Science.gov

Sample records for li ion ceramic

  1. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  2. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    NASA Astrophysics Data System (ADS)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  3. Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Wen; Zhang, Xudong; Jin, Chao; Wang, Yaoyao; Mossin, Susanne; Yue, Yuanzheng

    2017-02-01

    Electrode materials can display superior electrochemical performances and behavior via the nanoscale design. Here, the low-temperature synthesis of nano-glass ceramics (NGCs) is based on inheriting the network structure of yeast polyphosphate metabolism. The NGCs-3 sample synthesized with a molar ratio of Fe/V = 7:6 is composed of nano-domains of semiconducting oxide glass (Li2O-Na2O-Fe2O3-V2O5-P2O5, LNFVP), nanocrystalline particles (Li9Fe3P8O29, Li0.6V1.67O3.67 and VOPO4), and nanopores connected by interfaces. We have clarified the mixing ion transport mechanism and the electrochemical reactions, and the influences of molar ratio of Fe/V on the structure and electrochemical properties of NGCs. This nanoscale design offers a new possibility improved the electrochemical performances of Li+/Na+ mixed-ion batteries (LNMIBs). The NGCs-3 electrode exhibits a higher discharge capacity (145 mAh g-1) and energy storage density (525 Whkg-1) at 5C, and the capacity retention reaches 70% after 1000 cycles. More importantly, we have established a direct relationship between the electrochemical kinetics and nanostructure of NGC electrode materials.

  4. Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Penghao; Ding, Fei; Xu, Zhibin; Liu, Jiaquan; Liu, Xingjiang; Xu, Qiang

    2017-07-01

    A novel glass-ceramic electrolyte of (100-x)(70Li2S-30P2S5)-xLi2ZrO3 (x = 0, 1, 2, 5) is successfully prepared by a vibratory ball-milling method and followed by a heat-treatment process. Composition of the ternary sulfide electrolyte and the heat-treatment process are optimized by physical characterizations and electrochemical measurements. The testing results show that the optimal substitution quantity of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate is 1 mol %. An appropriate heat-treatment temperature of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is 285 °C. Among the as-prepared ternary electrolyte samples, 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte may exhibit the highest conductivity of 2.85 × 10-3 S cm-1 at room temperature, which is much higher than that of the 70Li2S-30P2S5 glass-ceramic electrolyte. Compared to that of the all-solid-state lithium-ion battery of LiCoO2/70Li2S-30P2S5/In-Li, discharge capacities of all-solid-state lithium-ion battery of LiCoO2/99(70Li2S-30P2S5)-1Li2ZrO3/In-Li may increase 41.0% at the 10th charge-discharge cycle and 21.9% at the 50th charge-discharge cycle, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) analyses of all-solid-state lithium-ion batteries reveal that addition of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate may decrease the interfacial resistance between the electrodes and solid electrolyte. The improvement of electrochemical performances of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is ascribed to both the stable crystal structure and a high lithium-ion diffusion coefficient of Li2ZrO3.

  5. Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Shuping; Feng, Xiqi; Mares, Jiri A.; Babin, Vladimir; Hu, Chen; Kou, Huamin; D'Ambrosio, Carmelo; Li, Jiang; Pan, Yubai; Nikl, Martin

    2017-02-01

    Monovalent Li+ codoped Lu3Al5O12:Ce (LuAG:Ce) optical ceramics were fabricated by solid state reaction method and further optimized by an air-annealing process. Optical absorption, radioluminescence spectra and scintillation properties such as light yield, scintillation decay times and afterglow were measured and compared with those of the Li+ free LuAG:Ce ceramic and the commercial LuAG:Ce single crystal samples. Positive effect of Li+ codopant consists mainly in the significant increase of scintillation light yield, acceleration of scintillation decay as well as the decrease of afterglow intensity. With 0.3% Li codoping, the obtained LuAG:Ce,Li ceramic displays a light yield of ∼29200 ph/MeV at 10 μs shaping time, higher than that of the LuAG:Ce single crystal and optical ceramic scintillators ever reported. The partial conversion of the stable Ce3+ to Ce4+ centers and the shallow and deep traps effect suppression by the Li+ codoping are discussed.

  6. Enhancement of lithium ion conductivity by doping Li3BO3 in Li2S-P2S5 glass-ceramics electrolytes for all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Eom, Minyong; Choi, Sunho; Son, Seunghyeon; Choi, Lakyoung; Park, Chanhwi; Shin, Dongwook

    2016-11-01

    (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 (0 ≤ x ≤ 5) solid electrolytes are prepared via mechanical milling and a post heat-treatment process, and the resulting electrochemical properties are investigated in conjunction with structural analysis. Adding of Li3BO3 into the (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 solid electrolyte is expected to enhance the conductivity and lower the activation energy as a consequence of changing the structural unit in the glass network. It turned out that the doping of Li3BO3 enhances the conductivity by enlarging the glass forming region and promoting precipitation of high lithium ion conductive thio-LISICON II analog. 97 (0.78Li2S·0.22P2S5)·3Li3BO3 (x = 3) glass-ceramics exhibits the highest conductivity (1.03 × 10-3 S cm-1). Structural analysis shows that the samples with Li3BO3 added to the electrolyte are composed of the main structural unit of PS43- with partially-modified structural unit of PO43-, which are believed to effectively enhance the conductivity and decrease the activation energy. In glass-ceramics produced from these materials, the thio-LISICON II phase with higher ionic conductivity tends to be stabilized by the addition of Li3BO3. Additionally, the formation of space-charge layer is relaxed by Li3BO3 doping. As a result, the all-solid-state cell shows high initial discharge capacity of 156 mAh g-1, and the capacity is retained to be 149 mAh g-1 for 40 cycles.

  7. In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Sheng; Li, Xiaoyun; Deng, Huayang

    Gel polymer electrolyte films based on thermoplastic polyurethane (TPU)/poly(vinylidene fluoride) (PVdF) with and without in situ ceramic fillers (SiO 2 and TiO 2) are prepared by electrospinning 9 wt% polymer solution at room temperature. The electrospun TPU-PVdF blending membrane with 3% in situ TiO 2 shows a highest ionic conductivity of 4.8 × 10 -3 S cm -1 with electrochemical stability up to 5.4 V versus Li +/Li at room temperature and has a high tensile strength (8.7 ± 0.3 MPa) and % elongation at break (110.3 ± 0.2). With the superior electrochemical and mechanical performance, it is very suitable for application in polymer lithium ion batteries.

  8. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    NASA Astrophysics Data System (ADS)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  9. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  10. High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li2S-22P2S5 Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment.

    PubMed

    Zhang, Yibo; Chen, Rujun; Liu, Ting; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2017-08-30

    Highly Li-ion conductive 78Li2S-22P2S5 glass-ceramic electrolytes were prepared by simple heat treatment of the glass phase obtained via mechanical ball milling. A high ionic conductivity of ∼1.78 × 10(-3) S cm(-1) is achieved at room temperature and is attributed to the formation of a crystalline phase of high lithium-ion conduction. All-solid-state lithium-ion batteries based on these glass-ceramic electrolytes are assembled by using Li2S nanoparticles or low-cost commercially available FeS2 as active cathode materials and Li-In alloys as anode. A high discharge capacity of 535 mAh g(-1) is achieved after at least 50 cycles for the all-solid-state cells with Li2S as cathode materials, suggesting a rather high capacity retention of 97.4%. Even for the cells using low-cost FeS2 as cathode materials, same high discharge capacity of 560 mAh g(-1) is also achieved after at least 50 cycles. Moreover, the Coulombic efficiency remain at ∼99% for these all-solid-state cells during the charge-discharge cycles.

  11. Effects of Li+ ions on the enhancement of up-conversion emission in Ho3+-Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Zhencai; Zhou, Dacheng; Yang, Yong; Gao, Yuan; Ren, Peng; Qiu, Jianbei

    2016-10-01

    The up-conversion (UC) emission of Ho3+-Yb3+ and Li+ co-doped transparent glass ceramics 45SiO2-15Al2O3-12Na2CO3-21BaF2-7LaF3-0.2HoF3-1YbF3-xLi2CO3 (x = 0, 0.5, 1, 2, 4 and 6 mol%) containing Ba2LaF7 nanocrystals were investigated. These glass ceramics samples were prepared using the conventional quenching techniques. The Ba2LaF7 nanocrystals precipitated from the glass matrix was confirmed by X-ray diffraction (XRD). Compared with the glass ceramics sample without Li+, the UC emission intensity of glass ceramics samples with Li+ were enhanced. It can be proved that the Li+ can affect the enhancement up-conversion (UC) emission. Particularly, the green UC emission intensity band centered at 546 nm was strongly increased twice with the concentration of Li+ increasing up to 4 mol%. Through the comparison and analysis of the energy graph, it was shown that the 5F4/5S2→5I8 transition of Ho3+ ion obtained the green (546 nm) light. There are two weak fluorescences in the red (657 nm) region and near infrared (753 nm) region of spectrum, which is the 5F4/5S2→5I7 and 5F5→5I8 transition of Ho3+. Therefore, the emission results showed that the incorporation of Li+ ions into the Ba2LaF7:Eu3+ lattice could induce a remarkable change of the emission intensity in red region (R = IED/IMD) with 393 nm excitation wavelength. It was indicated that the symmetry of the lattice was destroyed by Li+ in glass ceramics. The possible mechanism responsible for the enhancement of UC emission in Ho-Yb co-doped was discussed.

  12. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  13. Correlation of Heating Rates, Crystal Structures, and Microwave Dielectric Properties of Li2ZnTi3O8 Ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Zheng, Yong; Huang, Qi; Xiong, Weihao

    2015-11-01

    The correlation of heating rates, crystal structures, and microwave dielectric properties of Li2ZnTi3O8 ceramics was thoroughly investigated. Ionic polarizability, atomic packing fractions, bond strengths, and octahedral distortion of Li2ZnTi3O8 ceramics were calculated on the basis of structure refinement data. The "black core" phenomenon resulting from reduction of Ti4+ ions was observed for Li2ZnTi3O8 ceramic sintered at 1°/min; reduction of Ti4+ ions could be limited by heating more rapidly. For heating rates from 1 to 7°/min, the dielectric constants ( ɛ r) of Li2ZnTi3O8 ceramics were mainly determined by ionic polarizability. The temperature coefficient of the resonant frequency ( τ f ) of Li2ZnTi3O8 ceramics was determined by bond strengths. Li2ZnTi3O8 ceramic sintered at 1°/min had the lowest quality factor ( Q × f); this was related to the high dielectric loss as a result of oxygen vacancies formed by reduction of Ti4+ ions. Q × f values of Li2ZnTi3O8 ceramics also decreased with increasing heating rate from 3 to 7°/min, owing to reduced packing fractions and average grain sizes. Li2ZnTi3O8 ceramic sintered at 3°/min had the optimum microwave dielectric properties of ɛ r = 26.6, Q × f = 83,563 GHz, and τ f = -12.4 ppm/°C.

  14. /C Composite Cathode for Li Ion Battery

    NASA Astrophysics Data System (ADS)

    Wang, Shulan; Liu, Xuan; Li, Huiqing; Li, Li

    2014-12-01

    Li3V2(PO4)3/C composites were prepared at different temperatures and assembled as cathodes for Li ion batteries. Their structure and electrochemical properties were properly characterized. The internal and charge transfer resistance of the Li3V2(PO4)3/C cathodes were obtained by simulating the ac impedance spectra with equivalent circuits. The Li3V2(PO4)3/C composite sintered at 1123 K (850 °C) exhibits excellent electrochemical performances because of its smaller internal resistance and charge transfer resistance, as well as faster Li ion inserting/extracting rates.

  15. Specification For ST-5 Li Ion Battery

    NASA Technical Reports Server (NTRS)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  16. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  17. Nanotechnology in Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  18. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  19. Nanomaterials Meet Li-ion Batteries.

    PubMed

    Kwon, Nam Hee; Brog, Jean-Pierre; Maharajan, Sivarajakumar; Crochet, Aurélien; Fromm, Katharina M

    2015-01-01

    Li-ion batteries are used in many applications in everyday life: cell phones, laser pointers, laptops, cordless drillers or saws, bikes and even cars. Yet, there is room for improvement in order to make the batteries smaller and last longer. The Fromm group contributes to this research focusing mainly on nanoscale lithium ion cathode materials. This contribution gives an overview over our current activities in the field of batteries. After an introduction on the nano-materials of LiCoO(2) and LiMnPO(4), the studies of our cathode composition and preparation will be presented.

  20. Li+ ion dynamics in strontium bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2004-11-01

    Ion transport in Li2O-Bi2O3-SrO glasses has been studied in the frequency range 10 Hz-2 MHz and in the temperature range 263-483 K. The variation of the dc conductivity and the activation energy of these glasses with composition has been compared with those of bismuthate and lead bismuthate glasses. The frequency dependent conductivity has been studied using both modulus and conductivity formalisms. We have observed that the variation of the power law exponent with Li2O content is in contrast to that for the Li2O-Bi2O3 and Li2O-Bi2O3-PbO glasses. The values of the non-exponential parameter for the Li2O-Bi2O3-SrO glasses are lower than those for the binary Li2O-Bi2O3 glasses.

  1. Mesoporous Nitrogen-Doped Carbon-LiSICON Glass Ceramics as High Performance Cathodes in Solid-State Lithium Oxygen Batteries

    DTIC Science & Technology

    2013-03-18

    SUBTITLE MESOPOROUS NITROGEN-DOPED CARBON-LiSICON GLASS CERAMICS AS HIGH PERFORMANCE CATHODES IN SOLID-STATE LITHIUM -OXYGEN BATTERIES (POSTPRINT) 5a...AFRL-RQ-WP-TP-2015-0054 MESOPOROUS NITROGEN-DOPED CARBON-LiSICON GLASS CERAMICS AS HIGH PERFORMANCE CATHODES IN SOLID-STATE LITHIUM -OXYGEN...superior electrochemical activity of composite 3 for the reduction of oxygen and the higher ionic conductivity of LAGP to transport lithium ions in the

  2. Ion Exchange in Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  3. Li + grafting of ion irradiated polyethylene

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Rybka, V.; Vacík, J.; Hnatowicz, V.; Öchsner, R.; Ryssel, H.

    1999-02-01

    Foils of oriented polyethylene (PE) were irradiated with 63 keV Ar + and 155 keV Xe + ions to different fluences at room temperature and then doped from water solution of LiCl. The as irradiated and irradiated plus doped samples were examined by IR, EPR and neutron depth profiling (NDP) technique. The sheet resistance was also measured by the standard two points method. After Li salt doping of ion modified layer of PE, a reaction between degraded macromolecules and Li occur and thus a new chemical structure C-Li + is formed. Owing to the presence of these cations on the polymer chain, the irradiated plus doped layer exhibits higher electric conductivity compared to as-irradiated ones.

  4. Ion Selective Ceramics for Waste Separations. Input for Annual Accomplishments Report

    SciTech Connect

    Spoerke, Erik David

    2015-10-01

    This report discusses“Ion-Selective Ceramics for Waste Separations” which aims to develop an electrochemical approach to remove fission product waste (e.g., Cs+ ) from the LiCl-KCl molten salts used in the pyroprocessing of spent nuclear fuel.

  5. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  6. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  7. Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes.

    PubMed

    Zheng, Jin; Tang, Mingxue; Hu, Yan-Yan

    2016-09-26

    Polymer-ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance all-solid-state rechargeable batteries. Composite electrolytes have been prepared with cubic-phase Li7 La3 Zr2 O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high-resolution solid-state Li NMR, we are able to track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of (7) Li in the composite electrolyte by (6) Li from the (6) Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. On fabrication procedures of Li-ion conducting garnets

    NASA Astrophysics Data System (ADS)

    Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina

    2017-04-01

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.

  9. Li-ion EMU Battery Testing

    NASA Technical Reports Server (NTRS)

    Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2001-01-01

    A 45Ah Lithium ion (Li-Ion) battery comprised of 5 Yardney prismatic cells was evaluated to replace the silver-zinc cells in the Extra-vehicular Mobility Unit (EMU). Tests determined that the five cell battery can meet the mission objective of 500 duty cycles and maintain a minimum voltage of 16.0 V without an individual cell voltage dropping below 3.0V. Forty real time cycles were conducted to develop BOL trend data. Decision to switch to accelerated cycling for the remaining 460 cycles was made since Real Time cycling requires 1 day/cycle. Conclusions indicate that battery replacement would indeed be prudent.

  10. Diffusion and possible freezing phases of Li-ions in LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Yuen; Toft-Petersen, Rasmus; Ehlers, Georg; Vaknin, David

    Elastic and inelastic neutron scattering studies of LiFePO4 single crystal reveal new Li-ion diffusion properties relevant to its function as Li-battery materials. In the past decade there has been broad interest in LiFePO4 and its related compounds, largely due to the applications of these materials as cathodes in Li- batteries. This is owing to these materials' high charge-discharge ability and conductivity, both of which are by virtue of the Li-ions' high mobility. In this talk, we present our findings on the temperature and directional dependence of Li-ions' diffusion in LiFePO4. LiFePO4 adopts the olivine structure at room temperature (Space group: Pnma), which contains channels along principal crystalline directions that allow Li-ion motion. Elastic neutron scattering reveals lowering of symmetry from the Pnma structure below room temperature, which can be interpreted as the freezing of Li-ions, and can be subsequently linked to the reported decrease in Li-ion conductivity. Inelastic neutron scattering, in the 35K to 720K temperature range, shows temperature dependence, as well as anisotropy (i.e. along 0K0 versus 00L) of Li-ion diffusion. Ames Laboratory is supported by U.S. DOE, BES, DMSE, under Contract #DE-AC02-07CH11358. Spallation Neutron Source of Oak Ridge National Laboratory is sponsored by U.S. DOE, BES, SUFD.

  11. Li ion diffusion in LiAlO2 investigated by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Lei, Li; Jiang, Xiaodong; Feng, Zhe Chuan; Tang, Mingjun; He, Duanwei

    2014-11-01

    The temperature dependence of Li ions behavior of γ-LiAlO2 has been studied from 78 to 873 K. On heating, the Li ions underwent positional disordering along the structural channels, with the Li ions related modes at 220, 366 and 400 cm-1 broadening and weakening dramatically. An anomalous maximum in the bandwidths of the Li ions related modes is observed. It should be apparent that there are at least two distinct thermally activated processes. A model suggested by Andrade and Porto is used to describe the linewidth of a phonon.

  12. Li2CO3-Coated Ni Particles for the Inner Electrodes of Multilayer Ceramic Capacitors: Evaluation of Lifetime.

    PubMed

    Heidary, Damoon Sohrabi Baba; Randall, Clive A

    2017-01-11

    In previous work, it was demonstrated that using Li2CO3-coated Ni particles in the manufacturing of multilayer ceramic capacitor (MLCC) devices could improve both the permittivity and dissipation factors. However, adding Li(+) ions to the system gave rise to the concern that ions could migrate under sustained electrical fields and thereby increase the degradation rates of the insulation resistance in MLCCs. In this paper, thermally stimulated depolarization current and highly accelerated lifetime testing were both utilized to evaluate the oxygen vacancy space-charge regions and migration in MLCCs. The results suggested that three parameters (the sintering schedule, Li2CO3 coatings, and oxygen flow during sintering) determine the overall resilience to the degradation. The Li(+) ions did not migrate during degradation, as verified by time-of-flight secondary-ion mass spectrometry mapping; however, the Li ions enter the perovskite structure as an acceptor and, if ionically compensated for, could introduce more oxygen vacancies to the system and decrease the lifetime of the MLCCs. Nevertheless, it was demonstrated that the relative lifetimes of the newly designed MLCCs significantly improve relative to the conventional samples.

  13. NASA/GSFC Testing of Li-Ion Cells: Update

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2001-01-01

    This viewgraph paper presents a report on the ongoing testing of Lithium Ion (Li-Ion) cells. Characterizes cells according to capacity, self-discharge, and mid-discharge voltage. Determines the cycling performance of Li-Ion cells as batteries according to number of cycles, charge voltage, and temperature.

  14. Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Nakajima, Tsuyoshi; Hirobayashi, Yuki; Takayanagi, Yuki; Ohzawa, Yoshimi

    2013-12-01

    DSC (Differential Scanning Calorimetry) study has been made on the reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Ethylene carbonate (EC) more easily reacts with metallic Li and LiC6 than propylene carbonate (PC). This may be because formation of lithium alkyl carbonate is more difficult for PC than EC. On the other hand, diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) react with Li in the same manner. Reactions of Li and LiC6 with organic solvents have been discussed based on the results of quantum calculation.

  15. Li-Ion Battery for ISS

    NASA Technical Reports Server (NTRS)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  16. Interfacial Li-ion localization in hierarchical carbon anodes

    SciTech Connect

    McNutt, Nicholas W.; Rios, Orlando; Maroulas, Vasileios; Keffer, David J.

    2016-10-24

    An understanding of the nanoscale structure and energetics of carbon composites is critical for their applications in electric energy storage. Here, we study the properties of carbon anodes synthesized from low-cost renewable lignin biopolymers for use in energy storage applications such as Li-ion batteries. The anodes possess both nanoscale and mesoscale order, consisting of carbon nanocrystallites distributed within an amorphous carbon matrix. Molecular dynamics simulations of an experimentally validated model of the anode is used to elucidate the nature of Li-ion storage. We report the discovery of a novel mechanism of Li-ion storage, one in which Li+ is not intercalated between layers of carbon (as is the case in graphitic anodes), but rather is localized at the interface of crystalline carbon domains. In particular, the effects of Li-ion binding energy on the Li-Li, Li-H, and Li-C pair distribution functions are revealed, along with the effect on charge distribution. As a result, the atomic environments surrounding the Li-ions are grouped on the basis of ion energy and then convolved into archetypal structural motifs that reveal deep insight into the geometry of ion localization in disordered systems.

  17. Interfacial Li-ion localization in hierarchical carbon anodes

    DOE PAGES

    McNutt, Nicholas W.; Rios, Orlando; Maroulas, Vasileios; ...

    2016-10-24

    An understanding of the nanoscale structure and energetics of carbon composites is critical for their applications in electric energy storage. Here, we study the properties of carbon anodes synthesized from low-cost renewable lignin biopolymers for use in energy storage applications such as Li-ion batteries. The anodes possess both nanoscale and mesoscale order, consisting of carbon nanocrystallites distributed within an amorphous carbon matrix. Molecular dynamics simulations of an experimentally validated model of the anode is used to elucidate the nature of Li-ion storage. We report the discovery of a novel mechanism of Li-ion storage, one in which Li+ is not intercalatedmore » between layers of carbon (as is the case in graphitic anodes), but rather is localized at the interface of crystalline carbon domains. In particular, the effects of Li-ion binding energy on the Li-Li, Li-H, and Li-C pair distribution functions are revealed, along with the effect on charge distribution. As a result, the atomic environments surrounding the Li-ions are grouped on the basis of ion energy and then convolved into archetypal structural motifs that reveal deep insight into the geometry of ion localization in disordered systems.« less

  18. 6Li + ion implantation into polystyrene

    NASA Astrophysics Data System (ADS)

    Soares, M. R. F.; Alegaonkar, P.; Behar, M.; Fink, D.; Müller, M.

    2004-06-01

    100 keV 6Li + ions were implanted into polystyrene at fluences of 1 × 10 13 to 1 × 10 14 cm -2, and their depth distributions were determined by means of the neutron depth profiling technique. In no case the projectile ions are found to come to rest according to their predicted implantation profiles. Instead, they always undergo considerable migration. During the irradiation process this motion is influenced by the radiation damage, and during the subsequent annealing steps one deals with thermal diffusion. The implant redistribution is always found to be governed strongly by the self-created damage, insofar as both electronic and nuclear defects in the polymer act as trapping centers.

  19. Computational modeling of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-12-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  20. Electrolytes in Support of 5V Li-ion Batteries

    DTIC Science & Technology

    2010-12-16

    OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...candidates LiCoPO4, LiNi0.5Mn1.5O4, Li2FeCoPO4 etc, projected to deliver 15~40% more energy than state-of-art LiFePO4 The additive invented by SEDD is...battery pack for HEV as example: 300 V hybrid electric system • requires at least 100 LiFePO4 Li ion cells in series • power electronics, protection

  1. Li@organic superhalogens: possible electrolytes in Li-ion batteries.

    PubMed

    Naaresh Reddy, G; Parida, Rakesh; Giri, Santanab

    2017-08-31

    Inorganic superhalogens are commonly used as anionic counterparts in Li-ion batteries. In an endeavour to prepare better electrolytes, we have modelled the anionic part with different organic heterocyclic-based superhalogens. First principles calculations on those organic superhalogens reveal that the Li-binding energy is at par with that of the Li-salt of a common electrolyte. Out of five different halogen free organic heterocycles, Li[C3BN2(NO2)4] and Li[C2BNO(NO2)3] are found to be mostly suitable as electrolytes in Li-ion batteries. Molecular dynamics simulation studies on C2BNO(NO2)3(-), C3BN2(NO2)4(-), Li[C2BNO(NO2)3] and Li[C3BN2(NO2)4] also reveal that the structures are dynamically stable.

  2. Li-Ion Cell Development for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Huang, C.-K.; Sakamoto, J. S.; Surampudi, S.; Wolfenstine, J.

    2000-01-01

    JPL is involved in the development of rechargeable Li-ion cells for future Mars Exploration Missions. The specific objectives are to improve the Li-ion cell cycle life performance and rate capability at low temperature (<<-20 C) in order to enhance survivability of the Mars lander and rover batteries. Poor Li-ion rate capability at low temperature has been attributed to: (1) the electrolytes becoming viscous or freezing and/or (2) reduced electrode capacity that results from decreased Li diffusivity. Our efforts focus on increasing the rate capability at low temperature for Li-ion cells. In order to improve the rate capability we evaluated the following: (1) cathode performance at low temperatures, (2) electrode active material particle size on low temperature performance and (3) Li diffusivity at room temperature and low temperatures. In this paper, we will discuss the results of our study.

  3. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    PubMed

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  4. Screening Li-ion batteries for internal shorts

    NASA Astrophysics Data System (ADS)

    Darcy, Eric

    A Li-ion polymer pouch cell battery design for a spacesuit developed an internal short during ground storage. A detailed failure investigation found that native contamination was the most probable root cause as the failure mechanism was successfully replicated. Lessons learned are applicable to the implementation of most Li-ion cell designs for critical applications.

  5. Group 31 and Group 34 Li-ion Battery Specification

    DTIC Science & Technology

    2011-02-08

    Unclassified 1 Unclassified United States Army Group 31 and Group 34 Li- ion Battery Specification US Army TARDEC Energy Storage Team...7 1.1.17 Standard Battery Charger ...Requirements The following are requirements for the Li ion rechargeable battery conforming to the Group 31 and Group 34 form factor. These are based on

  6. Nanostructured Materials for Li-Ion Batteries and Beyond.

    PubMed

    Li, Xifei; Sun, Xueliang

    2016-04-07

    This Special Issue "Nanostructured Materials for Li-Ion Batteries and Beyond" of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs) and future systems.[...].

  7. Hybrid Li Ion Conducting Membrane as Protection for the Li Anode in an Aqueous Li-Air Battery: Coupling Sol-Gel Chemistry and Electrospinning.

    PubMed

    Lancel, Gilles; Stevens, Philippe; Toussaint, Gwenaëlle; Maréchal, Manuel; Krins, Natacha; Bregiroux, Damien; Laberty-Robert, Christel

    2017-09-19

    Aqueous lithium-air batteries have very high theoretical energy densities, which potentially makes this technology very interesting for energy storage in electric mobility applications. However, the aqueous electrolyte requires the use of a watertight layer to protect the lithium metal, typically a thick NASICON glass-ceramic layer, which adds ohmic resistance and penalizes performance. This article deals with the replacement of this ceramic electrolyte by a hybrid organic-inorganic membrane. This new membrane combines an ionically conducting inorganic phase for Li ion transport (Li1.3Al0.3Ti1.7(PO4)3 (LATP) and a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer for water tightness and mechanical properties. The Li ion transport through the membrane is ensured by an interconnected 3-D network of crystalline LATP fibers obtained by coupling an electrospinning process with the sol-gel synthesis followed by thermal treatment. After an impregnation step with PVDF-HFP, hybrid membranes with different volumetric fractions of PVDF-HFP were synthesized. These membranes are watertight and have Li ion conductivities ranging from 10(-5) to 10(-4) mS/cm. The conductivity depends on the PVDF-HFP volume fraction and the fibers' alignment in the membrane thickness, which in turn can be tuned by adjusting the water content in the electrospinning chamber during the process. The alignment of fibers parallel to the membrane surface is conductive to poor conductivity values whereas a disordered fiber mat leads to interesting conductivity values (1 × 10(-4) mS/cm) at ambient temperature.

  8. Proceedings of the AD HOC Workshop on Ceramics for Li/FeS{sub 2} batteries

    SciTech Connect

    Not Available

    1993-12-31

    Representatives from industry, the U.S. Advanced Battery Consortium (USABC), DOE, national laboratories, and other govt agencies met to develop recommendations and actions for accelerating the development of ceramic components critical to the successful introduction of the Li/FeS{sub 2} bipolar battery for electric vehicles. Most of the workshop is devoted to electrode materials, bipolar designs, separators, and bipolar plates. The bulk of this document is viewographs and is divided into: ceramics, USABC overview, SAFT`s Li/FeS{sub 2} USABC program, bipolar Li/FeS{sub 2} component development, design requirements for bipolar plates, separator design requirements, compatibility of ceramic insulators with lithium, characterization of MgO for use in separators, resistivity measurements of separators, sintered AlN separators for LiMS batteries, etc.

  9. Material review of Li ion battery separators

    SciTech Connect

    Weber, Christoph J. Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  10. Material review of Li ion battery separators

    NASA Astrophysics Data System (ADS)

    Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-01

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  11. Distribution of Nd3+ ions in oxyfluoride glass ceramics

    PubMed Central

    2012-01-01

    It has been an open question whether Nd3+ ions are incorporated into the crystalline phase in oxyfluoride glass ceramics or not. Moreover, relative research has indicated that spectra characters display minor differences between before and after heat treatment in oxyfluoride glass compared to similar Er3+-, Yb3+-, Tm3+-, Eu3+-, etc.-doped materials. Here, we have studied the distribution of Nd3+ ions in oxyfluoride glass ceramics by X-ray diffraction quantitative analysis and found that almost none of the Nd3+ ions can be incorporated into the crystalline phase. In order to confirm the rationality of the process, the conventional mathematical calculation and energy-dispersive spectrometry line scanning are employed, which show good consistency. The distribution of Nd3+ ions in oxyfluoride glass ceramics reported here is significant for further optical investigations and applications of rare-earth doped oxyfluoride glass ceramics. PMID:22647385

  12. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  13. Strain imaging of a LiCoO2 cathode in a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Matsushita, Yuki; Osaka, Ryuma; Butsugan, Kenta; Takata, Keiji

    2016-09-01

    Li-ion batteries have been recognized as promising devices for a sustainable society. Layered LiCoO2 and graphite are commonly used as electrode materials for Li-ion batteries. When charging and discharging, Li-ions are extracted or inserted into the interlayers, which causes changes in volume. Scanning probe microscopy (SPM) can allow high resolution imaging of these volume changes, which enables us to investigate Li-ion migration without destruction. We observed volume changes in the LiCoO2 cathode using SPM and successfully imaged the distribution of the volume changes corresponding to the LiCoO2 particles. Volume changes in the interspace were significantly larger than those in the particles. The large volume changes are caused by electrolyte flux induced by changes in concentration of Li ions. The volume changes were greatly reduced when the electrolyte dried out. The dry-out and infiltration of electrolyte between the LiCoO2 particles and the current collector spread out with the procedure of degradation of the batteries. The boundaries between the dry-out and infiltration regions acted as barriers of electrolyte flux.

  14. Near room temperature magnetodielectric consequence in (Li, Ti) doped NiO ceramic

    SciTech Connect

    Mukherjee, S. E-mail: sudipm@barc.gov.in; Rayaprol, S.; Kaushik, S. D.; Chatterjee, S.; Bhattacharya, S.; Jana, P. K.

    2016-04-07

    In the quest for high-k dielectrics with decent magnetodielectric (MD) response, ball-milled processed (Li, Ti) doped NiO ceramics have been evaluated by various experimental techniques. Magnetic properties in these ceramics manifest with a pronounced anomaly appearing at ∼260 K, suggesting ferrimagnetic phase (related to cluster magnetism) and co-existence with a glassy-like antiferromagnetic phase at ∼7 K. Room temperature neutron diffraction pattern shows the existence of short-range magnetic correlations. In the magnetically ordered state below 250 K, the magnetic structure is found to be phase coexistence of G-type antiferromagnet and ferrimagnet. Impedance spectroscopy measurements over a wide temperature range can be perfectly described with appropriate microstructural model (internal barrier layer capacitor), based on domain and domain boundary relaxations, justifying the enhancement of the dielectric response. The low-temperature (T < 100 K) dielectric relaxation is polaronic in nature, associated with the charge ordering of a mixed valence states of Ti ions (co-existence of Ti{sup 3+} and Ti{sup 4+}). Finally, our investigations in external magnetic fields up to 15 T reveal the occurrence of negative MD effect near room temperature. This intriguing intrinsic feature has been understood by the mechanism of charge-hopping-mediated MD effects.

  15. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  16. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.

    PubMed

    Kumar, Amit; Arruda, Thomas M; Tselev, Alexander; Ivanov, Ilia N; Lawton, Jamie S; Zawodzinski, Thomas A; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

  18. First-principles study of Li ion diffusion in LiFePO4

    NASA Astrophysics Data System (ADS)

    Ouyang, Chuying; Shi, Siqi; Wang, Zhaoxiang; Huang, Xuejie; Chen, Liquan

    2004-03-01

    The diffusion mechanism of Li ions in the olivine LiFePO4 is investigated from first-principles calculations. The energy barriers for possible spatial hopping pathways are calculated with the adiabatic trajectory method. The calculations show that the energy barriers running along the c axis are about 0.6, 1.2, and 1.5 eV for LiFePO4, FePO4, and Li0.5FePO4, respectively. However, the other migration pathways have much higher energy barriers resulting in very low probability of Li-ion migration. This means that the diffusion in LiFePO4 is one dimensional. The one-dimensional diffusion behavior has also been shown with full ab initio molecular dynamics simulation, through which the diffusion behavior is directly observed.

  19. Lasing in diode-pumped fluoride nanostructure F{sub 2}{sup -}:LiF colour centre ceramics

    SciTech Connect

    Basiev, T T; Doroshenko, M E; Konyushkin, V A; Osiko, V V; Ivanov, L I; Simakov, S V

    2007-11-30

    The spectral and lasing properties of a new nanostructure F{sub 2}{sup -}:LiF colour centre ceramics are studied and compared with those for single crystal samples. The slope lasing efficiency up to 26% is achieved in the diode-pumped F{sub 2}{sup -}:LiF laser ceramics. (letters)

  20. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; ...

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  1. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging

  2. Thermodynamic consistent transport theory of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Latz, A.; Zausch, J.

    2011-03-01

    Most Li ion insertion batteries consist of a porous cathode, a separator filled with electrolyte and an anode, which very often also has some porous structure. The solid part especially in the cathode is usually produced by mixing a powder of the actual active particles, in which Li ions will be intercalated, binder and carbon black to enhance the electronic conductivity of the electrode. As a result the porous structure of the electrodes is very complex, leading to complex potential, ion and temperature distributions within the electrodes. The intercalation and deintercalation of ions cannot be expected to be homogeneously distributed over the electrode due to the different transport properties of electrolyte and active particles in the electrode and the complex three-dimensional pore structure of the electrode. The influence of the final microstructure on the distribution of temperature, electric potential and ions within the electrodes is not known in detail, but may influence strongly the onset of degradation mechanisms. For being able to numerically simulate the transport phenomena, the equations and interface conditions for ion, charge and heat transport within the complex structure of the electrodes and through the electrolyte filled separator are needed. We will present a rigorous derivation of these equations based exclusively on general principles of nonequilibrium thermodynamics. The theory is thermodynamically consistent i.e. it guarantees strictly positive entropy production. The irreversible and reversible sources of heat are derived within the theory. Especially the various contribution to the Peltier heat due to the intercalation of ions are obtained as a result of the theory. Research highlights▶ Thermodynamic consistent transport theory for Li ion batteries ▶ Derivation of all irreversible and reversible heat sources in Li ion batteries ▶ Closed set of equations for ion, charge and heat transport in Li ion batteries ▶ Theory of Peltier

  3. Structure and Differentiated Electrical Characteristics of M1/2La1/2Cu3Ti4O12 (M = Li, Na, K) Ceramics Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Liu, Zhanqing; Yang, Zupei

    2017-10-01

    New M1/2La1/2Cu3Ti4O12 (M = Li, Na, K) ceramics based on partial substitution of Li+, Na+, and K+ for La3+ in La2/3Cu3Ti4O12 (LCTO) have been prepared by a sol-gel method, and the effects of Li+, Na+, and K+ on the microstructure and electrical properties investigated in detail, revealing different results depending on the substituent. The cell parameter increased with increasing radius of the substituent ion (Li+, Na+, K+). Li1/2La1/2Cu3Ti4O12 (LLCTO) ceramic showed better frequency and temperature stability, but the dielectric constant decreased and the third abnormal dielectric peak disappeared from the dielectric temperature spectrum. Na1/2La1/2Cu3Ti4O12 (NLCTO) ceramic exhibited higher dielectric constant and better frequency and temperature stability, and displayed the second dielectric relaxation in electric modulus plots. The performance of K1/2La1/2Cu3Ti4O12 (KLCTO) ceramic was deteriorated. These different microstructures and electrical properties may be due to the effect of different defect structures generated in the ceramic as well as grain size. This work represents the first analysis and comparison of these remarkable differences in the electrical behavior of ceramics obtained by partial substitution of Li+, Na+, and K+ for La3+ in LCTO.

  4. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  5. Irradiation behavior of LiAlO 2 and Li 2ZrO 3 ceramics in the ALICE 3 experiment

    NASA Astrophysics Data System (ADS)

    Rasneur, B.; Thevenot, G.; Bouilloux, Y.

