings to standard model particles, which would render them observable both directly at the LHC and indirectly at B-factories. For example, the charged Higgs boson couplings to fermions in two Higgs doublet models of type II are proportional to the ratio of the two Higgs doublet vacuum expectation values (tan{beta}) and fermionic mass factors and could thus be substantial at large tan{beta} and/or for heavy fermions. In this work we perform a model-independent study of the charged Higgs boson couplings at the LHC and at B-factories for large values of tan{beta}. We have shown that at high luminosity it is possible to measure the couplings of a charged Higgs boson to the third generation of quarks up to an accuracy of 10%. We further argue that by combining the possible measurements of the LHC and the B-factories, it is possible to perform a universality test of charged Higgs boson couplings to quarks.

  7. Upgrading UNLV's ASTM E477 test facility to meet the current requirements of ASTM E477

    NASA Astrophysics Data System (ADS)

    Fojas, Ronn Reinier

    A by-product of Heating, Ventilation, and Air-conditioning (HVAC) systems is noise that is produced by fans, compressors, and other related equipments and the noises from the turbulence that is created by moving air. Sometimes, it is impractical to modify the sources of the noise, which requires designers to modify the path of the noise, the duct system. These modifications might include installing an in-duct silencer or acoustical lining on the inside walls of the ducts. The testing and the precise quantification of the performance of these silencers and duct linings are necessary for any designer to be able to make the correct modifications to the ventilation system. The ASTM E477 code calls for strict standardization of the testing of such noise attenuation devices. The ASTM E477 test facility used by the Center for Mechanical & Environmental Systems Technology (CMEST) at UNLV was first constructed in 1991 and required upgrades to meet the newer revisions of the ASTM code. This study includes making modifications to the facility (1) to increase sound input, (2) reduce sound leakage, and (3) to integrate the measurement systems. These upgrades will bring the facility into compliance with the current version of the ASTM E477 test standard.

  8. Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC

    SciTech Connect

    Pan, H.; Felice, H.; Cheng, D. W.; Anderssen, E.; Ambrosio, G.; Perez, J. C.; Juchno, M.; Ferracin, P.; Prestemon, S. O.

    2016-01-18

    In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN. In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.

  9. Scenarios for sLHC and vLHC

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Zimmermann, F.

    2008-03-01

    The projected lifetime of the LHC low-beta quadrupoles and evolution of the statistical error halving time call for an LHC luminosity upgrade by the middle of the coming decade. In the framework of the EU CARE-HHH network, two scenarios have been developed for increasing the LHC peak luminosity by a factor 10, to 10 cms ("sLHC"). Both scenarios imply a rebuilding of the high-luminosity interaction regions (IRs) in combination with a consistent change of beam parameters. However, their respective features, bunch structures, IR layouts, merits and challenges differ substantially. In either scenario luminosity leveling during a store would be advantageous for the physics experiments. Longer-term R&D efforts are devoted to a higher-energy hadron collider ("vLHC"), which could be realized on a green field or as a later and more radical LHC upgrade.

  10. Automation and Upgrade of Thermal System for Large 38-Year Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38-years was one of the driving design factors for the size of the equipment. The installation was completed on-time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  11. Automation and Upgrade of Thermal System for Large 38-Year-Young Test Facility

    NASA Technical Reports Server (NTRS)

    Webb, Andrew T.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's Space Environment Simulator (SES) facility has been improved by the upgrade of its thermal control hardware and software. This paper describes the preliminary design process, funding constraints, and the proposed enhancements as well as the installation details, the testing difficulties, and the overall benefits realized from this upgrade. The preliminary design process was discussed in a paper presented in October 1996 and will be recapped in this paper to provide background and comparison to actual product. Structuring the procurement process to match the funding constraints allowed Goddard to enhance its capabilities in an environment of reduced budgets. The installation of the new system into a location that has been occupied for over 38 years was one of the driving design factors for the size of the equipment. The installation was completed on time and under budget. The tuning of the automatic sequences for the new thermal system to the existing shroud system required more time and ultimately presented some setbacks to the vendor and the final completion of the system. However, the end product and its benefits to Goddard's thermal vacuum test portfolio will carry the usefulness of this facility well into the next century.

  12. Field tests prove microscale NRU to upgrade low-btu gas

    USGS Publications Warehouse

    Bhattacharya, S.; David, Newell K.; Lynn, Watney W.; Sigel, M.

    2009-01-01

    The Kansas Geological Survey (University of Kansas) and the American Energies Corp., Wichita, have conducted field tests of a scalable, microscale, N2-rejection unit (NRU) to demonstrate its effectiveness to upgrade low-pressure ((<100 psig) and low-volume (=100 Mcfd) low-btu gas to pipeline quality. The tests aim to develop inexpensive NRU technology, which is designed for low- volume, low-pressure gas wells, to significantly increase the contribution of marginal low-btu gas to the gas supply of the US. The NRU uses two towers and uses three stages, namely, adsorption under pressure, venting to 2 psig, and desorption under vacuum. The modular design allows additional sets of towers to be added or removed to handle increases or decreases in feed volumes. The field tests also reveal that a strong compressor, which is capable of evacuating the tower (volume) as quickly as possible, should be employed to reduce process cycle time and increase plant throughput.

  13. Modification and upgrade of AzRISE/TEP solar photovoltaic test yard

    NASA Astrophysics Data System (ADS)

    Bennett, Whit; Fishgold, Asher; Lai, Teh; Elwood, Teri; Potter, Barrett G.; Simmons-Potter, Kelly

    2016-09-01

    The University of Arizona AzRISE (Arizona Research Institute for Solar Energy) and Tucson Electric Power solar test yard is currently undergoing renovations to upgrade and standardize the data acquisition capabilities throughout the yard. Test yard improvements have enabled increased data collection reliability through state-of-the-art and environmentallyrobust data logging and real-time analysis. Enhanced capabilities include 10 msec max. data resolution, precision PV backside temperature monitoring of both individual and strings of modules, measurement of both AC and DC outputs as well as GHI and POA irradiance, active data backup to eliminate data intermittency, and robust Ethernet connectivity for data collection. An on-site weather station, provides wind speed and direction, relative humidity, and air temperature data. The information collected is accessed remotely via web server and includes raw performance and environmental conditions as well as extracted figures of performance for systems under test. Complementing the UA's existing accelerated environmental-testing chamber, the new test yard acquisition capabilities have enabled high fidelity system and sub-system-level operational testing under a range of field-level test conditions. The combined facilities, thus, provide a full-spectrum testing resource for photovoltaic performance and degradation analysis. Specific measurement characteristics and sample data collected from a polysilicon module test string are utilized to illustrate test yard capabilities.

  14. Upgrading and extended testing of the MSC integrated water and waste management hardware

    NASA Technical Reports Server (NTRS)

    Bambenek, R. A.; Nuccio, P. P.; Hurley, T. L.; Jasionowski, W. J.

    1972-01-01

    The results are presented of upgrading and testing an integrated water and waste management system, which uses the compression distillation, reverse osmosis, adsorption filtration and ion-exchange processes to recover potable water from urine, flush water and used wash water. Also included is the development of techniques for extending the useful biological life of biological filters, activated carbon filters and ion-exchange resins to at least 30 days, and presterilizing ion-exchange resins so that sterile water can be recovered from waste water. A wide variety of reverse osmosos materials, surfactants and germicides were experimentally evaluated to determine the best combination for a wash water subsystem. Full-scale module tests with real wash water demonstrated that surface fouling is a major problem.

  15. HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB

    SciTech Connect

    S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

    2012-07-01

    CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

  16. Design, Engineering, and Testing for the Alcator C-Mod Outer Divertor Upgrade

    NASA Astrophysics Data System (ADS)

    Harrison, S.; Vieira, R.; Lipschultz, B.; Ellis, R.; Karnes, D.; Doody, J.; Zhou, L.; Titus, P.; Zhang, H.; Beck, W.; Granetz, R.

    2012-10-01

    Alcator C-mod's major outer divertor upgrade will enable significant advances in our understanding of reactor relevant physics and operations. Two primary features of the new outer divertor are its toroidally continuous design (electrical and mechanical), and ability to be operated up to or independently heated to 600 C. Full control of the divertor PFC temperature from ambient vessel temperature to 600 C, will enable new and important tokamak research into the temperature dependence of fuel retention, PFC deposition and erosion, and divertor recycling. Significant design, analysis, and testing is underway to complete this important and challenging upgrade, which will provide valuable information for ITER and future reactors. Among other aspects of the innovative approach, the divertor plate supports, halo current shunts, and thermal shield assemblies will be discussed. The divertor supports enable pure radial motion of the divertor ring as it expands thermally and robustness to massive disruption induced electro-mechanical loads. Halo current shunts conduct 400kA in an 8T magnetic field and allow for divertor displacement relative to the vessel. Thermal shielding significantly reduces radiation and conduction to surrounding vessel structures.

  17. Upgrade of the BATMAN test facility for H{sup −} source development

    SciTech Connect

    Heinemann, B. Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-08

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called “Large Area Grid” (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  18. Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade

    SciTech Connect

    Reilly, A. V.; Bass, T.; Burrill, A.; Davis, G. K.; Marhauser, F.; Reece, C. E.; Stirbet, M.

    2011-07-01

    Eighty new 7-cell, low-loss cell-shaped cavities are required for the CEBAF 12 GeV Upgrade project. In addition to ten pre-production units fabricated at JLab, the full set of commercially-produced cavities have been delivered. An efficient processing routine, which includes a controlled 30 micron electropolish, has been established to transform these cavities into qualified 8-cavity strings. This work began in 2010 and will run through the end of 2011. The realized cavity performance consistently exceeds project requirements and also the maximum useful gradient in CEBAF: 25 MV/m. We will describe the cavity processing and preparation protocols and summarize test results obtained to date.

  19. RICH upgrade: Current status and future perspectives

    NASA Astrophysics Data System (ADS)

    Pistone, A.; LHCb RICH Collaboration

    2016-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The second long shutdown of the LHC is currently scheduled to begin in 2018. During this period the LHCb experiment with all its sub-detectors will be upgraded in order to run at an instantaneous luminosity of 2 × 10^{33} cm-2s-1 and to read out data at a rate of 40MHz into a flexible software-based trigger. The Ring Imaging CHerenkov (RICH) system will require new photon detectors and modifications of the optics of the upstream detector. Tests of the prototype of the smallest constituent of the new RICH system have been performed during testbeam sessions at the Test Beam Facility SPS North Area (CERN) in Autumn 2014.

  20. Mechanical studies towards a silicon micro-strip super module for the ATLAS inner detector upgrade at the high luminosity LHC

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Cadoux, F.; Clark, A.; Endo, M.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Hanagaki, K.; Hara, K.; Iacobucci, G.; Ikegami, Y.; Jinnouchi, O.; La Marra, D.; Nakamura, K.; Nishimura, R.; Perrin, E.; Seez, W.; Takubo, Y.; Takashima, R.; Terada, S.; Todome, K.; Unno, Y.; Weber, M.

    2014-04-01

    It is expected that after several years of data-taking, the Large Hadron Collider (LHC) physics programme will be extended to the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm-2 s-1. For the general-purpose ATLAS experiment at the LHC, a complete replacement of its internal tracking detector will be necessary, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module (SM) is an integration concept proposed for the barrel strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules (DSM) are assembled into a low-mass local support (LS) structure. Mechanical aspects of the proposed LS structure are described.

  1. Construction and first beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2017-03-01

    The High Granularity Calorimeter (HGCAL) is the technology choice of the CMS collaboration for the endcap calorimetry upgrade planned to cope with the harsh radiation and pileup environment at the High Luminosity-LHC . The HGCAL is realized as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–01. cm2 interspersed with absorbers made from tungsten and copper to form a highly compact and granular device. Prototype modules, based on hexagonal silicon pad sensors, with 128 channels, have been constructed and tested in beams at FNAL and at CERN. The modules include many of the features required for this challenging detector, including a PCB glued directly to the sensor, using through-hole wire-bonding for signal readout and 5 mm spacing between layers—including the front-end electronics and all services. Tests in 2016 have used an existing front-end chip —Skiroc2 (designed for the CALICE experiment for ILC). We present results from first tests of these modules both in the laboratory and with beams of electrons, pions and protons, including noise performance, calibration with mips and electron signals.

  2. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    DOE PAGES

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; ...

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272more » is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).« less

  3. Development of COTS ADC SEE Test System for the ATLAS LArCalorimeter Upgrade

    SciTech Connect

    Hu, Xue -Ye; Chen, Hu -Cheng; Chen, Kai; Mead, Joseph; Liu, Shu -Bin; An, Qi

    2014-12-01

    Radiation-tolerant, high speed, high density and low power commercial off-the-shelf (COTS) analog-to-digital converters (ADCs) are planned to be used in the upgrade to the Liquid Argon (LAr) calorimeter front end (FE) trigger readout electronics. Total ionization dose (TID) and single event effect (SEE) are two important radiation effects which need to be characterized on COTS ADCs. In our initial TID test, Texas Instruments (TI) ADS5272 was identified to be the top performer after screening a total 17 COTS ADCs from different manufacturers with dynamic range and sampling rate meeting the requirements of the FE electronics. Another interesting feature of ADS5272 is its 6.5 clock cycles latency, which is the shortest among the 17 candidates. Based on the TID performance, we have designed a SEE evaluation system for ADS5272, which allows us to further assess its radiation tolerance. In this paper, we present a detailed design of ADS5272 SEE evaluation system and show the effectiveness of this system while evaluating ADS5272 SEE characteristics in multiple irradiation tests. According to TID and SEE test results, ADS5272 was chosen to be implemented in the full-size LAr Trigger Digitizer Board (LTDB) demonstrator, which will be installed on ATLAS calorimeter during the 2014 Long Shutdown 1 (LS1).

  4. Design, simulation, fabrication, and preliminary tests of 3D CMS pixel detectors for the super-LHC

    SciTech Connect

    Koybasi, Ozhan; Bortoletto, Daniela; Hansen, Thor-Erik; Kok, Angela; Hansen, Trond Andreas; Lietaer, Nicolas; Jensen, Geir Uri; Summanwar, Anand; Bolla, Gino; Kwan, Simon Wing Lok; /Fermilab

    2010-01-01

    The Super-LHC upgrade puts strong demands on the radiation hardness of the innermost tracking detectors of the CMS, which cannot be fulfilled with any conventional planar detector design. The so-called 3D detector architectures, which feature columnar electrodes passing through the substrate thickness, are under investigation as a potential solution for the closest operation points to the beams, where the radiation fluence is estimated to reach 10{sup 16} n{sub eq}/cm{sup 2}. Two different 3D detector designs with CMS pixel readout electronics are being developed and evaluated for their advantages and drawbacks. The fabrication of full-3D active edge CMS pixel devices with p-type substrate has been successfully completed at SINTEF. In this paper, we study the expected post-irradiation behaviors of these devices with simulations and, after a brief description of their fabrication, we report the first leakage current measurement results as performed on wafer.

  5. Common origin of fermion mixing and geometrical CP violation, and its test through Higgs physics at the LHC.

    PubMed

    Bhattacharyya, Gautam; Varzielas, Ivo de Medeiros; Leser, Philipp

    2012-12-14

    We construct for the first time a flavor model, based on the smallest discrete symmetry Δ(27) that implements spontaneous CP violation with a complex phase of geometric origin, which can actually reproduce all quark masses and mixing data. We show that its scalar sector has exotic properties that can be tested at the LHC.

  6. Upgrade of the GRESS (test version D) precompiler to allow triply-dimensioned arrays

    SciTech Connect

    Horwedel, J.E.; Pin, F.G.

    1986-12-01

    GRESS is a FORTRAN precompiler and run time library which automatically processes computer models and adds derivative-taking capabilities to the normal calculated results. The GRESS system is under development at ORNL and work is proceeding in upgrading test versions of the precompiler to allow processing by GRESS of most of the ANSI X3.9-1978 FORTRAN syntax. Heretofore, a major limitation has been the inability of GRESS to process arrays with more than two dimensions. Consequently, a significant amount of human effort was required to convert three- and higher-dimensional arrays into two-dimensional arrays for processing with GRESS. This report describes the addition of ten operation codes to the GRESS precompiler and run time library to allow application to FORTRAN programs with three-dimensional arrays. The new operation codes were tested on a sample problem. A comparison of CPU time is made for sample problems run on a VAX 8600 computer with one-, two-, and three-dimensional arrays. It is recommended that GRESS be further modified to accommodate higher-dimensional arrays up to the ANSI X3.9-1978 limit of seven dimensions.

  7. Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation

    SciTech Connect

    Redaelli, S.; Bertarelli, A.; Bruce, R.; Perini, D.; Rossi, A.; Salvachua, B.; Stancari, G.; Valishev, A.

    2015-06-01

    Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes are also discussed.

  8. Distributed Russian Tier-2 - RDIG in Simulation and Analysis of Alice Data From LHC

    NASA Astrophysics Data System (ADS)

    Bogdanov, A.; Jancurova, L.; Kiryanov, A.; Kotlyar, V.; Mitsyn, V.; Lyublev, Y.; Ryabinkin, E.; Shabratova, G.; Smirnov, S.; Stepanova, L.; Urazmetov, W.; Zarochentsev, A.

    2011-12-01

    On the threshold of LHC data there were intensive test and upgrade of GRID application software for all LHC experiments at the top of the modern LCG middleware (gLite). The update of such software for ALICE experiment at LHC, AliEn[1] had provided stable and secure operation of sites developing LHC data. The activity of Russian RDIG (Russian Data Intensive GRID) computer federation which is the distributed Tier-2 centre are devoted to simulation and analysis of LHC data in accordance with the ALICE computing model [2]. Eight sites of this federation interesting in ALICE activity upgrade their middle ware in accordance with requirements of ALICE computing what ensured success of MC production and end-user analysis activity at all eight sites. The result of occupancy and efficiency of each site in the time of LHC operation will be presented in the report. The outline the results of CPU and disk space usage at RDIG sites for the data simulation and analysis of first LHC data from the exposition of ALICE detector [3] will be presented as well. There will be presented also the information about usage of parallel analysis facility based on PROOF [4].

  9. Upgrade of the SLAC SLED II Pulse Compression System Based on Recent High Power Tests

    SciTech Connect

    Vlieks, A.E.; Fowkes, W.R.; Loewen, R.J.; Tantawi, S.G.; /SLAC

    2011-09-06

    In the Next Linear Collider (NLC) it is expected that the high power rf components be able to handle peak power levels in excess of 400 MW. We present recent results of high power tests designed to investigate the RF breakdown limits of the X-band pulse compression system used at SLAC. (SLED-II). Results of these tests show that both the TE{sub 01}-TE{sub 10} mode converter and the 4-port hybrid have a maximum useful power limit of 220-250 MW. Based on these tests, modifications of these components have been undertaken to improve their peak field handling capability. Results of these modifications will be presented. As part of an international effort to develop a new 0.5-1.5 TeV electron-positron linear collider for the 21st century, SLAC has been working towards a design, referred to as 'The Next Linear Collider' (NLC), which will operate at 11.424 GHz and utilize 50-75 MW klystrons as rf power sources. One of the major challenges in this design, or any other design, is how to generate and efficiently transport extremely high rf power from a source to an accelerator structure. SLAC has been investigating various methods of 'pulse compressing' a relatively wide rf pulse ({ge} 1 {mu}s) from a klystron into a narrower, but more intense, pulse. Currently a SLED-II pulse compression scheme is being used at SLAC in the NLC Test Accelerator (NLCTA) and in the Accelerator Structures Test Area (ASTA) to provide high rf power for accelerator and component testing. In ASTA, a 1.05 {mu}s pulse from a 50 MW klystron was successfully pulse compressed to 205 MW with a pulse width of 150 ns. Since operation in NLC will require generating and transporting rf power in excess of 400 MW it was decided to test the breakdown limits of the SLED-II rf components in ASTA with rf power up to the maximum available of 400 MW. This required the combining of power from two 50 MW klystrons and feeding the summed power into the SLED-II pulse compressor. Results from this experiment demonstrated

  10. Novel silicon n-on-p edgeless planar pixel sensors for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2013-12-01

    In view of the LHC upgrade phases towards HL-LHC, the ATLAS experiment plans to upgrade the inner detector with an all-silicon system. The n-on-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness. The edgeless technology would allow for enlarging the area instrumented with pixel detectors. We report on the development of novel n-on-p edgeless planar pixel sensors fabricated at FBK (Trento, Italy), making use of the active edge concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology and fabrication process, we present device simulations (pre- and post-irradiation) performed for different sensor configurations. First preliminary results obtained with the test-structures of the production are shown.

  11. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Kushpil, Svetlana; ALICE Collaboration

    2016-02-01

    ALICE detector was constructed to study the properties of hot and dense hadronic matter formed in relativistic nuclear collisions. During the second long LHC shutdown in 2019-2020, the collaboration plans to upgrade the current vertex detector, the Inner Tracking System (ITS), in order to increase the reconstruction accuracy of secondary vertices and to lower the threshold of particle transverse momentum measurement. The upgrade strategy of ITS is based on the application of new Monolithic Active Pixel Sensors (MAPS) designed in 0.18 μm CMOS technology. The 50 μm thick chip consists of a single silicon die incorporating a 0.18 μm high-resistivity silicon epitaxial layer (sensor active volume) and matrix of charge collection diodes (pixels) with readout electronics. Radiation hardness of the upgraded ITS is one of the crucial moments in the overall performance of the system. A wide set of MAPS structures with different read-out circuits was produced and is being studied by the ALICE collaboration to optimize the pixel sensor functionality. An overview of the ALICE ITS upgrade and the expected performance improvement will be presented together with selected results from a campaign that includes several irradiation and beam tests.

  12. Status of the CMS Phase I pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2016-09-01

    A new pixel detector for the CMS experiment is being built, owing to the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking while featuring a significantly reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and comprises a low-threshold comparator. These improvements allow the new pixel detector to sustain and improve the efficiency of the current pixel tracker at the increased requirements imposed by high luminosities and pile-up. This contribution gives an overview of the design of the upgraded pixel detector and the status of the upgrade project, and presents test beam performance measurements of the production read-out chip.

  13. High voltage multiplexing for the ATLAS Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Villani, E. G.; Phillips, P.; Matheson, J.; Lynn, D.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.

    2014-01-01

    The increased luminosity of the HL-LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation, stemming from the otherwise too high occupancy. Among the many technological challenges facing the ATLAS Tracker Upgrade there is more an efficient power distribution and HV biasing of the sensors. The solution adopted in the current ATLAS detector uses one HV conductor for each sensor, which makes it easy to disable malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. A number of approaches, including the use of the same HV line to bias several sensors and suitable HV switches, along with their control circuitry, are currently being investigated for this purpose. The proposed solutions along with latest test results and measurements will be described.

  14. The LHCb Vertex Locator (VELO) Pixel Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Buchanan, E.

    2017-01-01

    The LHCb experiment is designed to perform high-precision measurements of CP violation and the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. There is a planned upgrade during Long Shutdown 2 (LS2), expected in 2019, which will allow the detector to run at higher luminosities by transforming the entire readout to a trigger-less system. This will include a substantial upgrade of the Vertex Locator (VELO), the silicon tracker that surrounds the LHCb interaction region. The VELO is moving from silicon strip technology to hybrid pixel sensors, where silicon sensors are bonded to VeloPix ASICs. Sensor prototypes have undergone rigorous testing using the Timepix3 Telescope at the SPS, CERN. The main components of the upgrade are summarised and testbeam results presented.

  15. Upgrade of the ATLAS Tile Calorimeter Electronics

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Tile Calorimeter System, ATLAS

    2015-02-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (1034 cm-2s-1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year.

  16. Fabrication and Testing Status of CEBAF 12 GeV Upgrade Cavities

    SciTech Connect

    Marhauser, F; Davis, G K; Forehand, D; Grenoble, C; Hogan, J; Overton, R B; Reilly, A V; Rimmer, R A; Stirbet, M

    2011-09-01

    The 12 GeV upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) is under way. All cavities have been built by industry and are presently undergoing post-processing and final low and high power qualification before cryomodule assembly. The status is reported including fabrication-related experiences, observations and issues throughout production, post-processing and qualification.

  17. High-field Magnet Development toward the High Luminosity LHC

    SciTech Connect

    Apollinari, Giorgio

    2014-07-01

    The upcoming Luminosity upgrade of the LHC (HL-LHC) will rely on the use of Accelerator Quality Nb3Sn Magnets which have been the focus of an intense R&D effort in the last decade. This contribution will describe the R&D and results of Nb3Sn Accelerator Quality High Field Magnets development efforts, with emphasis on the activities considered for the HL-LHC upgrades.

  18. Upgrading and testing program for narrow band high resolution planetary IR imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Wattson, R. B.; Rappaport, S.

    1977-01-01

    An imaging spectrometer, intended primarily for observations of the outer planets, which utilizes an acoustically tuned optical filter (ATOF) and a charge coupled device (CCD) television camera was modified to improve spatial resolution and sensitivity. The upgraded instrument was a spatial resolving power of approximately 1 arc second, as defined by an f/7 beam at the CCD position and it has this resolution over the 50 arc second field of view. Less vignetting occurs and sensitivity is four times greater. The spectral resolution of 15 A over the wavelength interval 6500 A - 11,000 A is unchanged. Mechanical utility has been increased by the use of a honeycomb optical table, mechanically rigid yet adjustable optical component mounts, and a camera focus translation stage. The upgraded instrument was used to observe Venus and Saturn.

  19. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  20. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  1. Testing of the new tuner design for the CEBAF 12 GeV upgrade SRF cavities

    SciTech Connect

    Edward Daly; G. Davis; William Hicks

    2005-05-01

    The new tuner design for the 12 GeV Upgrade SRF cavities consists of a coarse mechanical tuner and a fine piezoelectric tuner. The mechanism provides a 30:1 mechanical advantage, is pre-loaded at room temperature and tunes the cavities in tension only. All of the components are located in the insulating vacuum space and attached to the helium vessel, including the motor, harmonic drive and piezoelectric actuators. The requirements and detailed design are presented. Measurements of range and resolution of the coarse tuner are presented and discussed.

  2. Status of the 11 T Nb$_{3}$Sn Dipole Project for the LHC

    SciTech Connect

    Savary, F.; et al.

    2015-01-01

    The planned upgrade of the LHC collimation system includes additional collimators in the LHC lattice. The longitudinal space for the collimators could be obtained by replacing some LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. A joint development program with the goal of building a 5.5 m long two-in-one aperture Nb_3Sn dipole prototype suitable for installation in the LHC is being conducted by FNAL and CERN magnet groups. As part of the first phase of the program, 1 m long and 2 m long single aperture models are being built and tested, and the collared coils from these magnets will be assembled and tested in two-in-one configuration in both laboratories. In parallel with the short model magnet activities, the work has started on the production line in view of the scale-up to 5.5 m long prototype magnet. The development of the final cryo-assembly comprising two 5.5 m long 11 T dipole cold masses and the warm collimator in the middle, fully compatible with the LHC main systems and the existing machine interfaces, has also started at CERN. This paper summarizes the progress made at CERN and FNAL towards the construction of 5.5 m long 11 T Nb_3Sn dipole prototype and the present status of the activities related to the integration of the 11 T dipole and collimator in the LHC.

  3. Testing the CP-violating MSSM in stau decays at the LHC and ILC

    NASA Astrophysics Data System (ADS)

    Dreiner, Herbi; Kittel, Olaf; Kulkarni, Suchita; Marold, Anja

    2011-05-01

    We study CP violation in the two-body decay of a scalar tau into a neutralino and a tau, which should be probed at the LHC and ILC. From the normal tau polarization, a CP asymmetry is defined which is sensitive to the CP phases of the trilinear scalar coupling parameter Aτ, the gaugino mass parameter M1, and the Higgsino mass parameter μ, in the stau-neutralino sector of the minimal supersymmetric standard model. Asymmetries of more than 70% are obtained in scenarios with strong stau mixing. As a result, detectable CP asymmetries in stau decays at the LHC are found, motivating further detailed experimental studies for probing the supersymmetry CP phases.

  4. LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Hennessy, Karol

    2017-02-01

    The upgrade of the LHCb experiment, scheduled for LHC Run-III, scheduled to start in 2021, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm enabling the detector to run at luminosities of 2×1033 cm-2 s-1. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The upgraded VELO will provide fast pattern recognition and track reconstruction to the software trigger. The silicon pixel sensors have 55×55 μm2 pitch, and are read out by the VeloPix ASIC, from the Timepix/Medipix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate of more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The foil will be manufactured through milling and possibly thinned further by chemical etching. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates. The current status of the VELO upgrade is described and latest results from operation of irradiated sensor assemblies are presented.

  5. Upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Leflat, A.

    2014-08-01

    The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz. All data reduction algorithms will be executed in a high-level software farm, with access to all event information. This will enable the detector to run at luminosities of 1-2 × 1033/cm2/s and probe physics beyond the Standard Model in the heavy sector with unprecedented precision. The upgraded VELO must be low mass, radiation hard and vacuum compatible. It must be capable of fast pattern recognition and track reconstruction and will be required to drive data to the outside world at speeds of up to 2.5 Tbit/s. This challenge is being met with a new Vertex Locator (VELO) design based on hybrid pixel detectors positioned to within 5 mm of the LHC colliding beams. The sensors have 55 × 55 μm square pixels and the VELOPix ASIC which is being developed for the readout is based on the Timepix/Medipix family of chips. The hottest ASIC will have to cope with pixel hit rates of up to 900 MHz. The material budget will be optimised with the use of evaporative CO2 coolant circulating in microchannels within a thin silicon substrate. Microchannel cooling brings many advantages: very efficient heat transfer with almost no temperature gradients across the module, no CTE mismatch with silicon components, and low material contribution. This is a breakthrough technology being developed for LHCb. LHCb is also focussing effort on the construction of a lightweight foil to separate the primary and secondary LHC vacua, the development of high speed cables and radiation qualification of the module. The 40 MHz readout will also bring significant conceptual changes to the way in which the upgrade trigger is operated. Work is in progress to incorporate momentum and impact parameter information into the trigger at the earliest possible stage, using the fast pattern recognition capabilities of the upgraded detector. The current status of the VELO upgrade will

  6. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    SciTech Connect

    Fair, Ruben J.; Ghoshal, Probir K.; Bruhwel, Krister B.; Kashy, David H.; Machie, Danny; Bachimanchi, Ramakrishna; Taylor, William; Fischer, John W.; Legg, Robert A.; Powers, Jacob R.

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  7. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  8. Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC

    NASA Astrophysics Data System (ADS)

    Aparicio, L.; Cerdeño, D. G.; Ibáñez, L. E.

    2008-07-01

    We study the general patterns of SUSY-breaking soft terms arising under the assumption of Kahler moduli dominated SUSY-breaking in string theory models. Insisting that all MSSM gauginos get masses at leading order and that the top Yukawa coupling is of order the gauge coupling constant identifies the class of viable models. These are models in which the SM fields live either in the bulk or at the intersection of local sets of Type IIB D7-branes or their F-theory relatives. General arguments allow us to compute the dependence of the Kahler metrics of MSSM fields on the local Kahler modulus of the brane configuration in the large moduli approximation. We illustrate this study in the case of toroidal/orbifold orientifolds but discuss how the findings generalize to the F-theory case which is more naturally compatible with coupling unification. Only three types of 7-brane configurations are possible, leading each of them to very constrained patterns of soft terms for the MSSM. We study their consistency with radiative electroweak symmetry breaking and other phenomenological constraints. We find that essentially only the configuration corresponding to intersecting 7-branes is compatible with all present experimental constraints and the desired abundance of neutralino dark matter. The obtained MSSM spectrum is very characteristic and could be tested at LHC. We also study the LHC reach for the discovery of this type of SUSY particle spectra.

