Science.gov

Sample records for li tnnov ruth

  1. Rediscovering Ruth Faison Shaw and Her Finger-Painting Method

    ERIC Educational Resources Information Center

    Mayer, Veronica

    2005-01-01

    Ruth Faison Shaw was an art educator who developed a nontraditional educational perspective of teaching and a different vision about children's art. As such, she is considered by some to be the initiator of finger-painting in America (The History of Art Education Timeline 1930-1939, 2002.) Shaw developed the technique of finger-painting and a…

  2. Did Babe Ruth Have a Comparative Advantage as a Pitcher?

    ERIC Educational Resources Information Center

    Scahill, Edward M.

    1990-01-01

    Advocates using baseball statistics to illustrate the advantages of specialization in production. Using Babe Ruth's record as an analogy, suggests a methodology for determining a player's comparative advantage as a teaching illustration. Includes the team's statistical profile in five tables to explain comparative advantage and profit maximizing.…

  3. "Go to Ruth's House": the social activism of Ruth Lubic and the family health and birth center.

    PubMed

    Fairman, Julie

    2010-01-01

    This case of the work of Ruth Watson Lubic, an internationally known nurse midwife and women's and children's health care activist, provides a modern-day example of the intersection of forceful individual personalities, nursing as a type of activism in itself, and grassroots and local actions that produce larger movement-based activist organizations. Her work as a nurse midwife, in partnership with other nurse midwives, physicians, and community members, illustrates how the efforts of individual actors at a grassroots community level can be as significant as larger traditionally situated activist movements on the lives of everyday citizens. PMID:20067094

  4. Babe Ruth: with vision like that, how could he hit the ball?

    PubMed

    Voisin, A; Elliott, D B; Regan, D

    1997-03-01

    Unfortunately, it is unlikely that a definitive answer will be known. We believe that it is most likely that Ruth was not amblyopic. This seems possible only if Dr. Kara had missed some amblyogenic factor such as strabismus or a significant refractive error. Our favored solution is that Ruth's unilateral vision loss was a complication of his cancer, and that Dr. Kara's examination occurred before the optic nerve damage became detectable. Of course, this is in disagreement with the ophthalmologist who examined his eyes.

  5. The joint measuring campaign 1979 in Ruthe (West Germany) description and preliminary data

    NASA Technical Reports Server (NTRS)

    Vanderploeg, R. R.; Tassone, G.; Vonhoyningen-Huene, J. (Principal Investigator)

    1979-01-01

    The measurements and observations performed as part of the TELLUS project on soil moisture and heat budget evaluations of selected areas in the vecinity of Ruthe, West Germany are presented and discussed. The main lines of investigation include evapotranspiration and moisture content in bare soils covered by vegetation, interactions between natural phenomena and mesoscale heat budget, and man made changes and their impact on regional heat budget.

  6. Look Homeward Angel Now, and Melt with Ruth: The Role of a Subject-Specific Teaching Assistant in Promoting Rigorous Historical Scholarship and Reflective Classroom Practice

    ERIC Educational Resources Information Center

    Brown, Geraint; Brown, Ruth; Goullée, Corinne; Stanford, Matt

    2016-01-01

    The history department at Cottenham Village College has one more member than you might expect. Ruth Brown is a teaching assistant (TA) and one of the longest-standing members of the department, and this article is about how her work has an impact on specific pupils, whole classes and teachers. The key factor is that Ruth has excellent subject…

  7. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  8. Ruth Flockart and Dr Wood: A Crucial Relationship in the Development of Melbourne Methodist Ladies' College Music Program

    ERIC Educational Resources Information Center

    Jenkins, Louise

    2011-01-01

    This paper explores the notion that particular working relationships within school music programs can have a significant affect on the program's development and progress. To explore this notion the research focussed on the working relationship of a music teacher at Melbourne Methodist Ladies' College (MLC), Ruth Flockart (1891-1985) and the…

  9. 75 FR 20979 - Six Rivers National Forest, Mad River Ranger District, Ruth, CA, Beaverslide Timber Sale and Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... Forest Service Six Rivers National Forest, Mad River Ranger District, Ruth, CA, Beaverslide Timber Sale... supplemental environmental impact statement. SUMMARY: The Forest Service is proposing the Beaverslide Timber Sale and Fuel Treatment Project to provide timber products to local economies and to reduce...

  10. Negotiating international bioethics: a response to Tom Beauchamp and Ruth Macklin.

    PubMed

    Baker, Robert

    1998-12-01

    Can the bioethical theories that have served American bioethics so well, serve international bioethics as well? In two papers in the previous issue of the Kennedy Institute of Ethics Journal, I contend that the form of principlist fundamentalism endorsed by American bioethicists like Tom Beauchamp and Ruth Macklin will not play on an international stage. Deploying techniques of postmodern scholarship, I argue that principlist fundamentalism justifies neither the condemnation of the Nazi doctors at Nuremberg, nor, as the Report of the Advisory Committee on the Human Radiation Experiments (ACHRE) demonstrates, condemnation of Cold War radiation researchers. Principlist fundamentalism thus appears to be philosophy bankrupt. In this issue of the Journal, Beauchamp and Macklin reject this claim, arguing that I have misread the ACHRE report and misunderstood Nazism. They also argue that the form of post-postmodern negotiated human rights theory that I proffer is adequate only insofar as it is itself really fundamentalist; insofar as I take postmodernism seriously, however, I mire international bioethics in relativism. In this response, I reaffirm my anti-fundamentalism, provide further evidence in support of my reading of the ACHRE report, and defend my post-postmodern version of rights theory. I also develop criteria for a minimally adequate theoretical framework for international bioethics.

  11. The Plight of the "Able Student": Ruth Wright Hayre and the Struggle for Equality in Philadelphia's Black High Schools, 1955-1965

    ERIC Educational Resources Information Center

    Delmont, Matthew

    2010-01-01

    This article features Ruth Wright Hayre, Philadelphia's first black high school teacher and principal whose work at William Penn High School for Girls became a model for counseling and motivation programs at other majority-black high schools in Philadelphia, expanding educational and career opportunities for thousands of "able" students. Through…

  12. The Chicago Board of Education Desegregation Policies and Practices [1975-1985]: A Historical Examination of the Administrations of Superintendents Dr. Joseph P. Hannon and Dr. Ruth Love

    ERIC Educational Resources Information Center

    James, Michael

    2009-01-01

    The purpose of this study will be to examine the policies and practices of two distinguished superintendents of the Chicago Public Schools: Dr. Joseph P. Hannon and the first African American female Superintendent Dr. Ruth Love. Hannon's four year administration extended from 1975 through 1979. Love's administration encompassed the years 1980…

  13. Thirteen new Costa Rican species belonging to the genus Triraphis Ruthe (Braconidae: Rogadinae) with their host records.

    PubMed

    Valerio, Alejandro A; Shaw, Scott R

    2015-01-01

    Thirteen new species belonging to the genus Triraphis Ruthe are described and illustrated: Triraphis baios sp. nov., T. balteus sp. nov., T. chinusi sp. nov., T. cortazari sp. nov., T. defectus sp. nov., T. guarusa sp. nov., T. huidobroi sp. nov., T. ikelosops sp. nov., T. melasops sp. nov., T. paraholos sp. nov., T. proxilus sp. nov., T. simphlex sp. nov. and T. willei sp. nov. The lepidopteran hosts were feeding on 17 genera of plants within 16 families. Two families of Lepidoptera are reported as new hosts for Triraphis: Acraga sp. (Dalceridae) parasitized by T. paraholos sp. nov. and Norape sp. (Megalopygidae) by T. guarusa sp. nov. Moreover, four Triraphis species are treated as new combinations under the genus Triraphis sensu van Achterberg: Triraphis areatus (Cresson) comb. n., T. fasciipennis (Cresson) comb. n., T. fusciceps (Cresson) comb. n. and T. ornatus (Cresson) comb. n..  PMID:25660797

  14. From defining antigens to new therapies in multiple sclerosis: honoring the contributions of Ruth Arnon and Michael Sela.

    PubMed

    Steinman, Lawrence; Shoenfeld, Yehuda

    2014-11-01

    Ruth Arnon and Michael Sela profoundly influenced the development of a model system to test new therapies in multiple sclerosis (MS). Their application of the animal model, known as experimental autoimmune encephalomyelitis (EAE), for the discovery of Copaxone, opened a new path for testing of drug candidates in MS. By measuring clinical, pathologic, and immunologic outcomes, the biological implications of new drugs could be elucidated. Using EAE they established the efficacy of Copaxone as a therapy for preventing and reducing paralysis and inflammation in the central nervous system without massive immune suppression. This had a huge impact on the field of drug discovery for MS. Much like the use of parabiosis to discover soluble factors associated with obesity, or the replica plating system to probe antibiotic resistance in bacteria, the pioneering research on Copaxone using the EAE model, paved the way for the discovery of other therapeutics in MS, including Natalizumab and Fingolimod. Future applications of this approach may well elucidate novel therapies for the neurodegenerative phase of multiple sclerosis associated with disease progression.

  15. Effects of Bedrock Lithology and Subglacial Till on the Motion of Ruth Glacier, Alaska, Deduced from Five Pulses from 1973-2012

    NASA Technical Reports Server (NTRS)

    Turrin, J.; Forster, R.; Sauber, Jeanne; Hall, Dorothy K.; Bruhn, R.

    2013-01-01

    A pulse is a type of unstable glacier flow intermediate between normal flow and surging. Using Landsat MSS, TM, and ETM+ imagery and feature tracking software, a time-series of mostly annual velocity maps from 1973 to 2012 was produced that reveals five pulses of Ruth Glacier, Alaska. Peaks in ice velocity were found in the 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. During these peak years the ice velocity increased 300%, from approximately 40 m/yr to 160 m/yr, and occurred in an area of the glacier underlain by sedimentary bedrock. Based on the spatio-temporal behavior of Ruth Glacier during the pulse cycles, we suggest the pulses are due to enhanced basal motion via deformation of a subglacial till. The cyclical nature of the pulses is theorized to be due to a thin till, with low permeability, that causes incomplete drainage of the till between the pulses, followed by eventual recharge and dilation of the till. These findings suggest care is needed when attempting to correlate changes in regional climate with decadal-scale changes in velocity, because in some instances basal conditions may have a greater influence on ice dynamics than climate.

  16. "When Does It Stop Being Peanut Butter?": FDA Food Standards of Identity, Ruth Desmond, and the Shifting Politics of Consumer Activism, 1960s-1970s.

    PubMed

    Boyce, Angie M

    2016-01-01

    This article uses a historical controversy over the U.S. Food and Drug Administration's standard of identity for peanut butter as a site for investigating three topics of high importance for historians of technology, consumption, and food activism: how new industrial food-processing technologies have become regulatory problems; how government, industry, and consumer actors negotiate standards development; and how laypeople try to shape technological artifacts in spaces dominated by experts. It examines the trajectory of consumer activist Ruth Desmond, co-founder of the organization the Federation of Homemakers. By following Desmond's evolving strategies, the article shows how the broader currents of the 1960s-70s consumer movement played out in a particular case. Initially Desmond used a traditional style that heavily emphasized her gendered identity, working within a grassroots organization to promote legislative and regulatory reforms. Later, she moved to a more modern advocacy approach, using adversarial legal methods to fight for consumer protections. PMID:26971728

  17. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  18. Li diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2010-09-01

    Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0-1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O-CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703-1.151°C at 1 atm for experiments run with the spodumene source: D_{text{Li}} = 7.17 × 10^{ - 7} { exp }( - 275 ± 11 {text{kJmol}}^{ - 1} /{text{RT}}){text{m}}2 {text{s}}^{ - 1}. Diffusivities are similar for transport parallel to the c-axis, indicating little anisotropy for Li diffusion in zircon. Similar Li diffusivities were also found for experiments run under fluid-present conditions and for the experiment run with the Dy-bearing source. Li diffusion is considerably faster than diffusion of other cations in zircon, with a smaller activation energy for diffusion. Although Li diffusion in zircon is comparatively rapid, zircons will be moderately retentive of Li signatures at mid-crustal metamorphic temperatures, but they are unlikely to retain this information for geologically significant times under high-grade metamorphism.

  19. Presence of Li clusters in molten LiCl-Li

    DOE PAGES

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li8, in a molten salt matrix.more » It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.« less

  20. Presence of Li Clusters in Molten LiCl-Li

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

  1. Presence of Li Clusters in Molten LiCl-Li

    PubMed Central

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-01-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable. PMID:27145895

  2. Presence of Li Clusters in Molten LiCl-Li.

    PubMed

    Merwin, Augustus; Phillips, William C; Williamson, Mark A; Willit, James L; Motsegood, Perry N; Chidambaram, Dev

    2016-01-01

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable. PMID:27145895

  3. Madame Li Li: Communist Revolutionary, Adult Educator, Lifelong Learner

    ERIC Educational Resources Information Center

    Boshier, Roger; Huang, Yan

    2009-01-01

    Prior to 1949 the Chinese Communist Party orchestrated innovative and participatory forms of adult education. This article concerns Madame Li Li, a leading Chinese Communist woman adult educator. Western delegates at the International Council for Adult Education 1984 Shanghai symposium on adult education were fascinated by Madame Li Li because,…

  4. Structure of 10,11Li and the reaction 11Li (p , d)10Li

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2016-09-01

    I examine the properties of 11Li and the low-lying resonances in 10Li, as they relate to neutron removal from 11Li. Comparison with results from a recent 11Li (p , d) reaction strongly suggests that that experiment observed only the 2+ resonance, and not the 1+.

  5. Linking Ruth to Her Past

    PubMed Central

    Justin, Renate G.

    2004-01-01

    A family physician shares the story of her 3-decade-long relationship with a patient and the strong ties that they formed. Although she was taught to keep emotionally distant from her patients in order to maintain the best therapeutic milieu, this relationship enriched the author’s experience as a physician and ministered to her patient’s needs. PMID:15506591

  6. Ruth Moore Act of 2013

    THOMAS, 113th Congress

    Rep. Pingree, Chellie [D-ME-1

    2013-02-13

    06/06/2013 Received in the Senate and Read twice and referred to the Committee on Veterans' Affairs. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  7. Li-Fraumeni syndrome.

    PubMed

    Ossa, Carlos Andrés; Molina, Gustavo; Cock-Rada, Alicia María

    2016-06-03

    The Li-Fraumeni syndrome is characterized clinically by the appearance of tumors in multiple organs generally at an early age. This hereditary condition is caused by germinal mutations in the TP53 gene, which codifies for the tumoural suppressor gene p53. We present the case of a patient aged 31 with clinical and molecular diagnosis of Li-Fraumeni syndrome who presented two synchronous tumors: a leiomyosarcoma on the forearm and a phyllodes breast tumour. She had a family history of cancer, including a son diagnosed with a cortical adrenal carcinoma when he was three years old, who died at five from the disease. Furthermore, her maternal grandmother and great-grandmother died of stomach cancer at 56 and 60 years old, respectively, while her other great-grandmother and a great aunt presented with breast cancer at the ages of 60 and 40, respectively. After genetic counseling, complete sequencing and analysis of duplications and deletions in the TP53 gene were ordered prior to diagnosis. The molecular analysis of a DNA sample taken from peripheral blood lymphocytes revealed the germinal mutation c.527G>T (p.Cys176Phe) on exon 5 of the TP53 gene, a deleterious mutation described previously in tumoural tissues. To our knowledge, this is the first published case in Colombia of Li-Fraumeni syndrome with confirmed molecular diagnosis. The diagnosis and management of Li-Fraumeni syndrome should be performed by a multidisciplinary team, and genetic counselling should be offered to patients and their relatives.

  8. Li-Fraumeni syndrome.

    PubMed

    Ossa, Carlos Andrés; Molina, Gustavo; Cock-Rada, Alicia María

    2016-01-01

    The Li-Fraumeni syndrome is characterized clinically by the appearance of tumors in multiple organs generally at an early age. This hereditary condition is caused by germinal mutations in the TP53 gene, which codifies for the tumoural suppressor gene p53. We present the case of a patient aged 31 with clinical and molecular diagnosis of Li-Fraumeni syndrome who presented two synchronous tumors: a leiomyosarcoma on the forearm and a phyllodes breast tumour. She had a family history of cancer, including a son diagnosed with a cortical adrenal carcinoma when he was three years old, who died at five from the disease. Furthermore, her maternal grandmother and great-grandmother died of stomach cancer at 56 and 60 years old, respectively, while her other great-grandmother and a great aunt presented with breast cancer at the ages of 60 and 40, respectively. After genetic counseling, complete sequencing and analysis of duplications and deletions in the TP53 gene were ordered prior to diagnosis. The molecular analysis of a DNA sample taken from peripheral blood lymphocytes revealed the germinal mutation c.527G>T (p.Cys176Phe) on exon 5 of the TP53 gene, a deleterious mutation described previously in tumoural tissues. To our knowledge, this is the first published case in Colombia of Li-Fraumeni syndrome with confirmed molecular diagnosis. The diagnosis and management of Li-Fraumeni syndrome should be performed by a multidisciplinary team, and genetic counselling should be offered to patients and their relatives. PMID:27622479

  9. Electronic Properties of LiFePO4 and Li doped LiFePO4

    SciTech Connect

    Zhuang, G.V.; Allen, J.L.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2005-06-28

    The potential use of different iron phosphates as cathodematerials in lithium-ion batteries has recently been investigated.1 Oneof the promising candidates is LiFePO4. This compound has severaladvantages in comparison to the state-of-the-art cathode material incommercial rechargeable lithium batteries. Firstly, it has a hightheoretical capacity (170 mAh/g). Secondly, it occurs as mineraltriphylite in nature and is inexpensive, thermally stable, non-toxic andnon-hygroscopic. However, its low electronic conductivity (~;10-9 S/cm)results in low power capability. There has been intense worldwideresearch activity to find methods to increase the electronic conductivityof LiFePO4, including supervalent ion doping,2 introducingnon-carbonaceous network conduction3 and carbon coating, and theoptimization of the carbon coating on LiFePO4 particle surfaces.4Recently, the Li doped LiFePO4 (Li1+xFe1-xPO4) synthesized at ARL hasyield electronic conductivity increase up to 106.5 We studied electronicstructure of LiFePO4 and Li doped LiFePO4 by synchrotron based soft X-rayemission (XES) and X-ray absorption (XAS) spectroscopies. XAS probes theunoccupied partial density of states, while XES the occupied partialdensity of states. By combining XAS and XES measurements, we obtainedinformation on band gap and orbital character of both LiFePO4 and Lidoped LiFePO4. The occupied and unoccupied oxygen partial density ofstates (DOS) of LiFePO4 and 5 percent Li doped LiFePO4 are presented inFig. 1. Our experimental results clearly indicate that LiFePO4 has wideband gap (~; 4 eV). This value is much larger than what is predicted byDFT calculation. For 5 percent Li doped LiFePO4, a new doping state wascreated closer to the Fermi level, imparting p-type conductivity,consistent with thermopower measurement. Such observation substantiatesthe suggestion that high electronic conductivity in Li1.05Fe0.95 PO4 isdue to available number of charge carriers in the material. Furthermore,Hall effect

  10. Corrosion of type 316 stainless steel in molten LiF-LiCl-LiBr

    SciTech Connect

    Tortorelli, P.F.; DeVan, J.H.; Keiser, J.R.

    1981-01-01

    The properties of LiF-LiCl-LiBr salt make it attractive as a solvent for extracting tritium from a fusion reactor lithium blanket. Consequently, the corrosion of type 316 stainless steel by flowing (about 15 mm/s) LiF-LiCl-LiBr at a maximum temperature of 535/sup 0/C was studied to determine whether compatibility with the structural material would be limiting in such a system. The corrosion rate was found to be low (<2 ..mu..m/year) except immediately after the addition of a small amount of lithium metal to the salt. The lithium addition increased the corrosion rate to approx. 13.5 ..mu..m/year at 535/sup 0/C (approximately that of type 316 stainless steel exposed to lithium flowing at a similar velocity). At the proposed operating temperature (less than or equal to approx. 535/sup 0/C), however, it appears that type 316 stainless steel has acceptable compatibility with the tritium-processing salt LiF-LiCl-LiBr for use with a lithium blanket.

  11. Calorimetric studies of Cu-Li, Li-Sn, and Cu-Li-Sn.

    PubMed

    Fürtauer, S; Tserenjav, E; Yakymovych, A; Flandorfer, H

    2013-06-01

    Integral molar enthalpies of mixing were determined by drop calorimetry for Cu-Li-Sn at 1073 K along five sections xCu/xSn ≈ 1:1, xCu/xSn ≈ 2:3, xCu/xSn ≈ 1:4, xLi/xSn ≈ 1:1, and xLi/xSn ≈ 1:4. The integral and partial molar mixing enthalpies of Cu-Li and Li-Sn were measured at the same temperature, for Li-Sn in addition at 773 K. All binary data could be described by Redlich-Kister-polynomials. Cu-Li shows an endothermic mixing effect with a maximum in the integral molar mixing enthalpy of ∼5300 J · mol(-1) at xCu = 0.5, Li-Sn an exothermic minimum of ∼ -37,000 J · mol(-1) at xSn ∼ 0.2. For Li-Sn no significant temperature dependence between 773 K and 1073 K could be deduced. Our measured ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. Additionally, a comparison of these results to the extrapolation model of Chou is given.

  12. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  13. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE PAGES

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  14. Electronic Properties of LiFePO4 and Li doped LiFePO4

    SciTech Connect

    Allen, J.L.; Zhuang, G.V.; Ross, P.N.; Guo, J.-H.; Jow, T.R.

    2006-05-31

    LiFePO{sub 4} has several potential advantages in comparison to the transition metal oxide cathode materials used in commercial lithium-ion batteries. However, its low intrinsic electronic conductivity ({approx} 10{sup -9} S/cm) is problematic. We report here a study by soft x-ray absorption/emission spectroscopy of the electronic properties of undoped LiFePO{sub 4} and Li-doped LiFePO{sub 4} in which Li{sup +} ions are substituted for Fe{sup 2+} ions in an attempt to increase the intrinsic electronic conductivity. The conductivities of the Li{sub 1+x}Fe{sub 1-x}PO{sub 4} samples were, however, essentially unchanged from that of the undoped LiFePO{sub 4}. Nonetheless, evidence for changing the electronic properties of LiFePO{sub 4} by doping with excess Li+ was observed by the XAS/XES spectroscopy. New pre-edge features the O-1s XAS spectrum of Li{sub 1.05}Fe{sub 0.95}PO4 is a direct indication that the charge compensation for substitution of Fe{sup 2+} by Li{sup +} resides in the unoccupied O-2p orbitals. A charge transfer (CT) excitation was also observed in the doped material implying that the unoccupied O-2p orbitals created by doping are strongly hybridized with unoccupied Fe-3d orbitals of neighboring sites. However, the strong covalent bonding within the (PO{sub 4}){sup 3-} anions and the large separation of the Fe cations means that the charge created by doping is not delocalized in the manner of electrons or holes in a semiconductor.

  15. 6Li from Solar Flares.

    PubMed

    Ramaty; Tatischeff; Thibaud; Kozlovsky; Mandzhavidze

    2000-05-10

    By introducing a hitherto ignored 6Li producing process, due to accelerated 3He reactions with 4He, we show that accelerated particle interactions in solar flares produce much more 6Li than 7Li. By normalizing our calculations to gamma-ray data, we demonstrate that the 6Li produced in solar flares, combined with photospheric 7Li, can account for the recently determined solar wind lithium isotopic ratio, obtained from measurements in lunar soil, provided that the bulk of the flare-produced lithium is evacuated by the solar wind. Further research in this area could provide unique information on a variety of problems, including solar atmospheric transport and mixing, solar convection and the lithium depletion issue, and solar wind and solar particle acceleration.

  16. Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds

    DOEpatents

    Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.

    1994-01-01

    A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.

  17. Ab initio and kinetic Monte Carlo study of lithium diffusion in LiSi, Li12Si7, Li13Si5 and Li15Si4

    NASA Astrophysics Data System (ADS)

    Moon, Janghyuk; Lee, Byeongchan; Cho, Maenghyo; Cho, Kyeongjae

    2016-10-01

    The kinetics of lithium atoms in various Li-Si binary compounds are investigated using density functional theory calculations and kinetic Monte Carlo calculations. The values of the Li migration energy barriers are identified by NEB calculations with vacancy-mediated, interstitial and exchange migration mechanisms in crystalline LiSi, Li12Si7, Li13Si4, and Li15Si4. A comparison of these NEB results shows that the vacancy-mediated Li migration is identified as the dominant diffusion mechanisms in Li-Si compounds. The diffusion coefficients of Li in Li-Si compounds at room temperature are determined by KMC simulation. From the KMC results, the recalculated migration energy barriers in LiSi, Li12Si7, Li13Si4, and Li15Si4 correspond to 0.306, 0.301, 0.367 and 0.320 eV, respectively. Compared to the Li migration energy barrier of 0.6 eV in crystalline Si, the drastic reduction in the Li migration energy barriers in the lithiated silicon indicates that the initial lithiation of the Si anode is the rate-limiting step. Furthermore, it is also found that Si migration is possible in Li-rich configurations. On the basis of these findings, the underlying mechanisms of kinetics on the atomic scale details are elucidated.

  18. Li-Fraumeni Syndrome.

    PubMed

    Correa, Hernán

    2016-06-01

    Li-Fraumeni syndrome (LFS) is a cancer predisposition syndrome caused by a germline mutation of the TP53 gene on chromosome 17p13.1. It has an autosomal dominant pattern of inheritance with high penetrance. These patients have a very high lifetime cumulative risk of developing multiple malignancies and have a strong family history of early-onset malignancies. The protein p53, encoded by TP53, has a complex set of genome-preserving functions initiated during episodes of cellular stress and DNA damage. In LFS, TP53 gene mutations cause the loss of function of p53, leading to downstream events permissive for development of various malignancies throughout life. The LFS component tumors include soft tissue sarcomas, osteosarcoma, premenopausal breast cancer, brain tumors, and adrenal cortical carcinomas. Multiple types of sarcomas have been reported in association with LFS; this review article will focus on the most frequently encountered pediatric sarcomas associated with TP53 mutations. PMID:27617148

  19. Electron-impact Ionization Of Li2 And Li+2

    SciTech Connect

    Colgan, James P

    2008-01-01

    Electron-impact ionization cross sections for Li{sub 2} and Li{sup +}{sub 2} are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single configuration self-consistent field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice ({tau}, {theta}), which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single particle Schrodinger equation is then solved for continuum distorted-waves with S-matrix boundary conditions. Total ionization cross sections for Li{sub 2} at an equilibrium internuclear separation of R = 5.0 and for Li{sup +}{sub 2} at an equilibrium internuclear separation of R = 5.9 are presented.

  20. Outgassing in the LiD/LiOH System

    SciTech Connect

    Schildbach, M; Siekhaus, W; Dinh, L; McLean II, W

    2003-10-17

    Temperature programmed decomposition (TPD), scanning electron microscopy (SEM) and x-ray diffraction (XRD) were performed on lithium hydroxide (LiOH) polycrystallites and LiD/LiOH composite nanocrystals. Our studies revealed that LiOH grains are thermally decomposed into Li{sub 2}O, releasing water, following a three dimensional phase boundary movement from the surface inward. The rate of H{sub 2}O released is controlled by a rate constant that is expressed as: d{alpha}/dt ={upsilon}.e {sup -E/RT}.f({alpha}) where t is time; {alpha} is the reacted fraction (0 to 1); {upsilon} is the pre-exponential factor which includes many constants describing the initial state of the sample such as three dimensional shape factors of initial particles, molecular mass, density, stoichiometric factors of chemical reaction, active surface and number of lattice imperfections, and so forth; E is the activation energy for the rate controlling process, R is the gas molar constant, and f({alpha}) is an analytical function which is determined by the rate-limiting reaction mechanism (random nucleation, diffusion, phase boundary motion, etc.). Due to fewer neighboring bonds at the surface, surface lithium hydroxide decomposes at low activation energies of {approx} 86-92 kJ/mol with corresponding pre-exponential factors of {approx} 2.7 x 10{sup 6}-1.2 x 10{sup 7} s{sup -1}. Near-surface hydroxide, having bonding much like bulk hydroxide but experiencing more stress/strain, decomposes at activation energies of {approx} 89-108 kJ/mol with corresponding pre-exponential factors of {approx} 9.5 x 10{sup 5}-9.3 x 10{sup 7}s{sup -1}. Bulk lithium hydroxide, however, decomposes at higher activation energies of {approx} 115-142 kJ/mol with corresponding pre-exponential factors of {approx} 4.8 x 10{sup 6}-1.2 x 10{sup 9} s{sup -1}. Bulk lithium hydroxide is very stable if stored at room temperature. However, lithium hydroxide molecules at or near the surface of the grains slowly decompose, in a vacuum

  1. Insights into Li(+) Migration Pathways in α-Li3VF6: A First-Principles Investigation.

    PubMed

    Islam, Mazharul M; Wilkening, Martin; Heitjans, Paul; Bredow, Thomas

    2012-11-01

    Magnetic, structural, and defect properties of lithium vanadium hexafluoride (α-Li3VF6) are investigated theoretically with periodic quantum chemical methods. It is found that the ferromagnetic phase is more stable than the antiferromagnetic phase. The crystal structure contains three inequivalent Li sites (Li(1), Li(2), and Li(3)), where Li(1) occupies the middle position of the triplet Li(2)-Li(1)-Li(3). The calculated Li vacancy formation energies show that vacancy formation is preferred for the Li(1) and Li(3) sites compared to the Li(2) position. The Li exchange processes between Li(1) ↔ Li(3), Li(1) ↔ Li(2), and Li(2) ↔ Li(3) are studied by calculating the Li(+) migration between these sites using the climbing-image nudged elastic band approach. It is observed that Li exchange in α-Li3VF6 may take place in the following order: Li(1) ↔ Li(3) > (Li(1) ↔ Li(2) > Li(2) ↔ Li(3). This is in agreement with recently published results obtained from 1D and 2D (6)Li exchange nuclear magnetic resonance spectroscopy.

  2. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI

    SciTech Connect

    McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie; Herriot, Cristelle; Han, Sang D.; Boyle, Paul D.; Sommer, Roger D.; Henderson, Wesley A.

    2014-04-17

    Lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) and lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) are two salts proposed for lithium battery electrolyte applications, but little is known about the manner in which the DCTA- and TDI- anions coordinate Li+ cations. To explore this in-depth, crystal structures are reported here for two solvates with LiDCTA: (G2)1:LiDCTA and (G1)1:LiDCTA with diglyme and monoglyme, respectively, and seven solvates with LiTDI: (G1)2:LiTDI, (G2)2:LiTDI, (G3)1:LiTDI, (THF)1:LiTDI, (EC)1:LiTDI, (PC)1:LiTDI and (DMC)1/2:LiTDI with monoglyme, diglyme, triglyme, tetrahydrofuran, ethylene carbonate, propylene carbonate and dimethyl carbonate, respectively. These latter solvate structures are compared with the previously reported acetonitrile (AN)2:LiTDI structure. The solvates indicate that the LiTDI salt is much less associated than the LiDCTA salt and that the ions in LiTDI, when aggregated in solvates, have a very similar TDI-...Li+ cation mode of coordination through both the anion ring and cyano nitrogen atoms. Such coordination facilitates the formation of polymeric ion aggregates, instead of dimers. Insight into such ion speciation is instrumental for understanding the electrolyte properties of aprotic solvent mixtures with these salts.

  3. Electrolytic LiCl precipitation from LiCl-KCl melt in porous Li-Al anodes

    SciTech Connect

    Vallet, C.E.; Heatherly, D.E.; Heatherly, L. Jr.; Braunstein, J.