    1992-09-01

    Within the framework of the investigation of ceramic breeders for the DEMO relevant solid blankets developed in Europe, the ALICE 3 experiment was foreseen to study the irradiation behavior of the ceramics. The irradiation was performed in the core of the OSIRIS reactor for 46 FPD (full power days) at 400°C and 600°C. The three ceramics in the configuration contemplated in the BIT and BOT concepts were tested, i.e. LiAlO 2 and Li 2ZrO 3 pellets, Li 4SiO 4 and Li 2ZrO 3 pebbles, respectively. In this paper are reported the results of the post-irradiation examination carried out at CEA on CEA Li 2ZrO 3 and LiAlO 2 specimens: dimensions, X-ray diffraction, ultimate bending strength, diametral compressive strength and residual tritium.

  6. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  7. Anisotropic lithium ion migration in LiFePO4

    NASA Astrophysics Data System (ADS)

    Park, S. B.; Park, C. K.; Hwang, J. T.; Cho, W. I.; Jang, H.

    2011-12-01

    An anisotropic behavior of lithium ion migration in LiFePO4 is investigated using the cathode particles after chemical delithiation. A phase contrast of a LiFePO4 particle validating the directional property is also found. It suggests that the lithium ion migration path is limited to the [010] direction and the phase boundary between LiFePO4 and FePO4 is perpendicular [010]. The symmetric phase boundary inside the LiFePO4 particle is contrary to the non-directional core-shell model reported by others. The molecular dynamics simulation confirms the crystallographic direction with the lowest energy for lithium ion migration.

  8. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic

  9. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    NASA Astrophysics Data System (ADS)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  10. Domain splitting algorithms for the Li-ion battery simulation

    NASA Astrophysics Data System (ADS)

    Iliev, O.; Zakharov, P. E.

    2016-11-01

    Numerical simulation of electrochemical processes in rechargeable batteries has important applications in an energy technology. In this paper we have developed and compared three domain splitting algorithms for the Li-ion battery simulation. Li-ion battery simulation is based on microscopic model, which contains nonlinear equations for Li-ion concentration and potential. On the interface of electrodes and electrolyte the Lithium ions intercalation are described by nonlinear equation. This nonlinear interface condition affects the Newton's method iterations and computation time. To simplify numerical simulations we use domain splitting algorithms, which split the original problem into three independent subproblems in two electrodes and electrolyte. We investigate the numerical convergence and efficiency of the algorithms on a 2D model problem.

  11. Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Francisco, Brian E.; Jones, Christina M.; Lee, Se-Hee; Stoldt, Conrad R.

    2012-03-01

    While today's lithium-ion batteries offer acceptable energy storage capability, they lack the ability to be cycled repeatedly more than a couple thousand times. Electrochemical capacitors, i.e., supercapacitors, are being developed whose lifetimes exceed 1 × 106 cycles and power densities surpass those of batteries by several times. Here, we present an all-solid-state supercapacitor using a Li2S-P2S5 glass-ceramic electrolyte as both separator and ion conductor. Three device architectures are examined including two with nanostructured electrodes which incorporate multi-walled carbon nanotubes (MWCNTs). Cyclic voltammograms and electrochemical impedance measurements demonstrate that these devices develop reversible double layer capacitance, and a maximum of 7.75 F/g is achieved in the device constructed by mechanically mixing the nanostructured electrodes. Electrochemical impedance spectroscopy explains non-idealities observed when MWCNTs are incorporated in the electrode layers.

  12. Fabrication and characterization of LiH ceramic pebbles by wet process

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Hong, Ming; Liu, Zhiang; Leng, Jiaxun; Zhang, Yun; Zhang, Jialiang; Wang, Wenchang

    2014-09-01

    Lithium hydride (LiH) ceramic pebbles, a new potential tritium breeding material in fusion-fission or fusion reactor blanket, were prepared by wet process for the first time. XRD results showed that LiOH, LiOH·H2O, Li2CO3 and Li2O were found in the surface of LiH pebbles. However, the pure phase of LiH pebbles without cracks could be obtained by paraffin wax coating technique. The average value (a.v.) of the sphericity and the diameter were 1.01 and 0.98 mm, respectively. The LiH pebbles sintered at 450 °C for 3 h under 80 ml/min flowing argon, reached ∼92.3% of the theoretical density, with the grain size of 5.59 μm (a.v.). And the crush load was measured to be 15 N on average. The described wet process exhibited multiple advantages for fabricating LiH pebbles.

  13. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  14. Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends

    NASA Astrophysics Data System (ADS)

    Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.

    2002-12-01

    There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.

  15. Screening Li-Ion Batteries for Internal Shorts

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  16. Review on Current State of Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  17. In-house fabrication and testing capabilities for Li and Li-ion 18650 cells

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.

    2010-04-01

    For over 10 years Sandia Labs have been involved in an US DOE-funded program aimed at developing electric vehicle batteries for transportation applications. Currently this program is called "Advanced Battery Research (ABR)." In this effort we were preparing 18650 cells with electrodes supplied by or purchased from private companies for thermal abuse and electrical characterization studies. Lately, we are coating our own electrodes, building cells and evaluating performance. This paper describes our extensive in-house facilities for slurry making, electrode coating, cell winding etc. In addition, facilities for electrical testing and thermal abuse will be described. This facility allows us to readjust our focus quickly to the changing demands of the still evolving ABR program. Additionally, we continue to make cells for our internal use. We made several 18650 cells both primary (Li-CFx) and secondary (Li-ion) and evaluated performance. For example Li-CFx cells gave ~2.9Ahr capacity at room temperature. Our high voltage Li-ion cells consisting of carbon anode and cathode based on LiNi 0.4Mn 0.3Co 0.3O2 in organic electrolytes exhibited reproducible behavior and gave capacity on the order of 1Ahr. Performance of Li-ion cells at different temperatures and thermal abuse characteristics will be presented.

  18. Anode-electrolyte double-layer of Li-ion batteries: Structure and Li-ion intercalation

    NASA Astrophysics Data System (ADS)

    Wipf, David O.; Abou Hamad, Ibrahim; Rikvold, Per Arne; Novotny, Mark A.

    2011-03-01

    The electrochemical double-layer structure plays an important role in Li-ion intercalation during charging of Li-ion batteries with a graphite anode. In our recent Molecular Dynamics studies of a proposed accelerated charging method [I. Abou Hamad~et al., Phys. Chem. Chem. Phys. 12, 2740-2743 (2010)], we notice that ethylene carbonate and propylene carbonate molecules of the electrolyte assemble themselves in a preferred orientation at the electrode-electrolyte interface. On the other hand, they are randomly oriented in the bulk electrolyte. We show that the structure of the double layer is affected by the intercalating Li-ion: while the dipole moments of double-layer molecules far from the intercalating Li-ion point toward the graphite sheets of the anode, they point away from the intercalation site close to the intercalating Li-ion. This observation should contribute to a better understanding of the intercalation process. This work was supported in part by NSF Grant No. DMR-0802288.

  19. Unusual Li-Ion Transfer Mechanism in Liquid Electrolytes: A First-Principles Study.

    PubMed

    Tang, Zhen-Kun; Tse, John S; Liu, Li-Min

    2016-11-17

    Liquid electrolytes play an important role in commercial lithium-ion (Li-ion) batteries as a conduit for Li-ion transfer between anodes and cathodes. It is generally believed that the Li-ions move along with the salt ions; thus, Li-ion diffusion is only affected by the viscosity and salt concentration in the liquid electrolytes based on the Stokes-Einstein equation. In this study, a novel and faster Li-ion diffusion mechanism in electrolytes containing a cyanogen group is identified from first-principles molecular dynamics (FPMD) simulations. In this mechanism, the Li-ions are first detached from the Li-salt and then diffuse along with the solvent molecules, and the Li-ion diffusion does not obey the traditional Stokes-Einstein equation. The ionic conductivity of the electrolyte systems with this "solvent-assisted Li-ion diffusion" mechanism is further enhanced through Li-ion hopping. This novel Li-ion diffusion process explains recent findings of high Li-ion conductivity in electrolytes with cyanogen groups and furnishes a new paradigm for the design of fast-charging liquid electrolyte for Li-ion batteries.

  20. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  1. A review on the separators of liquid electrolyte Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng Shui

    This paper reviews the separators used in liquid electrolyte Li-ion batteries. According to the structure and composition of the membranes, the battery separators can be broadly divided as three groups: (1) microporous polymer membranes, (2) non-woven fabric mats and (3) inorganic composite membranes. The microporous polymer membranes are characterised by their thinness and thermal shutdown properties. The non-woven mats have high porosity and a low cost, while the composite membranes have excellent wettability and exceptional thermal stability. The manufacture, characteristics, performance and modifications of these separators are introduced and discussed. Among numerous battery separators, the thermal shutdown and ceramic separators are of special importance in enhancing the safety of Li-ion batteries. The former consists of either a polyethylene (PE)-polypropylene (PP) multilayer structure or a PE-PP blend which increases safety by allowing meltdown of the PE to close the ionic conduction pathways at a temperature below that at which thermal runway occurs. Whereas the latter comprises nano-size ceramic materials coated on two sides of a flexible and highly porous non-woven matrix which enhances the safety by retaining extremely stable dimensions even at very high temperatures to prevent the direct contact of the electrodes.

  2. Kinetic behavior of LiFeMgPO 4 cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Wang, Chunsheng; Kasavajjula, Uday

    LiFe 0.9Mg 0.1PO 4 material was prepared by mechanical milling method, followed by heat treatment. The equilibrium potential-composition isotherm of LiFe 0.9Mg 0.1PO 4 and charge-discharge kinetics of LiFe 0.9Mg 0.1PO 4 were measured using galvanostatic intermittent titration technique (GITT), potential-step chronoamperometry (PSCA), and electrochemical impedance spectroscopy (EIS). The rate performance of the cathode is controlled by the charge-transfer kinetics, electronic conductivity, Li-ion diffusion capability, and phase transformation rate. Since LiFe 0.9Mg 0.1PO 4 has a fast charge-transfer reaction and high electronic and ionic diffusivity, the phase transformation between LiFe 0.9Mg 0.1PO 4 and Li 0.1Fe 0.9Mg 0.1PO 4 begins to play a more important role in the charge-discharge process, as is evident by an inductive loop induced by the phase transformation in the low frequency region of EIS. The phase purity and morphology of LiFe 0.9Mg 0.1PO 4 were also observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  3. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    dye working electrode is washed with ethylene dicarbonate solvent to get rid of SEI and then dried at argon atmosphere. Finally, the lithiated AS...AFRL-AFOSR-JP-TR-2016-0006 Organic materials as Electrodes for Li-ion Batteries Srinivasan Sampath INDIAN INSTITUTE OF SCIENCE Final Report 12/18...materials as Electrodes for Li-ion Batteries 5a. CONTRACT NUMBER FA2386-13-1-4015 5b. GRANT NUMBER Grant 13RSZ006_134015 5c. PROGRAM ELEMENT NUMBER

  4. Developing New Electrolytes for Advanced Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  5. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L.

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  6. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  7. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  8. Preparation of Li2TiO3-Li4SiO4 core-shell ceramic pebbles with enhanced crush load by graphite bed process

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Zhang, Yun; Liu, Shuya; Liu, Hui; Wang, Chaofu; Gu, Cheng

    2015-11-01

    Li4SiO4 and Li2TiO3 have been regarded as the most favored ceramic breeders of the test blanket modules (TBMs). The lithium density of Li4SiO4 is higher than that of Li2TiO3; however, the thermo-mechanical stability of Li2TiO3 is better than that of Li4SiO4. Hence, the biphasic yLi2TiO3-(1-y)Li4SiO4 (y = 25%, 50%, 75%, molar ratio) pebbles were fabricated by a graphite bed process for the next generation of advanced tritium breeder materials. The pebbles with interesting core-shell structure (core: Li2TiO3 and Li4SiO4, shell: Li2TiO3) were fabricated for the first time. The thickness of Li2TiO3 shell can be controlled by sintering time. Crystal structure, microstructure, and mechanical properties of the biphasic pebbles were investigated. The experimental results showed that the core-shell structure improved the crush load dramatically. The average crush load of 50%Li2TiO3-50%Li4SiO4 pebbles sintered at 1100 °C for 5 h was up to104.79 N.

  9. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    SciTech Connect

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai; Belharouak, Ilias; Yahia, Hamdi B.; Wu, Huiming; Assary, Rajeev; Curtiss, Larry A.; Amine, Khalil

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and the abnormal high capacity associated with these high energy cathode materials.

  10. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  11. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  12. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  13. Thermal stability studies of Li-ion cells and components

    SciTech Connect

    Maleki, H.; Deng, G.; Anani, A.; Howard, J.

    1999-09-01

    A Li-ion cell consists of a carbon-based negative electrode (NE); a porous polymer membrane separator (high density polypropylene and/or polyethylene); and positive electrode (PE) containing lithium transition metal oxides (LiMo{sub 2}, M = Co, Ni, or Mn); and a mixture of lithium salt and organic solvents provides an electrolytic medium for Li-ions to shuttle between the PE and NE. Electrodes are produced by coating slurries of active PE or NE material, polymer binder, most commonly polyvinylidene difluoride (PVDF), and small amounts of high surface area carbon onto a metallic current collectors. Thermal stability of fully charged 550 mAh prismatic Li-ion cells (Sn-doped LiCoO{sub 2}/graphitic carbon) and their components are investigated. Accelerating rate calorimetry (ARC) is used to determine the onset temperature of exothermic chemical reactions that force the cell into thermal runaway. Differential scanning calorimetry (DSC) and thermogravimetry analysis are used to determine the thermal stability of the cell's positive electrode (PE) and negative electrode (NE) materials from 35 to 400 C. The cell self-heating exothermic reactions start at 123 C, and thermal runaway occurs near 167 C. The total exothermic heat generation of the NE and PE materials are 697 and 407 J/g, respectively. Heat generations of the NE and PE materials, washed in diethyl carbonate (DEC) and dried at {approx}65 C under vacuum, are significantly lower than unwashed samples. Lithium plating increases the heat generation of the NE material at temperatures near the lithium melting point. Comparison of the heat generation profiles from DSC and ARC tests indicates that thermal runaway of this cell is close to the decomposition temperature range of the unwashed PE material. The authors conclude that the heat generation from the decomposition of PE material and reaction of that with electrolyte initiates thermal runaway in a Li-ion cell, under thermally or abusive conditions.

  14. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    SciTech Connect

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  15. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  16. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  17. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  18. Development of Li+ alumino-silicate ion source

    SciTech Connect

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-04-21

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  19. Characterization of Commercial Li-ion Cells in Pouch Format

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2014-01-01

    The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.

  20. Li+-ion neutralization on metal surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Shen, Jie; Jia, Juanjuan; Kandasamy, Thirunavukkarasu; Bobrov, Kirill; Guillemot, Laurent; Fuhr, Javier. D.; Martiarena, Maria Luz; Esaulov, Vladimir A.

    2011-11-01

    Li+ ions with energies ranging from 0.3 to 2 keV are scattered from Au(110) and Pd(100) surfaces and from ultrathin Ag film grown on Au(111) in order to study electron transfer phenomena. We find that neutralization occurs quite efficiently and find an anomalous ion energy dependence of the neutral fraction for Au(110) and Pd(100) surfaces previously noted for Au(111). The dependence of the neutral fraction on the azimuthal angle of the Au(110) and Pd(100) surfaces is reported. In the case of Ag monolayer on Au(111), results are similar to the case of the Ag(111) surface. To understand the anomalous ion energy dependence, we present a theoretical study using density functional theory (DFT) and a linearized rate equation approach, which allows us to follow the Li charge state evolution for the (111) surfaces of Ag, Au, and Cu, and for the Ag-covered Au(111) surface.

  1. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  2. Li dynamics in carbon-rich polymer-derived SiCN ceramics probed by NMR

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Reinold, Lukas; Graczyk-Zajac, Magdalena; Riedel, Ralf; Hammerath, Franziska; Buechner, Bernd; Grafe, Hajo

    2014-03-01

    We report 7Li, 29Si, and 13C NMR studies of two different carbon-rich SiCN ceramics SiCN-1 and SiCN-3 derived from the preceramic polymers polyphenylvinylsilylcarbodiimide and polyphenylvinylsilazane, respectively. From the spectral analysis of the three nuclei at room temperature, we find that only the 13C spectrum is strongly influenced by Li insertion/extraction, suggesting that carbon phases are the major electrochemically active sites for Li storage. Temperature and Larmor frequency (ωL) dependences of the 7Li linewidth and spin-lattice relaxation rates T1-1 are described by an activated law with the activation energy EA of 0.31 eV and the correlation time τ0 in the high temperature limit of 1.3 ps. The 3 / 2 power law dependence of T1-1 on ωL which deviates from the standard Bloembergen, Purcell, and Pound (BPP) model implies that the Li motion on the μs timescale is governed by continuum diffusion mechanism rather than jump diffusion. On the other hand, the rotating frame relaxation rate T1ρ-1 results suggest that the slow motion of Li on the ms timescale may be affected by complex diffusion and/or non-diffusion processes.

  3. Damage accumulation in ceramics during ion implantation

    SciTech Connect

    McHargue, C.J.; Farlow, G.C.; Begun, G.M.; Williams, J.M.; White, C.W.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1985-01-01

    The damage structures of ..cap alpha..-Al/sub 2/O/sub 3/ and ..cap alpha..-SiC were examined as functions of ion implantation parameters using Rutherford backscattering-channeling, analytical electron microscopy, and Raman spectroscopy. Low temperatures or high fluences of cations favor formation of the amorphous state. At 300/sup 0/K, mass of the bombarding species has only a small effect on residual damage, but certain ion species appear to stabilize the damage microstructure and increase the rate of approach to the amorphous state. The type of chemical bonding present in the host lattice is an important factor in determining the residual damage state.

  4. Nuclear reaction analysis as a tool for the 3He thermal evolution in Li2TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Carella, E.; Sauvage, T.; Bès, R.; Courtois, B.; González, M.

    2014-08-01

    Li2TiO3 ceramic is one of the promising solid breeding candidates for fuel generation in deuterium-tritium Fusion reactors. The Tritium (T) release characteristics consist of a complex combination of gas diffusion stages inside the solid. Considering that this ceramic will produce high concentration of gaseous transmutation products (3H and 4He) when exposed to high-energy neutrons, there are considerable interests in studying 3He thermal evolution for the fundamental understanding of the light ion behavior in breeder blanket materials under reactor conditions. 3He atoms used to simulate the 4He incorporation were implanted by a 600 keV ion beam at a fluence of 1017 at/cm2 and the 3He(d,α)1H nuclear reaction analysis (NRA) technique was subsequently used to study depth profiles evolution after different thermal annealing treatments. The release experiments showed that 3He outgassing is not effective at room temperature, remaining quite negligible till 300 °C. After this temperature, the 3He content in the sample reduces steadily with increasing the annealing temperature, and less than 5% of the initial 3He concentration was found at 900 °C after an isochronal annealing, without significant depth-profile broadening. Scanning and transmission electron microscopies characterization highlight the microstructural changes of the implanted and annealed ceramic within the nuclear cascades zone. The correlation of results obtained by electron microscopy and NRA technique leads to the conclusion that the helium release is governed by a transport mechanism that involves rapid migration/diffusion through interconnected gas cavities and resulting microcracks before reaching grain boundaries and opened pores.

  5. Novel low temperature sintered Li4Ti5O12 microwave dielectric ceramics with MoO2 addition

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhang, Huaiwu; Su, Hua; Jin, Lichuan; Li, Jie; Liao, Yulong; Jia, Lijun; Li, Yuanxun

    2016-08-01

    Li4Ti5O12 ceramics with different amount of MoO2 addition were densified at 850∘C via a solid-state reaction route. Pure phases and dense crystal morphology were obtained. Our experimental results indicated that the τf value of the Li4Ti5O12 ceramic can be adjusted to near zero via adopting suitable amount of MoO2 addition. Among all the modified Li4Ti5O12 specimens, the sample with 4 wt.% of MoO2 addition (marked as LM4 in this paper) possessed good microwave dielectric properties: 𝜀r = 20.76, Q × f = 18308 GHz (7.99 GHz), τf = (+)2.96 ppm/∘C. It is suggested that the MoO2 modified Li4Ti5O12 ceramics are suitable candidates for LTCC applications in microwave devices.

  6. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory

    NASA Astrophysics Data System (ADS)

    Pu, Weihua; He, Xiangming; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-01

    A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  7. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.

    PubMed

    Pu, Weihua; He, Xiangming; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-15

    A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  8. Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries.

    PubMed

    Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao

    2017-03-08

    High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g(-1)). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li(+) ion transport tunnels. Such a novel structure enables fast Li(+) ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g(-1) with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.

  9. Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics

    NASA Astrophysics Data System (ADS)

    Šalkus, T.; Kazakevičius, E.; Kežionis, A.; Dindune, A.; Kanepe, Z.; Ronis, J.; Emery, J.; Boulant, A.; Bohnke, O.; Orliukas, A. F.

    2009-05-01

    A powder of Li1.3Al0.15Y0.15Ti1.7(PO4)3 has been synthesized by solid state reaction. The powder was a single phase material and had rhombohedral symmetry (space group R\\bar {3}c ) with six formula units in the unit cell. Impedance spectra of Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics were recorded in the frequency range from 106 to 1.2 × 109 Hz and temperature range from 300 to 600 K. Two relaxation type dispersions of electrical quantities in the frequency range were found. The dispersion regions are presumably related to the ionic transport processes in bulk and grain boundaries of the ceramics. The activation energy of the conductivity of the bulk and the activation energy of the characteristic relaxation frequency, at which the dispersion sets in, has the same value of 0.25 eV. The only contribution of the mobility of Li+ ions defines the temperature dependence of the bulk conductivity in the investigated temperature range. The values of ɛ' may be related to the contributions of the polarization of the fast ionic migration, vibrations of the lattice and electronic polarization. Nuclear magnetic resonance (NMR) investigation shows that the T1 of 7Li and 6Li at room temperature are 6 ms and 2 s respectively. This result confirms that the relaxation of the 7Li nucleus occurs through quadrupolar fluctuations although the relaxation of the 6Li nucleus occurs via dipolar fluctuations. Furthermore, the T1 minimum allows us to evidence a motion with a characteristic frequency in the range of the Larmor frequency.

  10. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  11. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  12. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  13. Ion beam analysis of sialon ceramics

    NASA Astrophysics Data System (ADS)

    Vickridge, I. C.; Brown, I. W. M.; Ekström, T. C.; Trompetter, W. J.

    1996-09-01

    Sialons, or silicon-aluminium-oxy-nitrides, are a family of materials that have exceptional high temperature mechanical and tribological properties, but which are susceptible to oxidation. Ion beam analysis is an ideal tool to study the composition of the altered surface layer of sialons after oxidation. In particular simultaneous detection of gamma rays, charged particles, and X-rays induced by 1.4 MeV deuterons allows an almost complete picture of the composition to be obtained.

  14. Thin Film Li Ion Microbatteries for NASA Applications

    NASA Technical Reports Server (NTRS)

    West, W. C.; Ratnakumar, B. V.; Brandon, E.; Blosiu, J. O.; Surampudi, S.

    1999-01-01

    Rechargeable thin film microbatteries have recently become the topic of widespread research for use in low power applications such as battery-backed CMOS memory, miniaturized implantable medical devices and smart cards. In particular, the Center for Integrated Space Microsystems (CISM) at NASA's Jet Propulsion Laboratory has interest in applying this technology for secondary power systems in miniaturized satellites, microsensors, microactuators and other remote MEMS applications. The general requirements of the microbatteries for these applications are high specific energy, wide range of temperature stability. low self-discharge rate, and flexibility of cell design. The thin film Li ion materials system using LiCoO2(LiPO(x)N(1-x))SnO is expected to fulfill these requirements.

  15. Electrolytes for Li-Ion Cells in Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.

  16. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes.

    PubMed

    Lago, Nerea; Garcia-Calvo, Oihane; Lopez del Amo, Juan Miguel; Rojo, Teofilo; Armand, Michel

    2015-09-21

    Lithium-based rechargeable batteries offer superior specific energy and power, and have enabled exponential growth in industries focused on small electronic devices. However, further increases in energy density, for example for electric transportation, face the challenge of harnessing the lithium metal as negative electrode instead of limited-capacity graphite and its heavy copper current collector. All-solid-state batteries utilize solid polymer electrolytes (SPEs) to overcome the safety issues of liquid electrolytes. We demonstrate an all-solid-state lithium-ion battery by using plasticized poly(ethylene oxide)-based SPEs comprising anions grafted or co-grafted onto ceramic nanoparticles. This new approach using grafted ceramic nanoparticles enables the development of a new generation of nanohybrid polymer electrolytes with high ionic conductivity as well as high electrochemical and mechanical stability, enabling Li-ion batteries with long cycle life.

  17. Observation of collisions between cold Li atoms and Yb+ ions

    NASA Astrophysics Data System (ADS)

    Joger, J.; Fürst, H.; Ewald, N.; Feldker, T.; Tomza, M.; Gerritsma, R.

    2017-09-01

    We report on the observation of cold collisions between 6Li atoms and Yb+ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio. For atoms and ions prepared in the 1/2 2S ground state, the charge-transfer and association rate is found to be at least 103 times smaller than the Langevin collision rate. These results confirm the excellent prospects of 6Li-Yb+ for sympathetic cooling and quantum information applications. For ions prepared in the excited electronic states 1/2 2P, 3/2 2D, and 7/2 2F, we find that the reaction rate is dominated by charge transfer and does not depend on the ionic isotope or the collision energy in the range ˜1 -120 mK . The low charge-transfer rate for ground-state collisions is corroborated by theory, but the 4 f shell in the Yb+ ion prevents an accurate prediction for the charge-transfer rate of the 1/2 2P, 3/2 2D, and 7/2 2F states. Using ab initio methods of quantum chemistry we calculate the atom-ion interaction potentials up to energies of 30 ×103cm-1 , and use these to give qualitative explanations of the observed rates.

  18. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S-P2S5 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Aihara, Yuichi; Ito, Seitaro; Watanabe, Taku; Park, Youngsin; Doo, Seokgwang

    2016-05-01

    There have been several reports on improvements of the performance of all solid-state battery using lithium metal oxide coatings on the cathode active material. However, the mechanism of the performance improvement remains unclear. To better understand the effect of the surface coating, we studied the impact of diamond-like carbon (DLC) coating on LiNi0.8Co0.15Al0.05O2 (NCA) by chemical vapor deposition (CVD). The DLC coated NCA showed good cycle ability and rate performance. This result is further supported by reduction of the interfacial resistance of the cathode and electrolyte observed in impedance spectroscopy. The DLC layer was analyzed by transmission electron microscopy electron energy loss spectroscopy (TEM-EELS). After 100 cycles the sample was analyzed by X-ray photo spectroscopy (XPS), and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). These analyses showed that the thickness of the coating layer was around 4 nm on average, acting to hinder the side reactions between the cathode particle and the solid electrolyte. The results of this study will provide useful insights for understanding the nature of the buffer layer for the cathode materials.

  19. Nanomaterial-based Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Li, Naichao; Martin, Charles R.; Scrosati, Bruno

    We have been exploring the use of the template method to prepare nanostructured Li-ion battery electrodes. These nanostructured electrodes show improved rate capabilities relative to thin-film control electrodes prepared from the same material. In this paper we discuss nanostructured Sn-based anodes. Li-ion battery anodes derived from oxides of tin have been of considerable recent interest because they can, in principle, store over twice as much Li + as graphite. However, large volume changes occur when Li + is inserted and removed from these Sn-based materials, and this causes internal damage to the electrode resulting in loss of capacity and rechargability. We describe here a new nanostructured SnO 2-based electrode that has extraordinary rate capabilities, can deliver very high capacities (e.g. >700 mAh g -1 at 8°C), and still retain the ability to be discharged and recharged through as many as 800 cycles. These electrodes, prepared via the template method, consist of monodisperse 110 nm-diameter SnO 2 nanofibers protruding from a current-collector surface like the bristles of a brush. The dramatically-improved rate and cycling performance is related to the small size of the nanofibers that make up the electrode and the small domain size of the Sn grains within the nanofibers.

  20. Degradation reactions in SONY-type Li-ion batteries

    SciTech Connect

    Roth, E.P.; Nagasubramanian, G.

    2000-07-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 C involving the solid electrolyte interface (SEI) layer and the LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/LiPF{sub 6}). These reactions could account for the thermal runaway observed in these cells beginning at 100 C. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  1. Degradation Reactions in SONY-Type Li-Ion Batteries

    SciTech Connect

    Nagasubramanian, G.; Roth, E. Peter

    1999-05-04

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC: PC: DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt and the PVDF. These reactions were followed by a high- temperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medhun. Cathode exotherrnic reactions with the PVDF binder were observed above 200oC and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  2. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Peercy, P.S.; Land, C.E.

    1980-06-13

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Ions that are implanted include H/sup +/, He/sup +/, Ar/sup +/, and a preferred co-implant of Ar/sup +/ and Ne/sup +/. The positive ion implantation advantageously serves to shift the band gap energy threshold of the PLZT material from near-uv light to visible blue light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to these positive ions of sufficient density and with sufficient energy to provide an image. The PLZT material may have a lanthanum content ranging from 5 to 10%; a lead zirconate content ranging from 62 to 70 mole %; and a lead titanate content ranging from 38 to 30%. The region of ion implantation is in a range from 0.1 to 2 microns below the surface of the PLZT plate. Density of ions is in the range from 1 x 10/sup 12/ to 1 x 10/sup 17/ ions/cm/sup 2/ and having an energy in the range from 100 to 500 keV.

  3. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    PubMed

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  4. Li + ion diffusion in Li 4Ti 5O 12 thin film electrode prepared by PVP sol-gel method

    NASA Astrophysics Data System (ADS)

    Rho, Young Ho; Kanamura, Kiyoshi

    2004-06-01

    Li 4Ti 5O 12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li 4Ti 5O 12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s -1, indicating that Li 4Ti 5O 12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li + ion was estimated to be 6.8×10 -11 cm 2 s -1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li + ions become more mobile at 1.55 V vs. Li/Li +, corresponding to a two-phase region, and the chemical diffusion coefficients of Li + ion ranged from 10 -10 to 10 -12 cm 2 s -1 at various potentials. The chemical diffusion coefficients of Li + ion in Li 4Ti 5O 12 were also estimated from PITT. They were in a range of 10 -11-10 -12 cm 2 s -1.

  5. Li-Metal-Free Prelithiation of Si-Based Negative Electrodes for Full Li-Ion Batteries.

    PubMed

    Zhou, Haitao; Wang, Xuehang; Chen, De

    2015-08-24

    Most of the high-capacity positive-electrode materials [for example, S, O2 (air), and MOx (M: V, Mn, Fe, etc.)] are Li-deficient and require the use of a Li-metal electrode or prelithiation. Herein, we report a novel electrolytic cell in which the Si electrode can be prelithiated in a well-controlled manner from Li-containing aqueous solution in a Li-metal-free way. MnOx/Si and S/Si Li-ion full cells were assembled by using the prelithiated Si negative electrodes, which resulted in high specific energies of 349 and 732 Wh kg(-1), respectively. The MnOx/Si full cell still retains 138 Wh kg(-1) even at a high specific power of 1710 W kg(-1). This is the first report of a whole process of making a full Li-ion battery with both Li-deficient electrodes without the use of Li metal as the Li source. This novel prelithiation process, with high controllability, no short circuiting, and an abundant Li source, is expected to contribute significantly to the development of safe, green, and powerful Li-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    PubMed Central

    Cai, Chuan; Wang, Ying

    2009-01-01

    Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  7. Ethanol Reduced Molybdenum Trioxide for Li-ion Capacitors

    DOE PAGES

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu; ...

    2016-05-06

    Orthorhombic molybdenum trioxide (α-MoO3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO3 and formation of MoO3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm3 and excellent cycle life of binder-free MoO3-x electrodes.

  8. Ethanol Reduced Molybdenum Trioxide for Li-ion Capacitors

    SciTech Connect

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu; Huang, Liang; Hu, Zhimi; Sun, Wanmei; Chen, Xun; Gogotsi, Yury G.; Zhou, Jun

    2016-05-06

    Orthorhombic molybdenum trioxide (α-MoO3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO3 and formation of MoO3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm3 and excellent cycle life of binder-free MoO3-x electrodes.

  9. Advanced Electrodes for High Power Li-ion Batteries.

    PubMed

    Zaghib, Karim; Mauger, Alain; Groult, Henri; Goodenough, John B; Julien, Christian M

    2013-03-15

    While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  10. Ethanol Reduced Molybdenum Trioxide for Li-ion Capacitors

    SciTech Connect

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu; Huang, Liang; Hu, Zhimi; Sun, Wanmei; Chen, Xun; Gogotsi, Yury G.; Zhou, Jun

    2016-05-06

    Orthorhombic molybdenum trioxide (α-MoO3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO3 and formation of MoO3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm3 and excellent cycle life of binder-free MoO3-x electrodes.

  11. Advanced Electrodes for High Power Li-ion Batteries

    PubMed Central

    Zaghib, Karim; Mauger, Alain; Groult, Henri; Goodenough, John B.; Julien, Christian M.

    2013-01-01

    While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future. PMID:28809355

  12. A new active Li-Mn-O compound for high energy density Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Freire, M.; Kosova, N. V.; Jordy, C.; Chateigner, D.; Lebedev, O. I.; Maignan, A.; Pralong, V.

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today’s most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the `Li4Mn2O5’ composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g-1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2-/O- redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

  13. A new active Li-Mn-O compound for high energy density Li-ion batteries.

    PubMed

    Freire, M; Kosova, N V; Jordy, C; Chateigner, D; Lebedev, O I; Maignan, A; Pralong, V

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today's most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn(3+)/Mn(4+) couple. In this work, we report on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g(-1), which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn(3+)/Mn(4+) and O(2-)/O(-) redox couples, and, importantly, of the Mn(4+)/Mn(5+) couple also.

  14. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    glove box and dismantled. The AS dye working electrode is washed with ethylene dicarbonate solvent to get rid of SEI and then dried at argon ...Final 3. DATES COVERED (From - To) 15 May 2013 – 14 May 2015 4. TITLE AND SUBTITLE Organic materials as Electrodes for Li-ion Batteries...is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The project studied organic electrode materials for rechargeable lithium batteries

  15. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade).

  16. Li-ion synaptic transistor for low power analog computing

    DOE PAGES

    Fuller, Elliot J.; Gabaly, Farid El; Leonard, Francois; ...

    2016-11-22

    Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, “write” linearity, low-voltage switching, and low power dissipation. Simulations of back propagation using the device properties reach ideal classification accuracy. Finally, physics-based simulations predict energy costs per “write” operation of <10 aJ when scaled to 200 nm × 200 nm.

  17. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  18. Evaluation of 20 Ah Li Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Ratnakumar, B. V.; Huang, Charles K.; Surampudi, S.; Hill, Carole; Radzykewycz, Dan T.; Marsh, Richard A.

    1998-01-01

    Lithium ion cells of 20 Ah capacity were fabricated by Bluestar Advanced Technology Corporation, Canada under a developmental contract from US Air Force. In this paper, we report our studies on the evaluation of these cells under various test conditions. These include generic test conditions such as discharges and charges at different temperatures to understand the rate-limiting processes in the discharge/charge processes as a function of temperature, and cycle life under standard cycling conditions (100% DOD) at ambient temperature. In addition, tests are being done to ascertain the performance of the cells in the Mars 2001 Lander application, which includes pulse testing of the cells at 60 A and 40 A loads for 100 mS and 1 min., respectively at different states of charge and temperatures, and cycling at low temperature at partial depths of discharge.

  19. VES16 Li-Ion Cell For Satellite

    NASA Astrophysics Data System (ADS)

    Remy, S.; Prevot, D.; Reulier, D.; Vigier, F., , Dr.

    2011-10-01

    At a period when LEO satellite market is growing, as well as mission life time requirements, Saft has designed a new Li-ion cell aiming to answer those demanding requirements. This development is conducted with the support and partnership of CNES French agency. This VES16 cell combines benefits and heritage of low capacity MPS Li-ion cells, and advantages of Nickel oxide base Li-ion chemistry of VES100-140-180 cells. After a period of cycling evaluation of the cell with slight electrochemistry differences, an optimized cell design has been frozen and is submitted to a large qualification plan, including characterisations, environmental tests, and life time demonstrations. This paper presents the main BOL characteristics and performances achieved during the qualification program, including electrical, thermal and mechanical characterisations. It will also detail the expected lifetime data, and the key results obtained on VES16 cell in LEO mission cycling configuration. A specific paragraph also includes results in GEO cycling configuration, to highlight that the cell can be also proposed on geostationary spacecraft.

  20. Predictive Models of Li-ion Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  1. Calculations of the dynamic dipole polarizabilities for the Li+ ion

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Tang, Li-Yan; Zhang, Xian-Zhou; Shi, Ting-Yun

    2016-10-01

    The B-spline configuration-interaction method is applied to the investigations of dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 33S, 23P, and 33P) of the Li+ ion. The accurate energies for the triplet states of n 3S, n 3P, and n 3D, the dipole oscillator strengths for 23S(33S) → n 3P, 23P(33P) → n 3S, and 23P(33P) → n 3D transitions, with the main quantum number n up to 10 are tabulated for references. The dynamic dipole polarizabilities for the four triplet states under a wide range of photon energy are also listed, which provide input data for analyzing the Stark shift of the Li+ ion. Furthermore, the tune-out wavelengths in the range from 100 nm to 1.2 μm for the four triplet states, and the magic wavelengths in the range from 100 nm to 600 nm for the 23S → 33S, 23S → 23P, and 23S → 33P transitions are determined accurately for the experimental design of the Li+ ion. Project supported by the National Basic Research Program of China (Grant No. 2012CB821305) and the National Natural Science Foundation of China (Grant Nos. 11474319, 11274348, and 91536102).