  9. The Fast Interaction Trigger Detector of ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Lambert, Keenan; Brown, Shanice; Powell, Calvin; Harton, Austin; Garcia-Solis, Edmundo; Alice-Fit Team

    2017-01-01

    CERN (European Center for Nuclear Research) is a global laboratory that studies proton and heavy ion collisions at the Large Hadron Collider (LHC). ALICE (A Large Ion Collider Experiment) is one of four large experiments at the LHC. ALICE is dedicated to the study of the transition of matter to Quark-Gluon Plasma in heavy ion collisions. The experiment is preparing for the LHC upgrade after the second long shutdown (LS2) in 2019-20. To this end, ALICE is undertaking a major initiative to extend its physics capabilities. Among these improvements is a new Fast Interaction Trigger (FIT). The FIT will be replacing the current T0 and V0 trigger detectors. The purpose of the FIT will be to determine multiplicity, centrality, and reaction plane. The FIT will also serve as the primary forward trigger, luminosity, and collision time detector. This presentation will discuss the FIT upgrade and the results from the performance of the FIT detectors in simulations and test beams that support the current design parameters. This material is based upon work supported by the National Science Foundation under grants NSF-PHY-1407051, NSF-PHY-1305280, NSF-PHY-1613118, and NSF-PHY-1625081.

  10. Lessons Learned from the Construction of Upgrades to the NASA Glenn Icing Research Tunnel and Re-activation Testing

    NASA Technical Reports Server (NTRS)

    Sheldon, David W.; Andracchio, Charles R.; Krivanek, Thomas M.; Spera, David A.; Austinson, Todd A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper presents an overview of the construction and reactivation testing phases of the project. Important lessons learned during the technical and contract management work are documented.

  11. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  12. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  13. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  14. Support Structure Design of the $$\\hbox{Nb}_{3}\\hbox{Sn}$$ Quadrupole for the High Luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of themore » detailed 3D numerical analysis performed in preparation for the first short model test.« less

  15. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    SciTech Connect

    Hays, W.H.

    1998-08-12

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation.

  16. Design and test of the benches for the magnetic measurement of the LHC dipoles

    NASA Astrophysics Data System (ADS)

    Billan, J.; Buckley, J.; Saban, R.; Sievers, P.; Walckiers, L.

    1994-07-01

    The magnetic measurement of more than 1300 LHC dipoles comprises the content of higher harmonic field components, field direction and field integrals. The measurements will be carried out along a warm bore installed inside the magnet cold bore, thus allowing the use of rotating coils at room temperature. This coil, together with Hall and NMR detectors is mounted at one end of a 12.5 m long shaft which is specially designed for very high rotational stiffness and which is controlled from its far end by a motor, an angular encoder and a level meter, all standard components placed outside the magnetic field without space restrictions. Particular emphasis has been put on the user-friendliness of the bench and its automated, computer-controlled operation requiring a minimum of staff, an important issue during production measurements of large series of magnets. The bench and its performance and precision achieved during its commissioning are described.

  17. Two-color medium-infrared scanning interferometer for the Frascati tokamak upgrade fusion test device.

    PubMed

    Canton, A; Innocente, P; Tudisco, O

    2006-12-20

    A scanning beam interferometer installed on the Frascati tokamak upgrade (FTU) experiment is presented. The scanning beam scheme combined with the small dimensions of the beams produces a system with very high spatial resolution: more than 30 adjacent (nonoverlapping) chords sample most of the plasma cross section. A good time resolution is achieved by the use of a proper scanning device, with a scanning frequency >or=8 kHz. Very fast events are measured by three additional fixed lines of sight providing a time resolution >or=100 kHz. The instrument is a two-color medium-infrared-compensated-type interferometer; two wavelengths (colors) are used to measure both the density and the mechanical vibrations of optical components. A CO2 laser (lambda=10.6 microm) is the main light source, and a CO laser (lambda=5.4 microm) is the compensation one. The optical scheme is a double pass Mach-Zehnder type. All the retroreflector mirrors are mounted directly on the FTU mechanical structure thanks to the compensation system that allows for large vibration amplitudes of optical components. Heterodyne detection at 30 and 40 MHz is obtained by frequency shifting the reference beams with two acousto-optic modulators (Bragg cells). Many features are implemented to achieve high measurement accuracy and reliability. A real-time system computes the integral density measured on one of the fixed lines of sight and provides an analog signal for density feedback control. The interferometer was used to measure density profiles both in medium-density discharges (n(e) approximately 10(20) m(-3)) and in high-density pellet injected discharges (n(e) approximately 7-8 x 10(20) m(-3)). The measurement error is approximately 2 x 10(18) m(-2) under optimal conditions but can be higher in some cases, mainly because of the large tilt of the retroreflector mirrors.

  18. Characterization of the first prototype of the ALICE SAMPA ASIC for LHC Run 3 and beyond

    NASA Astrophysics Data System (ADS)

    Tambave, G.; Engeseth, K. P.; Velure, A.

    2017-03-01

    A Large Ion Collider Experiment (ALICE) at the Large Hadron Collider (LHC) is planing to upgrade its Time Projection Chamber (TPC) due to the expected higher Pb-Pb collision-rates in the next running period (Run 3) of the LHC starting in 2020. In the upgraded TPC, Gas Electron Multiplier (GEM) chambers and continuous readout system will replace Multi-Wire Proportional (MWP) chambers and conventional triggered readout. In the continuous readout, GEM signals will be processed using a 32 channel SAMPA ASIC. The first version of the SAMPA (MPW1) was delivered in 2014 and the production of final version is in progress. In this paper, the test results obtained for charge injection to the device using pulse generator as well as GEM detector prototype are reported.

  19. The 11 T dipole for HL-LHC: Status and plan

    SciTech Connect

    Savary, F.; Barzi, E.; Bordini, B.; Bottura, L.; Chlachidze, G.; Ramos, D.; Bermudez, S. Izquierdo; Karppinen, M.; Lackner, F.; Loffler, C. H.; Moron-Ballester, R.; Nobrega, A.; Perez, J. C.; Prin, H.; Smekens, D.; de Rijk, G.; Redaelli, S.; Rossi, L.; Willering, G.; Zlobin, A. V.; Giovannozzi, M.

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHC in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.

  20. Real-time radiography of Titan IV Solid Rocket Motor Upgrade (SRMU) static firing test QM-2

    SciTech Connect

    Dolan, K.W.; Curnow, G.M.; Perkins, D.E.; Schneberk, D.J.; Costerus, B.W.; La Chapell, M.J.; Turner, D.E.; Wallace, P.W.

    1994-03-08

    Real-time radiography was successfully applied to the Titan-IV Solid Rocket Motor Upgrade (SRMU) static firing test QM-2 conducted February 22, 1993 at Phillips Laboratory, Edwards AFB, CA. The real-time video data obtained in this test gave the first incontrovertible evidence that the molten slag pool is low (less than 5 to 6 inches in depth referenced to the bottom of the aft dome cavity) before T + 55 seconds, builds fairly linearly from this point in time reaching a quasi-equilibrium depth of 16 to 17 inches at about T + 97 seconds, which is well below the top of the vectored nozzle, and maintains that level until T + 125 near the end motor burn. From T + 125 seconds to motor burn-out at T + 140 seconds the slag pool builds to a maximum depth of about 20 to 21 inches, still well below the top of the nozzle. The molten slag pool was observed to interact with motions of the vectored nozzle, and exhibit slosh and wave mode oscillations. A few slag ejection events were also observed.

  1. Test documentation to convert TWRS baseline data for RDD-100 upgrades

    SciTech Connect

    Gneiting, B.C.

    1997-04-08

    This document describes the test documentation required for converting between different versions of the RDD-100 software application. The area of focus is the successful conversion of the master data set between different versions of the database tool and their corresponding data structures.

  2. Report on Recent Upgrades to the Curved Duct Test Rig at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2011-01-01

    The Curved Duct Test Rig (CDTR) is an experimental facility that is designed to assess the acoustic and aerodynamic performance of aircraft engine nacelle liners in close to full scale. The test section is between 25% and 100% of the scale of aft bypass ducts of aircraft engines ranging in size from business jet to large commercial passenger jet. The CDTR has been relocated and now shares space with the Grazing Flow Impedance Tube in the Liner Technology Facility at NASA Langley Research Center. As a result of the relocation, research air is supplied to the CDTR from a 50,000 cfm centrifugal fan. This new air supply enables testing of acoustic liner samples at up to Mach 0.500. This paper documents experiments and analysis on a baseline liner sample, which the authors had analyzed and reported on prior to the move to the new facility. In the present paper, the experimental results are compared to those obtained previously in order to ensure continuity of the experimental capability. Experiments that take advantage of the facility s expanded capabilities are also reported. Data analysis features that enhance understanding of the physical properties of liner performance are introduced. The liner attenuation is shown to depend on the mode that is incident on the liner test section. The relevant parameter is the mode cut-on ratio, which determines the angle at which the sound wave is incident on the liner surface. The scattering of energy from the incident mode into higher order, less attenuated modes is demonstrated. The configuration of the acoustic treatment, in this case lined on one surface and hard wall on the opposite surface, is shown to affect the mode energy redistribution.

  3. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Yang, B. X.; Collins, J. T.; Ramanathan, M.

    2017-02-01

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs), which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This paper presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.

  4. Design, realization and test of C-band accelerating structures for the SPARC_LAB linac energy upgrade

    NASA Astrophysics Data System (ADS)

    Alesini, D.; Bellaveglia, M.; Biagini, M. E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-11-01

    The energy upgrade of the SPARC_LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  5. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1997-06-30

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  6. Features of the Upgraded Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Rufer, Shann J.

    2016-01-01

    The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) software is used at the NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used in the design of thermal protection systems for hypersonic vehicles that are exposed to severe aeroheating loads, such as reentry vehicles during descent and landing procedures. This software program originally was written in the PV-WAVE(Registered Trademark) programming language to analyze phosphor thermography data from the two-color, relative-intensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the program was migrated to MATLAB(Registered Trademark) syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to perform diagnostic checks of the accuracy of the acquired data during a wind tunnel test, to extract data along a specified multi-segment line following a feature such as a leading edge or a streamline, and to batch process all of the temporal frame data from a wind tunnel run. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy software to validate the program. The absolute differences between the heat transfer data output from the two programs were on the order of 10(exp -5) to 10(exp -7). IHEAT 4.0 replaces the PV-WAVE(Registered Trademark) version as the production software for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.

  7. Upgrade of the A0 photoinjector laser system for NML accelerator test facility at Fermilab

    SciTech Connect

    Ruan, J.; Edwards, H.; Fliller, R.P., III; Santucci, J.K.; /Fermilab

    2007-06-01

    The current Fermilab A0 Photoinjector laser system includes a seed laser, a flashlamp pumped multipass amplifier cavity, a flashlamp pumped 2-pass amplifier system followed by an Infra-Red (IR) to Ultra-Violet (UV) conversion stage. However the current system can only deliver up to 800 pulses due to the low efficiency of Nd:Glass used inside multi-pass cavity. In this paper we will report the effort to develop a new multi pass cavity based on Nd:YLF crystal end-pumped by diode laser. We will also discuss the foreseen design of the laser system for the NML accelerator test facility at Fermilab.

  8. An Upgrade of the Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Rufer, Shann J.

    2015-01-01

    The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) code is used at NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used to design thermal protection systems to mitigate the risks due to the aeroheating loads on hypersonic vehicles, such as re-entry vehicles during descent and landing procedures. This code was originally written in the PV-WAVE programming language to analyze phosphor thermography data from the two-color, relativeintensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the code was migrated to MATLAB syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to batch process all of the data from a wind tunnel run, to map the two-dimensional heating distribution to a three-dimensional computer-aided design model of the vehicle to be viewed in Tecplot, and to extract data from a segmented line that follows an interesting feature in the data. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy code to validate the program. The differences between the two codes were on the order of 10-5 to 10-7. IHEAT 4.0 replaces the PV-WAVE version as the production code for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.

  9. Upgrading wet granulation monitoring from hand squeeze test to mixing torque rheometry

    PubMed Central

    Sakr, Walid F.; Ibrahim, Mohamed A.; Alanazi, Fars K.; Sakr, Adel A.

    2011-01-01

    With over 50 years of research in granulation technology, however more research is required to elucidate this widely applicable technology. Wetting phenomena could influence redistribution of individual ingredients within a granule according their solubility and also could affect the drying processes. Binder selection for a particular system is quite often empirical and dependent on the skills and experience of the formulator. Hand squeeze test was and still the main way for determination of wet granulation end point, but it is subjected to individual variation. It depends mainly on operator experience, so it is not possible to be validated. Literature reveals a variety of advanced monitoring techniques following up different wet massing stages. Torque measurement has been proved to be the most reliable control method as its tight relation to mass resistance. Many reports showed successful applications of mixing torque rheometer (MTR) for monitoring the wet massing procedure and scale up in addition to some preformulation applications. MTR as a new approach allows formulators to select a liquid addition range where the granule growth behavior is more predictable. PMID:23960772

  10. The 11 T dipole for HL-LHC: Status and plan

    DOE PAGES

    Savary, F.; Barzi, E.; Bordini, B.; ...

    2016-06-01

    The upgrade of the Large Hadron Collider (LHC) collimation system includes additional collimators in the LHC lattice. The longitudinal space for these collimators will be created by replacing some of the LHC main dipoles with shorter but stronger dipoles compatible with the LHC lattice and main systems. The project plan comprises the construction of two cryoassemblies containing each of the two 11-T dipoles of 5.5-m length for possible installation on either side of interaction point 2 of LHC in the years 2018-2019 for ion operation, and the installation of two cryoassemblies on either side of interaction point 7 of LHCmore » in the years 2023-2024 for proton operation. The development program conducted in conjunction between the Fermilab and CERN magnet groups is progressing well. The development activities carried out on the side of Fermilab were concluded in the middle of 2015 with the fabrication and test of a 1-m-long two-in-one model and those on the CERN side are ramping up with the construction of 2-m-long models and the preparation of the tooling for the fabrication of the first full-length prototype. The engineering design of the cryomagnet is well advanced, including the definition of the various interfaces, e.g., with the collimator, powering, protection, and vacuum systems. Several practice coils of 5.5-m length have been already fabricated. This paper describes the overall progress of the project, the final design of the cryomagnet, and the performance of the most recent models. Furthermore, the overall plan toward the fabrication of the series magnets for the two phases of the upgrade of the LHC collimation system is also presented.« less

  11. Gain Evaluation of Micro-Channel-Plate Photomultipliers in the Upgraded High-B Test Facility at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Barber, Corinne; DIRC at EIC Collaboration

    2015-10-01

    The High-B test facility at Thomas Jefferson National Accelerator Facility allows researchers to evaluate the gain of compact photon sensors, such as Micro-Channel-Plate Photomultipliers (MCP-PMTs), in magnetic fields up to 5 T. These ongoing studies support the development of a Detector of Internally Reflected Cherenkov light (DIRC) to be used in an Electron Ion Collider (EIC). Here, we present our summer 2015 activities to upgrade and improve the facility, and we show results for MCP-PMT gain changes in high B-fields. To monitor the light stability delivered to the MCP-PMTs being tested, we implemented a Silicon Photomultiplier (SiPM) in the setup and calibrated the ADC reading this sensor. A 405-nm Light-Emitting Diode (LED) housed in an optical tube compatible with neutral density filters was also installed. The filters provide an alternative way of reducing the light output of the LED to operate the MCP-PMTs in a single-photon mode. We calibrated a set of filters by means of a photodiode and measured the photon flux at multiple positions relative to the LED. This information helped us to design 3D-printed holders unique to each MCP-PMT so that the photocathode receives the greatest amount of light. The improvements to the setup allow for more precise PMT gain evaluation. This team includes 7 collaborators/co-authors besides myself: Yordanka Ilieva, Kijun Park, Greg Kalicy, Carl Zorn, Pawel Nadel-Turonski, Tongtong Cao, and Lee.

  12. Upgrading of Existing Structures.

    DTIC Science & Technology

    1980-06-01

    and double shoring, flange, boxed beam , and king post truss upgrading methods. - 1 - ,-. Upgraded concrete floors tested were single and double...Post Flange Beam Truss WOOD - D.L. = 20 psf t 4.5 11.4 - 2.4 1.7 1.7 Light - Joist, Glulam* (0.4) (6.8) (9.2) (2.6) (1.7) (2.2)** Medium- Joist, Glulam... truss shoring consists basically of cables or rods secured parallel to joists or beams and ten- sioned to form a king post truss configuration. The

  13. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  14. Thermal management and prototype testing of Compton scattering X-ray beam position monitor for the Advanced Photon Source Upgrade

    DOE PAGES

    Lee, S. H.; Yang, B. X.; Collins, J. T.; ...

    2017-02-07

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source Upgrade. In the next-generation XBPMs for the canted-undulator front ends, where two undulator beams are separated by 1.0 mrad, the lower beam power (<10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from a diamond placed edge-on to the x-ray beam. Because of the high peak power density of the x-ray beams, this diamond experiences high temperatures and has to be clamped to a water-cooled heat spreader using thermal interface materials (TIMs),more » which play a key role in reducing the temperature of the diamond. To evaluate temperature changes through the interface via thermal simulations, the thermal contact resistance (TCR) of TIMs at an interface between two solid materials under even contact pressure must be known. This paper addresses the TCR measurements of several TIMs, including gold, silver, pyrolytic graphite sheet, and 3D graphene foam. In addition, a prototype of a Compton-scattering XBPM with diamond blades was installed at APS Beamline 24-ID-A in May 2015 and has been tested. This study presents the design of the Compton-scattering XBPM, and compares thermal simulation results obtained for the diamond blade of this XBPM by the finite element method with in situ empirical measurements obtained by using reliable infrared technology.« less

  15. Radiation hardness studies of n + -in-n planar pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-12-01

    The ATLAS experiment at the LHC is planning upgrades of its pixel detector to cope with the luminosity increase foreseen in the coming years within the transition from LHC to Super-LHC (SLHC/HL-LHC). Associated with the increase in instantaneous luminosity is a rise of the target integrated luminosity from 730 to about 3000 fb -1 which directly translates into significantly higher radiation damage. These upgrades consist of the installation of a 4th pixel layer, the insertable b-layer IBL, with a mean sensor radius of only 32 mm from the beam axis, before 2016/17. In addition, the complete pixel detector will be exchanged before 2020/21. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×1015 neq cm-2 at their end-of-life. The total fluence of the innermost pixel layer after the SLHC upgrade might even reach 2×1016 neq cm-2. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for these fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge after IBL fluences was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. After SLHC fluences, still reliable operation of the devices could be observed with a collected charge of more than 5000 electrons per MIP.

  16. The upgrade of the LHCb Vertex Locator

    NASA Astrophysics Data System (ADS)

    Bird, T.

    2014-12-01

    The LHCb experiment is set for a significant upgrade, which will be ready for Run 3 of the LHC in 2020. This upgrade will allow LHCb to run at a significantly higher instantaneous luminosity and collect an integrated luminosity of 50fb-1 by the end of Run 4. In this process the Vertex Locator (VELO) detector will be upgraded to a pixel-based silicon detector. The upgraded VELO will improve upon the current detector by being closer to the beams and having lower material modules with microchannel cooling and a thinner RF-foil. Simulations have shown that it will maintain its excellent performance, even after the radiation damage caused by collecting an integrated luminosity of 50fb-1.

  17. Design and Construction of a 500 KW CW, 400 MHZ Klystron To Be Used As RF Power Source For LHC/RF Component Tests

    SciTech Connect

    Pearson, Chris

    2003-05-05

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented.

  18. 3D sensors for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Vázquez Furelos, D.; Carulla, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; Lange, J.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.

    2017-01-01

    In order to increase its discovery potential, the Large Hadron Collider (LHC) accelerator will be upgraded in the next decade. The high luminosity LHC (HL-LHC) period requires new sensor technologies to cope with increasing radiation fluences and particle rates. The ATLAS experiment will replace the entire inner tracking detector with a completely new silicon-only system. 3D pixel sensors are promising candidates for the innermost layers of the Pixel detector due to their excellent radiation hardness at low operation voltages and low power dissipation at moderate temperatures. Recent developments of 3D sensors for the HL-LHC are presented.

  19. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect

    Fischer,W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J. -P.; Sterbini, G.; Zimmermann, F.; Kim, H. -J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2008-11-24

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. To reduce the head-on beam-beam effect electron lenses were proposed for both RIDC and the LHC. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  20. Long-Range And Head-On Beam-Beam Compensation Studies in RHIC With Lessons for the LHC

    SciTech Connect

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.P.; Sterbini, G.; Zimmermann, F.; Kim, H.J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.; /SLAC

    2011-11-28

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  1. Long-range and head-on beam-beam compensation studies in RHIC with lessons for the LHC

    SciTech Connect

    Fischer, W.; Luo, Y.; Abreu, N.; Calaga, R.; Montag, C.; Robert-Demolaize, G.; Dorda, U.; Koutchouk, J.-P.; Sterbini, G.; Zimmermann, F.; Kim, H.-J.; Sen, T.; Shiltsev, V.; Valishev, A.; Qiang, J.; Kabel, A.

    2009-01-12

    Long-range as well as head-on beam-beam effects are expected to limit the LHC performance with design parameters. They are also important consideration for the LHC upgrades. To mitigate long-range effects, current carrying wires parallel to the beam were proposed. Two such wires are installed in RHIC where they allow studying the effect of strong long-range beam-beam effects, as well as the compensation of a single long-range interaction. The tests provide benchmark data for simulations and analytical treatments. Electron lenses were proposed for both RHIC and the LHC to reduce the head-on beam-beam effect. We present the experimental long-range beam-beam program at RHIC and report on head-on compensations studies based on simulations.

  2. Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics

    SciTech Connect

    Anderson, Jake; Whitmore, Juliana; /Fermilab

    2011-11-01

    We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 10{sup 34} cm{sup -2} s{sup -1}) and an expected integrated luminosity of {approx}3000 fb{sup -1}. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a harsh environment and are constrained by the existing infrastructure. The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies.

  3. HVMUX, a high voltage multiplexing for the ATLAS Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Giulio Villani, E.; Phillips, P.; Matheson, J.; Zhang, Z.; Lynn, D.; Kuczewski, P.; Hommels, L. B. A.; Gregor, I.; Bessner, M.; Tackmann, K.; Newcomer, F. M.; Spencer, E.; Greenall, A.

    2017-01-01

    The HV biasing solution adopted in the current ATLAS detector uses one HV conductor for each sensor. This approach easily allows disabling of malfunctioning sensors without affecting the others, but space constraints and material budget considerations renders this approach impractical for the Upgraded detector. In fact, the increased luminosity of the Upgraded LHC will require more channels in the upgraded ATLAS Tracker, as a result of the finer detector segmentation. Different approaches to bring the HV biasing to the detectors, including the use of a shared HV line to bias several sensors and employing semiconductor switches for the HV routing (HVMUX), have been investigated. Beside the size constraints, particular attention must be paid to the radiation tolerance of any proposed solution, which, for the strips detector, requires proper operation up to fluences of the order of 2ṡ 1015 1MeV neq/cm2 and TID in excess of 300 kGy. In this paper, a description of the proposed HVMUX solution, along with electrical and radiation tests results will be presented and discussed.

  4. Neutron and Proton Tests of Different Technologies for the Upgrade of Cold Readout Electronics of the Atlas Hadronic Endcap Calorimeter

    NASA Astrophysics Data System (ADS)

    Nagel, M.

    2012-08-01

    The expected increase of total integrated luminosity by a factor of ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic Endcap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 · 1016 n/cm2 and with 200 MeV protons up to an integrated fluence of 2.6 · 1014 p/cm2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  5. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2016-07-12

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  6. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  7. Solar Electro-Optical Network (SEON) Upgrade/Replacement Program Phase 1 Qualification Operational Test and Evaluation Plan

    DTIC Science & Technology

    1993-06-01

    San Vito Air Station, Italy, have both the SOON and RSTN and are referred to as combined sites . The sites at Holloman AFB, New Mexico and Ramey, Puerto...Rico. only have a SOON. The site at Sagarnore Hill, Massachusetts, only has a RSTN . The upgraded system will consist of new charge-coupled device...a RSTN . The sites at Palehua. Hawaii: Learmonth. Australia- and San Vitt Air O Station, Italy, have both the SOON and RSTN and are referred to as

  8. Design of a Warm X-Ray Radiation Environment for Nuclear Weapons Effects Testing in the Nova-Upgrade Facility

    DTIC Science & Technology

    1992-03-01

    IN THE NOVA-UPGRADE FACILITY THESIS Jeffrey E. Malapit Captain, US Army AFIT/GNE/ENP/92M-7 Approved for public release; distribution unlimited. Form...Telegraph Rd Alexandria, VA 22310-3398 11. SUPPLEMENTARY NOTES 12a. DISTRIBU’ -4/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release... distribution unlimited. 13. ABSTRACT (Maximum 200 words) This engineering design project examined the creation of a radiation environ- ment for warm x

  9. Development of CMOS pixel sensors for the upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Molnar, L.

    2014-12-01

    The ALICE Collaboration is preparing a major upgrade of the current detector, planned for installation during the second long LHC shutdown in the years 2018-19, in order to enhance its low-momentum vertexing and tracking capability, and exploit the planned increase of the LHC luminosity with Pb beams. One of the cornerstones of the ALICE upgrade strategy is to replace the current Inner Tracking System in its entirety with a new, high resolution, low-material ITS detector. The new ITS will consist of seven concentric layers equipped with Monolithic Active Pixel Sensors (MAPS) implemented using the 0.18 μm CMOS technology of TowerJazz. In this contribution, the main key features of the ITS upgrade will be illustrated with emphasis on the functionality of the pixel chip. The ongoing developments on the readout architectures, which have been implemented in several fabricated prototypes, will be discussed. The operational features of these prototypes as well as the results of the characterisation tests before and after irradiation will also be presented.

  10. Test beam results with a sampling calorimeter of cerium fluoride scintillating crystals and tungsten absorber plates for calorimetry at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Becker, R.; Dissertori, G.; Djambazov, L.; Donegà, M.; Dröge, M.; Haller, C.; Horisberger, U.; Lustermann, W.; Nessi-Tedaldi, F.; Quittnat, M.; Pandolfi, F.; Peruzzi, M.; Schönenberger, M.; Cavallari, F.; Dafinei, I.; Diemoz, M.; D`Imperio, G.; del Re, D.; Gelli, S.; Jorda Lope, C.; Meridiani, P.; Micheli, F.; Nuccetelli, M.; Organtini, G.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Tabarelli de Fatis, T.; Martelli, A.; Monti, V.; Pastrone, N.; Trapani, P. P.; Candelise, V.; Della Ricca, G.

    2016-07-01

    A sampling calorimeter using cerium fluoride scintillating crystals as active material, interleaved with absorber plates made of tungsten, and read out by wavelength-shifting fibres has been tested with high-energy electron beams at the CERN SPS H4 beam line, as well as with lower-energy beams at the INFN Frascati Beam Test Facility in Italy. Energy resolution studies revealed a low stochastic term (< 10 % /√{ E }). This result, combined with high radiation hardness of the material used, marks this sampling calorimeter as a good candidate for the detectors' forward regions during the high luminosity phase of LHC.

  11. LHC Computing

    SciTech Connect

    Lincoln, Don

    2015-07-28

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  12. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    NASA Astrophysics Data System (ADS)

    Hopkins, Walter

    2017-02-01

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019-2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024-2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65-180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  13. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  14. The trigger readout electronics for the Phase-I upgrade of the ATLAS Liquid Argon calorimeters

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-03-01

    For the Phase-I luminosity upgrade of the LHC a higher granularity trigger readout of the ATLAS Liquid Argon (LAr) Calorimeters is foreseen to enhance the trigger feature extraction and background rejection. The new readout system digitizes the detector signals, grouped into 34000 so-called Super Cells, with 12-bit precision at 40 MHz and transfers the data on optical links to the digital processing system, which computes the Super Cell transverse energies. In this paper, development and test results of the new readout system are presented.

  15. Support Structure Design of the $\\hbox{Nb}_{3}\\hbox{Sn}$ Quadrupole for the High Luminosity LHC

    SciTech Connect

    Juchno, M.; Ambrosio, G.; Anerella, M.; Cheng, D.; Felice, H.; Ferracin, P.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2014-10-31

    New low-β quadrupole magnets are being developed within the scope of the High Luminosity LHC (HL-LHC) project in collaboration with the US LARP program. The aim of the HLLHC project is to study and implement machine upgrades necessary for increasing the luminosity of the LHC. The new quadrupoles, which are based on the Nb₃Sn superconducting technology, will be installed in the LHC Interaction Regions and will have to generate a gradient of 140 T/m in a coil aperture of 150 mm. In this paper, we describe the design of the short model magnet support structure and discuss results of the detailed 3D numerical analysis performed in preparation for the first short model test.

  16. Radiation hard silicon particle detectors for HL-LHC-RD50 status report

    NASA Astrophysics Data System (ADS)

    Terzo, S.

    2017-02-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC). The Phase-II-Upgrade scheduled for 2024 will mean unprecedented radiation levels, way beyond the limits of the silicon trackers currently employed. All-silicon central trackers are being studied in ATLAS, CMS and LHCb, with extremely radiation hard silicon sensors to be employed on the innermost layers. Within the RD50 Collaboration, a massive R&D program is underway across experimental boundaries to develop silicon sensors with sufficient radiation tolerance. We will present results of several detector technologies and silicon materials at radiation levels corresponding to HL-LHC fluences. Based on these results, we will give recommendations for the silicon detectors to be used at the different radii of tracking systems in the LHC detector upgrades. In order to complement the measurements, we also perform detailed simulation studies of the sensors.

  17. Development of a Micro Pixel Chamber for the ATLAS Upgrade

    NASA Astrophysics Data System (ADS)

    Ochi, Atsuhiko; Homma, Yasuhiro; Komai, Hidetoshi; Edo, Yuki; Yamaguchi, Takahiro

    The Micro Pixel Chamber(μ-PIC)isbeingdevelopedasacandidateforthe muonsystemoftheATLAS detectorfor upgrading in LHC experiments. The μ-PICisa micro-patterngaseous detector that doesn'thave floating structure such as wires, mesh, or foil. This detector can be made by printed-circuit-board (PCB) technology, which is commercially available and suited for mass production. Operation tests have been performed under high flux neutrons under similar conditions to theATLAS cavern. Spark rates are measured using severalgas mixtures under7MeV neutron irradiation, andgoodpropertieswereobservedusingneon,ethane,andCF4mixtureofgases.Usingresistivematerialsas electrodes, we are also developing a new μ-PIC, which is not expected to damage the electrodes in the case of discharge sparks.

  18. LHC Computing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The LHC is the world’s highest energy particle accelerator and scientists use it to record an unprecedented amount of data. This data is recorded in electronic format and it requires an enormous computational infrastructure to convert the raw data into conclusions about the fundamental rules that govern matter. In this video, Fermilab’s Dr. Don Lincoln gives us a sense of just how much data is involved and the incredible computer resources that makes it all possible.

  19. Test bench development for the radiation Hard GBTX ASIC

    NASA Astrophysics Data System (ADS)

    Leitao, P.; Feger, S.; Porret, D.; Baron, S.; Wyllie, K.; Barros Marin, M.; Figueiredo, D.; Francisco, R.; Da Silva, J. C.; Grassi, T.; Moreira, P.

    2015-01-01

    This paper presents the development of the GBTX radiation hard ASIC test bench. Developed for the LHC accelerator upgrade programs, the GBTX implements a bidirectional 4.8 Gb/s link between the radiation hard on-detector custom electronics and the off-detector systems. The test bench was used for functional testing of the GBTX and to evaluate its performance in a radiation environment, by conducting Total Ionizing Dose and Single-Event Upsets tests campaigns.

  20. CMS: Present status, limitations, and upgrade plans

    SciTech Connect

    Cheung, H.W.K.; /Fermilab

    2011-09-01

    An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

  1. Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC

    DOE PAGES

    Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...

    2017-01-10

    As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axis andmore » the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less

  2. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Belikov, Iouri

    2016-10-01

    A Large Ion Collider Experiment (ALICE) is built to study the properties of the strongly interacting matter created in heavy-ion collisions at the LHC. With the upgrade of its Inner Tracking System (ITS), the ALICE experiment is going to increase the rate of data taking by almost two orders of magnitude. At the same time, the precision of secondary vertex reconstruction will become by at least a factor 3 better than it currently is. In this talk, we briefly show some selected physics results motivating the upgrade of the ITS, describe the design goals and the layout of the new detector, and highlight a few important measurements that will be realized after the completion of this upgrade.