    1983-12-01

    Composition gradients such as those predicted to occur during discharge of porous Li-Al negative electrodes of Li/S batteries with LiCl-KCl eutectic electrolyte were generated and measured in the LiCl-KCl anolyte of an electrolysis cell with Li-Al electrodes. Precipitation of lithium chloride during electrolysis was observed by two-dimensional scanning of electrolyte composition in the front part of quenched porous Li-Al anode sections using SEM/EDX. The distribution of sites of increased or decreased LiCl concentration, LiCl saturation and precipitation was mapped. Cathodic regions were observed near the cell walls. Preliminary results of analysis by Auger spectroscopy confirm LiCl precipitation in the porous anode. 16 references, 7 figures, 1 table.

  4. Electrolytic LiCl precipitation from LiCl-KCl melt in porous Li-Al anodes

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Heatherly, L., Jr.; Braunstein, J.

    1983-12-01

    Composition gradients such as those predicted to occur during discharge of porous Li-Al negative electrodes of Li/S batteries with LiCl-KCl eutectic electrolyte were generated and measured in the LiCl-KCl anolyte of an electrolysis cell with Li-Al electrodes. Precipitation of lithium chloride during electrolysis was observed by two-dimensional scanning of electrolyte composition in the front part of quenched porous Li-Al anode sections using SEM/EDX. The distribution of sites of increased or decreased LiCl concentration, LiCl saturation and precipitation was mapped. Cathodic regions were observed near the cell walls. Preliminary results of analysis by Auger spectroscopy confirm LiCl precipitation in the porous anode.

  5. Metallic Li colloids studied by Li-7 MAS NMR in electron-irradiated LiF

    NASA Astrophysics Data System (ADS)

    Zogal, O. J.; Beuneu, F.; Vajda, P.; Florian, P.; Massiot, D.

    Li-7 MAS NMR spectra of 2.5 MeV electron-irradiated LiF crystals have been measured in a field of 9.4 T. Besides the resonance line of the ionic compound, a second well-separated spectrum is observed in the region of the Knight shift value for metallic lithium. At room temperature, the latter can be decomposed into two components with different Knight shift and linewidth values. When the temperature is increased, line narrowing takes place at first, indicating shortening of correlation times for self-diffusion, independently in both components. Above 370 K, both lines broaden and approach each other before collapsing into a single line. The high ppm component disappears after crossing the melting temperature of metallic lithium (454 K). The two lines are attributed to different types of metallic Li: one to bulk-like metal, the other to Li present initially under pressure and relaxing to the former under thermal treatment.

  6. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  7. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.

    PubMed

    Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B; Mukherjee, Partha P

    2016-02-01

    The precipitation of lithium sulfide (Li2S) on the Li metal anode surface adversely impacts the performance of lithium-sulfur (Li-S) batteries. In this study, a first-principles approach including density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations is employed to theoretically elucidate the Li2S/Li metal surface interactions and the nucleation and growth of a Li2S film on the anode surface due to long-chain polysulfide decomposition during battery operation. DFT analyses of the energetic properties and electronic structures demonstrate that a single molecule adsorption on Li surface releases energy forming chemical bonds between the S atoms and Li atoms from the anode surface. Reaction pathways of the Li2S film formation on Li metal surfaces are investigated based on DFT calculations. It is found that a distorted Li2S (111) plane forms on a Li(110) surface and a perfect Li2S (111) plane forms on a Li(111) surface. The total energy of the system decreases along the reaction pathway; hence Li2S film formation on the Li anode surface is thermodynamically favorable. The calculated difference charge density of the Li2S film/Li surface suggests that the precipitated film would interact with the Li anode via strong chemical bonds. AIMD simulations reveal the role of the anode surface structure and the origin of the Li2S formation via decomposition of Li2S8 polysulfide species formed at the cathode side and dissolved in the electrolyte medium in which they travel to the anode side during battery cycling. PMID:26836249

  8. Li2S Film Formation on Lithium Anode Surface of Li-S batteries.

    PubMed

    Liu, Zhixiao; Bertolini, Samuel; Balbuena, Perla B; Mukherjee, Partha P

    2016-02-01

    The precipitation of lithium sulfide (Li2S) on the Li metal anode surface adversely impacts the performance of lithium-sulfur (Li-S) batteries. In this study, a first-principles approach including density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations is employed to theoretically elucidate the Li2S/Li metal surface interactions and the nucleation and growth of a Li2S film on the anode surface due to long-chain polysulfide decomposition during battery operation. DFT analyses of the energetic properties and electronic structures demonstrate that a single molecule adsorption on Li surface releases energy forming chemical bonds between the S atoms and Li atoms from the anode surface. Reaction pathways of the Li2S film formation on Li metal surfaces are investigated based on DFT calculations. It is found that a distorted Li2S (111) plane forms on a Li(110) surface and a perfect Li2S (111) plane forms on a Li(111) surface. The total energy of the system decreases along the reaction pathway; hence Li2S film formation on the Li anode surface is thermodynamically favorable. The calculated difference charge density of the Li2S film/Li surface suggests that the precipitated film would interact with the Li anode via strong chemical bonds. AIMD simulations reveal the role of the anode surface structure and the origin of the Li2S formation via decomposition of Li2S8 polysulfide species formed at the cathode side and dissolved in the electrolyte medium in which they travel to the anode side during battery cycling.

  9. Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Nakajima, Tsuyoshi; Hirobayashi, Yuki; Takayanagi, Yuki; Ohzawa, Yoshimi

    2013-12-01

    DSC (Differential Scanning Calorimetry) study has been made on the reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Ethylene carbonate (EC) more easily reacts with metallic Li and LiC6 than propylene carbonate (PC). This may be because formation of lithium alkyl carbonate is more difficult for PC than EC. On the other hand, diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) react with Li in the same manner. Reactions of Li and LiC6 with organic solvents have been discussed based on the results of quantum calculation.

  10. The Electrochemistry of Li-LiCl-Li2O Molten Salt Systems and the Role of Moisture

    NASA Astrophysics Data System (ADS)

    Gese, Natalie J.

    Uranium can be recovered from uranium-oxide (UO2) spent fuel through the combination of oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li 2O salt at 650°C, and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li°) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li° generation required for the chemical reduction of UO 2. In order for the oxide reduction process to be an effective method for the treatment of uranium-oxide fuel, the role of moisture in the LiCl-Li 2O system must be understood. The behavior of moisture in the LiCl-Li 2O molten-salt system was studied using cyclic voltammetry, chronopotentiometry, and chronoamperometry while reduction to hydrogen was confirmed with gas chromatography.

  11. High accuracy ab initio studies of Li6+, Li6-, and three isomers of Li6

    NASA Astrophysics Data System (ADS)

    Temelso, Berhane; Sherrill, C. David

    2005-02-01

    The structures and energetics of Li6+, Li6- and three isomers of Li6 are investigated using the coupled-cluster singles, doubles and perturbative triples [CCSD(T)] method with valence and core-valence correlation consistent basis sets of double- to quadruple-ζ quality (cc-pVXZ and cc-pCVXZ, where X =D-Q). These results are compared with qualitatively different predictions by less reliable methods. Our results conclusively show that the D4h isomer is the global minimum structure for Li6. It is energetically favored over the C5v and D3h structures by about 5.1 and 7.1kcalmol-1, respectively, after the inclusion of the zero-point vibrational energy (ZPVE) correction. Our most accurate total atomization energies are 123.2, 117.6, and 115.7kcalmol-1 for the D4h, C5v, and D3h isomers, respectively. Comparison of experimental optical absorption spectra with our computed electronic spectra also indicate that the D4h isomer is indeed the most stable structure. The cation, anion, and some higher spin states are investigated using the less expensive cc-pCVDZ basis set. Adiabatic ionization energies and electron affinities are reported and compared with experimental values. Predictions of molecular properties are found to be sensitive to the basis set used and to the treatment of electron correlation.

  12. Evaluation of LiCl-LiBr-KBr electrolyte for Li-alloy/metal disulfide cells

    SciTech Connect

    Kaun, T.D.

    1987-01-01

    The physical properties of a new molten salt electrolyte for lithium-alloy/metal disulfide cells, 25 mol % LiCl-37 mol % LiBr-38 mol % KBr, were investigated. Cyclic voltammetry of FeS/sub 2/ in the new molten salt at 375 to 425/sup 0/C indicated improved electrochemistry and stability of the reaction on the upper voltage plateau (1.75 V vs. LiAl). The new electrolyte provides an opportunity to operate an upper-plateau (UP) FeS/sub 2/ electrode at a lower temperature, 400/sup 0/C, and with a higher activity of lithium ion in the electrolyte. The broad liquidus of this molten salt at 400/sup 0/C also supports operation at high current density. Testing of 24- to 48-Ah cells indicated greater than 50% improved energy and power density over the conventional two-plateau FeS/sub 2/ cell with LiCl-KCl electrolyte. The conventional FeS/sub 2/ cells would lose 50% of their upper-plateau capacity within 200 cycles. The elimination of this capacity decline problem was demonstrated by 400 cycles and 5400 h of stable operation with a dense UP FeS/sub 2/ electrode cell, which maintained 89% utilization of theoretical capacity throughout the test.

  13. Reactive transport modeling of Li isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Sonnenthal, E. L.

    2013-12-01

    The fractionation of Li isotopes has been used as a proxy for interaction processes between silicate rocks and any kind of fluids. In particular, Li isotope measurements are powerful because Li is almost exclusively found in silicate minerals. Moreover, the two stable Li isotopes, 6Li and 7Li, differ by 17% in mass introducing a large mass dependent isotope fractionation even at high temperature. Typical applications include Li isotope measurements along soil profiles and of river waters to track silicate weathering patterns and Li isotope measurements of geothermal wells and springs to assess water-rock interaction processes in geothermal systems. For this contribution we present a novel reactive transport modeling approach for the simulation of Li isotope fractionation using the code TOUGHREACT [1]. It is based on a 6Li-7Li solid solution approach similar to the one recently described for simulating Cr isotope fractionation [2]. Model applications include the simulation of granite weathering along a 1D flow path as well as the simulation of a column experiment related to an enhanced geothermal system. Results show that measured δ7Li values are mainly controlled by (i) the degree of interaction between Li bearing primary silicate mineral phases (e.g., micas, feldspars) and the corresponding fluid, (ii) the Li isotope fractionation factor during precipitation of secondary mineral phases (e.g., clays), (iii) the Li concentration in primary and secondary Li bearing mineral phases and (iv) the proportion of dissolved Li that adsorbs to negatively charged surfaces (e.g., clays, Fe/Al-hydroxides). To date, most of these parameters are not very well constrained. Reactive transport modeling thus currently has to rely on many assumptions. Nevertheless, such models are powerful because they are the only viable option if individual contributions of all potential processes on the resulting (i.e., measured) Li isotopic ratio have to be quantitatively assessed. Accordingly, we

  14. Nanoscale spinel LiFeTiO4 for intercalation pseudocapacitive Li(+) storage.

    PubMed

    Chen, Ruiyong; Knapp, Michael; Yavuz, Murat; Ren, Shuhua; Witte, Ralf; Heinzmann, Ralf; Hahn, Horst; Ehrenberg, Helmut; Indris, Sylvio

    2015-01-14

    Intercalation pseudocapacitive Li(+) storage has been recognized recently in metal oxide materials, wherein Li(+) intercalation into the lattice is not solid-state diffusion-limited. This may bridge the performance gap between electrochemical capacitors and battery materials. To date, only a few materials with desired crystal structure and with well-defined nanoarchitectures have been found to exhibit such attractive behaviour. Herein, we report for the first time that nanoscale spinel LiFeTiO4 as a cathode material for Li-ion batteries exhibits intercalation pseudocapacitive Li(+) storage behaviour. Nanoscale LiFeTiO4 nanoparticles with native carbon coating were synthesized by a sol-gel route. A fast and large-amount of Li(+) storage (up to 1.6 Li(+) per formula unit over cycling) in the nanoscale LiFeTiO4 host has been achieved without compromising kinetics.

  15. Observations of 6Li in Galactic Stars

    NASA Astrophysics Data System (ADS)

    Hobbs, L. M.

    2000-05-01

    Several important goals have motivated observationally challenging attempts to measure 6Li/7Li isotopic ratios and, hence, 6Li abundances in stars. In particular, a general understanding, based on cosmic-ray spallation reactions, of the nucleosynthetic origins of the very low Galactic abundances of 6Li, Be, and B has followed from measurements of both the relative and the absolute abundances of these various, related isotopes. In the cases of Be and B, such data are currently available for 20 or more stars that span a wide range of metallicity, i.e. age. In contrast, nuclear burning of the very fragile 6Li nuclei during stellar contraction to the main sequence generally reduces the surface abundance of this lighter isotope below the observable limit. A few relatively nearby stars of low metallicity which are found close to the Population II main-sequence turnoff during later hydrogen burning seem to constitute the observable exceptions. Spectra of very high quality, typically with R > 100,000 and S/N > 400 at V > 9.0, are needed to reveal the small extra asymmetry and the small extra width that are introduced into the profile of the isotopically blended Li I 6707 A line by the small fractions of 6Li detected so far. Precise measurements of (or, in all but a few cases, uppper limits on) the 6Li/7Li ratio are now available for almost 30 stars. At a ratio 6Li/7Li = 0.06, the first positive detection of stellar 6Li was achieved in 1993 for the turnoff halo star HD 84937, by Smith, Lambert, & Nissen. Probable detections of the lighter isotope at generally similar isotopic ratios have since been reported for four additional metal-poor stars. The imminent availability of more telescopes in the 8m to 10m class promises a rewarding extension of this effort to a relatively large number of excellent, fainter 6Li candidates.

  16. Li 2TiO 3 pebbles reprocessing, recovery of 6Li as Li 2CO 3

    NASA Astrophysics Data System (ADS)

    Alvani, C.; Casadio, S.; Contini, V.; Di Bartolomeo, A.; Lulewicz, J. D.; Roux, N.

    2002-12-01

    A process for obtaining Li 2CO 3 from Li 2TiO 3 powder by wet chemistry was developed. This is considered useful in view of the recovery of the 6Li isotope from lithium titanate breeder burned to its end of life in a fusion reactor. The process was optimized with respect to the chemical attack of titanate and the precipitation of carbonate from aqueous solutions to get a powder with chemical and morphological characteristics suitable for its reexploitation in the fabrication of Li 2TiO 3 pebbles. Reprocessing was also planned to adjust the 6Li concentration to the desired value and to obtain a homogeneous distribution in the powder batch. Further development concerning reprocessing of sintered Li 2TiO 3 pebbles is in progress exploiting the results obtained with lithium titanate powders.

  17. Diffusion and possible freezing phases of Li-ions in LiFePO4

    NASA Astrophysics Data System (ADS)

    Yiu, Yuen; Toft-Petersen, Rasmus; Ehlers, Georg; Vaknin, David

    Elastic and inelastic neutron scattering studies of LiFePO4 single crystal reveal new Li-ion diffusion properties relevant to its function as Li-battery materials. In the past decade there has been broad interest in LiFePO4 and its related compounds, largely due to the applications of these materials as cathodes in Li- batteries. This is owing to these materials' high charge-discharge ability and conductivity, both of which are by virtue of the Li-ions' high mobility. In this talk, we present our findings on the temperature and directional dependence of Li-ions' diffusion in LiFePO4. LiFePO4 adopts the olivine structure at room temperature (Space group: Pnma), which contains channels along principal crystalline directions that allow Li-ion motion. Elastic neutron scattering reveals lowering of symmetry from the Pnma structure below room temperature, which can be interpreted as the freezing of Li-ions, and can be subsequently linked to the reported decrease in Li-ion conductivity. Inelastic neutron scattering, in the 35K to 720K temperature range, shows temperature dependence, as well as anisotropy (i.e. along 0K0 versus 00L) of Li-ion diffusion. Ames Laboratory is supported by U.S. DOE, BES, DMSE, under Contract #DE-AC02-07CH11358. Spallation Neutron Source of Oak Ridge National Laboratory is sponsored by U.S. DOE, BES, SUFD.

  18. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  19. Measurement of Solubility of Metallic Lithium Dissolved in Molten LiCl-Li2O

    NASA Astrophysics Data System (ADS)

    Burak, Adam J.; Simpson, Michael F.

    2016-07-01

    The solubility of lithium metal in molten LiCl-Li2O mixtures has been measured at various concentrations of Li2O ranging from 0 wt.% to 2.7 wt.% at a temperature of approximately 670-680°C. After contacting molten lithium with molten LiCl-Li2O for several hours to achieve equilibrium saturation, samples were taken by freezing the salt onto a room-temperature steel rod and dissolving in water for analysis. Both volume of hydrogen gas generated and volume of titrated HCl were measured to investigate two different approaches to calculating the lithium concentration. There appeared to be no effect of Li2O concentration on the Li solubility in the salt. But the results vary between different methods of deducing the amount of dissolved Li. The H2 collection method is recommended, but care must be taken to ensure all of the H2 has been included.

  20. Measurement of Solubility of Metallic Lithium Dissolved in Molten LiCl-Li2O

    NASA Astrophysics Data System (ADS)

    Burak, Adam J.; Simpson, Michael F.

    2016-10-01

    The solubility of lithium metal in molten LiCl-Li2O mixtures has been measured at various concentrations of Li2O ranging from 0 wt.% to 2.7 wt.% at a temperature of approximately 670-680°C. After contacting molten lithium with molten LiCl-Li2O for several hours to achieve equilibrium saturation, samples were taken by freezing the salt onto a room-temperature steel rod and dissolving in water for analysis. Both volume of hydrogen gas generated and volume of titrated HCl were measured to investigate two different approaches to calculating the lithium concentration. There appeared to be no effect of Li2O concentration on the Li solubility in the salt. But the results vary between different methods of deducing the amount of dissolved Li. The H2 collection method is recommended, but care must be taken to ensure all of the H2 has been included.

  1. Metalization of Li2S particle surfaces in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Xin; Kaghazchi, Payam

    2014-10-01

    The Li-S battery is the most promising candidate for future electric vehicles. The study of stabilities and conductivities of Li2S nanoparticles, which are used as pre-lithiated cathode materials, is crucial for the development of Li-S batteries. Here, we investigate the atomic and electronic structures as well as stabilities of Li2S surfaces and nanoparticles using density functional theory (DFT) and classical electrostatic models. We show that Li2S nanoparticles have octahedral shape and consist of only (111) facets. At low concentrations of Li, the surfaces of nanoparticles are metalized non-polar Li2S(111) surfaces. The metalization is found to be due to the depletion of valence bands of surface states. However, for higher concentrations of Li, the nanoparticle faces are insulator non-polar Li2S(111) surfaces. This study suggests that Li2S nanoparticles with (111) surfaces are very promising cathode materials for Li-S batteries.The Li-S battery is the most promising candidate for future electric vehicles. The study of stabilities and conductivities of Li2S nanoparticles, which are used as pre-lithiated cathode materials, is crucial for the development of Li-S batteries. Here, we investigate the atomic and electronic structures as well as stabilities of Li2S surfaces and nanoparticles using density functional theory (DFT) and classical electrostatic models. We show that Li2S nanoparticles have octahedral shape and consist of only (111) facets. At low concentrations of Li, the surfaces of nanoparticles are metalized non-polar Li2S(111) surfaces. The metalization is found to be due to the depletion of valence bands of surface states. However, for higher concentrations of Li, the nanoparticle faces are insulator non-polar Li2S(111) surfaces. This study suggests that Li2S nanoparticles with (111) surfaces are very promising cathode materials for Li-S batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03428g

  2. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  3. (6)Li, (7)Li Nuclear Magnetic Resonance Investigation of Lithium Coordination in Binary Phosphate Glasses

    SciTech Connect

    Alam, T.M.; Boyle, T.J.; Brow, R.K.; Conzone, S.

    1999-02-08

    {sup 6}Li and {sup 7}Li solid state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has been used to investigate the local coordination environment of lithium in a series of xLi{sub 2}O {center_dot} (1-x)P{sub 2}O{sub 5} glasses, where 0.05 {le} x {le} 0.55. Both the {sup 6}Li and {sup 7}Li show chemical shift variations with changes in the Li{sub 2}O concentration, but the observed {sup 6}Li NMR chemical shifts closely approximate the true isotropic chemical shift and can provide a measure of the lithium bonding environment. The {sup 6}Li NMR results indicate that in this series of lithium phosphate glasses the Li atoms have an average coordination between four and five. The results for the metaphosphate glass agree with the coordination number and range of chemical shifts observed for crystalline LiPO{sub 3}. An increase in the {sup 6}Li NMR chemical shift with increasing Li{sub 2}O content was observed for the entire concentration range investigated, correlating with increased cross-linking of the phosphate tetrahedral network by O-Li-O bridges. The {sup 6}Li chemical shifts were also observed to vary monotonically through the anomalous glass transition temperature (T{sub g}) minimum. This continuous chemical shift variation shows that abrupt changes in the Li coordination environment do not occur as the Li{sub 2}O concentration is increased, and such abrupt changes can not be used to explain the T{sub g} minimum.

  4. Photoemission study of Li@C60

    NASA Astrophysics Data System (ADS)

    Yagi, Hajime; Ogasawara, Naoko; Zenki, Masashi; Miyazaki, Takafumi; Hino, Shojun

    2016-05-01

    Ultraviolet and X-ray photoelectron spectra (UPS and XPS) of thin films prepared by either depositing or applying [Li@C60]+(PF6)- on the substrates are presented. The UPS and XPS of [Li@C60]+(PF6)- applied films suggest that PF6- anions come out from the surface by annealing at 250 °C. The UPS and XPS of the deposited thin films indicate that the film does not contain PF6- anion but is composed of only Li@C60. Changing the sublimation temperature reveals that encapsulated Li cations begin to escape from the C60 cage when heated above 550 °C.

  5. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  6. Li+ ionic diffusion and vacancy ordering in beta-LiGa.

    PubMed

    Nakamura, Koichi; Motoki, Keisuke; Michihiro, Yoshitaka; Kanashiro, Tatsuo; Yahagi, Masahito; Hamanaka, Hiromi; Kuriyama, Kazuo

    2007-01-01

    7Li and 71Ga NMR measurements have been performed to study the Li+ ionic motion and vacancy ordering in the lithium semimetal beta-LiGa. The temperature dependence of the spin-lattice relaxation rate, T1(-1) of the 7Li nuclei in the 50 atom% Li sample shows an asymmetric broad peak around 175 K and is interpreted in terms of fast Li ionic diffusion. The activation energy of hopping is estimated as 0.11 eV using a non-Debye type relaxation model. In the temperature dependence of T1(-1) of the 7Li nuclei in 44 and 47 atom% Li samples, steep peaks are observed at 225 and 195 K, respectively. The origin of these anomalous peaks is attributed to the order-disorder transformation of Li+ vacancies. The temperature dependence of T1(-1) of the 71Ga nuclei measured above 200 K is interpreted in terms of the relaxation originating from the fluctuation of the electric field gradient at the 71Ga nuclei due to mobile Li+ ions. The activation energy for the Li+ ionic diffusion estimated from T1(-1) of the 71Ga nuclei is comparable with that obtained from T1(-1) of the 7Li nuclei.

  7. Modification of LiCl-LiBr-KBr electrolyte for LiAl/FeS{sub 2} batteries

    SciTech Connect

    Kaun, T.D.; Jansen, A.N.; Henriksen, G.L.; Vissers, D.R.

    1996-06-01

    The bipolar LiAl/FeS{sub 2} battery is being developed to achieve the high performance and long cycle life needed for electric vehicle application. The molten-salt (400 to 440 C operation) electrolyte composition for this battery has evolved to support these objectives. An earlier change to LiCl-LiBr-KBr electrolyte is responsible for significantly increased cycle life (up to 1,000 cycles). Recent electrolyte modification has significantly improved cell performance; approximately 50% increased power, with increased high rate capacity utilization. Results are based on power-demanding EV driving profile test at 600 W/kg. The effects of adding small amounts (1--5 mol%) of LiF and LiI to LiCl-LiBr-KBr electrolyte are discussed. By cyclic voltammetry, the modified electrolytes exhibit improved FeS{sub 2} electrochemistry. Electrolyte conductivity is little changed, but high current density (200 mA/cm{sup 2}) performance improved by approximately 50%. A specific feature of the LiI addition is an enhanced cell overcharge tolerance rate from 2.5 to 5 mA/cm{sup 2}. The rate of overcharge tolerance is related to electrolyte properties and negative electrode lithium activity. As a result, the charge balancing of a bipolar battery configuration with molten-salt electrolyte is improved to accept greater cell-to-cell deviations.

  8. Solvation of the Li+-Cl--Li+ triple ion in the gas phase

    NASA Astrophysics Data System (ADS)

    Jarek, Russell L.; Denson, Stephen C.; Shin, Seung Koo

    1998-09-01

    Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry was employed to study solvations of the Li+-Cl--Li+ triple ion with oxygen-donor Lewis bases in the gas phase. The LiClLi+ triple ions were produced in an ICR cell by laser desorption ionization of a lithium chloride/dibenzo-18-crown-6-ether matrix pasted on a Teflon substrate. O-donor Lewis bases include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran (THF), acetone and diethyl ether. All O-donors associate directly with LiClLi+ with the maximum solvation numbers of 3 for 1,4-dioxane, 1,3-dioxane and diethyl ether, and 4 for THF and acetone at room temperature. The rate constants for the stepwise solvations were measured, and the solvent binding energies were determined from van't Hoff plots. The structures and energetics of LiClLi+ and the 1:1 complexes of Li+ and LiClLi+ with the dioxanes, THF, and acetone were calculated at the Hartree-Fock (HF) level with a 6-311G(d,p) basis set, and those of more highly coordinated LiClLi+ complexes were calculated with a 6-31G(d) basis set. Solvation enthalpies and free energies were calculated, and solvent binding energies were compared with experiments. The mechanisms of stepwise solvations of the LiClLi+ triple ion with dioxanes, THF, and acetone are discussed in light of experimental kinetics and binding energies and theoretical structures and solvation energies.

  9. Kinetic measurement and prediction of the hydrogen outgassing from the polycrystalline LiH/Li2O/LiOH system

    SciTech Connect

    Dinh, L N; Grant, D M; Schildbach, M A; Smith, R A; Siekhaus, W J; Balazs, B; Leckey, J H; Kirkpatrick, J; McLean II, W

    2005-04-06

    Due to the exothermic reaction of lithium hydride (LiH) salt with water during transportation and handling, there is always a thin film of lithium hydroxide (LiOH) present on the LiH surface. In dry or vacuum storage, this thin LiOH film slowly decomposes. We have used temperature-programmed reaction/decomposition (TPR) in combination with the isoconversion method of thermal analysis to determine the outgassing kinetics of H{sub 2}O from pure LiOH and H{sub 2} and H{sub 2}O from this thin LiOH film. H{sub 2} production via the reaction of LiH with LiOH, forming a lithium oxide (Li{sub 2}O) interlayer, is thermodynamically favored, with the rate of further reaction limited by diffusion through the Li{sub 2}O and the stability of the decomposing LiOH. Lithium hydroxide at the LiOH/vacuum interface also decomposes easily to Li{sub 2}O, releasing H{sub 2}O which subsequently reacts with LiH in a closed system to form H{sub 2}. At the onset of dry decomposition, where H{sub 2} is the predominant product, the activation energy for outgassing from a thin LiOH film is lower than that for bulk LiOH. However, as the reactions at the LiH/Li{sub 2}O/LiOH and at the LiOH/vacuum interfaces proceed, the overall activation energy barrier for the outgassing approaches that of bulk LiOH decomposition. The kinetics developed here predicts a hydrogen evolution profile in good agreement with hydrogen release observed during long term isothermal storage.

  10. Stability of the Solid Electrolyte Interface on the Li Electrode in Li-S Batteries.

    PubMed

    Zheng, Dong; Yang, Xiao-Qing; Qu, Deyang

    2016-04-27

    By means of high performance liquid chromatography-mass spectroscopy, the concentration of sulfur and polysulfides was determined in nonaqueous electrolytes. The stability of sulfur and Li in eight electrolytes was studied quantitatively. It was found that sulfur reacted with Li in most of the commonly used electrolytes for lithium-sulfur batteries. The reaction products between sulfur and Li were qualitatively identified. In some cases, the solid electrolyte interface on the Li can successfully prevent the interaction between S and Li; however, it was found that the solid electrolyte interface was damaged by polysulfide ions. PMID:27045986

  11. Effect of Li diffusion on the composition of LiNbO 3 at high temperature

    NASA Astrophysics Data System (ADS)

    Chen, Y. L.; Wen, J. P.; Kong, Y. F.; Chen, S. L.; Zhang, W. L.; Xu, J. J.; Zhang, G. Y.

    2002-07-01

    LiNbO 3 crystals with a variety of compositions were prepared by the vapor transport equilibration (VTE) technique. Crystals were characterized through the measurements of fundamental absorption edge, lattice parameters and the electric field required for ferroelectric domain switching. The techniques employed for characterization served as tools for the determination of the composition and homogeneity of the crystals. We discussed the Li diffusion mechanisms in LiNbO 3 crystals at high temperature and found that the Li vacancy model is consistent with the experimental results for the VTE-grown LiNbO 3 crystal.

  12. Li ion diffusion in LiAlO2 investigated by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Lei, Li; Jiang, Xiaodong; Feng, Zhe Chuan; Tang, Mingjun; He, Duanwei

    2014-11-01

    The temperature dependence of Li ions behavior of γ-LiAlO2 has been studied from 78 to 873 K. On heating, the Li ions underwent positional disordering along the structural channels, with the Li ions related modes at 220, 366 and 400 cm-1 broadening and weakening dramatically. An anomalous maximum in the bandwidths of the Li ions related modes is observed. It should be apparent that there are at least two distinct thermally activated processes. A model suggested by Andrade and Porto is used to describe the linewidth of a phonon.

  13. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    PubMed Central

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-01-01

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the “dry” electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies. PMID:27703188

  14. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    NASA Astrophysics Data System (ADS)

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-10-01

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the “dry” electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  15. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    SciTech Connect

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  16. Direct observation of Li diffusion in Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Baek, Hyeonjun; Sundararajan, Abhishek; Strachan, Douglas R.; Yi, Gyu-Chul; Guiton, Beth S.

    2016-05-01

    The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a single NW was observed between 200 °C and 600 °C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Lii) to Zn-site substitutional Li (LiZn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias.

  17. Response to Comment on "Cycling Li-O₂ batteries via LiOH formation and decomposition".

    PubMed

    Liu, Tao; Kim, Gunwoo; Carretero-González, Javier; Castillo-Martínez, Elizabeth; Bayley, Paul M; Liu, Zigeng; Grey, Clare P

    2016-05-01

    Lithium-oxygen (Li-O2) batteries cycle reversibly with lithium iodide (LiI) additives in dimethoxyethane (DME) to form lithium hydroxide (LiOH). Viswanathan et al. argue that because the standard redox potential of the four-electron (e(-)) reaction, 4OH(-) ↔ 2H2O + O2 + 4e(-), is at 3.34 V versus Li(+)/Li, LiOH cannot be removed by the triiodide ion (I3(-)). However, under nonaqueous conditions, this reaction will occur at a different potential. LiOH also reacts chemically with I3(-) to form IO3(-), further studies being required to determine the relative rates of the two reactions on electrochemical charge.