  2. Physical properties of Li ion conducting polyphosphazene based polymer electrolytes

    SciTech Connect

    Sanderson, S.; Zawodzinski, T.; Hermes, R.; Davey, J.; Dai, Hongli

    1996-12-31

    We report a systematic study of the transport properties and the underlying physical chemistry of some polyphosphazene (PPhz)-based polymer electrolytes. We synthesized MEEP and variants which employed mixed combinations of different length oxyethylene side-chains. We compare the conductivity and ion-ion interactions in polymer electrolytes obtained with lithium triflate and lithium bis(trifluoromethanesulfonyl)imide (TFSI) salts added to the polymer. The combination of the lithium imide salt and MEEP yields a maximum conductivity of 8 x 10{sup -5} {Omega}{sup -1} cm{sup -1} at room temperature at a salt loading of 8 monomers per lithium. In one of the mixed side-chain variations, a maximum conductivity of 2 x 10{sup -4} {Omega}{sup -1} cm{sup -1} was measured at the same molar ratio. Raman spectral analysis shows some ion aggregation and some polymer - ion interactions in the PPhz-LiTFSI case but much less than observed with Li CF{sub 3}SO{sub 3}. A sharp increase in the Tg as salt is added corresponds to concentrations above which the conductivity significantly decreases and ion associations appear.

  3. Nanostructured electrode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Balaya, Palani; Saravanan, Kuppan; Hariharan, Srirama

    2010-04-01

    Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context of lithium batteries for achieving high storage and high rate performances: 1) LiFePO4 nanoplates synthesized using solvothermal method could store Li-ions comparable to its theoretical capacity at C/10, while at 30C, they exhibit storage capacity up to 45 mAh/g. Size reduction (~30 nm) at the b-axis favors the fast Li-ion diffusion. In addition to this, uniform ~5 nm carbon coating throughout the plates provides excellent electronically conducting path for electrons. This nano architecture enables fast insertion/extraction of both Li-ions as well as electrons; 2) Mesporous-TiO2 with high surface area (135m2/g) synthesized using soft-template method exhibits high volumetric density compared to commercial nanopowder (P25), with excellent Li-storage behavior. C16 meso-TiO2 synthesized from CTAB exhibits reversible storage capacity of 288mAh/g at 0.2C and 109 mAh/g at 30C; 3) Zero strain Li4Ti5O12 anode material has been synthesized using several wet chemical routes. The best condition has been optimized to achieve storage capability close to theoretical limit of 175mAh/g at C/10. At 10C, we could retain lithium storage up to 88 mAh/g; 4) We report our recent results on α-Fe2O3 and γ-Fe2O3 using conversion reaction, providing insight for a better storage capability in γ-phase than the α-phase at 2C resulting solely from the nanocrystallinity.

  4. Re-building Daniell Cell with a Li-ion exchange Film

    NASA Astrophysics Data System (ADS)

    Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2014-11-01

    Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu2+-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu2+-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg-1. It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary power source for large-scale energy storage.

  5. Photosensitivity enhancement of PLZT ceramics by positive ion implantation

    DOEpatents

    Land, Cecil E.; Peercy, Paul S.

    1983-01-01

    The photosensitivity of lead lanthanum zirconate titanate (PLZT) ceramic material used in high resolution, high contrast, and non-volatile photoferroelectric image storage and display devices is enhanced significantly by positive ion implantation of the PLZT near its surface. Implanted ions include H.sup.+, He.sup.+, Ne.sup.+, Ar.sup.+, as well as chemically reactive ions from Fe, Cr, and Al. The positive ion implantation advantageously serves to shift the absorption characteristics of the PLZT material from near-UV light to visible light. As a result, photosensitivity enhancement is such that the positive ion implanted PLZT plate is sensitive even to sunlight and conventional room lighting, such as fluorescent and incandescent light sources. The method disclosed includes exposing the PLZT plate to the positive ions at sufficient density, from 1.times.10.sup.12 to 1.times.10.sup.17, and with sufficient energy, from 100 to 500 KeV, to provide photosensitivity enhancement. The PLZT material may have a lanthanum content ranging from 5 to 10%, a lead zirconate content of 62 to 70 mole %, and a lead titanate content of 38 to 30%. The ions are implanted at a depth of 0.1 to 2 microns below the surface of the PLZT plate.

  6. Modeling the Thermoelectric Properties of Ti5O9 Magnéli Phase Ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Sudeep J.; Joshi, Giri; Wang, Shidong; Curtarolo, Stefano; Gaume, Romain M.

    2016-11-01

    Magnéli phase Ti5O9 ceramics with 200-nm grain-size were fabricated by hot-pressing nanopowders of titanium and anatase TiO2 at 1223 K. The thermoelectric properties of these ceramics were investigated from room temperature to 1076 K. We show that the experimental variation of the electrical conductivity with temperature follows a non-adiabatic small-polaron model with an activation energy of 64 meV. In this paper, we propose a modified Heikes-Chaikin-Beni model, based on a canonical ensemble of closely spaced titanium t 2g levels, to account for the temperature dependency of the Seebeck coefficient. Modeling of the thermal conductivity data reveals that the phonon contribution remains constant throughout the investigated temperature range. The thermoelectric figure-of-merit ZT of this nanoceramic material reaches 0.3 K at 1076 K.

  7. In-situ imaging of Li intercalation in graphite particles in an Li-ion battery.

    PubMed

    Takata, Keiji

    2017-06-01

    This paper presents the imaging of the expansion and contraction of graphite particles at the anode of a lithium-ion battery. The intercalation and deintercalation of Li ions in the graphite particles induced by charging and discharging lead to expansion and contraction of the layered materials. These changes in volume were imaged through current collectors using scanning probe microscopy, which permitted in-situ observation of the Li ion shift with high resolutions. We were able to evaluate the properties of each individual graphite particle. Here, we present variations in the images obtained by two methods of charging/discharging. In one method, the applied fields are changed, forcing the ions to move back into the graphite particles. Images showing detailed structures were obtained, allowing us to investigate the fine structures of the graphite particles. In the other method, the amount of ions is periodically injected into the graphite, which did not reveal the detailed structure but clearly distinguished inactive from active particles. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  8. Li-ion cells for terrestrial robots

    NASA Technical Reports Server (NTRS)

    Chin, Keith B.; Smart, M. C.; Narayanan, S. R.; Ratnakumar, B. V.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Raman, N. S.

    2003-01-01

    SAFT prismatic wound 5 Ahr MP series cells were evaluated for potential application in a lithium ion battery designed for Tactical Mobile Robots (TMR). In order to satisfy battery design requirements, a 10 Ahr battery containing two parallel 8-cell strings was proposed. The proposed battery has a weight and volume of approximately 3.2kg and 1.6 liters, respectively. Cell qualification procedures include initial characterization, followed by charge/discharge cycling at 100% DOD with intermittent EIS measurements at various state of charge. Certain cells were also subjected to extreme operational temperatures for worst-case analysis. Excellent specific energy (>130 Whr/kg) was obtained with initial characterization cycles. Even at abusive thermal conditions, the cell capacity fade was less than Ahr after 300 cycles. Rate characterization showed good cell discharge behavior with minimal decrease in capacity. At various state of charge, impedance measurements suggest that the cathode play a more significant role in capacity. At various state of charge impedance measurements suggest that the cathode play a more significant role in capacity fade than the anode.

  9. Computational understanding of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Urban, Alexander; Seo, Dong-Hwa; Ceder, Gerbrand

    2016-03-01

    Over the last two decades, computational methods have made tremendous advances, and today many key properties of lithium-ion batteries can be accurately predicted by first principles calculations. For this reason, computations have become a cornerstone of battery-related research by providing insight into fundamental processes that are not otherwise accessible, such as ionic diffusion mechanisms and electronic structure effects, as well as a quantitative comparison with experimental results. The aim of this review is to provide an overview of state-of-the-art ab initio approaches for the modelling of battery materials. We consider techniques for the computation of equilibrium cell voltages, 0-Kelvin and finite-temperature voltage profiles, ionic mobility and thermal and electrolyte stability. The strengths and weaknesses of different electronic structure methods, such as DFT+U and hybrid functionals, are discussed in the context of voltage and phase diagram predictions, and we review the merits of lattice models for the evaluation of finite-temperature thermodynamics and kinetics. With such a complete set of methods at hand, first principles calculations of ordered, crystalline solids, i.e., of most electrode materials and solid electrolytes, have become reliable and quantitative. However, the description of molecular materials and disordered or amorphous phases remains an important challenge. We highlight recent exciting progress in this area, especially regarding the modelling of organic electrolytes and solid-electrolyte interfaces.

  10. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    SciTech Connect

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  11. Dielectric characteristics of LiCo 3/5Cu 2/5VO 4 ceramics

    NASA Astrophysics Data System (ADS)

    Ram, Moti

    2010-08-01

    The LiCo 3/5Cu 2/5VO 4 ceramics was produced by the solution-based chemical method and its dielectric and electrical modulus properties were investigated using complex impedance spectroscopy. Frequency dependence of dielectric constant ( εr) at some selected temperatures shows low-frequency dispersion. Temperature dependence of εr at 1, 100, 200, 500 kHz and 1 MHz exhibits same value of transition temperature ( Tc=300 °C) with ( εr) max. ∼5147, 396, 270, 162 and 111, respectively. Complex electrical modulus study describes the presence of non- Debye type conductivity relaxation in the material.

  12. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  13. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  14. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  15. Li-rich antiperovskite superionic conductors based on cluster ions.

    PubMed

    Fang, Hong; Jena, Puru

    2017-10-02

    Enjoying great safety, high power, and high energy densities, all-solid-state batteries play a key role in the next generation energy storage devices. However, their development is limited by the lack of solid electrolyte materials that can reach the practically useful conductivities of 10(-2) S/cm at room temperature (RT). Here, by exploring a set of lithium-rich antiperovskites composed of cluster ions, we report a lithium superionic conductor, Li3SBF4, that has an estimated 3D RT conductivity of 10(-2) S/cm, a low activation energy of 0.210 eV, a giant band gap of 8.5 eV, a small formation energy, a high melting point, and desired mechanical properties. A mixed phase of the material, Li3S(BF4)0.5Cl0.5, with the same simple crystal structure exhibits an RT conductivity as high as 10(-1) S/cm and a low activation energy of 0.176 eV. The high ionic conductivity of the crystals is enabled by the thermal-excited vibrational modes of the cluster ions and the large channel size created by mixing the large cluster ion with the small elementary ion.

  16. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    PubMed Central

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  17. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

    PubMed Central

    Chen, Chunhui; Agrawal, Richa; Wang, Chunlei

    2015-01-01

    Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries.

  18. Gelled membranes for Li and Li-ion batteries prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Bansal, D.; Meyer, B.; Salomon, M.

    Composite polymer gelled membranes have been prepared an electrospinning technique. Electrospinning of polymer fibers or electrospraying of particles is typically accomplished by applying a strong electric field (ca. 1-25 kV cm -1) to a polymer solution or slurry of solids in an appropriate solvent. The fibers are collected as a mat (membrane) on a grounded target such as Al, Cu, Ni, etc. Typical membranes (mats) consist of nanometer size fibers and have porosities of 65-85%. In the present paper, we describe the fabrication of electrospun membranes for use as gelled electrolytes in Li and Li-ion batteries. The electrospun polymer membranes used in this work are based on the polyimides (PIs) Matrimid and Ultem 1000. Pure PI membranes have been prepared, and blends of Matrimid and Ultem with PVdF-HFP and PAN have been studied in 250 mAh and 7 Ah Li-ion cells. Fully imidized polyimides such as Matrimid and Ultem 1000 do not form gels, and are used as a host matrix of high mechanical strength to immobilize the gelling constituents PVdF or PAN.

  19. Fundamental Investigation of Si Anode in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.

  20. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  1. Surface studies of Li-ion and Mg battery electrodes

    NASA Astrophysics Data System (ADS)

    Esbenshade, Jennifer

    This dissertation focuses on studies of the surfaces of both Li-ion and Mg-ion battery electrodes. A fundamental understanding of processes occurring at the electrode surface is vital to the development of advanced battery systems. Additionally, modifications to the electrode surfaces are made and further characterized for improved performance. LiMn2O4 Cathodes for Li-ion Batteries: Effect of Mn in electrolyte on anode and Au coating to minimize dissolution: LiMn2O4 (LMO) is known to dissolve Mn ions with cycling. This section focuses on both the effect of the dissolution of Mn2+ into the electrolyte as well as Au coating on the LMO to improve electrochemical performance. Electrochemical quartz crystal microbalance (EQCM) was used to monitor changes in mass on the anode, SEM and AES were used to observe changes in surface morphology and chemical composition, and potentiostatic voltammetry was used to monitor charge and discharge capacity. The effect of Cu2+ addition in place of Mn2+ was also studied, as Cu is known to form an underpotential deposition (UPD) monolayer on Au electrodes. Following this, LMO particles were coated with a Au shell by a simple and scalable electroless deposition for use as Li-ion battery cathodes. The Au shell was intended to limit the capacity fade commonly seen with LMO cathodes by reducing the dissolution of Mn. Characterization by SEM, TEM, EELS, and AFM showed that the Au shell was approximately 3 nm thick. The Au shell prevented much of the Mn from dissolving in the electrolyte with 82% and 88% less dissolved Mn in the electrolyte at room temperature and 65 ºC, respectively, as compared to the uncoated LMO. Electrochemical performance studies with half cells showed that the Au shell maintained a higher discharge capacity over 400 cycles by nearly 30% with 110 mA hr g-1 for the 400th cycle as compared to a commercial LMO at 85 mA hr g-1. Similarly, the capacity fade was reduced in full cells: the coated LMO had 47% greater capacity

  2. Storage and Effective Migration of Li-Ion for Defected {beta}‑LiFePO4

    SciTech Connect

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2015-11-25

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g–1 at a rate of 0.1 C (1C = 170 mA g–1) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  3. Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals.

    PubMed

    Guo, Hua; Song, Xiaohe; Zhuo, Zengqing; Hu, Jiangtao; Liu, Tongchao; Duan, Yandong; Zheng, Jiaxin; Chen, Zonghai; Yang, Wanli; Amine, Khalil; Pan, Feng

    2016-01-13

    Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase β-LiFePO4 (βLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the β-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that βLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of βLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

  4. Tritium release in Li4SiO4 and Li4.2Si0.8Al0.2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Linjie; Long, Xinggui; Peng, Shuming; Chen, Xiaojun; Xiao, Chengjian; Ran, Guangming; Li, Jiamao

    2016-12-01

    Li4+xSi1-xAlxO4 solid solution materials, which were designed as the advanced tritium breeders, were obtained by indirect solid state reactions. The behaviors of tritium release from Li4SiO4 and Li4.2Si0.8Al0.2O4 powders were investigated by temperature programmed desorption. The tritium release curves show different characteristics for the Li4SiO4 and Li4.2Si0.8Al0.2O4 ceramics. The main tritium release peak in the Li4SiO4 and Li4.2Si0.8Al0.2O4 powders is at approximately 600 °C after a high dose irradiation. Moreover, the temperature of the tritium release from Li4.2Si0.8Al0.2O4 was lower than that of the release from Li4SiO4. This suggests a possible advantage to using the solid solutions as the advanced tritium breeding materials.

  5. Friction and wear behaviour of ion beam modified ceramics

    NASA Technical Reports Server (NTRS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  6. Ion beam mixing of ceramic/metal interfaces

    NASA Astrophysics Data System (ADS)

    Corts, T.; Traverse, A.; Bolse, W.

    1993-06-01

    In order to investigate the interplay between chemical and collisional effects during ion beam mixing of ceramic/metal interfaces, Ni 3N- and TiN-coated Al and AIN-coated Ni, Cr and Ti ( d ≈ 100 m) were irradiated with 500 keV Xe ions at 80 K. Rutherford backscattering spectrometry with 0.9-1.5 MeV α-particles and resonant nuclear reaction analysis via the reactions 15N(p,αγ) and 27Al(p,γ) were used to determine the interfacial atomic distributions prior to and after irradiation. The mixing rate of the AlN/metal systems agrees well with the predictions of the ballistic model, while mixing of Ni 3N/Al is clearly dominated by diffusion in a thermal spike. The slightly enhanced mixing in TiN/Al also hints at the contribution of a spike.

  7. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications.

    PubMed

    Scott, Isaac D; Jung, Yoon Seok; Cavanagh, Andrew S; Yan, Yanfa; Dillon, Anne C; George, Steven M; Lee, Se-Hee

    2011-02-09

    To deploy Li-ion batteries in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Here we report a breakthrough in controlled full-electrode nanoscale coatings that enables nanosized materials to cycle with durable high energy and remarkable rate performance. The nanoparticle electrodes are coated with Al(2)O(3) using atomic layer deposition (ALD). The coated nano-LiCoO(2) electrodes with 2 ALD cycles deliver a discharge capacity of 133 mAh/g with currents of 1400 mA/g (7.8C), corresponding to a 250% improvement in reversible capacity compared to bare nanoparticles (br-nLCO), when cycled at this high rate. The simple ALD process is broadly applicable and provides new opportunities for the battery industry to design other novel nanostructured electrodes that are highly durable even while cycling at high rate.

  8. High speed pulsed laser cutting of LiCoO2 Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Carmignato, Simone; Fiorini, Maurizio

    2017-09-01

    Laser cutting of Li-ion battery electrodes represents an alternative to mechanical blanking that avoids complications associated with tool wear and allows assembly of different cell geometries with a single device. In this study, laser cutting of LiCoO2 Li-ion battery electrodes is performed at up to 5m /s with a 1064nm wavelength nanosecond pulsed fiber laser with a maximum average power of 500W and a repetition rate of up to 2MHz . Minimum average cutting power for cathode and anode multi-layer films is established for 12 parameter groups with velocities over the range 1 - 5m /s , varying laser pulse fluence and overlap. Within the tested parameter range, minimum energy per unit cut length is found to decrease with increasing repetition rate and velocity. SEM analysis of the resulting cut edges reveals visible clearance widths in the range 20 - 50 μm , with cut quality found to improve with velocity due to a reduction in lateral heat conduction losses. Raman line map spectra reveal changes in the cathode at 60 μm from the cut edge, where bands at 486cm-1 and 595cm-1 , corresponding to the Eg and A1g modes of LiCoO2 , are replaced with a single wide band centered at 544cm-1 , and evidence of carbon black is no longer present. No changes in Raman spectra are observed in the anode. The obtained results suggest that further improvements in cutting efficiency and quality could be achieved by increasing the repetition rate above 2MHz , thereby improving ablation efficiency of the metallic conductor layers. The laser source utilized in the present study nonetheless represents an immediately available solution for repeatability and throughput that are superior to mechanical blanking.

  9. United States Army Group 31 and Group 34 Li-ion Battery Specification

    DTIC Science & Technology

    2011-02-08

    Unclassified 1 Unclassified United States Army Group 31 and Group 34 Li- ion Battery Specification US Army TARDEC Energy Storage Team...SPECIFICATION FOR MATV, GROUP 31 AND GROUP 34 LI- ION BATTERY 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Laurence...13. SUPPLEMENTARY NOTES 14. ABSTRACT The following are requirements for the Li ion rechargeable battery conforming to the Group 31 and Group 34

  10. Development of a 70 Ah Li-Ion Cell for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DeGruson, Jim

    2000-01-01

    A viewgraph presentation outlines the development of Li-ion cells at the Li-Ion Technology Center in Missouri. The Li-ion test area is described, as well as the aerospace design and cell construction equipment. Test results are shown for typical charge and discharge, pulse test, and calculated impedance at various temperatures. Near future activities are discussed, including the incorporation of an alternate electrolyte and the optimization of the anode and cathode.

  11. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  12. Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12".

    PubMed

    Buschmann, Henrik; Dölle, Janis; Berendts, Stefan; Kuhn, Alexander; Bottke, Patrick; Wilkening, Martin; Heitjans, Paul; Senyshyn, Anatoliy; Ehrenberg, Helmut; Lotnyk, Andriy; Duppel, Viola; Kienle, Lorenz; Janek, Jürgen

    2011-11-21

    The solid lithium-ion electrolyte "Li(7)La(3)Zr(2)O(12)" (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, (6)Li and (7)Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24d Li site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy E(a) characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10(-4) Scm(-1) to 4 × 10(-4) Scm(-1) depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10(-6) Scm(-1), E(a) = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb-Wagner polarization technique. The electronic transference number t(e-) is of the order of 10(-7). Thus, cubic LLZO is an almost exclusive

  13. Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo; Yoshida, Ryuji; Sato, Takeshi; Matsumoto, Hiroaki; Kurobe, Hisanori; Hamanaka, Tadashi; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2014-11-01

    All-solid-state Li-ion batteries having incombustible solid electrolytes are expected to be promising candidates for safe next-generation energy storage devices that have a long lifetime and high energy density. However, it is essential to address the large resistance of Li-ion transfer at the electrode/solid-electrolyte interfaces. A new concept electrode that is formed in situ from the Li2O-Al2O3-TiO2-P2O5-based glass-ceramic solid electrolytes with Si and Ge doping (LASGTP) produces atomic scale connection at the interfaces, which provides extremely low interfacial resistance. However, the formation mechanism and the reason for the low resistance are still unclear. Here we applied spatially-resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS) to visualize the nanometer-scale Li distribution and its effects on the electronic structures of other important elements (Ti and O). Local electron diffraction showed that the in situ formed electrode was an amorphous phase caused by the Li insertion. Picometer-scale expansion of O-O distance due to the Li insertion was also visualized in the electrode. These electronic and crystal changes and gradual Li distribution contribute to the low resistance and stable battery cycles.

  14. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  15. Considerations for Estimating Electrode Performance in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Bennett, William R.

    2012-01-01

    Advanced electrode materials with increased specific capacity and voltage performance are critical to the development of Li-ion batteries with increased specific energy and energy density. Although performance metrics for individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance. This paper presents practical design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level discharge voltage, based on laboratory data for individual electrodes, are presented and discussed.

  16. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    NASA Astrophysics Data System (ADS)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  17. Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)

    SciTech Connect

    Kim, G.-H.; Pesaran, A.; Smith, K.

    2008-05-01

    The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

  18. Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie A; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  19. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  20. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.

    PubMed

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  1. Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta

    NASA Astrophysics Data System (ADS)

    Fuentes, J.; Portelles, J.; Durruthy-Rodríguez, M. D.; H'Mok, H.; Raymond, O.; Heiras, J.; Cruz, M. P.; Siqueiros, J. M.

    2015-02-01

    With the purpose of improving the dielectric and piezoelectric properties of (K0.5Na0.5)NbO3 (KNN), a multiple doping strategy was tested in this research. Piezoceramics with composition [(K0.5Na0.5)0.94Li0.06]0.97La0.01(Nb0.9Ta0.1)O3 were prepared by the traditional ceramic method. The calcined powders were sintered in their own atmosphere at 1,100 °C for 1.0, 1.5 and 2.5 h. X-ray diffraction analysis showed that the Li+, La3+ and Ta5+ cations diffuse into the KNN structure to form a perovskite-structured solid solution. For 1 h sintering time, a dominant orthorhombic phase is obtained, whereas for the longer times, the dominant phase was tetragonal. The presence of a tetragonal tungsten-bronze minority second phase is confirmed. Scanning electron micrographs show rectangular-shaped grains with a mean size of 1.1 ± 0.2 μm. The existence of pores and traces of a liquid phase favoring grain growth and homogeneity is also observed. Experimental results show an enhancement of the permittivity associated with the enlargement of the c parameter of the cell that increases with sintering time. Li+ incorporation into the structure is made evident by its transition temperature at 400 °C different from those of KNNLaTi (81-110 °C) and KNNLaTa (340 °C). An analysis of the phase transition of the samples indicates a normal rather than a diffuse transition. The electromechanical parameters k p, Q m, σ p, s 11, d 31 and g 31 are determined and compared to those of commercial PZT ceramics.

  2. Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Ta

    NASA Astrophysics Data System (ADS)

    Fuentes, J.; Portelles, J.; Durruthy-Rodríguez, M. D.; H'Mok, H.; Raymond, O.; Heiras, J.; Cruz, M. P.; Siqueiros, J. M.

    2014-09-01

    With the purpose of improving the dielectric and piezoelectric properties of (K0.5Na0.5)NbO3 (KNN), a multiple doping strategy was tested in this research. Piezoceramics with composition [(K0.5Na0.5)0.94Li0.06]0.97La0.01(Nb0.9Ta0.1)O3 were prepared by the traditional ceramic method. The calcined powders were sintered in their own atmosphere at 1,100 °C for 1.0, 1.5 and 2.5 h. X-ray diffraction analysis showed that the Li+, La3+ and Ta5+ cations diffuse into the KNN structure to form a perovskite-structured solid solution. For 1 h sintering time, a dominant orthorhombic phase is obtained, whereas for the longer times, the dominant phase was tetragonal. The presence of a tetragonal tungsten-bronze minority second phase is confirmed. Scanning electron micrographs show rectangular-shaped grains with a mean size of 1.1 ± 0.2 μm. The existence of pores and traces of a liquid phase favoring grain growth and homogeneity is also observed. Experimental results show an enhancement of the permittivity associated with the enlargement of the c parameter of the cell that increases with sintering time. Li+ incorporation into the structure is made evident by its transition temperature at 400 °C different from those of KNNLaTi (81-110 °C) and KNNLaTa (340 °C). An analysis of the phase transition of the samples indicates a normal rather than a diffuse transition. The electromechanical parameters k p, Q m, σ p, s 11, d 31 and g 31 are determined and compared to those of commercial PZT ceramics.

  3. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    PubMed

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  4. Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries.

    PubMed

    Lu, Jun; Peng, Qing; Wang, Weiyang; Nan, Caiyun; Li, Lihong; Li, Yadong

    2013-02-06

    By using a novel coating approach based on the reaction between MC(2)O(4)·xH(2)O and Ti(OC(4)H(9))(4), a series of nanoscale Li(2)TiO(3)-coated LiMO(2) nanobelts with varied Ni, Co, and Mn contents was prepared for the first time. The complete, thin Li(2)TiO(3) coating layer strongly adheres to the host material and has a 3D diffusion path for Li(+) ions. It is doped with Ni(2+) and Co(3+) ions in addition to Ti(4+) in LiMO(2), both of which were found to favor Li(+)-ion transfer at the interface. As a result, the coated nanobelts show improved rate, cycling, and thermal capabilities when used as the cathode for Li-ion battery.

  5. Structure of ceramic surfaces modified by ion-beam techniques

    SciTech Connect

    McHargue, C.J.; Naramoto, H.; White, C.W.; Williams, J.M.; Appleton, B.R.; Sklad, P.S.; Angelini, P.

    1982-01-01

    A wide variety of structures are produced by ion implantation in ceramics. Random (substitutional and interstitial site occupancy) solid solutions with concentrations of solute that exceed the solubility limit can be produced in Al/sub 2/O/sub 3/. The changes that occur during annealing are complex and sometimes unpredictable. Silicon carbide becomes amorphous in a manner analogous to Si for ion fluences that produce more than 0.2 dpa damage. Light (N) and heavy (Cr) ions produce similar results if the fluence is scaled to damage energy deposited. Because of mass differences in the ions, two damage regions are developed in TiB/sub 2/. The structure remains crystalline to very high damage levels. These structural alterations cause changes in the surface mechanical properties. Since virtually any chemical species can be implanted, one can independently control structural damage and chemical effects. When coupled with selective annealing, this technique has the potential for producing a wide range of surface structures and properties. 8 figures.

  6. Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.

    PubMed

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO4, the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO4. Herein, LiFePO4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO4, the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  7. Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7 (PO4)3 (LATP) system on Li+ ion conductivity

    NASA Astrophysics Data System (ADS)

    Kothari, Dharmesh H.; Kanchan, D. K.

    2016-11-01

    We report the effect of trivalent cations dopants in the Li1.3Al0.3-xRxTi1.7(PO4)3 (R=Ga3+, Sc3+, Y3+) NASICON ceramic system in the concentration range x=0.01,0.03,0.05,0.07, on the Li+ ion conducting properties using impedance spectroscopy. The samples were prepared by solid state reaction method and characterized by X-Ray Diffraction and density measurements. The electrical properties were studied using impedance spectroscopy in frequency range 10 Hz to 20 MHz and temperature range 303 K to 423 K. Although the porosity of the material decreased with doping, the overall Li+ ion conductivity of the system did not improve with doping. Ionic radii of the dopant cations was found to be an important factor in formation of impurity phases and low Li+ ion conductivity. Gallium doped samples exhibited a higher Li+ ion conductivity compared to its scandium and yttrium doped counterparts.

  8. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2016-07-12

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  9. Searching for Sustainable and "Greener" Li-ion Batteries

    SciTech Connect

    Tarascon, Jean-Marie

    2009-06-03

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  10. Thermal characterization of Li-ion cells using calorimetric techniques

    SciTech Connect

    ROTH,EMANUEL P.

    2000-05-31

    The thermal stability of Li-ion cells with intercalating carbon anodes and metal oxide cathodes was measured as a function of state of charge and temperature for two advanced cell chemistries. Cells of the 18650 design with Li{sub x}CoO{sub 2} cathodes (commercial Sony cells) and Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathodes were measured for thermal reactivity. Accelerating rate calorimetry (ARC) was used to measure cell thermal runaway as a function of state of charge (SOC), microcalorimetry was used to measure the time dependence of thermal output, and differential scanning calorimetry (DSC) was used to study the thermal reactivity of the individual components. Thermal decomposition of the anode solid electrolyte interphase (SEI) layer occurred at low temperatures and contributes to the initiation of thermal runaway. Low temperature reactions from 40 C--70 C were observed during the ARC runs that were SOC dependent. These reactions measured in the microcalorimeter decayed over time with power-law dependence and were highly sensitive to SOC and temperature. ARC runs of aged and cycled cells showed complete absence of these low-temperature reactions but showed abrupt exothermic spikes between 105--135 C. These results suggest that during aging the anode SEI layer is decomposing from a metastable state to a stable composition that is breaking down at elevated temperatures.

  11. Atomic resolution of Lithium Ions in LiCoO

    SciTech Connect

    Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, Chris; O'Keefe, Michael A.

    2003-03-18

    LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.

  12. Performance study of commercial LiCoO 2 and spinel-based Li-ion cells

    NASA Astrophysics Data System (ADS)

    Ramadass, P.; Haran, Bala; White, Ralph; Popov, Branko N.

    The performance of Cell-Batt ® Li-ion cells and Sony 18650 cells using non-stoichiometric spinel and LiCoO 2, respectively, as positive electrode material has been studied under several modes of charging. During cycling, the cells were opened at intermittent cycles and extensive material and electrochemical characterization was done on the active material at both electrodes. Capacity fade of spinel-based Li-ion cells was attributed to structural degradation at the cathode and loss of active material at both electrodes due to electrolyte oxidation. For the Sony cells both primary (Li +) and secondary active material (LiCoO 2)/C) are lost during cycling.

  13. Li-Ion Dynamics in Li5+xLa3ZrxNb2-xO12

    NASA Astrophysics Data System (ADS)

    Nozaki, Hiroshi; Ohta, Shingo; Harada, Masashi; Månsson, Martin; Sheptyakov, Denis; Pomjakushin, Vladimir; Watanabe, Isao; Ikedo, Yutaka; Miyake, Yasuhiro; Sugiyama, Jun

    A diffusive behavior of Li+ ion in a garnet-type oxide, Li5+xLa3ZrxNb2-xO12 with x = 0-2, has been investigated by both a positive muon-spin relaxation (µ+SR) and quasi-elastic neutron scattering (QENS) technique using powder samples. The µ+SR results revealed that Li+ ions start to diffuse above ~150 K for the whole samples measured. The activation energy of Li diffusion (Ea) estimated from the µ+SR data was in good agreement with Ea obtained by the QENS measurements. However, both Eas were about a half of Ea of ionic conductivity of Li+ (σLi), which was evaluated by AC-impedance measurements on sintered pellets. This indicated the serious effect of grain boundary and/or surface on Ea. Furthermore, since the self-diffusion coefficient of Li+ estimated by µ+SR is roughly independent of x, the number of mobile Li+ in the garnet lattice was found to be the predominant parameter to determine σLi.

  14. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.

    PubMed

    Wang, Dandan; Zhao, Yunlong; Xu, Xu; Hercule, Kalele Mulonda; Yan, Mengyu; An, Qinyou; Tian, Xiaocong; Xu, Jiaming; Qu, Longbing; Mai, Liqiang

    2014-07-21

    Anode materials which undergo a conversion reaction can achieve larger specific capacities than conventional carbon-based materials. They can even achieve higher energy densities when used at low voltages. However, the large amounts of Li₂O generated in the interior of these structures when Li ions are inserted can cause volume expansion and mechanical fracturing from the inside out. This leads to a poor cycling performance and limits their commercial application. To overcome this limitation, we introduced Li ions into the interior of the cells of manganese oxide materials and successfully synthesized a novel Li-rich anode material (Li₂MnO₃). The reversible capacity reached 1279 mA h g(-1) after 500 cycles, much higher than that of pure MnO₂ or other commercial anodes. This optimization of the internal Li-enrichment and its application in Li₂MnO₃ nanowires used as low voltage anodes in Li-ion batteries have rarely been reported. Further investigations by X-ray diffraction and photoelectron spectroscopy suggested that the strategy of optimizing the internal Li-enrichment of this novel Li₂MnO₃ anode is a promising development for Li-ion batteries.

  15. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2017-04-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  16. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2016-05-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  17. A Method of Producing Surface Conduction on Ceramic Accelerator Components Using Metal Ion Implantation

    SciTech Connect

    Liu, F.; Brown, I.; Phillips, H.; Biallas, George; Siggins, Timothy

    1997-05-01

    An important technique used for the suppression of surface flashover on high voltage DC ceramic insulators as well as for RF windows is that of providing some surface conduction to bleed off accumulated surface charge. We have used metal ion implantation to modify the surface of high voltage ceramic vacuum insulators to provide a niform surface resistivity of approximately 5 x 1010 W/square. A vacuum arc ion source based implanter was used to implant Pt at an energy of about 135 keV to doses of up to more than 5 x 1016 ions/cm2 into small ceramic test coupons and also into the inside surface of several ceramic accelerator columns 25 cm I. D. by 28 cm long. Here we describe the experimental set-up used to do the ion implantation and summarize the results of our exploratory work on implantation into test coupons as well as the implantations of the actual ceramic columns.

  18. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  19. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  20. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes.

    PubMed

    Ramzy, Adam; Thangadurai, Venkataraman

    2010-02-01

    This paper reports a novel approach to designing advanced solid Li ion electrolytes for application in various solid state ionic devices, including Li ion secondary batteries, gas sensors, and electrochromic displays. The employed methodology involves a solid-solution reaction between the two best-known fast Li ion conductors in the garnet-family of compounds Li(6)BaLa(2)M(2)O(12) (M = Nb, Ta) and Li(7)La(3)Zr(2)O(12). Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), AC impedance, and (7)Li nuclear magnetic resonance (Li NMR) spectroscopy were employed to characterize phase formation, morphology, ionic conductivity, and Li ion coordination in Li(6.5)La(2.5)BaZrMO(12). PXRD shows for formation of a cubic garnet-like structure and AC impedance data is consistent with other known solid Li ion electrolytes. Li(6.5)La(2.5)BaZrTaO(12) exhibits a fast Li ion conductivity of about 6 x 10(-3) S cm(-1) at 100 degrees C, which is comparable to that of currently employed organic polymer electrolytes value at room temperature. The Nb analogue shows an order of magnitude lower ionic conductivity than that of the corresponding Ta member, which is consistent with the trend in garnet-type electrolytes reported in the literature. Samples sintered at 1100 degrees C shows the highest electrical conductivity compared to that of 900 degrees C. (7)Li MAS NMR shows a sharp single peak at 0 ppm with respect to LiCl, which may be attributed to fast migration of ions between various sites in the garnets, and also suggesting average distributions of Li ions at average octahedral coordination in Li(6.5)La(2.5)BaZrMO(12). The present work together with literature used to establish very important fundamental relationship of functional property-Li concentration-crystal structure-Li diffusion coefficient in the garnet family of Li ion electrolytes.

  1. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  2. Ionic limiting molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.

    PubMed

    He, Xiangming; Pu, Weihua; Han, Jingli; Chen, Jian; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-15

    A method is proposed based on mode coupling theory in which the ion transference number is introduced into the theory. The ionic limiting molar conductivities of LiPF6, LiClO4, LiBF4, LiCF3SO3, Li(CF3SO3)2N, LiC4F9SO3, and LiAsF6 in PC(propylene carbonate), GBL(gamma-butyrolactone), PC(propylene carbonate)/EMC(ethylmethyl carbonate), and PC(propylene carbonate)/DME(dimethoxyethane) are calculated based on this method, which does not involve any adjustable parameter. The results fit well to the literature data which are calculated by an empirically adjusted formula. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  3. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    SciTech Connect

    Yang, Hui; Zhuang, Guorong V; Ross, Jr, Philip N

    2006-03-08

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  4. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Guo, Zhansheng

    2014-03-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected.

  5. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    NASA Astrophysics Data System (ADS)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  6. Influence of Li-B-Si Additions on the Sintering and Microwave Dielectric Properties of Ba-Nd-Ti Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Duan, Shuxin; Sun, Shumeng; Li, Hao; Mi, Yuean; Zhou, Xiaohua; Zhang, Shuren

    2013-12-01

    Li2O-B2O3-SiO2 (LBS) synthesized via a solid-state reaction process was chosen as a novel sintering aid for tungsten-bronze-type Ba4Nd9.3Ti18O54 (BNT) ceramic. The effects of LBS additions on the sintering behaviors, microstructures, and microwave dielectric properties of the BNT ceramic have been investigated, indicating that LBS addition obviously lowered the sintering temperature of the BNT ceramic without damaging its microwave dielectric properties. BNT ceramic doped with 3 wt.% and 4 wt.% LBS addition could be well sintered at 975°C and 950°C for 3 h and had excellent properties: ɛ r = 65.99, Q × f = 4943 GHz ( f = 4.4 GHz), τ f = 19 ppm/°C, and ɛ r = 64.56, Q × f = 4929 GHz ( f = 4.3 GHz), τ f = 11 ppm/°C, respectively.