  3. Pixel DAQ and trigger for HL-LHC

    NASA Astrophysics Data System (ADS)

    Morettini, P.

    2017-03-01

    The read-out is one of the challenges in the design of a pixel detector for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), that is expected to operate from 2026 at a leveled luminosity of 5 × 1034 cm‑2 s‑1. This is especially true if tracking information is needed in a low latency trigger system. The difficulties of a fast read-out will be reviewed, and possible strategies explained. The solutions that are being evaluated by the ATLAS and CMS collaborations for the upgrade of their trackers will be outlined and ideas on possible development beyond HL-LHC will be presented.

  4. Upgrade of the ALICE muon trigger electronics

    NASA Astrophysics Data System (ADS)

    Dupieux, P.; Joly, B.; Jouve, F.; Manen, S.; Vandaële, R.

    2014-09-01

    The ALICE muon trigger is a large scale detector based on single gap bakelite RPCs. An upgrade of the electronics is needed in order to withstand the increase of luminosity after the LHC Long Shutdown-2 in 2018-2019. The detector will be read out at the minimum bias rate of 100 kHz in Pb-Pb collisions (including a safety factor of 2), two orders of magnitude above the present design. For the most exposed RPCs and in the present conditions of operation, the total integrated charge could be as high as 100 mC/cm2 with rates up to 100 Hz/cm2, which is above the present limit for safe operation. In order to overcome these limitations, upgrade projects of the Front-End (FE) and Readout Electronics are scheduled. The readout upgrade at high rate with low dead time requires changing most of the present electronics. It involves a new design for the 234 Local cards receiving the LVDS signals from the FE electronics and the 16 Regional concentrator cards. The readout chain is completed by a single Common Readout Unit developed for most ALICE sub-detectors. The new architecture of the muon trigger readout will be briefly presented. The present FE electronics, designed for the streamer mode, must be replaced to prevent ageing of the RPCs in the future operating conditions. The new FE called FEERIC (for Front-End Electronics Rapid Integrated Circuit) will have to perform amplification of the analog input signals. This will allow for RPC operation in a low-gain avalanche mode, with a much smaller charge deposit (factor 3-5) in the detector as compared to the present conditions. The purpose is to discriminate RPC signals with a charge threshold around 100 fC, in both polarities, and with a time jitter below 1 ns. We will describe the FE card and FEERIC ASIC features and first prototype performance, report on test results obtained on a cosmic test bench and discuss ongoing developments.

  5. CMS Pixel Detector design for HL-LHC

    NASA Astrophysics Data System (ADS)

    Migliore, E.

    2016-12-01

    The LHC machine is planning an upgrade program which will smoothly bring the luminosity to about 7.5×1034cm-2s-1 in 2028, to possibly reach an integrated luminosity of 3000 fb-1 by the end of 2037. This High Luminosity scenario, HL-LHC, will present new challenges in higher data rates and increased radiation. In order to maintain its physics reach the CMS collaboration has undertaken a preparation program of the detector known as Phase-2 upgrade. The CMS Phase-2 Pixel upgrade will require a high bandwidth readout system and high radiation tolerance for sensors and on-detector ASICs. Several technologies for the upgrade sensors are being studied. Serial powering schemes are under consideration to accommodate significant constraints on the system. These prospective designs, as well as new layout geometries that include very forward pixel discs, will be presented together with performance estimation.

  6. Post-upgrade testing on a radiotherapy oncology information system with an embedded record and verify system following the IAEA Human Health Report No. 7 recommendations.

    PubMed

    Nyathi, Thulani; Colyer, Christopher; Bhardwaj, Anup Kumar; Rijken, James; Morton, Jason

    2016-06-01

    Record and verify (R&V) systems have proven that their application in radiotherapy clinics leads to a significant reduction in mis-treatments of patients. The purpose of this technical note is to share our experience of acceptance testing, commissioning and setting up a quality assurance programme for the MOSAIQ® oncology information system and R&V system after upgrading from software version 2.41 to 2.6 in a multi-vendor, multi-site environment. Testing was guided primarily by the IAEA Human Report No. 7 recommendations, but complemented by other departmental workflow specific tests. To the best of our knowledge, this is the first time successful implementation of the IAEA Human Health Report Series No. 7 recommendations have been reported in the literature.

  7. From the LHC to Future Colliders

    SciTech Connect

    De Roeck, A.; Ellis, J.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Weiglein, G.; Azuelos, G.; Dawson, S.; Gripaios, B.; Han, T.; Hewett, J.; Lancaster, M.; Mariotti, C.; Moortgat, F.; Moortgat-Pick, G.; Polesello, G.; Riemann, S.; Assamagan, K.; Bechtle, P.; Carena, M.; Chachamis, G.; /more authors..

    2010-06-11

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb{sup -1} of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb{sup -1} of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, theWorking Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.

  8. Considerations on Energy Frontier Colliders after LHC

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  9. Foward Calorimetry in ALICE at LHC

    NASA Astrophysics Data System (ADS)

    Chujo, Tatsuya; Alice Focal Collaboration

    2014-09-01

    We present an upgrade proposal for calorimetry in the forward direction, FOCAL, to measure direct photons in η = 3 . 3 - 5 . 3 in ALICE at the Large Hadron Collider (LHC). We suggest to use an electromagnetic calorimeter based on the novel technology of silicon sensors with W absorbers for photons, together with a conventional hadron calorimeter for jet measurements and photon isolation. The current status of the FOCAL R&D project will be presented.

  10. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  11. The Fast Interaction Trigger detector for the ALICE Upgrade

    NASA Astrophysics Data System (ADS)

    Karavicheva, T. L.; ALICE Collaboration

    2017-01-01

    As a result of the LHC injectors upgrade after the Long Shutdown (2019-2020), the expected Pb-Pb luminosity and collision rate during the so called Runs 3 and 4 will considerably exceed the design parameters for several of the key ALICE detectors systems including the forward trigger detectors. Fast Interaction Trigger (FIT) will be the primary forward trigger, luminosity, and collision time measurement detector. It will also determine multiplicity, centrality, and reaction plane of heavy ion collisions. FIT is expected to match and even exceed the functionality and performance currently secured by three ALICE sub-detectors: the time zero detector (T0), the VZERO system (V0), and the Forward Multiplicity Detector (FMD). FIT will consist of two arrays of Cherenkov radiators with MCP-PMT sensors and of a single, large-size scintillator ring. Because of the presence of the muon spectrometer, the placement of the FIT arrays will be asymmetric: ∼800 mm from the interaction point (IP) on the absorber side and ∼3200 mm from IP on the opposite side. The ongoing beam tests and Monte Carlo studies verify the physics performance and refine the geometry of the FIT arrays. The presentation gives a short description of FIT, triggers and readout requirement for the ALICE Upgrade, a summary of the performance, and the outcome of the simulations and beam tests.

  12. 3D silicon pixel detectors for the High-Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Lange, J.; Carulla Areste, M.; Cavallaro, E.; Förster, F.; Grinstein, S.; López Paz, I.; Manna, M.; Pellegrini, G.; Quirion, D.; Terzo, S.; Vázquez Furelos, D.

    2016-11-01

    3D silicon pixel detectors have been investigated as radiation-hard candidates for the innermost layers of the HL-LHC upgrade of the ATLAS pixel detector. 3D detectors are already in use today in the ATLAS IBL and AFP experiments. These are based on 50 × 250 μm2 large pixels connected to the FE-I4 readout chip. Detectors of this generation were irradiated to HL-LHC fluences and demonstrated excellent radiation hardness with operational voltages as low as 180 V and power dissipation of 12-15 mW/cm2 at a fluence of about 1016 neq/cm2, measured at -25°C. Moreover, to cope with the higher occupancies expected at the HL-LHC, a first run of a new generation of 3D detectors designed for the HL-LHC was produced at CNM with small pixel sizes of 50 × 50 and 25 × 100 μm2, matched to the FE-I4 chip. They demonstrated a good performance in the laboratory and in beam tests with hit efficiencies of about 97% at already 1-2 V before irradiation.

  13. Detector Developments for the High Luminosity LHC Era (4/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  14. Detector Developments for the High Luminosity LHC Era (4/4)

    SciTech Connect

    2010-09-22

    Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  15. Detector Developments for the High Luminosity LHC Era (3/4)

    SciTech Connect

    2010-09-22

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  16. Detector Developments for the High Luminosity LHC Era (3/4)

    ScienceCinema

    None

    2016-07-12

    Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.

  17. CMS HCAL Endcap Simulations for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Pedro, Kevin

    2013-04-01

    The long-term high luminosity upgrade to the LHC will increase the levels of radiation affecting the CMS calorimeters. By the end of Phase 2, parts of the electromagnetic and hadronic endcap calorimeters could receive up to 10 MRad of radiation. A model of the radiation damage to HCAL, which has been implemented in the CMS fast simulation, will be described. The effects of radiation on physics capabilities with jets will be presented, with the most important effect coming from scaling of photodetector noise due to recalibration. In addition, a standalone Geant4 simulation with a simplified geometry can be used to test configurations with new radiation-hard ECALs. Results for pion response and resolution with new configurations will be shown.

  18. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    NASA Astrophysics Data System (ADS)

    Glatzer, Julian

    2015-12-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of two with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the factor of two increase in the number of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to three different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis on the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition system. Trigger and dead-time rates are monitored coherently at all stages of processing and are logged by the online computing system for physics analysis, data quality assurance and operational debugging. In addition, the synchronisation of trigger inputs is watched based on bunch-by-bunch trigger information. Several software tools allow for efficient display of the relevant information in the control room in a way useful for shifters and experts. The design of the framework aims at reliability, flexibility, and robustness of the system and takes into account the operational experience gained during Run 1. The Level-1 Central Trigger was successfully operated with high efficiency during the cosmic-ray, beam-splash and first Run 2 data taking with the full ATLAS detector.

  19. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  20. A Zero Degree Calorimeter for the High Radiation Environment at LHC

    NASA Astrophysics Data System (ADS)

    Bohorquez, Juan; Atlas Collaboration

    2016-09-01

    The two ATLAS Zero Degree Calorimeters(ZDC) are hadron calorimeters that measure the energy of non-colliding nuclear fragments thus providing information on the impact parameter in heavy ion collisions and input for the fast online selection of ultra-peripheral collisions. The ZDCs are located downstream of the straight ATLAS beam pipe section, 140 m from the interaction point. The ZDCs are sampling calorimeters and are composed of alternating layers of tungsten plates and quartz radiator. The extreme radiation environment (up to 20 Grad/yr) causes degradation of the optical performance of the quartz rods, leading to time dependent ZDC performance and frequent repair. A radiation hard ZDC design is being developed at UIUC based on circulating a liquid Cherenkov radiator replacing the present quartz rods. The upgrade aims at using the ZDC in LHC p+Pb runs for the study of nuclear effects in proton structure at low x. The radiation hardness of materials considered for the upgrade will be tested using a passive container that will be installed in place of the ZDC during the ongoing 2016 p+p run at the LHC. The details of the radiation test will be presented together with planned tests on the optical response and isotopic composition of candidate materials after irradiation. REU program supported by NSF Grant PHY-1062690.

  1. Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas; Vogl, Stefan E-mail: juhg@kth.se E-mail: stefan.vogl@fysik.su.se

    2015-08-01

    From an assumed signal in a Dark Matter (DM) direct detection experiment a lower bound on the product of the DM-nucleon scattering cross section and the local DM density is derived, which is independent of the local DM velocity distribution. This can be combined with astrophysical determinations of the local DM density. Within a given particle physics model the bound also allows a robust comparison of a direct detection signal with limits from the LHC. Furthermore, the bound can be used to formulate a condition which has to be fulfilled if the particle responsible for the direct detection signal is a thermal relic, regardless of whether it constitutes all DM or only part of it. We illustrate the arguments by adopting a simplified DM model with a Z' mediator and assuming a signal in a future xenon direct detection experiment.

  2. Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas; Vogl, Stefan

    2015-08-19

    From an assumed signal in a Dark Matter (DM) direct detection experiment a lower bound on the product of the DM-nucleon scattering cross section and the local DM density is derived, which is independent of the local DM velocity distribution. This can be combined with astrophysical determinations of the local DM density. Within a given particle physics model the bound also allows a robust comparison of a direct detection signal with limits from the LHC. Furthermore, the bound can be used to formulate a condition which has to be fulfilled if the particle responsible for the direct detection signal is a thermal relic, regardless of whether it constitutes all DM or only part of it. We illustrate the arguments by adopting a simplified DM model with a Z{sup ′} mediator and assuming a signal in a future xenon direct detection experiment.

  3. Selected results from the static characterization of edgeless n-on-p planar pixel sensors for ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Giacomini, G.; Bagolini, A.; Bomben, M.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-01-01

    In view of the LHC upgrade for the High Luminosity Phase (HL-LHC), the ATLAS experiment is planning to replace the Inner Detector with an all-Silicon system. The n-on-p technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. There is also the demand to reduce the inactive areas to a minimum. The ATLAS LPNHE Paris group and FBK Trento started a collaboration for the development on a novel n-on-p edgeless planar pixel design, based on the deep-trench process which can cope with all these requirements. This paper reports selected results from the electrical characterization, both before and after irradiation, of test structures from the first production batch.

  4. Pixel Hybridization Technologies for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Alimonti, G.; Biasotti, M.; Ceriale, V.; Darbo, G.; Gariano, G.; Gaudiello, A.; Gemme, C.; Rossi, L.; Rovani, A.; Ruscino, E.

    2016-12-01

    During the 2024-2025 shut-down, the Large Hadron Collider (LHC) will be upgraded to reach an instantaneous luminosity up to 7×1034 cm-2s-1. This upgrade of the collider is called High-Luminosity LHC (HL-LHC). ATLAS and CMS detectors will be upgraded to meet the new challenges of HL-LHC: an average of 200 pile-up events in every bunch crossing and an integrated luminosity of 3000 fb-1 over ten years. In particular, the current trackers will be completely replaced. In HL-LHC the trackers should operate under high fluences (up to 1.4 × 1016 neq cm-2), with a correlated high radiation damage. The pixel detectors, the innermost part of the trackers, needed a completely new design in the readout electronics, sensors and interconnections. A new 65 nm front-end (FE) electronics is being developed by the RD53 collaboration compatible with smaller pixel sizes than the actual ones to cope with the high track densities. Consequently the bump density will increase up to 4 ·104 bumps/cm2. Preliminary results of two hybridization technologies study are presented in this paper. In particular, the on-going bump-bonding qualification program at Leonardo-Finmeccanica is discussed, together with alternative hybridization techniques, as the capacitive coupling for HV-CMOS detectors.

  5. ATLAS LAr calorimeter performance and LHC Run-2 commissioning

    NASA Astrophysics Data System (ADS)

    Spettel, Fabian

    2016-07-01

    The ATLAS detector was built to study proton-proton collisions produced by the Large Hadron Collider (LHC) at a center of mass energy of up to 14 TeV. The Liquid Argon (LAr) calorimeters are used for all electromagnetic calorimetry as well as the hadronic calorimetry in the endcap and forward regions. They have shown excellent performance during the first LHC data taking campaign, from 2010 to 2012, so-called Run 1, at a peak luminosity of 8 ×1033cm-2s-1. During the next run, peak luminosities of 1.5 ×1034cm-2s-1 and even higher are expected at a 25 ns bunch spacing. Such a high collision rate may have an impact on the quality of the energy reconstruction which is attempted to be maintained at a high level using a calibration procedure described in this contribution. It also poses major challenges to the first level of the trigger system which is constrained to a maximal rate of 100 kHz. For Run-3, scheduled to start in 2019, instantaneous luminosity as high as 3 ×1034cm-2s-1 are foreseen imposing an upgrade of the LAr trigger system to maintain its performance. A demonstrator containing prototypes of the upgraded trigger electronic architecture has been installed on one of the barrel electromagnetic calorimeter readout front end crates to test it during the Run-2 campaign. The new architecture and its benefits for data taking will be discussed below as well as the results from first beam splash events.

  6. High Luminosity LHC: Challenges and plans

    DOE PAGES

    Arduini, G.; Barranco, J.; Bertarelli, A.; ...

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), willmore » rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.« less

  7. High Luminosity LHC: Challenges and plans

    SciTech Connect

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Bruning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, Massimo; Iadarola, G.; Li, K.; Lechner, A.; Medrano, L. Medina; Metral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomas, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-28

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11–12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. As a result, the dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  8. High Luminosity LHC: challenges and plans

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Barranco, J.; Bertarelli, A.; Biancacci, N.; Bruce, R.; Brüning, O.; Buffat, X.; Cai, Y.; Carver, L. R.; Fartoukh, S.; Giovannozzi, M.; Iadarola, G.; Li, K.; Lechner, A.; Medina Medrano, L.; Métral, E.; Nosochkov, Y.; Papaphilippou, Y.; Pellegrini, D.; Pieloni, T.; Qiang, J.; Redaelli, S.; Romano, A.; Rossi, L.; Rumolo, G.; Salvant, B.; Schenk, M.; Tambasco, C.; Tomás, R.; Valishev, S.; Van der Veken, F. F.

    2016-12-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will undergo a major upgrade in the 2020s. This will increase its rate of collisions by a factor of five beyond the original design value and the integrated luminosity by a factor ten. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 T superconducting magnets, including Nb3Sn-based magnets never used in accelerators before, compact superconducting cavities for longitudinal beam rotation, new technology and physical processes for beam collimation. The dynamics of the HL-LHC beams will be also particularly challenging and this aspect is the main focus of this paper.

  9. Theory - LHC Phenomenology

    NASA Astrophysics Data System (ADS)

    Gori, Stefania

    2017-01-01

    The discovery of the Higgs boson at the Large Hadron Collider marks the culmination of a decades-long hunt for the last ingredient of the Standard Model. At the same time, there are still many puzzles in particle physics, foremost the existence of a relatively light Higgs boson, seemingly without any extra weak scale particles that would stabilize the Higgs mass against quantum corrections, and the existence of Dark Matter. This talk will give an overview of the most interesting theories that address these problems and how to test these theories at the LHC.

  10. PS-module prototypes with MPA-light readout chip for the CMS Tracker Phase 2 Upgrade

    NASA Astrophysics Data System (ADS)

    Grossmann, J.

    2017-02-01

    During the HL-LHC era an instantaneous luminosity of 5×1034 cm‑2s‑1 will be reached and possibly 3000 fb‑1 integrated luminosity will be delivered. This results in the requirement for a major upgrade of the CMS Outer Tracker detector. This contribution briefly reviews the module types and the front end readout electronics foreseen in the preparation program known as phase 2 upgrade. R&D towards the construction of full module prototypes for the Pixel-Strip (PS) module is ongoing. The module combines a macro-pixel sensor and a strip sensor and has pT -discrimination capability at module level. The current experience from module construction with a demonstrator assembly and initial laboratory testing with an alternative module concept for the PS-module is shown. A possible calibration method is introduced.

  11. The upgrade programme of the major experiments at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    La Rocca, P.; Riggi, F.

    2014-05-01

    After a successful data taking period at the CERN LHC by the major physics experiments (ALICE, ATLAS, CMS and LHCb) since 2009, a long-term plan is already envisaged to fully exploit the vast physics potential of the Large Hadron Collider (LHC) within the next two decades. The CERN accelerator complex will undergo a series of upgrades leading ultimately to increase both the collision energy and the luminosity, thus maximizing the amount of data delivered to all experiments. As a consequence, the experiments have also to cope with very high detector occupancies and operate in the hard radiation environment caused by a huge multiplicity of particles produced in each beam crossing. In parallel to the accelerator upgrades, the LHC experiments are planning various upgrades to their detector, trigger, and data acquisition systems. The main motivation for the upgrades is to extend and to improve their physics programme also in the increasingly challenging LHC environment. In this paper a general overview of the upgrade programme of the major experiments at LHC will be given, with some additional details concerning specifications and physics programme of new detector subsystems.

  12. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Strobbe, N.

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  13. LHC - a "Why" Facility

    ScienceCinema

    Gordon Kane

    2016-07-12

    The Standard Models of particle physics and cosmology describe the world we see, and how it works, very well. But we want to understand (not just accommodate) much more – how does the Higgs mechanism work, what is the dark matter, why is the universe matter and not antimatter, why is parity violated, why are the particles (quarks and leptons) what they are, and why are the forces that act on them to make our world what they are, and more. Today is an exciting time to be doing particle physics – on the experimental side we have data coming from LHC and dark matter experiments that will provide clues to these questions, and on the theoretical side we have a framework (string theory) that addresses all these “why” questions. LHC data will not qualitatively improve our description – rather, it may provide the data that will allow us to learn about the dark matter, the Higgs physics, the matter asymmetry, etc, to test underlying theories such as string theory, and begin to answer the “why” questions. Supersymmetry is the best motivated discovery, and it would also open a window to the underlying theory near the Planck scale.

  14. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  15. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  16. Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-277 Airborne Warning and Control System Block 40/45 Upgrade (AWACS Blk 40/45 Upgrade) As of...PEO - Program Executive Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected

  17. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando; Caballero Bejar, Jose; De, Kaushik; Hover, John; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Petrosyan, Artem; Wenaus, Torre

    2016-02-01

    After a scheduled maintenance and upgrade period, the world's largest and most powerful machine - the Large Hadron Collider(LHC) - is about to enter its second run at unprecedented energies. In order to exploit the scientific potential of the machine, the experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousand of physics users and compared to simulated data. Given diverse funding constraints, the computational resources for the LHC have been deployed in a worldwide mesh of data centres, connected to each other through Grid technologies. The PanDA (Production and Distributed Analysis) system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS), up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  18. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  19. High-power test of annular-ring coupled structures for the J-PARC linac energy upgrade

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Ao, Hiroyuki; Nemoto, Yasuo; Asano, Hiroyuki; Suzuki, Takahiro

    2015-02-01

    Annular-ring coupled structures (ACSs) will increase the beam energy of the Japan proton accelerator research complex (J-PARC) linac from 181 to 400 MeV to achieve a beam power of 1 MW for a materials and life science experimental facility. The mass production of the ACS cavities commenced in March 2009. Before the installation, all cavities require power testing. High-power testing is essential not only for confirming the cavity's design performance but also for preventing delays in cavity conditioning schedule. However, the 2011 Tohoku earthquake damaged J-PARC facilities, including the ACS power-test area, and cavity conditioning was interrupted for two years. After the facility's restoration, two ACS cavities (M01 and M11) were conditioned. They performed 15-20% above the designed accelerating field of 4.2 MV/m. As M01 was initially conditioned six years ago, the most recent conditioning time required for M01 was drastically reduced. From this result, we confirmed that long-term stored ACS cavities purged with nitrogen gas do not produce critical cavity performance issues. During high-power operation of M11, which is a unique cavity equipped with a capacitive iris in a waveguide, no significant increases in the temperature and the discharge rate around the capacitive iris were observed. Even considering beam loss due to residual gas scattering, the vacuum pressure was sufficiently low (4 × 10-6 Pa). More stable operation can be expected following a month-long conditioning process before the beam is commissioned. M11's conditioning successfully demonstrated an auto-conditioning program, and we established the conditioning scheme using this auto-conditioning program for all ACS cavities in a limited time and with limited manpower.

  20. Results of on-line tests of the ENABLE prototype, a 2nd level trigger processor for the TRT of ATLAS/LHC

    SciTech Connect

    Noffz, K.H.; Kugel, A.; Klefenz, F.; Zoz, R.; Maenner, R.

    1994-12-31

    The Enable Machine is a systolic 2nd level trigger processor for the transition radiation tracker (TRT) of ATLAS/LHC. The task of the processor is to find the best candidate for a lepton track in a high background of pions according to the EAST benchmark algorithm in less than 10 {mu}s. As described earlier, this is done in three steps. First all interesting tracks are histogrammed by accumulating for each track the coincidences between the track mask and the region-of-interest (RoI). Next the best defined track is identified. Eventually this track is classified as e or {pi}. A prototype has been developed and tested within the EAST/RD-11 collaboration at CERN. It operates at 50 MHz and finds up to 400 tracks in less than 10 {mu}s. It is assembled of an interface board and one or more histogrammer boards. The modular design makes the Enable Machine easily scalable. The histogrammer units are systolic arrays consisting of a matrix of 36 field programmable gate arrays. Through this it is possible to optimize the trigger algorithm, to adapt it to a changed detector setup, and even to implement completely new algorithms. For the beam tests in autumn 1993 at CERN the overall functionality within the detector environment could be shown. The authors were able to link successfully the Enable prototype to the detector raw data stream as well as to the data acquisition.

  1. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall,G. Burt,C. Lingwood,Robert Rimmer,Haipeng Wang; Hall, B.; Burt, G.; Lingwood, C.; Rimmer, Robert; Wang, Haipeng

    2010-05-01

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  2. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  3. The upgrade of the ATLAS first-level calorimeter trigger

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shimpei

    2016-07-01

    The first-level calorimeter trigger (L1Calo) had operated successfully through the first data taking phase of the ATLAS experiment at the CERN Large Hadron Collider. Towards forthcoming LHC runs, a series of upgrades is planned for L1Calo to face new challenges posed by the upcoming increases of the beam energy and the luminosity. This paper reviews the ATLAS L1Calo trigger upgrade project that introduces new architectures for the liquid-argon calorimeter trigger readout and the L1Calo trigger processing system.

  4. HDI flexible front-end hybrid prototype for the PS module of the CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Kovacs, M.; Blanchot, G.; Gadek, T.; Honma, A.; Koliatos, A.

    2017-02-01

    The CMS tracker upgrade for the HL-LHC relies on different module types, depending on the position of the respective module. They are built with high-density interconnection flexible circuits that are wire bonded to silicon strip and pixel-strip sensors. The Front-End hybrids will contain several flip-chip bonded readout ASICs that are still under development. Mock-up prototypes are used to qualify the advanced flexible circuit technology and the parameters of the hybrids. This paper presents the Pixel-Strip (PS) mock-up hybrid in terms of testing, interconnection, fold-over, thermal properties and layout feasibility. Plans for circuit testing at operating temperature (-30o) are also presented.

  5. Transmission lines implementation on HDI flex circuits for the CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Blanchot, G.; De Canio, F.; Gadek, T.; Honma, A.; Kovacs, M.; Rose, P.; Traversi, G.

    2016-01-01

    The upgrade of the CMS tracker at the HL-LHC relies on hybrid modules built on high density interconnecting flexible circuits. They contain several flip chip readout ASICs having high speed digital ports required for configuration and data readout, implemented as customized Scalable Low-Voltage Signalling (SLVS) differential pairs. This paper presents the connectivity requirements on the CMS tracker hybrids; it compares several transmission line implementations in terms of board area, achievable impedances and expected crosstalk. The properties obtained by means of simulations are compared with measurements made on a dedicated test circuit. The different transmission line implementations are also tested using a custom 65nm SLVS driver and receiver prototype ASIC.

  6. Physics at an upgraded proton driver at Fermilab

    SciTech Connect

    Steve Geer

    2004-07-28

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also

  7. Hydrocarbonaceous material upgrading method

    DOEpatents

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  8. SUSY at the ILC and Solving the LHC Inverse Problem

    SciTech Connect

    Gainer, James S.; /SLAC

    2008-05-28

    Recently a large scale study of points in the MSSM parameter space which are problematic at the Large Hadron Collider (LHC) has been performed. This work was carried out in part to determine whether the proposed International Linear Collider (ILC) could be used to solve the LHC inverse problem. The results suggest that while the ILC will be a valuable tool, an energy upgrade may be crucial to its success, and that, in general, precision studies of the MSSM are more difficult at the ILC than has generally been believed.

  9. Proposal to upgrade the MIPP data acquisition system

    SciTech Connect

    Baker, W.; Carey, D.; Johnstone, C.; Kostin, M.; Meyer, H.; Raja, R.; /Fermilab

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  10. Diamond detectors for the TOTEM timing upgrade

    NASA Astrophysics Data System (ADS)

    Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Broulím, P.; Buzzo, A.; Cafagna, F. S.; Catanesi, M. G.; Csanád, M.; Csörgő, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Georgiev, V.; Giani, S.; Grzanka, L.; Guaragnella, C.; Hammerbauer, J.; Heino, J.; Karev, A.; Kašpar, J.; Kopal, J.; Kundrát, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lokajíček, M. V.; Losurdo, L.; Lo Vetere, M.; Rodríguez, F. Lucas; Lucsanyi, D.; Macrí, M.; Mercadante, A.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Österberg, K.; Palazzi, P.; Paločko, L.; Passaro, V.; Peroutka, Z.; Petruzzelli, V.; Politi, T.; Procházka, J.; Prudenzano, F.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Welti, J.; Wyszkowski, P.; Zielinski, K.

    2017-03-01

    This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.

  11. Upgrade to the Birmingham Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Dervan, P.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Wilson, J.; Baca, M.

    2015-10-01

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 1015 (1 MeV neutron equivalent (neq)) cm-2 in 80 s with proton beam currents of 1 μA and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of -50 °C in 30 min and aims to maintain sub-0 °C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and performance of the new cooling system.

  12. CDF central preshower and crack detector upgrade

    SciTech Connect

    Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Michigan State U. /INFN, Rome /Rome U. /CHEP, Taegu /Seoul Natl. U.

    2007-02-01

    The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

  13. Recent results of the ATLAS upgrade planar pixel sensors R&D project

    NASA Astrophysics Data System (ADS)

    Weigell, Philipp

    2013-12-01

    To extend the physics reach of the LHC experiments, several upgrades to the accelerator complex are planned, culminating in the HL-LHC, which eventually leads to an increase of the peak luminosity by a factor of five to ten compared to the LHC design value. To cope with the higher occupancy and radiation damage also the LHC experiments will be upgraded. The ATLAS Planar Pixel Sensor R&D Project is an international collaboration of 17 institutions and more than 80 scientists, exploring the feasibility of employing planar pixel sensors for this scenario. Depending on the radius, different pixel concepts are investigated using laboratory and beam test measurements. At small radii the extreme radiation environment and strong space constraints are addressed with very thin pixel sensors active thickness in the range of (75-150) μm, and the development of slim as well as active edges. At larger radii the main challenge is the cost reduction to allow for instrumenting the large area of (7-10) m2. To reach this goal the pixel productions are being transferred to 6 in production lines and more cost-efficient and industrialised interconnection techniques are investigated. Additionally, the n-in-p technology is employed, which requires less production steps since it relies on a single-sided process. An overview of the recent accomplishments obtained within the ATLAS Planar Pixel Sensor R&D Project is given. The performance in terms of charge collection and tracking efficiency, obtained with radioactive sources in the laboratory and at beam tests, is presented for devices built from sensors of different vendors connected to either the present ATLAS read-out chip FE-I3 or the new Insertable B-Layer read-out chip FE-I4. The devices, with a thickness varying between 75 μm and 300 μm, were irradiated to several fluences up to 2×1016 neq/cm2. Finally, the different approaches followed inside the collaboration to achieve slim or active edges for planar pixel sensors are presented.

  14. Micromegas detectors for the muon spectrometer upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Bianco, M.

    2016-07-01

    Large area Micromegas (MM) detectors will be employed for the Muon Spectrometer upgrade of the ATLAS experiment at the LHC. A total surface of about 150 m2of the forward regions of the Muon Spectrometer will be equipped with 8 layers of MM modules. Each module covers a surface area of approximately 2-3 m2 for a total active area of 1200 m2. Together with the small-strips Thin Gap Chambers, they will compose the two New Small Wheels, which will replace the innermost stations of the ATLAS Endcap Muon tracking system in the planned 2018/2019 shutdown. This upgrade will maintain a low pT threshold for single muons and provide excellent tracking capabilities for the HL-LHC phase. The New Small Wheel (NSW) project requires fully efficient MM chambers with spatial resolution down to 100 μm, at rate capability up to about 15 kHz/cm2 and operation in a moderate (highly inhomogeneous) magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic spatial resolution combined with a challenging mechanical precision. The design, recent progress in the construction and results from the substantial R& D phase (with a focus on novel technical solutions) is presented. In the R& D phase, small and medium size single layer prototypes have been built, along with, more recently, the first two MM quadruplets in a configuration very close to the final one chosen for the NSW. Several tests have been performed on these prototypes at a high-energy test-beam at CERN, to demonstrate that the achieved performances fulfil the requirements. Recent tests applying various configuration and operating conditions are presented.