  18. Cycling Li-O₂ batteries via LiOH formation and decomposition.

    PubMed

    Liu, Tao; Leskes, Michal; Yu, Wanjing; Moore, Amy J; Zhou, Lina; Bayley, Paul M; Kim, Gunwoo; Grey, Clare P

    2015-10-30

    The rechargeable aprotic lithium-air (Li-O2) battery is a promising potential technology for next-generation energy storage, but its practical realization still faces many challenges. In contrast to the standard Li-O2 cells, which cycle via the formation of Li2O2, we used a reduced graphene oxide electrode, the additive LiI, and the solvent dimethoxyethane to reversibly form and remove crystalline LiOH with particle sizes larger than 15 micrometers during discharge and charge. This leads to high specific capacities, excellent energy efficiency (93.2%) with a voltage gap of only 0.2 volt, and impressive rechargeability. The cells tolerate high concentrations of water, water being the dominant proton source for the LiOH; together with LiI, it has a decisive impact on the chemical nature of the discharge product and on battery performance. PMID:26516278

  19. Mixed salts of LiTFSI and LiBOB for stable LiFePO4-based batteries at elevated temperatures

    SciTech Connect

    Chen, Xilin; Xu, Wu; Engelhard, Mark H.; Zheng, Jianming; Zhang, Yaohui; Ding, Fei; Qian, Jiangfeng; Zhang, Ji-Guang

    2014-01-01

    To achieve stable long-term cycling stability at elevated temperatures, mixed salts of LiTFSI and LiBOB are used to replace LiPF6 salt in non-aqueous electrolytes for LiFePO4-based batteries. It is found that adding LiBOB in LiTFSI-based electrolytes effectively prevents the severe corrosion to Al current collectors that often is observed in LiTFSI-based electrolytes, which have high thermal stability. The cells using LiTFSI-LiBOB-based electrolytes demonstrate superior high temperature (60 °C) stability and very similar room temperature performance (i.e., cycling stability and rate capability) when compared to cells using the LiPF6-based electrolyte.

  20. Investigation of the role of 10Li resonances in the halo structure of 11Li through the 11Li (p , d)10Li transfer reaction

    NASA Astrophysics Data System (ADS)

    Sanetullaev, A.; Kanungo, R.; Tanaka, J.; Alcorta, M.; Andreoiu, C.; Bender, P.; Chen, A. A.; Christian, G.; Davids, B.; Fallis, J.; Fortin, J. P.; Galinski, N.; Gallant, A. T.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Ishimoto, S.; Keefe, M.; Krücken, R.; Lighthall, J.; McNeice, E.; Miller, D.; Purcell, J.; Randhawa, J. S.; Roger, T.; Rojas, A.; Savajols, H.; Shotter, A.; Tanihata, I.; Thompson, I. J.; Unsworth, C.; Voss, P.; Wang, Z.

    2016-04-01

    The first measurement of the one-neutron transfer reaction 11Li(p,d)10Li performed using the IRIS facility at TRIUMF with a 5.7 A MeV11Li beam interacting with a solid H2 target is reported. The 10Li residue was populated strongly as a resonance peak with energy Er = 0.62 ± 0.04 MeV having a total width Γ = 0.33 ± 0.07 MeV. The angular distribution of this resonance is characterized by neutron occupying the 1p1/2 orbital. A DWBA analysis yields a spectroscopic factor of 0.67 ± 0.12 for p1/2 removal strength from the ground state of 11Li to the region of the peak.

  1. Utility of Li and Li Isotopes as Tracers of Continental Weathering

    NASA Astrophysics Data System (ADS)

    James, R. H.; Wimpenny, J. B.; Pogge von Strandmann, P.; Kisakurek, B.; Hathorne, E. C.; Anand, P.; Burton, K. W.

    2008-12-01

    Lithium is potentially an attractive tracer of continental weathering because its two isotopes have a large relative mass difference, it is unaffected by biological activity and it is only slightly incompatible during magmatic processes so tends to be relatively uniformly distributed in the Earth's crust. Moreover, Li is conservative in the oceans, with a residence time of ca. 1 million years, and it is isotopically uniform on a global scale (δ7Li ~+31‰). Seminal work by Lui Chan and her co-workers has shown that the Li and Li isotope balance of the oceans is maintained by inputs of high-temperature hydrothermal fluids at oceanic ridges (with δ7Li ~+6.7‰) and dissolved Li from rivers (average δ7Li = +23‰), and low-temperature removal of Li into oceanic basalts and marine sediments. Despite this potential, relatively little is known about the behaviour of Li during continental weathering. In this study, we will present an overview of the work that we have conducted on Li and Li isotopes in rivers, soils and estuaries from catchments in Greenland, Iceland and the Himalaya, as well as laboratory studies of mineral dissolution and precipitation. Each of these case studies illustrates the effects of weathering processes on the riverine isotope signal, and the estuarine data illustrate how this signal is transferred to the oceans. Our data suggest that variations in rock type have little effect on riverine δ7Li; the principal control is preferential removal of 6Li into secondary minerals formed during weathering, leaving the residual waters enriched in 7Li. In subglacial environments, where weathering rates are very low, uptake of Li by ferric oxyhydroxides formed during sulphide oxidation is important. Our results clearly demonstrate that weathering processes can exert a significant effect on the Li isotope composition of natural waters. In order to understand whether changes in such processes with time are preserved, we have also generated records of the past

  2. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries. PMID:26722800

  3. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  4. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    Li-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85 V demonstrated stable cycling up to 200 cycles followed by a rapid fade. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130 mAh/g at C/2. The improved stability, along with its cost-effectiveness, environmental benignity, and safety, make the LiFePO4/Li4Ti5O12 combination Li-ion battery a promising option for storing renewable energy.

  5. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  6. Nanomaterials Meet Li-ion Batteries.

    PubMed

    Kwon, Nam Hee; Brog, Jean-Pierre; Maharajan, Sivarajakumar; Crochet, Aurélien; Fromm, Katharina M

    2015-01-01

    Li-ion batteries are used in many applications in everyday life: cell phones, laser pointers, laptops, cordless drillers or saws, bikes and even cars. Yet, there is room for improvement in order to make the batteries smaller and last longer. The Fromm group contributes to this research focusing mainly on nanoscale lithium ion cathode materials. This contribution gives an overview over our current activities in the field of batteries. After an introduction on the nano-materials of LiCoO(2) and LiMnPO(4), the studies of our cathode composition and preparation will be presented.

  7. Structural transformation of Li 2CoPO 4F upon Li-deintercalation

    NASA Astrophysics Data System (ADS)

    Khasanova, Nellie R.; Gavrilov, Alexey N.; Antipov, Evgeny V.; Bramnik, Kirill G.; Hibst, Hartmut

    Electrochemical performance and structural properties of the high-voltage cathode material Li 2CoPO 4F have been investigated. The cyclic voltammetry and coulometry under potential step mode in the voltage range 3.0-5.1 V vs. Li revealed a structural transformation at potentials above 4.8 V. This transformation occurring upon Li-extraction appears to be irreversible: the subsequent Li-insertion does not result in restoration of the initial structure, but takes place within a new "modified" framework. According to the structure refinement this modification involves the mutual rotations of (CoO 4F 2) octahedra and (PO 4) tetrahedra accompanied by the considerable unit cell expansion which is expected to enhance the Li-transport upon subsequent cycling. The new framework demonstrates a reversible Li-insertion/extraction in a solid-solution regime with stabilized discharge capacity at around 60 mAh g -1.

  8. Preparation and some properties of Cu-Li alloys containing up to 20 at. % Li

    SciTech Connect

    Mendelsohn, M.; Krauss, A.R.; Gruen, D.M.

    1985-01-01

    Lithium strongly segregates to the surface of Cu-Li alloys, thus substantially lowering the Cu sputtering yield relative to pure Cu. Use of Cu-Li limiters or divertors in tokamaks can therefore be expected to be beneficial in limiting high-Z plasma impurity influx. A large scale (100-200g) method for the preparation of Cu-Li alloys is described. Analysis reveals that on solidification from the melt stratification occurs which leads to compositional inhomogeneity. The results are discussed in the light of the Cu-Li binary phase diagram and rationalized on the basis of large density differences between Cu and Cu-Li solid solutions. It is concluded that obtaining homogeneous Cu-Li solid solutions is a nontrivial task.

  9. Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends

    NASA Astrophysics Data System (ADS)

    Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.

    2002-12-01

    There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.

  10. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  11. Effect of the composition of Al-Li alloys on the quantitative relation between the δ'(Al3Li), S1(Al2MgLi), and T1(Al2CuLi) phases

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Grushin, I. A.; Knyazev, M. I.; Khokhlatova, L. B.; Alekseev, A. A.

    2015-01-01

    Al-Li alloys are considered. A quantitative approach to the determination of the ratio of the fractions of the binary and ternary intermetallic phases in Al-Mg(Cu)-Li alloys is developed on the basis of chemical and phase composition balance equations and the experimentally measured lattice parameter of the α solid solution. The ratio of the fractions of the δ'(Al3Li) and S1(T1) phases in Al-Mg(Cu)-Li alloys is shown to be determined by the ratio of the mole fractions of Li and Mg(Cu). Equations are proposed for calculating the weight fractions of the S1(Al2MgLi), T1(Al2CuLi) and δ'(Al3Li) phases in domestic and foreign Al-Mg-Li alloys 1420, 1424, 5090 and Al-Cu-Li alloys 1440, 1460, 1461, 1441, 1469, 2090, 2095, 8090, and Weldalite 049.

  12. Power capability improvement of LiBOB/PC electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroaki; Sekine, Kyoichi; Takamura, Tsutomu

    Lithium bis(oxalto)borate (LiBOB) is quite effective to prevent vigorous decomposition of propylene carbonate (PC) at the graphite anode of a Li-ion battery during Li insertion. PC is a very good solvent that is inexpensive, has high conductivity and a low melting point; however, the power capability of PC electrolyte containing LiBOB is unsatisfactory. In an attempt to improve the power capability of the LiBOB/PC electrolyte, mixed electrolytes containing both LiBOB and LiClO 4 were examined. An integrated fiber felt of highly graphitized carbon was used as the working electrode and the performance was evaluated by cyclic voltammetry (CV), constant current followed by constant voltage charge (CCCV) and constant current discharge. The CV produced a stable peak for Li extraction, but the peak height was as low as half that obtained in a conventional electrolyte such as a 1:1 mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) containing 1 M LiClO 4. However, the peak height in PC, containing 1/49 M LiBOB and 1 M LiClO 4, became 1.5 times higher than that in PC containing 1 M LiBOB. The peak height was increased further using a 1:1 mixture of PC and acetonitrile (AN) containing 1/49 M LiBOB and 1 M LiClO 4, although the cycleability was poor. A similar tendency was observed with the CCCV test. The CV peak height was plotted against the ionic conductivity of several solvents and showed no linear relationship, implying that the reaction activity was influenced by the solid electrolyte interphase (SEI) formed. The charge transfer resistance was evaluated by impedance spectroscopy. The results revealed that not only the surface film resistance but also the charge transfer resistance was markedly increased in the electrolyte containing LiBOB; however, they were reduced by the addition of LiClO 4.

  13. Ferromagnetism in chemically reduced LiNbO3 and LiTaO3 crystals

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Ye, Ning; Xu, Liuwei; Sang, Yuanhua; Chen, Yanxue; Song, Wei; Long, Xifa; Wang, Jiyang; Liu, Hong

    2016-05-01

    The ferromagnetism of bulk LiNbO3 and LiTaO3 at room temperature was investigated for the first time in the present work. The stoichiometric LiNbO3 is non-magnetic, while congruent LiNbO3 and LiTaO3 show very weak ferromagnetism. After chemical reduction in a mixture of zinc and lithium carbonate powders under flowing nitrogen, the ferromagnetic behavior of each sample became clear, with an increased value of magnetization. The saturation magnetization, the magnetic remanence and the coercive field of reduced congruent LiNbO3 are 7.0  ×  10‑3 emu g‑1, 0.65  ×  10‑3 emu g‑1 and 0.050 kOe, respectively. The ferromagnetism of chemically reduced LiNbO3 and LiTaO3 can be explained by considering the intrinsic Li vacancies, the appearance of Nb4+ (or Ta4+) on the surface with non-zero net spin and the oxygen vacancies at the surface.

  14. Strain imaging of a LiCoO2 cathode in a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Matsushita, Yuki; Osaka, Ryuma; Butsugan, Kenta; Takata, Keiji

    2016-09-01

    Li-ion batteries have been recognized as promising devices for a sustainable society. Layered LiCoO2 and graphite are commonly used as electrode materials for Li-ion batteries. When charging and discharging, Li-ions are extracted or inserted into the interlayers, which causes changes in volume. Scanning probe microscopy (SPM) can allow high resolution imaging of these volume changes, which enables us to investigate Li-ion migration without destruction. We observed volume changes in the LiCoO2 cathode using SPM and successfully imaged the distribution of the volume changes corresponding to the LiCoO2 particles. Volume changes in the interspace were significantly larger than those in the particles. The large volume changes are caused by electrolyte flux induced by changes in concentration of Li ions. The volume changes were greatly reduced when the electrolyte dried out. The dry-out and infiltration of electrolyte between the LiCoO2 particles and the current collector spread out with the procedure of degradation of the batteries. The boundaries between the dry-out and infiltration regions acted as barriers of electrolyte flux.

  15. Uniform second Li ion intercalation in solid state ɛ-LiVOPO4

    NASA Astrophysics Data System (ADS)

    Wangoh, Linda W.; Sallis, Shawn; Wiaderek, Kamila M.; Lin, Yuh-Chieh; Wen, Bohua; Quackenbush, Nicholas F.; Chernova, Natasha A.; Guo, Jinghua; Ma, Lu; Wu, Tianpin; Lee, Tien-Lin; Schlueter, Christoph; Ong, Shyue Ping; Chapman, Karena W.; Whittingham, M. Stanley; Piper, Louis F. J.

    2016-08-01

    Full, reversible intercalation of two Li+ has not yet been achieved in promising VOPO4 electrodes. A pronounced Li+ gradient has been reported in the low voltage window (i.e., second lithium reaction) that is thought to originate from disrupted kinetics in the high voltage regime (i.e., first lithium reaction). Here, we employ a combination of hard and soft x-ray photoelectron and absorption spectroscopy techniques to depth profile solid state synthesized LiVOPO4 cycled within the low voltage window only. Analysis of the vanadium environment revealed no evidence of a Li+ gradient, which combined with almost full theoretical capacity confirms that disrupted kinetics in the high voltage window are responsible for hindering full two lithium insertion. Furthermore, we argue that the uniform Li+ intercalation is a prerequisite for the formation of intermediate phases Li1.50VOPO4 and Li1.75VOPO4. The evolution from LiVOPO4 to Li2VOPO4 via the intermediate phases is confirmed by direct comparison between O K-edge absorption spectroscopy and density functional theory.

  16. Nuclear Charge Radii of Li-8,Li-9 Determined by Laser Spectroscopy

    SciTech Connect

    Ewald, G; Nortershauser, W.; Dax, A ..; Gotte, S; Kirchner, Rolf; Kluge, H J.; Kuhl, T H.; Sanchez, R J.; Wojtasek, Alesia S.; Bushaw, Bruce A.; Drake, Gordon W. F.; Yan, Z C.; Zimmerman, Colin H.

    2004-09-09

    The 2S ' 3S transition of 6,7,8,9 Li was studied by high-resolution laser spectroscopy using two-photon Doppler-free excitation and resonance-ionization detection. The hyperfine structure splitting and the isotope shift were determined with precision at the 100 kHz level. Combined with recent theoretical work, the changes in nuclear charge radii of 8,9Li were determined. These are now the lightest short-lived isotopes for which the charge radii have been measured. It is found that the charge radii monotonically decrease with increasing neutron number from 6Li to 9Li.

  17. Nanotechnology in Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  18. Comment on Li pellet Conditioning in TFTR

    SciTech Connect

    R.V. Budny

    2011-05-23

    Li pellet conditioning in TFTR results in a reduction of the edge electron density which allows increased neutral beam penetration, central heating, and fueling. Consequently the temperature profiles became more peaked with higher central Ti, Te, and neutron emission rates.

  19. Specification For ST-5 Li Ion Battery

    NASA Technical Reports Server (NTRS)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  20. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries. PMID:27511442

  1. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  2. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  3. Lost in Translation (LiT)

    PubMed Central

    Dollery, Colin T

    2014-01-01

    Translational medicine is a roller coaster with occasional brilliant successes and a large majority of failures. Lost in Translation 1 (‘LiT1’), beginning in the 1950s, was a golden era built upon earlier advances in experimental physiology, biochemistry and pharmacology, with a dash of serendipity, that led to the discovery of many new drugs for serious illnesses. LiT2 saw the large-scale industrialization of drug discovery using high-throughput screens and assays based on affinity for the target molecule. The links between drug development and university sciences and medicine weakened, but there were still some brilliant successes. In LiT3, the coverage of translational medicine expanded from molecular biology to drug budgets, with much greater emphasis on safety and official regulation. Compared with R&D expenditure, the number of breakthrough discoveries in LiT3 was disappointing, but monoclonal antibodies for immunity and inflammation brought in a new golden era and kinase inhibitors such as imatinib were breakthroughs in cancer. The pharmaceutical industry is trying to revive the LiT1 approach by using phenotypic assays and closer links with academia. LiT4 faces a data explosion generated by the genome project, GWAS, ENCODE and the ‘omics’ that is in danger of leaving LiT4 in a computerized cloud. Industrial laboratories are filled with masses of automated machinery while the scientists sit in a separate room viewing the results on their computers. Big Data will need Big Thinking in LiT4 but with so many unmet medical needs and so many new opportunities being revealed there are high hopes that the roller coaster will ride high again. PMID:24428732

  4. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    Kornreich, Philip

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and clear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiN bo, Cylinder Fiber. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a "D". The core with its surrounding LiNbO, layer would be close to the flat portion of the "D" shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO3 layer. To our knowledge this is the first ever LiNbO3 Cylinder Fiber made.

  5. LiNbO3 Cylinder Fiber

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We have successfully fabricate optical fiber with a thin layer of LiNbO3 at the boundary of the glass core and dear glass cladding. The construction of this fiber is based on our successful Semiconductor Cylinder Fibers (SCF). A schematic representation of a LiNbO3 Cylinder Fiber is shown. These fibers can be used as light modulators, sonar detectors and in other applications. The core diameter of the fiber is sufficiently small compared to the light wavelength and the indices of refraction of the core and cladding glasses are sufficiently close in value so that there is sufficient light at the core cladding boundary to interact with the LiNbO3 layer. This fiber functions best when just a single light mode propagates through the fiber. The idea for a LiNbO3 Cylinder Fiber came from Dr. Tracee Jamison of NASA. The optical properties of LiNbO3 can be changed with strain or the application of an electric field. Thus these fibers can be used as acoustic sensors as for example in a sonar. They can also be used as electric field operated light modulators. However, for this application the fibers would be made with a cross section in the form of a 'D'. The core with its surrounding LiNbO, layer would be close to the flat portion of the 'D' shaped fiber. Two metal contacts would be deposited on the flat portion of the fiber on either side of the core. A voltage applied across these contacts will result in an electric field in the core region that can be used for modulating the optical properties of the LiNbO, layer. To our knowledge this is the first ever LiNbO, Cylinder Fiber made.

  6. An experimental study for Li recycling in an electrolytic reduction process for UO2 with a Li2O-LiCl molten salt

    NASA Astrophysics Data System (ADS)

    Park, Wooshin; Hur, Jin-Mok; Hong, Sun-Seok; Choi, Eun-Young; Im, Hun Suk; Oh, Seung-Chul; Lee, Jae-Won

    2013-10-01

    If Li is excessively produced in an electrolytic reduction process for UO2 with a Li2O-LiCl molten salt, a part of Li2O will be lost in the form of Li as deposited on the cathode, and the Li can cause negative effects on a post process. To solve these problems, a method for Li recycling was investigated in this study. A series of experiments were carried out consisting of four runs. In the first run, UO2 fragments were electrochemically reduced at 3.2 V of cell voltage. The excess Li was then recovered by transferring to another electrode at 0.3 V of cell voltage. The recovered Li was then utilized as the source for the reduction of fresh UO2 fragments. Finally, the remaining UO2 was electrochemically reduced at 3.2 V of cell voltage. The concentration of Li2O was reasonably maintained as a result of the Li recycling without a significant loss. Consequently, the potential problems by Li could be disregarded using the recycling method. The electrolytic reduction process for UO2 will be more efficient and sustainable by combining the technology for Li recycling and the conventional electrolytic reduction process.

  7. Tracing Waste Water with Li isotopes

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  8. Material Compatibility with Isothermal Pb-Li

    SciTech Connect

    Pint, Bruce A; Walker, Larry R; Unocic, Kinga A

    2012-01-01

    Eutectic Pb-Li is a leading candidate for current fusion blanket concepts as a coolant. However, there is very little data about the compatibility of most materials with Pb-Li above 500 C where the dissolution rate of many conventional alloys increases rapidly. Current work is beginning to assess Pb-Li compatibility from 500 to 800 C using isothermal capsule experiments. Aluminide coatings hold some promise in protecting conventional Fe-base alloys at 600-700 C. However, there is a significant initial Al loss that has not been clearly explained. Furthermore, the reaction product with coated materials is LiAlO{sub 2} rather than Al{sub 2}O{sub 3} at 600 and 700 C. Even when pre-oxidized to form {alpha}-Al{sub 2}O{sub 3}, an alumina layer on FeCrAl transformed to LiAlO{sub 2} at 700 and 800 C. At 500 C, the preformed oxide partially transformed from alumina and some Li was detected in the oxide layer.

  9. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic

  10. Simulation of Ti diffusion into LiNbO3 in Li-rich atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Zhuang, Yu-Ran; Hua, Ping-Rang; Pun, E. Y. B.

    2007-01-01

    A model is proposed for describing two-dimensional diffusion of Ti into an initially congruent LiNbO3 crystal under a Li-enriched atmosphere created by a mixed two-phase (Li3NbO4 and LiNbO3) powder at elevated temperature [vapor transport equilibration (VTE)]. The influence of VTE treatment on Ti diffusivity is considered in the model. To solve the model, four key input parameters including Li-concentration-dependent Li and Ti diffusivities and two switching times t1 and t2 were determined. Prior to solve the Ti-diffusion model, a one-dimensional VTE model is solved at first to obtain the dynamic Li2O concentration depth profile. Both the Li-diffusion and Ti-diffusion models were solved by using finite difference method. Based on secondary-ion-mass spectrometry analysis, the validity of the VTE and Ti-diffusion models as well as the numerical method employed are confirmed. After that, diffusion at 1100°C of an 8-μm-wide, 100-nm-thick Ti strip defined on the surface of a Z-cut or an X-cut substrate was simulated for the VTE duration up to 130h. Based on the numerical results, the Ti-(Li-)diffusion characteristics are discussed in the aspects of (1) the relation of depth and width profile function of Ti concentration to the VTE duration, (2) the substrate cut effect on both the Ti and Li diffusions, (3) the relation of the 1/e Ti-concentration depth and half-width to the VTE duration, and (4) the VTE duration dependence of the mean [Li ]/[Nb] ratio within the Ti-diffused layer.

  11. Simulation of Ti diffusion into LiNbO{sub 3} in Li-rich atmosphere

    SciTech Connect

    Zhang Delong; Zhuang Yuran; Hua Pingrang; Pun, E. Y. B.

    2007-01-01

    A model is proposed for describing two-dimensional diffusion of Ti into an initially congruent LiNbO{sub 3} crystal under a Li-enriched atmosphere created by a mixed two-phase (Li{sub 3}NbO{sub 4} and LiNbO{sub 3}) powder at elevated temperature [vapor transport equilibration (VTE)]. The influence of VTE treatment on Ti diffusivity is considered in the model. To solve the model, four key input parameters including Li-concentration-dependent Li and Ti diffusivities and two switching times t{sub 1} and t{sub 2} were determined. Prior to solve the Ti-diffusion model, a one-dimensional VTE model is solved at first to obtain the dynamic Li{sub 2}O concentration depth profile. Both the Li-diffusion and Ti-diffusion models were solved by using finite difference method. Based on secondary-ion-mass spectrometry analysis, the validity of the VTE and Ti-diffusion models as well as the numerical method employed are confirmed. After that, diffusion at 1100 deg. C of an 8-{mu}m-wide, 100-nm-thick Ti strip defined on the surface of a Z-cut or an X-cut substrate was simulated for the VTE duration up to 130 h. Based on the numerical results, the Ti-(Li-)diffusion characteristics are discussed in the aspects of (1) the relation of depth and width profile function of Ti concentration to the VTE duration, (2) the substrate cut effect on both the Ti and Li diffusions, (3) the relation of the 1/e Ti-concentration depth and half-width to the VTE duration, and (4) the VTE duration dependence of the mean [Li]/[Nb] ratio within the Ti-diffused layer.

  12. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  13. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    SciTech Connect

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  14. Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Gao, Yurui; Wang, Zhaoxiang; Chen, Liquan

    2014-07-01

    Li2MnO3 is an important component of the Li-rich Mn-based high-capacity cathode material for lithium ion batteries, xLi2MnO3·(1 - x)LiM‧O2 composites. Replacing Li2MnO3 with iso-structured Li2MoO3 is expected to improve the rate performance and suppress the oxygen release of the composites at high potentials due to the higher electric conductivity of Li2MoO3 and its more facile charge compensation (by Mo4+/Mo6+ redox) upon Li removal than that of Li2MnO3. As part of our series work on the Li2MoO3-based Li-rich layer structured cathode materials, this article is to study the structural and performance stability of Li2MoO3 in air. The obtained information will shed light on the development and application of xLi2MoO3·(1 - x)LiM‧O2 composite cathode materials though Li2MoO3 will not be applied as an independent cathode material.

  15. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. PMID:27253620

  16. Simulated electrolyte-metal interfaces -- Li3PO4 and Li

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Du, Yaojun A.; Holzwarth, N. A. W.

    2007-03-01

    There has recently been a lot of interest in solid electrolyte materials such as LiPON developed at Oak Ridge National Laboratory for use in Li-ion batteries and other technologies. We report on the results of our model calculations on idealized interfaces between Li3PO4 and Li metal, studying the structural stability and the ion mobility, using first-principles density functional techniques with the PWscf and pwpaw codes. Starting with a supercell constructed from Li3PO4 in its crystalline γ-phase structure and several layers of Li metal, we used optimization and molecular dynamics techniques to find several meta-stable configurations. The qualitative features of the results are consistent with experimental evidence that the electrolyte is quite stable with respect to Li metal. In addition to stability analyses, we plan to study Li-ion diffusion across the interface. J. B. Bates, N. J. Dudney, and co-workers, Solid State Ionics, 53-56, 647-654 (1992). http://www.pwscf.org and http://pwpaw.wfu.edu. N. J. Dudney in Gholam-Abbas Nazri and Gianfranco Pistoia, Eds., Lithium Batteries: Science and Technology, Chapt. 20, pp. 623-642, Kluwer Academic Publishers, 2004. ISBN 1-4020-7628-2.

  17. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.

  18. Interaction of water with LiCl, LiBr, and LiI in the deeply supercooled region

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2007-12-01

    The hydration mechanism of lithium halides was studied using time-of-flight secondary ion mass spectrometry as a function of temperature. The lithium halides embedded in thin films of amorphous solid water segregate to the surface at temperatures higher than 135-140K, with efficiency increasing in the order of LiCl, LiBr, and LiI. A monolayer of LiCl and LiI adsorbed on the surface of amorphous solid water tends to diffuse into the bulk at 160K. The infrared absorption band revealed that the aqueous lithium-halide solutions and crystals are formed simultaneously at 160K; these phenomena are explicable as a consequence of the evolution of supercooled liquid water. The strong surfactant effect is inferred to arise from hydration of a contact ion pair having hydrophilic (lithium) and hydrophobic (halide) moieties. Furthermore, bulk diffusion of lithium halides might result from the formation of a solvent-separated ion pair in supercooled liquid water. The presence of two liquid phases of water with different local structures is probably responsible for the formation of these two hydrates, consistent with the calculated result reported by Jungwirth and Tobias[J. Phys. Chem. B 106, 6361 (2002)].

  19. High-performance LiCoO 2 by molten salt (LiNO 3:LiCl) synthesis for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Tan, K. S.; Reddy, M. V.; Rao, G. V. Subba; Chowdari, B. V. R.

    In an effort to increase and sustain the reversible capacity of LiCoO 2 on cycling, LiCoO 2 is prepared by using the molten-salt of the eutectic LiNO 3-LiCl at temperatures 650-850 °C with or without KOH as an oxidizing flux. The compounds are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), chemical analysis, surface area and density techniques. Cathodic behaviour was examined by cyclic voltammetry (CV) and charge-discharge cycling. The 850 °C-synthesized LiCoO 2, which has excess lithium incorporated in to it, shows a reversible capacity, with ˜98% coulombic efficiency, of 167 (±2) mAh g -1 at a specific current of 30 mAg -1 in the range 2.5-4.4 V up to 80 cycles with no capacity-fading. When cycled to a higher cut-off voltage (4.5 V), a capacity of 192 (±2) mAh g -1 versus Li is obtained at the fifth cycle, but capacity-fading is observed, viz., ˜ 6% after 60 cycles. On the basis of the CV and capacity-voltage profiles, this is attributed to the non-suppression of the hexagonal (H1) ↔ (H1-3) structural transition. A similar capacity-fading, i.e., ˜5-6%, during 5-40 cycles, is also observed in the LiCoO 2 prepared at 650 and 750 °C when cycled up to only 4.3 V and this is ascribed to the non-suppression of the H1 ↔ M ↔ H1 phase transitions (M = monoclinic).

  20. The 9Be(8Li,9Be)8Li elastic-transfer reaction

    NASA Astrophysics Data System (ADS)

    Camargo, O.; Guimarães, V.; Lichtenthäler, R.; Scarduelli, V.; Kolata, J. J.; Bertulani, C. A.; Amro, H.; Becchetti, F. D.; Jiang, Hao; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2008-09-01

    Angular distributions for the 9Be(8Li,9Be)8Li elastic-transfer reaction have been measured with a 27-MeV Li8 radioactive nuclear beam. Spectroscopic factors for the <9Be|8Li+p> bound system were obtained from the comparison between the experimental differential cross sections and finite-range distorted-wave Born approximation calculations made with the code FRESCO. The spectroscopic factors so obtained are compared with shell-model calculations and other experimental values. Using the present value for the spectroscopic factors, cross sections and reaction rates for the 8Li(p,γ)9Be direct proton-capture reaction of astrophysical interest were calculated in the framework of the potential model.

  1. Recombination gamma-luminescence at the nanometal Li - dielectric LiF interfaces

    NASA Astrophysics Data System (ADS)

    Ibragimova, E. M.; Mussaeva, M. A.; Buzrikov, Sh. N.

    2015-06-01

    Recombination 60Co-gamma-luminescence (GL) was studied experimentally in LiF:K,Cu crystals at the dose rate 406 R/s in the temperature range 273-473 K, when localized charge carriers are released from the hole/electron color center traps and Li vacancies are highly mobile. The crystals were preliminary irradiated in the 60Co gamma-source at 300-320 K to doses 107, 108, 109 R to generate F-aggregate centers and nano-colloids of Li. The intensity of GL bands at 570 nm (F4 centers) and 670 nm (F2+ centers) was shown to increase after 106 R above 370 K due to dominant contribution from radiative recombination of the released carries at the interface of nanometal-Li-dielectric-LiF. These bands can be used for gamma-dose measurements at 107-108 R.