  7. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  8. Controlling the rheological behavior of ceramic slurries and consolidated bodies: Interpenetrating networks and ion size effects

    NASA Astrophysics Data System (ADS)

    Fisher, Matthew Lyle

    counterion size on short range repulsive forces at high salt concentrations was investigated with alumina and silica slurries coagulated with the chlorides of Li+, Na+, K+, Cs+ and TMA+ (tetramethylammonium+). The results clearly show that the range of the repulsive forces correlated with the size of the unhydrated ion, namely stronger particle networks are achieved with smaller counterions. The findings are contradictory to the widely accepted hydration force model. Silica and alumina slurries were also studied at and below the iep where the indifferent electrolyte cations would not be expected to adsorb. It appears that a lyotropic sequence for excluded ions exists and is correlated to the hydration of ions and surfaces.

  9. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.

    PubMed

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-02-21

    There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational physicists and chemists throughout the world. The practical applications of Li-ion batteries and emerging alternatives may not be limited to portable electronic devices and circumventing hurdles that include range anxiety and safety among others, to their widespread adoption in EV applications in the future requires new electrode materials and a fuller understanding of how the materials and the electrolyte chemistries behave. Since this field is advancing rapidly and attracting an increasing number of researchers, it is crucial to summarise the current progress and the key scientific challenges related to Li-ion batteries from theoretical point of view. Computational prediction of ideal compounds is the focus of several large consortia, and a leading methodology in designing materials and electrolytes optimized for function, including those for Li-ion batteries. In this Perspective, we review the key aspects of Li-ion batteries from theoretical perspectives: the working principles of Li-ion batteries, the cathodes, anodes, and electrolyte solutions that are the current state of the art, and future research directions for advanced Li-ion batteries based on computational materials and electrolyte design.

  10. Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Mukai, Kazuhiko; Miwa, Kazutoshi; Shiraki, Susumu; Hitosugi, Taro; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Lord, James S.; Mânsson, Martin

    2015-07-01

    Lithium diffusion in spinel Li4Ti5O12 and LiTi2O4 compounds for future battery applications has been studied with muon spin relaxation (μ+SR ) . Measurements were performed on both thin-film and powder samples in the temperature range between 25 and 500 K. For Li4Ti5O12 and above about ˜200 K , the field distribution width (Δ ) is found to decrease gradually, while the field fluctuation rate (ν ) increases exponentially with temperature. For LiTi2O4 , on the contrary, the Δ (T ) curve shows a steplike decrease at ˜350 K , around which the ν (T ) curve exhibits a local maximum. These behaviors suggest that Li+ starts to diffuse above around 200 K for both spinels. Assuming a jump diffusion of Li+ at the tetrahedral 8 a site to the vacant octahedral 16 c site, diffusion coefficients of Li+ at 300 K in the film samples are estimated as (3.2 ±0.8 ) ×10-11 cm2/s for Li4Ti5O12 and (3.6 ±1.1 ) ×10-11 cm2/s for LiTi2O4 . Further, some small differences are found in both thermal activation energies and Li-ion diffusion coefficients between the powder and thin-film samples.

  11. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  12. Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet

    NASA Astrophysics Data System (ADS)

    Amiki, Yuichi; Sagane, Fumihiro; Yamamoto, Kazuo; Hirayama, Tsukasa; Sudoh, Masao; Motoyama, Munekazu; Iriyama, Yasutoshi

    2013-11-01

    A lithium insertion reaction in a Li+ conductive glass ceramics solid electrolyte (lithium aluminum titanium phosphate: LATP) sheet produces an in-situ formed electrode active material, which operates at 2.35 V vs. Li/Li+ in the vicinity of the LATP-sheet/current-collector interface. Electron energy loss spectroscopy clarifies that titanium in the LATP sheet in the vicinity of the current collector/LATP-sheet interface is preferentially reduced by this lithium insertion reaction. Charge transfer resistance between the in-situ-formed-electrode and the LATP-sheet is less than 100 Ω cm2, which is smaller than that of the common LiPON/LiCoO2 interface. A thin film of LiCoO2 is deposited on one side of the LATP-sheet as a Li+ source for developing the in-situ formed electrode material. Eventually, a Pt/LATP-sheet/LiCoO2/Au multilayer is fabricated. The multilayer structure successfully works as an all-solid-state lithium-ion battery operating at 1.5 V. A redox peak of the battery is observed even at 100 mV s-1 in the potential sweep curve. Additionally, charge-discharge reactions are repeated stably even after 25 cycles.

  13. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  14. Structural phase transition and Li-ion diffusion in Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Bernstein, Noam; Johannes, Michelle

    2013-03-01

    Garnet-type Li7La3Zr2O12 (LLZO) is a promising candidate for solid electrolytes in Li-ion battery applications because of its high ionic conductivity and electrochemical and chemical stability. The material has a low-conductivity tetragonal phase and a high-conductivity cubic phase. It has been reported that the cubic phase can be stabilized at ambient conditions, usually with the incorporation of a certain amount of supervalent impurities. In this talk, we present results from density-functional theory and variable cell shape molecular dynamics simulations, and discuss the origin of structural phase transition, effects of extrinsic impurities, and diffusion of Li ions in LLZO. By identifying relevant mechanisms and critical concentrations of the impurities (Li vacancies) for achieving the high-conductivity phase, this work shows how controlled synthesis could be used to improve the material's electrolytic performance.

  15. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    PubMed

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  16. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  17. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries

    PubMed Central

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability. PMID:24855459

  18. Li atom adsorption on graphene with various defects for large-capacity Li ion batteries: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Shiota, Kento; Kawai, Takazumi

    2017-06-01

    We investigated the fundamental properties of the interaction between a Li atom and a graphene surface with various defect structures by first-principles electronic state calculations to improve the capacity and charge rate of a graphitic anode for Li ion battery applications. The adsorption energy tends to decrease as the number of deficit carbon atoms at a neighboring defect increases even for adsorption at a hexagonal ring (HR) away from defects, although the interaction between a Li adatom and an HR is similar independent of the defect structure. The reason for the change in adsorption energy is the electronic charge transfer from the Li 2s-like state to the defect-induced state near the Fermi level. We also found that a Li atom diffuses through a V6 defect without a diffusion barrier practically.

  19. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability.

  20. Red Mud and Li-Ion Batteries: A Magnetic Connection.

    PubMed

    Suryawanshi, Anil; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2016-08-23

    Exceptional Li-ion battery performance is presented with the oxide component of the anode was extracted from red mud by simple magnetic separation and applied directly without any further processing. The extracted material has γ-Fe2 O3 as the major phase with inter-dispersed phases of Ti, Al, and Si oxides. In a half-cell assembly, the phase displayed a reversible capacity (∼697 mA h g(-1) ) with excellent stability upon cycling. Interestingly, the stability is rendered by the multiphase constitution of the material with the presence of other electrochemically inactive metal oxides, such as Al2 O3 , SiO2 , and Fe2 TiO4 , which could accommodate the strain and facilitate release during the charge-discharge processes in the electrochemically active maghemite component. We fabricated the full-cell assembly with eco-friendly cathode LiMn2 O4 by adjusting the mass loading. Prior to full-cell assembly, an electrochemical pre-lithiation was enforced to overcome the irreversible capacity loss obtained from the anode. The full-cell delivered a capacity of ∼100 mA h g(-1) (based on cathode loading) with capacity retention of ∼61 % after 2000 cycles under ambient conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF

    SciTech Connect

    Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir

    2013-10-15

    Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.

  2. Scanning electrochemical microscopy of Li-ion batteries.

    PubMed

    Ventosa, E; Schuhmann, W

    2015-11-21

    Li-ion batteries (LIBs) are receiving increasing attention over the past decade due to their high energy density. This energy storage technology is expected to continue improving the performance, especially for its large-scale deployment in plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). Such improvement requires having a large variety of analytical techniques at scientists' disposal in order to understand and address the multiple mechanisms and processes occurring simultaneously in this complex system. This perspective article aims to highlight the strength and potential of scanning electrochemical microscopy (SECM) in this field. After a brief description of a LIB system and the most commonly used techniques in this field, the unique information provided by SECM is illustrated by discussing several recent examples from the literature.

  3. Diagnosis and restoration of Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Kirpichnikova, I. M.; Korobatov, D. V.; Martyanov, A. S.; Sirotkin, E. A.; Solomin, E. V.

    2017-01-01

    The paper presents the results of testing the LT-LFP.300.11.01 Li-Ion cells under different conditions of charge by stable and pulse width modulation current. The shown study proves the possibility of approaching the diagnosis of battery cell before multi stage charging cycles. This approach helps to determine the real cell state of charge, which is important for the charger in turn for the determination of the initial current value at the very first stage of charge. Using the trickle charge algorithm, each battery cell may be charged individually in accordance with its initial state of charge, chemical condition and temperature. This approach should use a special charger acceptable for multi-cell charge or diagnosis of individual cells with a balancing apparatus. The same approach could be used for battery restoration.

  4. Composite polymer electrolyte for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Xu, Fan; Cheng, Yan; Jiang, Zhiyu

    2002-06-01

    A new method presented in this work mainly describes how to produce polymer electrolyte membranes by using water as plasticizer. Compared with the membranes made by traditional methods, the membranes made by the new method have the properties of easy handling and free-standing. The results of Ac impedance suggest that the polymer electrolyte membranes have high ionic conductivity. Moreover, the images of SEM show that the porous and alveolate structures are greatly improved. It is more important that using water as plasticizer can lower the cost of producing Li-ion batteries and eliminate the pollution produced in process of plasticizer extraction, in which some volatile solvents were used in traditional methods.

  5. Diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals

    PubMed Central

    Zhang, De-Long; Zhang, Qun; Qiu, Cong-Xian; Wong, Wing-Han; Yu, Dao-Yin; Yue-Bun Pun, Edwin

    2015-01-01

    Diffusion-doping is an effective, practical method to improve material properties and widen material application. Here, we demonstrate a new physical phenomenon: diffusion control of an ion by another in LiNbO3 and LiTaO3 crystals. We exemplify Ti4+/Xn+ (Xn+ = Sc3+, Zr4+, Er3+) co-diffusion in the widely studied LiNbO3 and LiTaO3 crystals. Some Ti4+/Xn+-co-doped LiNbO3 and LiTaO3 plates were prepared by co-diffusion of stacked Ti-metal and Er-metal (Sc2O3 or ZrO2) films coated onto LiNbO3 or LiTaO3 substrates. The Ti4+/Xn+-co-diffusion characteristics were studied by secondary ion mass spectrometry. In the Xn+-only diffusion case, the Xn+ diffuses considerably slower than the Ti4+. In the Ti4+/Xn+ co-diffusion case, the faster Ti4+ controls the diffusion of the slower Xn+. The Xn+ diffusivity increases linearly with the initial Ti-metal thickness and the increase depends on the Xn+ species. The phenomenon is ascribed to the generation of additional defects induced by the diffusion of faster Ti4+ ions, which favors and assists the subsequent diffusion of slower Xn+ ion. For the diffusion system studied here, it can be utilized to substantially shorten device fabrication period, improve device performance and produce new materials. PMID:25941037

  6. LiSICON-Ionic Liquid Electrolyte for Lithium Ion Battery

    DTIC Science & Technology

    2011-08-15

    LiSICON cell with 0.75M LiTFSI /PYR13+FSI- had a capacity of 325 mAh g-1 and coulombic efficiency of 99.8% during cycling at 80 ?C. 15. SUBJECT TERMS 16...with different Li salt concentrations at elevated temperature. A carbon anode in a LiSICON cell with 0.75M LiTFSI /PYR13 + FSI - had a capacity of...triflouromethanesulfonyl)imide ( LiTFSI , 99%, Acros) were used inside an inert atmosphere glovebox. LiTFSI was dissolved in the PYR13 + FSI - and

  7. High energy Li-ion rechargeable battery using thin lithium film composite separator

    NASA Astrophysics Data System (ADS)

    Zeng, Shuming; Moses, P. R.

    It has been demonstrated that small amounts of active lithium metal can be added to a lithium-ion (Li-ion) battery via the separator by using vacuum deposition techniques. Lithium films (4-8 μm) were deposited onto micro-porous polypropylene film that is used as the separator in Li-ion cells. We have demonstrated that the lithium electrochemically reacts with either electrode depending on the geometry of assembly. As a result, the intrinsic irreversible capacity of negative electrode can be compensated using volumetrically efficient lithium metal. Hence, Li-ion cells can be designed and constructed with significantly higher energy than those assembled with conventional techniques.

  8. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  9. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    SciTech Connect

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  10. Composite LiFePO 4/AC high rate performance electrodes for Li-ion capacitors

    NASA Astrophysics Data System (ADS)

    Böckenfeld, N.; Kühnel, R.-S.; Passerini, S.; Winter, M.; Balducci, A.

    This manuscript reports the performance of composite electrodes based on the mixture of two, electrochemically active, materials: lithium iron phosphate (LiFePO 4) and activated carbon (AC). The sodium salt of carboxymethylcellulose (CMC) was used as binder to cast the composite electrodes out of aqueous slurries. The investigated electrodes display high specific capacity and high cycling stability. Upon constant current tests with a charge rate of 50C and a discharge rate of 1D, the electrodes display a capacity of ca. 70 mAh g -1 while 60 mAh g -1 are delivered during pulse sequence tests at 100C. These results indicate such electrodes as promising candidates for the realization of lithium-ion capacitors.

  11. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    DTIC Science & Technology

    2006-10-04

    acetone consisting of LiBF4 as the supporting electrolyte. Unlike the powdery deposits of LiPc obtained by using tetrabutyl ammonium perchlorate (TBAP...as the supporting electrolyte, the deposits are adherent to the substrates when LiBF4 is used as the supporting electrolyte. Chemical oxidation of...Li2Pc by TBAP is shown to be detrimental for the formation of powdery electrodeposits of LiPc, whereas LiBF4 does not oxidize Li2Pc and therefore

  12. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery

    NASA Astrophysics Data System (ADS)

    Mao, Xufeng; Shi, Liyi; Zhang, Haijiao; Wang, Zhuyi; Zhu, Jiefang; Qiu, Zhengfu; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-02-01

    Low Li+ ion transference number is one fatal defect of the liquid LiPF6 electrolyte for Li-metal anode based batteries. This work aims to improve Li+ ion transference number and ionic conductivity polyethylene (PE) separators. By a simple dip-coating method, the water-borne nanosized molecular sieve with 3D porous structure (ZSM-5) can be coated on PE separators. Especially, the Li+ ion transference number is greatly enhanced from 0.28 to 0.44, which should be attributed to the specific pore structure and channel environment of ZSM-5 as well as the interaction between ZSM-5 and electrolyte. Compared with the pristine PE separator, the ionic conductivity of modified separators is remarkably improved from 0.30 to 0.54 mS cm-1. As results, the C-rate capability and cycling stability are both improved. The Li-metal battery using the ZSM-5-modified PE separator keeps 94.2% capacity after 100 cycles. In contrast, the discharge capacity retention of the battery using pristine PE is only 74.7%.

  13. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  14. A fruitful demonstration in sensors based on upconversion luminescence of Yb3+/Er3+codoped Sb2O3-WO3-Li2O (SWL) glass-ceramic

    NASA Astrophysics Data System (ADS)

    Prasad Sukul, Prasenjit; Kumar, Kaushal

    2016-07-01

    In this article, erbium and ytterbium doped lithium tungsten antimonate (Yb3+/Er3+:Sb2O3-WO3-Li2O) glass-ceramics (GC) is synthesized and its novel applications in temperature sensing and detection of latent fingerprints is studied. It is also estimated that this material could be useful as a solar cell concentrator. The upconversion emission studies on Yb3+/Er3+:SWL glass-ceramics have shown intense green emission at 525 nm (2H11/2 → 4I15/2) & 545 nm (4s3/2 → 4I15/2). The variation of UC intensities with external temperature have shown a well-fashioned pattern, which suggests that the 2H11/2 and 4S3/2 levels of Er3+ ion are thermally coupled and can act as a temperature sensor in the 300-500 K temperature range. Dry powder of Yb3+/Er3+:SWL glass-ceramic is used to develop latent fingerprint with high contrast in green color on glass slide.

  15. Roles of Li and Ta in Pb-free piezoelectric (Na,K)NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Sung, Y. S.

    2014-10-01

    Piezoelectric coefficient (d33) of (Na,K)NbO3 (NKN) is enhanced not only at its morphotropic phase boundary (MPB) composition but also enhanced at its polymorphic phase transition (PPT) temperature between orthorhombic and tetragonal phases (TO-T). Thus, for NKN-based ceramics, even higher d33 could be obtained if both MPB and PPT are simultaneously optimized. This temperature as well as composition dependence of piezoelectric properties of NKN-based ceramics requires a systematic approach that differentiates factors for MPB and PPT. In this paper, the roles of Li and Ta known to affect d33 and TO-T were identified in relation with lattice parameters.

  16. Lithium recovery with LiTi2O4 ion-sieves.

    PubMed

    Chen, C-W; Chen, P-A; Wei, C-J; Huang, H-L; Jou, C-J; Wei, Y-L; Wang, H Paul

    2017-02-12

    A feasibility study for the recovery of lithium from salt water with the protonated lithium titanium oxide ion-sieves was carried out in this work. Lithium ions (Li(+)) in LiTi2O4 having a similar ion density with H(+) allow repeated exchanges and regeneration with high selectivity. By Li(7) magic angle spinning solid-state magnetic resonance, it is apparent that chemical structure of lithium in the ion-sieves is not perturbed during the repeated Li(+)/H(+) exchange processes. As the dissolution of titanium is negligible (<0.1%), the secondary contamination during the capture process can be minimized. The ion-sieves exhibit lithium capture capacities of up to 9.5mg/g during the repeated Li(+)/H(+) exchanges with H0.23Li0.77Ti2O4/LiTi2O4 for 24h, and the captured Li(+) may be recovered in the form of Li2CO3. Accordingly, the lithium capture method developed in this work could be integrated with current desalination processes for valuable lithium recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Impedance spectroscopy studies on Ga-ion-modified PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Dutta, Soma; Choudhary, R. N. P.; Sinha, P. K.

    2005-05-01

    Polycrystalline samples of [Pb0.92(La1-zGaz)0.08][Zr0.65Ti0.35]0.98O3 (PLGZT) for z = 0.0, 0.3, 0.6, 0.9, and 1.0 were prepared by a solid-state reaction technique. The single-phase formation of the new compounds with tetragonal crystal structures was established by the room-temperature X-ray analysis. The occupancy of Ga ion in the La site has been confirmed by FTIR analysis. Complex impedance spectroscopy (CIS) has provided a convincing evidence for the existence of both grain (bulk) and grain boundary effects in the materials, which is also evident from the microstructures, comprise grains separated by well-defined boundaries. The electrical processes in the sample have been modeled in the form of an electrical equivalent circuit made up of a series combination of two parallel RC circuits attributed to grains and grain boundaries. The real and imaginary parts of dielectric constants have been separated from impedance spectrum results and expressed in terms of loss tangent (tan ). The ferroelectric transition temperature (Tc) of the materials is evaluated from the plot of real permittivity versus temperature and found to be shifted to higher temperature side with increasing Ga-ion concentration. A sharp rise in conductivity is observed in the nature of temperature variation of the bulk electrical conductivity (dc) at higher temperature for all the Ga-modified PLZT samples. This type of behavior is typical to dielectric ceramics having conductive grain boundary arising out of a relaxation process of the Maxwell-Wagner type. At higher temperature a substantial increase in conductivity 10-3 S cm-1 is achieved for complete replacement of the La ion by Ga (z = 1.0).

  18. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    PubMed Central

    Antipov, Evgeny V.; Khasanova, Nellie R.; Fedotov, Stanislav S.

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4)n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications. PMID:25610630

  19. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix

    2015-09-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  20. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    PubMed

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  1. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  2. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  3. Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives

    NASA Astrophysics Data System (ADS)

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-01-01

    Density functional theory is used to investigate the reactivity, reduction and effect of electrolyte additives such as fluoroethylene carbonate (FEC), lithium bis(oxalate) borate (LiBOB) and lithium difluoro(oxalato) borate (LiDFOB) in propylene carbonate (PC)-based Li-ion battery electrolytes. The structural, thermodynamical and calculated infra-red vibrational analyses indicate that FEC additives reduce prior to PC, providing stable SEI film formation near the graphite anode. The reduction and reaction mechanisms of LiBOB and LiDFOB influence the SEI film composition at the graphite surface. These additives contribute to stable SEI film formation without degradation of the anode structure by PC co-intercalation.

  4. NREL's PHEV/EV Li-Ion Battery Secondary-Use Project

    SciTech Connect

    Newbauer, J.; Pesaran, A.

    2010-06-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

  5. Increasing the durability of Li-ion batteries by means of manganese ion trapping materials with nitrogen functionalities

    NASA Astrophysics Data System (ADS)

    Banerjee, Anjan; Ziv, Baruch; Luski, Shalom; Aurbach, Doron; Halalay, Ion C.

    2017-02-01

    Manganese dissolution from positive electrodes seriously reduces the useful life of Li-ion batteries, especially with positive electrode materials having spinel phases. We show herein that Mn ion trapping separators containing inexpensive mass-produced materials may dramatically increase the life of Li-ion batteries. LiMn2O4-graphite cells containing these materials and a LiPF6 based electrolyte solution display excellent capacity retention during cycling at both room and elevated temperatures, over baseline cells with plain separators. After 30 days of cycling at 55 °C and C/5 rate, LiMn2O4-graphite cells containing three different Mn-trapping materials with nitrogen functionalities retain between 75% and 125% more of the initial capacity than the baseline cells. Mn amounts in graphite negative electrodes from cells with the functional separators are 13-21 times lower than in baseline cells. LiMn2O4 lattice shrinkage in cells with functionalized separators is negligible compared to baseline cells, indicating major reductions in the loss of electrochemically active Li+ ions and increased stability of the LiMn2O4 crystal lattice.

  6. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  7. Ion leaching from dental ceramics during static in vitro corrosion testing.

    PubMed

    Milleding, Percy; Haraldsson, Conny; Karlsson, Stig

    2002-09-15

    Dental ceramics are often called inert materials. It can be hypothesized, however, that differences in the composition, microstructure, and environmental conditions will affect the degree of corrosion degradation in an aqueous environment. The aims of the study were, therefore, to study the ion dissolution from glass-phase ceramics, with or without crystalline inclusions, and from all-crystalline ceramics and to compare the effects of different corrosion media. Ceramic specimens were produced from glass-phase and oxide ceramics and given an equivalent surface smoothness, after which they were subjected to in vitro corrosion (Milli-Q water at 37 +/- 2 degrees C for 18 h and 4% acetic acid solution at 80 +/- 2 degrees C for 18 h, respectively). The temperature of the corrosion solution was slowly increased until it reached 80 +/- 2 degrees C to reduce the risk of microcrack formation at the surface. The analyses of ion leakage were performed with inductively coupled plasma optical emission spectroscopy. A large number of inorganic elements leached out from the various dental ceramics. The major leaching elements were sodium and potassium; in the acid-corrosion experiments, there were also magnesium, silicon, and aluminum and, on a lower scale, yttrium, calcium, and chromium. The various glass-phase ceramics displayed significant differences in ion leakage and significantly higher leakage values than all-crystalline alumina and zirconia ceramics. No significant difference in dissolution was found between high and low-sintering glass-phase ceramics or between glass-phase ceramics with high volume fractions of crystallites in the glass phase in comparison with those with lower crystalline content. It can be concluded, therefore, that none of the dental ceramics studied are chemically inert in an aqueous environment. Copyright 2002 Wiley Periodicals, Inc.

  8. Measurement of Li+ Ion Transport Numbers in PEO-LiX Complexes.

    DTIC Science & Technology

    1988-03-01

    elsewheres. The salts under study were LiCF3SO3, LiAlC 4, LiAsF., LiBF4 and LiPF, and the PEO-LiX concentrations were 50:1, 25:1, 8:1, 4:1, 2:1 and 1...1 PEO- LIBF4 19 .37 8:1 PEO- LIBF4 28 .40 f-. ___ ___ ___ ____ ___ __ _ ___ ____ ___ ___ ___ ____ ___ _NP 0 U 2 U,o P;. a C S S C.) * - , ~.CD 0 0 XI

  9. Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Luo, Shaohua; Ren, Jie; Wang, Dan; Qi, Xiwei

    2016-05-01

    Li-rich layered cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is prepared via a co-precipitation followed with high-temperature calcination, and then successfully modified with nano-Li3PO4 by ball milling and annealing. The TEM and EDS reveal that Li3PO4 is homogeneously coated on the particle surface of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. And the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is significantly improved by coating with lithium ion conductor Li3PO4. The Li3PO4-coated sample delivers a high initial discharge capacity of 284.7 mAhg-1 at 0.05 C, and retains 192.6 mAhg-1 after 100 cycles at 0.5 C, which is higher than that of the pristine sample (244 mAhg-1 at 0.05 C and 168.2 mAhg-1 after 100 cycles at 0.5 C). The electrochemical impedance spectroscopy (EIS) demonstrates that the resistance for Li/Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cell was reduced compared to Li/Li[Li0.2Mn0.54Ni0.13Co0.13]O2, which indicates the Li3PO4 coating layer with high ionic conductivity (6.6 × 10-8 S cm-1) facilitates the diffusion of lithium ions through the interface between electrode and electrolyte and accelerates the charge transfer process. What is more, the Li3PO4 coating layer can also act as a protection layer to protect the cathode material from encroachment of electrolyte. The two aspects account for the enhanced electrochemical performance of Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2.

  10. Development and characterization of composite YSZ-PEI electrophoretically deposited membrane for Li-ion battery.

    PubMed

    Hadar, R; Golodnitsky, D; Mazor, H; Ripenbein, T; Ardel, G; Barkay, Z; Gladkich, A; Peled, E

    2013-02-14

    In this work, the electrophoretic-deposition (EPD) method was used to fabricate pristine and composite ceramic-polymer membranes for application in planar and 3D microbattery configurations. The major focus was on the effect of polyethyleneimine additive on the morphology, composition, and electrochemical properties of the membrane. The ionic conductivity, cycleability, and charge/discharge behavior of planar LiFePO(4)/Li cells comprising composite porous YSZ-based membrane with impregnated LiPF(6) EC:DEC electrolyte were found to be similar to the cells with commercial Celgard membrane. Conformal EPD coating of the electrode materials by a thin-film ceramic separator is advantageous for high-power operation and safety of batteries.

  11. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries.

    PubMed

    Fürtauer, Siegfried; Effenberger, Herta S; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  12. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-12-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

  13. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    PubMed Central

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-01-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. PMID:25473128

  14. Improved Wide Operating Temperature Range of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  15. Development of Stainless Steel Laminate Li-Ion Pouch Cell for Space Application

    NASA Astrophysics Data System (ADS)

    Ooto, Hiroki; Koide, Kazuya; Ohira, Kenji; Yamamoto, Masahiro; Abe, Hidetoshi; Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, Yu; Hirose, Kazuyuki

    2014-08-01

    This paper describes the development of stainless steel laminate Li-ion pouch battery cells for space application. Currently, the cells have a high specific energy of 118 Wh/kg for 10-Ah cells at the moment. Unlike conventional Li-ion pouch cells for terrestrial use, where the casing is made of aluminum laminate, Li-ion pouch cells made with stainless steel laminate neither expand nor lose their capacity after charge/discharge cycles in vacuum. The results of a mechanical environment test show that the cell also meet the requirements for vibration and pyroshock tolerance during launch.

  16. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  17. Li-Ion Conductivity and Phase Stability of Ca-Doped LiBH4 under High Pressure.

    PubMed

    Mezaki, Takeya; Kuronuma, Yota; Oikawa, Itaru; Kamegawa, Atsunori; Takamura, Hitoshi

    2016-10-17

    The effect of Ca doping on the Li-ion conductivity and phase stability of the rock-salt-type LiBH4 phase emerging under high pressures in the range of gigapascals has been investigated. In situ electrochemical measurements under high pressure were performed using a cubic-anvil-type apparatus. Ca doping drastically enhanced the ionic conductivity of the rock-salt-type phase: the ionic conductivity of undoped and 5 mol %Ca-doped LiBH4 was 2.2 × 10(-4) and 1.4 × 10(-2) S·cm(-1) under 4.0 GPa at 220 °C, respectively. The activation volume of LiBH4-5 mol %Ca(BH4)2, at 3.2 cm(3)·mol(-1), was comparable to that of other fast ionic conductors, such as lithium titanate and NASICONs. Moreover, Ca-doped LiBH4 showed lithium plating-stripping behavior in a cyclic voltammogram. These results indicate that the conductivity enhancement by Ca doping can be attributed to the formation of a LiBH4-Ca(BH4)2 solid solution; however, the solid solution decomposed into the orthorhombic LiBH4 phase and the orthorhombic Ca(BH4)2 phase after unloading the high pressure.

  18. Structure evolution and thermal stability of high-energy density Li-ion battery cathode Li2VO2F

    DOE PAGES

    Wang, Xiaoya; Huang, Yiqing; Ji, Dongsheng; ...

    2017-05-24

    Lithium-ion batteries (LIBs) provide high-energy-density electrochemical energy storage, which plays a central role in advancing technologies ranging from portable electronics to electric vehicles (EVs). However, a demand for lighter, more compact devices and for extended range EVs continues to fuel the need for higher energy density storage systems. Li2VO2F, which is synthesized in its lithiated state, allows two-electron transfer per formula during the electrochemical reaction providing a high theoretical capacity of 462 mAh/g. Herein, the synthesis and electrochemical performance of Li2VO2F are optimized. The thermal stability of Li2VO2F, which is related to the safety of a battery is studied bymore » thermal gravimetric analysis. The structure and vanadium oxidation state evolution along Li cycling are studied by ex-situ X-ray diffraction and absorption techniques. It is shown that the rock-salt structure of pristine Li2VO2F is stable up to at least 250°C, and is preserved upon Li cycling, which proceeds by the solid-solution mechanism. However, not all Li can be removed from the structure upon charge to 4.5 V, limiting the experimentally obtained capacity.« less

  19. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon.

    PubMed

    Soto, Fernando A; Yan, Pengfei; Engelhard, Mark H; Marzouk, Asma; Wang, Chongmin; Xu, Guiliang; Chen, Zonghai; Amine, Khalil; Liu, Jun; Sprenkle, Vincent L; El-Mellouhi, Fedwa; Balbuena, Perla B; Li, Xiaolin

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1) ; ≈ 1/10 of the normal capacity (250 mAh g(-1) ). Unusual selective/preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  20. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    NASA Astrophysics Data System (ADS)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2017-07-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  1. Re-building Daniell Cell with a Li-ion exchange Film

    PubMed Central

    Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2014-01-01

    Daniell cell (i.e. Zn-Cu battery) is widely used in chemistry curricula to illustrate how batteries work, although it has been supplanted in the late 19th century by more modern battery designs because of Cu2+-crossover-induced self-discharge and un-rechargeable characteristic. Herein, it is re-built by using a ceramic Li-ion exchange film to separate Cu and Zn electrodes for preventing Cu2+-crossover between two electrodes. The re-built Zn-Cu battery can be cycled for 150 times without capacity attenuation and self-discharge, and displays a theoretical energy density of 68.3 Wh kg−1. It is more important that both electrodes of the battery are renewable, reusable, low toxicity and environmentally friendly. Owing to these advantages mentioned above, the re-built Daniell cell can be considered as a promising and green stationary power source for large-scale energy storage. PMID:25369833

  2. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Ehrenberg, H.

    2015-05-01

    Safety issues along with the substantially reduced energy and power capabilities of Li-ion cells, operated at low temperatures, pose a technical barrier limiting their use in electric vehicles and aerospace applications. A combined in situ high-resolution neutron powder diffraction and electrochemical study on Li-ion cells of the 18650-type over a temperature range from 230 K to 320 K is reported with a focus on the graphite anode and the low temperature performance of the cell. Instead of a quasi-continuous behavior as observed at ambient temperatures, an anomalous behavior occurs upon discharge at low temperature, primarily reflected in the abrupt character of the LiC12 - to - graphite phase transformation and the unusual temperature dependence of the amount of LiC6. An instability of lithiated graphite phases at temperatures below 250 K is observed, which affects the performance of Li-ion batteries at low temperatures.

  3. The limits of low-temperature performance of Li-ion cells

    NASA Technical Reports Server (NTRS)

    Huang, C.; Sakamoto, J.; Wolfenstine, J.; Surampudi, S.

    2000-01-01

    The results of electrode and electrolyte studies reveal that the poor low-temperature (<-30 degrees C) performance of Li-ion cells is mainly caused by the carbon electrodes and not the organic electrolytes and solid electrolyte interphase, as previously suggested. It is suggested that the main causes for the poor performance in the carbon electrodes are (i) the low value and concentration depedence of the Li diffusivity and (ii) limited Li capacity.

  4. The limits of low-temperature performance of Li-ion cells

    NASA Technical Reports Server (NTRS)

    Huang, C.; Sakamoto, J.; Wolfenstine, J.; Surampudi, S.

    2000-01-01

    The results of electrode and electrolyte studies reveal that the poor low-temperature (<-30 degrees C) performance of Li-ion cells is mainly caused by the carbon electrodes and not the organic electrolytes and solid electrolyte interphase, as previously suggested. It is suggested that the main causes for the poor performance in the carbon electrodes are (i) the low value and concentration depedence of the Li diffusivity and (ii) limited Li capacity.

  5. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  6. Primary ion dependence of LiF direct recoil intensities and ion fractions

    NASA Astrophysics Data System (ADS)

    Chen, J. N.; Shi, M.; Rabalais, J. W.

    1987-02-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV He+, Ne+, Ar+, Kr+, and Xe+ ions impingent on surfaces of LiF thin films have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals alone are used to calculate positive and negative ion fractions Y+,- from DR events. The oppositely charged ion fractions have a distinctly different behavior as a function of kinetic energy. The Y+ values exhibit a threshold at low energy followed by a plateau region at higher energy while the Y- values are maximum in the low energy region followed by a decreasing yield as energy increases. The energy dependence of Y+,- is interpreted in terms of the recently developed model [J. Chem. Phys. 85, 3615 (1986)] for electronic charge exchange in keV ion/surface collisions which considers electron promotions in the close atomic encounter and resonant and Auger transitions along the outgoing trajectory. The ionization potential of the primary ion relative to the energy levels of the target atom is shown to have a large influence on charge exchange in the close encounter. The ratio of direct recoil to scattering particle flux increases by a factor of >102 from He to Xe; scattering and recoil cross sections are used to model this process.

  7. On the redistribution of 6Li+ ions implanted into polypropylene foils

    NASA Astrophysics Data System (ADS)

    Fink, D.; Behar, M.; Kaschny, J.; Klette, R.; Chadderton, L. T.; Hnatowicz, V.; Vacik, J.; Wang, L.

    1996-04-01

    6Li+ (150 keV) was implanted into thin polypropylene foils at fluences of 1 x 1013 to 1 x 1014 cm-2. Subsequent neutron depth profiling measurements of the Li distributions revealed considerable deviations from the expected ballistic range profiles. This Li redistribution was simulated by a numerical computer calculation. The best fit between measurements and simulations was obtained by assuming that ( i) Li redistributes immediately after its ballistic slowing-down, ( ii) the Li mobility is enhanced in the radiation-damaged polymer region, the local diffusion enhancement being controlled by the target's electronic damage, ( iii) mobile Li is readily trapped at radiation-induced defects, their density being proportional to the target's electronic damage, ( iv) these traps are saturable ones, and ( v) Li migration is not restricted to the ion track region, but proceeds also through the neighboring unirradiated bulk, though with slower speed.

  8. Low-lying states of Li 3H: Is there an ion-pair minimum?

    NASA Astrophysics Data System (ADS)

    Talbi, Dahbia; Saxon, Roberta P.

    1989-05-01

    The 1 1A', 1 1A″, 1 3A', and 1 3A″ states of Li 3H have been investigated at the MCSCF/SOCI level. The global minimum is a planar conformation of 1A' symmetry. A local minimum on the same potential surface at a C 3v pyramidal geometry, of mixed ion-pair and covalent character, is found at a relative energy of 20.30 kcal/mol. The barrier height for isomerization is predicted to be 1.3 kcal/mol. The correlation diagram linking states of Li 3H to those of Li 3 + H, LiH + Li 2 and Li 2H + Li is presented.

  9. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  10. Characterization of ion beam modified ceramic wear surfaces using Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wei, W.; Lankford, J.

    1987-01-01

    An investigation of the surface chemistry and morphology of the wear surfaces of ceramic material surfaces modified by ion beam mixing has been conducted using Auger electron spectroscopy and secondary electron microscopy. Studies have been conducted on ceramic/ceramic friction and wear couples made up of TiC and NiMo-bonded TiC cermet pins run against Si3N4 and partially stabilized zirconia disc surfaces modified by the ion beam mixing of titanium and nickel, as well as ummodified ceramic/ceramic couples in order to determine the types of surface changes leading to the improved friction and wear behavior of the surface modified ceramics in simulated diesel environments. The results of the surface analyses indicate that the formation of a lubricating oxide layer of titanium and nickel, is responsible for the improvement in ceramic friction and wear behavior. The beneficial effect of this oxide layer depends on several factors, including the adherence of the surface modified layer or subsequently formed oxide layer to the disc substrate, the substrate materials, the conditions of ion beam mixing, and the environmental conditions.

  11. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    NASA Astrophysics Data System (ADS)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  12. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    SciTech Connect

    Byles, B. W.; West, P.; Cullen, D. A.; More, K. L.; Pomerantseva, E.

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA h g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.

  13. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    DOE PAGES

    Byles, B. W.; West, P.; Cullen, D. A.; ...

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA hmore » g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.« less

  14. Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar; Surampudi, Subbarao

    2003-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to -60 C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 5 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures < -20 C.

  15. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-02

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.

  16. The Anion Effect on Li(+) Ion Coordination Structure in Ethylene Carbonate Solutions.

    PubMed

    Jiang, Bo; Ponnuchamy, Veerapandian; Shen, Yuneng; Yang, Xueming; Yuan, Kaijun; Vetere, Valentina; Mossa, Stefano; Skarmoutsos, Ioannis; Zhang, Yufan; Zheng, Junrong

    2016-09-15

    Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li(+)-bound and Li(+)-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li(+) is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li(+) directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li(+) ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.