  15. DACS upgrade acceptance test procedure

    SciTech Connect

    Zuehlke, A.C.

    1994-09-28

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the mixer pump, directional drive system, and the instrumentation associated with the SY-101 tank and support systems, and the proper functioning of the DACS with new Model 984-785 Programmable Logic Controllers (PLCs), new MODBUS PLUS version 2.01 software for the PLCs, and version 3.72 of the GENESIS software will be systematically evaluated by performance of this procedure. The DACS, which is housed in a trailer located just outside of the north fence at the SY tank farm, receives input signals from a variety of sensors located in and around the SY-101 tanks. These sensors provide information such as: tank vapor space and ventilation system H{sub 2} concentration; tank waste temperature; tank pressure; waste density; operating pump parameters such as speed, flow, rotational position, discharge pressure, and internal temperature; strain (for major equipment); and waste level. The output of these sensors is conditioned and transmitted to the DACS computers where these signals are displayed, recorded, and monitored for out-of-specification conditions. If abnormal conditions are detected, then, in certain situations, the DACS automatically generates alarms and causes the system to abort pump operations.

  16. FELIX: a PCIe based high-throughput approach for interfacing front-end and trigger electronics in the ATLAS Upgrade framework

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.

    2016-12-01

    The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.

  17. Proposal to upgrade the MIPP experiment

    SciTech Connect

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; Peterson, R.J.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; Gutbrod, H.; Peters, K.; Feldman, G.; Torun, Y.; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  18. Planar slim-edge pixel sensors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Altenheiner, S.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Lapsien, T.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2012-02-01

    The ATLAS detector at CERN is a general-purpose experiment at the Large Hadron Collider (LHC). The ATLAS Pixel Detector is the innermost tracking detector of ATLAS and requires a sufficient level of hermeticity to achieve superb track reconstruction performance. The current planar n-type pixel sensors feature a pixel matrix of n+-implantations which is (on the opposite p-side) surrounded by so-called guard rings to reduce the high voltage stepwise towards the cutting edge and an additional safety margin. Because of the inactive region around the active area, the sensor modules have been shingled on top of each other's edge which limits the thermal performance and adds complexity in the present detector. The first upgrade phase of the ATLAS pixel detector will consist of the insertable b-layer (IBL), an additional b-layer which will be inserted into the present detector in 2013. Several changes in the sensor design with respect to the existing detector had to be applied to comply with the IBL's specifications and are described in detail. A key issue for the ATLAS upgrades is a flat arrangement of the sensors. To maintain the required level of hermeticity in the detector, the inactive sensor edges have to be reduced to minimize the dead space between the adjacent detector modules. Unirradiated and irradiated sensors with the IBL design have been operated in test beams to study the efficiency performance in the sensor edge region and it was found that the inactive edge width could be reduced from 1100 μm to less than 250 μm.

  19. MIPP Plastic Ball electronics upgrade

    SciTech Connect

    Baldin, Boris; /Fermilab

    2009-01-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in MIPP) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 {micro}s respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 second spill and read them out in {approx}50 seconds between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab. An 8-channel prototype design of the Plastic Ball Front End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  20. The Triple GEM Detector Control System for CMS forward muon spectrometer upgrade

    NASA Astrophysics Data System (ADS)

    Ahmed, W.; Abbaneo, D.; Abbrescia, M.; Abdelalim, A. A.; Abi. Akl, M.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Holme, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Khan, S. A.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M. M.; Lentdecker, G. De.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Shah, A. H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig. Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, R.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    The CMS experiment at LHC will upgrade its forward muon spectrometer by incorporating Triple-GEM detectors. This upgrade referred to as GEM Endcap (GE1/1), consists of adding two back-to-back Triple-GEM detectors in front of the existing Cathode Strip Chambers (CSC) in the innermost ring of the endcap muon spectrometer. Before the full installation of 144 detectors in 2019–2020, CMS will first install ten single chamber prototypes during the early 2017. This pre-installation is referred as the slice test. These ten detectors will be read-out by VFAT2 chips [1]. On-detector there is also a FPGA mezzanine card which sends VFAT2 data optically to the μTCA back-end electronics. The correct and safe operation of the GEM system requires a sophisticated and powerful online Detector Control System, able to monitor and control many heterogeneous hardware devices. The DCS system developed for the slice test has been tested with CMS Triple-GEM detectors in the laboratory. In this paper we describe the newly developed DCS system and present the first results obtained in the GEM assembly and quality assurance laboratory.

  1. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Cerri, Alessandro

    2016-07-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage ("Level 1") will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed.

  2. Novel Geometries for the LHC Crab Cavity

    SciTech Connect

    Hall, B.; Burt, G.; Smith, J. D.A.; Rimmer, R.; Wang, H.; Delayen, J.; Calaga, R.

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  3. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  4. Training for Technology Upgrade.

    ERIC Educational Resources Information Center

    Strandberg, John

    1997-01-01

    A computer system conversion in a business was relatively painless for users and invisible to customers. The plan relied on basic training strategies that apply to a variety of technology upgrades. (Author/JOW)

  5. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  6. Will there be energy frontier colliders after LHC?

    SciTech Connect

    Shiltsev, Vladimir

    2016-09-15

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics.

  7. Building a large-area GEM-based readout chamber for the upgrade of the ALICE TPC

    NASA Astrophysics Data System (ADS)

    Gasik, P.

    2017-02-01

    A large Time Projection Chamber (TPC) is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019-2020, the LHC will deliver Pb beams colliding at an interaction rate up to 50 kHz, which is about a factor of 100 above the present read-out rate of the TPC. To fully exploit the LHC potential the TPC will be upgraded based on the Gas Electron Multiplier (GEM) technology. A prototype of an ALICE TPC Outer Read-Out Chamber (OROC) was equipped with twelve large-size GEM foils as amplification stage to demonstrate the feasibility of replacing the current Multi Wire Proportional Chambers with the new technology. With a total area of ∼0.76 m2 it is the largest GEM-based detector built to date. The GEM OROC was installed within a test field cage and commissioned with radioactive sources.

  8. Dynamic aperture studies for the LHC high luminosity lattice

    SciTech Connect

    Maria, R. de; Giovannozzi, M.; McIntosh, E.; Nosochkov, Y. M.; Cai, Y.; Wang, M. -H.

    2015-07-14

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  9. ATLAS level-1 calorimeter trigger: Run-2 performance and Phase-1 upgrades

    NASA Astrophysics Data System (ADS)

    Carlson, Ben; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    The Run-2 performance and Phase-1 upgrade are presented for the hardware-based level-1 calorimeter trigger (L1Calo) for the ATLAS Experiment. This trigger has a latency of about 2.2 microseconds to make a decision to help ATLAS select about 100 kHz of the most interesting collisions from the nominal LHC rate of 40 MHz. We summarize the upgrade after Run-1 (2009-2012) and discuss its performance in Run-2 (2015-current). We also outline the on-going Phase-1 upgrade for the next run (2021-2024) and its expected performance.

  10. Supersymmetry At LHC

    SciTech Connect

    Khalil, Shaaban

    2008-04-21

    One of the main motivation of the experiments at the Large Hadron Collider (LHC), scheduled to start around 2006, is to search for supersymmetric particles. The region of the parameter space of the minimal supersymmetric standard model, where supersymmetry can be discovered is investigated. We show that if supersymmetry exists at electroweak scale, it would be easy to find signals for it at the LHC. If the LHC does find supersymmetry, this would be one of the greatest achievements in the history of theoretical physics.

  11. Detector Developments for the High Luminosity LHC Era (1/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.

  12. The 40 MHz trigger-less DAQ for the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Campora Perez, D. H.; Falabella, A.; Galli, D.; Giacomini, F.; Gligorov, V.; Manzali, M.; Marconi, U.; Neufeld, N.; Otto, A.; Pisani, F.; Vagnoni, V. M.

    2016-07-01

    The LHCb experiment will undergo a major upgrade during the second long shutdown (2018-2019), aiming to let LHCb collect an order of magnitude more data with respect to Run 1 and Run 2. The maximum readout rate of 1 MHz is the main limitation of the present LHCb trigger. The upgraded detector, apart from major detector upgrades, foresees a full read-out, running at the LHC bunch crossing frequency of 40 MHz, using an entirely software based trigger. A new high-throughput PCIe Generation 3 based read-out board, named PCIe40, has been designed for this purpose. The read-out board will allow an efficient and cost-effective implementation of the DAQ system by means of high-speed PC networks. The network-based DAQ system reads data fragments, performs the event building, and transports events to the High-Level Trigger at an estimated aggregate rate of about 32 Tbit/s. Different architecture for the DAQ can be implemented, such as push, pull and traffic shaping with barrel-shifter. Possible technology candidates for the foreseen event-builder under study are InfiniBand and Gigabit Ethernet. In order to define the best implementation of the event-builder we are performing tests of the event-builder on different platforms with different technologies. For testing we are using an event-builder evaluator, which consists of a flexible software implementation, to be used on small size test beds as well as on HPC scale facilities. The architecture of DAQ system and up to date performance results will be presented.

  13. The radiation hardness and temperature stability of Planar Light-wave Circuit splitters for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.

    2011-10-01

    High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( < 0.1 dB) in reducing the operating temperature from 25°C to -25°C. The silica based splitters from all manufacturers did not exhibit significant radiation induced insertion losses, despite the high dose they were exposed to. The glass based sample, however, had a per channel radiation induced insertion loss of up to 1.16 dB. Whilst the silica based splitters can be considered as qualified for HL-LHC use with regards to radiation hardness, the glass technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.

  14. Upgrade of the ALICE inner tracking system

    NASA Astrophysics Data System (ADS)

    Rossegger, Stefan

    2013-12-01

    The Inner Tracking System (ITS) is the key ALICE detector for the study of heavy flavor production at LHC. Heavy flavor can be studied via the identification of short-lived hadrons containing heavy quarks which have a mean proper decay length in the order of 100-300 μm. To accomplish this task, the ITS is composed of six cylindrical layers of silicon detectors (two pixel, two drift and two strip) with a radial coverage from 3.9 to 43 cm and an average material budget of 1.1% X0 per layer. In order to enhance the ALICE physics capabilities, and, in particular, the tracking performance for heavy-flavor detection, the possibility of an ITS upgrade has been studied in great detail. It will make use of the spectacular progress made in the field of imaging sensors over the last 10 years as well as the possibility to install a smaller radius beampipe. The upgraded detector will have greatly improved features in terms of the impact parameter resolution, standalone tracking efficiency at low pt, momentum resolution and readout capabilities. The usage of the most recent monolithic and/or hybrid pixel detector technologies allows the improvement of the detector material budget and the intrinsic spatial resolution both by a factor of three with respect to the present ITS. The installation of a smaller beam-pipe reduces the distance between the first detector layer and the interaction vertex. Under these assumptions, simulations show that an overall improvement of the impact parameter resolution by a factor of three is possible. The Conceptual Design Report for the Upgrade of the ALICE ITS, which covers the design and performance requirements, the upgrade options, as well as the necessary R&D efforts, was made public in September 2012. An intensive R&D program has been launched to review the different technological options under consideration. The new detector should be ready to be installed during the long LHC shutdown period scheduled in 2017-2018.

  15. The LHC Experiments

    SciTech Connect

    Lincoln, Don

    2015-03-11

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  16. The LHC Experiments

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider or LHC is the world’s biggest particle accelerator, but it can only get particles moving very quickly. To make measurements, scientists must employ particle detectors. There are four big detectors at the LHC: ALICE, ATLAS, CMS, and LHCb. In this video, Fermilab’s Dr. Don Lincoln introduces us to these detectors and gives us an idea of each one’s capabilities.

  17. Performance of a full-size small-strip thin gap chamber prototype for the ATLAS new small wheel muon upgrade

    NASA Astrophysics Data System (ADS)

    Abusleme, A.; Bélanger-Champagne, C.; Bellerive, A.; Benhammou, Y.; Botte, J.; Cohen, H.; Davies, M.; Du, Y.; Gauthier, L.; Koffas, T.; Kuleshov, S.; Lefebvre, B.; Li, C.; Lupu, N.; Mikenberg, G.; Mori, D.; Ochoa-Ricoux, J. P.; Codina, E. Perez; Rettie, S.; Robichaud-Véronneau, A.; Rojas, R.; Shoa, M.; Smakhtin, V.; Stelzer, B.; Stelzer-Chilton, O.; Toro, A.; Torres, H.; Ulloa, P.; Vachon, B.; Vasquez, G.; Vdovin, A.; Viel, S.; Walker, P.; Weber, S.; Zhu, C.

    2016-05-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. The most important upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will be installed during the LHC long shutdown in 2019/2020. Small-Strip Thin Gap Chamber (sTGC) detectors are designed to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. To validate the design, a full-size prototype sTGC detector of approximately 1.2 × 1.0m2 consisting of four gaps has been constructed. Each gap provides pad, strip and wire readouts. The sTGC intrinsic spatial resolution has been measured in a 32 GeV pion beam test at Fermilab. At perpendicular incidence angle, single gap position resolutions of about 50 μm have been obtained, uniform along the sTGC strip and perpendicular wire directions, well within design requirements. Pad readout measurements have been performed in a 130 GeV muon beam test at CERN. The transition region between readout pads has been found to be 4 mm, and the pads have been found to be fully efficient.

  18. Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Savic, N.; Beyer, J.; La Rosa, A.; Macchiolo, A.; Nisius, R.

    2016-12-01

    In view of the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), planned to start around 2023-2025, the ATLAS experiment will undergo a replacement of the Inner Detector. A higher luminosity will imply higher irradiation levels and hence will demand more radiation hardness especially in the inner layers of the pixel system. The n-in-p silicon technology is a promising candidate to instrument this region, also thanks to its cost-effectiveness because it only requires a single sided processing in contrast to the n-in-n pixel technology presently employed in the LHC experiments. In addition, thin sensors were found to ensure radiation hardness at high fluences. An overview is given of recent results obtained with not irradiated and irradiated n-in-p planar pixel modules. The focus will be on n-in-p planar pixel sensors with an active thickness of 100 and 150 μm recently produced at ADVACAM. To maximize the active area of the sensors, slim and active edges are implemented. The performance of these modules is investigated at beam tests and the results on edge efficiency will be shown.

  19. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  20. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  1. Electrical characterization of thin edgeless N-on-p planar pixel sensors for ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Bomben, M.; Bagolini, A.; Boscardin, M.; Bosisio, L.; Calderini, G.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-05-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. Because of its radiation hardness and cost effectiveness, the n-on-p silicon technology is a promising candidate for a large area pixel detector. The paper reports on the joint development, by LPNHE and FBK of novel n-on-p edgeless planar pixel sensors, making use of the active trench concept for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, and presenting some sensors' simulation results, a complete overview of the electrical characterization of the produced devices will be given.

  2. Four tops for LHC

    NASA Astrophysics Data System (ADS)

    Alvarez, Ezequiel; Faroughy, Darius A.; Kamenik, Jernej F.; Morales, Roberto; Szynkman, Alejandro

    2017-02-01

    We design a search strategy for the Standard Model t t bar t t bar production at the LHC in the same-sign dilepton and trilepton channels. We study different signal features and, given the small expected number of signal events, we scrutinize in detail all reducible and irreducible backgrounds. Our analysis shows that by imposing a basic set of jet and lepton selection criteria, the SM pp → t t bar t t bar process could be evidenced in the near future, within Run-II, when combining both multi-lepton search channels. We argue that this search strategy should also be used as a guideline to test New Physics coupling predominantly to top-quarks. In particular, we show that a non-resonant New Physics enhancement in the four-top final state would be detectable through this search strategy. We study two top-philic simplified models of this kind, a neutral scalar boson and a Z‧, and present current and future exclusion limits on their mass and couplings.

  3. The UKIRT Upgrades Programme

    NASA Astrophysics Data System (ADS)

    Adamson, Andy; Davies, John; Robson, Ian

    Tim Hawarden presented this paper to the 30th anniversary workshop, just a month before his untimely death. The editors have done their best to convert his talk into this paper, and gratefully acknowledge the assistance of Nick Rees (a member of the Upgrades team, now at Diamond Light Source). Tim's discussion concerned the UKIRT Upgrades Project, which ran through the 1990s and transformed the telescope and made it truly competitive on the world stage for operation into the twenty-first century. The reference list at the end of the paper is comprehensive; some of these are referred to in the paper itself and some are included for completeness only.

  4. Upgrading of existing structures. Final report on phase 2

    SciTech Connect

    Gabrielsen, B.L.; Tansely, R.S.; Cuzner, G.

    1980-06-01

    This report presents the results of an investigation of blast upgrading of existing structures, which consisted of developing failure prediction methodologies for various structure types, both in 'as built' and in upgraded configurations, and verifying these prediction techniques with full-scale load tests. These upgrading schemes were developed for use as shelters in support of Civil Defense crisis relocation planning. Structure types investigated included wood, steel, and concrete floor and roof systems. The results of this study are being used in the development of a shelter manual presenting the various upgrading concepts in an illustrative workbook form for use in the field.

  5. Novel module production methods for the CMS pixel detector, upgrade phase I

    NASA Astrophysics Data System (ADS)

    Blank, T.; Caselle, M.; Weber, M.; Kudella, S.; Colombo, F.; Hansen, K.; Arab, S.

    2015-02-01

    For the High-Luminosity upgrade of the LHC (HL-LHC), phase I, the CMS pixel detector needs to be replaced. In order to improve the tracking resolution even at high luminosity the pixel detector is upgraded by a fourth barrel layer. This paper describes the production process and results for the fourth barrel layer for the CMS silicon pixel detector, upgrade phase I. The additional barrel layer will be produced by KIT and DESY. Both research centers have commonly developed and investigated new production processes, including SAC solder bump jetting, gold stud bumping and "Precoat by Powder Processes" (PPS) to bump the sensor tiles and prepare them for the flip-chip process. First bare modules have been produced with the new digital ROC.

  6. Recent achievements of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Casse, G.

    2014-04-01

    The ATLAS upgrade Planar Pixel Sensors (PPS) project aims to prove the suitability of silicon detectors processed with planar technology to equip all layers of the pixel vertex detector proposed for the upgrade of the ATLAS experiment for the future High Luminosity LHC at CERN (HL-LHC). The detectors need to be radiation tolerant to the extreme fluences expected to be received during the experimental lifetime, with optimised geometry for full coverage and high granularity and affordable in term of cost, due to the relatively large area of the upgraded ATLAS detector system. Here several solutions for the detector geometry and results with radiation hard technologies (n-in-n, n-in-p) are discussed.

  7. PACIFIC: A 64-channel ASIC for scintillating fiber tracking in LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Gascon, D.; Chanal, H.; Comerma, A.; Gomez, S.; Han, X.; Mazorra, J.; Mauricio, J.; Pillet, N.; Yengui, F.; Vandaele, R.

    2015-04-01

    The LHCb detector will be upgraded during the next LHC shutdown in 2018/19 [1]. The tracker system will have a major overhaul. Its components will be replaced with new technologies in order to cope with the increased hit occupancy and radiation environment. Here we describe a detector made of scintillating fibers read out by silicon photomultipliers (SiPM), with a view to its application for this upgrade. This technology has been shown to achieve high efficiency and spatial resolution, but its integration within a LHCb experiment presents new challenges. This article gives an overview of the R&D status of the low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC) chip implemented in a 130 nm CMOS technology. The PACIFIC chip is a 64-channel ASIC which can be connected to a SiPM without the need of any external component. It includes analog signal processing and digitization. The first stage is a current conveyor followed by a tunable fast shaper (≈10 ns) and a gated integrator. The digitization is performed using a 3 threshold non-linear flash ADC operating at 40 MHz. The PACIFIC chip has the ability to cope with different SiPM suppliers with a power consumption below 8 mW per channel and it is radiation-tolerant. Lastly, simulation and test results show the proper read out of the SiPMs with the PACIFIC chip.

  8. Achievements of the ATLAS upgrade Planar Pixel Sensors R&D Project

    NASA Astrophysics Data System (ADS)

    Nellist, C.

    2015-01-01

    In the framework of the HL-LHC upgrade, the ATLAS experiment plans to introduce an all-silicon inner tracker to cope with the elevated occupancy. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project (PPS) was established comprising 19 institutes and more than 90 scientists. The paper provides an overview of the research and development project and highlights accomplishments, among them: beam test results with planar sensors up to innermost layer fluences (>1016 neq cm-2) measurements obtained with irradiated thin edgeless n-in-p pixel assemblies; recent studies of the SCP technique to obtain almost active edges by post-processing already existing sensors based on scribing, cleaving and edge passivation; an update on prototyping efforts for large areas: sensor design improvements and concepts for low-cost hybridisation; comparison between Secondary Ion Mass Spectrometry results and TCAD simulations. Together, these results allow an assessment of the state-of-the-art with respect to radiation-hard position-sensitive tracking detectors suited for the instrumentation of large areas.

  9. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  10. LARP Long Quadrupole: A "Long" Step Toward an LHC

    SciTech Connect

    Giorgio Ambrosio

    2008-02-13

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  11. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans-Ulrich; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Heikamp, Stephanie; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Sandrock, Stefan; Siebenmorgen, Ralf; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars; Weilenmann, Ueli

    2014-07-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO's IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can't be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014

  12. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    SciTech Connect

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.; Jones, Susanne B.; Westover, Tyler L.; Cafferty, Kara G.

    2016-11-17

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.

  13. ``The Read-Out Driver'' ROD card for the Insertable B-layer (IBL) detector of the ATLAS experiment: commissioning and upgrade studies for the Pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Chen, S. P.; Falchieri, D.; Flick, T.; Gabrielli, A.; Hauck, S.; Hsu, S. C.; Kretz, M.; Kugel, A.; Lama, L.; Morettini, P.; Travaglini, R.; Wensing, M.

    2014-01-01

    The upgrade of the ATLAS experiment at LHC foresees the insertion of an innermost silicon layer, called the Insertable B-layer (IBL). The IBL read-out system will be equipped with new electronics. The Readout-Driver card (ROD) is a VME board devoted to data processing, configuration and control. A pre-production batch has been delivered for testing with instrumented slices of the overall acquisition chain, aiming to finalize strategies for system commissioning. In this paper system setups and results will be described, as well as preliminary studies on changes needed to adopt the ROD for the ATLAS Pixel Layers 1 and 2.

  14. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  15. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  16. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  17. Radiation hard electronics for LHC

    NASA Astrophysics Data System (ADS)

    Raymond, M.; Millmore, M.; Hall, G.; Sachdeva, R.; French, M.; Nygård, E.; Yoshioka, K.

    1995-02-01

    A CMOS front end electronics chain is being developed by the RD20 collaboration for microstrip detector readout at LHC. It is based on a preamplifier and CR-RC filter, analogue pipeline and an analogue signal processor. Amplifiers and transistor test structures have been constructed and evaluated in detail using a Harris 1.2 μm radiation hardened CMOS process. Progress with larger scale elements, including 32 channel front end chips, is described. A radiation hard 128 channel chip, with a 40 MHz analogue multiplexer, is to be submitted for fabrication in July 1994 which will form the basis of the readout of the tracking system of the CMS experiment.

  18. The Phase1 CMS Pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Tavolaro, V. R.

    2016-12-01

    The pixel detector of the CMS experiment will be replaced in an extended end-of-year shutdown during winter 2016/2017 with an upgraded one able to cope with peak instantaneous luminosities beyond the nominal LHC instantaneous luminosity of 1 × 1034 cm-2 s-1. Under the conditions expected in the coming years, which will see an increase of a factor two in instantaneous luminosity, the present system would experience a dynamic inefficiency caused mainly by data losses due to buffer overflows. The Phase I upgrade of the CMS pixel detector, described in this paper, will operate at full efficiency at an instantaneous luminosity of 2 × 1034 cm-2 s-1 and beyond, thanks to a new readout chip. The new detector will feature one additional tracking point both in the barrel and in the forward regions, while reducing the material budget as a result of a new CO2 cooling system and optimised layout of the services. In this paper, the design and the technological choices of the Phase I detector will be reviewed and the status of the construction of the detector and the performance of its components will be discussed.

  19. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  20. CWM production from upgraded young low rank coals

    SciTech Connect

    Tsurui, Masao; Katagiri, Tsutomu; Yanagimachik, Harumitsu; Tokuda, Shinichi; Hashimoto, Noboru; Yui, Masayuki; Sugiyama, Takeshi

    1997-12-31

    CWM is a mixture of pulverized coal (60 to 70%) and water (30 to 40%) with a very small quantity of dispersant. It is stable under storage conditions and is sufficiently fluid to be transported by means of long-distance pipelines, and ocean going tankers. In order to overcome the economic difficulties of CWM, the authors started the development of a new type of CWM based on abundant non-utilized young low grade coal. This R and D aims at developing and demonstrating an economical clean coal fuel manufacturing technology to ensure safe transportation and storage. To this end, it is necessary to develop a technology to irreversibly dewater coals while maintaining volatility as far as possible, and to convert dewatered coals to high-concentration coal water mixtures (CWM). Japan COM Company Limited and JGC Corporation have been jointly conducting research and development of low rank coals upgrading technology to establish CWM production and utilization technologies from upgraded coals at lower cost and higher quality. In the first phase, the authors investigated available low rank coals upgrading technologies and selected the hot water drying (HWD) process as suited for the conversion of coals to CWM. In the second phase, they conducted HWD upgrading tests using an autoclave and a continuous type bench plant for laboratory-scale tests to convert upgraded coals to CWM, and thus confirmed upgrading effects. In the third phase, they constructed an upgrading pilot plant of 8.4 t/d (dry coal) processing capacity and have conducted upgrading tests. They have also conducted CWM production tests using a CWM production facility of 500 kg/h, and assessed the combustibility of upgraded coal CWM. The operation is carried out using three coals, two Indonesian sub-bituminous coals and one Australian brown coal, which were selected through the bench-scale testing. The following tests were carried out from Dec. of 1994 to March 1996: (1) Continuous upgrading tests by newly

  1. SRS control system upgrade requirements

    SciTech Connect

    Hill, L.F.

    1998-08-04

    This document defines requirements for an upgrade of the Sodium Removal System (SRS) control system. The upgrade is being performed to solve a number of maintainability and operability issues. The upgraded system will provide the same functions, controls and interlocks as the present system, and in addition provide enhanced functionality in areas discussed in this document.

  2. Summary of the Mini BNL/LARP/CARE-HHH Workshop on Crab Cavities for the LHC (LHC-CC08)

    SciTech Connect

    Ben-Zvi,I.; Calaga, R.; Zimmermann, F.

    2008-05-01

    The first mini-workshop on crab compensation for the LHC luminosity upgrade (LHC-CC08) was held February 24-25, 2008 at the Brookhaven National Laboratory. A total of 35 participants from 3 continents and 15 institutions from around the world participated to discuss the exciting prospect of a crab scheme for the LHC. If realized it will be the first demonstration in hadron colliders. The workshop is organized by joint collaboration of BNL, US-LARP and CARE-HHH. The enormous interest in the subject of crab cavities for the international linear collider and future light sources has resulted in a large international collaboration to exchange aspects of synergy and expertise. A central repository for this exchange of information documenting the latest design effort for LHC crab cavities is consolidated in a wiki page: https://twiki.cern.ch/twiki/bin/view/Main/LHCCrabCavities. The main goal of this workshop was to define a road-map for a prototype crab cavity to be installed in the LHC and to discuss the associated R&D and beam dynamics challenges. The diverse subject of implementing the crab scheme resulted in a scientific program with a wide range of subtopics which were divided into 8 sessions. Each session was given a list of fundamental questions to be addressed and used as a guideline to steer the discussions.

  3. Upgrade of the CMS muon trigger system in the barrel region

    NASA Astrophysics Data System (ADS)

    Rabady, Dinyar; Ero, Janos; Flouris, Giannis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2017-02-01

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger.

  4. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  5. LHC Olympics: Advanced Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Armour, Kyle; Larkoski, Andrew; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is a discussion of some of the more advanced techniques used and the recent results of one such LHC Olympics study.

  6. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  7. Developments towards the LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Cid Vidal, Xabier

    2016-09-01

    The Vertex Locator (VELO) is a silicon strip detector surrounding the interaction region of the LHCb experiment. The upgrade of the VELO is planned to be installed in 2019-2020, and the current detector will be replaced by a hybrid pixel system equipped with electronics capable of reading out at a rate of 40 MHz. The new detector is designed to withstand the radiation dose expected at an integrated luminosity of 50 fb-1. The detector will be composed of silicon pixel sensors, read out by the VeloPix ASIC that is being developed based on the TimePix/MediPix family. The prototype sensors for the VELO upgrade are being irradiated in five different facilities and the post-irradiation performance is being measured with testbeams, and in the lab. These proceedings present the VELO upgrade and briefly discuss the results of the sensor testing campaign.

  8. MR LLRF VXI upgrade beam study period

    SciTech Connect

    Mesiner, K.; /Fermilab

    1995-01-01

    AD/RFI/LLRF group personnel performed several studies with the MR LLRF VXI upgrade system during the evening of 7/29/95. The study period lasted about 4 hours. The MR operating conditions were a mixture of $29 and $2B cycles, with beam injected only on the $29. The author believes the $2B cycles were present for reasons unrelated to the study. The basic study period goal was to test the initial VXI version of MR LLRF finite state machine (FSM) execution. This goal represents what has been called MR LLRF VXI Upgrade Implementation Stage No.2 throughout presentations and documentation on the upgrade project. The test includes control of MR LLRF NIM hardware, the MR RF cavities, and beam via XVI TTL FSM outputs. Numerous MR LLRF VXI system objects, or components, must work together correctly for a successful test. Very briefly, the required objects include VXI Front End hardware, the ACNET/Front End interface code, and the VXI/NIM Interface chassis (the chassis solves VXI-CAMAC-NIM RF and FSM output connectivity and development problems). Though this initial FSM does not yet fully support Upgrade Implementation Stage 2 functionality, all code and hardware for the following basic functionality is tested.