  2. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    NASA Astrophysics Data System (ADS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO3)4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO3)4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO3)4 are characterized by single-crystal X-ray diffraction. The LiLa(PO3)4 structure was found to be isotypic with LiNd(PO3)4. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å3 and Z=4. The LiLa(PO3)4 structure was described as an alternation between spiraling chains (PO3)n and (La3+, Li+) cations along the b direction. The small Li+ ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO8 polyhedra and the polyphosphate chains. The jumping of Li+ through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO3)4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  3. Thermodynamic optimization of the Li-Pb system aided by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyang; Guo, Cuiping; Li, Changrong; Du, Zhenmin

    2016-08-01

    The Li-Pb system was optimized using CALPHAD (CALculation of PHAse Diagram) method. The enthalpies of formation of eight intermetallic compounds Li4Pb (Li22Pb5), Li7Pb2, Li10Pb3, Li3Pb, Li8Pb3, Li5Pb2, αLiPb and βLiPb at 0 K were calculated from first-principles calculations with DFT + GGA approximations. The liquid phase was treated as (Li,Li0.8Pb0.2,Pb) using an associated solution model because a short-range-order phenomenon was proven to exist in liquid. The solution phases fcc and bcc were described as (Li,Pb) with a simple substitutional model. The intermetallic compounds Li4Pb, Li3Pb and Li5Pb2 were treated as stoichiometric compounds. With certain solubility ranges, the intermetallic compounds Li7Pb2, αLiPb and βLiPb were modeled as Li7(Li,Pb)2, (Li,Pb)(Li,Pb) and (Li,Pb)(Li,Pb) using the two-sublattice model. A set of self-consistent thermodynamic parameters in the Li-Pb system was obtained in the present work.

  4. Composition gradients in electrolyzed LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Braunstein, J.

    1983-12-01

    Analysis of transport in a mixed electrolyte has previously predicted significant composition gradients in the LiCl-KCl electrolyte of high temperature LiS/ batteries. Composition gradients in quenched electrolyzed LiCl-KCl eutectic contained in yttria felt are measured with high distance resolution by scanning electron microscopy with energy dispersive X-ray spectroscopy. The reported results include composition profiles of LiCl-KCl coontained in porous Y2O3 and electrolyzed in three cells, two with solid Li-Al electrodes and one with a porous Li-Al anode.

  5. Suppressing The Growth Of Dendrites In Secondary Li Cells

    NASA Technical Reports Server (NTRS)

    Davies, Evan D.; Perrone, David E.; Shen, David H.

    1996-01-01

    Proposed technique for suppressing growth of lithium dendrites in rechargeable lithium electrochemical power cells involves periodic interruption of steady charging current with short, high-current discharge pulses. Technique applicable to lithium cells of several different types, including Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/Vo(x), and Li/MnO(2). Cells candidates for use in spacecraft, military, communications, automotive, and other applications in which high-energy-density rechargeable batteries needed.

  6. Formation and reduction behaviors of zirconium oxide compounds in LiCl-Li2O melt at 923 K

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Iizuka, Masatoshi; Kitawaki, Shinichi; Nakayoshi, Akira; Kofuji, Hirohide

    2015-11-01

    The reduction behaviors of ZrO2, Li2ZrO3 and (U,Pu,Zr)O2 in a LiCl-Li2O salt bath at 923 K were investigated. This study was conducted as part of a feasibility study on the pyrochemical treatment of damaged fuel debris generated by severe accidents at light water reactors. It was demonstrated in electrolytic reduction tests that the uranium in synthetic corium specimens of (U,Pu,Zr)O2 with various ZrO2 contents could be reduced to the metallic form and that part of the zirconium was converted to Li2ZrO3. Zirconium metal and Li2ZrO3 were obtained by the reduction of ZrO2. The reduction of Li2ZrO3 did not proceed even in LiCl containing no Li2O. Moreover, the stable chemical forms of the ZrO2-Li2O complex oxide were investigated as a function of the Li2O concentration in LiCl. ZrO2 was converted to Li2ZrO3 at a Li2O concentration of 0.018 wt%. As the Li2O concentration was increased, Li2ZrO3 was converted to Li6Zr2O7 and then to Li8ZrO6. It is suggested that the removal of Li2ZrO3 from the reduction product is a key point in the pyrochemical treatment of corium.

  7. Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyuan; Luo, Shaohua; Ren, Jie; Wang, Dan; Qi, Xiwei

    2016-05-01

    Li-rich layered cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is prepared via a co-precipitation followed with high-temperature calcination, and then successfully modified with nano-Li3PO4 by ball milling and annealing. The TEM and EDS reveal that Li3PO4 is homogeneously coated on the particle surface of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. And the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is significantly improved by coating with lithium ion conductor Li3PO4. The Li3PO4-coated sample delivers a high initial discharge capacity of 284.7 mAhg-1 at 0.05 C, and retains 192.6 mAhg-1 after 100 cycles at 0.5 C, which is higher than that of the pristine sample (244 mAhg-1 at 0.05 C and 168.2 mAhg-1 after 100 cycles at 0.5 C). The electrochemical impedance spectroscopy (EIS) demonstrates that the resistance for Li/Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cell was reduced compared to Li/Li[Li0.2Mn0.54Ni0.13Co0.13]O2, which indicates the Li3PO4 coating layer with high ionic conductivity (6.6 × 10-8 S cm-1) facilitates the diffusion of lithium ions through the interface between electrode and electrolyte and accelerates the charge transfer process. What is more, the Li3PO4 coating layer can also act as a protection layer to protect the cathode material from encroachment of electrolyte. The two aspects account for the enhanced electrochemical performance of Li3PO4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2.

  8. Surface characterization of the carbon cathode and the lithium anode of Li-O₂ batteries using LiClO₄ or LiBOB salts.

    PubMed

    Younesi, Reza; Hahlin, Maria; Edström, Kristina

    2013-02-01

    The surface compositions of a MnO₂ catalyst containing carbon cathode and a Li anode in a Li-O₂ battery were investigated using synchrotron-based photoelectron spectroscopy (PES). Electrolytes comprising LiClO₄ or LiBOB salts in PC or EC:DEC (1:1) solvents were used for this study. Decomposition products from LiClO₄ or LiBOB were observed on the cathode surface when using PC. However, no degradation of LiClO₄ was detected when using EC/DEC. We have demonstrated that both PC and EC/DEC solvents decompose during the cell cycling to form carbonate and ether containing compounds on the surface of the carbon cathode. However, EC/DEC decomposed to a lesser degree compared to PC. PES revealed that a surface layer with a thickness of at least 1-2 nm remained on the MnO₂ catalyst at the end of the charged state. It was shown that the detachment of Kynar binder influences the surface composition of both the carbon cathode and the Li anode of Li-O₂ cells. The PES results indicated that in the charged state the SEI on the Li anode is composed of PEO, carboxylates, carbonates, and LiClO₄ salt. PMID:23336349

  9. Lattice dynamics in Bosonic 7 Li

    NASA Astrophysics Data System (ADS)

    Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund

    2016-05-01

    The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.

  10. Long-lived states of antiprotonic lithium pLi {sup +} produced in p+ Li collisions

    SciTech Connect

    Sakimoto, Kazuhiro

    2011-09-15

    Antiproton capture by lithium atoms (p+Li{yields}pLi{sup +}+e) is investigated at collision energies from 0.01 to 10 eV by using a semiclassical (also know as quantum-classical hybrid) method, in which the radial distance between the antiproton and the Li{sup +} ion is treated as a classical variable, and the other degrees of freedom are described by quantum mechanics. Analyzing the wave packet of the emitted electrons and making use of the energy conservation rule enable us to calculate the state distribution of the produced antiprotonic lithium pLi{sup +} atoms and also to distinguish between the capture and ionization ({yields}p+Li{sup +}+e) channels at collisional energies above the ionization threshold. This method is tested for the capture of negative muons by hydrogen atoms, which was rigorously investigated in previous quantum mechanical studies. Most of the pLi{sup +} atoms produced in p+Li are found to be sufficiently stable against Auger decays and are experimentally observable as long-lived states. The present system bears close similarities to the system of p+He(2S). It is therefore expected that long-lived antiprotonic helium pHe{sup +} atoms can be efficiently produced in the p capture by metastable He(2 {sup 3}S) atoms.

  11. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  12. Electrochemical behaviors of wax-coated Li powder/Li 4Ti 5O 12 cells

    NASA Astrophysics Data System (ADS)

    Park, Han Eol; Seong, Il Won; Yoon, Woo Young

    The wax-coated Li powder specimen was effectively synthesized using the drop emulsion technique (DET). The wax layer on the powder was verified by SEM, Focused Ion Beam (FIB), EDX and XPS. The porosity of a sintered wax-coated Li electrode was measured by linear sweep voltammetry (LSV) and compared with that of a bare, i.e., un-coated Li electrode. The electrochemical behavior of the wax-coated Li powder anode cell was examined by the impedance analysis and cyclic testing methods. The cyclic behavior of the wax-coated Li powder anode with the Li 4Ti 5O 12 (LTO) cathode cell was examined at a constant current density of 0.35 mA cm -2 with the cut-off voltages of 1.2-2.0 V at 25 °C. Over 90% of the initial capacity of the cell remained even after the 300th cycle. The wax-coated Li powder was confirmed to be a stable anode material.

  13. Asymptotic and near-target direct breakup of 6Li and 7Li

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Simpson, E. C.; Luong, D. H.; Cook, K. J.; Dasgupta, M.; Hinde, D. J.; Carter, I. P.; Jeung, D. Y.; Mohanto, G.; Palshetkar, C. S.; Prasad, E.; Rafferty, D. C.; Simenel, C.; Vo-Phuoc, K.; Williams, E.; Gasques, L. R.; Gomes, P. R. S.; Linares, R.

    2016-04-01

    Background: Li,76 and 9Be are weakly bound against breakup into their cluster constituents. Breakup location is important for determining the role of breakup in above-barrier complete fusion suppression. Recent works have pointed out that experimental observables can be used to separate near-target and asymptotic breakup. Purpose: Our purpose is to distinguish near-target and asymptotic direct breakup of Li,76 in reactions with nuclei in different mass regions. Method: Charged particle coincidence measurements are carried out with pulsed Li,76 beams on 58Ni and 64Zn targets at sub-barrier energies and compared with previous measurements using 208Pb and 209Bi targets. A detector array providing a large angular coverage is used, along with time-of-flight information to give definitive particle identification of the direct breakup fragments. Results: In interactions of 6Li with 58Ni and 64Zn, direct breakup occurs only asymptotically far away from the target. However, in interactions with 208Pb and 209Bi, near-target breakup occurs in addition to asymptotic breakup. Direct breakup of 7Li into α -t is not observed in interactions with 58Ni and 64Zn. However, near-target dominated direct breakup was observed in measurements with 208Pb and 209Bi. A modified version of the Monte Carlo classical trajectory model code platypus, which explicitly takes into account lifetimes associated with unbound states, is used to simulate sub-barrier breakup reactions. Conclusions: Near-target breakup in interactions with Li,76 is an important mechanism only for the heavy targets 208Pb and 209Bi. There is insignificant near-target direct breakup of 6Li and no direct breakup of 7Li in reactions with 58Ni and 64Zn. Therefore, direct breakup is unlikely to suppress the above-barrier fusion cross section in reactions of Li,76 with 58Ni and 64Zn nuclei.

  14. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  15. Role of dopants in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P detectors

    SciTech Connect

    Mohammadi, Kh. Moussavi Zarandi, A.; Afarideh, H.; Shahmaleki, S.

    2013-06-15

    In this study, electronic structure of LiF crystal doped with Mg,Cu,P impurities was studied with WIEN2k code on the basis of FPLAPW+lo method. Results show that in Mg-doped LiF composition, an electronic trap was created with impurity concentration of 1.56% and 3.125%. In this condition, the electronic trap with increasing the percentage of the impurities up to 4.687% is annihilated. It was found, that by doping of Mg and Cu or P simultaneously, a hole-trap is created in valence band. It was realized that in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P, Cu impurity and Li atom, have a key role in creation of levels which lead to create electronic and hole traps. Mg impurity and F atom, only have a role in creation of electronic traps. In addition, P impurity has a main role in creation of the electronic and hole traps in LiF:Mg,Cu,P. The activation energy of electronic and hole trap in LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P crystalline lattice were obtained as 0.3 and 5.5 eV, 0.92 and 3.4 eV and 0.75 and 3.1 eV, respectively. - Graphical abstract: Figure (a) and (b) shows changes in electronic structure and band gap energy of LiF crystal due to presence of Mg and Cu, Mg and P ions respectively. - Highlights: • Electronic structure of LiF, LiF:Mg,Cu, LiF:Mg,P and LiF:Mg,Cu,P materials were studied with WIEN2K code. • In LiF:Mg,Cu and LiF:Mg,Cu,P, Li atom and Cu impurity have a key role in creation of levels. • F atom and Mg impurity only have a role in creation of electronic traps. • In LiF:Mg,Cu,P, P impurity has a main role in creation of electronic and hole traps.

  16. A novel dual-salts of LiTFSI and LiODFB in LiFePO4-based batteries for suppressing aluminum corrosion and improving cycling stability

    NASA Astrophysics Data System (ADS)

    Li, Faqiang; Gong, Yan; Jia, Guofeng; Wang, Qinglei; Peng, Zhengjun; Fan, Wei; Bai, Bing

    2015-11-01

    The strong corrosion behavior at the Al current collector restricts the application range of lithium bis (trifluoromethanesulfonylimide) (LiTFSI), despite its high stability against water and thermal. SEM, LSV and Tafel curves proved that adding LiODFB into LiTFSI-based electrolytes could suppress aluminum corrosion caused by LiTFSI-based electrolytes. The cycling stability and rate capability of LiFePO4-based batteries using LiTFSI0.6-LiODFB0.4-based electrolytes is excellent as compared to LiFePO4-based batteries using LiPF6-based electrolytes.

  17. Achromatic Cooling Channel with Li Lenses

    SciTech Connect

    Balbekov, V.

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  18. Liénard-type chemical oscillator

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2014-03-01

    We show that a class of arbitrary, autonomous kinetic equations in two variables describing chemical and biochemical oscillations can be reduced to the form of a Liénard oscillator. The basis of this reduction scheme is a set of linear transformations of the original variables into a new set of variables which can be found by direct inspection of the kinetic equations. Our study reveals that despite their diverse origin, these kinetic equations when cast as a Liénard system form a universality class, make it possible to identify the forcing term as well as the nonlinear damping coefficient responsible for dynamical control of the underlying limit cycle behavior.

  19. Li Isotope Studies of Olivine in Mantle Xenoliths by SIMS

    NASA Technical Reports Server (NTRS)

    Bell, D. R.; Hervig, R. L.; Buseck, P. R.

    2005-01-01

    Variations in the ratio of the stable isotopes of Li are a potentially powerful tracer of processes in planetary and nebular environments [1]. Large differences in the 7Li/6Li ratio between the terrestrial upper mantle and various crustal materials make Li isotope composition a potentially powerful tracer of crustal recycling processes on Earth [2]. Recent SIMS studies of terrestrial mantle and Martian meteorite samples report intra-mineral Li isotope zoning [3-5]. Substantial Li isotope heterogeneity also exists within and between the components of chondritic meteorites [6,7]. Experimental studies of Li diffusion suggest the potential for rapid isotope exchange at elevated temperatures [8]. Large variations in 7Li, exceeding the range of unaltered basalts, occur in terrestrial mantle-derived xenoliths from individual localities [9]. The origins of these variations are not fully understood.

  20. Performance of new 10 kW class MCFC using Li/K and Li/Na electrolyte

    SciTech Connect

    Mugikura, Yoshihiro; Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao

    1996-12-31

    The molten carbonate fuel cell (MCFC) uses generally mixture of lithium carbonate and potassium carbonate (Li/K) as the electrolyte. NiO cathode dissolution is one of serious problems for MCFC life. The NiO cathode has been found to dissolve into the electrolyte as Ni{sup 2+} ion which is reduced to metallic Ni by H{sub 2} in the fuel gas and bridges the anode and the cathode. The bridges short circuit and degrade cell performance and shorten cell life. Since solubility of NiO in mixture of lithium carbonate and sodium carbonate (Li/Na) is lower than in Li/K, it takes longer time to take place slowing by NiO cathode dissolution in Li/Na compared with in Li/K. The ionic conductivity of Li/Na is higher than of Li/K, however, oxygen solubility in Li/Na is lower 9 than in Li/K. A new 10 kW class MCFC stack composed of Li/K cells and Li/Na cells, was tested. Basic performance of the Li/K cells and Li/Na cells of the stack was reported.

  1. Synthesis and characterization of LiZnP and LiZnAs semiconductor material

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Reichenberger, Michael A.; Arpin, Kevin R.; Sunder, Madhana; Nelson, Kyle A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2015-02-01

    Research for a reliable solid-state semiconductor neutron detector continues because such a device has not been developed, and would have greater efficiency, than present-day gas-filled 3He and 10BF3 neutron detectors. Further, a semiconductor neutron detector would be more compact and rugged than most gas-filled or scintillator neutron detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, a larger yield than the 10B(n,α)7Li, and is easily identified above background radiation interactions. Hence, devices composed of either natural Li (naturally 7.5% 6Li) or enriched 6Li (approximately 95% 6Li) may provide a semiconductor material for compact high-efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, known as Nowotny-Juza compounds (AIBIICV), are desirable for their cubic crystal structure and semiconducting electrical properties. These compounds were originally studied for photonic applications. In the present work, Equimolar portions of Li, Zn, and P or As were sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and loaded into a compounding furnace. The ampoule was heated to 200 °C to form the Li-Zn alloy, subsequently heated to 560 °C to form the ternary compound, LiZnP or LiZnAs, and finally annealed to promote crystallization. The chemical composition of the synthesized starting material was confirmed at Galbraith Laboratories, Inc. by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed the compounds can be reacted in equal ratios, 1-1-1, to form ternary compounds. Recent additions to the procedure have produced higher yields, and greater synthesis reliability. Synthesized powders were also characterized by x-ray diffraction, where lattice constants of 5.751±.001 Å and 5.939±.002 Å for LiZnP and LiZnAs, respectively, were determined.

  2. Comment on "Cycling Li-O₂ batteries via LiOH formation and decomposition".

    PubMed

    Viswanathan, Venkatasubramanian; Pande, Vikram; Abraham, K M; Luntz, Alan C; McCloskey, Bryan D; Addison, Dan

    2016-05-01

    Based on a simple thermodynamic analysis, we show that iodide-mediated electrochemical decomposition of lithium hydroxide (LiOH) likely occurs through a different mechanism than that proposed by Liu et al (Research Article, 30 October 2015, p. 530). The mismatch in thermodynamic potentials for iodide/triiodide (I(-)/I3 (-)) redox and O2 evolution from LiOH implies a different active iodine/oxygen electrochemistry on battery charge. It is therefore possible that the system described in Liu et al may not form the basis for a rechargeable lithium-oxygen (Li-O2) battery.

  3. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Helen, M.; Reddy, M. Anji; Diemant, Thomas; Golla-Schindler, Ute; Behm, R. Jürgen; Kaiser, Ute; Fichtner, Maximilian

    2015-07-01

    Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4-8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell.

  4. Single step transformation of sulphur to Li2S2/Li2S in Li-S batteries

    PubMed Central

    Helen, M.; Reddy, M. Anji; Diemant, Thomas; Golla-Schindler, Ute; Behm, R. Jürgen; Kaiser, Ute; Fichtner, Maximilian

    2015-01-01

    Lithium-sulphur batteries have generated tremendous research interest due to their high theoretical energy density and potential cost-effectiveness. The commercial realization of Li-S batteries is still hampered by reduced cycle life associated with the formation of electrolyte soluble higher-order polysulphide (Li2Sx, x = 4–8) intermediates, leading to capacity fading, self-discharge, and a multistep voltage profile. Herein, we have realized a practical approach towards a direct transformation of sulphur to Li2S2/Li2S in lithium-sulphur batteries by alteration of the reaction pathway. A coconut shell derived ultramicroporous carbon-sulphur composite cathode has been used as reaction directing template for the sulphur. The lithiation/delithiation and capacity fading mechanism of microporous carbon confined sulphur composite was revealed by analyzing the subsurface using X-ray photoelectron spectroscopy. No higher-order polysulphides were detected in the electrolyte, on the surface, and in the subsurface of the cathode composite. The altered reaction pathway is reflected by a single-step profile in the discharge/charge of a lithium-sulphur cell. PMID:26173723

  5. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin film

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Lim, J. R.

    2004-01-01

    Sputter deposition of LiPON films directly onto high Li+ conductivity solid electrolyte plates has been investigated as a means to minimize the reactivity of the plates to metallic Li. The LiPON films were shown to effectively passivate the plates in contact with metallic Li, in contrast to unpassivated plates that reacted immediately in contact with Li metal.

  6. Structural transformations of Li2C2 at high pressures

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, Ilias; Benson, Daryn E.; Konar, Sumit; Nylén, Johanna; Svensson, Gunnar; Häussermann, Ulrich; Liebig, Stefan; Ruschewitz, Uwe; Vazhenin, Grigory V.; Loa, Ingo; Hanfland, Michael; Syassen, Karl

    2015-08-01

    Structural changes of Li2C2 under pressure were studied by synchrotron x-ray diffraction in a diamond anvil cell under hydrostatic conditions and by using evolutionary search methodology for crystal structure prediction. We show that the high-pressure polymorph of Li2C2 , which forms from the I m m m ground-state structure (Z =2 ) at around 15 GPa, adopts an orthorhombic P n m a structure with Z =4 . Acetylide C2 dumbbells characteristic of I m m m Li2C2 are retained in P n m a Li2C2 . The structure of P n m a Li2C2 relates closely to the anticotunnite-type structure. C2 dumbbell units are coordinated by nine Li atoms, as compared to eight in the antifluorite structure of I m m m Li2C2 . First-principles calculations predict a transition of P n m a Li2C2 at 32 GPa to a topologically identical phase with a higher C m c m symmetry. The coordination of C2 dumbbell units by Li atoms is increased to 11. The structure of C m c m Li2C2 relates closely to the Ni2 In-type structure. It is calculated that C m c m Li2C2 becomes metallic at pressures above 40 GPa. In experiments, however, P n m a Li2C2 is susceptible to irreversible amorphization.

  7. Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Mukai, Kazuhiko; Miwa, Kazutoshi; Shiraki, Susumu; Hitosugi, Taro; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Lord, James S.; Mânsson, Martin

    2015-07-01

    Lithium diffusion in spinel Li4Ti5O12 and LiTi2O4 compounds for future battery applications has been studied with muon spin relaxation (μ+SR ) . Measurements were performed on both thin-film and powder samples in the temperature range between 25 and 500 K. For Li4Ti5O12 and above about ˜200 K , the field distribution width (Δ ) is found to decrease gradually, while the field fluctuation rate (ν ) increases exponentially with temperature. For LiTi2O4 , on the contrary, the Δ (T ) curve shows a steplike decrease at ˜350 K , around which the ν (T ) curve exhibits a local maximum. These behaviors suggest that Li+ starts to diffuse above around 200 K for both spinels. Assuming a jump diffusion of Li+ at the tetrahedral 8 a site to the vacant octahedral 16 c site, diffusion coefficients of Li+ at 300 K in the film samples are estimated as (3.2 ±0.8 ) ×10-11 cm2/s for Li4Ti5O12 and (3.6 ±1.1 ) ×10-11 cm2/s for LiTi2O4 . Further, some small differences are found in both thermal activation energies and Li-ion diffusion coefficients between the powder and thin-film samples.

  8. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy

    PubMed Central

    Qiao, Ruimin; Chuang, Yi-De; Yan, Shishen; Yang, Wanli

    2012-01-01

    Li2O2, Li2CO3, and Li2O are three critical compounds in lithium-air and lithium-ion energy storage systems. Extensive measurements have been carried out to study the chemical species and their evolutions at difference stages of the device operation. While x-ray spectroscopy has been demonstrated to be one of the most powerful tools for such purpose, no systematic study on the irradiation effects have been reported. Here we carry out extensive time, position, and irradiation dependent Li K-edge soft x-ray absorption spectroscopy on these compounds with so far the best energy resolution. The ultra-high resolution in the current study allows the features in the absorption spectra to be well-resolved. The spectral lineshape thus serves as the fingerprints of these compounds, enabling the tracking of their evolution under x-ray irradiation. We found that both Li2O2 and Li2CO3 evidently evolve towards Li2O under the soft x-ray irradiation with Li2CO3 exhibiting a surprisingly higher sensitivity to x-rays than Li2O2. On the other hand, Li2O remains the most stable compound despite experiencing substantial irradiation dose. We thus conclude that high resolution soft x-ray spectroscopy could unambiguously fingerprint different chemical species, but special cautions on irradiation effects would be needed in performing the experiments and interpreting the data properly. PMID:23145116

  9. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  10. Bulk and Surface Properties of Liquid Al-Li and Li-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Trybula, Marcela; Gancarz, Tomasz; Gasior, Wladyslaw; Pasturel, Alain

    2014-11-01

    Physicochemical properties like density, surface tension, and viscosity of liquid binary Al-Li and Li-Zn alloys have been measured using draining crucible method. The experimentally measured surface-tension values have been compared to theoretical results based either on the Butler model or the compound formation model assuming the existence of the most favored A 1 B 2 and A 2 B 3 clusters. Several models for viscosity calculation have been also applied and discussed in confrontation with measured data. Finally, the clustering effects in the liquid Al-Li and Li-Zn alloys have been examined using two microscopic functions, i.e., the concentration fluctuation function in the long-wavelength limit and the Warren-Cowley short-range order parameter.

  11. Bulk and Surface Properties of Liquid Al-Li and Li-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Trybula, Marcela; Gancarz, Tomasz; Gasior, Wladyslaw; Pasturel, Alain

    2014-08-01

    Physicochemical properties like density, surface tension, and viscosity of liquid binary Al-Li and Li-Zn alloys have been measured using draining crucible method. The experimentally measured surface-tension values have been compared to theoretical results based either on the Butler model or the compound formation model assuming the existence of the most favored A 1 B 2 and A 2 B 3 clusters. Several models for viscosity calculation have been also applied and discussed in confrontation with measured data. Finally, the clustering effects in the liquid Al-Li and Li-Zn alloys have been examined using two microscopic functions, i.e., the concentration fluctuation function in the long-wavelength limit and the Warren-Cowley short-range order parameter.

  12. Corrosion behavior of Fe-Ni-Cr alloys in the molten salt of LiCl-Li 2O at high temperature

    NASA Astrophysics Data System (ADS)

    Cho, S. H.; Zhang, J. S.; Shin, Y. J.; Park, S. W.; Park, H. S.

    2004-02-01

    At Korea Atomic Energy Research Institute (KAERI), we investigated the corrosion behavior of a series of Fe-Cr-Ni alloys with different chromium contents in molten LiCl and molten LiCl-25wt%Li 2O mixture at temperatures ranging from 923 to 1123 K. In molten LiCl, dense protective scale of LiCrO 2 grows outwardly while corrosion is accelerated by addition of Li 2O to LiCl. The basic fluxing of Cr 2O 3 by Li 2O would be the cause of accelerated corrosion. Because of low oxygen solubility and very high Li 2O activity in the molten LiCl-Li 2O mixture, Cr is preferentially corroded while Ni remains stable and thus, corrosion rate of the alloys in molten LiCl-Li 2O mixture increases with an increase in Cr content.

  13. Multi-spin-state at a Li3PO4/LiCoO2 (104) interface.

    PubMed

    Sumita, Masato; Ohno, Takahisa

    2016-02-14

    We have found the disproportion between the intermediate spin (IS) and low spin (LS) configurations of Co atoms at a Li3PO4/LiCoO2 (104) interface through density functional molecular dynamics (DF-MD). The manifold of the spin state at the interface, however, does not affect the band alignment between the Li3PO4 and LiCoO2 regions. PMID:26812388

  14. Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging.

    PubMed

    Gittleson, Forrest S; Ryu, Won-Hee; Schwab, Mark; Tong, Xiao; Taylor, André D

    2016-05-01

    Rechargeable Li-O2 and Li-air batteries require electrode and electrolyte materials that synergistically promote long-term cell operation. In this study, we investigate the role of noble metals Pt and Pd as catalysts in the Li-O2 oxidation process and their compatibility with dimethyl sulfoxide (DMSO) based electrolytes. We identify a basis for low potential Li2O2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products. PMID:27111589

  15. 6Li foil thermal neutron detector

    SciTech Connect

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  16. Clay nanocomposites for use in Li batteries

    NASA Astrophysics Data System (ADS)

    Moore, Gregory John

    1999-11-01

    Nanocomposites, materials made of more than one component and combined in an ordered manner on the nanometer scale, were synthesized using clay mineral hosts with various types of guests. The guests include polymers such as polyethylene oxide (PEO) and polyaniline (PANI), large molecules such as ethylmethyl sulfone, tetramethylene sulfone, and various length alkylamines. Vanadyl groups (VO 2+) were also incorporated with the clays. The otherwise non-swellable mica clay, synthetic Na-fluorophlogopite, was expanded by intercalation of acidic ions such as Cu2+ and Fe3+. As aqueous solutions, these ions caused the stable fluoromica to go from its dehydrated interlayer spacing of 9.8 A to over 14 A. This clay became a host for many other reactions including swelling with alkylamines to over 25 A. However, despite hydrated Cu2+ ions swelling fluorophlogopite, polymeric species such as PEO or PANI could not be inserted. Another clay that was used for formation of nanocomposites came from a procedure for the synthesis of Li-taeniolite, Li(Mg2Li)Si 4O10F2. The clay was synthesized following a high temperature method that led to a non-reactive product. Instead, a novel precursor route was employed that gave a clay product with a single hydration layer. Various chemical analyses gave a formula of Li0.8(Mg 2.2Li0.8)Si4O10(F1.6O 0.4)·H2O. For the purpose of forming nanocomposite electrolytes, ethylmethyl sulfone was synthesized and incorporated into the clay. For comparison of different shaped sulfones, tetramethylene sulfone also was inserted into the layers for electrolytic studies. To make a polymer-clay electrolyte, polyethylene oxide was intercalated into the Li-taeniolite. All of these new electrolyte materials were characterized using impedance spectroscopy for measurement of their conductivity. Syntheses and analyses are thoroughly discussed for all of these materials. Special attention is placed on powder x-ray diffraction and thermogravimetric techniques to

  17. Al-Cu-Li and Al-Mg-Li alloys: Phase composition, texture, and anisotropy of mechanical properties (Review)

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Antipov, V. V.; Knyazev, M. I.

    2016-04-01

    The results of studying the phase transformations, the texture formation, and the anisotropy of the mechanical properties in Al-Cu-Li and Al-Mg-Li alloys are generalized. A technique and equations are developed to calculate the amounts of the S1 (Al2MgLi), T1 (Al2CuLi), and δ' (Al3Li) phases. The fraction of the δ' phase in Al-Cu-Li alloys is shown to be significantly higher than in Al-Mg-Li alloys. Therefore, the role of the T1 phase in the hardening of Al-Cu-Li alloys is thought to be overestimated, especially in alloys with more than 1.5% Li. A new model is proposed to describe the hardening of Al-Cu-Li alloys upon aging, and the results obtained with this model agree well with the experimental data. A texture, which is analogous to that in aluminum alloys, is shown to form in sheets semiproducts made of Al-Cu-Li and Al-Mg-Li alloys. The more pronounced anisotropy of the properties of lithium-containing aluminum alloys is caused by a significant fraction of the ordered coherent δ' phase, the deformation mechanism in which differs radically from that in the solid solution.

  18. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/FeS2 cells

    NASA Astrophysics Data System (ADS)

    Tomczuk, Z.; Tani, B.; Otto, N. C.; Roche, M. F.; Vissers, D. R.