  17. The Relationships Between Structures and Microwave Dielectric Properties of Li2Zn1-x Co x Ti3O8 Ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Dong, Zuowei; Zheng, Yong

    2017-08-01

    Li2Zn1-x Co x Ti3O8 (0.02 ≤ x≤1) ceramics were synthesized by the conventional solid-state ceramic route. The relationships between the structures and microwave dielectric properties of Li2Zn1-x Co x Ti3O8 ceramics were thoroughly studied by structure refinement. The x-ray diffraction patterns showed that all the compositions exhibited a single spinel structure. The substitution of Co could decrease the densification temperatures of Li2Zn1-x Co x Ti3O8 ceramics. The dielectric constants (ɛ r ) were affected by the dielectric polarizabilities. The variation of quality factor (Q × f) values was consistent with that of packing fractions. The temperature coefficients of resonant frequency (τ f) moved towards the positive due to the composition. Typically, the Li2Zn0.94Co0.06Ti3O8 ceramic sintered at 1075°C for 4 h exhibited ɛ r = 26.2, Q × f = 90,400 GHz, τ f = -11.4 ppm/°C, and the Li2Zn0.4Co0.6Ti3O8 ceramic sintered at 1050°C for 4 h showed ɛ r = 25.5, Q × f = 59,300 GHz, τ f = -1.5 ppm/°C.

  18. The phase compositions and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Xuepeng; Hu, Jie; Chen, Haoyuan; Xu, Wensheng; Li, Shuai

    2017-08-01

    The Li2Zn(Ti1-xSnx)3O8 (0.02≤x≤0.20) ceramics were prepared by the conventional solid-state ceramic route. The sintering behavior, phase compositions, microstructures and microwave dielectric properties of Li2Zn(Ti1-xSnx)3O8 ceramics were thoroughly investigated. The XRD patterns of Li2Zn(Ti1-xSnx)3O8 ceramics exhibited a single spinel as the main phase in the x value range of 0.02-0.08. The dielectric constants decreased linearly with increasing the substitution of Sn, which was mainly controlled by dielectric polarizabilities and secondary phase. The variation of Q×f values was dependent on average grain sizes and secondary phase. The τf values of Li2Zn(Ti1-xSnx)3O8 ceramics became more negative with higher substitution of Sn, which was related to the variations of their cell volumes. Typically, the Li2Zn(Ti0.92Sn0.08)3O8 ceramic sintered at 1075 °C for 4h exhibited good microwave dielectric properties: ɛr= 24.4, Q×f=89300 GHz, τf= -16.0 ppm/°C.

  19. High-throughput computational design of cathode coatings for Li-ion batteries

    PubMed Central

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C.

    2016-01-01

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2. PMID:27966537

  20. High-throughput computational design of cathode coatings for Li-ion batteries.

    PubMed

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C

    2016-12-14

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.

  1. High-throughput computational design of cathode coatings for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C.

    2016-12-01

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.

  2. Study of LiBOB compound synthesis by vacuum process as lithium ion battery electrolytes

    NASA Astrophysics Data System (ADS)

    Lestariningsih, T.; Wigayati, E.; Ratri, C.; Sabrina, Q.

    2017-04-01

    Lithium bis (oxalato) borate or LiBOB is potential candidate to substitute LiPF6 which has many problems in lithium ion batteries. Many studies have been synthesized of electrolyte salt LiBOB to improve performance as electrolyte lithium ion batteries. In this paper we have studied the synthesis of compounds LiBOB undergoing pre-heat treatment in a vacuum. LiBOB was synthesized by mixing technical grade raw materials H2C2O4.2H2O, LiOH and H3BO3. The mixture H2C2O4.2H2O and LiOH was preheated at 60 °C for 2 h before adding H3BO3 in several time to be mortared in vacuum dryer, the mixture of the three starting materials was preheated in two steps at 70 °C for 6 h and the third step of preheating at a temperature of 100 °C. This powder was then characterized using XRD, FTIR and BET. The characterization results of LiBOB compared to commercial LiBOB powder. The XRD analysis results showed that the sample have formed LiBOB and LiBOB hydrate phase, while FTIR analysis results show the formation of functional groups of LiBOB. In addition, the BET results shows the surface area of synthesized LiBOB is 75.994 m2/g, close the surface area of commercial LiBOB, i.e 108.776 m2/g.

  3. Li-Ion Batteries from LiFePO4 Cathode and Anatase/Graphene Composite Anode for Stationary Energy Storage

    SciTech Connect

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vilayanur V.; Bae, In-Tae; Wang, Wei; Nie, Zimin; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo; Duong, Tien Q.

    2009-11-06

    Li-ion batteries based on LiFePO4 cathode and anatase TiO2/graphene anode were investigated for possible stationary energy storage application. Fine-structured LiFePO4 was synthesized by novel molten surfactant approach. Anatase TiO2/graphene nanocomposite was prepared via self assembly method. The full cell that operated at flat 1.6V demonstrated negligible fade after more than 700 cycles. The LiFePO4/TiO2 combination Li-ion battery is inexpensive, environmentally benign, safe and stable. Therefore, it can be practically applied as stationary energy storage for renewable power sources.

  4. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  5. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  6. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.

    PubMed

    Wu, Jian-Fang; Pang, Wei Kong; Peterson, Vanessa K; Wei, Lu; Guo, Xin

    2017-04-12

    All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm(-1) at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g(-1) and good cycling stability with 110 mAh g(-1) retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.

  7. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    PubMed Central

    Chen, Liang; Gu, Qingwen; Zhou, Xufeng; Lee, Saixi; Xia, Yonggao; Liu, Zhaoping

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. One involves Li+ insertion/extraction reaction, and the other mainly relates to Na+ extraction/insertion reaction. Two batteries exhibit specific energy of 17 Wh kg−1 and 25 Wh kg−1 based on the total weight of active electrode materials, respectively. As well, aqueous LiMn2O4/Na0.22MnO2 battery is capable of separating Li+ and Na+ due to its specific mechanism unlike the traditional “rocking-chair” lithium-ion batteries. Hence, the Li+/Na+ mixed-ion batteries offer promising applications in energy storage and Li+/Na+ separation. PMID:23736113

  8. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries.

  9. The dynamics on migrations of Li + ion and Li atom at 700 K around the circumference of graphite cluster model: A direct molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shimizu, Akira; Tachikawa, Hiroto

    2001-05-01

    For the diffusion species of Li + ion and Li atom stabilized at the same site of the circumference of the graphite, migration processes are simulated using the direct molecular orbital (MO) dynamics calculation on the hydrogen terminated cluster model, C54H18, at AM1 level. Although Li + forms ionic bond with two carbon atoms in the circumference, Li bonds covalently with one atom through sp3 hybrid orbital at 0 K. At 700 K, Li+ dissociated goes across the bulk and escapes from the cluster model after 0.6 ps. On the other hand, Li circulates only around the carbon atom, keeping the covalent bond.

  10. Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aurbach, Doron; Markovsky, Boris; Salitra, Gregory; Markevich, Elena; Talyossef, Yossi; Koltypin, Maxim; Nazar, Linda; Ellis, Brian; Kovacheva, Daniella

    In this paper we review some critical aspects related to interactions between cathode materials and electrolyte solutions in lithium-ion batteries. Previous results are briefly summarized, together with the presentation of new results. This review deals with the basic anodic stability of commonly-used electrolyte solutions for Li-ion batteries (mostly based on alkyl carbonate solvents). We discuss herein the surface chemistry of the following cathode materials: LiCoO 2, V 2O 5, LiMn 2O 4, LiMn 1.5Ni 0.5O 4, LiMn 0.5Ni 0.5O 2, and LiFePO 4. The methods applied included solution studies by ICP, Raman, X-ray photoelectron and FTIR spectroscopies, and electron microscopy, all in conjunction with electrochemical techniques. General phenomena are the possible dissolution of transition metal ions from these materials, which leads to changes in the active mass and a retardation in the electrode kinetics due to the formation of blocking surface films. These phenomena are significant mostly at elevated temperatures and in electrolyte solutions containing acidic species. Water-contaminated LiPF 6 solutions can reach a high concentration of acidic species (e.g., HF), which is detrimental to the performance of materials such as LiCoO 2 and LiFePO 4. Both LiMn 1.5Ni 0.5O 4 and LiMn 0.5Ni 0.5O 2, even when used as nanomaterials, show a high stability in commonly-used electrolyte solutions at high temperatures. This stability is attributed to unique surface chemistry that is correlated to the presence of Ni ions in the lattice.

  11. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Junli; Xia, Yonggao; Han, Shaojie; Fang, Lifeng; Pan, Meizi; Xu, Xiaoxiong; Liu, Zhaoping

    2015-01-01

    Since 5 V lithium ion batteries have attracted more and more attentions and are deemed to be an important tendency in the future, the matched design of the separators has also become a necessary and significant work. In this work, the lithium ionic conducting glass ceramic Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based inorganic-organic composite separator (LAGP-PP) is prepared. Compared with the pristine PP separator, the LAGP-PP separator owns enhanced thermal stability and wettability. Meanwhile, the LAGP-PP separator shows higher ion conductivity than the traditional Al2O3 coated PP separator due to the more facile lithium ion diffusion channels in the coating layer. The superior C-rate capacity and cyclability in the LiNi0.5Mn1.5O4 based 5 V lithium ion batteries indicate that the LAGP-PP separator is a good alternative for the traditional inert inorganic ceramic coated polyolefin separators and is a kind of promising candidate separator for the high voltage lithium ion batteries.

  12. Li+ solvation and kinetics of Li+-BF4-/PF6- ion pairs in ethylene carbonate. A molecular dynamics study with classical rate theories

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Mei; Dang, Liem X.

    2017-10-01

    Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ethylene carbonate (EC) exchange process between the first and second solvation shells around Li+ and the dissociation kinetics of ion pairs Li+-[BF4] and Li+-[PF6] in this solvent. We calculate the exchange rates using transition state theory and correct them with transmission coefficients computed by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found that the residence times of EC around Li+ ions varied from 60 to 450 ps, depending on the correction method used. We found that the relaxation times changed significantly from Li+-[BF4] to Li+-[PF6] ion pairs in EC. Our results also show that, in addition to affecting the free energy of dissociation in EC, the anion type also significantly influences the dissociation kinetics of ion pairing.

  13. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  14. An experimentally validated transient thermal model for cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    Shah, K.; Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-12-01

    Measurement and modeling of thermal phenomena in Li-ion cells is a critical research challenge that directly affects both performance and safety. Even though the operation of a Li-ion cell is in most cases a transient phenomenon, most available thermal models for Li-ion cells predict only steady-state temperature fields. This paper presents the derivation, experimental validation and application of an analytical model to predict the transient temperature field in a cylindrical Li-ion cell in response to time-varying heat generation within the cell. The derivation is based on Laplace transformation of governing energy equations, and accounts for anisotropic thermal conduction within the cell. Model predictions are in excellent agreement with experimental measurements on a thermal test cell. The effects of various thermophysical properties and parameters on transient thermal characteristics of the cell are analyzed. The effect of pulse width and cooling time for pulsed operation is quantified. The thermal response to multiple cycles of discharge and charge is computed, and cell-level trade-offs for this process are identified. The results presented in this paper may help understand thermal phenomena in Li-ion cells, and may contribute towards thermal design and optimization tools for energy conversion and storage systems based on Li-ion cells.

  15. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.

    PubMed

    Nayaka, Girish Praveen; Pai, Karkala Vasantakumar; Manjanna, Jayappa; Keny, Sangita J

    2016-05-01

    New organic acid mixtures have been investigated to recover the valuable metal ions from the cathode material of spent Li-ion batteries. The cathodic active material (LiCoO2) collected from spent Li-ion batteries (LIBs) is dissolved in mild organic acids, iminodiacetic acid (IDA) and maleic acid (MA), to recover the metals. Almost complete dissolution occurred in slightly excess (than the stoichiometric requirement) of IDA or MA at 80°C for 6h, based on the Co and Li released. The reducing agent, ascorbic acid (AA), converts the dissolved Co(III)- to Co(II)-L (L=IDA or MA) thereby selective recovery of Co as Co(II)-oxalate is possible. The formation of Co(III)- and Co(II)-L is evident from the UV-Vis spectra of the dissolved solution as a function of dissolution time. Thus, the reductive-complexing dissolution mechanism is proposed here. These mild organic acids are environmentally benign unlike the mineral acids.

  16. Electrical conductivity of as-grown and oxidized MgO:Li crystals implanted with Li ions

    NASA Astrophysics Data System (ADS)

    Tardío, M.; Ramírez, R.; González, R.; Pinto, J. V.; da Silva, R. C.; Alves, E.; Chen, Y.

    2004-06-01

    Alternating and direct current electrical measurements between 293 and 450 K were used to characterize the electrical conductivity of the implanted region in as-grown and oxidized MgO:Li single crystals. Both types of crystals were implanted with Li + ions with an energy of 175 keV and a fluence of 1 × 10 17 ions/cm 2. The electrical conductivity of the implanted regions was ≈14 and 7 orders of magnitude higher than that of the unimplanted areas, respectively. Electrical measurements at different temperatures of the implanted regions suggest thermally activated processes with activation energies of about 0.14 and 0.06 eV in as-grown and oxidized samples, respectively. In both type of crystals, the I- V characteristics reveal that the contacts are ohmic, in contrast to blocking contacts in unimplanted crystals. The enhancement in conductivity observed in the implanted region is associated with the intrinsic defects created by the implantation, rather than with the implanted Li ions. The differences in both conductivity and activation energy relative to undoped crystals are likely due to free carriers already present in different concentrations in as-grown and oxidized MgO:Li crystals before implantation.

  17. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  18. Influence of temperature on luminescence of terbium ions in LiNbO{sub 3}

    SciTech Connect

    Ryba-Romanowski, W.; Golab, S.; Dominiak-Dzik, G.; Palatnikov, M. N.; Sidorov, N. V.

    2001-06-04

    Single crystals of LiNbO{sub 3} doped with terbium were grown by the Czochralski method and their optical properties were examined. It has been found that, in contrast to isostructural LiTaO{sub 3}:Tb, the terbium ions in LiNbO{sub 3} exhibit intense luminescence at low temperatures only, up to about 150 K. At this temperature, a luminescence quenching mechanism with activation energy of 0.22 eV is switched on. As a consequence, the luminescence of LiNbO{sub 3}:Tb is reduced to a negligible level at room temperature. {copyright} 2001 American Institute of Physics.

  19. Tuning Li-Ion Diffusion in α-LiMn1-xFexPO4 Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries.

    PubMed

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting; Wang, Hongbin; Wang, Ziqi; Liu, Chaokun; Zeng, Hua; Huang, Qingzhen; Ren, Yang; Wang, Chongmin; Zhang, Wei; Pan, Feng

    2017-08-09

    Olivine-structured LiMn1-xFexPO4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO4, which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn1-xFexPO4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMn0.5Fe0.5PO4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn1-xFexPO4 nanocrystals by inducing high concentrations of Fe(2+)-Li(+) antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g(-1) at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn1-xFexPO4, which is first reported in this work) embedded in α-LiMn0.5Fe0.5PO4. Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li(+) diffusion along the [100] and/or [001] directions that was activated by the high density of Fe(2+)-Li(+) antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe(2+)-Li(+) antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn1-xFexPO4 nanocrystals can be tuned by generating new Li(+) tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.

  20. [100]-Oriented LiFePO4 Nanoflakes toward High Rate Li-Ion Battery Cathode.

    PubMed

    Li, Zhaojin; Peng, Zhenzhen; Zhang, Hui; Hu, Tao; Hu, Minmin; Zhu, Kongjun; Wang, Xiaohui

    2016-01-13

    [100] is believed to be a tough diffusion direction for Li(+) in LiFePO4, leading to the belief that the rate performance of [100]-oriented LiFePO4 is poor. Here we report the fabrication of 12 nm-thick [100]-oriented LiFePO4 nanoflakes by a simple one-pot solvothermal method. The nanoflakes exhibit unexpectedly excellent electrochemical performance, in stark contrast to what was previously believed. Such an exceptional result is attributed to a decreased thermodynamic transformation barrier height (Δμb) associated with increased active population.

  1. Uniform second Li ion intercalation in solid state ɛ-LiVOPO4

    NASA Astrophysics Data System (ADS)

    Wangoh, Linda W.; Sallis, Shawn; Wiaderek, Kamila M.; Lin, Yuh-Chieh; Wen, Bohua; Quackenbush, Nicholas F.; Chernova, Natasha A.; Guo, Jinghua; Ma, Lu; Wu, Tianpin; Lee, Tien-Lin; Schlueter, Christoph; Ong, Shyue Ping; Chapman, Karena W.; Whittingham, M. Stanley; Piper, Louis F. J.

    2016-08-01

    Full, reversible intercalation of two Li+ has not yet been achieved in promising VOPO4 electrodes. A pronounced Li+ gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x-ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li+ gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li+ intercalation is a prerequisite for the formation of intermediate phases Li1.50VOPO4 and Li1.75VOPO4. The evolution from LiVOPO4 to Li2VOPO4 via the intermediate phases is confirmed by direct comparison between O K-edge absorption spectroscopy and density functional theory.

  2. Uniform second Li ion intercalation in solid state ϵ-LiVOPO{sub 4}

    SciTech Connect

    Wangoh, Linda W.; Quackenbush, Nicholas F.; Sallis, Shawn; Wiaderek, Kamila M.; Ma, Lu; Wu, Tianpin; Chapman, Karena W.; Lin, Yuh-Chieh; Ong, Shyue Ping; Wen, Bohua; Chernova, Natasha A.; Whittingham, M. Stanley; Guo, Jinghua; Lee, Tien-Lin; Schlueter, Christoph; Piper, Louis F. J.

    2016-08-01

    Full, reversible intercalation of two Li{sup +} has not yet been achieved in promising VOPO{sub 4} electrodes. A pronounced Li{sup +} gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO{sub 4} cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li{sup +} gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li{sup +} intercalation is a prerequisite for the formation of intermediate phases Li{sub 1.50}VOPO{sub 4} and Li{sub 1.75}VOPO{sub 4}. The evolution from LiVOPO{sub 4} to Li{sub 2}VOPO{sub 4} via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  3. Uniform second Li ion intercalation in solid state {var_epsilon}-LiVOPO4

    SciTech Connect

    Wangoh, Linda W.; Sallis, Shawn; Wiaderek, Kamila M.; Lin, Yuh-Chieh; Wen, Bohua; Quackenbush, Nicholas F.; Chernova, Natasha A.; Guo, Jinghua; Ma, Lu; Wu, Tianpin; Lee, Tien-Lin; Schlueter, Christoph; Ong, Shyue Ping; Chapman, Karena W.; Whittingham, M. Stanley; Piper, Louis F. J.

    2016-08-01

    Full, reversible intercalation of two Li+ has not yet been achieved in promising VOPO4 electrodes. A pronounced Li+ gradient has been reported in the low voltage window (i.e. second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e first lithium reaction). Here we employ a combination of hard and soft x–ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li+ gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li+ intercalation is a prerequisite for the formation of intermediate phases Li1:50VOPO4 and Li1:75VOPO4. The evolution from LiVOPO4 to Li2VOPO4 via the intermediate phases is confirmed by direct comparison between O K–edge absorption spectroscopy and density functional theory.

  4. Raman spectroscopy, dielectric properties and phase transitions of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics

    SciTech Connect

    Niewiadomski, Adrian; Kania, Antoni; Kugel, Godefroy E.; Hafid, Mustapha; Sitko, Dorota

    2015-05-15

    Highlights: • First Raman scattering studies of Ag{sub 0.96}Li{sub 0.04}NbO{sub 3}, allowed us to correlate temperature evolution of relaxational frequency γ{sub R}(T) with the Nb-ion dynamics and showed its changes at freezing temperature and ferrielectric transition. - Abstract: Silver lithium niobates Ag{sub 1−x}Li{sub x}NbO{sub 3} are promising lead free piezoelectrics. Good quality Ag{sub 0.96}Li{sub 0.04}NbO{sub 3} ceramics were obtained. Dielectric and DSC studies showed that, in comparison to AgNbO{sub 3,} temperatures of phase transitions slightly decrease. Dielectric studies pointed to enhancement of polar properties. Remnant polarisations achieves value of 0.6 μC/cm{sup 2}. Maximum of ϵ(T) dependences related to the relaxor-like ferroelectric/ferrielectric M{sub 1}–M{sub 2} transition becomes higher and more frequency dependent. Analysis of Raman spectra showed that two modes at 50 and 194 cm{sup −1} exhibit significant softening. Low frequency part of the Raman spectra which involve central peak and soft mode were analysed using two models. CP was assumed as relaxational vibration and described by Debye function. The slope of temperature dependences of relaxational frequency γ{sub R}(T) changes at approximately 470 and 330 K, indicating that slowing down process of relaxational vibrations changes in the vicinity of partial freezing of Nb-ion dynamics T{sub f} and further freezing at ferroelectric/ferrielectric phase transition.

  5. Spatially resolved in operando neutron scattering studies on Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Pirling, T.; Ehrenberg, H.

    2014-01-01

    Spatially-resolved neutron diffraction has been applied to probe the lithium distribution in radial direction of a commercial Li-ion cell of 18650-type. The spatial evolution of selected Bragg reflections for LiCoO2 (positive electrode, "cathode") and graphite and lithium intercalated graphite (negative electrode, "anode") was observed and evaluated by taking beam attenuation and cell geometry effects into account. No evidences for lithium inhomogeneities have been found for the investigated set of cells. Computed neutron tomography using a monochromatic neutron beam confirmed the homogeneous lithium distribution. The relevance of the monochromatic beam to neutron imaging studies of Li-ion cells is discussed.

  6. Department of Li/sup /minus// and H/sup /minus// ion sources

    SciTech Connect

    Walther, S.R.

    1988-12-01

    Sources of Li/sup /minus// and H/sup /minus// ions are needed for diagnostic neutral beam and for current drive in fusion plasmas. Previous efforts to generate Li/sup /minus// beams have focused on electron capture in a gas or production on a low work function surface in a plasma. Volume production of Li/sup /minus// by dissociative attachment of optically pumped lithium molecules has also been studied. This thesis presents the first experimental results for volume production of a Li/sup /minus// ion beam from a plasma discharge. A theoretical model for volume production of Li/sup /minus// ions and separate model for Li/sub 2/ production in the lithium discharge are developed to explain the experimental results. The model is in good agreement with the experiment and shows favorable parameter scalings for further improvement of the Li/sup /minus// ion source. A /sup 6/Li/degree/ diagnostic neutral beam based on this ion source is proposed for measurement of magnetic pitch angle in the International Thermonuclear Experimental Reactor (ITER). Previous efforts in developing H/sup /minus// ion sources have concentrated on volume production in a plasma discharge. Experiments to improve the H/sup /minus// current density from a magnetically filtered multicusp ion source by seeding the discharge with cesium or barium have been conducted. A substantial (> factor of five) increase in H/sup /minus// output is achieved for both cesium and barium addition. Further experiments with barium have shown that the increase is due to H/sup /minus// production on the anode walls. The experiments with cesium are consistent with this formation mechanism. These results show that this new type of 'converterless' surface production H/sup /minus// source provides greatly improved performance when compared to a volume H/sup /minus// source. 92 refs., 47 figs.

  7. Polyacrylate bound TiSb2 electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gómez-Cámer, Juan Luis; Novák, Petr

    2015-01-01

    Crystalline TiSb2 electrodes prepared using two different binders, PVDF and lithium polyacrylate (LiPAA), were examined as negative electrodes in Li-ion batteries. The cycle life of the electrodes is strongly influenced by the choice of the binder, reaching ca. 120 cycles with LiPAA vs. ca. 90 cycles achieved with the common binder PVDF. Moreover, rate capability is improved using LiPAA binder. The reduction in TiSb2 particle size is shown to influence the average practical specific charge at high charge/discharge rates. The reasons for this improvement are discussed and the optimized electrode was demonstrated in full Li-ion cells.

  8. Fabrication of LiF/Fe/Graphene nanocomposites as cathode material for lithium-ion batteries.

    PubMed

    Ma, Ruguang; Dong, Yucheng; Xi, Liujiang; Yang, Shiliu; Lu, Zhouguang; Chung, Chiyuen

    2013-02-01

    Homogeneous LiF/Fe/Graphene nanocomposites as cathode material for lithium ion batteries have been synthesized for the first time by a facile two-step strategy, which not only avoids the use of highly corrosive reagents and expensive precursors but also fully takes advantage of the excellent electronic conductivity of graphene. The capacity remains higher than 150 mA h g(-1) after 180 cylces, indicating high reversible capacity and stable cyclability. The ex situ XRD and HRTEM investigations on the cycled LiF/Fe/G nanocomposites confirm the formation of FeF(x) and the coexistence of LiF and FeF(x) at the charged state. Therefore, the heterostructure nanocomposites of LiF/Fe/Graphene with nano-LiF and ultrafine Fe homogeneously anchored on graphene sheets could open up a novel avenue for the application of iron fluorides as high-performance cathode materials for lithium-ion batteries.

  9. Formation Of The Spinel Phase In The Layered Composite Cathode Used In Li-Ion Batteries

    SciTech Connect

    Gu, Meng; Belharouak, Ilias; Zheng, Jianming; Wu, Huiming; Xiao, Jie; Genc, Arda; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-01-22

    Pristine Li-rich layered cathodes, such as Li1.2Ni0.2Mn0.6O2 and Li1.2Ni0.1Mn0.525Co0.175O2, were identified to exist in two different structures: LiMO2 R-3m and Li2MO3 C2/m phases. Upon charge/discharge cycling, both phases gradually transform to the spinel structure. The transition from LiMO2 R-3m to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li2MO3 C2/m to spinel involves removal of Li+ and O2-, which produces a large lattice strain and leads to the breakdown of the parent lattice and therefore the newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some particles, which is believed to be the consequence of the breakdown of the lattice and vacancy condensation upon removal of lithium ions. The presently observed structure transition characteristics provide direct reasons for the observed gradual capacity loss and poor rate performance of the layered composite. Ultimately it also provides clues about how to improve the materials structure with potential improved performance.

  10. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  11. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  12. Enhanced up-conversion and temperature-sensing behaviour of Er(3+) and Yb(3+) co-doped Y2Ti2O7 by incorporation of Li(+) ions.

    PubMed

    Singh, B P; Parchur, A K; Ningthoujam, R S; Ramakrishna, P V; Singh, S; Singh, P; Rai, S B; Maalej, R

    2014-11-07

    Y2Ti2O7:Er(3+)/Yb(3+) (EYYTO) phosphors co-doped with Li(+) ions were synthesized by a conventional solid-state ceramic method. X-ray diffraction studies show that all the Li(+) co-doped EYYTO samples are highly crystalline in nature with pyrochlore face centred cubic structure. X-ray photon spectroscopy studies reveal that the incorporation of Li(+) ions creates the defects and/or vacancies associated with the sample surface. The effect of Li(+) ions on the photoluminescence up-conversion intensity of EYYTO was studied in detail. The up-conversion study under ∼976 nm excitation for different concentrations of Li(+) ions showed that the green and red band intensities were significantly enhanced. The 2 at% Li(+) ion co-doped EYYTO samples showed nearly 15- and 8-fold enhancements in green and red band up-converted intensities compared to Li(+) ion free EYYTO. The process involved in the up-conversion emission was evaluated in detail by pump power dependence, the energy level diagram, and decay analysis. The incorporation of Li(+) ions modified the crystal field around the Er(3+) ions, thus improving the up-conversion intensity. To investigate the sensing application of the synthesized phosphor materials, temperature-sensing performance was evaluated using the fluorescence intensity ratio technique. Appreciable temperature sensitivity was obtained using the synthesized phosphor material, indicating its applicability as a high-temperature-sensing probe. The maximum sensitivity was found to be 0.0067 K(-1) at 363 K.

  13. Damage profile examination on ion irradiated PEEK by 6Li doping and neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Švorčík, V.; Kobayashi, Y.; Fink, D.; Klett, R.

    1998-05-01

    Depth structure of radiation damaged surface layer of poly(aryl-ether-ether ketone) (PEEK) a polymer was studied using doping with 6Li atoms combined with nondestructive neutron depth profiling (NDP) method. The PEEK foils were irradiated with 2 MeV O + ions up to a fluence of 6 × 10 14 ions/cm 2. The damage profiles in the samples were visualized by doping of the samples with 5 M LiCl water solution at room temperature (RT) for 22.5 h. The Li ions are trapped on ion-produced radiation defects and the Li depth profiles are determined by the NDP method. NDP experiments were performed before and after leaching of excess of lithium atoms from the samples in distilled water at RT for 2 h. The leaching leads to dramatic changes in the Li depth distribution which, at low ion fluences, is similar in shape to the electronic energy loss profile of 2 MeV O + ions. For the higher fluences double-peaked profile occurs, which indicates a competition between different degradation processes in ion irradiated polymer.

  14. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    SciTech Connect

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-24

    Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  15. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).

  16. In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices.

    PubMed

    Xu, Xu; Yan, Mengyu; Tian, Xiaocong; Yang, Chuchu; Shi, Mengzhu; Wei, Qiulong; Xu, Lin; Mai, Liqiang

    2015-06-10

    In the past decades, Li ion batteries are widely considered to be the most promising rechargeable batteries for the rapid development of mobile devices and electric vehicles. There arouses great interest in Na ion batteries, especially in the field of static grid storage due to their much lower production cost compared with Li ion batteries. However, the fundamental mechanism of Li and Na ion transport in nanoscale electrodes of batteries has been rarely experimentally explored. This insight can guide the development and optimization of high-performance electrode materials. In this work, single nanowire devices with multicontacts are designed to obtain detailed information during the electrochemical reactions. This unique platform is employed to in situ investigate and compare the transport properties of Li and Na ions at a single nanowire level. To give different confinement for ions and electrons during the electrochemical processes, two different configurations of nanowire electrode are proposed; one is to fully immerse the nanowire in the electrolyte, and the other is by using photoresist to cover the nanowire with only one end exposed. For both configurations, the conductivity of nanowire decreases after intercalation/deintercalation for both Li and Na ions, indicating that they share the similar electrochemical reaction mechanisms in layered electrodes. However, the conductivity degradation and structure destruction for Na ions is more severe than those of Li ions during the electrochemical processes, which mainly results from the much larger volume of Na ions and greater energy barrier encountered by the limited layered spaces. Moreover, the battery performances of coin cells are compared to further confirm this conclusion. The present work provides a unique platform for in situ electrochemical and electrical probing, which will push the fundamental and practical research of nanowire electrode materials for energy storage applications.

  17. Suppressive effect of Li 2CO 3 on initial irreversibility at carbon anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Kook; Chung, Kwang-il; Kim, Woo-Seong; Sung, Yung-Eun; Park, Su-Moon

    The initial capacity irreversibility caused by film formation on a mesophase pitch-based carbon fibre (MPCF) electrode surface is studied with the goal of improving the performance of a lithium-ion battery. The addition of Li 2CO 3 to a solution of 1 M LiPF 6/EC:DFC (1:1, v/v) results in a decrease in the initial irreversible capacity caused by solvent decomposition and the passivation film on the MPCF electrode surface. Suppression of the initial irreversible capacity at the anode electrode by the introduction of Li 2CO 3 is investigated by means of chronopotentiometry, cyclic voltammetry, ac impedance spectroscopy, FTIR, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. It is concluded that the suppression is caused mainly by prevention of solvent decomposition and by structural change in the passivation film on the anode electrode.

  18. Synthesis and Electrochemical Properties of LiFePO4/C for Lithium Ion Batteries.

    PubMed

    Gao, Hong; Wang, Jiazhao; Yin, Shengyu; Zheng, Hao; Wang, Shengfu; Feng, Chuanqi; Wang, Shiquan

    2015-03-01

    LiFePO4/C was prepared through a facile rheological phase reaction method by using Fe3(PO4)2, Li3PO4 · 8H2O, and glucose as reactants. The LiFePO4/C samples were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The electrochemical properties of the samples were investigated. The results show that the LiFePO4/C samples have single-phase olivine-type structure, and their particles feature a spherical shape. The carbon coating on the particles of LiFePO4 is about 1.8% of the LiFePO4/C by weight. The particle size was distributed from 0.2 to 1 µm. The initial discharge capacity of LiFePO4/C reached 154 mA h/g at 0.1 C. The retained discharge capacity of LiFePO4/C was 152.9 mA h g(-1) after 50 cycles. The LiFePO4/C also showed better cycling performance than that of the bare LiPeO4 at a higher charge/discharge rate (1 C). The LIFePO4/C prepared in this way could be a promising cathode material for lithium ion battery application.

  19. Li-ion battery electrolyte formulated for low-temperature applications

    SciTech Connect

    Ein-Eli, Y.; Thomas, S.R.; Chadha, R.; Blakley, T.J.; Koch, V.R.

    1997-03-01

    Low-temperature (<0 C) applications of Li-ion batteries have prompted the search for improved, high-conductivity electrolytes. Because the performance of the carbonaceous anode is highly sensitive to changes in electrolyte composition, the authors focused their efforts on this electrode. Electrolytes containing LiAsF{sub 6}, LiPF{sub 6}, LiN(SO{sub 2}CF{sub 3}){sub 2}[lithium bis(trifluoromethanesulfonyl)imide], or LiIm, and LiC(SO{sub 2}CF{sub 3}){sub 3} [lithium tris(trifluoromethanesulfonyl)methide], or LiMe, in methyl formate (MF)-ethylene carbonate (EC) solvent mixtures were tested in lithium-graphite half-cells. The graphite electrodes could be cycled at ambient temperature with high reversible capacity. The best supporting electrolyte was found to be LiAsF{sub 6}, and the presence of a high concentration of ethylene carbonate and up to 300 ppm H{sub 2}O in the solution considerably increased the reversible capacity upon cycling. The conductivity values of a binary solvent mixture of methyl formate and ethylene carbonate containing LiAsF{sub 6} or LiMe were measured between {minus}40 C and room temperature. Graphite electrodes cycled at {minus}2 C in these electrolytes obtained reasonable reversible capacity, approaching 50%.

  20. Etched colloidal LiFePO4 nanoplatelets toward high-rate capable Li-ion battery electrodes.

    PubMed

    Paolella, Andrea; Bertoni, Giovanni; Marras, Sergio; Dilena, Enrico; Colombo, Massimo; Prato, Mirko; Riedinger, Andreas; Povia, Mauro; Ansaldo, Alberto; Zaghib, Karim; Manna, Liberato; George, Chandramohan

    2014-12-10

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently "plagued" by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼ 155 mAh/g, ∼ 135 mAh/g, and ∼ 125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼ 70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼ 30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries.

  1. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    PubMed

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the Tg and Tm are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO4/15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g(-1) @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g(-1) @0.2 C at 30 °C after 150 cycles).

  2. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    PubMed

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  3. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    PubMed

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  4. LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger

    2017-09-01

    A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.

  5. 3D inverse-opal structured Li4Ti5O12 anode for fast Li-ion storage capabilities

    NASA Astrophysics Data System (ADS)

    Kim, Dahye; Quang, Nguyen Duc; Hien, Truong Thi; Chinh, Nguyen Duc; Kim, Chunjoong; Kim, Dojin

    2017-06-01

    Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response. [Figure not available: see fulltext.

  6. High-energy metal ion implantation for reduction of surface resistivity of alumina ceramic.

    PubMed

    Gushenets, V I; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu; Brown, I G

    2012-02-01

    In this work, the possibility to increase the surface conductivity of ceramic insulators through their treatment with accelerated metal ion beams produced by a MevvaV.Ru vacuum arc source is demonstrated. The increase in surface conductivity is made possible due to experimental conditions in which an insulated collector is charged by beam ions to a potential many times lower than the accelerating voltage, and hence, than the average beam ion energy. The observed effect of charge neutralization of the accelerated ion beam is presumably associated with electrons knocked out of the electrodes of the accelerating system of the source and of the walls of the vacuum chamber by the accelerated ions.

  7. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    PubMed

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-21

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

  8. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  9. Local Electric Field Facilitates High-Performance Li-Ion Batteries.

    PubMed

    Liu, Youwen; Zhou, Tengfei; Zheng, Yang; He, Zhihai; Xiao, Chong; Pang, Wei Kong; Tong, Wei; Zou, Youming; Pan, Bicai; Guo, Zaiping; Xie, Yi

    2017-08-22

    By scrutinizing the energy storage process in Li-ion batteries, tuning Li-ion migration behavior by atomic level tailoring will unlock great potential for pursuing higher electrochemical performance. Vacancy, which can effectively modulate the electrical ordering on the nanoscale, even in tiny concentrations, will provide tempting opportunities for manipulating Li-ion migratory behavior. Herein, taking CuGeO3 as a model, oxygen vacancies obtained by reducing the thickness dimension down to the atomic scale are introduced in this work. As the Li-ion storage progresses, the imbalanced charge distribution emerging around the oxygen vacancies could induce a local built-in electric field, which will accelerate the ions' migration rate by Coulomb forces and thus have benefits for high-rate performance. Furthermore, the thus-obtained CuGeO3 ultrathin nanosheets (CGOUNs)/graphene van der Waals heterojunctions are used as anodes in Li-ion batteries, which deliver a reversible specific capacity of 1295 mAh g(-1) at 100 mA g(-1), with improved rate capability and cycling performance compared to their bulk counterpart. Our findings build a clear connection between the atomic/defect/electronic structure and intrinsic properties for designing high-efficiency electrode materials.