  9. The LHCb Detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration; Alves, A. Augusto, Jr.; Filho, L. M. Andrade; Barbosa, A. F.; Bediaga, I.; Cernicchiaro, G.; Guerrer, G.; Lima, H. P., Jr.; Machado, A. A.; Magnin, J.; Marujo, F.; de Miranda, J. M.; Reis, A.; Santos, A.; Toledo, A.; Akiba, K.; Amato, S.; de Paula, B.; de Paula, L.; da Silva, T.; Gandelman, M.; Lopes, J. H.; Maréchal, B.; Moraes, D.; Polycarpo, E.; Rodrigues, F.; Ballansat, J.; Bastian, Y.; Boget, D.; DeBonis, I.; Coco, V.; David, P. Y.; Decamp, D.; Delebecque, P.; Drancourt, C.; Dumont-Dayot, N.; Girard, C.; Lieunard, B.; Minard, M. N.; Pietrzyk, B.; Rambure, T.; Rospabe, G.; T'Jampens, S.; Ajaltouni, Z.; Bohner, G.; Bonnefoy, R.; Borras, D.; Carloganu, C.; Chanal, H.; Conte, E.; Cornat, R.; Crouau, M.; Delage, E.; Deschamps, O.; Henrard, P.; Jacquet, P.; Lacan, C.; Laubser, J.; Lecoq, J.; Lefèvre, R.; Magne, M.; Martemiyanov, M.; Mercier, M.-L.; Monteil, S.; Niess, V.; Perret, P.; Reinmuth, G.; Robert, A.; Suchorski, S.; Arnaud, K.; Aslanides, E.; Babel, J.; Benchouk, C.; Cachemiche, J.-P.; Cogan, J.; Derue, F.; Dinkespiler, B.; Duval, P.-Y.; Garonne, V.; Favard, S.; LeGac, R.; Leon, F.; Leroy, O.; Liotard, P.-L.; Marin, F.; Menouni, M.; Ollive, P.; Poss, S.; Roche, A.; Sapunov, M.; Tocco, L.; Viaud, B.; Tsaregorodtsev, A.; Amhis, Y.; Barrand, G.; Barsuk, S.; Beigbeder, C.; Beneyton, R.; Breton, D.; Callot, O.; Charlet, D.; D'Almagne, B.; Duarte, O.; Fulda-Quenzer, F.; Jacholkowska, A.; Jean-Marie, B.; Lefrancois, J.; Machefert, F.; Robbe, P.; Schune, M.-H.; Tocut, V.; Videau, I.; Benayoun, M.; David, P.; DelBuono, L.; Gilles, G.; Domke, M.; Futterschneider, H.; Ilgner, Ch; Kapusta, P.; Kolander, M.; Krause, R.; Lieng, M.; Nedos, M.; Rudloff, K.; Schleich, S.; Schwierz, R.; Spaan, B.; Wacker, K.; Warda, K.; Agari, M.; Bauer, C.; Baumeister, D.; Bulian, N.; Fuchs, H. P.; Fallot-Burghardt, W.; Glebe, T.; Hofmann, W.; Knöpfle, K. T.; Löchner, S.; Ludwig, A.; Maciuc, F.; Sanchez Nieto, F.; Schmelling, M.; Schwingenheuer, B.; Sexauer, E.; Smale, N. J.; Trunk, U.; Voss, H.; Albrecht, J.; Bachmann, S.; Blouw, J.; Deissenroth, M.; Deppe, H.; Dreis, H. B.; Eisele, F.; Haas, T.; Hansmann-Menzemer, S.; Hennenberger, S.; Knopf, J.; Moch, M.; Perieanu, A.; Rabenecker, S.; Rausch, A.; Rummel, C.; Rusnyak, R.; Schiller, M.; Stange, U.; Uwer, U.; Walter, M.; Ziegler, R.; Avoni, G.; Balbi, G.; Bonifazi, F.; Bortolotti, D.; Carbone, A.; D'Antone, I.; Galli, D.; Gregori, D.; Lax, I.; Marconi, U.; Peco, G.; Vagnoni, V.; Valenti, G.; Vecchi, S.; Bonivento, W.; Cardini, A.; Cadeddu, S.; DeLeo, V.; Deplano, C.; Furcas, S.; Lai, A.; Oldeman, R.; Raspino, D.; Saitta, B.; Serra, N.; Baldini, W.; Brusa, S.; Chiozzi, S.; Cotta Ramusino, A.; Evangelisti, F.; Franconieri, A.; Germani, S.; Gianoli, A.; Guoming, L.; Landi, L.; Malaguti, R.; Padoan, C.; Pennini, C.; Savriè, M.; Squerzanti, S.; Zhao, T.; Zhu, M.; Bizzeti, A.; Graziani, G.; Lenti, M.; Lenzi, M.; Maletta, F.; Pennazzi, S.; Passaleva, G.; Veltri, M.; Alfonsi, M.; Anelli, M.; Balla, A.; Battisti, A.; Bencivenni, G.; Campana, P.; Carletti, M.; Ciambrone, P.; Corradi, G.; Dané, E.; Di Virgilio, A.; DeSimone, P.; Felici, G.; Forti, C.; Gatta, M.; Lanfranchi, G.; Murtas, F.; Pistilli, M.; Poli Lener, M.; Rosellini, R.; Santoni, M.; Saputi, A.; Sarti, A.; Sciubba, A.; Zossi, A.; Ameri, M.; Cuneo, S.; Fontanelli, F.; Gracco, V.; Miní, G.; Parodi, M.; Petrolini, A.; Sannino, M.; Vinci, A.; Alemi, M.; Arnaboldi, C.; Bellunato, T.; Calvi, M.; Chignoli, F.; DeLucia, A.; Galotta, G.; Mazza, R.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.; Pessina, G.; Auriemma, G.; Bocci, V.; Buccheri, A.; Chiodi, G.; Di Marco, S.; Iacoangeli, F.; Martellotti, G.; Nobrega, R.; Pelosi, A.; Penso, G.; Pinci, D.; Rinaldi, W.; Rossi, A.; Santacesaria, R.; Satriano, C.; Carboni, G.; Iannilli, M.; Massafferri Rodrigues, A.; Messi, R.; Paoluzzi, G.; Sabatino, G.; Santovetti, E.; Satta, A.; Amoraal, J.; van Apeldoorn, G.; Arink, R.; van Bakel, N.; Band, H.; Bauer, Th; Berkien, A.; van Beuzekom, M.; Bos, E.; Bron, Ch; Ceelie, L.; Doets, M.; van der Eijk, R.; Fransen, J.-P.; de Groen, P.; Gromov, V.; Hierck, R.; Homma, J.; Hommels, B.; Hoogland, W.; Jans, E.; Jansen, F.; Jansen, L.; Jaspers, M.; Kaan, B.; Koene, B.; Koopstra, J.; Kroes, F.; Kraan, M.; Langedijk, J.; Merk, M.; Mos, S.; Munneke, B.; Palacios, J.; Papadelis, A.; Pellegrino, A.; van Petten, O.; du Pree, T.; Roeland, E.; Ruckstuhl, W.; Schimmel, A.; Schuijlenburg, H.; Sluijk, T.; Spelt, J.; Stolte, J.; Terrier, H.; Tuning, N.; Van Lysebetten, A.; Vankov, P.; Verkooijen, J.; Verlaat, B.; Vink, W.; de Vries, H.; Wiggers, L.; Ybeles Smit, G.; Zaitsev, N.; Zupan, M.; Zwart, A.; van den Brand, J.; Bulten, H. J.; de Jong, M.; Ketel, T.; Klous, S.; Kos, J.; M'charek, B.; Mul, F.; Raven, G.; Simioni, E.; Cheng, J.; Dai, G.; Deng, Z.; Gao, Y.; Gong, G.; Gong, H.; He, J.; Hou, L.; Li, J.; Qian, W.; Shao, B.; Xue, T.; Yang, Z.; Zeng, M.; Muryn, B.; Ciba, K.; Oblakowska-Mucha, A.; Blocki, J.; Galuszka, K.; Hajduk, L.; Michalowski, J.; Natkaniec, Z.; Polok, G.; Stodulski, M.; Witek, M.; Brzozowski, K.; Chlopik, A.; Gawor, P.; Guzik, Z.; Nawrot, A.; Srednicki, A.; Syryczynski, K.; Szczekowski, M.; Anghel, D. V.; Cimpean, A.; Coca, C.; Constantin, F.; Cristian, P.; Dumitru, D. D.; Dumitru, D. T.; Giolu, G.; Kusko, C.; Magureanu, C.; Mihon, Gh; Orlandea, M.; Pavel, C.; Petrescu, R.; Popescu, S.; Preda, T.; Rosca, A.; Rusu, V. L.; Stoica, R.; Stoica, S.; Tarta, P. D.; Filippov, S.; Gavrilov, Yu; Golyshkin, L.; Gushchin, E.; Karavichev, O.; Klubakov, V.; Kravchuk, L.; Kutuzov, V.; Laptev, S.; Popov, S.; Aref'ev, A.; Bobchenko, B.; Dolgoshein, V.; Egorychev, V.; Golutvin, A.; Gushchin, O.; Konoplyannikov, A.; Korolko, I.; Kvaratskheliya, T.; Machikhiliyan, I.; Malyshev, S.; Mayatskaya, E.; Prokudin, M.; Rusinov, D.; Rusinov, V.; Shatalov, P.; Shchutska, L.; Tarkovskiy, E.; Tayduganov, A.; Voronchev, K.; Zhiryakova, O.; Bobrov, A.; Bondar, A.; Eidelman, S.; Kozlinsky, A.; Shekhtman, L.; Beloous, K. S.; Dzhelyadin, R. I.; Gelitsky, Yu V.; Gouz, Yu P.; Kachnov, K. G.; Kobelev, A. S.; Matveev, V. D.; Novikov, V. P.; Obraztsov, V. F.; Ostankov, A. P.; Romanovsky, V. I.; Rykalin, V. I.; Soldatov, A. P.; Soldatov, M. M.; Tchernov, E. N.; Yushchenko, O. P.; Bochin, B.; Bondar, N.; Fedorov, O.; Golovtsov, V.; Guets, S.; Kashchuk, A.; Lazarev, V.; Maev, O.; Neustroev, P.; Sagidova, N.; Spiridenkov, E.; Volkov, S.; Vorobyev, An; Vorobyov, A.; Aguilo, E.; Bota, S.; Calvo, M.; Comerma, A.; Cano, X.; Dieguez, A.; Herms, A.; Lopez, E.; Luengo, S.; Garra, J.; Garrido, Ll; Gascon, D.; Gaspar de Valenzuela, A.; Gonzalez, C.; Graciani, R.; Grauges, E.; Perez Calero, A.; Picatoste, E.; Riera, J.; Rosello, M.; Ruiz, H.; Vilasis, X.; Xirgu, X.; Adeva, B.; Cid Vidal, X.; MartÉnez Santos, D.; Esperante Pereira, D.; Fungueiriño Pazos, J. L.; Gallas Torreira, A.; Gómez, C. Lois; Pazos Alvarez, A.; Pérez Trigo, E.; Pló Casasús, M.; Rodriguez Cobo, C.; Rodríguez Pérez, P.; Saborido, J. J.; Seco, M.; Vazquez Regueiro, P.; Bartalini, P.; Bay, A.; Bettler, M.-O.; Blanc, F.; Borel, J.; Carron, B.; Currat, C.; Conti, G.; Dormond, O.; Ermoline, Y.; Fauland, P.; Fernandez, L.; Frei, R.; Gagliardi, G.; Gueissaz, N.; Haefeli, G.; Hicheur, A.; Jacoby, C.; Jalocha, P.; Jimenez-Otero, S.; Hertig, J.-P.; Knecht, M.; Legger, F.; Locatelli, L.; Moser, J.-R.; Needham, M.; Nicolas, L.; Perrin-Giacomin, A.; Perroud, J.-P.; Potterat, C.; Ronga, F.; Schneider, O.; Schietinger, T.; Steele, D.; Studer, L.; Tareb, M.; Tran, M. T.; van Hunen, J.; Vervink, K.; Villa, S.; Zwahlen, N.; Bernet, R.; Büchler, A.; Gassner, J.; Lehner, F.; Sakhelashvili, T.; Salzmann, C.; Sievers, P.; Steiner, S.; Steinkamp, O.; Straumann, U.; van Tilburg, J.; Vollhardt, A.; Volyanskyy, D.; Ziegler, M.; Dovbnya, A.; Ranyuk, Yu; Shapoval, I.; Borisova, M.; Iakovenko, V.; Kyva, V.; Kovalchuk, O.; Okhrimenko, O.; Pugatch, V.; Pylypchenko, Yu; Adinolfi, M.; Brook, N. H.; Head, R. D.; Imong, J. P.; Lessnoff, K. A.; Metlica, F. C. D.; Muir, A. J.; Rademacker, J. H.; Solomin, A.; Szczypka, P. M.; Barham, C.; Buszello, C.; Dickens, J.; Gibson, V.; Haines, S.; Harrison, K.; Jones, C. R.; Katvars, S.; Kerzel, U.; Lazzeroni, C.; Li, Y. Y.; Rogers, G.; Storey, J.; Skottowe, H.; Wotton, S. A.; Adye, T. J.; Densham, C. J.; Easo, S.; Franek, B.; Loveridge, P.; Morrow, D.; Morris, J. V.; Nandakumar, R.; Nardulli, J.; Papanestis, A.; Patrick, G. N.; Ricciardi, S.; Woodward, M. L.; Zhang, Z.; Chamonal, R. J. U.; Clark, P. J.; Clarke, P.; Eisenhardt, S.; Gilardi, N.; Khan, A.; Kim, Y. M.; Lambert, R.; Lawrence, J.; Main, A.; McCarron, J.; Mclean, C.; Muheim, F.; Osorio-Oliveros, A. F.; Playfer, S.; Styles, N.; Xie, Y.; Bates, A.; Carson, L.; da Cunha Marinho, F.; Doherty, F.; Eklund, L.; Gersabeck, M.; Haddad, L.; Macgregor, A. A.; Melone, J.; McEwan, F.; Petrie, D. M.; Paterson, S. K.; Parkes, C.; Pickford, A.; Rakotomiaramanana, B.; Rodrigues, E.; Saavedra, A. F.; Soler, F. J. P.; Szumlak, T.; Viret, S.; Allebone, L.; Awunor, O.; Back, J.; Barber, G.; Barnes, C.; Cameron, B.; Clark, D.; Clark, I.; Dornan, P.; Duane, A.; Eames, C.; Egede, U.; Girone, M.; Greenwood, S.; Hallam, R.; Hare, R.; Howard, A.; Jolly, S.; Kasey, V.; Khaleeq, M.; Koppenburg, P.; Miller, D.; Plackett, R.; Price, D.; Reece, W.; Savage, P.; Savidge, T.; Simmons, B.; Vidal-Sitjes, G.; Websdale, D.; Affolder, A.; Anderson, J. S.; Biagi, S. F.; Bowcock, T. J. V.; Carroll, J. L.; Casse, G.; Cooke, P.; Donleavy, S.; Dwyer, L.; Hennessy, K.; Huse, T.; Hutchcroft, D.; Jones, D.; Lockwood, M.; McCubbin, M.; McNulty, R.; Muskett, D.; Noor, A.; Patel, G. D.; Rinnert, K.; Shears, T.; Smith, N. A.; Southern, G.; Stavitski, I.; Sutcliffe, P.; Tobin, M.; Traynor, S. M.; Turner, P.; Whitley, M.; Wormald, M.; Wright, V.; Bibby, J. H.; Brisbane, S.; Brock, M.; Charles, M.; Cioffi, C.; Gligorov, V. V.; Handford, T.; Harnew, N.; Harris, F.; John, M. J. J.; Jones, M.; Libby, J.; Martin, L.; McArthur, I. A.; Muresan, R.; Newby, C.; Ottewell, B.; Powell, A.; Rotolo, N.; Senanayake, R. S.; Somerville, L.; Soroko, A.; Spradlin, P.; Sullivan, P.; Stokes-Rees, I.; Topp-Jorgensen, S.; Xing, F.; Wilkinson, G.; Artuso, M.; Belyaev, I.; Blusk, S.; Lefeuvre, G.; Menaa, N.; Menaa-Sia, R.; Mountain, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Abadie, L.; Aglieri-Rinella, G.; Albrecht, E.; André, J.; Anelli, G.; Arnaud, N.; Augustinus, A.; Bal, F.; Barandela Pazos, M. C.; Barczyk, A.; Bargiotti, M.; Batista Lopes, J.; Behrendt, O.; Berni, S.; Binko, P.; Bobillier, V.; Braem, A.; Brarda, L.; Buytaert, J.; Camilleri, L.; Cambpell, M.; Castellani, G.; Cataneo, F.; Cattaneo, M.; Chadaj, B.; Charpentier, P.; Cherukuwada, S.; Chesi, E.; Christiansen, J.; Chytracek, R.; Clemencic, M.; Closier, J.; Collins, P.; Colrain, P.; Cooke, O.; Corajod, B.; Corti, G.; D'Ambrosio, C.; Damodaran, B.; David, C.; de Capua, S.; Decreuse, G.; Degaudenzi, H.; Dijkstra, H.; Droulez, J.-P.; Duarte Ramos, D.; Dufey, J. P.; Dumps, R.; Eckstein, D.; Ferro-Luzzi, M.; Fiedler, F.; Filthaut, F.; Flegel, W.; Forty, R.; Fournier, C.; Frank, M.; Frei, C.; Gaidioz, B.; Gaspar, C.; Gayde, J.-C.; Gavillet, P.; Go, A.; Gracia Abril, G.; Graulich, J.-S.; Giudici, P.-A.; Guirao Elias, A.; Guglielmini, P.; Gys, T.; Hahn, F.; Haider, S.; Harvey, J.; Hay, B.; Hernando Morata, J.-A.; Herranz Alvarez, J.; van Herwijnen, E.; Hilke, H. J.; von Holtey, G.; Hulsbergen, W.; Jacobsson, R.; Jamet, O.; Joram, C.; Jost, B.; Kanaya, N.; Knaster Refolio, J.; Koestner, S.; Koratzinos, M.; Kristic, R.; Lacarrère, D.; Lasseur, C.; Lastovicka, T.; Laub, M.; Liko, D.; Lippmann, C.; Lindner, R.; Losasso, M.; Maier, A.; Mair, K.; Maley, P.; Mato Vila, P.; Moine, G.; Morant, J.; Moritz, M.; Moscicki, J.; Muecke, M.; Mueller, H.; Nakada, T.; Neufeld, N.; Ocariz, J.; Padilla Aranda, C.; Parzefall, U.; Patel, M.; Pepe-Altarelli, M.; Piedigrossi, D.; Pivk, M.; Pokorski, W.; Ponce, S.; Ranjard, F.; Riegler, W.; Renaud, J.; Roiser, S.; Rossi, A.; Roy, L.; Ruf, T.; Ruffinoni, D.; Saladino, S.; Sambade Varela, A.; Santinelli, R.; Schmelling, S.; Schmidt, B.; Schneider, T.; Schöning, A.; Schopper, A.; Seguinot, J.; Snoeys, W.; Smith, A.; Smith, A. C.; Somogyi, P.; Stoica, R.; Tejessy, W.; Teubert, F.; Thomas, E.; Toledo Alarcon, J.; Ullaland, O.; Valassi, A.; Vannerem, P.; Veness, R.; Wicht, P.; Wiedner, D.; Witzeling, W.; Wright, A.; Wyllie, K.; Ypsilantis, T.

    2008-08-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

  10. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  11. RHIC LUMINOSITY UPGRADE PROGRAM

    SciTech Connect

    Fischer, W.

    2010-05-23

    The Relativistic Heavy Ion Collider (RHIC) operates with either ions or polarized protons. After increasing the heavy ion luminosity by two orders of magnitude since its commissioning in 2000, the current luminosity upgrade program aims for an increase by another factor of 4 by means of 3D stochastic cooling and a new 56 MHz SRF system. An Electron Beam Ion Source is being commissioned that will allow the use of uranium beams. Electron cooling is considered for collider operation below the current injection energy. For the polarized proton operation both luminosity and polarization are important. In addition to ongoing improvements in the AGS injector, the construction of a new high-intensity polarized source has started. In RHIC a number of upgrades are under way to increase the intensity and polarization transmission to 250 GeV beam energy. Electron lenses will be installed to partially compensate the head-on beam-beam effect.

  12. Gemini Instrument Upgrade Program

    NASA Astrophysics Data System (ADS)

    Diaz, Ruben; Goodsell, Stephen; Kleinman, Scot

    2016-08-01

    The Gemini Observatory* remains committed to keeping its operational instrumentation competitive and serving the needs of its user community. Currently the observatory operates a 4 instruments + 1 AO system at each site. At Gemini North the GMOS-N, GNIRS, NIFS and NIRI instruments are offered supported by the ALTAIR AO system. In the south, GMOS-S, F-2, GPI and GSAOI are offered instrumentation and GeMS is the provided AO System. This paper reviews our strategy to keep our instrumentation suite competitive, examines both our current funded upgrade projects and our potential future enhancements. We summarize the work done and the results so far obtained within the instrument upgrade program.

  13. The CDF upgrade

    SciTech Connect

    Newman-Holmes, C.; CDF Collaboration

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector.

  14. The versatile link, a common project for super-LHC

    SciTech Connect

    Amaral, Luis; Dris, Stefanos; Gerardin, Alexandre; Huffman, Todd; Issever, Cigdem; Pacheco, Alberto Jimenez; Jones, Mark; Kwan, Simon; Lee, Shih-Chang; Lian, Zhijun; Liu, Tiankuan; /CERN /Oxford U. /Fermilab /Taipei, Computing Ctr. /Southern Methodist U.

    2009-07-01

    Radiation tolerant, high speed optoelectronic data transmission links are fundamental building blocks in today's large scale High Energy Physics (HEP) detectors, as exemplified by the four experiments currently under commissioning at the Large Hadron Collider (LHC), see for example. New experiments or upgrades will impose even more stringent demands on these systems from the point of view of performance and radiation tolerance. This can already be seen from the developments underway for the Super Large Hadron Collider (SLHC) project, a proposed upgrade to the LHC aiming at increasing the luminosity of the machine by factor of 10 to 10{sup 35} cm{sup -2}s{sup -1}, and thus providing a better chance to see rare processes and improving statistically marginal measurements. In the past, specific data transmission links have been independently developed by each LHC experiment for data acquisition (DAQ), detector control as well as trigger and timing distribution (TTC). This was justified by the different types of applications being targeted as well as by technological limitations preventing one single solution from fitting all requirements. However with today's maturity of optoelectronic and CMOS technologies it is possible to envisage the development of a general purpose optical link which can cover most transmission applications: a Versatile Link. Such an approach has the clear advantage of concentrating the development effort on one single project targeting an optical link whose final functionality will only result from the topology and configuration settings adopted.

  15. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  16. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  17. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  18. Status of superconducting magnet development (SSC, RHIC, LHC)

    SciTech Connect

    Wanderer, P.

    1993-12-31

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented.

  19. The upgrade of the CMS hadron calorimeter with silicon 5 photomultipliers

    SciTech Connect

    Strobbe, N.

    2016-09-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  20. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect

    Pilat, Fulvia C.

    2012-09-01

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  1. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  2. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  3. First production of new thin 3D sensors for HL-LHC at FBK

    NASA Astrophysics Data System (ADS)

    Sultan, D. M. S.; Dalla Betta, G.-F.; Mendicino, R.; Boscardin, M.; Ronchin, S.; Zorzi, N.

    2017-01-01

    Owing to their intrinsic (geometry dependent) radiation hardness, 3D pixel sensors are promising candidates for the innermost tracking layers of the forthcoming experiment upgrades at the "Phase 2" High-Luminosity LHC (HL-LHC) . To this purpose, extreme radiation hardness up to the expected maximum fluence of 2 × 1016 neq.cm-2 must come along with several technological improvements in a new generation of 3D pixels, i.e., increased pixel granularity (050×5 or 025× 10 μ m2 cell size), thinner active region (0~ 10 \\textmu m), narrower columnar electrodes (~ 5 \\textmu m diameter) with reduced inter-electrode spacing (0~ 3 μ m), and very slim edges (0~ 10 μ m). The fabrication of the first batch of these new 3D sensors was recently completed at FBK on Si-Si direct wafer bonded 6" substrates. Initial electrical test results, performed at wafer level on sensors and test structures, highlighted very promising performance, in good agreement with TCAD simulations: low leakage current (< 1 pA/column), intrinsic breakdown voltage of more than 150 V, capacitance of about 50 fF/column, thus assessing the validity of the design approach. A large variety of pixel sensors compatible with both existing (e.g., ATLAS FEI4 and CMS PSI46) and future (e.g., RD53) read-out chips were fabricated, that were also electrically tested on wafer using a temporary metal layer patterned as strips shorting rows of pixels together. This allowed a statistically significant distribution of the relevant electrical quantities to be obtained, thus gaining insight into the impact of process-induced defects. A few 3D strip test structures were irradiated with X-rays, showing inter-strip resistance of at least several GΩ even after 50 Mrad(Si) dose, thus proving the p-spray robustness. We present the most important design and technological aspects, and results obtained from the initial investigations.

  4. The Role of US Groups in LHC Physics

    NASA Astrophysics Data System (ADS)

    Green, Daniel

    2009-05-01

    U.S. groups have been involved in the LHC for the last fifteen years and have participated in the design, construction, installation and commissioning of the ATLAS and CMS detectors and the LHC accelerator. During this period U.S. groups have been integral to the overall effort and indeed comprise the largest national group within the detector collaborations. In the future these groups will take on operations tasks and R&D plans for detector upgrades. Thus, the U.S. effort will be an extended commitment, decades long. Nevertheless, the methods whereby U.S. groups will play a proportionate role in the physics analyses are less clear. LHC data and computing resources will be spread worldwide. What collaborative tools will allow U.S. groups to fully participate in the expected rich LHC physics? Should there be multiple analysis centers within the large and distributed ATLAS and CMS collaborations? As high energy physics looks ahead to having fewer energy frontier facilities similar issues will arise in the future which makes these questions of more general interest.

  5. Experimental status of supersymmetry after the LHC Run-I

    NASA Astrophysics Data System (ADS)

    Autermann, Christian

    2016-09-01

    The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.

  6. Development and Test of TQC models, LARP Technological Quadrupole Magnets

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Nobrega, F.; Novitski, I.; Orris, D.; Tartaglia, M.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hafalia, A.R.; Sabbi, G.

    2008-06-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the development and test of TQC01b, the second TQC model, and the experience during construction of TQE02 and TQC02, subsequent models in the series. ANSYS analysis of the mechanical structure, its underlying assumptions, and changes based on experience with TQC01 are presented and discussed. Construction experience, in-process measurements, and modifications to the assembly since TQC01 are described. The test results presented here include magnet strain and quench performance during training of TQC01b, as well as quench studies of current ramp rate dependence.

  7. LHC Nobel Symposium Proceedings

    NASA Astrophysics Data System (ADS)

    Ekelöf, Tord

    2013-12-01

    In the summer of 2012, a great discovery emerged at the Large Hadron Collider (LHC) at CERN in Geneva. A plethora of new precision data had already by then been collected by the ATLAS and CMS experiments at LHC, providing further extensive support for the validity of the Standard Model of particle physics. But what now appeared was the first evidence for what was not only the last unverified prediction of the Standard Model, but also perhaps the most decisive one: the prediction made already in 1964 of a unique scalar boson required by the theory of François Englert and Peter Higgs on how fundamental particles acquire mass. At that moment in 2012, it seemed particularly appropriate to start planning a gathering of world experts in particle physics to take stock of the situation and try to answer the challenging question: what next? By May 2013, when the LHC Nobel Symposium was held at the Krusenberg Mansion outside Uppsala in Sweden, the first signs of a great discovery had already turned into fully convincing experimental evidence for the existence of a scalar boson of mass about 125 GeV, having properties compatible with the 50-year-old prediction. And in October 2013, the evidence was deemed so convincing that the Swedish Royal Academy of Sciences awarded the Nobel Prize in Physics to Englert and Higgs for their pioneering work. At the same time the search at the LHC for other particles, beyond those predicted by the Standard Model, with heavier masses up to—and in some cases beyond—1 TeV, had provided no positive result. The triumph of the Standard Model seems resounding, in particular because the mass of the discovered scalar boson is such that, when identified with the Higgs boson, the Standard Model is able to provide predictions at energies as high as the Planck mass, although at the price of accepting that the vacuum would be metastable. However, even if there were some feelings of triumph, the ambience at the LHC Nobel Symposium was more one of

  8. LHC forward physics

    SciTech Connect

    Akiba, K.; Akbiyik, M.; Albrow, M.; Arneodo, M.; Avati, V.; Baechler, J.; Baillie, O. Villalobos; Bartalini, P.; Bartels, J.; Baur, S.; Baus, C.; Beaumont, W.; Behrens, U.; Berge, D.; Berretti, M.; Bossini, E.; Boussarie, R.; Brodsky, S.; Broz, M.; Bruschi, M.; Bussey, P.; Byczynski, W.; Noris, J. C. Cabanillas; Villar, E. Calvo; Campbell, A.; Caporale, F.; Carvalho, W.; Chachamis, G.; Chapon, E.; Cheshkov, C.; Chwastowski, J.; Ciesielski, R.; Chinellato, D.; Cisek, A.; Coco, V.; Collins, P.; Contreras, J. G.; Cox, B.; Damiao, D. de Jesus; Davis, P.; Deile, M.; D’Enterria, D.; Druzhkin, D.; Ducloué, B.; Dumps, R.; Dzhelyadin, R.; Dziurdzia, P.; Eliachevitch, M.; Fassnacht, P.; Ferro, F.; Fichet, S.; Figueiredo, D.; Field, B.; Finogeev, D.; Fiore, R.; Forshaw, J.; Medina, A. Gago; Gallinaro, M.; Granik, A.; Gersdorff, G. von; Giani, S.; Golec-Biernat, K.; Goncalves, V. P.; Göttlicher, P.; Goulianos, K.; Grosslord, J-Y; Harland-Lang, L. A.; Haevermaet, H. Van; Hentschinski, M.; Engel, R.; Corral, G. Herrera; Hollar, J.; Huertas, L.; Johnson, D.; Katkov, I.; Kepka, O.; Khakzad, M.; Kheyn, L.; Khachatryan, V.; Khoze, V. A.; Klein, S.; Klundert, M. van; Krauss, F.; Kurepin, A.; Kurepin, N.; Kutak, K.; Kuznetsova, E.; Latino, G.; Lebiedowicz, P.; Lenzi, B.; Lewandowska, E.; Liu, S.; Luszczak, A.; Luszczak, M.; Madrigal, J. D.; Mangano, M.; Marcone, Z.; Marquet, C.; Martin, A. D.; Martin, T.; Hernandez, M. I. Martinez; Martins, C.; Mayer, C.; Nulty, R. Mc; Mechelen, P. Van; Macula, R.; Costa, E. Melo da; Mertzimekis, T.; Mesropian, C.; Mieskolainen, M.; Minafra, N.; Monzon, I. L.; Mundim, L.; Murdaca, B.; Murray, M.; Niewiadowski, H.; Nystrand, J.; Oliveira, E. G. de; Orava, R.; Ostapchenko, S.; Osterberg, K.; Panagiotou, A.; Papa, A.; Pasechnik, R.; Peitzmann, T.; Moreno, L. A. Perez; Pierog, T.; Pinfold, J.; Poghosyan, M.; Pol, M. E.; Prado, W.; Popov, V.; Rangel, M.; Reshetin, A.; Revol, J-P; Rijssenbeek, M.; Rodriguez, M.; Roland, B.; Royon, C.; Ruspa, M.; Ryskin, M.; Vera, A. Sabio; Safronov, G.; Sako, T.; Schindler, H.; Salek, D.; Safarik, K.; Saimpert, M.; Santoro, A.; Schicker, R.; Seger, J.; Sen, S.; Shabanov, A.; Schafer, W.; Silveira, G. Gil Da; Skands, P.; Soluk, R.; Spilbeeck, A. van; Staszewski, R.; Stevenson, S.; Stirling, W. J.; Strikman, M.; Szczurek, A.; Szymanowski, L.; Takaki, J. D. Tapia; Tasevsky, M.; Taesoo, K.; Thomas, C.; Torres, S. R.; Tricomi, A.; Trzebinski, M.; Tsybychev, D.; Turini, N.; Ulrich, R.; Usenko, E.; Varela, J.; Vetere, M. Lo; Tello, A. Villatoro; Pereira, A. Vilela; Volyanskyy, D.; Wallon, S.; Wilkinson, G.; Wöhrmann, H.; Zapp, K. C.; Zoccarato, Y.

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  9. LHC forward physics

    DOE PAGES

    Akiba, K.; Akbiyik, M.; Albrow, M.; ...

    2016-10-17

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chaptermore » 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. Here, the report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.« less

  10. LHC forward physics

    SciTech Connect

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  11. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  12. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  13. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  14. Preparation for upgrading western subbituminous coal

    SciTech Connect

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  15. TMX upgrade experimental operating plan

    SciTech Connect

    Coensgen, F.H.; Davis, J.C.; Simonen, T.C.

    1981-07-01

    This document describes the operating plan for the TMX Upgrade experiment. This plan covers the period from November 1981 to March 1983 and describes how the TMX will be brought into operation, our schedules and milestones, and how we will determine if the TMX Upgrade program milestones have been met.

  16. Slum Upgrading and Health Equity.

    PubMed

    Corburn, Jason; Sverdlik, Alice

    2017-03-24

    Informal settlement upgrading is widely recognized for enhancing shelter and promoting economic development, yet its potential to improve health equity is usually overlooked. Almost one in seven people on the planet are expected to reside in urban informal settlements, or slums, by 2030. Slum upgrading is the process of delivering place-based environmental and social improvements to the urban poor, including land tenure, housing, infrastructure, employment, health services and political and social inclusion. The processes and products of slum upgrading can address multiple environmental determinants of health. This paper reviewed urban slum upgrading evaluations from cities across Asia, Africa and Latin America and found that few captured the multiple health benefits of upgrading. With the Sustainable Development Goals (SDGs) focused on improving well-being for billions of city-dwellers, slum upgrading should be viewed as a key strategy to promote health, equitable development and reduce climate change vulnerabilities. We conclude with suggestions for how slum upgrading might more explicitly capture its health benefits, such as through the use of health impact assessment (HIA) and adopting an urban health in all policies (HiAP) framework. Urban slum upgrading must be more explicitly designed, implemented and evaluated to capture its multiple global environmental health benefits.