    1982-05-01

    The phases present in FeS2 electrodes operated in LiCl-KCl eutectic electrolyte are determined by X-ray diffraction and metallographic examination. The phases are FeS2, KFeS2, Li3Fe2S4, Li2.33Fe0.67S2, Fe/1-x/S, Li2FeS2, LiK6Fe24S26Cl, Li2S, and Fe. The metallographic and crystallographic characteristics of these phases are given. The sequence of Li-Fe-S phases in the FeS2 electrode is found to be in accord with the sequence predicted from the equilibrium LiFe-S phase diagram. It is noted that two of the Li-Fe-S phases found at room temperature (Li2.33Fe0.67S2 and Li2FeS2) result from decomposition on cooling of a solid solution phase: Li/2+x/Fe/1-x/S2, x ranging from 0 to 0.33.

  19. Li diffusion and substitution in chemically diverse synthetic zircon

    NASA Astrophysics Data System (ADS)

    Trail, D.

    2015-12-01

    Li concentrations and 7Li/6Li ratios in zircon may potentially trace crustal recycling because continental and mantle-derived zircons yield distinct values (Ushikubo et al. 2008; Bouvier et al. 2012). To some extent, the usefulness of these differences may depend upon the retentively of Li in zircon. Cherniak and Watson (2010) measured relatively high diffusivities for Li; here we sought to discover the scenarios under which Li mobility might be inhibited by charge compensating cations. We conducted "in" diffusion experiments in synthetic Lu-doped (~5000 ppm), P-doped (~250 ppm), and nearly pure zircon following the procedure in Cherniak and Watson (2010). In separate experiments, Li was ion implanted at depth within polished Mud Tank zircon slabs to form a Gaussian Li concentration profile; the relaxed concentration profile was measured after heating the zircon slabs. In all experiments, which ranged from 920 to 650 oC, calculated diffusivities were in agreement with a previously established Arrhenius relationship calibrated on trace element poor Mud Tank zircon (Cherniak and Watson, 2010). We also conducted complementary LA-ICP-MS mapping on the surfaces of P- and Lu-doped synthetic zircon crystals after the Li diffusion results were obtained. This revealed heterogeneous though patterned correlation between Li+Lu in the near surface of the crystal (no strong patterns emerged for P+Li). And finally, we observed that synthetic sector-zoned zircon exhibits near step function Li concentration profiles - correlating with changes in the rare earth element concentrations across these sectors - which allowed us to examine Li diffusion in yet another manner. Re-heating these grains followed by LA-ICP-MS analysis revealed significant Li migration, with no detectable migration of the rare earth elements. While our experiments cannot be considered exhaustive, we have yet to find a scenario where Li mobility in synthetic zircon depends on charge compensating cations.

  20. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    SciTech Connect

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  1. Long-Range Forces in the Li + Li2 and Na + Na2 Systems

    NASA Astrophysics Data System (ADS)

    Bent, Gary D.; Michels, H. Harvey

    2003-05-01

    The interaction potentials for the approach of a lithium atom to the lithium molecule and a sodium atom to the sodium molecule were calculated from 15 Ådown to the equilibrium geometry of the trimers. The emphasis of the calculations was to find the minimum energy paths and examine the asymptotic behavior of the approaches in order to obtain an accurate representation of the long-range forces. The CBS method of Petersson, et al was used in order to determine the intermolecular forces to a high degree of accuracy. The long-range behavior of Li + Li2 -> Li3 was compared to the three-body dispersion coefficient calculated for Li3 by Marinescu and Starace and the Li + Li2 dispersion terms of Varandas and Pais. The agreement of the ab initio calculations with the work of Varandas and Pais was excellent. The agreement with the work of Marinescu and Starace was satisfactory until 10 Åwhere their results began to diverge from our calculations. This is attributed to the observation that they considered only the C6 dispersion term.

  2. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  3. Capturing and Processing Soil GHG Fluxes Using the LI-COR LI-8100A

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; McDermitt, Dayle; Hupp, Jason; Johnson, Mark; Madsen, Rod

    2015-04-01

    The LI-COR LI-8100A Automated Soil CO2 Flux System is designed to measure soil CO2 efflux using automated chambers and a non-steady state measurement protocol. While CO2 is an important gas in many contexts, it is not the only gas of interest for many research applications. With some simple plumbing modifications, many third party analyzers capable of measuring other trace gases, e.g. N2O, CH4, or 13CO2 etc., can be interfaced with the LI-8100A System, and LI-COR's data processing software (SoilFluxPro™) can be used to compute fluxes for these additional gases. In this paper we describe considerations for selecting an appropriate third party analyzer to interface with the system, how to integrate data into the system, and the procedure used to compute fluxes of additional gases in SoilFluxPro™. A case study is presented to demonstrate methane flux measurements using an Ultra-Portable Greenhouse Gas Analyzer (Ultra-Portable GGA, model 915-0011), manufactured by Los Gatos Research and integrated into the LI-8100A System. Laboratory and field test results show that the soil CO2 efflux based on the time series of CO2 data measured either with the LI-8100A System or with the Ultra-Portable GGA are essentially the same. This suggests that soil GHG fluxes measured with both systems are reliable.

  4. In-house fabrication and testing capabilities for Li and Li-ion 18650 cells

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.

    2010-04-01

    For over 10 years Sandia Labs have been involved in an US DOE-funded program aimed at developing electric vehicle batteries for transportation applications. Currently this program is called "Advanced Battery Research (ABR)." In this effort we were preparing 18650 cells with electrodes supplied by or purchased from private companies for thermal abuse and electrical characterization studies. Lately, we are coating our own electrodes, building cells and evaluating performance. This paper describes our extensive in-house facilities for slurry making, electrode coating, cell winding etc. In addition, facilities for electrical testing and thermal abuse will be described. This facility allows us to readjust our focus quickly to the changing demands of the still evolving ABR program. Additionally, we continue to make cells for our internal use. We made several 18650 cells both primary (Li-CFx) and secondary (Li-ion) and evaluated performance. For example Li-CFx cells gave ~2.9Ahr capacity at room temperature. Our high voltage Li-ion cells consisting of carbon anode and cathode based on LiNi 0.4Mn 0.3Co 0.3O2 in organic electrolytes exhibited reproducible behavior and gave capacity on the order of 1Ahr. Performance of Li-ion cells at different temperatures and thermal abuse characteristics will be presented.

  5. Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor

    DOE PAGES

    Chen, Yan; Cai, Lu; Liu, Zengcai; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li+ conductor β-Li3PS4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligible thermal expansion wasmore » observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li+ conduction channels with incomplete Li occupancy and a flexible connection of LiS4 and PS4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li+ conductor.« less

  6. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  7. The carbon electrode in nonaqueous Li-O2 cells.

    PubMed

    Ottakam Thotiyl, Muhammed M; Freunberger, Stefan A; Peng, Zhangquan; Bruce, Peter G

    2013-01-01

    Carbon has been used widely as the basis of porous cathodes for nonaqueous Li-O(2) cells. However, the stability of carbon and the effect of carbon on electrolyte decomposition in such cells are complex and depend on the hydrophobicity/hydrophilicity of the carbon surface. Analyzing carbon cathodes, cycled in Li-O(2) cells between 2 and 4 V, using acid treatment and Fenton's reagent, and combined with differential electrochemical mass spectrometry and FTIR, demonstrates the following: Carbon is relatively stable below 3.5 V (vs Li/Li(+)) on discharge or charge, especially so for hydrophobic carbon, but is unstable on charging above 3.5 V (in the presence of Li(2)O(2)), oxidatively decomposing to form Li(2)CO(3). Direct chemical reaction with Li(2)O(2) accounts for only a small proportion of the total carbon decomposition on cycling. Carbon promotes electrolyte decomposition during discharge and charge in a Li-O(2) cell, giving rise to Li(2)CO(3) and Li carboxylates (DMSO and tetraglyme electrolytes). The Li(2)CO(3) and Li carboxylates present at the end of discharge and those that form on charge result in polarization on the subsequent charge. Li(2)CO(3) (derived from carbon and from the electrolyte) as well as the Li carboxylates (derived from the electrolyte) decompose and form on charging. Oxidation of Li(2)CO(3) on charging to ∼4 V is incomplete; Li(2)CO(3) accumulates on cycling resulting in electrode passivation and capacity fading. Hydrophilic carbon is less stable and more catalytically active toward electrolyte decomposition than carbon with a hydrophobic surface. If the Li-O(2) cell could be charged at or below 3.5 V, then carbon may be relatively stable, however, its ability to promote electrolyte decomposition, presenting problems for its use in a practical Li-O(2) battery. The results emphasize that stable cycling of Li(2)O(2) at the cathode in a Li-O(2) cell depends on the synergy between electrolyte and electrode; the stability of the electrode and

  8. Mechanism of Li-doping into Li 4Ti 5O 12 negative active material for Li-ion cells by new chemical method

    NASA Astrophysics Data System (ADS)

    Tabuchi, Toru; Yasuda, Hideo; Yamachi, Masanori

    Li 4+ XTi 5O 12 (X > 0) negative active material has been successfully synthesized by a new chemical method for Li-doping with the catalytic function of naphthalene in Li-organic complex solution of butylmethylether (BME) or dimethoxyethane (DME) solvent. The Li-doping reaction rate constant in BME was found to be greater than that of the case of DME and its value was 5.10 and 2.78 × 10 -4 S -1/2, respectively, by the calculation from the slope of distinct straight line in the relationship between ln(1/1 - Y) and √{ t } , where Y is molar fraction of Li-doping materials of Li 7Ti 5O 12.

  9. Amorphous Li2 O2 : Chemical Synthesis and Electrochemical Properties.

    PubMed

    Zhang, Yelong; Cui, Qinghua; Zhang, Xinmin; McKee, William C; Xu, Ye; Ling, Shigang; Li, Hong; Zhong, Guiming; Yang, Yong; Peng, Zhangquan

    2016-08-26

    When aprotic Li-O2 batteries discharge, the product phase formed in the cathode often contains two different morphologies, that is, crystalline and amorphous Li2 O2 . The morphology of Li2 O2 impacts strongly on the electrochemical performance of Li-O2 cells in terms of energy efficiency and rate capability. Crystalline Li2 O2 is readily available and its properties have been studied in depth for Li-O2 batteries. However, little is known about the amorphous Li2 O2 because of its rarity in high purity. Herein, amorphous Li2 O2 has been synthesized by a rapid reaction of tetramethylammonium superoxide and LiClO4 in solution, and its amorphous nature has been confirmed by a range of techniques. Compared with its crystalline siblings, amorphous Li2 O2 demonstrates enhanced charge-transport properties and increased electro-oxidation kinetics, manifesting itself a desirable discharge phase for high-performance Li-O2 batteries. PMID:27486085

  10. Thermodynamics and kinetics of defects in Li2S

    NASA Astrophysics Data System (ADS)

    Moradabadi, Ashkan; Kaghazchi, Payam

    2016-05-01

    Li2S is the final product of lithiation of sulfur cathodes in lithium-sulfur (Li-S) batteries. In this work, we study formation and diffusion of defects in Li2S. It is found that for a wide range of voltages (referenced to metal Li) between 0.17 V and 2.01 V, positively charged interstitial Li (Li+) is the most favorable defect type with a fixed formation energy of 1.02 eV. The formation energy of negatively charged Li vacancy ( VL i - ) is also constant, and it is only 0.13 eV higher than that of Li+. For a narrow range of voltages between 0.00 V and 0.17 V, the formation energy of neutral S vacancy is the lowest and it decreases with decreasing the cell voltage. The energy barrier for Li+ diffusion (0.45 eV), which takes place via an exchange mechanism, is 0.18 eV higher than that for VL i - (0.27 eV), which takes place via a single vacancy hopping. Considering formation energies and diffusion barriers, we find that ionic conductivity in Li2S is due to both Li+ and VL i - , but the latter mechanism being slightly more favorable.

  11. Concentration dependence of Li+/Na+ diffusion in manganese hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Takachi, Masamitsu; Fukuzumi, Yuya; Moritomo, Yutaka

    2016-06-01

    Manganese hexacyanoferrates (Mn-HCFs) with a jungle-gym-type structure are promising cathode materials for Li+/Na+ secondary batteries (LIBs/SIBs). Here, we investigated the diffusion constants D Li/D Na of Li+/Na+ against the Li+/Na+ concentration x Na/x Li and temperature (T) of A 1.32Mn[Fe(CN)6]0.833.6H2O (A = Li and Na). We evaluated the activation energy E\\text{a}\\text{Li}/E\\text{a}\\text{Na} of D Li/D Na against x Na/x Li. We found that E\\text{a}\\text{Na} steeply increases with x Na from 0.41 eV at x Na = 0.69 to 0.7 eV at 1.1. The increase in E\\text{a}\\text{Na} is ascribed to the occupancy effect of the Na+ site. The increase in E\\text{a}\\text{Li} is suppressed, probably because the number of Li+ sites is three times that of Na+ sites.

  12. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses.

    PubMed

    Adamiv, V; Teslyuk, I; Dyachok, Ya; Romanyuk, G; Krupych, O; Mys, O; Martynyuk-Lototska, I; Burak, Ya; Vlokh, R

    2010-10-01

    In the current work we report on the synthesis of LiKB(4)O(7), Li(2)B(6)O(10), and LiCsB(6)O(10) borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  13. Synthesis and optical characterization of LiKB4O7, Li2B6O10, and LiCsB6O10 glasses

    SciTech Connect

    Adamiv, V.; Teslyuk, I.; Dyachok, Ya.; Romanyuk, G.; Krupych, O.; Mys, O.; Martynyuk-Lototska, I.; Burak, Ya.; Vlokh, R.

    2010-10-01

    In the current work we report on the synthesis of LiKB4O7, Li2B6O10, and LiCsB6O10 borate glasses. The results for their piezo-optic, acousto-optic, acoustic, elastic, refractive, optical transmission, and optical resistance properties are also presented. It is shown that some of these glasses represent efficient acousto-optic materials that are transparent down to the vacuum ultraviolet range and highly resistant to laser radiation.

  14. Neutron irradiation and compatibility testing of Li 2O

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Krsul, J. R.; Laug, M. T.; Walters, L. C.; Tetenbaum, M.

    1984-05-01

    A study was made of the neutron irradiation behavior of 6Li-enriched Li 2O in EBR-II. In addition, a stress corrosion study was performed ex-reactor to test the compatibility of Li 2O with a variety of stainless steels. The irradiation tests showed that tritium and helium retention in the Li 2O (˜ 89% dense) lessened with neutron exposure, and the retentions appear to approach a steady-state after ˜ 1% 6Li burnup. The stress corrosion studies, using 316 stainless steel (Ti-modified) and a 35% Ni alloy, showed that stress does not enhance the corrosion, and that dry Li 2O is not significantly corrosive, the LiOH content producing the corrosive effects. Corrosion, in general, was not severe because a passivation in sealed capsules seemed to occur after a time which greatly reduced corrosion rates.

  15. Defect complexes in Li-doped MgO

    NASA Astrophysics Data System (ADS)

    Richter, N. A.; Stavale, F.; Levchenko, S. V.; Nilius, N.; Freund, H.-J.; Scheffler, M.

    2015-05-01

    Magnesium oxide (MgO) is used in a variety of industrial applications due to its low cost and structural stability. In heterogeneous catalysis, MgO and Li-doped MgO have been studied as catalysts for the oxidative coupling of methane. In this work, we analyze the structure and stability of defect complexes comprising Li dopants and oxygen vacancies in MgO, combining scanning tunneling microscopy, photon-emission experiments, and density-functional theory computations. The experimental results strongly indicate that after annealing Li-doped MgO to temperatures of 600 K and higher, Li evaporates from the surface, but Li defects, such as substitutional defects, interstitials, or defect complexes comprising Li remain in the bulk. Our calculations show that bulk defect complexes containing F2 + color centers, that have donated their two electrons to two adjacent Li defects, are the most stable configurations at realistic pressure and temperature conditions.

  16. Electrolyte effects in Li(Si)/FeS{sub 2} thermal batteries

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1994-10-01

    The most common electrochemical couple for thermally activated (``thermal``) batteries is the Li-alloy/FeS{sub 2} system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352{degrees}C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436{degrees}C and shows very low polarization because of the absence of Li+ gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321{degrees}C), a LiBr-KBr-LiF eutectic (melting at 313{degrees}C), and a CsBr-LiBr-KBr eutectic (melting at 238{degrees}C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS{sub 2} couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

  17. Electrolyte effects in Li(Si)/FeS2 thermal batteries

    NASA Astrophysics Data System (ADS)

    Guidotti, Ronald A.; Reinhardt, Frederick W.

    The most common electrochemical couple for thermally activated ('thermal') batteries is the Li-alloy/FeS2 system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352 C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436(degrees)C and shows very low polarization because of the absence of Li(+) gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321 C), a LiBr-KBr-LiF eutectic (melting at 313 C), and a CsBr-LiBr-KBr eutectic (melting at 238 C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS2 couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

  18. Li(+) Local Structure in Li-Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the (6/7)Li Isotopic Substitution Technique.

    PubMed

    Saito, Soshi; Watanabe, Hikari; Hayashi, Yutaka; Matsugami, Masaru; Tsuzuki, Seiji; Seki, Shiro; Canongia Lopes, José N; Atkin, Rob; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi; Kameda, Yasuo; Umebayashi, Yasuhiro

    2016-07-21

    Equimolar mixtures of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and tetraglyme (G4: CH3O-(CH2CH2O)4-CH3) yield the solvate (or chelate) ionic liquid [Li(G4)][TFSA], which is a homogeneous transparent solution at room temperature. Solvate ionic liquids (SILs) are currently attracting increasing research interest, especially as new electrolytes for Li-sulfur batteries. Here, we performed neutron total scattering experiments with (6/7)Li isotopic substitution to reveal the Li(+) solvation/local structure in [Li(G4)][TFSA] SILs. The experimental interference function and radial distribution function around Li(+) agree well with predictions from ab initio calculations and MD simulations. The model solvation/local structure was optimized with nonlinear least-squares analysis to yield structural parameters. The refined Li(+) solvation/local structure in the [Li(G4)][TFSA] SIL shows that lithium cations are not coordinated to all five oxygen atoms of the G4 molecule (deficient five-coordination) but only to four of them (actual four-coordination). The solvate cation is thus considerably distorted, which can be ascribed to the limited phase space of the ethylene oxide chain and competition for coordination sites from the TFSA anion. PMID:27388117

  19. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    DOE PAGES

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  20. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    SciTech Connect

    Yang, Hui; Zhuang, Guorong V; Ross, Jr, Philip N

    2006-03-08

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  1. Analyzing Powers of the ^58Ni(^6 Li,d)^62Zn Reaction at E(^6Li)=34 MeV and the D State of ^6Li.

    NASA Astrophysics Data System (ADS)

    Veal, K. D.; Brune, C. R.; Geist, W. H.; Karwowski, H. J.; Ludwig, E. J.; Mendez, A. J.; Kozlowska, B.; Bartosz, E. E.; Cathers, P. D.; Drummer, T. L.; Kemper, K. W.; Eiró, A. M.

    1996-10-01

    We continue our studies of the D states of light nuclei with ^6Li, where the magnitude and sign of the ratio of the asymptotic normalization constants, η(^6Li), have not yet been determined.(A. M. Eiró et al.), Few Body Systems, Suppl. 8, 369 (1995). Calculations have shown that tensor analyzing powers of transfer reactions induced by polarized ^6Li ions show considerable sensitivity to the ^6Li D state.^2 Using the FSU polarized ^6Li beam and Si ΔE-E detector telescopes, we have measured cross section and vector and tensor analyzing powers (VAP and TAP) of the ^58Ni(^6 Li,d)^62Zn (0^+ g.s.) reaction at E(^6Li)=34 MeV for 10^circ<=θ_lab<= 40^circ. A DWBA analysis of cross section and VAP strongly suggests that the reaction proceeds via direct α transfer. In addition, an analysis including coupling to the 3^+ state in ^6Li is underway. Comparisons of these data with preliminary calculations and implications for η(^6Li) will be presented.

  2. Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study.

    PubMed

    Tucker, Michael C; Doeff, Marca M; Richardson, Thomas J; Fiñones, Rita; Cairns, Elton J; Reimer, Jeffrey A

    2002-04-17

    The (7)Li NMR isotropic shift for olivine LiMPO(4) (M = Fe, Mn, Co, Ni) is assigned to hyperfine coupling between the (7)Li nucleus and the transition metal unpaired electrons on the basis of the Curie-Weiss temperature dependence of the shift. The hyperfine shift arises from a linear combination of Li-O-M through-bond interactions wherein the unpaired A' electrons contribute a negative shift and the unpaired A' ' electrons contribute a positive shift. The hyperfine coupling constant is determined for each composition.

  3. Solution-Processable Glass LiI-Li4 SnS4 Superionic Conductors for All-Solid-State Li-Ion Batteries.

    PubMed

    Park, Kern Ho; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju-Young; Xin, Huolin; Lin, Feng; Oh, Seung M; Jung, Yoon Seok

    2016-03-01

    A new, highly conductive (4.1 × 10(-4) S cm(-1) at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4 SnS4 is prepared using a homogeneous methanol solution. The solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4 SnS4), resulting in considerable improvements in the electrochemical performance of these electrodes over conventional mixture electrodes. PMID:26690558

  4. Investigation of structural, mechanical, electronic, optical, and dynamical properties of cubic BaLiF3, BaLiH3, and SrLiH3

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Salmankurt, Bahadır; Duman, Sıtkı

    2016-03-01

    The structural, mechanical, electronic, optical, and dynamical properties of BaLiF3, BaLiH3, and SrLiH3 cubic perovskite materials are theoretically investigated by using first principles calculations. Obtained results are in reasonable agreement with other available theoretical and experimental studies. The considered materials are found to be mechanically stable in the cubic structure. We found that all materials are brittle. The modified Becke-Johnson (mBJ) exchange potential has been used here to obtain an accurate band order. The calculated band-gap energy value of BaLiF3 (8.26 eV) within the mBJ potential agrees very well with the experimentally reported value of 8.41 eV. In order to have a deeper understanding of the bonding mechanism and the effect of atomic relaxation on the electronic band structure, the total and partial density of states have also been calculated. We have investigated the fundamental optical properties, such as the real ɛ 1(ω) and imaginary ɛ 2(ω) parts of the dielectric function, absorption coefficient α(ω), reflectivity R(ω), and refractive index n(ω) in the energy range from 0 to 40 eV within the mBJ potential. The band-gap energy obtained from the absorption spectrum is around 8.76, 3.99, and 3.31 eV for BaLiF3, BaLiH3, and SrLiH3 crystals, respectively. It should be noted that BaLiF3 could be a strong potential candidate as a laser material for the development of a vacuum-ultraviolet light emitting diode once direct transition is confirmed by experimental studies. Finally, we have calculated the lattice dynamical properties of BaLiF3, BaLiH3, SrLiH3, and SrLiF3 crystals. The full phonon dispersion curves of these materials are reported for the first time. Our results clearly indicate that the materials are dynamically stable, except for SrLiF3, in the cubic structure. The obtained zone-center phonon frequencies of BaLiF3, BaLiH3, and SrLiH3 accord very well with previous experimental measurements.

  5. G-LiHT: Goddard's LiDAR, Hyperspectral and Thermal Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce; Corp, Lawrence; Nelson, Ross; Morton, Douglas; Ranson, Kenneth J.; Masek, Jeffrey; Middleton, Elizabeth

    2012-01-01

    Scientists at NASA's Goddard Space Flight Center have developed an ultra-portable, low-cost, multi-sensor remote sensing system for studying the form and function of terrestrial ecosystems. G-LiHT integrates two LIDARs, a 905 nanometer single beam profiler and 1550 nm scanner, with a narrowband (1.5 nanometers) VNIR imaging spectrometer and a broadband (8-14 micrometers) thermal imager. The small footprint (approximately 12 centimeters) LIDAR data and approximately 1 meter ground resolution imagery are advantageous for high resolution applications such as the delineation of canopy crowns, characterization of canopy gaps, and the identification of sparse, low-stature vegetation, which is difficult to detect from space-based instruments and large-footprint LiDAR. The hyperspectral and thermal imagery can be used to characterize species composition, variations in biophysical variables (e.g., photosynthetic pigments), surface temperature, and responses to environmental stressors (e.g., heat, moisture loss). Additionally, the combination of LIDAR optical, and thermal data from G-LiHT is being used to assess forest health by sensing differences in foliage density, photosynthetic pigments, and transpiration. Low operating costs (approximately $1 ha) have allowed us to evaluate seasonal differences in LiDAR, passive optical and thermal data, which provides insight into year-round observations from space. Canopy characteristics and tree allometry (e.g., crown height:width, canopy:ground reflectance) derived from G-LiHT data are being used to generate realistic scenes for radiative transfer models, which in turn are being used to improve instrument design and ensure continuity between LiDAR instruments. G-LiHT has been installed and tested in aircraft with fuselage viewports and in a custom wing-mounted pod that allows G-LiHT to be flown on any Cessna 206, a common aircraft in use throughout the world. G-LiHT is currently being used for forest biomass and growth estimation

  6. Li-Ge-H system: Hydrogenation and structural properties of LiGeHx (0

    NASA Astrophysics Data System (ADS)

    Pavlyuk, V.; Ciesielski, W.; Kulawik, D.; Prochwicz, W.; Rożdżyńska-Kiełbik, B.

    2016-11-01

    The synthesis, isothermal section at 450 °C of the Li-Ge-H system in the concentration region from 40 at.% Li to 70 at.% Li and structural characterizations of the observed phases are reported. The hydrogenation and structural properties of the LiGeHx (0 < x < 0.25) phase were studied by volumetric analysis and X-ray diffraction. The absorption of hydrogen by LiGe binary compound produce the ternary hydride phase LiGeHx (0 < x < 0.25), thus the volume tetragonal unit cell increases on 1.8 Å3. The LiGeHx solid solution is formed by means of the insertion of hydrogen atoms into tetrahedral voids of parent LiGe structure. The extension of homogeneity range of LiGeHx (0 < x < 0.25) phase and its crystal structure were more precisely refined using X-ray diffraction data. Electronic structure calculations reveal an increased occupation of electronic states at the Fermi level for LiGeHx in comparison to LiGe.

  7. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries.

    PubMed

    Xia, Chun; Waletzko, Michael; Chen, Limei; Peppler, Klaus; Klar, Peter J; Janek, Jürgen

    2014-08-13

    Lithium peroxide (Li2O2), the solid and intrinsically electronic insulating discharge product of Li-O2 batteries strongly influences the discharge and charge kinetics. In a series of experiments, we investigated the growth of Li2O2 upon discharge and the corresponding reduction and oxidation processes by varying the depth of discharge. The results indicate that insulating Li2O2 particles with a disc-like shape were formed during the initial discharge stage. Afterward, the nucleation and growth of Li2O2 resulted in the formation of conducting Li2O2 shells. When the discharge voltage dropped below 2.65 V, the Li2O2 discs evolved to toroid-shaped particles and defective superoxide-like phase presumably with high conductivity was formed on the rims of Li2O2 toroids. Both Li2O2 and the superoxide-like phase are unstable in ether-based electrolytes resulting in the degradation of the corresponding cells. Nevertheless, by controlling the growth of Li2O2, the chemical reactivity of the discharge product can be suppressed to improve the reversibility of Li-O2 batteries.

  8. Enhanced performance of Li|LiFePO4 cells using CsPF6 as an electrolyte additive

    NASA Astrophysics Data System (ADS)

    Xiao, Liang; Chen, Xilin; Cao, Ruiguo; Qian, Jiangfeng; Xiang, Hongfa; Zheng, Jianming; Zhang, Ji-Guang; Xu, Wu

    2015-10-01

    The practical application of lithium (Li) metal anode in rechargeable Li batteries is hindered by both the growth of Li dendrites and the low Coulombic efficiency (CE) during repeated charge/discharge cycles. Recently, we have discovered that CsPF6 as an electrolyte additive can significantly suppress Li dendrite growth and lead to highly compacted and well aligned Li nanorod structures during Li deposition on copper substrates. In this paper, the effect of CsPF6 additive on the performance of rechargeable Li metal batteries with lithium iron phosphate (LFP) cathode is further studied. Li|LFP coin cells with CsPF6 additive in electrolytes show well protected Li anode surface, decreased resistance, enhanced rate capability and extended cycling stability. In Li|LFP cells, the electrolyte with CsPF6 additive shows excellent long-term cycling stability (at least 500 cycles) at a charge current density of 0.5 mA cm-2 without internal short circuit. At high charge current densities, the effect of CsPF6 additive becomes less significant. Future work needs to be done to protect Li metal anode, especially at high charge current densities and for long cycle life.

  9. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries.

    PubMed

    Xia, Chun; Waletzko, Michael; Chen, Limei; Peppler, Klaus; Klar, Peter J; Janek, Jürgen

    2014-08-13

    Lithium peroxide (Li2O2), the solid and intrinsically electronic insulating discharge product of Li-O2 batteries strongly influences the discharge and charge kinetics. In a series of experiments, we investigated the growth of Li2O2 upon discharge and the corresponding reduction and oxidation processes by varying the depth of discharge. The results indicate that insulating Li2O2 particles with a disc-like shape were formed during the initial discharge stage. Afterward, the nucleation and growth of Li2O2 resulted in the formation of conducting Li2O2 shells. When the discharge voltage dropped below 2.65 V, the Li2O2 discs evolved to toroid-shaped particles and defective superoxide-like phase presumably with high conductivity was formed on the rims of Li2O2 toroids. Both Li2O2 and the superoxide-like phase are unstable in ether-based electrolytes resulting in the degradation of the corresponding cells. Nevertheless, by controlling the growth of Li2O2, the chemical reactivity of the discharge product can be suppressed to improve the reversibility of Li-O2 batteries. PMID:25006701

  10. Enhanced Performance of Li|LiFePO4 Cells Using CsPF6 as an Electrolyte Additive

    SciTech Connect

    Xiao, Liang; Chen, Xilin; Cao, Ruiguo; Qian, Jiangfeng; Xiang, Hongfa; Zheng, Jianming; Zhang, Jiguang; Xu, Wu

    2015-10-20

    The practical application of lithium (Li) metal anode in rechargeable Li batteries is hindered by both the growth of Li dendrites and the low Coulombic efficiency (CE) during repeated charge/discharge cycles. Recently, we have discovered that CsPF6 as an electrolyte additive can significantly suppress Li dendrite growth and lead to highly compacted and well aligned Li nanorod structure during Li deposition on copper substrates. In this paper, the effect of CsPF6 additive on the performance of rechargeable Li metal batteries with lithium iron phosphate (LFP) cathode was further studied. Li|LFP coin cells with CsPF6 additive in electrolytes show well protected Li anode surface, decreased resistance, enhanced rate capability and extended cycling stability. In Li|LFP cells, the electrolyte with CsPF6 additive shows excellent long-term cycling stability (at least 500 cycles) at a charge current density of 0.5 mA cm-2 without internal short circuit. At high charge current densities, the effect of CsPF6 additive becomes less significant. Future work needs to be done to protect Li metal anode, especially at high charge current densities and for long cycle life.

  11. Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.

    PubMed

    Gotcu, Petronela; Seifert, Hans J

    2016-04-21

    Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent. PMID:27031918

  12. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  13. High current LiSOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Debiccari, Daniel J.

    The paper describes cell construction, performance, and safety aspects of two high-rate active Li/SOCl2 batteries designed to operate at current densities as high as 26 mA/sq cm in pulse modes of 20 millisec to several minutes. Both cell designs employ a flat-plate arrangement of electrodes, a cyanoacrylate-coated anode, a bonded carbon/copper cathode, and a 1.6 M electrolyte. The major differences of the two designs are the size of the cell and the method of anode attachment. The two batteries were shown to provide over 10 times the mission life of the Ni-Cd batteries; thus, they will eliminate the logistic problems associated with the recharge requirements of the latter. In addition, a replacement of the Ni-Cd battery types with lighter Li-thionyl chloride batteries will significantly reduce battery weight and increase its capacity.