  10. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  11. Preparation of Li-rich layered-layered type xLi2MnO3·(1-x)LiMnO2 nanorods and its electrochemical performance as cathode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhang, Qinggang; Hu, Xiaohong; Peng, Tianyou; Liu, Jianqiang

    2017-06-01

    Layered-layered type xLi2MnO3·(1-x)LiMnO2 (x = 0.91, 0.78, 0.67, 0.54, 0.42, and 0.32) nanorods with a diameter of 100-200 nm and length of 400-1000 nm are prepared through a pyrolysis reduction process of monoclinic Li2MnO3 (m-Li2MnO3) nanorods. All the synthesized xLi2MnO3·(1-x)LiMnO2 nanorods exhibit the main characteristic diffraction peaks of m-Li2MnO3 in addition to some weak peaks attributable to m-LiMnO2 especially for those composites with x < 0.67. When used as cathode material of Li-ion battery, those xLi2MnO3·(1-x)LiMnO2 nanorods show an initial charge/discharge profile similar to the Li-rich solid solution in the voltage window of 2.0-4.8 V. The m-LiMnO2 portion in those synthesized composites can significantly enhance the reversible capacity but lower the cyclic stability, while the m-Li2MnO3 portion can improve the cyclic stability due to its retardation effect of the layered-to-spinel transformation during the charge/discharge processes, and thus xLi2MnO3·(1-x)LiMnO2 nanorods with x = 0.54 exhibits the best cyclic and rate performance since it contains appropriate m-Li2MnO3/m-LiMnO2 contents to balance the reversible capacity and Jahn-Teller effect. The present findings demonstrate an effective strategy for the development of low-cost pure Mn-based Li-rich layered cathode materials with adjustable reversible capacity, cyclic and rate performance by tailoring the composition.

  12. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOEpatents

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  13. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  14. A computational study on the application of AlN nanotubes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Anaraki-Ardakani, Hossein

    2017-03-01

    We investigated the potential application of the AlN nanotubes (AlNNTs) in Li-ion batteries by means of the density functional theory calculations. To this aim, the interaction of Li atom and Li+ cation with (3 , 3), (4 , 4), (5 , 5), (6 , 6), and (7 , 7) armchair AlNNTs was investigated. By decreasing the curvature of these nanotubes, the HOMO and LUMO levels are shifted to lower and higher energies, thereby enlarging the energy gap. It was found that AlNNTs can produce larger cell voltage in comparison to the carbon nanotubes and may be promising candidate for application in the anode electrode of Li-ion batteries. The calculated cell voltage is in the range of 1.66 to 1.84 V which is significantly increased by increasing the diameter of AlNNTs. The adsorptions of Li and Li+ on the exterior surface of AlNNTs are more favorable than those on its exterior surface. We showed that the interaction of atomic Li with the surface of the AlNNT plays the main rule in determining the cell voltage because of its large dependency on the tube diameter. While the interaction of Li+ is nearly independent of the tube diameter because of the electrostatic nature of the interaction.

  15. Synthesis and structure of novel lithium-ion conductor Li7Ge3PS12

    NASA Astrophysics Data System (ADS)

    Inoue, Yuki; Suzuki, Kota; Matsui, Naoki; Hirayama, Masaaki; Kanno, Ryoji

    2017-02-01

    The novel lithium-ion conductor Li7Ge3PS12 was synthesized by slow cooling from the ternary Li2S-GeS2-P2S5 system, and was shown to exhibit a cubic argyrodite-type structure. The phase composition was determined by varying the ratio of starting materials; the observed monophasic properties were close to those for the Li7Ge3PS12 composition. The lattice parameter (a =9.80192(3) Å) of Li7Ge3PS12 was slightly smaller than that of Li7PS6 (a =9.993 Å), indicating that substitution of a Li cation by the smaller Ge cation contracted the cubic lattice. In addition, the novel structure consisted of a framework composed of four isolated (Ge/P)S4 tetrahedra. Li+ ions occupied tetrahedral sites within the framework, forming a three-dimensional conduction pathway. Finally, Li7Ge3PS12 exhibited a high ionic conductivity of 1.1×10-4 S cm-1 at 25 °C and an activation energy of 25 kJ mol-1.

  16. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, (7) Li, (29) Si, and (31) P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2.

    PubMed

    Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A; Fässler, Thomas F

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li8 SiP4 and Li2 SiP2 , are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10(-6) Scm(-1) at 0 °C to 1.2(2)×10(-4) Scm(-1) at 75 °C (Li8 SiP4 ) and from 6.1(7)×10(-8) Scm(-1) at 0 °C to 6(1)×10(-6) Scm(-1) at 75 °C (Li2 SiP2 ), as determined by impedance measurements. Temperature-dependent solid-state (7) Li NMR spectroscopy revealed low activation energies of about 36 kJ mol(-1) for Li8 SiP4 and about 47 kJ mol(-1) for Li2 SiP2 . Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by (7) Li, (29) Si, and (31) P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8 SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2 SiP2 comprises a three-dimensional network based on corner-sharing SiP4 tetrahedra, with the Li ions located in cavities and channels. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. In situ methods for Li-ion battery research: A review of recent developments

    NASA Astrophysics Data System (ADS)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  18. Relative Li-ion mobility mapping in Li0.33La0.56TiO3 polycrystalline by electron backscatter diffraction and electrochemical strain microscopy

    NASA Astrophysics Data System (ADS)

    Sasano, Shun; Ishikawa, Ryo; Sugiyama, Issei; Higashi, Takuma; Kimura, Teiichi; Ikuhara, Yumi H.; Shibata, Naoya; Ikuhara, Yuichi

    2017-06-01

    Li-ion conductivity in a solid-state electrolyte has so far been measured by impedance spectroscopy. In this method, however, it is difficult to obtain microstructural information because of the absence of spatial resolution. Here, we show the relationship between the Li-ion mobility and the crystal orientation in Li0.33La0.56TiO3 polycrystalline by electrochemical strain microscopy combined with electron backscatter diffraction. On the experimentally constructed multivariable regression model, we obtained a qualitative Li-ion mobility map of sub-millimeter width with a 100 nm spatial resolution, which is impossible to achieve by only atomic force microscopy. The proposed method must be useful for identifying the Li-ion diffusion pathway in three dimensions.

  19. Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress

    NASA Astrophysics Data System (ADS)

    Ji, Liang; Guo, Zhansheng

    2017-08-01

    A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion (Li-ion) diffusion, diffusion-induced stress (DIS), Butler-Volmer (BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density (ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentration-dependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS. Optimal macroscopic state of charge (SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.

  20. Molecular dynamics study on ion diffusion in LiFePO4 olivine materials.

    PubMed

    Zhang, Peixin; Wu, Yanpeng; Zhang, Dongyun; Xu, Qiming; Liu, Jianhong; Ren, Xiangzhong; Luo, Zhongkuan; Wang, Mingliang; Hong, Weiliang

    2008-06-19

    Molecular dynamics (MD) simulations have been employed to investigate the ionic diffusion and the structure of LiFePO 4 cathode material. The results correspond well with the published experimental observations. The simulation results indicated that the diffusion of lithium ions was thermally activated and more significant than those of other ions. Compared with other cathode materials, the shifts of ions were less significant in LiFePO 4. This suggested that LiFePO 4 was more thermally stable. The snapshots of the positions of lithium atoms over a range of the steps provided a microscopic picture and the picture showed the lithium ions migrated through one-dimension channels.

  1. Li+ ion transport studies in Li2O-Li2SO4-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Kolavekar, Sangeeta B.; Lakshmikantha, R.; Ayachit, N. H.; Anavekar, R. V.

    2013-06-01

    Li+ ion transport studies have been carried in Li2O-Li2SO4-ZnO-B2O3 glass system. Electrical conductivity has been measured out over a wide range of temperature (450K-500K) and frequencies (40 Hz - 10 MHz). The dc conductivities show Arrhenius behavior and show compositional dependence. The ac conductivity behavior has been analyzed using Almond-West power law using a single exponent. The exponent `s' obtained from the power law fits is found to have values ranging from 0.36 - 0.45 in these glasses and shows temperature dependence, which is attributed to high degree of modification in the glass network.

  2. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    PubMed

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS. Copyright © 2015. Published by Elsevier Ltd.

  3. Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.

    2017-03-01

    Pre-lithiation is an indispensable step for making hybrid lithium-ion capacitors (LICs), its high cost and process complexity have greatly hindered the commercialization of LICs. Aiming to eliminate the pre-lithiation step, we propose an in-situ lithiation concept by introducing a Li+ ion source material into the positive electrode to enable the lithiation to be completed in the formation cycle. In this paper we start with the fundamental principle of LICs to discuss the requirements for Li+ ion source materials and demonstrate this concept by employing Li-rich Li2CuO2 as the Li+ ion source material, natural graphite and activated carbon (AC) as the negative and positive electrode materials. It is shown that the LICs made such behave as a pure capacitor with ability to deliver the same level of specific capacity and specific capacitance, i.e., 56 mAh g-1 and 143 F g-1 vs. the mass of AC in the voltage range between 2.8 V and 4.2 V, as those obtained from the counterpart Li/AC half-cell. The present concept is also applicable to other LICs with the negative electrode required to be pre-lithiated.

  4. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as ;enablers; were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  5. New Anode Material for Rechargeable Li-ION Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.

    1995-01-01

    Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.

  6. New Anode Material for Rechargeable Li-ION Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.

    1995-01-01

    Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.

  7. Diffuse phase transition in Li0.12Na0.88NbO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Mitra, Supratim; Kulkarni, Ajit R.; Prakash, Om

    2013-02-01

    The morphotropic phase boundary composition viz. lithium sodium niobate, Li0.12Na0.88NbO3, (LNN-12) was prepared by conventional solid state reaction and sintering route. The temperature dependent permittivity response near transition temperature showed a diffused phase transition (DPT). The degree of diffuseness, γ, using the modified Curie-Weiss law, was found to be 1.92, indicative of almost-complete diffuse phase transition. The planar coupling constant kp, and mechanical quality factor Qm, measured by resonance-antiresonance method, were 0.17 and 413 respectively. These parameter values make LNN-12 ceramic an attractive candidate for transducers applications.

  8. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium-air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox- (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg-1, a mass density exceeding 2.2 g cm-3, and a practical discharge capacity of 587 Ah kg-1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  9. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?

    PubMed

    Belcarz, Anna; Zalewska, Justyna; Pałka, Krzysztof; Hajnos, Mieczysław; Ginalska, Grazyna

    2015-02-01

    Bone implantable materials based on calcium sulfate dihydrate dissolve quickly in tissue liquids and release calcium ions at very high levels. This phenomenon induces temporary toxicity for osteoblasts, may cause local inflammation and delay the healing process. Reduction in the calcium ion release rate by gypsum could be therefore beneficial for the healing of gypsum-filled bone defects. The aim of this study concerned the potential use of calcium phosphate ceramics of various porosities for the reduction of high Ca(2+) ion release from gypsum-based materials. Highly porous ceramics failed to reduce the level of Ca(2+) ions released to the medium in a continuous flow system. However, it succeeded to shorten the period of high calcium level. It was not the phase composition but the high porosity of ceramics that was found crucial for both the shortening of the Ca(2+) release-related toxicity period and intensification of apatite deposition on the composite. Nonporous ceramics was completely ineffective for this purpose and did not show any ability to absorb calcium ions at a significant level. Moreover, according to our observations, complex studies imitating in vivo systems, rather than standard tests, are essential for the proper evaluation of implantable biomaterials. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  11. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-11-04

    Novel water-based binder lithium carboxymethyl cellulose (CMC-Li) is synthesized by cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries' cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and water-soluble binder are investigated. Sodium carboxymethyl cellulose (CMC-Na, CMC) and CMC-Li are used as the binder. After 200 cycles, compared with conventional poly(vinylidene fluoride) (PVDF) binder, the CMC-Li binder significantly improves cycling performance of the LFP cathode 96.7% of initial reversible capacity achieved at 175 mA h g(-1). Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, followed closely by those using CMC and PVDF binders, respectively. Electrochemical impedance spectroscopy test results show that the electrode using CMC-Li as the binder has lower charge transfer resistance than the electrodes using CMC and PVDF as the binders.

  12. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  13. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  14. Doping of Ion Irradiated Polyethylenterephtalate from Water Solution of LiCl

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Ervená, J.; Vorík, V.; Rybka, V.; Fink, D.; Klett, R.

    1997-02-01

    Polyethylenterephtalate foils (10 m thick with the density of = 1.3 g cm - 3) were irradiated with 150 keV Ar+ ions to fluences from 5×1011 to 1×1015 cm - 2 and one year after the irradiation they were exposed to a 5 M water solution of LiCl at the boiling point for times ranging from 15 s up to 8 h. The depth profiles of incorporated Li atoms as a function of the ion fluence and the doping time were determined using the neutron depth profiling technique based on the 6Li(nth, α)3H nuclear reaction. The Li content in the 600 nm thick surface layer achieves saturation very rapidly, already after 15 s doping time, and it exhibits a local, pronounced maximum at 2 or 4 h doping times for the specimens irradiated to fluences below and above 5×1014 cm - 2, respectively. The concentration depth profiles of incorporated Li atoms consist of a pronounced surface component, obviously connected with radiation damages created by the ion irradiation and a long inward tail which is due to regular diffusion in pristine polymer. As a function of ion fluence, the Li content increases up to the fluence of 5×1013 cm - 2 and then declines in most cases. The surface component of the Li depth profiles changes dramatically with increasing ion fluence from bell-shaped ones for fluences below 5×1014 cm×2 to those characterized by a depleted surface layer and a rather sharp concentration maximum at depths significantly exceeding the calculated ion projected range.

  15. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  16. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  17. Design of surface protective layer of LiF/FeF 3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries

    SciTech Connect

    Zhao, Taolin; Li, Li; Chen, Renjie; Wu, Huiming; Zhang, Xiaoxiao; Chen, Shi; Xie, Man; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-01-01

    Advanced lithium-ion batteries for renewable energy storage applications have become a major research interest in recent years. Much better performance can be realized by improvements in the material surface design, especially for the cathode materials. Here, we present a new design for a surface protective layer formed via a facile aqueous solution process in which a nano-architectured layer of LiF/FeF3 is epitaxially grown on bulk hierarchical Li-rich cathode Li[Li0.2Ni0.2Mn0.6]O2. Coin cell tests of this material in the voltage range of 2–4.8 V indicated a high reversible capacity (260.1 mA h g-1 at 0.1 C), superior rate performance (129.9 mA h g-1 at 20 C), and excellent capacity retention. Differential scanning calorimetry showed good thermal stability. The enhanced capacity and cycling stability are attributed to the suppression of interfacial side reactions as well as the conversion reaction resulting from the introduction of LiF/FeF3 as a surface protective layer.

  18. Band gap engineering for single-layer graphene by using slow Li(+) ions.

    PubMed

    Ryu, Mintae; Lee, Paengro; Kim, Jingul; Park, Heemin; Chung, Jinwook

    2016-08-05

    In order to utilize the superb electronic properties of graphene in future electronic nano-devices, a dependable means of controlling the transport properties of its Dirac electrons has to be devised by forming a tunable band gap. We report on the ion-induced modification of the electronic properties of single-layer graphene (SLG) grown on a SiC(0001) substrate by doping low-energy (5 eV) Li(+) ions. We find the opening of a sizable and tunable band gap up to 0.85 eV, which depends on the Li(+) ion dose as well as the following thermal treatment, and is the largest band gap in the π-band of SLG by any means reported so far. Our Li 1s core-level data together with the valence band suggest that Li(+) ions do not intercalate below the topmost graphene layer, but cause a significant charge asymmetry between the carbon sublattices of SLG to drive the opening of the band gap. We thus provide a route to producing a tunable graphene band gap by doping Li(+) ions, which may play a pivotal role in the utilization of graphene in future graphene-based electronic nano-devices.

  19. Influence of the NaCl/LiF additives on structure, phasetransitions and dielectric properties of BSPT ceramics

    NASA Astrophysics Data System (ADS)

    Golubko, N. V.; Kaleva, G. M.; Mosunov, A. V.; Politova, E. D.; Segalla, A. H.

    2016-04-01

    Influence of the NaCl/LiF additives (with ratio 60:40) on structure parameters, phase transitions and dielectric properties of solid solutions close to the Morphotropic Phase Boundary in the system (1-x)BiScO3 - xPbTiO3 (x=0.635, 0.645) has been studied. Using as initial the BSPT powders prepared from nitrate solutions, dense single phase ceramic samples doped by 5, 10 and 15 w. % of NaCl/LiF have been prepared at 1313 - 1323 K (2 h). Shift of the BSPT compositions phase content from initial mixtures of Rhombohedral and Tetragonal phases to the region of Tetragonal phase was stimulated by addition of the NaCl/LiF additives. This effect is accompanied by decrease of the unit sell volume, increase in the c/a ratio and increase in the Curie temperature value from 668 to 730 K for x=0.635 and from 672 to 724 K for x=0.645 in compositions doped by 10 w. % of the NaCl/LiF additive.

  20. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes

    PubMed Central

    2016-01-01

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g–1) and working voltage (4.1 V vs Li+/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g–1 at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g–1. The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times. PMID:26799094

  1. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    PubMed

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  2. Analysis of Voltage and Current Signal Processing in a Li-ion Battery Management System

    DTIC Science & Technology

    2010-09-01

    SUBJECT TERMS Pulsed Power, Charger , Buck Converter, Field Programmable Gate Array (FPGA), Lithium - ion Batteries 16. PRICE CODE 17. SECURITY...Congressional Research Service. July 31, 2000. [3] F. E. Filler, “A Pulsed Power System Design Using Lithium - ion Batteries and One Charger per Battery ...AND CURRENT SIGNAL PROCESSING IN A LI- ION BATTERY MANAGEMENT SYSTEM by Jerome Sean McConnon September 2010 Thesis Co-Advisors

  3. Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries.

    PubMed

    Li, Bao; Li, Yongjun; Dai, Dongmei; Chang, Kun; Tang, Hongwei; Chang, Zhaorong; Wang, Chunru; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-16

    Polyolefin membranes are widely used as separators in commercialized Li-ion batteries. They have less polarized surfaces compared with polarized molecules of electrolyte, leading to a poor wetting state for separators. Radiation pretreatments are often adopted to solve such a problem. Unfortunately, they can only activate several nanometers deep from the surface, which limits the performance improvement. Here we report a facile and scalable method to polarize polyolefin membranes via a chemical oxidation route. On the surfaces of pretreated membrane, layers of poly(ethylene oxide) and poly(acrylic acid) can easily be coated, thus resulting in a high Li-ion conductivity of the membrane. Assembled with this decorated separator in button cells, both high-voltage (Li1.2Mn0.54Co0.13Ni0.13O2) and moderate-voltage (LiFePO4) cathode materials show better electrochemical performances than those assembled with pristine polyolefin separators.

  4. Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Ming; Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.

    2009-05-01

    The Aurivillius-type bismuth layer-structured (NaBi)0.46(LiCe)0.04Bi4Ti4O15 (NBT-LiCe) piezoelectric ceramics were synthesized using conventional solid-state processing. Phase analysis was performed by x-ray diffraction and microstructural morphology was assessed by scanning electron microscopy. The dielectric, piezoelectric, ferroelectric, and electromechanical properties of NBT-LiCe ceramics were investigated. The piezoelectric activities were found to be significantly enhanced compared to NBT ceramics, which can be attributed to the lattice distortion and the presence of bismuth vacancies. The dielectric and electromechanical properties of NBT-LiCe ceramics at elevated temperature were investigated in detail. The excellent piezoelectric, dielectric, and electromechanical properties, coupled with high Curie temperature (Tc=660 °C), demonstrated that the NBT-LiCe ceramics are the promising candidates for high temperature applications.

  5. Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na{sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15}) piezoelectric ceramics at elevated temperature

    SciTech Connect

    Wang Chunming; Wang Jinfeng; Zhang Shujun; Shrout, Thomas R.

    2009-05-01

    The Aurivillius-type bismuth layer-structured (NaBi){sub 0.46}(LiCe){sub 0.04}Bi{sub 4}Ti{sub 4}O{sub 15} (NBT-LiCe) piezoelectric ceramics were synthesized using conventional solid-state processing. Phase analysis was performed by x-ray diffraction and microstructural morphology was assessed by scanning electron microscopy. The dielectric, piezoelectric, ferroelectric, and electromechanical properties of NBT-LiCe ceramics were investigated. The piezoelectric activities were found to be significantly enhanced compared to NBT ceramics, which can be attributed to the lattice distortion and the presence of bismuth vacancies. The dielectric and electromechanical properties of NBT-LiCe ceramics at elevated temperature were investigated in detail. The excellent piezoelectric, dielectric, and electromechanical properties, coupled with high Curie temperature (T{sub c}=660 deg. C), demonstrated that the NBT-LiCe ceramics are the promising candidates for high temperature applications.

  6. Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation.

    PubMed

    Smith, Kyle C; Mukherjee, Partha P; Fisher, Timothy S

    2012-05-21

    The high-rate, high-capacity potential of LiFePO4-based lithium-ion battery cathodes has motivated numerous experimental and theoretical studies aiming to realize such performance through nano-sizing, tailoring of particle shape through synthesis conditions, and doping. Here, a granular mechanics study of microstructures formed by dense jammed packings of experimentally and theoretically inspired LiFePO4 particle shapes is presented. A strong dependence of the resultant packing structures on particle shapes is observed, in which columnar structures aligned with the [010] direction inhibit diffusion along [010] in anisotropic LiFePO4. Transport limitations are induced by [010] columnar order and lead to catastrophic performance degradation in anisotropic LiFePO4 electrodes. Further, judicious mixing of nanoplatelets with additive nanoparticles can frustrate columnar ordering and thereby enhance the rate capability of LiFePO4 electrodes by nearly an order of magnitude.

  7. Safe and fast-charging Li-ion battery with long shelf life for power applications

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C. M.

    We report a Li-ion battery that can be charged within few minutes, passes the safety tests, and has a very long shelf life. The active materials are nanoparticles of LiFePO 4 (LFP) and Li 4Ti 5O 12 (LTO) for the positive and negative electrodes, respectively. The LiFePO 4 particles are covered with 2 wt.% carbon to optimize the electrical conductivity, but not the Li 4Ti 5O 12 particles. The electrolyte is the usual carbonate solvent. The binder is a water-soluble elastomer. The "18650" battery prepared under such conditions delivers a capacity of 800 mAh. It retains full capacity after 20,000 cycles performed at charge rate 10C (6 min), discharge rate 5C (12 min), and retains 95% capacity after 30,000 cycles at charge rate 15C (4 mn) and discharge rate 5C both at 100% DOD and 100% SOC.

  8. Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Tian, Xiao-Xia; Qu, Shao-Bo; Du, Hong-Liang; Li, Ye; Xu, Zhuo

    2012-03-01

    The piezoelectric, dielectric, and ferroelectric properties of the (LiCe) co-substituted calcium bismuth niobate (CaBi2Nb2O9, CBNO) are investigated. The piezoelectric properties of CBNO ceramics are significantly enhanced and the dielectric loss tan δ decreased. This makes poling using (LiCe) co-substitution easier. The ceramics (where □ represents A-site Ca2+ vacancies, possess a pure layered structure phase and no other phases can be found. The Ca0.88(LiCe)0.04□0.04Bi2Nb2O9 ceramics possess optimal piezoelectric properties, with piezoelectric coefficient (d33) and Curie temperature (TC) found to be 13.3 pC/N and 960 °C, respectively. The dielectric and piezoelectric properties of the (LiCe) co-substituted CBNO ceramics exhibit very stable temperature behaviours. This demonstrates that the CBNO ceramics are a promising candidate for ultrahigh temperature applications.

  9. Li-Ion Conduction and Stability of Perovskite Li3/8Sr7/16Hf1/4Ta3/4O3.

    PubMed

    Huang, Bing; Xu, Biyi; Li, Yutao; Zhou, Weidong; You, Ya; Zhong, Shengwen; Wang, Chang-An; Goodenough, John B

    2016-06-15

    A solid Li-ion conductor with a high room temperature Li-ion conductivity and small interfacial resistance is required for its application in next-generation Li-ion batteries. Here, we prepared a cubic perovskite-related oxide with the general formula Li3/8Sr7/16Hf1/4Ta3/4O3 (LSHT) by a conventional solid-state reaction method, which was studied by X-ray diffraction, electrochemical impedance spectroscopy, and (7)Li MAS NMR. Li3/8Sr7/16Hf1/4Ta3/4O3 has a high Li-ion conductivity of 3.8 × 10(-4) S cm(-1) at 25 °C and a low activation energy of 0.36 eV in the temperature range 298-430 K. It exhibits both high stability and small interfacial resistance with commercial organic liquid electrolytes, which makes it promising as a separator in Li-ion batteries.

  10. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2012-12-01

    Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in sodium-ion (Na-ion) batteries and C-LiFePO4 in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO4 are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO4 cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO4 cathodes, the rate performance of C-NaFePO4 in Na-ion batteries is much worse than that of C-LiFePO4 in Li-ion batteries. However, the cycling stability of C-NaFePO4 is almost comparable to C-LiFePO4 by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.Carbon-coated olivine NaFePO4 (C-NaFePO4) spherical particles with a uniform diameter of ~80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO4 (C-LiFePO4), which is synthesized by a solvothermal method. The C-NaFePO4 electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO4 except that Li ions in C-LiFePO4 are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO4 cathode in

  11. Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The effects of Na, Mg and Al doping on the structure, electronic property, defect property and Li ions migration of LiVPO4F were investigated by the first-principles method. Calculations show that the processes of forming Li0.875Na0.125VPO4F, α- and β-LiMg0.375V0.75PO4F, α- and β-LiAl0.125V0.875PO4F are all feasible. Na, Mg and Al doping significantly improve the electrical conductivity of LiVPO4F and simultaneously maintain their structural stability attributing to the reduction of band gaps through variations of V-3d spin up orbitals. Li vacancy defects of LiVPO4F are not ignorable, and vacancy defects with a lower activation energy for Li atom are far more likely to occur than Frenkel defects for Li and vacancy defects for other atoms. For pristine LiVPO4F, path D along [0.012 0 . 17 ̅ 0.572] direction is found to have the lowest activation energy of 0.418 eV, suggesting that anisotropic nature of Li ion conduction and LiVPO4F is a one-dimensional (1D)-ion conductor. The corresponding diffusion coefficient was estimated to be 2.82×10-9 cm2/s, which is in good agreement with those experimental values.

  12. Processing of crack-free high density polycrystalline LiTaO3 ceramics

    SciTech Connect

    Chen, Ching-Fong; Brennecka, Geoff L.; King, Graham; Tegtmeier, Eric L.; Holesinger, Terry; Ivy, Jacob; Yang, Pin

    2016-11-04

    Our work achieved high density (99.9%) polycrystalline LiTaO3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Furthermore, Rietveld analysis of neutron diffraction data revealed the presence of LiAlO2 and LiAl5O8 minority phases and negligible substitutional defect incorporation in LiTaO3.

  13. Processing of crack-free high density polycrystalline LiTaO3 ceramics

    DOE PAGES

    Chen, Ching-Fong; Brennecka, Geoff L.; King, Graham; ...

    2016-11-04

    Our work achieved high density (99.9%) polycrystalline LiTaO3. The keys to the high density without cracking were the use of LiF-assisted densification to maintain fine grain size as well as the presence of secondary lithium aluminate phases as grain growth inhibitors. The average grain size of the hot pressed polycrystalline LiTaO3 is less than 5 μm, limiting residual stresses caused by the anisotropic thermal expansion. Dilatometry results clearly indicate liquid phase sintering via the added LiF sintering aid. Efficient liquid phase sintering allows densification during low temperature hot pressing. Electron microscopy confirmed the high-density microstructure. Furthermore, Rietveld analysis of neutronmore » diffraction data revealed the presence of LiAlO2 and LiAl5O8 minority phases and negligible substitutional defect incorporation in LiTaO3.« less

  14. LiPF 6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO 4/artificial graphite lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Chen, Xujie; Li, Fanqun; Lai, Yanqing; Li, Jie; Liu, Ping; Wang, Xinyu

    The electrochemical behaviors of LiPF 6 and lithium oxalyldifluoroborate (LiODFB) blend salts in ethylene carbonate + propylene carbonate + dimethyl carbonate (EC + PC + DMC, 1:1:3, v/v/v) for LiFePO 4/artificial graphite (AG) lithium-ion cells have been investigated in this work. It is demonstrated by conductivity test that LiPF 6 and LiODFB blend salts electrolytes have superior conductivity to pure LiODFB-based electrolyte. The results show that the performances of LiFePO 4/Li half cells with LiPF 6 and LiODFB blend salts electrolytes are inferior to pure LiPF 6-based electrolyte, the capacity and cycling efficiency of Li/AG half cells are distinctly improved by blend salts electrolytes, and the optimum LiODFB/LiPF 6 molar ratio is around 4:1. A reduction peak is observed around 1.5 V in LiODFB containing electrolyte systems by means of CV tests for Li/AG cells. Excellent capacity and cycling performance are obtained on LiFePO 4/AG 063048-type cells tests with blend salts electrolytes. A plateau near 1.7-2.0 V is shown in electrolytes containing LiODFB salt, and extends with increasing LiODFB concentration in charge curve of LiFePO 4/AG cells. At 1 C discharge current rate, the initial discharge capacity of 063048-type cell with the optimum electrolyte is 376.0 mAh, and the capacity retention is 90.8% after 100 cycles at 25 °C. When at 65 °C, the capacity and capacity retention after 100 cycles are 351.3 mAh and 88.7%, respectively. The performances of LiFePO 4/AG cells are remarkably improved by blending LiODFB and LiPF 6 salts compared to those of pure LiPF 6-based electrolyte system, especially at elevated temperature to 65 °C.

  15. Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems

    NASA Astrophysics Data System (ADS)

    Marino, C.; Dupré, N.; Villevieille, C.

    2017-10-01

    Electrochemical performance of Ni2SnP was assessed in Li-ion and Na-ion battery systems. When cycled versus Li, Ni2SnP exhibited a reversible specific charge of 700 mAh.g-1 (theoretical specific charge: 742 mAh.g-1). In the Na system, the specific observed charge was ca. 200 mAh.g-1 (theoretical specific charge: 676 mAh.g-1). X-ray diffraction, Ni K-edge X-ray absorption spectroscopy, and 31P and 7Li/23Na nuclear magnetic resonance spectroscopy were used to elucidate the electrochemical mechanisms in both systems. Versus Li, Ni2SnP undergoes a conversion reaction resulting in the extrusion of Ni and the alloying of Li-Sn and Li-P. On delithiation, the material partially recombines into a Sn- and Ni-deficient form. In the Na system, Ni2SnP reacts through the conversion of P into Na3P. These results indicate that the recombination of the pristine material (even partially) increases cycling stability.

  16. Depth profiling Li in electrode materials of lithium ion battery by 7Li(p,γ)8Be and 7Li(p,α)4He nuclear reactions

    NASA Astrophysics Data System (ADS)

    Sunitha, Y.; Kumar, Sanjiv

    2017-06-01

    A proton induced γ-ray emission method based on 7Li(p,γ)8Be proton capture reaction and a nuclear reaction analysis method involving 7Li(p,α)4He reaction are described for depth profiling Li in the electrode materials, graphite and lithium cobalt oxide for example, of a Li-ion battery. Depth profiling by 7Li(p,γ)8Be reaction is accomplished by the resonance at 441 keV and involves the measurement of 14.6 and 17.6 MeV γ-rays, characteristic of the reaction, by a NaI(Tl) detector. The method has a detection sensitivity of ˜0.2 at% and enables profiling up to a depth ≥20 μm with a resolution of ≥150 nm. The profiling to a fairly large depth is facilitated by the absence of any other resonance up to 1800 keV proton energy. The reaction has substantial off-resonance cross-sections. A procedure is outlined for evaluating the off-resonance yields. Interferences from fluorine and aluminium are major limitation of this depth profiling methodology. The depth profile measurement by 7Li(p,α)4He reaction, on the other hand, utilises 2-3 MeV protons and entails the detection of α-particles at 90° or 150° angles. The reaction exhibits inverse kinematics at 150°. This method, too, suffers interference from fluorine due to the simultaneous occurrence of 19F(p,α)16O reaction. Kinematical considerations show that the interference is minimal at 90° and thus is the recommended angle of detection. The method is endowed with a detection sensitivity of ˜0.1 at%, a depth resolution of ˜100 nm and a probing depth of about 30 μm in the absence and 5-8 μm in the presence of fluorine in the material. Both methods yielded comparable depth profiles of Li in the cathode (lithium cobalt oxide) and the anode (graphite) of a Li-ion battery.

  17. Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries

    PubMed Central

    Mauger, Alain; Julien, Christian M.

    2015-01-01

    Many efforts are currently made to increase the limited capacity of Li-ion batteries using carbonaceous anodes. The way to reach this goal is to move to nano-structured material because the larger surface to volume ratio of particles and the reduction of the electron and Li path length implies a larger specific capacity. Additionally, nano-particles can accommodate such a dilatation/contraction during cycling, resulting in a calendar life compatible with a commercial use. In this review attention is focused on carbon, silicon, and Li4Ti5O12 materials, because they are the most promising for applications. PMID:28347121

  18. Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries

    SciTech Connect

    Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; McKelvey, Kim; El Gabaly Marquez, Farid; Ware, Nicholas; Dunn, Bruce; White, Henry

    2016-11-10

    Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community.[1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10-6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes[3].

  19. Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries

    DOE PAGES

    Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...

    2016-11-10

    Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community.[1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10-6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes[3].

  20. Spinel LiMn2O4 nanorods as lithium ion battery cathodes.

    PubMed

    Kim, Do Kyung; Muralidharan, P; Lee, Hyun-Wook; Ruffo, Riccardo; Yang, Yuan; Chan, Candace K; Peng, Hailin; Huggins, Robert A; Cui, Yi

    2008-11-01

    Spinel LiMn2O4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline beta-MnO2 nanorods and their chemical conversion into free-standing single-crystalline LiMn2O4 nanorods using a simple solid-state reaction. The LiMn2O4 nanorods have an average diameter of 130 nm and length of 1.2 microm. Galvanostatic battery testing showed that LiMn2O4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn2O4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3 V.

  1. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  2. Scenario-based prediction of Li-ion batteries fire-induced toxicity

    NASA Astrophysics Data System (ADS)

    Lecocq, Amandine; Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Martin, Nelly; Laruelle, Stephane; Marlair, Guy

    2016-06-01

    The development of high energy Li-ion batteries with improved durability and increased safety mostly relies on the use of newly developed electrolytes. A detailed appraisal of fire-induced thermal and chemical threats on LiPF6- and LiFSI-based electrolytes by means of the so-called "fire propagation apparatus" had highlighted that the salt anion was responsible for the emission of a non negligible content of irritant gas as HF (PF6-) or HF and SO2 (FSI-). A more thorough comparative investigation of the toxicity threat in the case of larger-size 0.4 kWh Li-ion modules was thus undertaken. A modeling approach that consists in extrapolating the experimental data obtained from 1.3Ah LiFePO4/graphite pouch cells under fire conditions and in using the state-of-the-art fire safety international standards for the evaluation of fire toxicity was applied under two different real-scale simulating scenarios. The obtained results reveal that critical thresholds are highly dependent on the nature of the salt, LiPF6 or LiFSI, and on the cells state of charge. Hence, this approach can help define appropriate fire safety engineering measures for a given technology (different chemistry) or application (fully charged backup batteries or batteries subjected to deep discharge).

  3. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.

    PubMed

    Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Luo, Chao; Wang, Chunsheng

    2013-01-21

    Carbon-coated olivine NaFePO(4) (C-NaFePO(4)) spherical particles with a uniform diameter of ∼80 nm are obtained by chemical delithiation and subsequent electrochemical sodiation of carbon-coated olivine LiFePO(4) (C-LiFePO(4)), which is synthesized by a solvothermal method. The C-NaFePO(4) electrodes are identical (particle size, particle size distribution, surface coating, and active material loading, etc.) to C-LiFePO(4) except that Li ions in C-LiFePO(4) are replaced by Na ions, making them ideal for comparison of thermodynamics and kinetics between C-NaFePO(4) cathode in sodium-ion (Na-ion) batteries and C-LiFePO(4) in lithium-ion (Li-ion) batteries. In this paper, the equilibrium potentials, reaction resistances, and diffusion coefficient of Na in C-NaFePO(4) are systematically investigated by using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), and compared to those of the well-known LiFePO(4) cathodes in Li-ion batteries. Due to the lower diffusion coefficient of Na-ion and higher contact and charge transfer resistances in NaFePO(4) cathodes, the rate performance of C-NaFePO(4) in Na-ion batteries is much worse than that of C-LiFePO(4) in Li-ion batteries. However, the cycling stability of C-NaFePO(4) is almost comparable to C-LiFePO(4) by retaining 90% of its capacity even after 100 charge-discharge cycles at a charge-discharge rate of 0.1 C.

  4. The use of 6Li{7Li}-REDOR NMR spectroscopy to compare the ionic conductivities of solid-state lithium ion electrolytes.

    PubMed

    Spencer, T L; Plagos, N W; Brouwer, D H; Goward, G R

    2014-02-14

    Garnet-like solid-state electrolyte materials for lithium ion batteries are promising replacements for the currently-used liquid electrolytes. This work compares the temperature dependent Li(+) ion hopping rate in Li6BaLa2M2O12 (M = Ta, Nb) using solid-state (6)Li{(7)Li}-REDOR NMR. The slope of the (6)Li{(7)Li}-REDOR curve is highly temperature dependent in these two phases, and a comparison of the changes of the REDOR slopes as a function of temperature has been used to evaluate the Li(+) ion dynamics. Our results indicate that the Nb phase has a higher overall ionic conductivity in the range of 247 K to 350 K, as well as a higher activation energy for lithium ion hopping than the Ta counterpart. For appropriate relative timescales of the dipolar couplings and ion transport processes, this is shown to be a facile method to compare ion dynamics among similar structures.

  5. Structure-Property Relationships in Ion-Beam Surface-Modified Ceramics - Theory and Applications

    DTIC Science & Technology

    1988-09-09

    Australia "Enhanced Hardness and Wear Resistance in Polymeric Carbons by Ion Implantation" 1200 - 1230 B. D. Sawicka, Chalk River Laboratories, Canada...exciting new ceramic oxide superconductors will be discussed. 14 ENHANCED HARDNESS AND WEAR RESISTANCE IN POLYMERIC CARBONS BY ION IMPLANTATION John...of graphite-based carbons. Wear resistance has been measured, using both diamond abrasion and sliding ruby ball-on- disc, as a function of implant

  6. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  7. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.