  17. Taming the Viper: Software Upgrade for VFAUser and Viper

    SciTech Connect

    DORIN,RANDALL T.; MOSER III,JOHN C.

    2000-08-08

    This report describes the procedure and properties of the software upgrade for the Vibration Performance Recorder. The upgrade will check the 20 memory cards for proper read/write operation. The upgrade was successfully installed and uploaded into the Viper and the field laptop. The memory checking routine must run overnight to complete the test, although the laptop need only be connected to the Viper unit until the downloading routine is finished. The routine has limited ability to recognize incomplete or corrupt header and footer files. The routine requires 400 Megabytes of free hard disk space. There is one minor technical flaw detailed in the conclusion.

  18. Handling collision debris in quad- and dipole-first LHC IR options

    SciTech Connect

    Mokhov, N.V.; Rakhno, I.L.; /Fermilab

    2006-12-01

    Detailed MARS15 Monte Carlo energy deposition calculations are performed for two main designs of the LHC interaction regions (IR) capable to achieve a luminosity of 10{sup 35} cm{sup -2} s{sup -1}: a traditional quadrupole-first scheme and the one with a dual-bore inner triplet with separation dipoles placed in front of the quadrupoles. It is shown that with the appropriate design of the Nb3Sn magnets, IR layout and a number of protective measures implemented, both schemes are feasible for the LHC luminosity upgrade up to 10{sup 35} cm{sup -2} s{sup -1}.

  19. Detector Developments for the High Luminosity LHC Era (2/4)

    ScienceCinema

    None

    2016-07-12

    Calorimetry and Muon Spectromers - Part II: When upgrading the LHC to higher luminosities, the detector and trigger performance shall be preserved - if not improved - with respect to the nominal performance. The ongoing R&D; for new radiation tolerant front-end electronics for calorimeters with higher read-out bandwidth are summarized and new possibilities for the trigger systems are presented. Similar developments are foreseen for the muon spectrometers, where also radiation tolerance of the muon detectors and functioning at high background rates is important. The corresponding plans and research work for the calorimeter and muon detectors at a LHC with highest luminsity are presented.

  20. Magnet R&D for the US LHC Accelerator Research Program (LARP)

    SciTech Connect

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-06-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb{sub 3}Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program.

  1. Seismic upgrades of healthcare facilities.

    PubMed

    Yusuf, A

    1997-06-01

    Before 1989 seismic upgrading of hospital structures was not a primary consideration among hospital owners. However, after extensive earthquake damage to hospital buildings at Loma Prieta in Northern California in 1989 and then at Northridge in Southern California in 1994, hospital owners, legislators, and design teams become concerned about the need for seismic upgrading of existing facilities. Because the damage hospital structures sustained in the earthquakes was so severe and far-reaching, California has enacted laws that mandate seismic upgrading for existing facilities. Now hospital owners will have to upgrade buildings that do not conform to statewide seismic adequacy laws. By 2030, California expects all of its hospital structures to be sufficiently seismic-resistant. Slowly, regions in the Midwest and on the East Coast are following their example. This article outlines reasons and ways for seismic upgrading of existing facilities.

  2. The FNAL injector upgrade

    SciTech Connect

    Tan, C.Y.; Bollinger, D.S.; Duel, K.L.; Lackey, J.R.; Pellico, W.A.; /Fermilab

    2011-03-01

    The present FNAL H{sup -} injector has been operational since the 1970s and consists of two magnetron H{sup -} sources and two 750 keV Cockcroft-Walton Accelerators. In the upgrade, both slit-type magnetron sources will be replaced with circular aperture sources, and the Cockcroft-Waltons with a 200 MHz RFQ (radio frequency quadrupole). Operational experience at BNL (Brookhaven National Laboratory) has shown that the upgraded source and RFQ will be more reliable, improve beam quality and require less manpower than the present system. The present FNAL (Fermi National Accelerator Laboratory) injector has been operational since 1978 and has been a reliable source of H{sup -} beams for the Fermilab program. At present there are two Cockcroft-Walton injectors, each with a magnetron H{sup -} source with a slit aperture. With these two sources in operation, the injector has a reliability of better than 97%. However, issues with maintenance, equipment obsolescence, increased beam quality demands and retirement of critical personnel, have made it more difficult for the continued reliable running of the H{sup -} injector. The recent past has also seen an increase in both downtime and source output issues. With these problems coming to the forefront, a new 750 keV injector is being built to replace the present system. The new system will be similar to the one at BNL (Brookhaven National Laboratory) that has a similar magnetron source with a round aperture and a 200MHz RFQ. This combination has been shown to operate extremely reliably.

  3. NIRSS Upgrades: Final Report

    NASA Technical Reports Server (NTRS)

    Politovich, Marcia K.

    2007-01-01

    This year we were able to further the NIRSS program by re-writing the data ingest and display code from LabVIEW to C++ and Java. This was leveraged by a University of Colorado Computer Science Department Senior Project. The upgrade made the display more portable and upgradeable. Comparisons with research aircraft flights conducted during AIRS-2 were also done and demonstrate reasonable skill in determining cloud altitudes and liquid water distribution. Improvements can still be made to the cloud and liquid logic. The icing hazard index was not evaluated here since that represents work in progress and needs to be made compatible with the new CIP-Severity algorithm. CIP is the Current Icing Potential product that uses a combination decision tree/fuzzy logic algorithm to combine numerical weather model output with operational sensor data (NEXRAD, GOES, METARs and voice pilot reports) to produce an hourly icing diagnosis across the CONUS. The new severity algorithm seeks to diagnose liquid water production through rising, cooling air, and depletion by ice processes. The information used by CIP is very different from that ingested by NIRSS but some common ground does exist. Additionally, the role of NIRSS and the information it both needs and provides needs to be determined in context of the Next Generation Air Traffic System (NGATS). The Weather Integrated Products Team has a plan for an Initial Operating Capability (IOC) to take place in 2012. NIRSS is not explicitly a part of that IOC but should be considered as a follow-on as part of the development path to a 2025 full capability.

  4. Mobile Telemetry Van Remote Control Upgrade

    DTIC Science & Technology

    2012-05-17

    Advantages of Remote Control System Upgrade • Summary Overview • Remote control of Telemetry Mobile Ground Support ( TMGS ) Van proposed to allow...NWC) personnel provided valuable data for full-function remote control of telemetry tracking vans Background • TMGS Vans support Flight Test...control capability from main TM site at Building 5790 currently allows support via TMGS Van at nearby C- 15 Site, Plant 42 in Palmdale, and as far

  5. The Development of Large-Area Micromegas Detectors for the Atlas Upgrade

    NASA Astrophysics Data System (ADS)

    Wotschack, Joerg

    2013-04-01

    The upgrade of the ATLAS detector at the Large Hadron Collider (LHC) at CERN calls for a new generation of muon detectors capable of operating in a flux of collision and background particles approximately ten times larger compared to today's conditions. We report here on the Muon ATLAS MicroMegas Activity (MAMMA) R&D project aimed at the construction of large-area spark-resistant muon chambers using the micromegas technology.

  6. Irradiation and testbeam of KEK/HPK planar p-type pixel modules for HL-LHC

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Arai, Y.; Hagihara, M.; Hanagaki, K.; Hara, K.; Hori, R.; Hirose, M.; Ikegami, Y.; Jinnouchi, O.; Kamada, S.; Kawagoe, K.; Kohno, T.; Motohashi, K.; Nishimura, R.; Oda, S.; Otono, H.; Takubo, Y.; Terada, S.; Takashima, R.; Tojo, J.; Unno, Y.; Usui, J.; Wakui, T.; Yamaguchi, D.; Yamamoto, K.; Yamamura, K.

    2015-06-01

    For the ATLAS detector upgrade for the high luminosity LHC (HL-LHC), an n-in-p planar pixel sensor-module is being developed with HPK. The modules were irradiated at the Cyclotron RadioIsotope Center (CYRIC) using 70 MeV protons. For the irradiation, a novel irradiation box has been designed that carries 16 movable slots to irradiate the samples slot-by-slot independently, to reduce the time for replacing the samples by hand, thus reducing the irradiation to human body. The box can be moved horizontally and vertically to scan the samples for a maximum area of 11 cm × 11 cm. Tests were subsequently carried out with beam at CERN by using 120 GeV pions and at DESY with 4 GeV electrons. We describe the analyses of the testbeam data of the KEK/HPK sensor-modules, focussing on the comparison of the performance of old and new designs of pixel structures, together with a reference of the simplest design (no biasing structure). The novel design has shown comparably good performance as the no-structure design in detecting passing-through charged particles.

  7. Commissioning the cryogenic system of the first LHC sector

    SciTech Connect

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; Ronayette, L.; Rabehl, R.; /Fermilab

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.

  8. Upgrading of raw oil into advanced fuel

    SciTech Connect

    Not Available

    1991-10-01

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  9. Monotops at the LHC

    SciTech Connect

    Andrea, J.; Fuks, B.

    2011-10-01

    We explore scenarios where top quarks may be produced singly in association with missing energy, a very distinctive signature, which, in analogy with monojets, we dub monotops. We find that monotops can be produced in a variety of modes, typically characterized by baryon number-violating or flavorchanging neutral interactions. We build a simplified model that encompasses all the possible (tree-level) production mechanisms and study the LHC sensitiveness to a few representative scenarios by considering fully hadronic top decays. We find that constraints on such exotic models can already be set with 1 fb{sup -1} of integrated luminosity collected at {radical}(s)=7 TeV.

  10. LNV Higgses at LHC

    NASA Astrophysics Data System (ADS)

    Maiezza, Alessio; Nemevšek, Miha; Nesti, Fabrizio

    2016-06-01

    Lepton number is a fundamental symmetry that can be probed at the LHC. Here, we study the Higgs sector of theories responsible for neutrino mass generation. After a brief discussion of simple see-saw scenarios, we turn to theories where heavy Majorana neutrino mass is protected by a gauge symmetry and focus on the Left-Right symmetric theory. There, the SM-like Higgs boson can decay to a pair of heavy neutrinos and provide enough information to establish the origin of neutrino mass.

  11. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  12. Technical Design Report for the Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Masoodi, A. Ahmad; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Anderssen, E. C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J..; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastian Van Beelen, J.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Battistin, M.; Batyunya, B.; Batzing, P. C.; Baudot, J.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Benettoni, M.; Benotto, F.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Besson, A.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhatti, A.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Boehmer, F. V.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Borshchov, V. N.; Bortolin, C.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Caudron, T.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Claus, G.; Cleymans, J.; Colamaria, F.; Colella, D.; Coli, S.; Colledani, C.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Da Riva, E.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Decosse, C.; DelagrangeI, H.; Deloff, A.; Déenes, E.; D'Erasmo, G.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Robertis, G.; De Roo, K.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divia, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dorheim, S.; Dorokhov, A.; Doziere, G.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dulinski, W.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J., III; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernádez Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fiorenza, G.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Franco, M.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gajanana, D.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubilato, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez, R.; Gomez Marzoa, M.; Gonzáalez-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Greiner, L. C.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grondin, D.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Hennes, E.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hicks, B.; Hillemanns, H.; Himmi, A.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Hu-Guo, C.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Igolkin, S.; Ijzermans, P.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Incani, E.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Ivanytskyi, O.; Jachołkowski, A.; Jadlovsky, J.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Junique, A.; Jusko, A.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keil, M.; Ketzer, B.; Khan, M. Mohisin.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Krus, M.; Krymov, E. B.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenhardt, M.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lesenechal, Y.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O. M.; Ljunggren, H. M.; Lodato, D. F.; Loddo, F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luo, J.; Luparello, G.; Luzzi, C.; Gago, A. M.; Jacobs, P. M.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'kevich, D.; Maltsev, N. A.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Mapelli, A.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Marin Tobon, C. A.; Markert, C.; Marquard, M.; Marras, D.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Blanco, J. Martin; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Maslov, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Mattiazzo, S.; Matyja, A.; Mayer, C.; Mazer, J.; Mazumder, R.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitu, C. M.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mongelli, M.; Montanõ Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Morel, F.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Bhopal, F. Muhammad; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paíc, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Panati, S.; Pant, D.; Pantano, D.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Passfeld, A.; Pastore, C.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peryt, I. W.; Pesci, A.; Pestov, Y.; Petagna, P.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Pham, H.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Pohjoisaho, E. H. O.; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, V.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Protsenko, M. A.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Puggioni, C.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rasson, J. E.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossegger, S.; Rossewij, M. J.; Rossi, A.; Roudier, S.; Rousset, J.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sacchetti, M.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Santoro, R.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schipper, J. D.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Scott, R.; Segato, G.; Seger, J. E.; Selyuzhenkov, I.; Senyukhov, S.; Seo, J.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R. J. M.; Snoeys, W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, V. Sooden F.; Sorensen, S.; Spacek, M.; Špalek, J.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A. P.; Subieta Vasquez, M. A.; Sugitate, T.; Suire, C.; Suleymanov, M.; Šuljić, M.; Sultanov, R.; Šumbera, M.; Sun, X.; Susa, T.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Ter Minasyan, A.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turchetta, R.; Turrisi, R.; Tveter, T. S.; Tymchuk, I. T.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Palomo, L. Valencia; Valentino, V.; Valin, I.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vasta, P.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Verlaat, B.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Winter, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I.-K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, F.; Zhang, H.; Zhang, X.

    2014-08-01

    ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance.

  13. Operating the Worldwide LHC Computing Grid: current and future challenges

    NASA Astrophysics Data System (ADS)

    Flix Molina, J.; Forti, A.; Girone, M.; Sciaba, A.

    2014-06-01

    The Wordwide LHC Computing Grid project (WLCG) provides the computing and storage resources required by the LHC collaborations to store, process and analyse their data. It includes almost 200,000 CPU cores, 200 PB of disk storage and 200 PB of tape storage distributed among more than 150 sites. The WLCG operations team is responsible for several essential tasks, such as the coordination of testing and deployment of Grid middleware and services, communication with the experiments and the sites, followup and resolution of operational issues and medium/long term planning. In 2012 WLCG critically reviewed all operational procedures and restructured the organisation of the operations team as a more coherent effort in order to improve its efficiency. In this paper we describe how the new organisation works, its recent successes and the changes to be implemented during the long LHC shutdown in preparation for the LHC Run 2.

  14. LHCb RICH Upgrade: an overview of the photon detector and electronic system

    NASA Astrophysics Data System (ADS)

    Cassina, L.

    2016-01-01

    The LHCb experiment is one of the four large detectors operating at the LHC at CERN and it is mainly devoted to CP violation measurements and to the search for new physics in rare decays of beauty and charm hadrons. The data from the two Ring Image Cherenkov (RICH-1 and RICH-2) detectors are essential to identify particles in a wide momentum range. From 2019 onwards 14 TeV collisions with luminosities reaching up to 2 × 1033 cm-2s-1 with 25 ns bunch spacing are planned, with the goal of collecting 5 fb-1 of data per year. In order to avoid degradation of the PID performance at such high rate (40 MHz), the RICH detector has to be upgraded. New photodetectors (Multi-anode photomultiplier tubes, MaPMTs) have been chosen and will be read out using an 8-channel chip, named CLARO, designed to sustain a photon counting rate up to 40 MHz, while minimizing the power consumption and the cross-talk. A 128-bit digital register allows selection of thresholds and attenuation values and provides features useful for testing and debugging. Photosensors and electronics are arranged in basic units, the first prototypes of which have been tested in charged particle beams in autumn 2014. An overview of the CLARO features and of the readout electronics is presented.

  15. Safety upgrades plug car leaks

    SciTech Connect

    Not Available

    1993-08-01

    To lessen the chance of a chemical leak occurring during rail transport, some companies are improving tank car sturdiness and safety by adding such features as top-loading valves, on-board monitoring devices, and thicker, more impact-resistant hulls. Results include a dramatic drop in the number of rail incidents and leak tank cars. Chemicals Division of Olin Corporation (Stamford, Connecticut) has assigned its name to a new fleet of chlorine, caustic soda and toluene diisocyanate (TDI) tank cars. Each car carries the company's Care[trademark]Car registered trademark. The upgrade is part of a company-wide quality improvement process started in 1986. The company requires acoustic emissions (AE) testing on all hazardous materials tank cars. If an area has a defect, it expands and makes a slight sound when subjected to stress. In an AE test, cars are subject to simulated bumps and jolts as in rail shipment. Electronic sensors transfer any stress noises onto a computer screen, where an operator can pinpoint the trouble source.

  16. NSLS control system upgrade status

    SciTech Connect

    Smith, J.; Ramamoorthy, S.; Tang, Y.; Flannigan, J.; Sathe, S.; Keane, J.; Krinsky, S.

    1993-07-01

    The NSLS control system initially installed in 1978 has undergone several modifications but the basic system architecture remained relatively unchanged. The need for faster response, increased reliability and better diagnostics made the control system upgrade a priority. Since the NSLS runs continuously, major changes to the control system are difficult. The upgrade plan had to allow continuous incremental changes to the control system without having any detrimental effect on operations. The plan had to provide for immediate improvement in a few key areas, such as data access rates, and be complete in a short time. At present, most accelerator operations utilize the upgraded control system.

  17. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Jiménez Peña, J.

    2016-11-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL) . ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~ 6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  18. Supersymmetry at LHC

    SciTech Connect

    Bartl, A.; Soederqvist, J.; Paige, F.

    1996-11-22

    Supersymmetry (SUSY) is an appealing concept which provides a plausible solution to the fine tuning problem, while leaving the phenomenological success of the Standard Model (SM) unchanged. Moreover, some SUSY models allow for the unification of gauge couplings at a scale of M{sub GUT} {approx} 10{sup 16} GeV. A further attractive feature is the possibility of radiative breaking of the electro-weak symmetry group SU(2) {times} U(1). The masses of the SUSY partners of the SM particles are expected to be in the range 100 GeV to 1 TeV. One of the main goals of the Large Hadron Collider (LHC) will be either to discover weak-scale SUSY or to exclude it over the entire theoretically allowed parameter space. The authors have developed a strategy for the analysis of experimental data at LHC which will allow them to determine the scale for supersymmetry, to limit the model parameter space, and to make precision measurements of model parameters.

  19. Upgrades to NRLMOL code

    NASA Astrophysics Data System (ADS)

    Basurto, Luis

    This project consists of performing upgrades to the massively parallel NRLMOL electronic structure code in order to enhance its performance by increasing its flexibility by: a) Utilizing dynamically allocated arrays, b) Executing in a parallel environment sections of the program that were previously executed in a serial mode, c) Exploring simultaneous concurrent executions of the program through the use of an already existing MPI environment; thus enabling the simulation of larger systems than it is currently capable of performing. Also developed was a graphical user interface that will allow less experienced users to start performing electronic structure calculations by aiding them in performing the necessary configuration of input files as well as providing graphical tools for the displaying and analysis of results. Additionally, a computational toolkit that can avail of large supercomputers and make use of various levels of approximation for atomic interactions was developed to search for stable atomic clusters and predict novel stable endohedral fullerenes. As an application of the developed computational toolkit, a search was conducted for stable isomers of Sc3N C80 fullerene. In this search, about 1.2 million isomers of C80 were optimized in various charged states at the PM6 level. Subsequently, using the selected optimized isomers of C80 in various charged state, about 10,000 isomers of Sc3N C80 were constructed which were optimized using semi-empirical PM6 quantum chemical method. A few selected lowest isomers of Sc3N C80 were optimized at the DFT level. The calculation confirms the lowest 3 isomers previously reported in literature but 4 new isomers are found within the lowest 10 isomers. Using the upgraded NRLMOL code, a study was done of the electronic structure of a multichromoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. A systematic examination of the effect of

  20. ALPIDE: the Monolithic Active Pixel Sensor for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Šuljić, M.

    2016-11-01

    The upgrade of the ALICE vertex detector, the Inner Tracking System (ITS), is scheduled to be installed during the next long shutdown period (2019-2020) of the CERN Large Hadron Collider (LHC) . The current ITS will be replaced by seven concentric layers of Monolithic Active Pixel Sensors (MAPS) with total active surface of ~10 m2, thus making ALICE the first LHC experiment implementing MAPS detector technology on a large scale. The ALPIDE chip, based on TowerJazz 180 nm CMOS Imaging Process, is being developed for this purpose. A particular process feature, the deep p-well, is exploited so the full CMOS logic can be implemented over the active sensor area without impinging on the deposited charge collection. ALPIDE is implemented on silicon wafers with a high resistivity epitaxial layer. A single chip measures 15 mm by 30 mm and contains half a million pixels distributed in 512 rows and 1024 columns. In-pixel circuitry features amplification, shaping, discrimination and multi-event buffering. The readout is hit driven i.e. only addresses of hit pixels are sent to the periphery. The upgrade of the ITS presents two different sets of requirements for sensors of the inner and of the outer layers due to the significantly different track density, radiation level and active detector surface. The ALPIDE chip fulfils the stringent requirements in both cases. The detection efficiency is higher than 99%, fake-hit probability is orders of magnitude lower than the required 10-6 and spatial resolution within the required 5 μm. This performance is to be maintained even after a total ionising does (TID) of 2.7 Mrad and a non-ionising energy loss (NIEL) fluence of 1.7 × 1013 1 MeV neq/cm2, which is above what is expected during the detector lifetime. Readout rate of 100 kHz is provided and the power density of ALPIDE is less than 40 mW/cm2. This contribution will provide a summary of the ALPIDE features and main test results.

  1. Firmware development and testing of the ATLAS IBL Back Of Crate card

    NASA Astrophysics Data System (ADS)

    Stramaglia, M. E.

    2015-02-01

    ATLAS is one of the four big LHC experiments and recently its Pixel Detector was upgraded with a new innermost 4th layer: the Insertable B-Layer (IBL) . The upgrade will result in better tracking efficiency, improved precision of measurements and, in the future, compensation for radiation damage of the Pixel-Detector. Newly developed front-end electronics and the higher than originally planned LHC luminosity required a complete re-design of the Off Detector Electronics consisting of the Back Of Crate card (BOC) and the Read Out Driver (ROD) . The main purposes of the BOC card are the distribution of the LHC clock to all Pixel Detector components as well as interfacing the detector and the higher level readout optically. The data-path to the detector runs a 40 MHz bi phase mark (BPM) encoded stream. The 160 MHz 8b10b encoded data path from the detector is phase and word aligned in the firmware and then forwarded to the ROD after decoding. The ROD will send out the processed data that is then forwarded to the higher level readout by the BOC card. An overview of the newly developed firmware will be presented together with the results from production tests and the system test at CERN . Focus is put on the partial reconfiguration and results of the fine delay measurements.

  2. The Application of a Trade Study Methodology to Determine Which Capabilities to Implement in a Test Facility Data Acquisition System Upgrade

    NASA Technical Reports Server (NTRS)

    McDougal, Kristopher J.

    2008-01-01

    More and more test programs are requiring high frequency measurements. Marshall Space Flight Center s Cold Flow Test Facility has an interest in acquiring such data. The acquisition of this data requires special hardware and capabilities. This document provides a structured trade study approach for determining which additional capabilities of a VXI-based data acquisition system should be utilized to meet the test facility objectives. The paper is focused on the trade study approach detailing and demonstrating the methodology. A case is presented in which a trade study was initially performed to provide a recommendation for the data system capabilities. Implementation details of the recommended alternative are briefly provided as well as the system s performance during a subsequent test program. The paper then addresses revisiting the trade study with modified alternatives and attributes to address issues that arose during the subsequent test program. Although the model does not identify a single best alternative for all sensitivities, the trade study process does provide a much better understanding. This better understanding makes it possible to confidently recommend Alternative 3 as the preferred alternative.

  3. Altair performance and upgrades

    NASA Astrophysics Data System (ADS)

    Lai, Olivier; Véran, Jean-Pierre; Herriot, Glen; White, John; Ball, Jesse; Trujillo, Chad

    2014-07-01

    Altair is the facility single conjugate AO system for Gemini North. Although it has been in operation for more than 10 years (and upgraded to LGS in 2007), Altair's performance is degraded by three main issues: vibrations of the telescope and instrument support structure, spatial aliasing on centroid offsets from the M2 support structure print-through on the optical surface and static non-common path aberrations. Monte-Carlo simulations can reproduce the behavior of Altair when including these three effects and they are roughly of the same order of magnitude. Solutions or mitigations are being investigated to overcome these nefarious effects and restore Altair's performance to its nominal level. A simplex algorithm as well as a phase diversity approach are being investigated to measure and correct for static aberrations. A high accuracy phase map of the M2 print-through has been obtained and is being used to calibrate and/or filter centroids affected by aliasing. A new real time computer is under consideration, to be able to handle more advanced controllers, especially notch filters to combat vibrations. In this paper we will report on the various simulations and on-sky results of this rejuvenation of one of Gemini's workhorse instruments.

  4. Prospects for Quarkonium Measurements in p-A and A-A Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Winn, Michael

    2017-03-01

    The potential of the ALICE, ATLAS, CMS and LHCb detectors for the measurement of quarkonium in heavy-ion collisions, both in nucleus-nucleus (A-A) and in proton-nucleus (p-A) interactions, in the years 2015 until about 2030 in the LHC Runs 2, 3 and 4 with larger statistics and detector upgrades is described. A selection of newly available observables is discussed.

  5. Mining Upgrades to Reduce Pollution

    EPA Pesticide Factsheets

    Settlement with Southern Coal Corporation and 26 affiliates requires the companies to comprehensively upgrade their coal mining and processing operations to prevent polluted wastewater from threatening rivers and streams and communities across Appalachia.

  6. Performance studies of resistive Micromegas detectors for the upgrade of the ATLAS Muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kuger, Fabian

    2017-02-01

    With the high luminosity upgrade of the LHC the ATLAS Muon spectrometer will face increased particle rates, requiring an upgrade of the innermost end-cap detectors with a high-rate capable technology. Micromegas have been chosen as main tracking technology for this New Small Wheel upgrade. In an intense R&D and prototype phase the technology has proven to meet the stringent performance requirements of highly efficient particle detection with better than 100 μm spatial resolution, independent of the track incidence angle up to 32°, in a magnetic field B ≤ 0.3 T and at background hit rate of up to 15 kHz/cm2.

  7. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Baselga, M.; Pellegrini, G.; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  8. RISK REDUCTION FOR MATERIAL ACCOUNTABILITY UPGRADES.

    SciTech Connect

    FISHBONE, L.G.; SISKIND, B.

    2005-05-16

    We present in this paper a method for evaluating explicitly the contribution of nuclear material accountability upgrades to risk reduction at nuclear facilities. The method yields the same types of values for conditional risk reduction that physical protection and material control upgrades yield. Thereby, potential material accountability upgrades can be evaluated for implementation in the same way that protection and control upgrades are evaluated.

  9. The BRAN luminosity detectors for the LHC

    NASA Astrophysics Data System (ADS)

    Matis, H. S.; Placidi, M.; Ratti, A.; Turner, W. C.; Bravin, E.; Miyamoto, R.

    2017-03-01

    This paper describes the several phases which led, from the conceptual design, prototyping, construction and tests with beam, to the installation and operation of the BRAN (Beam RAte of Neutrals) relative luminosity monitors for the LHC. The detectors have been operating since 2009 to contribute, optimize and maintain the accelerator performance in the two high luminosity interaction regions (IR), the IR1 (ATLAS) and the IR5 (CMS). The devices are gas ionization chambers installed inside a neutral particle absorber 140 m away from the Interaction Points in IR1 and IR5 and monitor the energy deposited by electromagnetic showers produced by high-energy neutral particles from the collisions. The detectors have the capability to resolve the bunch-by-bunch luminosity at the 40 MHz bunch rate, as well as to survive the extreme level of radiation during the nominal LHC operation. The devices have operated since the early commissioning phase of the accelerator over a broad range of luminosities reaching 1.4×1034 cm-2 s-1 with a peak pileup of 45 events per bunch crossing. Even though the nominal design luminosity of the LHC has been exceeded, the BRAN is operating well. After describing how the BRAN can be used to monitor the luminosity of the collider, we discuss the technical choices that led to its construction and the different tests performed prior to the installation in two IRs of the LHC. Performance simulations are presented together with operational results obtained during p-p operations, including runs at 40 MHz bunch rate, Pb-Pb operations and p-Pb operations.

  10. Compact 400-Mhz Half-Wave Spoke Resonator Crab Cavitiy for the LHC Update

    SciTech Connect

    Li, Zenghai; Xiao, Liling; Ng, Cho; Markiewicz, Thomas; /SLAC

    2010-08-26

    Crab cavities are proposed for the LHC upgrade to improve the luminosity. There are two possible crab cavity installations for the LHC upgrade: the global scheme at Interaction Region (IR) 4 where the beam-beam separation is about 420-mm, and the local scheme at the IR5 where the beam-beam separation is only 194-mm. One of the design requirements as the result of a recent LHC-Crab cavity workshop is to develop a 400-MHz cavity design that can be utilized for either the global or local schemes at IR4 or IR5. Such a design would offer more flexibility for the final upgrade installation, as the final crabbing scheme is yet to be determined, and save R&D cost. The cavity size of such a design, however, is limited by the beam-beam separation at IR5 which can only accommodate a cavity with a horizontal size of about 145-mm, which is a design challenge for a 400-MHz cavity. To meet the new design requirements, we have developed a compact 400-MHz half-wave spoke resonator (HWSR) crab cavity that can fit into the tight spaces available at either IR4 or IR5. In this paper, we present the optimization of the HWSR cavity shape and the design of HOM, LOM, and SOM couplers for wakefield damping.

  11. A new H2+ source: Conceptual study and experimental test of an upgraded version of the VIS—Versatile ion source

    NASA Astrophysics Data System (ADS)

    Castro, G.; Torrisi, G.; Celona, L.; Mascali, D.; Neri, L.; Sorbello, G.; Leonardi, O.; Patti, G.; Castorina, G.; Gammino, S.

    2016-08-01

    The versatile ion source is an off-resonance microwave discharge ion source which produces a slightly overdense plasma at 2.45 GHz of pumping wave frequency extracting more than 60 mA proton beams and 50 mA He+ beams. DAEδALUS and IsoDAR experiments require high intensities for H2+ beams to be accelerated by high power cyclotrons for neutrinos generation. In order to fulfill the new requirements, a new plasma chamber and injection system has been designed and manufactured for increasing the H2+ beam intensity. In this paper the studies for the increasing of the H2+/p ratio and for the design of the new plasma chamber and injection system will be shown and discussed together with the experimental tests carried out at Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) and at Best Cyclotron Systems test-bench in Vancouver, Canada.

  12. Upgrade of the area II spectrograph

    SciTech Connect

    Rehm, K.E.; Bolduc, C.

    1995-08-01

    Because of the low beam energies required for experiments of astrophysical interest, the first test experiments with radioactive {sup 18}F beams can be performed in Area II. Because of the shorter distances between ion source and detector this also results in higher transmission efficiencies. The Enge split-pole spectrograph, which was not used during the last 8 years, was equipped with a new cryopump system, upgrades to the magnet power supply and the NMR system were performed. A rotating target system was built which should alleviate target deterioration effects that were observed in first test experiments.

  13. PDF4LHC recommendations for LHC Run II

    NASA Astrophysics Data System (ADS)

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joël; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-02-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+{α }s uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology. This paper is dedicated to the memory of Guido Altarelli (1941-2015), whose seminal work made possible the quantitative study of PDFs.

  14. PDF4LHC recommendations for LHC Run II

    SciTech Connect

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; Roeck, Albert De; Feltesse, Joel; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  15. PDF4LHC recommendations for LHC Run II

    DOE PAGES

    Butterworth, Jon; Carrazza, Stefano; Cooper-Sarkar, Amanda; ...

    2016-01-06

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+αs uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. Lastly, we finally discuss tools which allow for themore » delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.« less

  16. The upgrade of the CMS Global Trigger

    NASA Astrophysics Data System (ADS)

    Wittmann, J.; Arnold, B.; Bergauer, H.; Jeitler, M.; Matsushita, T.; Rabady, D.; Rahbaran, B.; Wulz, C.-E.