  14. Li, B and N in ancient materials

    NASA Astrophysics Data System (ADS)

    Fink, D.

    1983-12-01

    The content of B and Li is examined in several ancient and, for comparison, in modern objects for techological and household use (glasses, coins, nails, needles, bells, shells, bones, pitch, minerals). For most samples the B content is proportional to the Li content, the proportionality factor ranging from 1 to 6. The data scatteringroups of examined species are given. It is known that the N content of bones decreases with age due to decomposition of organic materials. This is confirmed, and simultaneously an enrichment of B was observed for ancient bones, probably due to salt transport from the surrounding soil into the bones. Coins frequently show a nitrogen enriched layer on their surfaces due to corrosion. B surface contaminations are sometimes observed for glasses and mother-of-pearl.

  15. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  16. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  17. Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention.

    PubMed

    Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C Vinod; Ma, Qianli; Uhlenbruck, Sven; Bram, Martin; Heitjans, Paul; Guillon, Olivier

    2016-04-27

    Al-contaminated Ta-substituted Li7La3Zr2O12 (LLZ:Ta), synthesized via solid-state reaction, and Al-free Ta-substituted Li7La3Zr2O12, fabricated by hot-press sintering (HP-LLZ:Ta), have relative densities of 92.7% and 99.0%, respectively. Impedance spectra show the total conductivity of LLZ:Ta to be 0.71 mS cm(-1) at 30 °C and that of HP-LLZ:Ta to be 1.18 mS cm(-1). The lower total conductivity for LLZ:Ta than HP-LLZ:Ta was attributed to the higher grain boundary resistance and lower relative density of LLZ:Ta, as confirmed by their microstructures. Constant direct current measurements of HP-LLZ:Ta with a current density of 0.5 mA cm(-2) suggest that the short circuit formation was neither due to the low relative density of the samples nor the reduction of Li-Al glassy phase at grain boundaries. TEM, EELS, and MAS NMR were used to prove that the short circuit was from Li dendrite formation inside HP-LLZ:Ta, which took place along the grain boundaries. The Li dendrite formation was found to be mostly due to the inhomogeneous contact between LLZ solid electrolyte and Li electrodes. By flatting the surface of the LLZ:Ta pellets and using thin layers of Au buffer to improve the contact between LLZ:Ta and Li electrodes, the interface resistance could be dramatically reduced, which results in short-circuit-free cells when running a current density of 0.5 mA cm(-2) through the pellets. Temperature-dependent stepped current density galvanostatic cyclings were also carried out to determine the critical current densities for the short circuit formation. The short circuit that still occurred at higher current density is due to the inhomogeneous dissolution and deposition of metallic Li at the interfaces of Li electrodes and LLZ solid electrolyte when cycling the cell at large current densities.

  18. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  19. A new active Li-Mn-O compound for high energy density Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Freire, M.; Kosova, N. V.; Jordy, C.; Chateigner, D.; Lebedev, O. I.; Maignan, A.; Pralong, V.

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today’s most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the `Li4Mn2O5’ composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g-1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2-/O- redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

  20. A new active Li-Mn-O compound for high energy density Li-ion batteries.

    PubMed

    Freire, M; Kosova, N V; Jordy, C; Chateigner, D; Lebedev, O I; Maignan, A; Pralong, V

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today's most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn(3+)/Mn(4+) couple. In this work, we report on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g(-1), which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn(3+)/Mn(4+) and O(2-)/O(-) redox couples, and, importantly, of the Mn(4+)/Mn(5+) couple also.

  1. Potential energy surfaces of the electronic states of Li2F and Li2F-

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2016-07-01

    The potential energy surfaces of the ground and low-lying excited states for the insertion reaction of atomic fluorine (F) and fluoride (F-) into the dilithium (Li2) molecule have been investigated. We have carried out explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations using Dunning's augmented correlation-consistent basis sets. For the neutral system, the insertion of F into Li2 proceeds via a harpoon-type mechanism on the ground state surface, involving a covalent state and an ionic state which avoid each other at long distance. A detailed analysis of the changes in the dipole moment along the reaction coordinate reveals multiple avoided crossings among the excited states and shows that the charge-transfer processes play a pivotal role for the stabilization of the low-lying electronic states of Li2F. For the anionic system, which is studied for the first time, the insertion of F- is barrierless for many states and there is a gradual charge transfer from F- to Li2 along the reaction path. We also report the optimized parameters and the spectroscopic properties of the five lowest states of the neutral and seven lowest states of the anionic systems, which are strongly stabilized with respect to their respective Li2 + F/F- asymptotes. The observed barrierless insertion mechanisms for both systems make them good candidates for investigation under the ultracold regime.

  2. A Thermally Conductive Separator for Stable Li Metal Anodes.

    PubMed

    Luo, Wei; Zhou, Lihui; Fu, Kun; Yang, Zhi; Wan, Jiayu; Manno, Michael; Yao, Yonggang; Zhu, Hongli; Yang, Bao; Hu, Liangbing

    2015-09-01

    Li metal anodes have attracted considerable research interest due to their low redox potential (-3.04 V vs standard hydrogen electrode) and high theoretical gravimetric capacity of 3861 mAh/g. Battery technologies using Li metal anodes have shown much higher energy density than current Li-ion batteries (LIBs) such as Li-O2 and Li-S systems. However, issues related to dendritic Li formation and low Coulombic efficiency have prevented the use of Li metal anode technology in many practical applications. In this paper, a thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability of the Li metal anodes. It is found that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm(2) and 88% at 1.0 mA/cm(2). The improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resulting from the thermally conductive BN coating and to the smaller surface area of initial Li deposition. PMID:26237519

  3. A Thermally Conductive Separator for Stable Li Metal Anodes.

    PubMed

    Luo, Wei; Zhou, Lihui; Fu, Kun; Yang, Zhi; Wan, Jiayu; Manno, Michael; Yao, Yonggang; Zhu, Hongli; Yang, Bao; Hu, Liangbing

    2015-09-01

    Li metal anodes have attracted considerable research interest due to their low redox potential (-3.04 V vs standard hydrogen electrode) and high theoretical gravimetric capacity of 3861 mAh/g. Battery technologies using Li metal anodes have shown much higher energy density than current Li-ion batteries (LIBs) such as Li-O2 and Li-S systems. However, issues related to dendritic Li formation and low Coulombic efficiency have prevented the use of Li metal anode technology in many practical applications. In this paper, a thermally conductive separator coated with boron-nitride (BN) nanosheets has been developed to improve the stability of the Li metal anodes. It is found that using the BN-coated separator in a conventional organic carbonate-based electrolyte results in the Coulombic efficiency stabilizing at 92% over 100 cycles at a current rate of 0.5 mA/cm(2) and 88% at 1.0 mA/cm(2). The improved Coulombic efficiency and reliability of the Li metal anodes is due to the more homogeneous thermal distribution resulting from the thermally conductive BN coating and to the smaller surface area of initial Li deposition.

  4. High performance MCFC using Li/Na electrolyte

    SciTech Connect

    Donado, R.A.; Ong, E.T.; Sishtla, C.I.

    1995-08-01

    The substitution of a lithium/ sodium carbonate (Li/Na) mixture for the lithium/potassium carbonate (Li/K) electrolyte used in MCFCs holds the promise of higher ionic conductivity, higher exchange current density at both electrodes, lower vapor pressure, and lower cathode dissolution rates. However, when the substitution is made in cells optimized for use with the Li/K electrolyte, the promised increase in performance is not realized. As a consequence the literature contains conflicting data with regard to the performance, compositional stability, and chemical reactivity of the Li/Na electrolyte. Experiments conducted at the Institute of Gas Technology (IGT) concluded that the source of the problem is the different wetting characteristics of the two electrolytes. Electrode pore structures optimized for use with Li/K do not work well with Li/Na. Using proprietary methods and materials, IGT was able to optimize a set of electrodes for the Li/Na electrolyte. Experiments conducted in bench-scale cells have confirmed the superior performance of the Li/Na electrolyte compared to the Li/K electrolyte. The Li/Na cells exhibited a 5 to 8 percent improvement in overall performance, a substantial decrease in the rate of cathode dissolution, and a decreased decay rate. The longest running cell has logged over 13,000 hours of operation with a decay rate of less than 2 mV/1000 hours.

  5. Conjugated dicarboxylate anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J.-M.

    2009-02-01

    Present Li-ion batteries for portable electronics are based on inorganic electrodes. For upcoming large-scale applications the notion of materials sustainability produced by materials made through eco-efficient processes, such as renewable organic electrodes, is crucial. We here report on two organic salts, Li2C8H4O4 (Li terephthalate) and Li2C6H4O4(Li trans-trans-muconate), with carboxylate groups conjugated within the molecular core, which are respectively capable of reacting with two and one extra Li per formula unit at potentials of 0.8 and 1.4V, giving reversible capacities of 300 and 150mAhg-1. The activity is maintained at 80∘C with polyethyleneoxide-based electrolytes. A noteworthy advantage of the Li2C8H4O4 and Li2C6H4O4 negative electrodes is their enhanced thermal stability over carbon electrodes in 1M LiPF6 ethylene carbonate-dimethyl carbonate electrolytes, which should result in safer Li-ion cells. Moreover, as bio-inspired materials, both compounds are the metabolites of aromatic hydrocarbon oxidation, and terephthalic acid is available in abundance from the recycling of polyethylene terephthalate.

  6. Er3+ diffusion in LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Zhang, Qun; Wong, Wing-Han; Pun, Edwin Yue-Bun

    2015-12-01

    Some Er3+-doped LiTaO3 plates were prepared by in-diffusion of Er-metal film locally coated onto congruent Z-cut substrate in air at a wide temperature range from 1000 to 1500 °C. After diffusion, Er3+-doping effect on LiTaO3 refractive index and Li2O out-diffusion arising from Er3+ in-diffusion were studied at first. Refractive indices at the doped and undoped surface parts were measured by prism coupling technique and the surface composition was estimated. The results show that Er3+ dopant has small contribution to the LiTaO3 index. Li2O out-diffusion is slight (Li2O content loss <0.3 mol%) for the temperature below 1300 °C while is moderate (Li2O content loss <0.6 mol%) for the temperature above 1400 °C. The Er3+ profile was studied by secondary ion mass spectrometry. The study shows that the diffused Er3+ ions follow either a complementary error function or a Gaussian profile. Characteristic parameters including diffusivity, diffusion constant, activation energy, solubility, solubility constant and heat of solution were obtained and compared with the LiNbO3 case. The comparison shows that the diffusivity and solubility in LiTaO3 are considerably smaller than in LiNbO3 because of the difference of Ta and Nb in atomic weight.

  7. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE PAGES

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  8. Generation of Li combustion aerosols for animal inhalation studies.

    PubMed

    Allen, M D; Greenspan, B J; Briant, J K; Hoover, M D

    1986-07-01

    A system was developed for generating Li aerosols to determine the potential health hazards of postulated accidents associated with the use of Li as a fusion reactor blanket or coolant. The aerosol was generated by sweeping Ar through a stainless steel chamber filled with Li metal that was heated inductively to temperatures up to 1300 degrees C. Argon carried the Li vapor into a burning chamber where it was mixed with air. The reaction of Li vapor with air formed an intense white flame that produced typical branched-chain condensation aerosol particles. This system generated well-controlled concentrations up to 2500 mg/m3 for periods of 4 h. The mass median aeordynamic diameter of the aerosol was approximately 0.66 micron with a geometric standard deviation of 1.5. Aerosols could be generated that were greater than 96% Li2O and LiOH, LiOH.H2O, or Li2CO3 by controlling the CO2 and H2O concentrations in the supply air. The system is currently being used to investigate the acute toxicity of Li combustion aerosols in laboratory animals.

  9. Composite Solid Electrolyte for Li Battery Applications

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, A. I.; Halpert, G.; Peled, E.

    1993-01-01

    The electrochemical, bulk and interfacial properties of the polyethylene oxide (PEO) based composite solid electrolyte (CSE) comprising LiI, PEO, and Al2O3 have been evaluated for Li battery applications. The bulk interfacial and transport properties of the CSEs seem to strongly depend on the alumina particle size. For the CSE films with 0.05 micron alumina while the bulk conductivity is around 10(exp -4) (mho/cm) at 103 C, the Li ion transport number seems to be close to unity at the same temperature. Compared to the PEO electrolyte this polymer composite electrolyte seems to exhibit robust mechanical and interfacial properties. We have studied three different films with three different alumina sizes in the range 0.01-0.3 micron. Effects of Al2O3 particle size on the electrochemical performance of polymer composite electrolyte is discussed. With TiS2 as cathode a 10 mAh small capacity cell was charged and discharged at C/40 and C/20 rates respectively.

  10. Endurance testing with Li/Na electrolyte

    SciTech Connect

    Ong, E.T.; Remick, R.J.; Sishtla, C.I.

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  11. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    PubMed Central

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-01-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. PMID:25473128

  12. Characterizing Lava Flows With LiDAR

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Cashman, K. V.; Deardorff, N.; Dietterich, H. R.; House, P. K.; Soule, S.

    2009-12-01

    Digital elevation models (DEMs) have been used in volcanology in predictive modeling of lava flow paths, both for assessment of potential hazards and specific predictions of lava flow paths. Topographic analysis of a lava flow is potentially useful for mapping and quantifying flow surface morphologies, which in turn can be used to determine flow emplacement conditions, such as effusion rate, steadiness of flow, and interactions with pre-existing topography and surface water. However, this has been limited in application because of the coarse resolution of most DEMs. In recent years, use of Light Detection and Ranging (LiDAR) airborne laser altimetry, capable of producing high resolution (≤ 1 meter) DEMs, has become increasingly common in the geomorphic and mapping community. However, volcanologists have made little use of airborne LiDAR. Here we compare information obtained using field observations and standard (10 meter) DEMs against LiDAR high resolution DEMs to assess the usefulness, capabilities, and limitations of LiDAR as applicable to lava flows. We compare morphologic characteristics of five lava flows of different compositions, tectonic settings, flow extents, slopes, and eruption duration: (1) 1984 Mauna Loa lava flow, Hawaii; (2) December 1974 Kilauea lava flow, Hawaii; (3) c. 1600 ybp Collier Cone lava flow, central Oregon Cascades; (4) Holocene lava flows from the Sand Mountain volcanic chain, central Oregon Cascades; and (5) Pleistocene lava flows along the Owyhee River, eastern Oregon basin and range. These lava flows range in composition from basalt to andesite, and have eruption durations ranging from 6 hours (observed) to years (inferred). We measure channel width, levee and flow front heights, compression ridge amplitude, wavelength and tumuli dimensions, and surface roughness. For all but the smallest scale features, LiDAR is easily used to quantify these features, which often is impossible or technically challenging to do in the field, while

  13. Coincidence in the two-photon spectra of Li and Li2 at 735 nm

    NASA Astrophysics Data System (ADS)

    DeGraffenreid, W.; Sansonetti, Craig J.

    2005-02-01

    A coincidence between the 22S1/2-32S1/2 two-photon transition in the atomic spectrum of 6Li and the X 1Σ+g→ E 1Σ+g two-photon ro-vibrational series of 7Li2 was observed near 735 nm in a heat pipe oven using a tunable laser and thermionic diode detection scheme. The molecular transition obscures one component of the 6Li atomic transition. Selective detection of the atomic transition was obtained by adding an intensity-modulated laser that drives atoms from the 3S to 16P state. The coincident molecular transition and four nearby molecular lines were identified using previously determined Dunham coefficients.

  14. Spectroscopic information of 6Li from elastic scattering of deuterons, 3He and 4He by 6Li

    NASA Astrophysics Data System (ADS)

    Amar, A.

    2014-07-01

    The elastic scattering of deuterons, 3He and 4He on 6Li at different incident energies have been analyzed in the framework of the optical model (OM) using ECIS88 as well as SPI GENOA codes. The optical potential parameters were extracted in the phenomenological treatment. A good agreement between theoretical and experimental differential cross-sections was obtained in whole angular range. Parameters for real part of potential have been also calculated microscopically with double-folding model for the d, 3He and 4He scattering, respectively, using DFPOT code. The elastic transfer mechanism has been studied by coupled reaction channel (CRC) method using FRESCO code. Spectroscopic amplitudes of 6Li ≡ t + 3He and 6Li ≡ α + d configurations have been extracted from d, 3He and 4He scattering on 6Li at wide energy range. A comparison between spectroscopic amplitudes obtained from deuteron and α elastically scattering from 6Li has been made. The extracted spectroscopic amplitudes of 6Li ≡ 4He + d(SF = SA2) from 6Li(d, 6Li)d and 6Li(α, 6Li)α are not the same as expected theoretically.

  15. 7Li Spin-Lattice Relaxation at Low Temperatures in a Superionic Conductor β-LiGa

    NASA Astrophysics Data System (ADS)

    Endou, Shigeki; Ohno, Takashi; Kishimoto, Yutaka; Nishioka, Daisuke; Michihiro, Yoshitaka; Kawasaki, Yu; Ideta, Yukiichi; Kuriyama, Kazuo; Hamanaka, Hiromi; Yahagi, Masahito

    2009-10-01

    In order to investigate the Li+ ionic diffusion and the electronic states in a mixed conductor β-LiGa with high Li+ ionic diffusibility and electron/hole conductivity, 7Li NMR linewidth and spin-lattice relaxation measurements have been performed in 44.0, 47.0, and 50.0 at. % Li β-LiGa samples at 10.03 MHz in the temperature range between 10 and 320 K. The onset temperature TMN=70 K of the motional narrowing in 50.0 at. % sample has been determined from the temperature dependence of the linewidth. The Li+ ionic diffusion is found to contribute to the spin-lattice relaxation rate 1/T1 down to ˜0.5 TMN even below TMN where the motional narrowing does not occur. The high diffusibility of Li+ ions has been proved from a microscopic point of view. At low temperatures, the relations 1/T1T=3.5× 10-4, 3.8× 10-4, and 5.1× 10-4 s-1 K-1 are observed in 44.0, 47.0, and 50.0 at. % Li samples, respectively. The density of states of conduction electrons at the Fermi level in these compounds becomes higher with increasing Li content, which is consistent with the predictions by band calculations.

  16. Transport properties of LiCoPO4 and Fe-substituted LiCoPO4

    NASA Astrophysics Data System (ADS)

    Allen, Jan L.; Thompson, Travis; Sakamoto, Jeff; Becker, Collin R.; Jow, T. Richard; Wolfenstine, Jeff

    2014-05-01

    LiCoPO4 is a promising cathode material to enable high energy, abuse tolerant Li-ion batteries. However, LiCoPO4 has relatively poor electronic conductivity which may be improved by chemical substitution. In this work, the ionic and electronic conductivities of dense, polycrystalline LiCoPO4 and Fe2+/Fe3+-substituted LiCoPO4 (Li1-xCo0.9Fe0.1PO4) are measured and compared. Both materials are predominantly ionic conductors with relatively good bulk ionic and relatively poor electronic conductivities. Li1-xCo0.9Fe0.1PO4 exhibits both higher bulk ionic and electronic conductivity. The increased bulk ionic conductivity of Li1-xCo0.9Fe0.1PO4 is believed to originate mainly from extra Li vacancies and the increased electronic conductivity is believed to originate mainly from creating more mobile hole polarons compared to LiCoPO4 as a result of Fe2+/Fe3+ substitution.

  17. Interface-enhanced Li ion conduction in a LiBH4-SiO2 solid electrolyte.

    PubMed

    Choi, Yong Seok; Lee, Young-Su; Oh, Kyu Hwan; Cho, Young Whan

    2016-08-10

    We have developed a fast solid state Li ion conductor composed of LiBH4 and SiO2 by means of interface engineering. A composite of LiBH4-SiO2 was simply synthesized by high energy ball-milling, and two types of SiO2 (MCM-41 and fumed silica) having different specific surface areas were used to evaluate the effect of the LiBH4/SiO2 interface on the ionic conductivity enhancement. The ionic conductivity of the ball-milled LiBH4-MCM-41 and LiBH4-fumed silica mixture is as high as 10(-5) S cm(-1) and 10(-4) S cm(-1) at room temperature, respectively. In particular, the conductivity of the latter is comparable to the LiBH4 melt-infiltrated into MCM-41. The conductivities of the LiBH4-fumed silica mixtures at different mixing ratios were analyzed employing a continuum percolation model, and the conductivity of the LiBH4/SiO2 interface layer is estimated to be 10(5) times higher than that of pure bulk LiBH4. The result highlights the importance of the interface and indicates that significant enhancement in ionic conductivity can be achieved via interface engineering. PMID:27468702

  18. Li-Ion Cell Development for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Huang, C.-K.; Sakamoto, J. S.; Surampudi, S.; Wolfenstine, J.

    2000-01-01

    JPL is involved in the development of rechargeable Li-ion cells for future Mars Exploration Missions. The specific objectives are to improve the Li-ion cell cycle life performance and rate capability at low temperature (<<-20 C) in order to enhance survivability of the Mars lander and rover batteries. Poor Li-ion rate capability at low temperature has been attributed to: (1) the electrolytes becoming viscous or freezing and/or (2) reduced electrode capacity that results from decreased Li diffusivity. Our efforts focus on increasing the rate capability at low temperature for Li-ion cells. In order to improve the rate capability we evaluated the following: (1) cathode performance at low temperatures, (2) electrode active material particle size on low temperature performance and (3) Li diffusivity at room temperature and low temperatures. In this paper, we will discuss the results of our study.

  19. Mobilities of Li(+)-attached butanol isomers in He gas.

    PubMed

    Takahashi, K; Saito, K; Koizumi, T; Matoba, S; Kojima, T M; Tanuma, H; Shiromaru, H

    2013-08-28

    Mobilities of Li(+)-attached butanol isomers, (n-BuOH)Li(+), (s-BuOH)Li(+), (i-BuOH)Li(+), and (t-BuOH)Li(+), in helium gas were measured over a range of reduced electric fields (E/N = 25-96 Td) at room temperature. Arrival time measurements accurately identified small differences in the measured mobilities of the isomer ions. At low E/N (≤30 Td, corresponding to a mean collision energy ε≤0.05 eV), (n-BuOH)Li(+) showed a mobility about 1.5% greater than that of the other ions, but at high E/N (≥75 Td, ε≥0.1 eV) its mobility was about 1.1% less.

  20. Direct three-photon triple ionization of Li and double ionization of Li+

    NASA Astrophysics Data System (ADS)

    Emmanouilidou, A.; Hakobyan, V.; Lambropoulos, P.

    2013-06-01

    We explore the three-photon triple ionization from the ground state of Li with short wavelength free electron lasers. We calculate and discuss the cross sections used in the relevant rate equations and the dependence of the ion yields on laser intensity and pulse duration. In addition to the three-photon 3e ejection we also discuss two- and three-photon 2e ejection in Li+, which occurs as a by-product in the sequence of the channels active in the overall interaction. We conclude by assessing the requirements for the observability of the above-mentioned direct three-photon multielectron processes.

  1. Li overlayer formation, oxidation and sputtering characteristics of Al-Li alloys and W/Al-Li composites for fusion applications

    SciTech Connect

    Krauss, A.R. ); DeWald, A.B.; Scott, P.; Savage, H. )

    1990-01-01

    The next generation of long pulse fusion devices will impose severe requirements on the properties of plasma-facing materials. In devices such as ITER, a divertor design is being considered, using a divertor plate which would be either tungsten or a low-Z material such as graphite or beryllium. Strongly segregating lithium alloys have been proposed as a means of producing a self-sustaining low-Z overlayer which lowers plasma Z{sub eff} and resists self-sputtering. Aluminum-lithium alloys are among the better-characterized lithium-bearing alloys, and it has been demonstrated that lithium segregates strongly in aluminum. However, aluminum has a relatively low melting point, and for low lithium concentrations, the lithium diffusion rate is too slow to replenish lithium at the rate at which it is eroded by the incoming plasma. It has been suggested previously that the superionic {beta} phase Al-Li alloy (48--54 at. % Li) should have high enough diffusivity to be able to replenish surface lithium, and that incorporation of the {beta}-phase AlLi in a composite with tungsten would provide high temperature strength and melt layer stability, along with significantly better thermal conductivity than pure tungsten. Such a composite has been fabricated, as well as a variation containing titanium as a means of controlling oxidation at grain boundaries. The Li overlayer formation, erosion, and replenishment are characterized for the {beta}-phase LiAl alloy, and W-AlLi and W-Ti-AlLi composites. It is found that if there is no oxide layer to inhibit the Li segregation, Li diffusion is extremely rapid, and an oxygen-free Li overlayer is formed which is stable under continuous ion beam sputtering. 21 refs., 7 figs.

  2. Physical chemistry of molten-salt batteries. Final report, October 1, 1981-September 30, 1982. LiCl precipitation from LiCl-KCl anolyte in porous Li-Al electrodes

    SciTech Connect

    Vallet, C.E.; Heatherly, D.E.; Heatherly, L. Jr.; Braunstein, J.

    1983-05-01

    Composition gradients such as those predicted to occur during discharge of porous Li-Al negative electrodes of Li/S batteries with LiCl-KCl eutectic electrolyte were generated and measured in the LiCl-KCl anolyte of an electrolysis cell with Li-Al electrodes. LiCl precipitation during electrolysis was observed by two-dimensional scanning of electrolyte composition in the front part of quenched porous Li-Al anode sections using SEM/EDX. The distribution of sites of increased or decreased LiCl concentration, LiCl saturation and precipitation was mapped. Cathodic regions were observed near the cell walls. Preliminary results of analysis by Auger spectroscopy confirm LiCl precipitation in the porous anode.

  3. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  4. Electrical conduction of LiF interlayers in organic diodes

    SciTech Connect

    Bory, Benjamin F.; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-04-21

    An interlayer of LiF in between a metal and an organic semiconductor is commonly used to improve the electron injection. Here, we investigate the effect of moderate bias voltages on the electrical properties of Al/LiF/poly(spirofluorene)/Ba/Al diodes by systematically varying the thickness of the LiF layer (2-50 nm). Application of forward bias V below the bandgap of LiF (V < E{sub g} ∼ 14 V) results in reversible formation of an electrical double layer at the LiF/poly(spirofluorene) hetero-junction. Electrons are trapped on the poly(spirofluorene) side of the junction, while positively charged defects accumulate in the LiF with number densities as high as 10{sup 25}/m{sup 3}. Optoelectronic measurements confirm the built-up of aggregated, ionized F centres in the LiF as the positive trapped charges. The charged defects result in efficient transport of electrons from the polymer across the LiF, with current densities that are practically independent of the thickness of the LiF layer.

  5. Superconductivity in Li-doped {alpha}-rhombohedral boron

    SciTech Connect

    Nagatochi, T.; Sumiyoshi, A.; Kimura, K.; Hyodo, H.; Soga, K.; Sato, Y.; Terauchi, M.; Esaka, F.

    2011-05-01

    Metal transition and superconductivity were observed in Li-doped {alpha}-rhombohedral boron ({alpha}-B{sub 12}). The authors have established a purification method and obtained a large amount of high-purity {alpha}-B{sub 12} powder. Li doping into purified {alpha}-B{sub 12} was attempted by vapor diffusion processing (VDP) in a Mo or Ta tube. Li-doped {alpha}-B{sub 12} contained metallic glittering particles. Meissner effects were observed in such a compound with the nominal composition Li{sub x}B{sub 12} (x = 1.0, 1.4, 1.5, 1.7, or 2.5) (T{sub c} = 3.2-7 K). As for Li{sub 2.5}B{sub 12}, the temperature dependence of its electrical conductivity indicates a metallic character and its electrical resistivity drop is detected near the Meissner temperature. The existence of Li and Fermi edges in Li-doped {alpha}-B{sub 12} crystals was verified by transmission electron microscopy-electron energy loss spectroscopy (TEM-EELS). Lattice expansion, which is a well-known indicator of metal doping into a crystal, was also observed. Thus, Li doping into {alpha}-B{sub 12} was successfully achieved. Our work also suggests that it is possible to dope a larger amount of Li into {alpha}-B{sub 12} and to increase its T{sub c}.

  6. Study of lithium borosilicotitanate glasses with LiCl

    SciTech Connect

    Deshpande, A. V.; Paighan, N. S.

    2012-06-05

    The effect of LiCl addition on the properties of Li{sub 2}O: B{sub 2}O{sub 3}: SiO{sub 2}: TiO{sub 2} glasses has been studied. It has been observed that the ionic conductivity increases by about half an order with LiCl addition. The decrease in glass transition temperature T{sub g} and increase in the molar volume with LiCl addition have good correlation with conductivity results. The observed increase in density of glasses has been explained on the basis of heavier Cl{sup -} ion which is accommodated in the interstices in the glass network.

  7. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging

  8. Nucleosynthesis of Li-7 in flares on UV Ceti stars

    NASA Technical Reports Server (NTRS)

    Karpen, J. T.; Worden, S. P.

    1979-01-01

    The possible production of Li-7 by nuclear reactions in UV Ceti flares has been considered. By utilizing solar observations and theory, a relationship is derived between flare energy and production rates for Li-7; approximately 100 erg of total flare energy is found to denote the formation of a Li-7 atom. Based on this value and best estimates of UV Ceti-type flare rates, it is concluded that less than 10% of the Li-7 observed in the intestellar medium may have been produced by this mechanism. Formation of significant amounts of interstellar deuterium by this method is ruled out.

  9. Li partitioning in the benthic foraminifera Amphistegina lessonii

    NASA Astrophysics Data System (ADS)

    Langer, Gerald; Sadekov, Aleksey; Thoms, Silke; Mewes, Antje; Nehrke, Gernot; Greaves, Mervyn; Misra, Sambuddha; Bijma, Jelle; Elderfield, Henry

    2015-12-01

    The shallow water benthic foraminifer Amphistegina lessonii was grown in seawater of variable Li and Ca concentration and shell Li/Ca was determined by means of LA-ICPMS. Shell Li/Ca is positively correlated to seawater Li/Ca only when the Li concentration of seawater is changed. If the seawater Ca concentration is changed, shell Li/Ca remains constant. This indicates that Li does not compete with Ca for incorporation in the shell of A. lessonii. A recently proposed calcification model can be applied to divalent cations (e.g., Mg and Sr), which compete for binding sites of ion transporters and positions in the calcite lattice. By contrast, the transport pathway of monovalent cations such as Li is probably diffusion based (e.g., ion-channels), and monovalent cations do not compete with Ca for a position in the calcite lattice. Here we present a new model for Li partitioning into foraminiferal calcite which predicts our experimental results and should also be applicable to other alkali metals.

  10. Eutectic melting of LiBH4-KBH4.

    PubMed

    Ley, Morten B; Roedern, Elsa; Jensen, Torben R

    2014-11-28

    Eutectic melting in mixtures of alkali and alkali earth metal borohydrides can pave the way for new applications as fast ionic conductors, and facilitate hydrogen release by low temperature chemical reactions and convenient nanoconfinement. Here, we determine the eutectic composition for the lithium potassium borohydride system, 0.725LiBH4-0.275KBH4, with the lowest melting point, Tmelt ∼105 °C, of all known alkali and alkali earth metal borohydride mixtures. Mechanochemistry and manual mixing of LiBH4-KBH4 mixtures facilitate the formation of LiK(BH4)2. However, the melting or heat treatments used in this work do not produce LiK(BH4)2. The bimetallic borohydride dissociates into the monometallic borohydrides at ∼95 °C and partial melting occurs at ∼105 °C. Analysis of the unit cell volumes of LiBH4, KBH4 and LiK(BH4)2 in the temperature range 25 to 90 °C indicates that the formation of the bimetallic borohydride is facilitated by a more dense packing as compared to the reactants. Thus, LiK(BH4)2 is considered metastable and the formation is pressure induced. A phase diagram for the LiBH4-KBH4 system is established, which illustrates the low eutectic melting point and the stability range for the bimetallic borohydride, LiK(BH4)2.