    PubMed

    Ko, Minseong; Oh, Pilgun; Chae, Sujong; Cho, Woongrae; Cho, Jaephil

    2015-09-02

    In order to keep pace with increasing energy demands for advanced electronic devices and to achieve commercialization of electric vehicles and energy-storage systems, improvements in high-energy battery technologies are required. Among the various types of batteries, lithium ion batteries (LIBs) are among the most well-developed and commercialized of energy-storage systems. LIBs with Si anodes and Li-rich cathodes are one of the most promising alternative electrode materials for next-generation, high-energy batteries. Si and Li-rich materials exhibit high reversible capacities of <2000 mAh g(-1) and >240 mAh g(-1) , respectively. However, both materials have intrinsic drawbacks and practical limitations that prevent them from being utilized directly as active materials in high-energy LIBs. Examples for Li-rich materials include phase distortion during cycling and side reactions caused by the electrolyte at the surface, and for Si, large volume changes during cycling and low conductivity are observed. Recent progress and important approaches adopted for overcoming and alleviating these drawbacks are described in this article. A perspective on these matters is suggested and the requirements for each material are delineated, in addition to introducing a full-cell prototype utilizing a Li-rich cathode and Si anode. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    PubMed

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  9. First Principles Study of Electrochemical and Chemical Stability of the Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    All-solid-state Li-ion battery is a promising next-generation energy-storage technology. Using novel ceramic solid electrolyte materials, all-solid-state battery has advantages of intrinsic safety and high energy density compared to current Li-ion batteries based on organic liquid electrolyte. However, the power density achieved in all-solid-state battery is still unsatisfactory. The high interfacial resistance at electrode-electrolyte interface is one of the major limiting factors. Here we demonstrated a computational approach based on first principles calculation to systematically investigate the chemical and electrochemical stability of solid electrolyte materials, and provide insightful understanding of the degradation and passivation mechanisms at the interface. Our calculation revealed that the intrinsic stability of solid electrolyte materials and solid electrolyte-electrode interfaces is limited and the formation of interphase layers are thermodynamically favorable. Our study demonstrated a computational scheme to evaluate the electrochemical and chemical stability of the solid interfaces. Our newly gained understanding provided principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries. This work was supported by Office of Energy Efficiency and Renewable Energy (DE-EE0006860).

  10. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    DOE PAGES

    Du, Zhijia; Janke, C. J.; Li, Jianlin; ...

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less

  11. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    SciTech Connect

    Du, Zhijia; Janke, C. J.; Li, Jianlin; Daniel, C.; Wood, D. L.

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder in commercial Li-ion batteries in the future.

  12. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  13. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    SciTech Connect

    Du, Zhijia; Janke, C. J.; Li, Jianlin; Daniel, C.; Wood, D. L.

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder in commercial Li-ion batteries in the future.

  14. Alkyl Pyrocarbonate Electrolyte Additives for Performance Enhancement of Li Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Lithium ion rechargeable batteries are being developed for various aerospace applications under a NASA-DoD Interagency program. These applications require further improvements in several areas, specifically in the cycle life for LEO and GEO satellites and in the low temperature performance for the Mars Lander and Rover missions. Accordingly, we have been pursuing research studies to achieve improvement in the low temperature performance, long cycle life and active life of Li ion cells. The studies are mainly focused on electrolytes, to identify newer formulations of new electrolyte additives to enhance Li permeability (at low temperatures) and stability towards the electrode. The latter approach is particularly aimed at the formation suitable SEI (solid electrolyte interphase) on carbon electrodes. In this paper, we report the beneficial effect of using alkyl pyrocarbonates as electrolyte additives to improve the low temperature performance of Li ion cells.

  15. Electrochemical studies of molybdate-doped LiFePO4 as a cathode material in Li-ion batteries.

    PubMed

    Kim, Ketack; Kam, Daewoong; Kim, Yeonjoo; Kim, Sinwoong; Kim, Minsoo; Kim, Hyun-Soo

    2013-05-01

    The use of molybdate as a new anionic dopant that replaces phosphate in LiFePO4 was studied. When a small amount of molybdate (0.5 mol%) was used as a dopant, the olivine structure was maintained, while the lattice volume increased by 0.4%. The expanded volume facilitates ionic transfer, because of which the capacity of doped LiFePO4 at high current discharge rates is higher than that of pure LiFePO4. The discharge value increased by 25.2% at a charge rate of 5 C when the material was doped with 0.5 mol% molybdate ions. The slight expansion of the lattice volume in the olivine structure facilitates a fast redox reaction by lowering the charge transfer resistance. The current values from cyclic voltammetry indicate that the oxidation (charge) process of the cathode material is more improved than the corresponding reduction (discharge) process. Increasing the level of doping beyond 0.5 mol% had no effect on the results. At some discharge rates, the discharge capacity became worse. Because molybdate is divalent while phosphate is trivalent, a large number of molybdate ions in the lattice can exert considerable stress on the structure.

  16. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  17. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE PAGES

    Kumar, Arun; Thomas, R.; Karan, N. K.; ...

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  18. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries.

    PubMed

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-28

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell.

  19. Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries

    PubMed Central

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-01

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell. PMID:25626879

  20. Structure and polarization near the Li+ ion in ethylene and propylene carbonates

    NASA Astrophysics Data System (ADS)

    Pollard, Travis P.; Beck, Thomas L.

    2017-10-01

    Research on fundamental interactions in Li-ion batteries is accelerating due to the importance of developing batteries with enhanced energy and power densities while maintaining safety. Improving electrode materials and controlling the formation of the solid electrolyte interphase during the first battery charge have been the main focus areas for research. Ion-solvent interactions in the electrolyte are also of great importance in tuning solvation and transport properties, however. Here we present ab initio density functional theory simulations of a Li+ ion in ethylene and propylene carbonates. The aim is to obtain a detailed analysis of local solvation structure and solvent polarization near the ion and in the bulk. The results indicate the significance of molecular polarization for developing accurate solvation models. The simulations illustrate the substantial differences between ion solvation in water and in organic materials.

  1. Li6La3SnMO12 (M = Sb, Nb, Ta), a Family of Lithium Garnets with High Li-Ion Conductivity

    SciTech Connect

    Bridges, Craig A; Goodenough, J. B.; Gupta, Dr Asha; Nakanishi, Masahiro; Paranthaman, Mariappan Parans; Sokolov, Alexei P; Bi, Zhonghe; Li, Yutao; Han, Jiantao; Dong, Youzhong; Wang, Long; Xu, Maowen

    2012-01-01

    In order to investigate the influence of covalent bonding within the garnet framework on the conductivity of Li+ in the interstitial space, the Li+ conductivities in the family of Sn-based compounds Li6La3 SnMO12 (M = Sb, Nb, Ta) have been obtained and are compared with those of Li6La3ZrMO12. Refinement of the neutron diffraction pattern of Li6La3 SnNbO12shows that the interstitial tetrahedral sites (24d ) are about half-occupied and most of the Li in the interstitial bridging octahedral sites are displaced from the center position (48g ). The Sb-based compound has the largest lattice parameter while the Ta-based compound has the highest Li+-ion conductivity of 0.42 10 4 Scm 1.

  2. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Wenjun; Wang, Feijun; Wang, Jianquan

    2014-10-13

    Novel water-based binder CMC-Li is synthesized using cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and CMC-Li as a water-soluble binder are investigated. CMC-Li is a novel lithium-ion binder. Compare with conventional poly(vinylidene fluoride) (PVDF) binder, and the battery with CMC-Li as the binder retained 97.8% of initial reversible capacity after 200 cycles at 176 mAh g(-1), which is beyond the theoretical specific capacity of LFP. Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, follow closely by that using PVDF binder. The batteries have good electrochemical property, outstanding pollution-free and excellent stability.

  3. Properties of large Li ion cells using a nickel based mixed oxide

    NASA Astrophysics Data System (ADS)

    Broussely, M.; Blanchard, Ph; Biensan, Ph; Planchat, J. P.; Nechev, K.; Staniewicz, R. J.

    The possible use of LiNiO 2 similar to LiCoO 2, as a positive material in rechargeable lithium batteries was recognized 20 years ago and starting 10 years later, many research studies led to material improvement through substitution of some of the nickel ions by other metallic ions. These modifications improve the thermal stability at high charge level or overcharge, as well as cycling and storage properties. Commercial material is now available at large industrial scale, which allows its use in big "industrial" Li ion batteries. Using low cost raw material (Ni), it is expected to be cost competitive with the manganese based systems usually mentioned as low cost on the total cell $/Wh basis. Providing higher energy density, and demonstrating excellent behavior on storage and extended cycle life, LiNiO 2 has definite advantages over the manganese system. Thanks to their properties, these batteries have demonstrated their ability to be used in lot of applications, either for transportation or standby. Their light weight makes them attractive for powering satellites. Although safety improvements are always desirable for all non-aqueous batteries using flammable organic electrolytes, suitable battery designs allow the systems to reach the acceptable level of safety required by many users. Beside the largely distributed lead acid and nickel cadmium batteries, Li ion will found its place in the "industrial batteries" market, in a proportion directly linked to its future cost reduction.

  4. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  5. Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-04-01

    Cylindrical Li-ion cells have demonstrated among the highest power density of all Li-ion cell types and typically employ a spiral electrode assembly. This spiral assembly is expected to cause large anisotropy in thermal conductance between the radial and axial directions due to the large number of interfaces between electrode and electrolyte layers in the radial conduction path, which are absent in the axial direction. This paper describes a novel experimental technique to measure the anisotropic thermal conductivity and heat capacity of Li-ion cells using adiabatic unsteady heating. Analytical modeling of the method is presented and is shown to agree well with finite-element simulation models. Experimental measurements indicate that radial thermal conductivity is two orders of magnitude lower than axial thermal conductivity for cylindrical 26650 and 18650 LiFePO4 cells. Due to the strong influence of temperature on cell performance and behavior, accounting for this strong anisotropy is critical when modeling battery behavior and designing battery cooling systems. This work improves the understanding of thermal transport in Li-ion cells, and presents a simple method for measuring anisotropic thermal transport properties in cylindrical cells.

  6. Solvation structure around the Li(+) ion in succinonitrile-lithium salt plastic crystalline electrolytes.

    PubMed

    Shen, Yuneng; Deng, Gang-Hua; Ge, Chuanqi; Tian, Yuhuan; Wu, Guorong; Yang, Xueming; Zheng, Junrong; Yuan, Kaijun

    2016-06-01

    Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%.

  7. LiFePO4/C nanocomposites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ali

    2017-03-01

    LiFePO4, as the most famous member of the family of olivine-type lithium transition metal phosphates, is one of the promising candidates for the cathodes of lithium-ion batteries. However, its battery performance is limited by its low electrical conductivity and slow Li solid-state diffusion. Various methods have been attempted to improve the battery performance of lithium iron phosphate. Among them, compositing the LiFePO4 with carbon nanomaterials seems to be the most promising, as it is facile and efficient. Carbon nanomaterials usually serve as a conductive agent to improve the electrical conductivity while increasing the material porosity in which the solid-state diffusion distances are significantly shortened. Owing to the popularity of various carbonaceous nanomaterials, there is no straightforward line of research for comparing the LiFePO4/C nanocomposites. This review aims to provide a general perspective based on the research achievements reported in the literature. While surveying the research findings reported in the literature, controversial issues are also discussed. The possible contribution of pseudocapacitance as a result of functionalized carbon or LiFePO4 lattice defects is described, since from a practical perspective, a LiFePO4/C electrode can be considered as a supercapacitor at high C rates (with a specific capacitance as large as 200 F g-1). The Li diffusion in LiFePO4 has not been well understood yet; while the Li diffusion within the LiFePO4 lattice seems to be quite fast, the peculiar interfacial electrochemistry of LiFePO4 slows down the diffusion within the entire electrode by a few orders of magnitude.

  8. Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes.

    PubMed

    Deng, Yue; Eames, Christopher; Chotard, Jean-Noël; Lalère, Fabien; Seznec, Vincent; Emge, Steffen; Pecher, Oliver; Grey, Clare P; Masquelier, Christian; Islam, M Saiful

    2015-07-22

    Solid electrolytes that are chemically stable and have a high ionic conductivity would dramatically enhance the safety and operating lifespan of rechargeable lithium batteries. Here, we apply a multi-technique approach to the Li-ion conducting system (1-z)Li4SiO4-(z)Li3PO4 with the aim of developing a solid electrolyte with enhanced ionic conductivity. Previously unidentified superstructure and immiscibility features in high-purity samples are characterized by X-ray and neutron diffraction across a range of compositions (z = 0.0-1.0). Ionic conductivities from AC impedance measurements and large-scale molecular dynamics (MD) simulations are in good agreement, showing very low values in the parent phases (Li4SiO4 and Li3PO4) but orders of magnitude higher conductivities (10(-3) S/cm at 573 K) in the mixed compositions. The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic conductivity. Solid-state (6)Li, (7)Li, and (31)P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.

  9. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk.

    PubMed

    He, Meng; Kravchyk, Kostiantyn; Walter, Marc; Kovalenko, Maksym V

    2014-03-12

    We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10-20 nm range and with narrow size distributions of 7-11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580-640 mAh g(-1) at moderate charging/discharging current densities of 0.5-1C (1C-rate is 660 mA g(-1)). At all C-rates (0.5-20C, e.g. current densities of 0.33-13.2 Ag(1-)), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78-85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.

  10. Study of Li 2TiO 3 + 5 mol% TiO 2 lithium ceramics after long-term neutron irradiation

    NASA Astrophysics Data System (ADS)

    Chikhray, Y.; Shestakov, V.; Maksimkin, O.; Turubarova, L.; Osipov, I.; Kulsartov, T.; Kuykabayeba, A.; Tazhibayeva, I.; Kawamura, H.; Tsuchiya, K.

    2009-04-01

    Given work presents the results of complex material-science studies of 1 mm diameter ceramic pebbles manufactured of Li 2TiO 3 + 5 mol% TiO 2 ceramics before and after long-time neutron irradiation. Ceramic samples were placed in specially ampoules (six items) made of stainless steel Cr18Ni10Ti which were vacuumized and filled with helium. Irradiation of ampoules was carried out in the loop channel of WWRK reactor (Almaty, Kazakhstan) during 223 days at 6 MW power. After irradiation light-colored pebbles became grey-colored due to structure changes which generation of grey-colored inclusions (lithium oxide) with low density and microhardness. There is a radiation softening of lithium ceramic and that effect is higher for lower irradiation temperature 760 K than for 920 K. The value of maximum permissible load (pebble crash limit) at that is low and comprises ˜37.9 N. The content of residual tritium is higher for ceramic irradiated at 760 K (6.6 ± 0.6 × 10 11 Bq/kg) than for ceramic irradiated at 920 K (17 ± 3 × 10 10 Bq/kg). The size change indicates that pebble increase more after irradiation at 760 K than at 920 K where the bigger portion of tritium leaves the pebble. X-ray analysis shows radiation modification of Li 2TiO 3 + 5 mol% TiO 2 phase composition and generation of new phases: LiTi 2O 4, LiTiO 2 and Li 4Ti 5O 12.

  11. 2LiH + M (M = Mg, Ti): New concept of negative electrode for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Oumellal, Y.; Rougier, A.; Tarascon, J.-M.; Aymard, L.

    xLiH + M composites, where M = Mg or Ti, are suggested as new candidates for negative electrode for Li-ion batteries. For this purpose, the xLiH + M electrode is prepared using the mechanochemical reaction: MH x + xLi → xLiH + M or by simply grinding a xLiH + M mixture. The most promising electrochemical behaviour is obtained with the (2LiH + Mg) composite prepared via a mechanochemical reaction between MgH 2 and metallic Li leading to a very divided composite in which Mg crystallites of 20 nm size are embedded in a LiH matrix. Reversible capacities of 1064 mAh g -1 (three times as much as the one of graphite) and 600 mAh g -1 are reached for these phase mixtures after 1 and 28 h of grinding in vertical and planetary mill, respectively. The (2LiH + Ti) mixture prepared via the mechanochemical reaction between TiH 2 and Li exhibits a reversible capacity of 428 mAh g -1. From X-ray diffraction measurements, the performances of the electrodes are attributed to the electrochemical conversion reaction: M + xLiH ↔ MH x + xLi + + xe - (M = Mg, Ti) followed for M = Mg by an alloying process where M reacts with lithium ions to form Mg 1- xLi x alloys.

  12. Electron-correlation effects in the g factor of light Li-like ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Pachucki, K.; Puchalski, M.; Harman, Z.; Keitel, C. H.

    2017-06-01

    We investigate electron-correlation effects in the g factor of the ground state of Li-like ions. Our calculations are performed within the nonrelativistic quantum electrodynamics (NRQED) expansion up to two leading orders in the fine-structure constant α , α2, and α3. The dependence of the NRQED results on the nuclear charge number Z is studied and the individual 1 /Z -expansion contributions are identified. Combining the obtained data with the results of the all-order (in Z α ) calculations performed within the 1 /Z expansion, we derive unified theoretical predictions for the g factor of light Li-like ions.

  13. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    PubMed Central

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-01-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage. PMID:26658957

  14. Mathematical Modeling of Ni/H2 and Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; White, Ralph E.; Dougal, Roger A.

    2001-01-01

    The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.

  15. Reaction temperature sensing (RTS)-based control for Li-ion battery safety.

    PubMed

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E; Rahn, Christopher D

    2015-12-11

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  16. Effect of flame-retarding additives on surface chemistry in Li-ion batteries

    SciTech Connect

    Nam, N.D.; Park, I.J.; Kim, J.G.; Kim, H.S.

    2012-10-15

    This study examined the properties of 1 wt.% vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and diphenyl octyl phosphate (DPOF) additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. Surface film formation on the negative and positive electrodes was analyzed by electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). In conclusion, EIS, FT-IR spectroscopy and SEM results confirmed that DPOF is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

  17. Scaling law for total electron-impact ionization cross sections of Li-like ions

    SciTech Connect

    Ancarani, L.U.; Hervieux, P.-A.

    2005-09-15

    Experimental total cross sections for direct electron-impact ionization of the valence electron of several Li-like ions are seen to follow a new ab initio scaling law which is inspired by a Coulomb-Born model and the frozen-core Hartree-Fock approximation. The predictive character of this scaling law should be very useful to experimentalists and can be used to complete data tables needed for plasma or astrophysical studies. A single-parameter fit of the best available experimental data, once scaled, provides us with a single formula, for moderately charged Li-like ions, which is more accurate than Lotz semiempirical formula.

  18. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-12-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  19. High resolution morphology and electrical characterization of aged Li-ion battery cathode.

    PubMed

    Ramdon, Sanjay; Bhushan, Bharat

    2012-08-15

    Understanding the changes that take place in an aged Lithium-ion (Li-ion) battery cathode is vital to improving battery storage capabilities. High resolution imaging using an atomic force microscope (AFM) and current measurement capabilities are used to determine the difference in surface morphology as well as conductance between unaged and aged cathode. Upon aging, agglomeration of LiFePO(4) particles with nanocrystalline deposits is observed and the samples show lower conductance and hence increased resistance. The data identifies potential degradation mechanisms which reduce the conductivity of the cathode leading to poor cycling performance of the battery.

  20. Electrochemical intercalation of lithium ions into LiV 3O 8 in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, G. J.; Qu, Q. T.; Wang, B.; Shi, Y.; Tian, S.; Wu, Y. P.; Holze, R.

    Electrochemical intercalation of lithium ions from a saturated LiNO 3 aqueous electrolyte solution into LiV 3O 8 prepared by a solid-state reaction at 680 °C was studied with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Results show that there are three steps of intercalation in the presence of an aqueous electrolyte, in agreement with those previously observed with organic liquid electrolytes. In addition, variations of several parameters including the charge transfer resistance (R ct), the capacitance of the double layer (C DL), the Warburg diffusion impedance (Z w), and diffusion coefficient of lithium ions (DLi+) during the intercalation process are reported.

  1. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries.

    PubMed

    Gu, Meng; Belharouak, Ilias; Zheng, Jianming; Wu, Huiming; Xiao, Jie; Genc, Arda; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R; Zhang, Ji-Guang; Browning, Nigel D; Liu, Jun; Wang, Chongmin

    2013-01-22

    Pristine Li-rich layered cathodes, such as Li(1.2)Ni(0.2)Mn(0.6)O(2) and Li(1.2)Ni(0.1)Mn(0.525)Co(0.175)O(2), were identified to exist in two different structures: LiMO(2)R3[overline]m and Li(2)MO(3)C2/m phases. Upon 300 cycles of charge/discharge, both phases gradually transform to the spinel structure. The transition from LiMO(2)R3[overline]m to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li(2)MO(3)C2/m to spinel involves removal of Li(+) and O(2-), which produces large lattice strain and leads to the breakdown of the parent lattice. The newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some layered nanoparticles after cycling, which is believed to be the consequence of the lattice breakdown and vacancy condensation upon removal of lithium ions. The AlF(3)-coating can partially relieve the spinel formation in the layered structure during cycling, resulting in a slower capacity decay. However, the AlF(3)-coating on the layered structure cannot ultimately stop the spinel formation. The observation of structure transition characteristics discussed in this paper provides direct explanation for the observed gradual capacity loss and poor rate performance of the layered composite. It also provides clues about how to improve the materials structure in order to improve electrochemical performance.

  2. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode

    NASA Astrophysics Data System (ADS)

    David, L.; Bhandavat, R.; Barrera, U.; Singh, G.

    2015-04-01

    A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg.cm-2) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh.g-1 when the current density returned to 100 mA.g-1 after continuous cycling at 2400 mA.g-1 (192 mAh.g-1). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor-derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials.

  3. Polymer-Derived Ceramic Functionalized MoS2 Composite Paper as a Stable Lithium-Ion Battery Electrode.

    PubMed

    David, L; Bhandavat, R; Barrera, U; Singh, G

    2015-04-08

    A facile process is demonstrated for the synthesis of layered SiCN-MoS2 structure via pyrolysis of polysilazane functionalized MoS2 flakes. The layered morphology and polymer to ceramic transformation on MoS2 surfaces was confirmed by use of electron microscopy and spectroscopic techniques. Tested as thick film electrode in a Li-ion battery half-cell, SiCN-MoS2 showed the classical three-stage reaction with improved cycling stability and capacity retention than neat MoS2. Contribution of conversion reaction of Li/MoS2 system on overall capacity was marginally affected by the presence of SiCN while Li-irreversibility arising from electrolyte decomposition was greatly suppressed. This is understood as one of the reasons for decreased first cycle loss and increased capacity retention. SiCN-MoS2 in the form of self-supporting paper electrode (at 6 mg·cm(-2)) exhibited even better performance, regaining initial charge capacity of approximately 530 mAh·g(-1) when the current density returned to 100 mA·g(-1) after continuous cycling at 2400 mA·g(-1) (192 mAh·g(-1)). MoS2 cycled electrode showed mud-cracks and film delamination whereas SiCN-MoS2 electrodes were intact and covered with a uniform solid electrolyte interphase coating. Taken together, our results suggest that molecular level interfacing with precursor-derived SiCN is an effective strategy for suppressing the metal-sulfide/electrolyte degradation reaction at low discharge potentials.

  4. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    PubMed Central

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-01-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains. PMID:28378837

  5. Optical Imaging of Phase Transition and Li-Ion Diffusion Kinetics of Single LiCoO(2) Nanoparticles During Electrochemical Cycling.

    PubMed

    Jiang, Dan; Jiang, Yingyan; Li, Zhimin; Liu, Tao; Wo, Xiang; Fang, Yimin; Tao, Nongjian; Wang, Wei; Chen, Hong-Yuan

    2017-01-11

    Understanding the phase transition and Li-ion diffusion kinetics of Li-ion storage nanomaterials holds promising keys to further improve the cycle life and charge rate of the Li-ion battery. Traditional electrochemical studies were often based on a bulk electrode consisting of billions of electroactive nanoparticles, which washed out the intrinsic heterogeneity among individuals. Here, we employ optical microscopy, termed surface plasmon resonance microscopy (SPRM), to image electrochemical current of single LiCoO2 nanoparticles down to 50 fA during electrochemical cycling, from which the phase transition and Li-ion diffusion kinetics can be quantitatively resolved in a single nanoparticle, in operando and high throughput manner. SPRM maps the refractive index (RI) of single LiCoO2 nanoparticles, which significantly decreases with the gradual extraction of Li-ions, enabling the optical read-out of single nanoparticle electrochemistry. Further scanning electron microscopy characterization of the same batch of nanoparticles led to a bottom-up strategy for studying the structure-activity relationship. As RI is an intrinsic property of any material, the present approach is anticipated to be applicable for versatile kinds of anode and cathode materials, and to facilitate the rational design and optimization toward durable and fast-charging electrode materials.

  6. Real-time tracking the Li(+)-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes.

    PubMed

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-05

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li(+) migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  7. Real-time tracking the Li+-ion transition behavior and dynamics in solid Poly(vinyl alcohol)/LiClO4 electrolytes

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Zou, Xin; Luo, Xin; Pu, Yanlei; Wang, Jiliang; Lei, Jingxin

    2017-04-01

    To delicately track the Li-ion transport in SPEs under an external electric field (EF) is a big challenge, considering the limitation of most spectroscopic methods to monitor the real-time conformational changes and track the dynamic process. Herein, real-time Li-ion transition behavior and transport dynamics in typical poly(vinyl alcohol)/LiClO4 electrolytes under an external EF have been studied by combining time-resolved Fourier transform infrared (FTIR) with two-dimensional correlation FTIR spectroscopy. Results show that no migration of Li-ions has been detected when the time scale of the EF loading is at nanosecond (less than 200 ns). However, for the first time, Li-ions have been found to significantly transfer along the EF direction as the time scale enhances to microsecond order of magnitude and the migration period is less than 10 microseconds. The Li+ migration in the SPEs under an EF is a complicated process including quasi-periodic dissociation and coordination effects between Li-ion carriers and polymeric chains.

  8. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    PubMed

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg(-1). The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  9. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    PubMed Central

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-01-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329

  10. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-02-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg‑1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  11. Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes

    PubMed Central

    2014-01-01

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently “plagued” by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼155 mAh/g, ∼135 mAh/g, and ∼125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries. PMID:25372361

  12. Saft Li-Ion VES140S Battery Flight Experience Return on TAS Space Bus Platforms

    NASA Astrophysics Data System (ADS)

    Borthomieu, Yannick; Gambini, Didier

    2014-08-01

    Starting 1996, the Lithium-ion (Li-ion) battery has been used several years ago with the support of ESA and CNES in the frame of the Stentor program. Following the development and qualification this very promising technology in terms of technical, industrial and cost aspects has been used on-board Space Bus plate-forms dedicated to telecommunications satellite for payload power from 3 up to 20 kW.The aim of the article is to present the in-orbit data from the Saft VES140 Li-Ion batteries on board the Thales Alenia Space Spacebus satellite. The first TAS satellite using Li-Ion batteries has been successfully launched in October 2005 after a first attempt in 2002 with Stentor. Since that date, 20 satellites are in operation with Li-Ion batteries. The battery performances have mainly been reviewed mainly on the oldest satellite. No deviation, versus the initial specification, has been analysed. The performances are equal or much better than the life projection done at the start of the projects. Battery energies and voltages telemetries have been checked and compared to the prediction model SLIM. They are in line with the life trend given by the model.

  13. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Xu, Yaolin; Wang, Xiaoqun; Shi, Xinghua; Mulder, Fokko M.

    2017-06-01

    Super P carbon black (SPCB) has been widely used as a conducting additive in Li/Na ion batteries to improve the electronic conductivity. However, there has not yet been a comprehensive study on its structure and electrochemical properties for Li/Na ion uptake, though it is important to characterize its contribution in any study of active materials that uses this additive in non-negligible amounts. In this article the structure of SPCB has been characterized and a comprehensive study on the electrochemical Li/Na ion uptake capability and reaction mechanisms are reported. SPCB exhibits a considerable lithiation capacity (up to 310 mAh g-1) from the Li ion intercalation in the graphite structure. Sodiation in SPCB undergoes two stages: Na ion intercalation into the layers between the graphene sheets and the Na plating in the pores between the nano-graphitic domains, and a sodiation capacity up to 145 mAh g-1 has been achieved. Moreover, the influence of the type and content of binders on the lithiation and sodiation properties has been investigated. The cycling stability is much enhanced with sodium carboxymethyl cellulose (NaCMC) binder in the electrode and fluoroethylene carbonate (FEC) in the electrolyte; and a higher content of binder improves the Coulombic efficiency during dis-/charge.

  14. Microwave dielectric properties and chemical compatibility with silver electrode of Li2TiO3 ceramic with Li2O-ZnO-B2O3 glass additive

    NASA Astrophysics Data System (ADS)

    Sayyadi-Shahraki, A.; Taheri-Nassaj, E.; Hassanzadeh-Tabrizi, S. A.; Barzegar-Bafrooei, H.

    2015-01-01

    The effects of Li2O-ZnO-B2O3 (LZB) glass additive on the sintering behavior, phase composition, microstructure and microwave dielectric properties of Li2TiO3 (LT) ceramics have been investigated. The addition of a small amount of LZB glass can reduce the sintering temperature of LT ceramics from 1150 °C to 900 °C without obvious degradation of the microwave dielectric properties. Only a single-phase Li2TiO3 is formed in LT ceramic with LZB glass addition sintered at 900 °C for 2 h. Typically, the 2.5 wt% LZB glass-added LT ceramic sintered at 900 °C for 2 h can reach a maximum relative density of 94.8% of the theoretical density and exhibits good microwave dielectric properties of εr=22.9, Qf=59,600 GHz and τf=+23.7 ppm/°C. The XRD, SEM and EDX analyses showed that the ceramic can be co-fired well with Ag electrode, which may be applied for LTCC application.

  15. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  16. The strain effect on lithium ion migration in Li-Si alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Shi, Jing; Wu, Musheng; Ouyang, Chuying; Xu, Bo

    2016-12-01

    First-principles calculations were performed to investigate the strain effect on the lithium ion migration in Li1Si1, Li2Si1 and Li7Si2 alloy. The three kind of Li-Si phase respectively correspond the lithium concentration change from low to high in lithiation process. The calculation focuses on migration pathways and energy barriers of the lithium ion migration in different strain by using the climbing-image nudged elastic band method. The result show that the tensile strain can cause the lithium ion migration energy barrier decrease, while the compressive strain can lead to the energy barrier increase in three Li-Si alloys. Under the considered strain range, the effect of compression strain stage is greater in the Li-poor phase (Li1Si1, Li2Si1) than in Li-rich phase (Li7Si2), while the effect of tensile strain stage is bigger in the Li-rich phase than in Li-poor phase.

  17. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.

    PubMed

    Dedryvère, R; Leroy, S; Martinez, H; Blanchard, F; Lemordant, D; Gonbeau, D

    2006-07-06

    X-ray photoelectron valence spectra of lithium salts LiBF4, LiPF6, LiTFSI, and LiBETI have been recorded and analyzed by means of density functional theory (DFT) calculations, with good agreement between experimental and calculated spectra. The results of this study are used to characterize electrode/electrolyte interfaces of graphite negative electrodes in Li-ion batteries using organic carbonate electrolytes containing LiTFSI or LiBETI salts. By a combined X-ray photoelectron spectroscopy (XPS) core peaks/valence analysis, we identify the main constituents of the interface. Differences in the surface layers' composition can be evidenced, depending on whether LiTFSI or LiBETI is used as the lithium salt.

  18. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    PubMed

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO4/Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO4/Li cell at 120 °C and Na3V2(PO4)3/Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  19. Solvation of LiBF4 ions in dimethyl sulfoxide solutions according to Raman spectroscopy data

    NASA Astrophysics Data System (ADS)

    Gafurov, M. M.; Ataev, M. B.; Rabadanov, K. Sh.; Gorobets, M. I.; Tret'yakov, D. O.; Kirillov, S. A.; Kubataev, Z. Yu.

    2015-04-01

    Ionic equilibria in the LiBF4-dimethyl sulfoxide (DMSO) system were studied by Raman spectroscopy at 50°C at salt concentrations of 0.05-0.25 mole fractions. The spectral signals of hydrogen bonds between the DMSO molecules and the fluoroborate ions were found. The concentrations of the monomer and dimer DMSO molecules and DMSO molecules in the solvation sphere of the lithium cation; free solvent molecules and those in the solvation sphere of the fluoroborate ion; free anions, ion pairs separated by the solvent, and contact ion pairs were determined.

  20. Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries.

    PubMed

    Kim, Dong Hyeon; Oh, Dae Yang; Park, Kern Ho; Choi, Young Eun; Nam, Young Jin; Lee, Han Ah; Lee, Sang-Min; Jung, Yoon Seok

    2017-04-05

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) have the potential to be superior to conventional lithium-ion batteries (LIBs) in terms of safety and energy density. Sulfide SE materials are key to the development of bulk-type ASLBs because of their high ionic conductivity (max of ∼10(-2) S cm(-1)) and deformability. However, the severe reactivity of sulfide materials toward common polar solvents and the particulate nature of these electrolytes pose serious complications for the wet-slurry process used to fabricate ASLB electrodes, such as the availability of solvent and polymeric binders and the formation of ionic contacts and networks. In this work, we report a new scalable fabrication protocol for ASLB electrodes using conventional composite LIB electrodes and homogeneous SE solutions (Li6PS5Cl (LPSCl) in ethanol or 0.4LiI-0.6Li4SnS4 in methanol). The liquefied LPSCl is infiltrated into the tortuous porous structures of LIB electrodes and solidified, providing intimate ionic contacts and favorable ionic percolation. The LPSCl-infiltrated LiCoO2 and graphite electrodes show high reversible capacities (141 and 364 mA h g(-1)) at 0.14 mA cm(-2) (0.1 C) and 30 °C, which are not only superior to those for conventional dry-mixed and slurry-mixed ASLB electrodes but also comparable to those for liquid electrolyte cells. Good electrochemical performance of ASLBs employing the LPSCl-infiltrated LiCoO2 and graphite electrodes at 100 °C is also presented, highlighting the excellent thermal stability and safety of ASLBs.

  1. Nanoscale controlled Li-insertion reaction induced by scanning electron-beam irradiation in a Li4Ti5O12 electrode material for lithium-ion batteries.

    PubMed

    Kitta, Mitsunori; Kohyama, Masanori

    2017-05-10

    The development of a nanoscale battery reaction in an electrode material associated with in situ microscopic observation is significant to an understanding of the solid-state mechanism of a battery reaction. With a Li4Ti5O12 (LTO) crystal as the negative electrode of a Li-ion battery (LIB), we show that a nanoscale-controlled Li-insertion reaction can be produced by electron beam irradiation with scanning transmission electron microscopy (STEM). A selected area in a Li2O-coated thin LTO crystal was irradiated by the electron probe of STEM with a high beam intensity of 2.5 × 10(7) (electrons per nm(2)). Electron energy-loss spectroscopy (EELS) revealed that significant changes in the chemical feature occurred only in the high-dose irradiation area in the LTO specimen. The features of Li-K, Ti-L and O-K spectra in that area were completely equal to those of a Li7Ti5O12 (Li-LTO) phase, as an electrochemically Li-inserted LTO phase, in contrast to usual LTO-like spectra in the region surrounding the specimen. For a pristine LTO specimen without Li2O coating, no Li-insertion reaction was observed under the same irradiation conditions. The high-dose electron beam seems to induce the dissociation of Li2O, providing Li ions and electrons, and the rapid and directional growth of a Li-LTO phase along the electron beam in the LTO specimen, forming a nanoscale steep interface with the surrounding LTO phase. The present phenomenon is a new type of electron beam assisted chemical reaction in a solid state, and could have a large impact on the science and technology of battery materials.

  2. All-carbon-based porous topological semimetal for Li-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Wang, Shuo; Sun, Qiang

    2017-01-01

    Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials.

  3. All-carbon-based porous topological semimetal for Li-ion battery anode material

    PubMed Central

    Liu, Junyi; Wang, Shuo; Sun, Qiang

    2017-01-01

    Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials. PMID:28069940

  4. A high-power and fast charging Li-ion battery with outstanding cycle-life.

    PubMed

    Agostini, M; Brutti, S; Navarra, M A; Panero, S; Reale, P; Matic, A; Scrosati, B

    2017-04-24

    Electrochemical energy storage devices based on Li-ion cells currently power almost all electronic devices and power tools. The development of new Li-ion cell configurations by incorporating innovative functional components (electrode materials and electrolyte formulations) will allow to bring this technology beyond mobile electronics and to boost performance largely beyond the state-of-the-art. Here we demonstrate a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode material, i.e. TiO2, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications, i.e. Pyr1,4PF6, a lithium salt, i.e. LiPF6, and standard organic carbonates. The final cell configuration is able to reversibly cycle lithium for thousands of cycles at 1000 mAg(-1) and a capacity retention of 65% at cycle 2000.

  5. Surface structure and Li-ion energy storage of two-dimensional ``MXene'' transition metal carbides

    NASA Astrophysics Data System (ADS)

    Kent, Paul; Xie, Yu; Naguib, Michael; Gogotsi, Yury

    2014-03-01

    Recently, a new class of two-dimensional early transition metal carbides and carbonitrides, the so-called MXenes, has been synthesized by extracting the ``A'' element from MAX phases. The as synthesized MXene surface is terminated by O, OH and/or F. Experiments have demonstrated that MXenes (Ti2C, V2C, Nb2C, Ti3C2...) are promising anode materials for lithium ion batteries and well as supercapacitors, delivering high storage capacity and good rate performance. However, the mechanism of Li-ion storage on MXene surfaces is not clear. In this work, we have investigated the role of surface structure on Li-ion storage of MXenes by extensive density functional calculations. The Li capacity of MXenes is strongly dependent on the type of surface functional group, where O termination has the highest theoretical Li capacity. We discuss how these surfaces can be produced, and propose a mechanism to explain the highest measured Li capacities. Supported by the Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences

  6. All-carbon-based porous topological semimetal for Li-ion battery anode material.

    PubMed

    Liu, Junyi; Wang, Shuo; Sun, Qiang

    2017-01-24

    Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials.

  7. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids.