    2016-02-01

    The Global Trigger is the final step of the CMS Level-1 Trigger. Previously implemented in VME, it has been redesigned and completely rebuilt in MicroTCA technology, using the Virtex-7 FPGA chip family. It will allow to implement trigger algorithms close to the final physics selection. The new system is presented, together with performance tests undertaken in parallel operation with the legacy system during the initial months of Run II of the LHC at a beam energy of 13 TeV.

  17. Jet charge at the LHC.

    PubMed

    Krohn, David; Schwartz, Matthew D; Lin, Tongyan; Waalewijn, Wouter J

    2013-05-24

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the standard model and for characterizing potential beyond-the-standard-model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pileup, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as standard model tests, such as jet charge in dijet events or in hadronically decaying W bosons in tt[over ¯] events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multihadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte Carlo fragmentation models.

  18. Planar n +-in-n silicon pixel sensors for the ATLAS IBL upgrade

    NASA Astrophysics Data System (ADS)

    Goessling, C.; Klingenberg, R.; Muenstermann, D.; Rummler, A.; Troska, G.; Wittig, T.

    2011-09-01

    The ATLAS experiment at the LHC is planning to upgrade its pixel detector by the installation of a 4th pixel layer, the insertable b-layer IBL with a mean sensor radius of only 32 mm from the beam axis. Being very close to the beam, the radiation damage of the IBL sensors might be as high as 5×10 15 n eq cm -2 at their end-of-life. To investigate the radiation hardness and suitability of the current ATLAS pixel sensors for IBL fluences, n +-in-n silicon pixel sensors from the ATLAS Pixel production have been irradiated by reactor neutrons to the IBL design fluence and been tested with pions at the SPS and with electrons from a 90Sr source in the laboratory. The collected charge was found to exceed 10 000 electrons per MIP at 1 kV of bias voltage which is in agreement with data collected with strip sensors. With an expected threshold of 3000-4000 electrons, this result suggests that planar n +-in-n pixel sensors are radiation hard enough to be used as IBL sensor technology.

  19. Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    King, Robert; CMS Muon group Team

    2017-01-01

    The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.

  20. LHC signatures of WIMP-triggered baryogenesis

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Okui, Takemichi; Yunesi, Arash

    2016-12-01

    A robust mechanism was recently proposed in which thermal freeze-out of WIMPs can provide a unified origin of dark matter and baryon abundances in our universe. We point out that this WIMP-triggered baryogenesis mechanism can exhibit a rich collider phenomenology and be tested at the current and near-future experiments at LHC, even in the case where the WIMPs are completely devoid of SM gauge and Higgs portal interactions, as may be motivated by the persistent null results of WIMP dark matter searches. We catalog a rich array of LHC signatures robustly present in such a scenario. In particular, the simplest such implementation can already offer a very clean signal of a TeV-scale resonance that decays to diphotons with a cross section that can easily be within the reach of the current and near-future LHC runs in the region of parameter space that leads to a successful baryogenesis. Other characteristic signatures include the production of multiple bottom and/or multiple top quarks, promptly or displaced. An even more exotic possibility is the production of two separate sets of isolated emerging jets connected by a charged track, which may require new dedicated studies. Finally, dinucleon decay can also provide a powerful probe of the mechanism.

  1. Beam Loss Monitoring for LHC Machine Protection

    NASA Astrophysics Data System (ADS)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  2. The CMS Level-1 trigger system for LHC Run II

    NASA Astrophysics Data System (ADS)

    Cadamuro, L.

    2017-03-01

    The Compact Muon Solenoid (CMS) experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 105. During Run II, the LHC has increased the centre-of-mass energy of proton-proton collisions up to 13 TeV and may progressively reach an instantaneous luminosity of 2×1034 cm‑2 s‑1 or higher. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition system has been upgraded. The upgraded CMS Level-1 (L1) trigger benefits from the recent μTCA technology and is designed to maintain the performance under high instantaneous luminosity conditions. More sophisticated, innovative algorithms are now the core of the first decision layer of CMS: this drastically reduces the trigger rate and improves the trigger efficiency for a wide variety of physics processes. In this document, we present the overall architecture of the upgraded Level-1 trigger system. The performance of single object triggers, measured on collision data recorded during the 2016 running period, are also summarised.

  3. Upgrading and testing the 3D reconstruction of gamma-ray air showers as observed with an array of Cherenkov telescopes

    SciTech Connect

    Naumann-Godo, Melitta; Degrange, Bernard

    2008-12-24

    Stereoscopic arrays of Imaging Cherenkov Telescopes allow to reconstruct gamma-ray-induced showers in 3 dimensions. An analysis method based on a simple 3D-model of electromagnetic showers and implemented in the framework of the H.E.S.S. experiment was recently improved by an additional quality criterion which reduces the background contamination by a factor of about 2 in the case of extended sources, while hardly affecting gamma-ray selection efficiency. Moreover, the dramatic flares of PKS 2155-304 in July 2006, which provided H.E.S.S. data with an almost pure gamma-ray sample, offered the unique opportunity of a precision test of the 3D-reconstruction method as well as of the H.E.S.S. simulations used in its calibration. An agreement at a few percent level is found between data and simulations for the distributions of all 3D shower parameters.

  4. Recent progress and tests of radiation resistant impregnation materials for Nb{sub 3}Sn coils

    SciTech Connect

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-27

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  5. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  6. Mechanical qualification of the support structure for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC

    SciTech Connect

    Juchno, M.; Ambrosio, G.; Anerella, M.; Bajas, H.; Bajko, M.; Bourcey, N.; Cheng, D. W.; Felice, H.; Ferracin, P.; Grosclaude, P.; Guinchard, M.; Perez, J. C.; Prin, H.; Schmalzle, J.

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.

  7. Mechanical qualification of the support structure for MQXF, the Nb3Sn low-β quadrupole for the high luminosity LHC

    DOE PAGES

    Juchno, M.; Ambrosio, G.; Anerella, M.; ...

    2016-01-26

    Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structure wasmore » preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less

  8. Technicolor walks at the LHC

    SciTech Connect

    Belyaev, Alexander; Foadi, Roshan; Frandsen, Mads T.; Jaervinen, Matti; Sannino, Francesco; Pukhov, Alexander

    2009-02-01

    We analyze the potential of the Large Hadron Collider (LHC) to observe signatures of phenomenologically viable walking technicolor models. We study and compare the Drell-Yan and vector boson fusion mechanisms for the production of composite heavy vectors. We find that the heavy vectors are most easily produced and detected via the Drell-Yan processes. The composite Higgs phenomenology is also studied. If technicolor walks at the LHC, its footprints will be visible and our analysis will help in uncovering them.

  9. FPGA-based algorithms for the new trigger system for the phase 2 upgrade of the CMS drift tubes detector

    NASA Astrophysics Data System (ADS)

    Cela-Ruiz, J.-M.

    2017-01-01

    The new luminosity conditions imposed after the LHC upgrade will require a dedicated upgrade of several subdetectors. To cope with the new requirements, CMS drift tubes subdetector electronics will be redesigned in order to achieve the new foreseen response speed. In particular, it is necessary to enhance the first stage of the trigger system (L1A). In this document we present the development of a software algorithm, based on the mean timer paradigm, capable of reconstructing muon trajectories and rejecting spurious signals. It has been initially written in C++ programming language, but designed with its portability to a FPGA VHDL code in mind.

  10. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  11. Tevatron-for-LHC Report of the QCD Working Group

    SciTech Connect

    Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab /Rochester U. /Florida U. /Geneva U. /CERN /Baylor U. /Washington U., Seattle /Florida State U. /Rockefeller U. /Prague, Tech. U. /Michigan State U.

    2006-10-01

    The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.

  12. Upgrade of the ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Riedler, P.

    2016-12-01

    During the long shutdown of the Large Hadron Collider (LHC) in 2019-20 (LS2) the present Inner Tracking System (ITS) of the ALICE experiment based on silicon pixel, silicon drift and silicon strip detectors, will be entirely replaced by a new tracker using novel monolithic silicon pixel chips. This new tracker will significantly enhance heavy flavour measurements, which are out of reach for the present system, e.g. charmed baryons, such as the ΛC, and will allow studying hadrons containing a beauty quark. The new tracker will provide an improved pointing resolution in rϕ and z, decreasing the present values by a factor 3 and 5, respectively, to about 40 μm for a pT of 500 MeV/c. Each of the seven layers will be constructed using 50 μm, respectively 100 μm thin silicon chips on a very light weight carbon fibre based support structure for the innermost and the outer layers. The material budget for the first three layers corresponds to 0.3% X0/layer while the four outer layers will have an average material budget of 1% X0/layer. The innermost layer will be placed at 23 mm radius, compared to presently 39 mm. Furthermore, the readout rate of the new ITS will increase from presently 1 kHz to 50 kHz for Pb-Pb collisions and 400 kHz for p-p collisions, thus matching the expected event rate for Pb-Pb collisions after LS2. This contribution will provide an overview of the upgrade of the ALICE ITS and the expected performance improvement and will present the actual status of the R&D.

  13. Argonne's atlas control system upgrade.

    SciTech Connect

    Munson, F.; Quock, D.; Chapin, B.; Figueroa, J.

    1999-09-27

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research, which focuses primarily on heavy-ion physics. The accelerator as well as its control system are evolutionary in nature, and consequently, continue to advance. In 1998 the most recent project to upgrade the ATLAS control system was completed. This paper briefly reviews the upgrade, and summarizes the configuration and features of the resulting control system.

  14. Upgrading of heavy oil from the San Joaquin Valley of California by aqueous pyrolysis

    SciTech Connect

    Reynolds, J.G.; Murray, A.M.; Nuxoll, E.V.; Fox, G.A.

    1995-10-01

    Midway Sunset crude oil and well-head oil were treated at elevated temperatures in a closed system with the presence of water. Mild to moderate upgrading, as measured by increase in API gravity, was observed at 400{degrees}C or above. Reduced pressure operation exhibited upgrading activity comparable to upgrading under normal aqueous pyrolysis conditions. Reduced pressure operation was obtained by the use of specific blending methods, a surfactant, and the proper amount of water. The use of additives provided additional upgrading. The best of the minimum set tested was Co(II) 2-ethylhexanoate. Fe(III) 2-ethylhexanoate also showed some activity under certain conditions.

  15. Upgrading of existing structures. Phase III. Shelter design options. Final report

    SciTech Connect

    Tansley, R.S.; Gabrielsen, B.L.; Cuzner, G.J.

    1981-05-01

    This report presents the results of an investigation of blast upgrading of existing structures, which consisted of developing failure prediction methodologies for various structure types, both in as built and in upgraded configurations, and verifying these prediction techniques with full-scale load tests. These upgrading schemes were developed for use as shelters in support of Civil Defense crisis relocation planning. Structure types investigated included wood, steel, and concrete floor and roof systems. The results of this study are being used in the development of a shelter manual presenting the various upgrading concepts in an illustrative workbook form for use in the field.

  16. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  17. Searching for New Physics with Top Quarks and Upgrade to the Muon Spectrometer at ATLAS

    SciTech Connect

    Schwarz, Thomas Andrew

    2015-06-29

    Over the funding period of this award, my research has focused on searching for new physics with top quarks and in the Higgs sector. The highly energetic top quark events at the LHC are an excellent venue to search for new physics, as well as make standard model measurements. Further, the recent discovery of the Higgs boson motivates searching for new physics that could be associated with it. This one-year award has facilitated the beginning of my research program, which has resulted in four publications, several conference talks, and multiple leadership positions within physics groups. Additionally, we are contributing to ATLAS upgrades and operations. As part of the Phase I upgrade, I have taken on the responsibility of the design, prototyping, and quality control of a signal packet router for the trigger electronics of the New Small Wheel. This is a critical component of the upgrade, as the router is the main switchboard for all trigger signals to track finding processors. I am also leading the Phase II upgrade of the readout electronics of the muon spectrometer, and have been selected as the USATLAS Level-2 manager of the Phase II upgrade of the muon spectrometer. The award has been critical in these contributions to the experiment.

  18. Alternative glues for the production of ATLAS silicon strip modules for the Phase-II upgrade of the ATLAS Inner Detector

    NASA Astrophysics Data System (ADS)

    Poley, L.; Bloch, I.; Edwards, S.; Friedrich, C.; Gregor, I.-M.; Jones, T.; Lacker, H.; Pyatt, S.; Rehnisch, L.; Sperlich, D.; Wilson, J.

    2016-05-01

    The Phase-II upgrade of the ATLAS detector for the High Luminosity Large Hadron Collider (HL-LHC) includes the replacement of the current Inner Detector with an all-silicon tracker consisting of pixel and strip detectors. The current Phase-II detector layout requires the construction of 20,000 strip detector modules consisting of sensor, circuit boards and readout chips, which are connected mechanically using adhesives. The adhesive used initially between readout chips and circuit board is a silver epoxy glue as was used in the current ATLAS SemiConductor Tracker (SCT). However, this glue has several disadvantages, which motivated the search for an alternative. This paper presents a study of six ultra-violet (UV) cure glues and a glue pad for possible use in the assembly of silicon strip detector modules for the ATLAS upgrade. Trials were carried out to determine the ease of use, thermal conduction and shear strength. Samples were thermally cycled, radiation hardness and corrosion resistance were also determined. These investigations led to the exclusion of three UV cure glues as well as the glue pad. Three UV cure glues were found to be possible better alternatives than silver loaded glue. Results from electrical tests of first prototype modules constructed using these glues are presented.

  19. Study of new FNAL-NICADD extruded scintillator as active media of large EMCal of ALICE at LHC

    SciTech Connect

    Oleg A. Grachov et al.

    2004-05-04

    The current conceptual design of proposed Large EMCal of ALICE at LHC is based largely on the scintillating mega-tile/fiber technology implemented in CDF Endplug upgrade project and in both barrel and endcap electromagnetic calorimeters of the STAR. The cost of scintillating material leads us to the choice of extruded polystyrene based scintillator, which is available in new FNAL-NICADD facility. Result of optical measurements, such as light yield and light yield variation, show that it is possible to use this material as active media of Large EMCal of ALICE at LHC.

  20. Upgrading the Northern Finland Seismological Network

    NASA Astrophysics Data System (ADS)

    Narkilahti, Janne; Kozlovskaya, Elena; Silvennoinen, Hanna; Hurskainen, Riitta; Nevalainen, Jouni

    2016-04-01

    The Finnish National Seismic Network (FNSN) comprises national Helsinki University Seismological network (HE) ISUH and the Northern Finland Seismological Network (FN) hosted by the Sodankylä Geophysical Observatory (SGO) of the University of Oulu. The FN network currently consists of four real-time permanent stations equipped with Streckeisen STS-2 broad band seismometers that are recording continuous digital seismic data. At present, the network is a part of GEOFON Extended Virtual Network and of the ORFEUS Virtual European Broadband Seismograph Network. In the future, the network will be the part of EPOS-European Plate Observing System research infrastructure. As a part of EPOS project activities, the SGO started to upgrade their own network in 2014. The main target of the network upgrade is to increase the permanent station coverage in the European Arctic region, particularly behind the Polar Circle. Another target is to transform the network into a broadband seismic array capable to detect long-period seismic signals originating from seismic events in the Arctic. The first upgrade phase started in 2014, when two new stations were installed and now are working in the test regime. These stations are used as prototypes for testing seismic equipment and technical solutions for real-time data transmission and vault construction under cold climate conditions. The first prototype station is installed in a surface vault and equipped with Nanometrics Trillium 120P sensor, while the other one is installed in a borehole and equipped with Trillium Posthole seismometer. These prototype stations have provided to us valuable experience on the downhole and surface deployment of broadband seismic instruments. We also have been able to compare the capabilities and performance of high sensitivity broadband sensor deployed in borehole with that deployed in surface vault. The results of operation of prototype stations will be used in site selection and installation of four new

  1. Parton distributions with LHC data

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria; Nnpdf Collaboration

    2013-02-01

    We present the first determination of parton distributions of the nucleon at NLO and NNLO based on a global data set which includes LHC data: NNPDF2.3. Our data set includes, besides the deep inelastic, Drell-Yan, gauge boson production and jet data already used in previous global PDF determinations, all the relevant LHC data for which experimental systematic uncertainties are currently available: ATLAS and LHCb W and Z rapidity distributions from the 2010 run, CMS W electron asymmetry data from the 2011 run, and ATLAS inclusive jet cross-sections from the 2010 run. We introduce an improved implementation of the FastKernel method which allows us to fit to this extended data set, and also to adopt a more effective minimization methodology. We present the NNPDF2.3 PDF sets, and compare them to the NNPDF2.1 sets to assess the impact of the LHC data. We find that all the LHC data are broadly consistent with each other and with all the older data sets included in the fit. We present predictions for various standard candle cross-sections, and compare them to those obtained previously using NNPDF2.1, and specifically discuss the impact of ATLAS electroweak data on the determination of the strangeness fraction of the proton. We also present collider PDF sets, constructed using only data from HERA, the Tevatron and the LHC, but find that this data set is neither precise nor complete enough for a competitive PDF determination.

  2. Old PCs: Upgrade or Abandon?

    ERIC Educational Resources Information Center

    Perez, Ernest

    1997-01-01

    Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…

  3. Phase 1 upgrade of the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Saha, Anirban

    2017-02-01

    The pixel tracker of the Compact Muon Solenoid (CMS) experiment is the innermost sub-detector, located close to the collision point, and is used for reconstruction of the tracks and vertices of charged particles. The present pixel detector was designed to work efficiently with the maximum instantaneous luminosity of 1 × 1034 cm‑2 s‑1. In 2017 the Large Hadron Collider (LHC) is expected to deliver a peak luminosity reaching up to 2 × 1034 cm‑2 s‑1, increasing the mean number of primary vertices to 50. Due to the radiation damage and significant data losses due to high occupancy in the readout chip of the pixel detector, the present system must be replaced by a new one in an extended end-of-year shutdown during winter 2016/2017 in order to maintain the excellent tracking and other physics performances. The main new features of the upgraded pixel detector are a ultra-light mechanical design with four barrel layers and three end-cap disks, digital readout chip with higher rate capability and a new cooling system. In this document, we discuss the motivations for the upgrade, the design, and technological choices made, the status of the construction of the new detector and the future plans for the installation and commissioning.

  4. A continuous read-out TPC for the ALICE upgrade

    NASA Astrophysics Data System (ADS)

    Lippmann, C.

    2016-07-01

    The largest gaseous Time Projection Chamber (TPC) in the world, the ALICE TPC, will be upgraded based on Micro Pattern Gas Detector technology during the second long shutdown of the CERN Large Hadron Collider in 2018/19. The upgraded detector will operate continuously without the use of a triggered gating grid. It will thus be able to read all minimum bias Pb-Pb events that the LHC will deliver at the anticipated peak interaction rate of 50 kHz for the high luminosity heavy-ion era. New read-out electronics will send the continuous data stream to a new online farm at rates up to 1 TByte/s. A fractional ion feedback of below 1% is required to keep distortions due to space charge in the TPC drift volume at a tolerable level. The new read-out chambers will consist of quadruple stacks of Gas Electron Multipliers (GEM), combining GEM foils with a different hole pitch. Other key requirements such as energy resolution and operational stability have to be met as well. A careful optimisation of the performance in terms of all these parameters was achieved during an extensive R&D program. A working point well within the design specifications was identified with an ion backflow of 0.63%, a local energy resolution of 11.3% (sigma) and a discharge probability comparable to that of standard triple GEM detectors.

  5. An Introduction to the LHC Olympics

    NASA Astrophysics Data System (ADS)

    Larkoski, Andrew; Armour, Kyle; Gray, Amanda; Ventura, Dan; Walsh, Jon; Schabinger, Rob

    2006-05-01

    The LHC Olympics is a series of workshop aimed at encouraging theorists and experimentalists to prepare for the soon-to-be-online Large Hadron Collider in Geneva, Switzerland. One aspect of the LHC Olympics program consists of the study of simulated data sets which represent various possible new physics signals as they would be seen in LHC detectors. Through this exercise, LHC Olympians learn the phenomenology of possible new physics models and gain experience in analyzing LHC data. Additionally, the LHC Olympics encourages discussion between theorists and experimentalists, and through this collaboration new techniques could be developed. The University of Washington LHC Olympics group consists of several first-year graduate and senior undergraduate students, in both theoretical and experimental particle physics. Presented here is an introduction to how such an LHC Olympics study is done. Various basic analysis tools and techniques are discussed.

  6. BESIII ETOF upgrade readout electronics commissioning

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Zhuang; Dai, Hong-Liang; Wu, Zhi; Heng, Yue-Kun; Zhang, Jie; Cao, Ping; Ji, Xiao-Lu; Li, Cheng; Sun, Wei-Jia; Wang, Si-Yu; Wang, Yun

    2017-01-01

    It is proposed to upgrade the endcap time-of-flight (ETOF) of the Beijing Spectrometer III (BESIII) with a multi-gap resistive plate chamber (MRPC), aiming at an overall time resolution of about 80 ps. After completing the entire readout electronics system, some experiments, such as heat radiation, radiation hardness and large-current beam tests, have been carried out to confirm the reliability and stability of the readout electronics. An on-detector test of the readout electronics has also been performed with the beam at the BEPCII E3 line. The test results indicate that the readout electronics system fulfills its design requirements. Supported by Chinese Academy of Sciences (1G201331231172010)

  7. Hints for a nonstandard Higgs boson from the LHC

    SciTech Connect

    Raidal, Martti; Strumia, Alessandro

    2011-10-01

    We reconsider Higgs boson invisible decays into Dark Matter in the light of recent Higgs searches at the LHC. Present hints in the Compact Muon Solenoid and ATLAS data favor a nonstandard Higgs boson with approximately 50% invisible branching ratio, and mass around 143 GeV. This situation can be realized within the simplest thermal scalar singlet Dark Matter model, predicting a Dark Matter mass around 50 GeV and direct detection cross section just below present bound. The present runs of the Xenon100 and LHC experiments can test this possibility.

  8. First Attempts at using Active Halo Control at the LHC

    SciTech Connect

    Wagner, Joschka; Bruce, Roderik; Garcia Morales, Hector; Höfle, Wolfgang; Kotzian, Gerd; Kwee-Hinzmann, Regina; Langner, Andy; Mereghetti, Alessio; Quaranta, Elena; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen; Stancari, Giulio; Tomás, Rogelio; Valentino, Gianluca; Valuch, Daniel

    2016-06-01

    The beam halo population is a non-negligible factor for the performance of the LHC collimation system and the machine protection. In particular this could become crucial for aiming at stored beam energies of 700 MJ in the High Luminosity (HL-LHC) project, in order to avoid beam dumps caused by orbit jitter and to ensure safety during a crab cavity failure. Therefore several techniques to safely deplete the halo, i.e. active halo control, are under development. In a first attempt a novel way for safe halo depletion was tested with particle narrow-band excitation employing the LHC Transverse Damper (ADT). At an energy of 450 GeV a bunch selective beam tail scraping without affecting the core distribution was attempted. This paper presents the first measurement results, as well as a simple simulation to model the underlying dynamics.

  9. Voice verification upgrade

    NASA Astrophysics Data System (ADS)

    Davis, R. L.; Sinnamon, J. T.; Cox, D. L.

    1982-06-01

    This contractor has two major objectives. The first was to build, test, and deliver to the government an entry control system using speaker verification (voice authentication) as the mechanism for verifying the user's claimed identity. This system included a physical mantrap, with an integral weight scale to prevent more than one user from gaining access with one verification (tailgating). The speaker verification part of the entry control system contained all the updates and embellishments to the algorithm that was developed earlier for the BISS (Base and Installation Security System) system under contract with the Electronic Systems Division of the USAF. These updates were tested prior to and during the contract on an operational system used at Texas Instruments in Dallas, Texas, for controlling entry to the Corporate Information Center (CIC).

  10. First Beam Measurements with the LHC Synchrotron Light Monitors

    SciTech Connect

    Lefevre, Thibaut; Bravin, Enrico; Burtin, Gerard; Guerrero, Ana; Jeff, Adam; Rabiller, Aurelie; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  11. L'Aventure du LHC

    SciTech Connect

    2010-06-11

    Cette présentation s’adressera principalement aux personnes qui ont construit le LHC. La construction du LHC fut longue et difficile. De nombreux problèmes sont apparus en cours de route. Tous ont été résolus grâce au dévouement et à l’engagement du personnel et des collaborateurs. Je reviendrai sur les coups durs et les réussites qui ont marqués ces 15 dernières années et je vous montrerai combien cette machine, le fruit de vos efforts, est extraordinaire.

  12. Electroweak physics at the LHC

    NASA Astrophysics Data System (ADS)

    Berryhill, J.; Oh, A.

    2017-02-01

    The Large Hadron Collider (LHC) has completed in 2012 its first running phase and the experiments have collected data sets of proton-proton collisions at center-of-mass energies of 7 and 8 TeV with an integrated luminosity of about 5 and 20 {{fb}}-1, respectively. Analyses of these data sets have produced a rich set of results in the electroweak sector of the standard model. This article reviews the status of electroweak measurements of the ATLAS, CMS and LHCb experiments at the LHC.

  13. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  14. LHC Symposium 2003: Summary Talk

    SciTech Connect

    Jeffrey A. Appel

    2003-08-12

    This summary talk reviews the LHC 2003 Symposium, focusing on expectations as we prepare to leap over the current energy frontier into new territory. We may learn from what happened in the two most recent examples of leaping into new energy territory. Quite different scenarios appeared in those two cases. In addition, they review the status of the machine and experiments as reported at the Symposium. Finally, I suggest an attitude which may be most appropriate as they look forward to the opportunities anticipated for the first data from the LHC.

  15. Parris Island Wastewater Treatment Plant SCADA Upgrades Final Report

    SciTech Connect

    Meador, Richard J.; Hatley, Darrel D.

    2004-03-18

    Marine Corp Recruit Depot (MCRD), Parris Island, SC, home of the Easter Recruiting Region Marine Corp Boot Camp, found itself in a situation common to Department of Defense (DOD) facilities. It had to deal with several different types of installed energy-related control systems that could not talk to each other. This situation was being exacerbated by the installation of a new and/or unique type of control system for every new building being constructed or older facility that was being upgraded. The Wastewater Treatment Facility (WWTF) and lift station controls were badly in need of a thorough inspection and a new Supervisory Control and Data Acquisition (SCADA) system upgrade to meet environmental, safety, manpower, and maintenance concerns. A project was recently completed to implement such a wastewater treatment SCADA upgrade, which is compatible with other upgrades to the energy monitoring and control systems for Parris Island buildings and the Pacific Northwest National Laboratory (PNNL) Decision Support for Operations and Maintenance (DSOM) system installed at the Central Energy Plant (CEP). This project included design, specification, procurement, installation, and testing an upgraded SCADA alarm, process monitoring, and display system; and training WWTF operators in its operation. The ultimate goal of this and the other PNNL projects at Parris Island is to allow monitoring and control of energy and environmental components from a central location.

  16. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily

    PubMed Central

    2010-01-01

    Background The extended light-harvesting complex (LHC) protein superfamily is a centerpiece of eukaryotic photosynthesis, comprising the LHC family and several families involved in photoprotection, like the LHC-like and the photosystem II subunit S (PSBS). The evolution of this complex superfamily has long remained elusive, partially due to previously missing families. Results In this study we present a meticulous search for LHC-like sequences in public genome and expressed sequence tag databases covering twelve representative photosynthetic eukaryotes from the three primary lineages of plants (Plantae): glaucophytes, red algae and green plants (Viridiplantae). By introducing a coherent classification of the different protein families based on both, hidden Markov model analyses and structural predictions, numerous new LHC-like sequences were identified and several new families were described, including the red lineage chlorophyll a/b-binding-like protein (RedCAP) family from red algae and diatoms. The test of alternative topologies of sequences of the highly conserved chlorophyll-binding core structure of LHC and PSBS proteins significantly supports the independent origins of LHC and PSBS families via two unrelated internal gene duplication events. This result was confirmed by the application of cluster likelihood mapping. Conclusions The independent evolution of LHC and PSBS families is supported by strong phylogenetic evidence. In addition, a possible origin of LHC and PSBS families from different homologous members of the stress-enhanced protein subfamily, a diverse and anciently paralogous group of two-helix proteins, seems likely. The new hypothesis for the evolution of the extended LHC protein superfamily proposed here is in agreement with the character evolution analysis that incorporates the distribution of families and subfamilies across taxonomic lineages. Intriguingly, stress-enhanced proteins, which are universally found in the genomes of green plants

  17. Prototype readout electronics for the upgraded ALICE Inner Tracking System

    NASA Astrophysics Data System (ADS)

    Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Rossewij, M. J.; Schambach, J.; Vanat, T.

    2017-01-01

    The ALICE Collaboration is preparing a major upgrade to the experimental apparatus. A key element of the upgrade is the construction of a new silicon-based Inner Tracking System containing 12 Gpixels in an area of 10 m2. Its readout system consists of 192 readout units that control the pixel sensors and the power units, and deliver the sensor data to the counting room. A prototype readout board has been designed to test: the interface between the sensor modules and the readout electronics, the signal integrity and reliability of data transfer, the interface to the ALICE DAQ and trigger, and the susceptibility of the system to the expected radiation level.

  18. HOM Survey of the First CEBAF Upgrade Style Cavity Pair

    SciTech Connect

    Marhauser, Frank; Davis, G; Drury, Michael; Grenoble, Christiana; Hogan, John; Manus, Robert; Preble, Joseph; Reece, Charles; Rimmer, Robert; Tian, Kai; Wang, Haipeng

    2009-05-01

    The planned upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Laboratory (JLab) requires ten new superconducting rf (SRF) cavity cryomodules to double the beam energy to the envisaged 12 GeV. Adequate cavity Higher Order Mode (HOM) suppression is essential to avoid multipass, multibunch beam break-up (BBU) instabilities of the recirculating beam. We report on detailed HOM surveys performed for the first two upgrade style cavities tested in a dedicated cavity pair cryomodule at 2K. The safety margin to the BBU threshold budget at 12 GeV has been assessed.

  19. H-1 Upgrades (4BW/4BN) (H-1 Upgrades)

    DTIC Science & Technology

    2013-12-01

    President’s Budget PE - Program Element Proc - Procurement Prod Est - Production Estimate QR - Quantity Related Qty - Quantity RDT&E - Research...Pounds MFHBA - Mean Flight Hours Between Abort mm - Millimeter MMH/FH - Maintenance Man Hours per Flight Hours NCOW - Net-Centric Operation and...Upgrades December 2013 SAR April 16, 2014 17:13:57 UNCLASSIFIED 15 Track to Budget RDT&E Appn BA PE Navy 1319 05 0604245N Project

  20. Prototype sector production for the STAR inner TPC upgrade

    NASA Astrophysics Data System (ADS)

    Yang, Chi; STAR Collaboration

    2017-01-01

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the Inner TPC sectors (iTPC). By increasing the number of inner pad rows from 13 to 40 and renewing the inner sector wires, this major detector upgrade will improve the rapidity coverage from |η| < 1 to |η| < 1.5, provide better momentum resolution, and better energy loss (dE/dx) resolution. The iTPC upgrade is crucial to STAR Beam Energy Scan Phase II (BES- II) program, which will provide in-depth understanding on QCD phase diagram and in-medium modification. In this paper we report on progress on the iTPC sector construction. The iTPC module fabrication techniques and testing results from the first full size prototype are presented.

  1. Soft- and Hardware Upgrade of the Mobile Coil Facility

    NASA Astrophysics Data System (ADS)

    Engelke, S.; Bubeck, K.; Kistner, A.; Trougnou, L.

    2016-05-01

    The Mobile Coil Facility (MCF) is a measurement facility for magnetic characterization. Within the ESA contract 4000103913 the MCF was upgraded in order to improve the measurement process as well as to extend the modelling capabilities. This paper summarizes the upgraded aspects of the facility with a focus on the new algorithms implemented for model fitting, including a Deterministic Optimization Method (DOM) based on the Levenberg-Marquardt algorithm, a Random Search Method (RSM) based on a particle swarm optimization and a RSM based on evolutionary strategy.The following section starts with a general overview of the facility, followed by a brief summary of the mechanical, electrical and general software upgrades. Afterwards the new fitting algorithms are presented and discussed, followed by a comparison of the algorithms for a simulated test case.