  11. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  12. Properties of (Ga,Mn)As codoped with Li

    NASA Astrophysics Data System (ADS)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-01

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  13. The Heusler phases LiRh{sub 2}Si and LiRh{sub 2}Ge: Synthesis, structure and properties

    SciTech Connect

    Bailey, Mark S.; Li Qingan; Lobkovsky, Emil B.; Hinks, D.G.; Mitchell, J.F.

    2008-01-15

    The isostructural Heusler phases LiRh{sub 2}Si and LiRh{sub 2}Ge have been synthesized from the elements and an excess of lithium at 1000 deg. C. Both materials adopt the CuMn{sub 2}Al crystal structure, space group Fm-3m (No. 225) with the room temperature lattice parameter a=5.747(1) A [Vol=189.866(1) A{sup 3}] and a=5.847(1) A [Vol=199.88(6) A{sup 3}] for LiRh{sub 2}Si and LiRh{sub 2}Ge, respectively. X-ray analyses suggest mixed site occupancy of the form Li{sub 1-x}Rh{sub 2}Si{sub 1+x} (x<0.4), but not for LiRh{sub 2}Ge. Both materials are diamagnetic, {chi}{sub mol}(LiRh{sub 2}Si)=-6x10{sup -5} cm{sup 3}(mole){sup -1} and {chi}{sub mol}(LiRh{sub 2}Ge)=-10x10{sup -5} cm{sup 3}(mole){sup -1} and metallic with room temperature resistivities of approximately 19 and 32 {mu}{omega} cm, respectively. These properties are consistent with the calculated electronic structure. - Graphical abstract: Rh, Li and either Si or Ge form an ordered coloring pattern of the bcc lattice in the Heusler phases LiRh{sub 2}Si and LiRh{sub 2}Ge. Crystals grown from a reactive Li flux are diamagnetic metals that exhibit a T-linear resistivity above 60 K.

  14. First-cycle irreversibility of layered Li-Ni-Co-Mn oxide cathode in Li-ion batteries.

    SciTech Connect

    Kang, S.-H.; Abraham, D. P.; Yoon, W.-S.; Nam, K.-W.; Yang, X.-Q.; Chemical Sciences and Engineering Division; BNL

    2008-07-01

    The first-cycle irreversibility of Li{sub 1.048}(Ni{sub 1/3}Co{sub 1/3}Mn{sub 1/3}){sub 0.952}O{sub 2} (LiMO{sub 2}) cathode material in lithium and lithium-ion cells has been studied using galvanostatic cycling and in situ synchrotron X-ray diffraction. The so-called 'lost capacity' of a Li/LiMO{sub 2} cell observed during initial cycle in conventional voltage ranges (e.g., 3.0-4.3 V) could be completely recovered by discharging the cell to low voltages (<2 V). During the deep discharge, the lithium cell exhibited an additional voltage plateau, which is believed to result from the formation of Li{sub 2}MO{sub 2}-like phase on the oxide particle surface due to very sluggish lithium diffusion in Li{sub 1-{Delta}}MO{sub 2} with {Delta} {yields} 0 (i.e., near the end of discharge). Voltage relaxation curve and in situ X-ray diffraction patterns, measured during relaxation of the lithium cell after deep discharge to obtain 100% cycle efficiency, suggested that the oxide cathode returned to its original state after the following two-step relaxation processes: relatively quick disappearance of the Li{sub 2}MO{sub 2}-like phase on the particle surface, followed by slow lithium diffusion in the layered structure. Experiments conducted in Li{sub 4}Ti{sub 5}O{sub 12}/LiMO{sub 2} lithium-ion cells confirmed that the physical loss of lithium (via surface film formation or parasitic electrochemical reactions, etc.) from LiMO{sub 2} was negligible up to an oxide voltage of 4.3 V vs. Li{sup +}/Li.

  15. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  16. Measuring Li+ inventory losses in LiCoO2/graphite cells using Raman microscopy

    DOE PAGES

    Snyder, Chelsea Marie; Apblett, Christopher A.; Grillet, Anne; Thomas Edwin Beechem; Duquette, David

    2016-03-25

    Here, the contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged statemore » is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair.« less

  17. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  18. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  19. Li3-O-Li3 molecule: a metal-nonmetal-metal sandwichlike compound with a distending electron cloud.

    PubMed

    Chen, Wei; Li, Zhi-Ru; Wu, Di; Li, Ying; Sun, Chia-Chung

    2005-10-22

    The D3d and D2d isomers of the Li3-O-Li3 molecule are metal-nonmetal-metal sandwichlike structures that contain two Li3 superalkali atoms. Their geometries and the real frequencies are obtained at the CCSD(T)/aug-cc-pVDZ level. They are different from the traditional types of the nonmetal-metal-nonmetal sandwich compounds. The natural bond orbital calculation and the topological property nabla2rho(r) calculation indicate that they are typical ionic compounds. In two isomers, the O2- anion is sandwiched in between two Li3+ cation rings. However, the different orientations of two Li3+ planes give the D3d isomer its own special characteristics. Under the action of the O2- anion in the center, the valence electrons of the D3d isomer are pushed out from two Li3+ triangle rings. This special interaction causes three phenomena. First, the valence electron clouds are distended. Second, the vertical ionization energy of the D3d isomer is considerably low, 4.39 eV, so that it may also be viewed as a superalkali atom. Third, we find that the D3d isomer owns the out-of-plane aromaticity and the largest negative nucleus-independent chemical shift value (-10.8 ppm) exists at 2.5 A above the center of the Li3+ ring, not at the center of the Li3+ ring like the isolated aromatic Li3+ cation.

  20. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  1. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  2. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  3. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  4. Defect Structure of Li-Doped BPO 4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jak, M. J. G.; Kelder, E. M.; Schoonman, J.

    1999-01-01

    In this paper the defect chemistry of Li-doped BPO4(BPO4-xLi2O, 0≤x≤0.1) is studied. This nanostructured ceramic electrolyte is used in all-solid-state Li-ion batteries. By changing the Li-doping level the influence on the crystal structure is studied and related to t he properties of the material. X-ray diffraction, Fourier-transformed infra-red spectroscopy (FT-IR),31P,11B, and7Li magic-angle-spinning solid state nuclear magnetic resonance, neutron diffraction, and inductively coupled plasma optical-emission spectroscopy measurements are used in order to study the structure. The electrical properties are studied with AC-impedance spectroscopy (AC-IS). The experimental data show that the defect structure of Li-doped BPO4can be described with two defect models, Li″B+2Li·iand V‴B+3Li·i, suggesting that the ionic conductivity takes place via interstitial Li ions.

  5. Primordial Li abundance and massive particles

    SciTech Connect

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  6. Searching for “LiCrIIPO4”

    NASA Astrophysics Data System (ADS)

    Mosymow, E.; Glaum, R.; Kremer, R. K.

    2014-10-01

    The two new phosphates LiCrII4(PO4)3 and Li5CrII2CrIII(PO4)4 are discovered as equilibrium phases (ϑ=800 °C) in the quarternary system Li/Cr/P/O. Their crystal structures have been determined from single-crystal X-ray diffraction data {LiCrII4(PO4)3: violet-blue, Pnma (no. 62), Z=4, a=6.175(1) Å, b=14.316(3) Å, c=10.277(2) Å, 100 parameters, R1=0.028, wR2=0.08, 2060 unique reflections with Fo>4σ(Fo); Li5CrII2CrIII(PO4)4: greyish-green, P1bar (no. 2), Z=1, a=4.9379(7) Å, b=7.917(2) Å, c=8.426(2) Å, α=109.98(2)°, β=90.71(1)°, γ=104.91(1)°, 131 parameters, R1=0.022, wR2=0.067, 1594 unique reflections with Fo>4σ(Fo)}. Li5CrII2CrIII(PO4)4 adopts an hitherto unknown structure type. The crystal structure of LiCrII4(PO4)3 is isotypic to that of NaCdII4(PO4)3 and related to that of the mineral silicocarnotite Ca5(PO4)2(SiO4). Significant disorder between Li+ and Cr2+ is observed for both crystal structures. The oxidation states assigned to chromium in these two phosphates are in agreement with UV/vis/NIR absorption spectra and magnetic susceptibility data recorded for both compounds. Instead of “LiCrIIPO4” mixtures of LiCrII4(PO4)3, Li5CrII2CrIII(PO4)4, Cr2O3, and CrP are observed at equilibrium. Instead of “Li2CrIIP2O7” four-phase mixtures consisting of Li9CrIII3(P2O7)3(PO4)2, Li3CrIII2(PO4)3, LiCrP2O7, and CrP were obtained.

  7. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    SciTech Connect

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  8. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    NASA Astrophysics Data System (ADS)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (<5% at 662 keV) but also for their capability to identify and measure the energy of both gamma rays and fast/thermal neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  9. Li-doping process for Li xSiO-negative active material synthesized by chemical method for lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tabuchi, Toru; Yasuda, Hideo; Yamachi, Masanori

    Li-doped SiO-negative active material (Li xSiO) has been successfully synthesized by chemical method with immersion in Li-organic complex solution obtained by dissolving naphthalene and metallic Li into butyl methyl ether (BME) solvent. The rest potential of resultant Li xSiO electrode drastically shifts to less noble value at the beginning of immersion and tends to be stable at around 0.21 V versus Li/Li +, which means the progress of Li-doping into SiO-negative active material. Furthermore, this chemical Li-doping process proceeds by the catalysis function of naphthalene and leads to reduce the irreversible capacity of SiO-negative electrode caused by consumption of Li sources provided from positive electrode.

  10. Thermal characterization of Li/sulfur, Li/ S-LiFePO4 and Li/S-LiV3O8 cells using Isothermal Micro-Calorimetry and Accelerating Rate Calorimetry

    NASA Astrophysics Data System (ADS)

    Seo, Jeongwook; Sankarasubramanian, Shrihari; Kim, Chi-Su; Hovington, Pierre; Prakash, Jai; Zaghib, Karim

    2015-09-01

    The thermal behavior of three cathode materials for the lithium/sulfur (Li/S) cell, namely - sulfur, sulfur-LiFePO4 (S-LFP) composite and sulfur-LiV3O8 (S-LVO) composite was studied using Isothermal Micro-Calorimetry (IMC) at various discharge rates. A continuum model was used to calculate the reversible entropic heat and irreversible resistive heat generated over the discharge process and the model data was compared to the experimental data to elucidate contributions of reversible and irreversible heats to the overall heat generated during discharge. The reaction enthalpy (ΔHRx) was measured using IMC for each elementary reaction step and in combination with the calculated reversible entropic heat and irreversible resistive heat was fitted against the experimental total heat measurement. The model showed an excellent fit against the experimental data. Further, Accelerating Rate Calorimetry (ARC) was used to study the thermal safety of these three cells. The cell with the S-LVO composite cathode was found to have the highest onset temperature for thermal runaway and also the lowest maximum self-heat rate. Results of this study suggest that S-LVO composite is a promising electrode for Li/S cells.

  11. Electrocatalysis in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Al salem, Hesham I. A.

    Stabilizing polysulfide-shuttle process while ensuring high sulfur loading holds the key to realize high theoretical energy density (2500 Wh/kg) of lithium-sulfur (Li-S) batteries. Though several carbon based porous materials have been used as host structures for sulfur and its intermediate polysulfides, the week adsorption of polysulfides on carbon surface and its poor reaction kinetics limits them from practical application. Here, we preset a novel electcatalysis approach to stabilize polysulfide shuttle process and also enhance its red-ox kinetics. As a proof of concept, we have studied in-detail using conventional electrocatalyst (Pt/graphene composite), further the same extended to cost-effective electrocatalysts such as WS2 nanosheets and Metal carbides for viable practical applications. Nature of electrocatalyst, concentration of polysulfides and temperature of the cell on electrochemical properties will be discussed. We reveal substantial improvement in electrochemical properties such as specific capacity, rate capability, and coulombic efficiency and corroborate our findings with systematic experimental studies. Interaction between electrocatalyst and polysulfides has been evaluated by conducting X-ray photoelectron spectroscopy and electron microscopy studies at various electrochemical conditions. As a conclusion, introducing a catalyst in the Li-S system will open a new avenue for improving electrochemical performance.

  12. Computational modeling of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-08-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  13. First-principles simulations of the porous layered calcogenides Li2 +xSnO3 and Li2 +xSnS3

    NASA Astrophysics Data System (ADS)

    Howard, Jason; Holzwarth, N. A. W.

    2016-08-01

    First-principles simulations of the porous layered calcogenide materials Li2SnO3 and Li2SnS3 are used to study their structures, Li ion mobilities, and their interactions with excess Li. The pristine materials are characterized by a regular pattern of voids within the calcogenide layers which are occupied by intralayer Li ions. The energetically most favorable Li ion migration processes for both materials result in a net motion perpendicular to the layers and involve intralayer Li ions and nearby interstitial sites. The ideal lattice has eight symmetry related stable interstitial sites within the conventional unit cell which, in addition to participating in the Li ion migration processes, are also important for accommodating excess Li during lithiation processes. Consistent with experimental findings, the simulations find that the addition of Li atoms to Li2SnO3 results in a disruption of the calcogen lattice with the breaking of Sn-O bonds. The estimated voltage versus bcc Li for this system is in qualitative agreement with experiment provided that Sn/Li disorder is taken into account. By contrast, the simulations predict that the addition of Li atoms to Li2SnS3 results in a stable metallic material up to a stoichiometry of Li3SnS3 . This prediction has not yet been studied experimentally. Simulations of surfaces of these materials find that it is energetically favorable to add a small amount of excess surface Li. However, interfaces of these materials with Li metal are found to be reactive. Some of the findings may be relevant to other materials having the same crystal structure such as Li2MnO3 and Li2TiO3 .

  14. The influence of temperature and salinity on the Li/Ca and d7Li of inorganic and biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Marriott, C.; Staubwasser, M.; Crompton, R.; Henderson, G.

    2003-04-01

    Lithium is the sixth most abundant metal in the ocean. It is conservative with a residence time of around 1Ma and has two stable isotopes ^7Li and ^6Li that are not actively involved in biological processes. Isotopic fractionation is observed during incorporation into calcium carbonate but no previous work has systematically examined the controls on this fractionation. We have investigated Li incorporation and isotopic fraction in both inorganically precipitated calcite and coralline aragonite (1). In both cases there is an inverse correlation of Li concentration with temperature and no significant variation in isotopic fractionation. A decrease in D Li/Ca from 0.0092 to 0.0030 is seen over a temperature range of 5--30^oC, whilst an offset of approximately -8.5 ppm is seen in the δ^7Li ratio relative to the growth solution. The temperature dependence of Li/Ca has an increased sensitivity at low temperatures and might therefore be useful in examining changes in bottom water temperature. We are now investigating Li/Ca and δ^7Li of foraminifera. Previous work (2) has suggested little variability in Li/Ca with temperature, although this was for samples from warmer water where Li/Ca is not sensitive. In this study, Uvigerina are examined in a series of core top samples from the Arabian Sea with a depth range of 95--1800m and corresponding temperature range of 5--20^oC. A series of inorganic calcite samples have also been precipitated in order to examine the effect of salinity on Li/Ca, δ^7Li and δ44Ca over a salinity range of 10--50 psu. The distribution coefficient of Li shows a positive correlation with salinity over this range. δ^7Li and δ44Ca measurements for these samples are presently being analysed. (1) Marriott et al., 2002, GCA, 66, A485 (2) Delaney et al., 1985, GCA, 49, 1327

  15. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO(4) for Li-ion batteries.

    PubMed

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E

    2011-10-01

    Core-shell, nano-sized LiFePO(4)-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO(4) particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C(2)H(2) in an O(2)-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0LiFePO(4) particles were formed at fuel-lean conditions (0.8LiFePO(4) with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO(4) or segregated LiFePO(4)-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO(4) to Fe(2)P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO(4) and even slight LiFePO(4) crystal growth but better electrochemical performance. The present carbon-coated LiFePO(4) showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO(4). PMID:23407817

  16. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries

    PubMed Central

    Waser, Oliver; Büchel, Robert; Hintennach, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-01-01

    Core-shell, nanosized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core-shell morphology was obtained at slightly fuel-rich conditions (1.0 < EQR < 1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8 < EQR < 1). Post-annealing of core-shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 hours established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4-ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4. PMID:23407817

  17. An Update on C458 AI-Li for Cryotanks

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.; Rioja, Roberto; Jata, Kumar

    2003-01-01

    This viewgraph representation provides an overview of ongoing research being conducted on C458 Al-Li composite cryotanks. Topics covered include: structural design of C458 Al-Li cryotanks, C458 ingot casting capability, C458 plate properties, summary of attained properties, design database capabilities, fatigue tests and testing, and ongoing research projects.

  18. Understanding oxygen reactions in aprotic Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Shunchao, Ma; Yelong, Zhang; Qinghua, Cui; Jing, Zhao; Zhangquan, Peng

    2016-01-01

    Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an in-depth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell’s performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry. Project supported by the Recruitment Program of Global Youth Experts of China, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010401), the Science and Technology Development Program of Jilin Province, China (Grant No. 20150623002TC), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131139).

  19. Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries

    SciTech Connect

    Ein-Eli, Y.; Thomas, S.R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A.

    1996-12-01

    Ethylmethylcarbonate (EMC) has been found to be a promising solvent for rechargeable Li-ion batteries. Graphite electrodes, which are usually sensitive to the composition of the electrolyte solution, can be successfully cycled at high reversible capacities in several Li salt solutions in this solvent (LiAsF{sub 6}, LiPF{sub 6}, etc.). These results are interesting because lithium ions cannot intercalate into graphite in diethyl carbonate solutions and cycle poorly in dimethyl carbonate solutions. To understand the high compatibility of EMC for Li-ion battery systems as compared with the other two open-chain alkyl carbonates mentioned above, the surface chemistry developed in both Li and carbon electrodes in EMC solution was studied and compared with that developed on these electrodes in other alkyl carbonate solutions. Basically, the major surface species formed on both electrodes in EMC include ROLi, ROCO{sub 2}Li, and Li{sub 2}CO{sub 3} species. The uniqueness of EMC as a battery solvent is discussed in light of these studies.

  20. Using LiDAR to characterize logjams in lowland rivers

    NASA Astrophysics Data System (ADS)

    Abalharth, Mahdi; Hassan, Marwan A.; Klinkenberg, Brian; Leung, Vivian; McCleary, Richard

    2015-10-01

    Logjams significantly influence watershed hydrology, flow regime, channel morphology and stability, and processes in lowland rivers. Consequently, logjams play a major role in the existence and conservation of the riparian and aquatic ecosystems along major waterways. In this paper, we attempt to detect and quantify logjams in river channels using LiDAR technology in conjunction with traditional fieldwork. To the best of our knowledge, LiDAR-based analysis has not been used to characterize logjams in streams. Overall, when applied in a lowland river environment, LiDAR-based analysis demonstrates a comprehensive solution for detecting logjams in relation to the fieldwork, with a low rate of omission. A filtered approach predicted the presence of 95% of fieldwork-reported logjams (a 5% rate of omission), but also identified six logjams not identified in the field (a 10% rate of commission). A nonfiltered approach identified 87% of field-reported logjams, producing a 13% rate of omission and a 6.7% rate of commission. Dimension measurements were more consistent in the filtered LiDAR approach, showing 53%, 34%, and 90% of R2 improvements for the length, width, and height, respectively, over the unfiltered LiDAR values. As vegetation cover hindered accurate delineation of logjam boundaries by LiDAR, field and LiDAR measurements of nonvegetation-obstructed logjams were more highly correlated than the field and LiDAR measurements of partially and completely vegetation-obstructed logjams.

  1. Si(Li) X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    The general considerations involved in the choice of Si(Li) as a non-dispersive spectrometer for X-ray astronomy are discussed. In particular, its adaptation to HEAO-B is described as an example of the space-borne application of Si(Li) technology.

  2. Rigorous LiDAR Strip Adjustment with Triangulated Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Xiong, X. D.; Hu, X. Y.

    2013-10-01

    This paper proposes a POS aided LiDAR strip adjustment method. Firstly, aero-triangulation of the simultaneously obtained aerial images is conducted with a few photogrammetry-specific ground control points. Secondly, LiDAR intensity images are generated from the reflectance signals of laser foot points, and conjugate points are automatically matched between the LiDAR intensity image and the aero-triangulated aerial image. Control points used in LiDAR strip adjustment are derived from these conjugate points. Finally, LiDAR strip adjustment of real data is conducted with the POS aided LiDAR strip adjustment method proposed in this paper, and comparison experiment using three-dimensional similarity transformation method is also performed. The results indicate that the POS aided LiDAR strip adjustment method can significantly correct the planimetric and vertical errors of LiDAR strips. The planimetric correction accuracy is higher than average point distance while the vertical correction accuracy is comparable to that of the result of aero-triangulation. Moreover, the proposed method is obliviously superior to the traditional three-dimensional similarity transformation method.

  3. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    SciTech Connect

    Baklanova, Ya. V.; Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N.; Denisova, T.A.; Shein, I.R.; Maksimova, L.G.

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spin–lattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spin–lattice relaxation time decrease abruptly at the temperature increasing above ∼500 K, whereas the EFG parameters are averaged (〈ν{sub Q}〉=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: • Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. • Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. • The distribution of vacancies was clarified for both lithium sites. • The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  4. H2 adsorption in Li-decorated porous graphene

    NASA Astrophysics Data System (ADS)

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh; Munieswaran, P.; Saranya, C.; Mahendran, M.

    2015-06-01

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H2) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H2 molecules get adsorbed on each Li atom. The maximum H2 storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE's revised target for the on-board vehicles. The average H2 adsorption binding energy is 0.535 eV/H2, which lies between 0.2-0.6 eV/H2 that is required for achieving adsorption and desorption at near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.

  5. Hollow Li20B60 Cage: Stability and Hydrogen Storage

    PubMed Central

    Wang, Jing; Wei, Zhi-Jing; Zhao, Hui-Yan; Liu, Ying

    2016-01-01

    A stable hollow Li20B60 cage with D2 symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li20B60 cage is exceptionally stable. The feasibility of functionalizing Li20B60 cage for hydrogen storage was explored theoretically. Our calculated results show that the Li20B60 molecule can adsorb a maximum of 28 hydrogen molecules. With a hydrogen uptake of 8.190 wt% and an average binding energy of 0.336 eV/H2, Li20B60 is a remarkable high-capacity storage medium. PMID:27076264

  6. Hollow Li20B60 Cage: Stability and Hydrogen Storage.

    PubMed

    Wang, Jing; Wei, Zhi-Jing; Zhao, Hui-Yan; Liu, Ying

    2016-04-14

    A stable hollow Li20B60 cage with D2 symmetry has been identified using first-principles density functional theory studies. The results of vibrational frequency analysis and molecular dynamics simulations demonstrate that this Li20B60 cage is exceptionally stable. The feasibility of functionalizing Li20B60 cage for hydrogen storage was explored theoretically. Our calculated results show that the Li20B60 molecule can adsorb a maximum of 28 hydrogen molecules. With a hydrogen uptake of 8.190 wt% and an average binding energy of 0.336 eV/H2, Li20B60 is a remarkable high-capacity storage medium.

  7. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  8. Recombination luminescence from electron-irradiated Li-diffused Si

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Lithium doping has a dramatic effect on the low-temperature photoluminescence of electron-irradiated Si. In oxigen-lean Si with Li doping, a new irradiation-dependent luminescence band between 0.75 and 1.05 eV is observed, which is dominated by a zero-phonon peak at 1.045 eV. This band is believed to be due to radiative transitions involving a Li-modified divacancy. This band is present also in oxygen-rich, Li-diffused Si and is accompanied by bands previously related to the Si-G15(K) center and the divacancy. The intensities of the Li-modified divacancy and Si-G15(K) center bands are relatively weak in the oxygen-rich material, apparently due to the formation of lithium-oxygen complexes which reduce the concentration of unassociated interstitial Li and O.

  9. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    SciTech Connect

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  10. Er3+ diffusion in congruent LiNbO3 crystal in Li-enriched atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Jia, Qi-Shen; Hua, Ping-Rang; Pei-Zhang, Zhang, Wen-Jun; Yang, Qing-Zhong; Liu, Hong-Li; Cui, Yu-Ming; Pun, E. Y. B.

    2007-10-01

    The thermal diffusion of Er3+ into X- and Z-cut congruent LiNbO3 crystal in Li-enriched atmosphere [i.e., vapor transport equilibration (VTE)], created by Li3NbO4-LiNbO3 two-phase powder at the temperature around 1130°C, was attempted. Single-crystal x-ray diffraction, micro-Raman, photoluminescence spectroscopy, and secondary ion mass spectrometry (SIMS) were used to study the crystalline phase with respect to Er3+ ion and the Er3+ diffusivity. The results show that the thickness of the Er film coated should not be thicker than 10nm for an X-cut plate and 15nm for a Z-cut plate. In this case, the diffusion is complete if the duration is long enough (>150h ) and the Er3+ ions in the diffused layer still retain the LiNbO3 phase. On the other hand, if the initial thickness of the Er metal film is thicker than 10nm for the X-cut plate and 15nm for the Z-cut plate, the diffusion will be incomplete no matter how long the duration is. This is because the residual Er3+ ions form irremovable ErNbO4 grains on the surface of the crystal. SIMS analysis on an X-cut VTE (1130°C/192h) and a Z-cut VTE (1129°C/158h) crystal coated, respectively, with 10 and 15nm thick Er film reveals that the Er diffusion shows obvious anisotropy with the mean diffusion coefficients of 0.0155 and 0.0957μm2/h, respectively. The surface concentrations are 1.5×1020 and 1.0×1020at./cm3, respectively. The diffused Er3+ ions follow the stretched-exponential decay profile with a stretching factor of 1.85 and 3.5, respectively. The Li /Nb ratio in the Er-diffused layer is similar to 99.4% for the X-cut sample coated with 10nm thick Er film and 99.3% for the Z-cut crystal coated with 15nm thick Er film. The rms roughness of the diffused surface is better than 6 and 4nm for the X-cut and Z-cut samples, respectively.

  11. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    PubMed

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  12. Mössbauer spectra as a “fingerprint” in tin lithium compounds: Applications to Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Robert, F.; Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J.-C.; Gillot, F.; Morcrette, M.; Tarascon, J.-M.

    2007-01-01

    Several Li-Sn crystalline phases, i.e. Li 2Sn 5, LiSn, Li 7Sn 3, Li 5Sn 2, Li 13Sn 5, Li 7Sn 2 and Li 22Sn 5 were prepared by ball-milling and characterized by X-ray powder diffraction and 119Sn Mössbauer spectroscopy. The analysis of the Mössbauer hyperfine parameters, i.e. isomer shift ( δ) and quadrupole splitting ( Δ), made it possible to define two types of Li-Sn compounds: the Sn-richest compounds (Li 2Sn 5, LiSn) and the Li-richest compounds (Li 7Sn 3, Li 5Sn 2, Li 13Sn 5, Li 7Sn 2, Li 22Sn 5). The isomer shift values ranged from 2.56 to 2.38 mm s -1 for Li 2Sn 5, LiSn and from 2.07 to 1.83 mm s -1 for Li 7Sn 3, Li 5Sn 2, Li 13Sn 5, Li 7Sn 2 and Li 22Sn 5, respectively. A Δ- δ correlation diagram is introduced in order to identify the different phases observed during the electrochemical process of new Sn-based materials. This approach is illustrated by the identification of the phases obtained at the end of the first discharge of η-Cu 6Sn 5 and SnB 0.6P 0.4O 2.9.

  13. Dynamic studies of {sup 11}Li and its core {sup 9}Li on {sup 208}Pb near the Coulomb barrier

    SciTech Connect

    Cubero, M.; Borge, M. J. G.; Alcorta, M.; Madurga, M.; Tengblad, O.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alvarez, M. A. G.; Gomez-Camacho, J.; Diget, C.; Galaviz, D.; Fernandez-Garcia, J. P.; Lay, J. A.; Moro, A. M.; Mukha, I.; Shotter, A.; Walden, P.

    2010-04-26

    We measured the scattering of the halo nucleus {sup 11}Li and its core {sup 9}Li on the lead target at TRIUMF at energies below and around to the Coulomb barrier. We report here on our preliminary analysis of the inclusive breakup reaction.

  14. Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; Howard, John W.; Lü, Xujie; Li, Yutao; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping; Zhao, Yusheng

    2016-09-01

    Cubic anti-perovskites with general formula Li3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li3OBr and layered Li7O2Br3, by solid state reaction routes. The results indicate that with the phase fraction of Li7O2Br3 increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li3OBr. Formation energy calculations revealed the meta-stable nature of Li7O2Br3, which supports the great difficulty in producing phase-pure Li7O2Br3 at ambient pressure. Methods of obtaining phase-pure Li7O2Br3 will continue to be explored, including both high pressure and metathesis techniques.

  15. An attempt to study LiH and Li{sub 2} molecules by high resolution pulsed laser spectroscopy

    SciTech Connect

    Bouloufa, Nadia; Cabaret, Louis; Cacciani, Patrice; Camus, Pierre; Pitcheev, Boris; Vetter, Raymond

    1998-12-16

    As we start a program to study alkali hydrides and dimers, we have developed a two-step photoionisation experiment on Li{sub 2} molecules based on the use of an atomic beam and two pulsed dye lasers. The first resonant step which excites the A {sup 1}{sigma}{sub u}{sup +}-X {sup 1}{sigma}{sub g}{sup +}Li{sub 2} dimer systems is a home-made cw-seeded DCM dye laser with a laser linewidth of 55 MHz (FWHM) and near the Fourier transform limit. The second step is a larger width fixed frequency UV laser which allows the photoionisation of the selectively excited molecules. The three {sup 6}Li{sub 2}, {sup 6}Li {sup 7}Li and {sup 7}Li{sub 2} spectra are recorded simultaneously by the use of a doubly-accelerating time-of-flight ion analyser. Comparison between recorded and calculated absorption spectra using Dunham parameters found in the literature is satisfactory. To develop similar pulsed high-resolution investigations in LiH, we have characterized our molecular beam by using the laser induced fluorescence (LIF) technique with a cw blue dye laser. Two Franck-Condon LiH Doppler-free resonances have been observed.

  16. The properties of and analytical methods for detection of LiOH and Li2CO3

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna

    1991-01-01

    Lithium hydroxide (LiOH) is used as a CO2 absorbent in the Shuttle Extravehicular Mobility Unit (EMU) Portable Life Support System (PLSS). The first objective was to survey parameters that may be used to indicate conversion of LiOH to Li2CO3, and compile a list of all possible properties, including physical, chemical, structural, and electrical, that may serve to indicate the occurrence of reaction. These properties were compiled for the reactant (LiOH), the intermediate monohydrate compound (LiOH.H2O), and the final product (Li2CO3). The second objective was to survey measurement and analytical techniques which may be used in conjunction with each of the properties identified above, to determine the extent of conversion of LiOH to Li2CO3. Both real-time and post-run techniques were of interest. The techniques were also evaluated in terms of complexity, technology readiness, materials/equipment availability, and cost, where possible.