    PubMed

    Lassègues, Jean-Claude; Grondin, Joseph; Aupetit, Christian; Johansson, Patrik

    2009-01-08

    The solvation of the lithium ion in LiTFSI-doped ionic liquids based on alkyl-substituted imidazolium cations and bis(trifluoromethanesulfonyl)imide anions (TFSI-) was investigated by infrared and Raman spectroscopies. The spectral changes occurring for some TFSI- vibrations sensitive to the lithium coordination were analyzed with the help of DFT calculations. In addition, the vibrations of the lithium ion in its solvating cage were found to produce a broad IR absorption band centered at 374 cm(-1). For low to moderate LiTFSI mole fractions, 0.08 < x < 0.2, the [Li(TFSI)2]- solvating cage was found to involve bidentate coordinations of Li+ with two oxygen atoms of one anion in the trans (C2) conformation and two oxygen atoms of the other anion in the cis (C1) conformation. At higher LiTFSI concentration, up to x = 0.5, the lithium ion-TFSI coordination number progressively becomes less than 2, indicating the possible formation of aggregates.

  8. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery.

    PubMed

    Song, Huanqiao; Luo, Mingsheng; Wang, Aimei

    2017-01-25

    Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV3O8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g(-1) at 50, 100, 200, 500, 1000, 2000, and 4000 mA g(-1), respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g(-1). The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V(4+)) and the attendant oxygen vacancies into LiV3O8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV3O8 without detectable V(4+) (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.

  9. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-04

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery.

  10. On the utility of C24 fullerene framework for Li-ion batteries: Quantum chemical analysis

    NASA Astrophysics Data System (ADS)

    Bagheri, Zargham

    2016-10-01

    The potential application of carbonaceous C24 nanocluster framework as an anode in Li-ion batteries (LIBs) is investigated using density functional theory calculations. We find that this fullerene unexpectedly gives an imaginary cell voltage and cannot be used as an anode in LIBs. Here, we explain the origin of this unusual behavior and introduce a strategy to make it suitable for anode materials. We show that there is no energy barrier for Li+ diffusion through two neighboring hydrogenated C24 fullerenes. The percentage of Hartree Fock (HF) exchange of density functionals reversely affects the adsorption energies of Li and Li+, so that it is decreased and increased by increasing %HF exchange, respectively. Also, a linear relationship between %HF and HOMO or LUMO level of the studied systems is predicted.

  11. A flexible Li-ion battery with design towards electrodes electrical insulation

    NASA Astrophysics Data System (ADS)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  12. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  13. Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Chiu, Hsien-Chieh; Arthur, Zachary; Zhou, Jigang; Wang, Jian; Chen, Ning; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-10-01

    Li2FeSiO4 (LFS) has drawn much attention as cathode for high capacity Li-ion batteries. Even though significant volume of study has been devoted to its crystal chemistry and electrochemistry, many questions relating to its Li-ion storage dynamics remain yet to be fully elucidated. In this context, synchrotron-based X-ray diffraction and absorption spectroscopies are employed to characterize the phase stability and charge compensation mechanism in a metastable Li2FeSiO4 nanostructured cathode as a function of state-of-charge (Li2-xFeSiO4, x = 0, 0.25, 0.50, 0.75, 1.0) and cycling at very low current. The results demonstrate (i) no detectable phase transition from monoclinic to orthorhombic phase during the first charge-discharge cycle but rather formation of antisite defects that progressively induce phase transformation after several electrochemical cycles; (ii) characteristics of solid solution Li-ion storage (Li2-xFeSiO4, x = 0-1); and (iii) the charge compensation for the first Li extraction does not come solely from the ferrous to ferric conversion, but interestingly from prominent participation of lattice oxygen as well that appears to destabilize the cycled LFS structure with significant performance implications.

  14. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO{sub 4} by sulfur surface modification

    SciTech Connect

    Xu, Guigui E-mail: zghuang@fjnu.edu.cn; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao E-mail: zghuang@fjnu.edu.cn

    2014-08-14

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO{sub 4} (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO{sub 4} is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO{sub 4} [S-LiFePO{sub 4} (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO{sub 4} (010) is estimated to be about 10{sup −11} (cm{sup 2}/s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance.

  15. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  16. Potassium Ions Promote Solution-Route Li2O2 Formation in the Positive Electrode Reaction of Li-O2 Batteries.

    PubMed

    Matsuda, Shoichi; Kubo, Yoshimi; Uosaki, Kohei; Nakanishi, Shuji

    2017-03-16

    Lithium-oxygen system has attracted much attention as a battery with high energy density that could satisfy the demands for electric vehicles. However, because lithium peroxide (Li2O2) is formed as an insoluble and insulative discharge product at the positive electrode, Li-O2 batteries have poor energy capacities. Although Li2O2 deposition on the positive electrode can be avoided by inducing solution-route pathway using electrolytes composed of high donor number (DN) solvents, such systems generally have poor stability. Herein we report that potassium ions promote the solution-route formation of Li2O2. The present findings suggest that potassium or other monovalent ions have the potential to increase the volumetric energy density and life cycles of Li-O2 batteries.

  17. Li-ion Battery Electrolytes Designed for a Wide Temperature Range

    DTIC Science & Technology

    2006-06-01

    ion battery performance steeply declines as the operating temperature dips below -10° C . Additionally, battery characteristics rapidly deteriorate...at temperatures above 60° C . We report on the development of a new family of Li-ion battery electrolytes designed to operate over a wide temperature...formulations may now be discharged at rates as high as C /4 at -50° C . Further, such cells demonstrate long cycle life both at room temperature and at

  18. Vacancy-induced manganese vanadates and their potential application to Li-ion batteries.

    PubMed

    Dufficy, Martin K; Luo, Lan; Fedkiw, Peter S; Maggard, Paul A

    2016-06-14

    We report on the synthesis and characterization of a novel manganese vanadate, Mn1.5(H2O)(NH4)V4O12, with rare in situ disorder of Mn(H2O)2(2+)/2NH4(+). We show that vacancies created by ammonium ions and coordinating water molecules within the manganese vanadate crystal structure yield high-charge capacity, favorable rate capability, and long cycle life in Li-ion half-cells.

  19. A Recovery Process of Active Cathode Paste from Spent Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Toma, C. M.; Ghica, G. V.; Buzatu, M.; Petrescu, M. I.; Vasile, E.; Iacob, G.

    2017-06-01

    In this work, the depleted active paste from spent lithium-ion batteries was separated from cathode by means of ultrasonic vibration. First the unit cells were discharged in brine at room temperature, for safety reasons. Then anode, separator, electrolyte and cathode were separated. Spent Li-Ion batteries were introduced into a washing container to separate electrode materials from their support substrate: active paste (lithium cobalt oxide - LiCoO2) from cathode (Al foil) and graphite from anode (Cu foil). The Al foil and Cu foil were also recovered. A cleaning efficiency of 91% was achieved using a solution of 1.5 M acetic acid after a 6 minute time of exposure into an ultrasonic washing container with a frequency and electric power of 50 kHz and 50 W, respectively. The XRD patterns and the morphology of LiCoO2 powder were presented.

  20. Nanomechanical characterization and mechanical integrity of unaged and aged Li-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Ramdon, Sanjay; Bhushan, Bharat

    2014-01-01

    Lithium-ion (Li-ion) batteries have been implemented for numerous applications, one of which is in plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). In an effort to prolong battery life it is important to understand the mechanisms that cause reduced battery capacity with aging. In this work, nanomechanical characterization and mechanical integrity studies were carried out on unaged and aged LiFePO4 battery cathodes using atomic force microscopy (AFM) and nanoindentation. Changes in hardness, elastic modulus, creep, nanowear, nanoscratch and nanofriction properties were measured. Measured changes are believed to occur as a result of coarsening and agglomeration of LiFePO4 nanoparticles.

  1. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  2. Theoretical study of the alkaline-earth (LiBe)+ ion: structure, spectroscopy and dipole moments

    NASA Astrophysics Data System (ADS)

    Ghanmi, C.; Farjallah, M.; Berriche, H.

    2017-03-01

    We study theoretically the structure and spectroscopic properties of the alkali alkaline-earth (LiBe)+ ion. The potential energy curves and their spectroscopic parameters, permanent and transition dipole moments are determined with a quantum chemistry approach. The (LiBe)+ ion is modelled as two valence electron system moving in the field of Be2+ and Li+ cores, which are described by pseudopotentials. In addition, effective core-polarization potentials are included to correct the energy. The molecular calculations are performed using a standard quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarization potentials, and full configuration interaction (CI) calculations. The precision of our spectroscopic parameters are discussed by comparison with currently available theoretical results. A rather good agreement is observed for the ground and first excited states. The permanent dipole moments reveal many abrupt changes, which are localized at particular distances corresponding to the positions of the avoided crossings.

  3. Synthesis and charge-discharge properties of LiF-NiO composite as a cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Tomita, Yasumasa; Nasu, Hiromasa; Izumi, Yusuke; Arai, Juichi; Otsuka, Satoshi; Yamane, Yohei; Yamada, Koji; Kohno, Yoshiumi; Kobayashi, Kenkichiro

    2016-10-01

    LiF-NiO composites in a molar ratio of 1:1 are synthesized by the mechanical milling of equal amounts of LiF and NiO for 12-144 h. The synthesized composites are investigated by XRD, charge-discharge measurements, and XPS. The XRD peaks of NiO broaden with an increase in the milling time, while those of LiF disappear. Rietveld analysis shows that the LiF-NiO composites prepared by milling for more than 72 h form a solid solution and that the arrangement of Li+ and Ni2+ ions in them is disordered. The LiF and NiO samples milled individually do not exhibit a noticeable discharge capacity, while the composites show a large one. Further, the discharge capacity of the LiF-NiO composites increases with the milling time, with the composite prepared by milling for 144 h exhibiting a discharge capacity of 216 mA h g-1 and an average voltage of 3.53 V at 0.05 C for voltages of 2.0-5.0 V. The XPS data suggest that the Ni ions are probably oxidized and reduced repeatedly during the charge-discharge process and that the Ni2+ ions are partially oxidized to Ni3+ ions during charging to 5.0 V.

  4. Polytype and stacking faults in the Li2CoSiO4 Li-ion battery cathode.

    PubMed

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Sasaki, Yoshikazu; Hyodo, Hiroshi; Honma, Itaru

    2014-12-01

    Atomic-resolution imaging of the crystal defects of cathode materials is crucial to understand their formation and the correlation between the structure, electrical properties, and electrode performance in rechargeable batteries. The polytype, a stable form of varied crystal structure with uniform chemical composition, holds promise to engineer electronic band structure in nanoscale homojunctions.1-3 Analyzing the exact sites of atoms and the chemistry of the boundary in polytypes would advance our understanding of their formation and properties. Herein, the polytype and stacking faults in the lithium cobalt silicates are observed directly by aberration-corrected scanning transmission electron microscopy. The atomic-scale imaging allows clarification that the polytype is formed by stacking of two different close-packed crystal planes in three-dimensional space. The formation of the polytype was induced by Li-Co cation exchange, the transformation of one phase to the other, and their stacking. This finding provides insight into intrinsic structural defects in an important Li2 CoSiO4 Li-ion battery cathode.

  5. Enhancement of Q(m) by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics.

    PubMed

    Li, E; Kakemoto, H; Wada, S; Tsurumi, T

    2008-05-01

    Lead-free piezoelectric ceramics KNN modified by Li-substitution and CuO addition have been synthesized, and the piezoelectric and dielectric properties were measured. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was formed with Li-substitution. The co doping of Li and Cu markedly enhanced the mechanical quality factor (Q(m)) in comparison with the sole doping of Li and Cu. Anomalous anti ferroelectric-like hysteresis curves were observed in 2 mol% CuO-doped ceramics. The anti-ferroelectric-like curves were changed to that of normal ferroelectrics following poling. A model based on the formation of the internal bias field (Ei) due to the movements of space charges was proposed to explain these phenomena. It was considered that the Ei stabilized the spontaneous polarization (Ps) and suppressed the domain wall motion to enhance the Q(m). The highest Qm obtained in this study was 742. The [(Na0(0.5)K0(0.5))(0.96)Li0(0.04) ] NbO(3) + 0.45 mol% CuO ceramics showed a high Q(m) value of 414 with a high piezoelectric constant d(33) of 100 pC/N.

  6. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  7. Generation 6 Li-Ion Cell Vibration Testing at ABSL Space Products

    NASA Astrophysics Data System (ADS)

    Defer, M.; Borthomieu, Y.; Ligneel, E.; Badet, S.

    2014-08-01

    This paper presents the design of Saft's Generation6 Li-Ion cell, the main challenges in the course of the development, the main BOL characteristics and performances achieved during the development program. Finally, it also describes how this cell fits in Saft's battery range and the benefits of it.

  8. Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin

    2001-01-01

    In order to meet the applications for Space Shuttle in the future, Samsung 18650 cylindrical Li-ion cells with two different capacities have been evaluated. The capacities are 1800 mAh, and 2000 mAh. The studies focused on the performance and safety tests of the cells.

  9. A materials perspective on Li-ion batteries at extreme temperatures

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco-Tulio F.; Babu, Ganguli; Gullapalli, Hemtej; Kalaga, Kaushik; Sayed, Farheen N.; Kato, Keiko; Joyner, Jarin; Ajayan, Pulickel M.

    2017-08-01

    With the continuous upsurge in demand for energy storage, batteries are increasingly required to operate under extreme environmental conditions. Although they are at the technological forefront, Li-ion batteries have long been limited to room temperature, as internal phenomena during their operation cause thermal fluctuations. This has been the reason for many battery explosions in recent consumer products. While traditional efforts to address these issues focused on thermal management strategies, the performance and safety of Li-ion batteries at both low (<20 °C) and high (>60 °C) temperatures are inherently related to their respective components, such as electrode and electrolyte materials and the so-called solid-electrolyte interphases. This Review examines recent research that considers thermal tolerance of Li-ion batteries from a materials perspective, spanning a wide temperature spectrum (‑60 °C to 150 °C). The structural stability of promising cathodes, issues with anode passivation, and the competency of various electrolyte, binder and current collectors are compared for their thermal workability. The possibilities offered by each of these cell components could extend the environmental frontiers of commercial Li-ion batteries.

  10. Thermal Runaway Risk Evaluation of Li-Ion Cells Using a Pinch-Torsion Test

    SciTech Connect

    Ren, Fei; Cox, Thomas S; Wang, Hsin

    2014-01-01

    Internal short circuit (ISCr) can lead to failure of Li-ion cells and sometimes result in thermal runaway. Understanding the behavior of Li-ion cells in ISCr condition is thus critical to evaluate the safety of these energy storage devices. In the current work, a pinch-torsion test is developed to simulate ISCr in a controlled manner. It is demonstrated that the torsional component superimposed on compression loading can reduce the axial load required to induce ISCr with smaller short spot size. Using this pinch-torsion test, two commercial Li-ion pouch cells were tested under different state of charge (SOC). Based on the severity of the cell damage, a series of thermal runaway risk scores were used to rate the thermal stability of these cells. One of the cell types showed significantly increased hazard as the SOC increased while the other type exhibited relative uniform behavior among different SOC. Therefore this novel pinch-torsion test seems to be an attractive candidate for safety testing of Li-ion cells due to its abilities to consistently create small ISCr spots and to differentiate cell stability in a wide range of SOC.

  11. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance.

    PubMed

    Duan, Yandong; Zhang, Bingkai; Zheng, Jiaxin; Hu, Jiangtao; Wen, Jianguo; Miller, Dean J; Yan, Pengfei; Liu, Tongchao; Guo, Hua; Li, Wen; Song, Xiaohe; Zhuo, Zengqing; Liu, Chaokun; Tang, Hanting; Tan, Rui; Chen, Zonghai; Ren, Yang; Lin, Yuan; Yang, Wanli; Wang, Chong-Min; Wang, Lin-Wang; Lu, Jun; Amine, Khalil; Pan, Feng

    2017-09-20

    Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g(-1)) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO4 (LFP) cathode materials (186 and 207 mA h g(-1) in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also shows excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C-O-Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. This discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.

  12. Characteristics and properties of nano-LiCoO2 synthesized by pre-organized single source precursors: Li-ion diffusivity, electrochemistry and biological assessment.

    PubMed

    Brog, Jean-Pierre; Crochet, Aurélien; Seydoux, Joël; Clift, Martin J D; Baichette, Benoît; Maharajan, Sivarajakumar; Barosova, Hana; Brodard, Pierre; Spodaryk, Mariana; Züttel, Andreas; Rothen-Rutishauser, Barbara; Kwon, Nam Hee; Fromm, Katharina M

    2017-08-22

    LiCoO2 is one of the most used cathode materials in Li-ion batteries. Its conventional synthesis requires high temperature (>800 °C) and long heating time (>24 h) to obtain the micronscale rhombohedral layered high-temperature phase of LiCoO2 (HT-LCO). Nanoscale HT-LCO is of interest to improve the battery performance as the lithium (Li(+)) ion pathway is expected to be shorter in nanoparticles as compared to micron sized ones. Since batteries typically get recycled, the exposure to nanoparticles during this process needs to be evaluated. Several new single source precursors containing lithium (Li(+)) and cobalt (Co(2+)) ions, based on alkoxides and aryloxides have been structurally characterized and were thermally transformed into nanoscale HT-LCO at 450 °C within few hours. The size of the nanoparticles depends on the precursor, determining the electrochemical performance. The Li-ion diffusion coefficients of our LiCoO2 nanoparticles improved at least by a factor of 10 compared to commercial one, while showing good reversibility upon charging and discharging. The hazard of occupational exposure to nanoparticles during battery recycling was investigated with an in vitro multicellular lung model. Our heterobimetallic single source precursors allow to dramatically reduce the production temperature and time for HT-LCO. The obtained nanoparticles of LiCoO2 have faster kinetics for Li(+) insertion/extraction compared to microparticles. Overall, nano-sized LiCoO2 particles indicate a lower cytotoxic and (pro-)inflammogenic potential in vitro compared to their micron-sized counterparts. However, nanoparticles aggregate in air and behave partially like microparticles.

  13. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Singh, Preetam; Kuang, Quan; Peng, Hongjian

    2016-07-01

    Mg-doped composite, Li2.97Mg0.03VO4, with an orthorhombic structure was prepared by a sol-gel method. The effects of the Mg doping on the structure and electrochemical performance of Li3VO4 were investigated. The X-ray diffraction pattern shows that the Mg doping does not change the crystal structure of Li3VO4. The EDS mappings indicated the fairly uniform distribution of Mg throughout the grains of Li2.97Mg0.03VO4. Electronic conductivity of Mg-doped Li3VO4 increased by two orders of magnitude compared to that of pure Li3VO4. CV and EIS measurement confirms that the Li2.97Mg0.03VO4 sample exhibits a smaller polarization and transfer resistance and a higher lithium diffusion coefficient compared with the pure Li3VO4. Due to the better electrochemical kinetics properties, Mg-doped Li3VO4 showed a significant improved performance compared to the pure Li3VO4, especially for the high rate capability. At the higher discharge/charge rate (2C), the discharge and charge capacities of 415.5 and 406.1 mAh/g have been obtained for the Li2.97Mg0.03VO4 which is more than three times higher the discharge/charge capacities of Li3VO4. The discharge and charge capacities of pure Li3VO4 are only 126.4 and 125.8 mAh/g respectively. The excellent electrochemical performance of Li2.97Mg0.03VO4 enables it as a promising anode material for rechargeable lithium-ion batteries.

  14. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries

    NASA Astrophysics Data System (ADS)

    Yoshima, Kazuomi; Harada, Yasuhiro; Takami, Norio

    2016-01-01

    Thin hybrid electrolytes based on lithium-ion conducting ceramics with a few micrometers thickness have been studied in order to be practically applied to 12 V-class bipolar battery with liquid-free and separator-free. A cubic garnet-type Li7La3Zr2O12 (LLZ)-based hybrid electrolyte composed of LLZ particles coated with 4 wt% polyacrylonitrile (PAN)-based gel polymer electrolyte was prepared as the thin electrolyte layer, which reduced the internal resistance of LiMn0.8Fe0.2PO4(LMFP)/Li4Ti5O12(LTO) cells and enabled discharge at low temperatures. The conductivity of the LLZ-based hybrid electrolyte at 25°C was one order of magnitude higher than that of the LLZ solid electrolyte and comparable to that of the PAN-based gel polymer. The activation energy for ionic conductivity of the hybrid electrolyte was significantly smaller than that of the gel polymer electrolyte. The fabricated 12 V-class bipolar LMFP/LTO battery using the thin LLZ-based hybrid electrolyte layer exhibited good performance in terms of discharge rate capability, operating in the wide temperature range of -40°C to 80°C, and charge-discharge cycling comparable to those of conventional lithium-ion batteries.

  15. Improvement of Li ion conductivity of Li5La3Ta2O12 solid electrolyte by substitution of Ge for Ta

    NASA Astrophysics Data System (ADS)

    Kotobuki, Masashi; Song, Shufeng; Takahashi, Rika; Yanagiya, Shunichi; Lu, Li

    2017-05-01

    Li5La3Ta2O12 (LLTa) is a promising solid electrolyte for all-solid-state batteries due to its high stability in contact with Li metal, however, low Li ion conductivity of LLTa has restricted its application. In this study, improvement of the Li ion conductivity of LLTa solid electrolyte by substitution of Ge4+ for Ta5+ is studied because the improvement is thought to be achieved by increase of charge carrier concentration caused by the substitution of low valence Ge4+ for high valence Ta5+. The Ge substitution shrinks a lattice of cubic LLTa due to small ion radius of Ge4+ (0.530 Å) compared with Ta5+ (0.640 Å). The Li ion conductivity of LLTa is improved by the Ge substitution. The highest bulk and total Li ion conductivities are obtained in Li5.25La3Ta1.75Ge0.25O12 prepared by spark plasma sintering at 1100 °C and the values are 1.3 × 10-4 and 8.4 × 10-5 S cm-1 at 28 °C, respectively. The lithium transference number of the Ge-substituted LLTa determined by Hebb-Wagner (HW) polarization method is ≈ 1. Also, it is verified that the new solid electrolyte is stable in a potential range of 0-10 V vs. Li/Li+, indicating that the Ge-substituted LLTa is a promising solid electrolyte for all-solid-state battery application.

  16. Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoCO 2 in a Li-ion cell

    NASA Astrophysics Data System (ADS)

    Kweon, Ho-Jin; Park, JeonJoon; Seo, JunWon; Kim, GeunBae; Jung, BokHwan; Lim, Hong S.

    A study is made of the effects of MgO and Al 2O 3 coatings on the electrical properties of LiCoO 2 cathode material on the thermal stability (differential scanning calorimetry (DSC)) of the charged cathode, and on the safety characteristics of 18650 Li-ion cells. Powdery active material is coated with Mg or Al alkoxide solutions followed by heat treatment in air at temperatures between 300 and 800 °C. The presence of the coating is confirmed by an elemental depth-profile analysis of the powder surface using secondary ion mass spectroscopy (SIMS) and X-ray photoelectron spectroscopy (XPS). Both oxide coatings, especially the Al 2O 3 coating, substantially improve the charge-discharge voltage characteristics, rate capability, capacity and rate-capability retention on cycling and thermal stability of the LiCoO 2 cathode. These beneficial effects are demonstrated in 18650 Li-ion cells.

  17. Practical performances of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, MCMB, and PAN-based gel electrolyte

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Shibuya, Mashio; Orui, Ken; Shibamoto, Gorou; Sekai, Koji

    The practical performances and thermal stability of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, mesocarbon microbead-based graphite, and poly(acrylonitrile) (PAN)-based gel electrolytes are reported. The gel electrolyte, which shows a fire-retardance by itself as well as good chemical stability effectively improved thermal stability of the Li-ion polymer battery up to 170 °C. We also found that the mesocarbon microbead-based graphite showed better coulombic efficiency even though the gel electrolyte contained PC and GBL. An evaluation of cell performances showed that the electrodes and the gel electrolyte were promising material for a next-generation Li-ion polymer battery.

  18. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyong; Lin, Zhiping; Zhao, Yanming; Dong, Youzhong; Kuang, Quan; Lin, Xinghao; Liu, Xudong; Yan, Danlin

    2015-01-01

    The article gives a totally new understanding about lithium insertion behavior of Li3VO4 as potential anode material for Li-ion batteries. The carbon-coated Li3VO4 (Li3VO4/C) sample was synthesized firstly using simple solid-state method. X-ray diffraction, Raman spectra and Rietveld refinement results show that single-phase Li3VO4/C can be obtained even under the presence of carbon and reducing atmosphere. The final product demonstrates a favorable electronic conductivity with 6.67% residual carbon. Electrochemical testing shows that Li3VO4/C holds both much higher specific capacity and better electrochemical performance than that of carbon-free Li3VO4 sample. The Li3VO4/C electrode display a discharge capacity of 738.5 mAh g-1 and a charge (reversible) capacity of 547.1 mAh g-1 with a high initial coulombic efficiency of 78.0% in the first cycle. First-principles calculation and GITT results illustrate that the maximum embeddable Li-ion number in a single cell is 3 corresponding to the change of V5+ to V2+, and the Li-inserted sites is predicted by first-principles calculations. Furthermore, lithium insertion/de-insertion mechanism of Li3VO4/C is studied by in-situ XRD, and the results surely confirm that Li3VO4/C undergoes a reversible insertion/de-insertion mechanism during discharge/charge process.

  19. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  20. Improvement of bone regeneration capability of ceramic scaffolds by accelerated release of their calcium ions.

    PubMed

    Seol, Young-Joon; Park, Ju Young; Jung, Jin Woo; Jang, Jinah; Girdhari, Rijal; Kim, Sung Won; Cho, Dong-Woo

    2014-11-01

    To regenerate the bone tissue, the fabrication of scaffolds for better tissue regeneration has attracted a great deal of attention. In fact, growth factors are already used in clinical practice and are being investigated for enhancing the capacity for bone tissue regeneration. However, despite their strong osteoinductive activity, these growth factors have several limitations: safety issues, high treatment costs, and the potential for ectopic bone formation. The aim of this study was therefore to develop ceramic scaffolds that could promote the capacity for bone regeneration without growth factors. Three-dimensional ceramic scaffolds were successfully fabricated from hydroxyapatite (HA) and tricalcium phosphate (TCP) using projection-based microstereolithography, which is an additive manufacturing technology. The effects of calcium ions released from ceramic scaffolds on osteogenic differentiation and bone regeneration were evaluated in vitro and in vivo. The osteogenesis-related gene expression and area of new bone formation in the HA/TCP scaffolds was higher than those in the HA scaffolds. Moreover, regenerated bone tissue in HA/TCP scaffolds were more matured than that in HA scaffolds. Through this study, we were able to enhance the bone regeneration capacity of scaffolds not by growth factors but by calcium ions released from the scaffolds. Ceramic scaffolds developed in this study might be useful for enhancing the capacity for regeneration in complex bone defects.

  1. Improvement of Bone Regeneration Capability of Ceramic Scaffolds by Accelerated Release of Their Calcium Ions

    PubMed Central

    Seol, Young-Joon; Park, Ju Young; Jung, Jin Woo; Jang, Jinah; Girdhari, Rijal; Kim, Sung Won

    2014-01-01

    To regenerate the bone tissue, the fabrication of scaffolds for better tissue regeneration has attracted a great deal of attention. In fact, growth factors are already used in clinical practice and are being investigated for enhancing the capacity for bone tissue regeneration. However, despite their strong osteoinductive activity, these growth factors have several limitations: safety issues, high treatment costs, and the potential for ectopic bone formation. The aim of this study was therefore to develop ceramic scaffolds that could promote the capacity for bone regeneration without growth factors. Three-dimensional ceramic scaffolds were successfully fabricated from hydroxyapatite (HA) and tricalcium phosphate (TCP) using projection-based microstereolithography, which is an additive manufacturing technology. The effects of calcium ions released from ceramic scaffolds on osteogenic differentiation and bone regeneration were evaluated in vitro and in vivo. The osteogenesis-related gene expression and area of new bone formation in the HA/TCP scaffolds was higher than those in the HA scaffolds. Moreover, regenerated bone tissue in HA/TCP scaffolds were more matured than that in HA scaffolds. Through this study, we were able to enhance the bone regeneration capacity of scaffolds not by growth factors but by calcium ions released from the scaffolds. Ceramic scaffolds developed in this study might be useful for enhancing the capacity for regeneration in complex bone defects. PMID:24784792

  2. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  3. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  4. Synthesis of Li 2TiO 3 ceramic breeder powders by the combustion process

    NASA Astrophysics Data System (ADS)

    Jung, C. H.; Park, J. Y.; Oh, S. J.; Park, H. K.; Kim, Y. S.; Kim, D. K.; Kim, J. H.

    1998-03-01

    The synthesis of the ultra-fine Li 2TiO 3 powder by the combustion reaction of lithium nitrate, titanium nitrate and specific fuels was investigated. Ultrafine Li 2TiO 3 powders could be synthesized using glycine or a mixture of urea and citric acid. A pure Li 2TiO 3 phase was obtained by the simple process without further calcination reaction. The specific surface area of the as-synthesized powder was 10 to 14 m 2/g and the primary particle size was about 30 nm. The Li 2TiO 3 body sintered at 800°C for 3 h had dense agglomerates which were formed by the inter-agglomerate sintering process. Each of the agglomerates consisted of very fine grains with a size of 0.3 to 0.5 μm.

  5. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  6. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7–2.0 V) and a conversion (0.0–2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7–2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm‑3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm‑3 over 100 cycles), and fast rate capability (550 mA h cm‑3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  7. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    PubMed Central

    Park, Jae-Wan; Park, Cheol-Min

    2016-01-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7–2.0 V) and a conversion (0.0–2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7–2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm−3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm−3 over 100 cycles), and fast rate capability (550 mA h cm−3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs. PMID:27775090

  8. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries.

    PubMed

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-24

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm(-3)) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm(-3) over 100 cycles), and fast rate capability (550 mA h cm(-3) at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  9. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-08-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  10. Effects of Helium Ion Irradiation on Properties of Crystalline and Amorphous Multiphase Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Hu, Liangbin; Qiu, Changjun; He, Bin; Wang, Zhongchang

    2017-06-01

    The Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings were prepared on a martensitic steel by laser in situ reaction technique and impose irradiation with 200 keV He ions at different doses. The helium ion irradiation goes 1.55 μm deep from the surface of coating, and the displacement per atom (dpa) for the Al2O3-TiO2 coating is 20.0. When the irradiation fluency is 5 × 1017 ions/cm2, defects are identified in crystalline areas and there form interfacial areas in the coating. These crystal defects tend to migrate and converge at the interfaces. Moreover, helium ion irradiation is found to exert no effect on surface chemical composition and phase constitution of the coatings, while surface mechanical properties for the coatings after irradiation differ from those before irradiation. Further nano-indentation experiments reveal that surface nano-hardness of the Al2O3-TiO2 multiphase coatings decreases as the helium ions irradiation flux increases. Such Al2O3-TiO2 crystalline and amorphous multiphase ceramic coatings exhibit the strongest resistance against helium ion irradiation which shall be applied as candidate structural materials for accelerator-driven sub-critical system to handle the nuclear waste under extreme conditions.

  11. Luminescence and absorption of divalent ytterbium ion in yttrium-aluminum garnet ceramics

    NASA Astrophysics Data System (ADS)

    Solomonov, V. I.; Osipov, V. V.; Spirina, A. V.

    2014-09-01

    Strong absorption bands at 280, 385, and 640 nm; a pulsed cathodoluminescence band with peaks at 325 and 520 nm and a dip at 385 nm; and a structured luminescence band in the range of 591-711 nm composed of four pair lines and having a dip near 640 nm have been observed in the spectra of yttrium-aluminum garnet ceramics activated with ytterbium (10 mol %) and subjected to vacuum sintering at a temperature of 1800°C. It is shown that these spectral features are absorption and luminescence bands of divalent ytterbium ions with the 4 f 136 s electron configuration of the ground state. These ions occupy the cubic site that is formed under conditions of oxygen deficit and disappears when the latter is removed during annealing ceramics in air.

  12. H.F. emission related to the Li+ ion beam injected into ionosphere - ``PLAZMA'' rocket experiment

    NASA Astrophysics Data System (ADS)

    Klos, Z.; Zbyszynski, Z.; Agafonov, U. F.; Managadze, G. G.; Mayorov, A. D.

    1993-10-01

    The H.F. emission generated by artificial ion beam injected into ionosphere was observed either with a wave detector and ion gun attached to the rocket through out the flight, or when the gun was deployed on subpayload. Generally the observations show unstructured shape of the H.F. spectrum. In the PLAZMA active rocket experiment - when ionospheric plasma was perturbed by the operation of impulse ion gun, which injected 300 A, 8.3 eV Li+ions - the waves in the 0.1 - 10 MHz frequency range were observed. The results have shown, that when the wave detector and the ion gun are attached to the rocket the emission enhances in the lower as well as in the upper parts of the spectrum. On the other hand only the lower increase is maintained when ion gun is removing away on the subpayload. The observed sequence of H.F. spectra is presented.

  13. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes.

    PubMed

    Kelly, Jesse C; Degrood, Nicholas L; Roberts, Mark E

    2015-03-28

    For the purpose of realizing inherently safe high-power Li-ion batteries, a model Li4Ti5O12/LiFePO4 rechargeable battery is investigated using the thermally responsive polymer, poly(benzyl methacrylate), in an ionic liquid. At high temperature, battery operation is inhibited as a result of increased internal resistance caused by polymer and ionic liquid phase separation. Li-ion concentration is shown to affect the phase transition temperature and the extent to which batteries are deactivated.

  14. Charge carrier accumulation in lithium fluoride thin films due to Li-ion absorption by titania (100) subsurface.

    PubMed

    Li, Chilin; Gu, Lin; Guo, Xiangxin; Samuelis, Dominik; Tang, Kun; Maier, Joachim

    2012-03-14

    The thermodynamically required redistribution of ions at given interfaces is being paid increased attention. The present investigation of the contact LiF/TiO(2) offers a highly worthwhile example, as the redistribution processes can be predicted and verified. It consists in Li ion transfer from LiF into the space charge zones of TiO(2). We not only can measure the resulting increase of lithium vacancy conductivity in LiF, we also observe a transition from n- to p-type conductivity in TiO(2) in consistency with the generalized space charge model.

  15. Synthesis and characterization of ionic liquid (EMImBF4)/Li+ - chitosan membranes for ion battery

    NASA Astrophysics Data System (ADS)

    Pasaribu, Marvin H.; Arcana, I. Made; Wahyuningrum, Deana

    2015-09-01

    Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li+ ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anion metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10-2 S cm- 1 for chitosan to 1.30 × 10-2 S cm-1 for chitosan with EMImBF4/Li+, and this result was supported by analysis the surface morphology (SEM).

  16. Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation

    SciTech Connect

    Wang, Zhiguo; He, Yang; Gu, Meng; Du, Yingge; Mao, Scott X.; Wang, Chongmin

    2016-09-21

    Reversible insertion/extraction of ions into a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. It is far more commonly observed that insertion of ions into a host lattice can lead to structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has never been clear as what kind of factors to control such a lattice structural evolution. Based on tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) and first principles calculation to explore the nature of Li ions intercalation induced crystal symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic→tetragonal→cubic phase transition. The first principle calculation reveals that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifying system band structure, resulting in an insulator to metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice.

  17. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    NASA Technical Reports Server (NTRS)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.

  18. Enhancing the performances of Li-ion batteries by carbon-coating: present and future.

    PubMed

    Li, Huiqiao; Zhou, Haoshen

    2012-01-30

    With progress of knowledge of electrode materials, it has been found that their surface structures are of great importance to the electrochemical performance of Li-ion batteries. Carbon coating can effectively increase the electrode conductivity, improve the surface chemistry of the active material, and protect the electrode from direct contact with electrolyte, leading to enhanced cycle life of the batteries. Carbon coating together with nanotechnology provides good conductivity as well as fast Li-ion diffusion, and thus also results in good rate capabilities. The recent development of carbon coating techniques in lithium-ion batteries is discussed with detailed examples of typical cathode and anode materials. The limitation of current technology and future perspective of the new concept of "hybrid coating" are also pointed out.

  19. Redox-assisted Li+-storage in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Qizhao, Huang; Qing, Wang

    2016-01-01

    Interfacial charge transfer is the key kinetic process dictating the operation of lithium-ion battery. Redox-mediated charge propagations of the electronic (e- and h+) and ionic species (Li+) at the electrode-electrolyte interface have recently gained increasing attention for better exploitation of battery materials. This article briefly summarises the energetic and kinetic aspects of lithium-ion batteries, and reviews the recent progress on various redox-assisted Li+ storage approaches. From molecular wiring to polymer wiring and from redox targeting to redox flow lithium battery, the role of redox mediators and the way of the redox species functioning in lithium-ion batteries are discussed. Project supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Competitive Research Program (CRP Award No. NRF-CRP8-2011-04).

  20. Phase transformation and fracture in single Li x FePO4 cathode particles: a phase-field approach to Li-ion intercalation and fracture

    NASA Astrophysics Data System (ADS)

    O'Connor, Devin T.; Welland, Michael J.; Liu, Wing Kam; Voorhees, Peter W.

    2016-03-01

    Modern Li-ion batteries with LiFePO4 cathodes have been shown to be low cost, non-toxic, have a high theoretical capacity, and high (dis)charging rates. Although LiFePO4 has advantageous properties for electrical energy storage, it can lose some of its charging capacity when cycled. Researchers have found cracks that develop in LiFePO4 cathode particles during cycling, and it has been suggested that this is the main cause of the capacity loss. The work presented here develops a multi-physics computational model to investigate the possible causes of fracture in single LiFePO4 particles. The model combines the recently developed reaction-limited phase-field model for Li-ion intercalation with the phase-field model for brittle fracture. We use our numerical model to simulate single LiFePO4 cathode particles during galvanostatic discharging as well as under no charging. It was found that because of the phase transformation and two-phase coexistence of LiFePO4, cracks were able to grow due to large stresses at coherent phase boundaries. Phase nucleation at particle side facets was also examined and we show that pre-cracks grow that follow the high stresses at the coherent interface during charging.