  2. 40 CFR 280.21 - Upgrading of existing UST systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... independent testing laboratory: (1) Interior lining. A tank may be upgraded by internal lining if: (i) The lining is installed in accordance with the requirements of § 280.33, and (ii) Within 10 years after lining, and every 5 years thereafter, the lined tank is internally inspected and found to be...

  3. Role of fuel upgrading for industry and residential heating

    SciTech Connect

    Merriam, N.W.; Gentile, R.H.

    1995-12-01

    The Koppleman Series C Process is presently being used in pilot plant tests with Wyoming coal to upgrade the Powder River Basin coal containing 30 wt% moisture and having a heating value of 8100 Btu/lb to a product containing less than 1 wt% moisture and having a heating value of 12,200 Btu/lb. This process is described.

  4. Voice Verification Upgrade.

    DTIC Science & Technology

    1982-06-01

    to develop speaker verification techniques for use over degraded commun- ication channels -- specifically telephone lines. A test of BISS type speaker...verification technology was performed on a degraded channel and compensation techniques were then developed . The fifth program [103 (Total Voice SV...UPGAW. *mbit aL DuI~sel Jme T. SImmoon e~d David L. Cox AAWVLP FIR MIEW RMAS Utgl~rIMIW At" DT11C AU9 231f CD, _ ROME AIR DEVELOPMENT CENTER Air

  5. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Read-out Upgrade of the ATLAS Liquid Argon Calorimeters

    SciTech Connect

    Milic, A.

    2015-07-01

    The ATLAS Liquid Argon calorimeters are designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, an upgrade of the read-out electronics is being launched to cope with luminosities of up to 3x10{sup 34} cm{sup -2}s{sup -1}, which are beyond the original design by a factor of 3. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons, photons, tau leptons, jets, total and missing energy, at high background rejection rates. For the upgrade Phase-1 in 2018, new LAr Trigger Digitizer Boards (LTDB) are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new LAr digital processing system (LDPS). The LDPS applies a digital filtering and identifies significant energy depositions in each trigger channel. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The read-out of the trigger signals will process 34000 so-called Super Cells at every LHC bunch-crossing at a frequency of 40 MHz. The new LTDB on-detector electronics is designed to be radiation tolerant in order to be operated for the remaining live-time of the ATLAS detector up to a total luminosity of 3000 fb{sup -1}. For the analog-to-digital conversion (12-bit ADC at 40 MSPS), the data serialization and the fast optical link (5.44 Gb/s) custom components have been developed. They have been qualified for the expected radiation environment of a total ionization dose of 1.3 kGy and a hadron fluence of 6 x 10{sup 13} h/cm{sup 2} with energies above

  6. Production and quality control of Micromegas anode PCBs for the ATLAS NSW upgrade

    NASA Astrophysics Data System (ADS)

    Kuger, F.

    2016-11-01

    To exploit the full discovery potential of the Large Hadron Collider an upgrade towards high luminosity (HL-LHC) is scheduled for 2024-25. Simultaneously to the accelerator, the experiments have to adapt to the expected higher particle rates and detector occupancy. Within the next long shutdown in 2019-20 the innermost end-cap regions of the ATLAS Muon spectrometer will be replaced by the New Small Wheels (NSW) including Micromegas detector modules of several m2 size. The Micromegas readout anode boards, representing the core components of the detector, are manufactured in industry, making the NSW Micromegas the first Micro Pattern Gaseous Detector (MPGD) for a major LHC experiment with a crucial industrial contribution. Production of the up to 2.2 m long boards is a serious challenge for industrialization technology and quality control methods.

  7. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  8. The sROD module for the ATLAS Tile Calorimeter Phase-II Upgrade Demonstrator

    NASA Astrophysics Data System (ADS)

    Carrió, F.; Castillo, V.; Ferrer, A.; Fiorini, L.; Hernández, Y.; Higón, E.; Mellado, B.; March, L.; Moreno, P.; Reed, R.; Solans, C.; Valero, A.; Valls, J. A.

    2014-02-01

    TileCal is the central hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. The main upgrade of the LHC to increase the instantaneous luminosity is scheduled for 2022. The High Luminosity LHC, also called upgrade Phase-II, will imply a complete redesign of the read-out electronics in TileCal. In the new read-out architecture, the front-end electronics aims to transmit full digitized information to the back-end system in the counting rooms. Thus, the back-end system will also provide digital calibrated information with enhanced precision and granularity to the first level trigger to improve the trigger efficiencies. The demonstrator project is envisaged to qualify this new proposed architecture. A reduced part of the detector, 1/256 of the total, will be equipped with the new electronics during 2014 to evaluate the proposed architecture in real conditions. The upgraded Read-Out Driver (sROD) will be the core element of the back-end electronics in Phase-II. The sROD module is designed on a double mid-size AMC format and will operate under an AdvancedTCA framework. The module includes two Xilinx Series 7 Field Programmable Gate Arrays (FPGAs) for data receiving and processing, as well as the implementation of embedded systems. Related to optical connectors, the sROD uses 4 QSFPs to receive and transmit data from the front-end electronics and 1 Avago MiniPOD to send preprocessed data to the first level trigger system. An SFP module maintains the compatibility with the existing hardware. A complete description of the sROD module for the demonstrator including the main functionalities, circuit design and the control software and firmware will be presented.

  9. PHOBOS in the LHC era

    SciTech Connect

    Steinberg, Peter

    2015-01-15

    The PHOBOS experiment ran at the RHIC collider from 2000 to 2005, under the leadership of Wit Busza. These proceedings summarize selected PHOBOS results, highlighting their continuing relevance amidst the wealth of new results from the lead–lead program at the Large Hadron Collider (LHC)

  10. Heavy Quark Photoproduction at LHC

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Meneses, A. R.; Machado, M. V.

    2010-11-01

    In this work we calculate the inclusive and difractive photoproduction of heavy quarks in proton-proton collisions at LHC energies within the color dipole picture employing three phenomenological saturation models based on the color glass condensate formalism. Our results demonstrate that the experimental analyzes of these reactions is feasible and that the cross sections are sensitive to the underlying parton dynamics.

  11. Inelastic diffraction at the LHC

    NASA Astrophysics Data System (ADS)

    Troshin, S. M.; Tyurin, N. E.

    2017-03-01

    The relativistic scattering was one of the scientific fields where Academician V.G. Kadyshevsky has made an important and highly cited contribution [1]. In this paper we discuss the high-energy dependencies of diffractive and non-diffractive inelastic cross-sections in view of the recent LHC data which reveal a presence of the reflective scattering mode.

  12. The history of the LHC

    SciTech Connect

    2010-05-11

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  13. The history of the LHC

    ScienceCinema

    None

    2016-07-12

    Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

  14. Post-LHC accelerator magnets

    SciTech Connect

    Gourlay, Stephen A.

    2001-06-10

    The design and practicality of future accelerators, such as hadron colliders and neutrino factories being considered to supercede the LHC, will depend greatly on the choice of superconducting magnets. Various possibilities will be reviewed and discussed, taking into account recent progress and projected improvements in magnet design and conductor development along with the recommendations from the 2001 Snowmass workshop.

  15. The COMPASS RICH-1 detector upgrade

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradamante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2008-08-01

    The COMPASS experiment at CERN provides hadron identification in a wide momentum range employing a large size gaseous Ring Imaging CHerenkov detector (RICH). The presence of large uncorrelated background in the COMPASS environment was limiting the efficiency of COMPASS RICH-1 in the very forward regime. A major upgrade of RICH-1 required a new technique for Cherenkov photon detection at count rates of several 106/s per channel in the central detector part, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors of the central region have been replaced with a fast photon detection system described here, while, in the peripheral regions, the existing multi-wire proportional chambers with CsI photo-cathodes have been equipped with a new read-out system based on APV preamplifiers and flash ADC chips. The new system consists of multi-anode photomultiplier tubes (MAPMTs) coupled to individual fused silica lens telescopes, and fast read-out electronics based on the MAD4 amplifier-discriminator and the dead-time free F1 TDC chip. The project was completely designed and implemented in less than two years: The upgraded detector is in operation since the 2006 CERN SPS run. We present the photon detection design, constructive aspects and test studies to characterise the single photon response of the MAPMTs coupled to the read-out system as well as the detector performance based on the 2006 data.

  16. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  17. Simulating Avionics Upgrades to the Space Shuttles

    NASA Technical Reports Server (NTRS)

    Deger, Daniel; Hill, Kenneth; Braaten, Karsten E.

    2008-01-01

    Cockpit Avionics Prototyping Environment (CAPE) is a computer program that simulates the functions of proposed upgraded avionics for a space shuttle. In CAPE, pre-existing space-shuttle-simulation programs are merged with a commercial-off-the-shelf (COTS) display-development program, yielding a package of software that enables high-fi46 NASA Tech Briefs, September 2008 delity simulation while making it possible to rapidly change avionic displays and the underlying model algorithms. The pre-existing simulation programs are Shuttle Engineering Simulation, Shuttle Engineering Simulation II, Interactive Control and Docking Simulation, and Shuttle Mission Simulator playback. The COTS program Virtual Application Prototyping System (VAPS) not only enables the development of displays but also makes it possible to move data about, capture and process events, and connect to a simulation. VAPS also enables the user to write code in the C or C++ programming language and compile that code into the end-product simulation software. As many as ten different avionic-upgrade ideas can be incorporated in a single compilation and, thus, tested in a single simulation run. CAPE can be run in conjunction with any or all of four simulations, each representing a different phase of a space-shuttle flight.

  18. RHIC and its upgrade programmes.

    SciTech Connect

    Roser,T.

    2008-06-23

    As the first hadron accelerator and collider consisting of two independent superconducting rings RHIC has operated with a wide range of beam energies and particle species. After a brief review of the achieved performance the presentation will give an overview of the plans, challenges and status of machine upgrades, that range from a new heavy ion pre-injector and beam cooling at 100 GeV to a high luminosity electron-ion collider.

  19. Forward shower counters for diffractive physics at the LHC

    NASA Astrophysics Data System (ADS)

    Albrow, Michael; Collins, Paula; Penzo, Aldo

    2014-11-01

    The LHC detectors have incomplete angular coverage in the forward direction, for example in the region 6 ≲ |η| ≲ 8, which can be improved with the addition of simple scintillation counters around the beam pipes about 50 m to 120 m from the intersection point. These counters detect showers created by particles hitting the beam pipes and nearby material. The absence of signals in these counters in low pileup conditions is an indication of a forward rapidity gap as a signature of diffraction. In addition, they can be used to detect hadrons from low mass diffractive excitations of the proton, not accompanied by a leading proton but adjacent to a rapidity gap over (e.g.) 3 ≲ |η| ≲ 6. Such a set of forward shower counters, originally used at CDF, was used in CMS (FSC) for high-β* running with TOTEM during LHC Run-1. During LS1 the CMS FSC system is being upgraded for future low pileup runs. A similar system, called HERSCHEL is being installed in LHCb. ALICE is implementing scintillation counters, ADA and ADC, with 4.5 ≲ |η| ≲ 6.4.

  20. The Pierre Auger Observatory Upgrade

    NASA Astrophysics Data System (ADS)

    Marsella, Giovanni

    2017-03-01

    It is planned to operate the Pierre Auger Observatory until at least the end of 2024. An upgrade of the experiment has been proposed in order to provide additional measurements to allow one to elucidate the mass composition and the origin of the flux suppression at the highest energies, to search for a flux contribution of protons up to the highest energies and to reach a sensitivity to a contribution as small as 10% in the flux suppression region, to study extensive air showers and hadronic multi-particle production. With operation planned until 2024, event statistics will more than double compared with the existing Auger data set, with the critical added advantage that every event will now have mass information. Obtaining additional composition-sensitive information will not only help to better reconstruct the properties of the primary particles at the highest energies, but also improve the measurements in the energy range just above the ankle. Furthermore, measurements with the new detectors will help to reduce systematic uncertainties related to the modelling hadronic showers and to limitations in the reconstruction algorithms. A description of the principal proposed Auger upgrade will be presented. The Auger upgrade promises high-quality future data, and real scope for new physics.

  1. The Pegasus-Upgrade Experiment

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Bongard, M. W.; Barr, J. L.; Frerichs, H. G.; Lewicki, B. T.; Reusch, J. A.; Schmitz, O.; Winz, G. R.

    2015-11-01

    Tokamak operation at near-unity aspect ratio provides access to advanced tokamak physics at modest parameters. High plasma current is accessible at very low toroidal field. This offers H-mode performance at Te levels that allow use of electrostatic and magnetic probe arrays through the edge pedestal region into the plasma core. An upgrade to the Pegasus ST is planned to exploit these features and pursue unique studies in three areas: local measurements of pedestal and ELM dynamics at Alfvenic timescales; direct measurement of the local plasma response to application of 3D magnetic perturbations with high spectral flexibility; and extension of Local Helicity Injection for nonsolenoidal startup to NSTX-U-relevant confinement and stability regimes. Significant but relatively low-cost upgrades to the facility are proposed: a new centerstack with larger solenoid and 2x the number of toroidal field conductors; a new TF power supply and conversion of the 200 MVA OH power supply to a cascaded multilevel inverter configuration; and installation of an extensive 3D-magnetic perturbation coil system for ELM mitigation and suppression studies. The upgraded facility will provide 0.3 MA plasmas with pulse lengths of 50-100 msec flattop, aspect ratio <1.25, and toroidal field up to 0.4 T. These research activities will be integrated into related efforts on DIII-D and NSTX-U. Work supported by US DOE grant DE-FG02-96ER54375.

  2. The upgraded WIYN bench spectrograph

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia M.; Bershady, Matthew A.; Willmarth, Daryl; Glaspey, John; Poczulp, Gary; Blanco, Dan; Britanik, Lana; McDougall, Eugene; Corson, Charles; Liang, Ming; Keyes, Joe; Jacoby, George

    2010-07-01

    We present the as-built design overview and post-installation performance of the upgraded WIYN Bench Spectrograph. This Bench is currently fed by either of the general-use multi-fiber instruments at the WIYN 3.5m telescope on Kitt Peak, the Hydra multi-object positioner, and the SparsePak integral field unit (IFU). It is very versatile, and can be configured to accommodate low-order, echelle, and volume phase holographic gratings. The overarching goal of the upgrade was to increase the average spectrograph throughput by ~60% while minimizing resolution loss (< 20%). In order to accomplish these goals, the project has had three major thrusts: (1) a new CCD was provided with a nearly constant 30% increase is throughput over 320-1000 nm; (2) two Volume Phase Holographic (VPH) gratings were delivered; and (3) installed a new all-refractive collimator that properly matches the output fiber irradiance (EE90) and optimizes pupil placement. Initial analysis of commissioning data indicates that the total throughput of the system has increased 50-70% using the 600 l/mm surface ruled grating, indicating that the upgrade has achieved its goal. Furthermore, it has been demonstrated that overall image resolution meets the requirement of <20% loss.

  3. Upgrades at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2012-01-01

    Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

  4. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  5. CERN LHC signals for warped electroweak neutral gauge bosons

    SciTech Connect

    Agashe, Kaustubh; Davoudiasl, Hooman; Gopalakrishna, Shrihari; Soni, Amarjit; Han Tao; Huang, G.-Y.; Perez, Gilad; Si Zongguo

    2007-12-01

    We study signals at the Large Hadron Collider (LHC) for Kaluza-Klein (KK) excitations of the electroweak gauge bosons in the framework with the standard model (SM) gauge and fermion fields propagating in a warped extra dimension. Such a framework addresses both the Planck-weak and flavor hierarchy problems of the SM. Unlike the often studied Z{sup '} cases, in this framework, there are three neutral gauge bosons due to the underlying SU(2){sub L}xSU(2){sub R}xU(1){sub X} gauge group in the bulk. Furthermore, couplings of these KK states to light quarks and leptons are suppressed, whereas those to top and bottom quarks are enhanced compared to the SM gauge couplings. Therefore, the production of light quark and lepton states is suppressed relative to other beyond the SM constructions, and the fermionic decays of these states are dominated by the top and bottom quarks, which are, though, overwhelmed by KK gluons dominantly decaying into them. However, as we emphasize in this paper, decays of these states to longitudinal W, Z and Higgs are also enhanced similarly to the case of top and bottom quarks. We show that the W, Z and Higgs final states can give significant sensitivity at the LHC to {approx}2(3) TeV KK scale with an integrated luminosity of {approx}100 fb{sup -1} ({approx}1 ab{sup -1}). Since current theoretical framework(s) favor KK masses > or approx. 3 TeV, a luminosity upgrade of LHC is likely to be crucial in observing these states.

  6. Overview of large area triple-GEM detectors for the CMS forward muon upgrade

    NASA Astrophysics Data System (ADS)

    Abbaneo, D.; Abbas, M.; Abbrescia, M.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Aleksandrov, A.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F. R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Garcia, A. Conde; Czellar, S.; Dabrowski, M. M.; De Lentdecker, G.; De Oliveira, R.; de Robertis, G.; Dildick, S.; Dorney, B.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R. M.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y. G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P. K.; Mandal, K.; Marchioro, A.; Marinov, A.; Majumdar, N.; Merlin, J. A.; Mitselmakher, G.; Mohanty, A. K.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L. M.; Paolucci, P.; Park, I.; Passeggio, G.; Pavlov, B.; Philipps, B.; Piccolo, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Ryu, G.; Ryu, M. S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A. H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S. K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Stenis, M. Van; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2017-02-01

    In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS. Following an extensive R&D program, CMS has identified triple-foil gas electron multiplier (GEM) detectors as a solution for the first muon station in the region 1.6 < | η | < 2.2, while continuing R&D is ongoing for additional regions.

  7. Associative Memory Pattern Matching for the L1 Track Trigger of CMS at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Fedi, Giacomo

    2016-11-01

    The High Luminosity LHC (HL-LHC) will deliver a luminosity of up to 5 × 1034cm-2s-1, with an average of about 140 overlapping proton-proton collisions per bunch crossing. These extreme pileup conditions place stringent requirements on the trigger system to be able to cope with the resulting event rates. A key component of the CMS upgrade for HL-LHC is a track trigger system, able to identify tracks with transverse momenta above 2 GeV/c already at the first-level trigger. We present here the status of the implementation of a prototype system, based on the combination of Associative Memory custom ASIC and modern Field Programmable Gate Array (FPGA) devices, with the purpose to demonstrate the concept based on state-of-the-art technologies, and to direct the efforts of the necessary R&D toward a final system.

  8. Serial powering: Proof of principle demonstration of a scheme for the operation of a large pixel detector at the LHC

    NASA Astrophysics Data System (ADS)

    Ta, D. B.; Stockmanns, T.; Hügging, F.; Fischer, P.; Grosse-Knetter, J.; Runolfsson, Ö.; Wermes, N.

    2006-02-01

    Large detectors in high-energy physics experiments are mostly built from many identical individual building blocks, called modules, which possess individual parts of the services. The modules are usually also powered by parallel power lines such that they can be individually operated. The main disadvantage of such a parallel powering scheme is the vast amount of necessary power cables which constitutes also a large amount of material in the path of the particles to be detected. For the LHC experiments already now this is a major problem for the optimal performance of the detectors and it has become evident, that for an upgrade programme alternative powering schemes must be investigated. We prove and demonstrate here for the example of the large scale pixel detector of ATLAS that Serial Powering of pixel modules is a viable alternative. A powering scheme using dedicated voltage regulators and modified flex hybrid circuits has been devised and implemented for ATLAS pixel modules. The modules have been intensively tested in the lab and in test beams and have been compared to those powered in parallel with respect to noise and threshold stability performance. Finally, the equivalent of a pixel ladder consisting of six serially powered pixel modules with about 0.3 Mpixels has been built and the performance with respect to operation failures has been studied.

  9. Software for implementing trigger algorithms on the upgraded CMS Global Trigger System

    NASA Astrophysics Data System (ADS)

    Matsushita, Takashi; Arnold, Bernhard

    2015-12-01

    The Global Trigger is the final step of the CMS Level-1 Trigger and implements a trigger menu, a set of selection requirements applied to the final list of trigger objects. The conditions for trigger object selection, with possible topological requirements on multiobject triggers, are combined by simple combinatorial logic to form the algorithms. The LHC has resumed its operation in 2015, the collision-energy will be increased to 13 TeV with the luminosity expected to go up to 2x1034 cm-2s-1. The CMS Level-1 trigger system will be upgraded to improve its performance for selecting interesting physics events and to operate within the predefined data-acquisition rate in the challenging environment expected at LHC Run 2. The Global Trigger will be re-implemented on modern FPGAs on an Advanced Mezzanine Card in MicroTCA crate. The upgraded system will benefit from the ability to process complex algorithms with DSP slices and increased processing resources with optical links running at 10 Gbit/s, enabling more algorithms at a time than previously possible and allowing CMS to be more flexible in how it handles the trigger bandwidth. In order to handle the increased complexity of the trigger menu implemented on the upgraded Global Trigger, a set of new software has been developed. The software allows a physicist to define a menu with analysis-like triggers using intuitive user interface. The menu is then realised on FPGAs with further software processing, instantiating predefined firmware blocks. The design and implementation of the software for preparing a menu for the upgraded CMS Global Trigger system are presented.

  10. Prospects for heavy-flavour measurements with the ALICE inner and forward tracker upgrade

    NASA Astrophysics Data System (ADS)

    Fionda, F.

    2016-01-01

    During the second long shutdown (LS2) of the LHC the ALICE detector will be improved with the installation of an upgraded Inner Tracking System (ITS) and a new Muon Forward Tracker (MFT). These detectors will crucially contribute to the precise characterization of the high-temperature, strongly-interacting medium created in ultra-relativistic Pb-Pb collisions at √sNN = 5.5 TeV. In the central barrel, the upgraded ITS will consist of seven cylindrical layers of silicon pixel detectors, starting at a radial distance of 22.4 mm from the beam axis. At forward rapidity, the MFT will be composed of five silicon pixel planes added in the acceptance of the existing Muon Spectrometer (-4 < ƞ < -2.5), upstream to the hadron absorber. Detailed results on the expected performances for heavy-flavour (HF) measurements down to low transverse momentum, with the upgraded ITS and MFT, will be given for central Pb-Pb collisions for various benchmark analyses, assuming an integrated luminosity of 10 nb-1, as foreseen for the ALICE upgrade programme.

  11. Performance of the new small-strip Thin Gap Chamber for the ATLAS Muon System at the LHC

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain; Atlas Nsw Stgc Group Collaboration

    2016-03-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program. The largest phase-1 upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward region with the so-called New Small Wheel (NSW). The NSW consists of layers of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities. The precision reconstruction of tracks requires a spatial resolution of about 100 microns, and the trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads for triggering. The pads are used to produce a 3-out-of-4 coincidence to identify muon tracks in an sTGC quadruplet. A full size sTGC quadruplet has been constructed and equipped with the first prototype of dedicated front-end electronics. The design of the sTGC will be described. The performance of the sTGC quadruplet has been characterized with data collected at the Fermilab and CERN test beam facilities. Spatial resolution and trigger efficiency results will be presented. An overview of the simulation and digitization model of the sTGC will also be summarized.

  12. The upgrade system of BESIII ETOF with MRPC technology

    NASA Astrophysics Data System (ADS)

    Wang, X. Z.; Sun, Y. J.; Li, C.; Heng, Y. K.; Wu, Z.; Cao, P.; Dai, H. L.; Ji, X. L.; Gong, W. X.; Liu, Z.; Luo, X. L.; Sun, W. J.; Wang, S. Y.; Wang, Y.; Yang, R. X.; Ye, M.; Zhao, J. L.

    2016-08-01

    An upgrade, based on Multigap Resistive Plate Chamber (MRPC) technology, of the endcap Time-Of-Flight (ETOF) detector of the Beijing Spectrometer III (BESIII) has been proposed for the replacement of the current scintillator + PMT based ETOF, with the aim of improving the time resolution down to 80 ps sigma. This improvement will enhance the particle identification capability to meet the higher precision requirements of physics. The ETOF system including MRPC modules, Front End Electronics (FEE), CLOCK module, fast control boards and Time to Digital modules (TDIG), has been designed, constructed and parts of the ETOF system have seperately tested. Aiming at examining the quality of entire ETOF system and training the operation of all participated instruments, a cosmic ray test system was built and tested in the laboratory for about three months to guarantee the performance. In this paper the results of the test are presented indicating that the entire ETOF system works well and satisfies the requirements of the upgrade.

  13. Project W-314 241-AN-A valve pit upgrade acceptance for beneficial use

    SciTech Connect

    HAMMERS, J.S.

    1999-07-21

    This report identifies the responsibilities and requirements, applicable to the 241-AN-A Valve Pit Upgrades portion of Project W-314, for Acceptance for Beneficial Use in accordance with HNF-IP-0842, Vol IV, Sec 3.12. At project turnover, the end user accepts the affected Structures, Systems, and Components (SSCs) for beneficial use. This checklist is used to help the end user ensure that all documentation, training, and testing requirements are met prior to turnover. This checklist specifically identifies those items related to the upgrading of the 241-AN-A valve pit. The upgrades include: the installation of jumper/valve manifolds with position sensors, replacement pit leak detection systems, construction of replacement cover blocks, and electrical upgrades to support the instrumentation upgrades.

  14. Development of thin sensors and a novel interconnection technology for the upgrade of the ATLAS pixel system

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Beimforde, M.; Macchiolo, A.; Moser, H.-G.; Nisius, R.; Richter, R. H.

    2011-04-01

    A new pixel module concept is presented utilizing thin sensors and a novel vertical integration technique for the ATLAS pixel detector in view of the foreseen LHC luminosity upgrades. A first set of pixel sensors with active thicknesses of 75 and 150μm has been produced from wafers of standard thickness using a thinning process developed at the Max-Planck-Institut Halbleiterlabor (HLL) and the Max-Planck-Institut für Physik (MPP). Pre-irradiation characterizations of these sensors show a very good device yield and high break down voltage. First proton irradiations up to a fluence of 1015 neq cm-2 have been carried out and their impact on the electrical properties of thin sensors has been studied.The novel ICV-SLID vertical integration technology will allow for routing signals vertically to the back side of the readout chips. With this, four-side buttable detector devices with an increased active area fraction are made possible. A first production of SLID test structures was performed and showed a high connection efficiency for different pad sizes and a mild sensitivity to disturbances of the surface planarity.

  15. 3D silicon sensors: Design, large area production and quality assurance for the ATLAS IBL pixel detector upgrade

    NASA Astrophysics Data System (ADS)

    Da Via, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Darbo, Giovanni; Fleta, Celeste; Gemme, Claudia; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Chris; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Vianello, Elisa; Zorzi, Nicola

    2012-12-01

    3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ˜4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ˜4 cm2. The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

  16. Upgrade of a GEP50 robot control system

    NASA Astrophysics Data System (ADS)

    Alounai, Ali T.; Gharsalli, Imed

    2000-03-01

    Recently the ASL at Tennessee Technological University was donated a GEP50 welder. The welding is done via off line point-to-point teaching. A state of the art robot was needed for research but because money was not available to purchase such an expensive item. It was therefore decided to upgrade the GEP50 control system to make the welder a multitasking robot. The robot has five degrees of freedom can be sufficient to pursue some research in robotics control. The problem was that the control system of the welder is limited to point-to-point control, using off-line teaching. To make the GEP50 a multitasking robot that can be controlled using different control strategies, the existing control system of the welder had to be replaced. The upgrade turned to be a low cost operation. This robot is currently in sue to test different advanced control strategies in the ASL. This work discusses all the steps and tasks undertaken during the upgrade operation. The hardware and software required or the upgrade are provided in this paper. The newly developed control system has been implemented and tested successfully.

  17. Le LHC, un tunnel cosmique

    ScienceCinema

    None

    2016-07-12

    Et si la lumière au bout du tunnel du LHC était cosmique ? En d’autres termes, qu’est-ce que le LHC peut nous apporter dans la connaissance de l’Univers ? Car la montée en énergie des accélérateurs de particules nous permet de mieux appréhender l’univers primordial, chaud et dense. Mais dans quel sens dit-on que le LHC reproduit des conditions proches du Big bang ? Quelles informations nous apporte-t-il sur le contenu de l’Univers ? La matière noire est-elle détectable au LHC ? L’énergie noire ? Pourquoi l’antimatière accumulée au CERN est-elle si rare dans l’Univers ? Et si le CERN a bâti sa réputation sur l’exploration des forces faibles et fortes qui opèrent au sein des atomes et de leurs noyaux, est-ce que le LHC peut nous apporter des informations sur la force gravitationnelle qui gouverne l’évolution cosmique ? Depuis une trentaine d’années, notre compréhension de l’univers dans ses plus grandes dimensions et l’appréhension de son comportement aux plus petites distances sont intimement liées : en quoi le LHC va-t-il tester expérimentalement cette vision unifiée ? Tout public, entrée libre / Réservations au +41 (0)22 767 76 76

  18. Idaho National Engineering Laboratory Sewer System Upgrade Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment for a proposed Sewer System Upgrade Project at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. The proposed action would consist of replacing or remodeling the existing sewage treatment plants at the Central Facilities Area, Test Reactor Area, and Containment Test Facility. Also, a new sewage testing laboratory would be constructed at the Central Facilities Area. Finally, the proposed action would include replacing, repairing, and/or adding sewer lines in areas where needed.

  19. Commissioning of the read-out driver (ROD) card for the ATLAS IBL detector and upgrade studies for the pixel Layers 1 and 2

    NASA Astrophysics Data System (ADS)

    Balbi, G.; Bindi, M.; Falchieri, D.; Gabrielli, A.; Travaglini, R.; Chen, S.-P.; Hsu, S.-C.; Hauck, S.; Kugel, A.

    2014-11-01

    The higher luminosity that is expected for the LHC after future upgrades will require better performance by the data acquisition system, especially in terms of throughput. In particular, during the first shutdown of the LHC collider in 2013/14, the ATLAS Pixel Detector will be equipped with a fourth layer - the Insertable B-Layer or IBL - located at a radius smaller than the present three layers. Consequently, a new front end ASIC (FE-I4) was designed as well as a new off-detector chain. The latter is composed mainly of two 9U-VME cards called the Back-Of-Crate (BOC) and Read-Out Driver (ROD). The ROD is used for data and event formatting and for configuration and control of the overall read-out electronics. After some prototyping samples were completed, a pre-production batch of 5 ROD cards was delivered with the final layout. Actual production of another 15 ROD cards is ongoing in Fall 2013, and commissioning is scheduled in 2014. Altogether 14 cards are necessary for the 14 staves of the IBL detector, one additional card is required by the Diamond Beam Monitor (DBM), and additional spare ROD cards will be produced for a total of 20 boards. This paper describes some integration tests that were performed and our plan to test the production of the ROD cards. Slices of the IBL read-out chain have been instrumented, and ROD performance is verified on a test bench mimicking a small-sized final setup. This contribution will report also one view on the possible adoption of the IBL ROD for ATLAS Pixel Detector Layer 2 (firstly) and, possibly, in the future, for Layer 1.

  20. Study of the Variation of Transverse Voltage in the 4 Rod Crab Cavity for LHC

    SciTech Connect

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2011-04-01

    The planned high luminosity upgrade to LHC will utilise crab cavities to rotate the beam in order to increase the luminosity in the presence of a finite crossing angle. A compact design is required in order for the cavities to fit between opposing beam-lines. In this paper we discuss we discuss one option for the LHC crab cavity based on a 4 rod TEM deflecting cavity. Due to the large transverse size of the LHC beam the cavity is required to have a large aperture while maintaining a constant transverse voltage across the aperture. The cavity has been optimised to minimise the variation of the transverse voltage while keeping the peak surface electric and magnetic fields low for a given kick. This is achieved while fitting within the strict design space of the LHC. The variation of deflecting voltage across the aperture has been studied numerically and compared with numerical and analytical estimates of other deflecting cavity types. Performance measurements an aluminium prototype of this cavity are presented and compared to the simulated design.