  17. Kinetic measurement and prediction of the hydrogen outgassing from the polycrystalline LiH/LiOH system

    SciTech Connect

    Dinh, L N; Grant, D M; Schildbach, M A; Smith, R A; Leckey, J H; Siekhaus, W J; Balazs, B; McLean II, W

    2005-03-09

    In this report, we present the use of temperature programmed reaction/decomposition (TPR) in the isoconversion mode to measure outgassing kinetics and to make kinetic prediction concerning hydrogen release from the polycrystalline LiH/LiOH system in the absence of any external H{sub 2}O source.

  18. ERD measurement of depth profiles of H and Li in Pt-coated LiCoO2 thin films

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Morita, K.; Iriyama, Y.; Majima, T.; Tsuchida, H.

    2013-11-01

    By combining elastic recoil detection (ERD) analysis with Rutherford backscattering spectrometry (RBS) using 9.0-MeV oxygen-ion (O4+) probe beams from a tandem accelerator, we simultaneously investigated the distributions of lithium (Li), hydrogen (H), cobalt (Co), and platinum (Pt) in 20 nm Pt/260 nm LiCoO2 multi-layer thin films acting as the positive electrode in a solid-state Li+ ion battery and, deposited on Li1.4Ti2Si0.4P2.6O12-AlPO4 (LATP) substrates by using pulsed laser deposition. Measurement of the ERD and RBS spectra revealed the effects of Pt deposition on the hydrogen absorption characteristics of the LiCoO2 thin films, with segregation of Co to the surface as a catalyst. We speculate from the results that the presence of H in the LiCoO2 thin films has a marked influence on Li+ ion conduction in Li-battery systems.

  19. Novel Phase Transitions in the Breathing Pyrochlore Lattice: Li7-NMR on LiInCr4O8 and LiGaCr4O8

    NASA Astrophysics Data System (ADS)

    Tanaka, Yu; Yoshida, Makoto; Takigawa, Masashi; Okamoto, Yoshihiko; Hiroi, Zenji

    2014-11-01

    We report Li7-NMR studies on LiInCr4O8 and LiGaCr4O8, in which Cr3 + ions with spin 3 /2 form a breathing pyrochlore lattice, a network of tetrahedra with alternating sizes. In LiInCr4O8 with large alternation, the nuclear relaxation rate 1 /T1 shows an activated temperature (T ) dependence down to 18 K, indicating a singlet ground state with a spin gap. This behavior, however, is disrupted by an antiferromagnetic transition at 13 K, which is preceded by another, most likely structural, transition at 16 K. In contrast, LiGaCr4O8 with a small alternation shows no spin gap but exhibits a first-order antiferromagnetic transition over a distributed T range 13-20 K. Nevertheless, 1 /T1 of the paramagnetic phase diverges toward 13 K, indicating proximity to a second-order transition. The results indicate that LiGaCr4O8 is located in the vicinity of a tricritical point in the phase diagram.

  20. A detailed reactive cross section study of X + Li2 → Li + LiX, with X = H, D, T, and Mu.

    PubMed

    da Cunha, Wiliam F; Leal, Luciano A; da Cunha, Thiago F; e Silva, Geraldo M; Martins, João B L; Gargano, Ricardo

    2014-07-01

    In this work we apply quasiclassical trajectory theory to the X + Li2 → Li + LiX reactions, with X standing for H, D, T, and Mu, in order to determine dynamical properties such as state-to-state reactive cross-section, rotational, vibrational, and translational product distributions. By using the literature benchmark potential energy surface, we were able to predict the aforementioned dynamical property in remarkable qualitative agreement with data in the literature for the H + Li2 → Li + LiH channel. Particularly, our results points toward the well known cross section independence with ro-vibrational excitations for high excitation regimes. Since the methodology is known to be well suited for the other species, as we considered the same PES, our results are expected to be similarly accurate for D, T, and Mu. The present work consists on a significant progress in this area of research, since previous theoretical calculations-based on known potential energy surface-deviated from the experimental results.

  1. The {sup 9}Be({sup 8}Li,{sup 9}Be){sup 8}Li elastic-transfer reaction

    SciTech Connect

    Camargo, O.; Guimaraes, V.; Lichtenthaeler, R.; Scarduelli, V.; Kolata, J. J.; Bertulani, C. A.; Amro, H.; Becchetti, F. D.; Jiang Hao; Aguilera, E. F.; Lizcano, D.; Martinez-Quiroz, E.; Garcia, H.

    2008-09-15

    Angular distributions for the {sup 9}Be({sup 8}Li,{sup 9}Be){sup 8}Li elastic-transfer reaction have been measured with a 27-MeV {sup 8}Li radioactive nuclear beam. Spectroscopic factors for the <{sup 9}Be|{sup 8}Li+p> bound system were obtained from the comparison between the experimental differential cross sections and finite-range distorted-wave Born approximation calculations made with the code FRESCO. The spectroscopic factors so obtained are compared with shell-model calculations and other experimental values. Using the present value for the spectroscopic factors, cross sections and reaction rates for the {sup 8}Li(p,{gamma}){sup 9}Be direct proton-capture reaction of astrophysical interest were calculated in the framework of the potential model.

  2. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability. PMID:24855459

  3. Effect of Li diffusion on the domain inversion of LiNbO3 prepared by vapor transport equilibration

    NASA Astrophysics Data System (ADS)

    Chen, Yunlin; Xu, Jingjun; Kong, Yongfa; Chen, Shaolin; Zhang, Guangyin; Wen, Jianping

    2002-07-01

    LiNbO3 crystals with a composition close to stoichiometry were prepared by using a vapor transport equilibration (VTE) technique. The influence of the intrinsic defect density in the electric field periodic poling LiNbO3 crystal is studied. The switching field is found to decrease with the intrinsic defects. The reduction of intrinsic defects is mainly due to a change in the Li/Nb ratio in the LiNbO3 crystal, as a result of lithium diffusion during the VTE process. The switching field of approx2 kV/mm in stoichiometric LiNbO3 is about one fourth of the previously published results obtained with near-stoichiometric crystals, and is approximately one tenth of the conventional congruent field. Periodic poling of thicker stoichiometric substrates was successfully performed by means of an electric field poling process at room temperature.

  4. Determination of the Li/Nb ratio in LiNbO 3 crystals prepared by vapor transport equilibration method

    NASA Astrophysics Data System (ADS)

    Chen, Yunlin; Zhang, Wanlin; Shu, Yongchun; Lou, Cibo; Kong, Yongfa; Huang, Ziheng; Xu, Jingjun; Zhang, Guangyin

    2003-07-01

    Off-congruent lithium niobate (LiNbO 3) single crystal was prepared by vapor transport equilibration (VTE). The Li/Nb ratio was determined by means of indirect methods such as the lattice parameters, the fundamental absorption edge position and the IR vibrational spectrum. Comparison of the results of the VTE LiNbO 3 with those of the congruent crystal and congruent composition melt added 6 wt% K 2O. In all cases the Li 2O content was found to be closer to 50% than that of the congruent composition melt added 6 wt% K 2O. The homogeneity of the composition in the crystal was also investigated. The data presented in this work show that the VTE method can be effectively applied to produce LiNbO 3 stoichiometric crystal.

  5. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability.

  6. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  7. Low Temperature Milling of the LiNH2 + LiH Hydrogen Storage System

    SciTech Connect

    Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.; Hu, Jian Z.; Kwak, Ja Hun; Yang, Zhenguo

    2009-05-01

    Ball milling of the LiNH2 + LiH storage system was performed at 20°C, -40°C, and -196°C, and the resulting powders were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), specific surface area (SSA) analysis, and kinetics cycling measurements. Ball milling at -40°C showed no appreciable deviations from the 20°C sample, but the -196°C powder exhibited a significant increase in the hydrogen desorption kinetics. NMR analysis indicates that a possible explanation for the kinetics increase is the retention of internal defects generated during the milling process that are annealed at the collision site at higher milling temperatures.

  8. Orbitally driven trimerization in LiVO2 and LiVS2: a ``partial Mott transition''

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Khomskii, D. I.

    2011-03-01

    Layered triangular-lattice transition-metal compounds often display interesting magnetic and electronic properties. Here we studied the formation of the trimerized spin-singlet state of the V3+ (S = 1) in vanadates Li VO2 and Li VS2 and their electronic structure with a special orbital order, using constrained LSDA+ U calculations combined with lattice optimization. The obtained results show that the trimerization distortion in Li VO2 increases as the effective U decreases, and the calculated distortion of ~ 0.3 AA at the small U = 1 eV agrees well with the experiments, indicating that Li VO2 is close to a metal-insulator transition. The corresponding distortion in Li VS2 is even stronger, being ~ 0.4 AA at the U = 1 eV, which is due to enhanced electron delocalization via increased V-S covalency, in spite of a lattice expansion. This agrees with the experimental finding that Li VS2 has a metal-insulator transition. The calculated energy gain associated with the trimerization well accounts for the observed structural phase transition temperature in Li VO2 and Li VS2 . We conclude that the trimerization in Li VO2 and Li VS2 is due to a partial delocalization of the orbitally ordered electrons---a ``partial Mott transition,'' occurring not in the whole system but in small clusters (here in trimers). This situation is contrasted with that in Na VO2 , which is further away from the localized-itinerant crossover and thus remains insulating with different orbital ordering.

  9. Dependence of LiNO3 decomposition on cathode binders in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Godoi, Fernanda Condi de; Wang, Da-Wei; Zeng, Qingcong; Wu, Kuang-Hsu; Gentle, Ian R.

    2015-08-01

    This study brings a new insight into the interfacial compatibility of cathode binders with modified electrolytes in lithium-sulfur batteries. We compared the oxygen-containing binders sodium alginate (NaAlg) and sodium carboxymethyl cellulose (NaCMC) with the conventional oxygen-free polyvinylidene difluoride. The results revealed that the NaAlg and NaCMC binders strongly facilitated the decomposition of the electrolyte additive LiNO3 at potentials lower than 1.8 V. This is primarily attributed to the influence of oxygen-containing functional groups. However, when LiNO3 was absent from the electrolyte, the sulfur cathode with the NaAlg binder showed the most stable performance. To prevent LiNO3 decomposition and acquire stable cycling, the discharge voltage was limited to 1.8 V. At the conclusion of testing (100 cycles, voltage cutoff = 1.8 V), the NaAlg-based cathode maintained 608 mAh g-1 of capacity (52% of the initial capacity). This represented a 35% increase in the specific capacity obtained at the 100th discharge cycle with the cutoff voltage at 1.5 V. Our results suggest a rational choice of the binders used in sulfur composite cathodes.

  10. Li NMR study of heavy-fermion LiV2O4 containing magnetic defects

    SciTech Connect

    Zong, X.; Das, S.; Borsa, F.; Vannette, M.; Prozorov, R.; Schmalian, J.; Johnston, D.

    2008-04-21

    We present a systematic study of the variations of the {sup 7}Li NMR properties versus magnetic defect concentration up to 0.83 mol% within the spinel structure of polycrystalline powder samples and a collection of small single crystals of LiV2O4 in the temperature range from 0.5 to 4.2 K. We also report static magnetization measurements and ac magnetic susceptibility measurements at 14 MHz on the samples at low temperatures. Both the NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in the presence of the magnetic defects. The NMR data for the powders are well explained by assuming that (i) there is a random distribution of magnetic point defects, (ii) the same heavy Fermi liquid is present in the samples containing the magnetic defects as in magnetically pure LiV2O4, and (iii) the influences of the magnetic defects and of the Fermi liquid on the magnetization and NMR properties are separable. In the single crystals, somewhat different behaviors are observed. Remarkably, the magnetic defects in the powder samples show evidence of spin freezing below T {approx} 1.0 K, whereas in the single crystals with similar magnetic defect concentration no spin freezing was found down to 0.5 K. Thus different types of magnetic defects and/or interactions between them appear to arise in the powders versus the crystals, possibly due to the substantially different synthesis conditions of the powders and crystals.

  11. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2016-05-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  12. Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    NASA Astrophysics Data System (ADS)

    Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.

    2015-05-01

    The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.

  13. Mass-spectrometric study of vaporization and thermodynamic properties of Li 2ZrO 3(s)

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinari; Asano, Mitsuru; Harada, Toshio; Mizutani, Yasuo

    1993-07-01

    Partial pressures of Li(g), LiO(g), Li 2O(g) and O 2(g) over Li 2ZrO 3(s) have been determined by a mass-spectrometric Knudsen effusion method. Over various lithium-containing oxides, the partial pressures of Li 2O(g) decrease in the following order: Li 2 O > Li 5AlO 4 ⋍ Li 4TiO 4 ⋍ Li 8PbO 6 > Li 2SnO 3 > Li 4SiO 4 > Li 2TiO 3 ⋍ Li 2ZrO 3 > LiAlO 2 ⋍ Li 2SiO 3 > LiNbO 3. From the gas-solid equilibria, enthalpies of formation for Li 2ZrO 3(s) from elements and from constituent oxides have been calculated to be ΔfHo298( Li2ZrO3, s) = -(1742.3 ± 8.8) kJmol-1 and ΔfoxHo298( Li2ZrO3, s) = -(46.1 ± 92) KJmol-, respectively. Enthalpies of the reaction for adding 1 mole of Li 2O(s) to various oxides decrease with increasing the Li 2O molar content. The results show that the oxides with less Li 2O molar content have more ability to stabilize the pseudo-Li 2O component for lithium aluminates, silicates, titanates, molybdates, ferrates and zirconates.

  14. Lava flow texture LiDAR signatures

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Irwin, R. P., III; Fox, J.; Bleacher, J. E.; Hamilton, C. W.

    2014-12-01

    High-resolution point clouds and digital elevation models (DEMs) are used to investigate lava textures on the Big Island of Hawaii. An experienced geologist can distinguish fresh or degraded lava textures (e.g., blocky, a'a and pahoehoe) visually in the field. Lava texture depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., Mercury, Venus, the Moon, Mars, Io and remote regions on Earth) lava texture must be assessed from remote sensing data. A reliable method for differentiating lava textures in remote sensing data remains elusive. We present preliminary results comparing properties of lava textures observed in airborne and terrestrial Light Detection and Ranging (LiDAR) data. Airborne data, in this study, were collected in 2011 by Airborne 1 Corporation and have a ~1m point spacing. The authors collected the terrestrial data during a May 2014 field season. The terrestrial scans have a heterogeneous point density. Points close to the scanner are 1 mm apart while 200 m in the distance points are 10 cm apart. Both platforms offer advantages and disadvantages beyond the differences in scale. Terrestrial scans are a quantitative representation of what a geologist sees "on the ground". Airborne scans are a point of view routinely imaged by other remote sensing tools, and can therefore be quickly compared to complimentary data sets (e.g., spectral scans or image data). Preliminary results indicate that LiDAR-derived surface roughness, from both platforms, is useful for differentiating lava textures, but at different spatial scales. As all lava types are quite rough, it is not simply roughness that is the most advantageous parameter; rather patterns in surface roughness can be used to differentiate lava surfaces of varied textures. This work will lead to faster and more reliable volcanic mapping efforts for planetary exploration as well as terrestrial

  15. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes

    PubMed Central

    2016-01-01

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g–1) and working voltage (4.1 V vs Li+/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g–1 at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g–1. The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times. PMID:26799094

  16. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    PubMed

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  17. Developing New Electrolytes for Advanced Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  18. Theoretical study of Si20Li20 cage cluster

    NASA Astrophysics Data System (ADS)

    Zdetsis, Aristides D.; Koukaras, Emmanuel N.

    2012-12-01

    The stabilization effects of Li on Si20Li20 cage clusters, as a special example of SinLin clusters, are studied by high accuracy all electron density functional theory calculations. This allows to assess the capability of Li to play a role similar to hydrogen in stabilizing silicon cages similar to SinHn (and CnHn), in view of its capacity to stabilize planar Si6Li6 rings similar to benzene. It is shown that indeed Si20Li20 is a very stable cage of high D5d symmetry with large HOMO-LUMO gap and real frequencies. Based on the binding energy, its stability is the highest among all Si20Li20 clusters examined here, including almost all conceivable best and worst bonding and stability cases. This is highly suggestive that this highly symmetric "icosahedral" cage should be the global, or at least a very low-lying local minimum of the energy hyper-surface. It is therefore illustrated that the "rule of thumb" for building stable SinLin structures homologous to the corresponding aromatic CnHn molecules suggested earlier by Zdetsis [J. Chem. Phys. 127, 214306 (2007)], is also valid for "Fulleranes" and cages, including also the geometry and symmetry of the ideal structure(s). Preliminary results on Si60Li60 cages confirm this assertion.

  19. Processing LiDAR Data to Predict Natural Hazards

    NASA Technical Reports Server (NTRS)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  20. Li intercalation at graphene/hexagonal boron nitride interfaces

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Kaxiras, Efthimios

    2016-06-01

    Intercalation of Li in graphite and other layered structures is of interest for highly efficient energy storage devices. In this paper, we determine the extent to which Li intercalates at the different interfaces formed between graphene (G) and hexagonal boron nitride (hBN) heterostructures. We use ab initio calculations to explore in detail the position of the dispersed Li atoms, changes in the structure at the interfaces, energetic stability of the configurations, and the corresponding electronic structure with varying concentrations of the intercalant. We trace the origin of the energetic stability and maximum concentration of Li that intercalates into various layered structures to the ability of the interface to accept electrons. Our calculations indicate that Li intercalates easiest at G/G interfaces, followed by interfaces between G/hBN, whereas Li cannot intercalate in hBN/hBN interfaces. Our results provide a framework for the design of experimental setups with optimal Li intercalation and reveal the implications of intercalation on the dielectric properties of these materials and their possible application in plasmonics.

  1. Exploring tree species signature using waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2015-12-01

    Successful classification of tree species with waveform LiDAR data would be of considerable value to estimate the biomass stocks and changes in forests. Current approaches emphasize converting the full waveform data into discrete points to get larger amount of parameters and identify tree species using several discrete-points variables. However, ignores intensity values and waveform shapes which convey important structural characteristics. The overall goal of this study was to employ the intensity and waveform shape of individual tree as the waveform signature to detect tree species. The data was acquired by the National Ecological Observatory Network (NEON) within 250*250 m study area located in San Joaquin Experimental Range. Specific objectives were to: (1) segment individual trees using the smoothed canopy height model (CHM) derived from discrete LiDAR points; (2) link waveform LiDAR with above individual tree boundaries to derive sample signatures of three tree species and use these signatures to discriminate tree species in a large area; and (3) compare tree species detection results from discrete LiDAR data and waveform LiDAR data. An overall accuracy of the segmented individual tree of more than 80% was obtained. The preliminary results show that compared with the discrete LiDAR data, the waveform LiDAR signature has a higher potential for accurate tree species classification.

  2. The diffusive overshooting approach to Li abundance in clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Q. S.

    2012-12-01

    Helioseimic investigation shows that convective overshooting can penetrate 0.37HP to the location where the temperature is 2.5 × 106 K, which is the typical temperature of the reaction Li7(p, α)He4. This indicates that overshooting mixing should be involved in investigating the solar Li abundance problem. Observations of the Li abundance of solar twins show that the Sun is not very peculiar. Overshooting mixing should also be involved in investigating Li abundance in clusters. However, fully overshooting mixing with a length of 0.37HP results in too much Li depletion to fit the observations in the solar case. Therefore, using the diffusive process to describe the overshooting is more suitable. The diffusive overshooting approach requires the turbulent root-mean-square velocity in the overshooting region in order to calculate the diffusion coefficient. Turbulent convection models (TCMs), which are suggested by helioseimic investigation, can provide the turbulent properties in the overshooting region. However, TCMs are often too complex to be applied in calculations of stellar evolution. There is an easier way to use the asymptotic solution of TCMs. In this paper the asymptotic solution of Li & Yang's TCM, which results in agreement in both solar sound speed and solar Li abundance, is used to investigate the Li abundance in clusters (Hyades, Praesepe, NGC 6633, NGC 752, NGC 3680 and M67). It is found that overshooting mixing leads to significant Li depletion in old clusters (t > 1 Gyr) and has little effect in young clusters (t < 1 Gyr).

  3. Expectation values of the e{sup +}Li system

    SciTech Connect

    Mitroy, J.

    2004-08-01

    Close to converged energies and expectation values for e{sup +}Li are computed using a ground state wave function consisting of 1200 explicitly correlated Gaussians. The best estimate of the e{sup +}Li energy was -7.532 895 5 hartree which has a binding energy of 0.002 482 hartree against dissociation into Ps+Li{sup +}. The 2{gamma} annihilation rate for the spin singlet state was 6.996x10{sup 9} s{sup -1}. The annihilation rate for the triplet state, taking into account core annihilation and the 3{gamma} decay, was 9.36x10{sup 6} s{sup -1}.

  4. Tensor Modeling Based for Airborne LiDAR Data Classification

    NASA Astrophysics Data System (ADS)

    Li, N.; Liu, C.; Pfeifer, N.; Yin, J. F.; Liao, Z. Y.; Zhou, Y.

    2016-06-01

    Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the "raw" data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  5. Fatigue crack growth behaviour of Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Saravanakumar, R.; Ramakrishna, K. S.; Kanna, B. Avinash

    2013-06-01

    Al-Li alloys are being used in aircraft structures due to its low density and inherent mechanical properties. Fatigue Crack Growth (FCG) resistance is usually high compared to conventional Al-alloys attributed to increased modulus and crack closure. Extensive investigations concern about the FCG resistance and crack closure in Al-Li alloys. The present work reviews the FCG resistance in Al-Li alloys and the mechanisms associated with it. The alloy 8090 is taken for the consideration and sometimes compared with 2024.

  6. Dynamic dipole polarizability of Li{sup +} embedded in plasmas

    SciTech Connect

    Kar, S.; Kamali, M. Z. M.; Ratnavelu, K.

    2014-03-05

    Dynamic dipole polarizabilities of the system Li{sup +} embedded in weakly coupled plasmas are investigated using highly correlated exponential wave functions in the framework of the pseudostate summation technique. The Debye-Hückel shielding approach of plasma modeling is used to represent weakly coupled plasma environment. In free-atomic cases, results obtained from the present study are in agreement with the available calculations. Frequency-dependent polarizability of Li{sup +} as function of screening parameter is presented for the first time. Resonance frequencies for Li{sup +} are also presented in terms of screening parameter.

  7. Li metal for x-ray refractive optics

    SciTech Connect

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2004-01-27

    Lithium metal is the best material for refractive lenses that must focus x-rays with energies below 15 keV, but to date no lens from Li has been reported. This letter demonstrates focusing of 10 keV x-rays with a one-dimensional sawtooth lens made from Li. The lens theoretical gain is 4.5, with manufacturing imperfections likely responsible for the threefold gain that is observed. Despite the Li reactivity the lens is stable over months of operation if kept under vacuum.

  8. Electronic properties of Li-doped zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, E.

    2016-10-01

    Zigzag graphene nanoribbons (ZGNRs) are known to exhibit metallic behavior. Depending on structural properties such as edge status, doping and width of nanoribbons, the electronic properties of these structures may vary. In this study, changes in electronic properties of crystal by doping Lithium (Li) atom to ZGNR structure are analyzed. In spin polarized calculations are made using Density Functional Theory (DFT) with generalized gradient approximation (GGA) as exchange correlation. As a result of calculations, it has been determined that Li atom affects electronic properties of ZGNR structure significantly. It is observed that ZGNR structure exhibiting metallic behavior in pure state shows half-metal and semiconductor behavior with Li atom.

  9. Probing the Reaction Pathway of Dehydrogenation of the LiNH2 + LiH Mixture Using In Situ 1H NMR Spectroscopy

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; osborn, william; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-06-15

    Using variable temperature in situ 1H NMR spectroscopy on a mixture of LiNH2 + LiH that was mechanically activated using high energy ball milling, the dehydrogenation of the LiNH2 + LiH to Li2NH + H2 was investigated. The analysis indicates NH3 release at a temperature as low as 300C and rapid reaction between NH3 and LiH at ~ 1500C. The transition from NH3 release to H2 appearance accompanied by disappearance of NH3 confirms unambiguously the two-step elementary reaction pathway proposed by other workers.

  10. Exploration of LiO2 by the method of electrochemical quartz crystal microbalance in TEGDME based Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Tong, Shengfu; Qiu, Feilong; Jiang, Jie; Feng, Ningning; Zhang, Xueping; He, Ping; Zhou, Haoshen

    2016-10-01

    We confirmed the existence of LiO2 by electrochemical quartz crystal microbalance (EQCM) in TEGDME based Li-O2 batteries. Our results indicated that Li2O2 is generated through stepwise electrochemical reactions rather than disproportionation. We report for the first time that the formed Li2O2 oxidizes to LiO2 at relative negative potential and O2 at positive potential respectively. Our conclusions were based on both experimental observations and quantitative analysis. This may enlighten us to reconsider the Li-O2 batteries mechanisms in a quantitative way.

  11. Effects of electrolyte salts on the performance of Li-O2 batteries

    SciTech Connect

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

    2013-02-05

    It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

  12. Vaporization and thermochemical properties of Li 8Zr0 6 and comparison with other lithium-containing complex oxides

    NASA Astrophysics Data System (ADS)

    Asano, Mitsuru; Kato, Yoshinari; Harada, Toshio; Mizutani, Yasuo

    1996-06-01

    A mass-spectrometric Knudsen effusion method is used for the determination of partial pressures of Li (g), LiO (g), Li 2O (g), Li 2O 2 (g), Li 3O (g) and O 2 (g) over Li 8ZrO 6 (s/1) in the temperature range 1181-1429 K. From the gas-solid equilibria, enthalpies of formation for Li 8ZrO 6 (s) are calculated to be ΔfH298o (Li 8ZrO 6, s) = -(3558.5 ± 16.5) kJ mol -1 from the elements and ΔfoxH298o (Li 8ZrO 6, (s)= - (66.1 ± 18.6) kJ mol -1 from the constituent oxides, Li 2O(s) and ZrO 2 (s). Over various lithium-containing complex oxides, the partial pressures of Li 2O (g) decrease in the following order: Li 2O (s) > Li 5AlO 4(1) ≈ Li 2PbO 6 (s) ≈ Li 8ZrO 6 (s/1) ≈ Li 4TiO 4 (s/1) > Li 6Zr 2O 7 (s) > Li 2SnO 3 (s) > Li 4SiO 4 (s/1) > Li 2Ti 3 (s) ≈ Li 2ZrO 3 (s) > LiAlO 2 (s) ≈ Li 2SiO 3 (1) > LiNbO 3 (1). Thermodynamic activities and activity coefficients of the pseudo Li 2O component in the complex oxides are evaluated from the partial pressures of Li 2O (g). The results show that the complex oxides with less Li 20 molar content have more ability to stabilize the pseudo Li 2O component in binary Li 2OMO x, system (M  Al, Si, Ti and Zr).

  13. Studies on preventing Li dendrite formation in Li-S batteries by using pre-lithiated Si microwire anodes

    NASA Astrophysics Data System (ADS)

    Hagen, M.; Quiroga-González, E.; Dörfler, S.; Fahrer, G.; Tübke, J.; Hoffmann, M. J.; Althues, H.; Speck, R.; Krampfert, M.; Kaskel, S.; Föll, H.

    2014-02-01

    In this work, detailed studies on Li dendrite formation in Li-S Batteries are reported. Li dendrites can grow rapidly, may pierce through or can easily grow around the separator. Dendrites can even lead to short circuits when cathode and/or anode are wrapped with the separator. By replacing the Li metal anode with a pre-lithiated Si anode, these dendrite problems could be successfully prevented and were not observed for more than 200 cycles. The here used Si microwire array anodes are examined with ether and carbonate based electrolytes and different charging conditions vs. a Li metal counter electrode and demonstrate very high capacities matching the theoretical values. Electrochemical pre-lithiated Si microwire array anodes are examined in full cells with binder free, sulfur infiltrated carbon nanotube cathodes (CNT-S) and various polysulfide or Li2S containing electrolytes. The average polysulfide chain length and the presence of LiNO3 in the electrolyte have a great impact on the cycle stability of the cell, next to the charging conditions.

  14. Lithium motion in the anode material LiC6 as seen via time-domain 7Li NMR

    NASA Astrophysics Data System (ADS)

    Langer, J.; Epp, V.; Heitjans, P.; Mautner, F. A.; Wilkening, M.

    2013-09-01

    Since the commercialization of rechargeable lithium-ion energy storage systems in the early 1990s, graphite intercalation compounds (GICs) have served as the number one negative electrode material in most of today's batteries. During charging the performance of a battery is closely tied with facile Li insertion into the graphite host structure. So far, only occasionally time-domain nuclear magnetic resonance (NMR) measurements have been reported to study Li self-diffusion parameters in GICs. Here, we used several NMR techniques to enlighten Li hopping motions from an atomic-scale point of view. Li self-diffusion in the stage-1 GIC LiC6 has been studied comparatively by temperature-variable spin-spin relaxation NMR as well as (rotating frame) spin-lattice relaxation NMR. The data collected yield information on both the relevant activation energies and jump rates, which can directly be transformed into Li self-diffusion coefficients. At room temperature the Li self-diffusion coefficient turns out to be 10-15m2s-1, thus, slightly lower than that for layer-structured cathode materials such as Lix≈0.7TiS2.

  15. THE NEW DETECTIONS OF {sup 7}Li/{sup 6}Li ISOTOPIC RATIO IN THE INTERSTELLAR MEDIA

    SciTech Connect

    Kawanomoto, S.; Kajino, T.; Aoki, W.; Ando, H.; Noguchi, K.; Tanaka, W.; Bessell, M.; Suzuki, T. K.; Honda, S.; Izumiura, H.; Kambe, E.; Okita, K.; Watanabe, E.; Yoshida, M.; Sadakane, K.; Sato, B.; Tajitsu, A.; Takada-Hidai, M.

    2009-08-20

    We have determined the isotopic abundance ratio of {sup 7}Li/{sup 6}Li in the interstellar media (ISMs) along lines of sight to HD169454 and HD250290 using the High-Dispersion Spectrograph on the Subaru Telescope. We also observed {zeta} Oph for comparison with previous data. The observed abundance ratios were {sup 7}Li/{sup 6}Li = 8.1{sup +3.6} {sub -1.8} and 6.3{sup +3.0} {sub -1.7} for HD169454 and HD250290, respectively. These values are in reasonable agreement with those observed previously in the solar neighborhood ISMs within {+-}2{sigma} error bars and are also consistent with our measurement of {sup 7}Li/{sup 6}Li = 7.1{sup +2.9} {sub -1.6} for a cloud along the line of sight to {zeta} Oph. This is good evidence for homogeneous mixing and instantaneous recycling of the gas component in the Galactic disk. We also discuss several source compositions of {sup 7}Li, Galactic cosmic-ray interactions, stellar nucleosynthesis, and big bang nucleosynthesis.

  16. Adsorption of insoluble polysulfides Li2S(x) (x = 1, 2) on Li2S surfaces.

    PubMed

    Liu, Zhixiao; Hubble, Dion; Balbuena, Perla B; Mukherjee, Partha P

    2015-04-14

    In lithium-sulfur batteries, the growth of insulating discharge product Li2S film affects the cathode microstructure and the related electron as well as lithium ion transport properties. In this study, chemical reactions of insoluble lithium polysulfides Li2Sx (x = 1, 2) on crystal Li2S substrate are investigated by a first-principles approach. First-principles atomistic thermodynamics predicts that the stoichiometric (111) and (110) surfaces are stable around the operating cell voltage. Li2Sx adsorption is an exothermic reaction with the (110) surface being more active to react with the polysulfides than the stoichiometric (111) surface. There is no obvious charge transfer between the adsorbed molecule and the crystal Li2S substrate. Analysis of the charge density difference suggests that the adsorbate interacts with the substrate via a strong covalent bond. The growth mechanism of thermodynamically stable surfaces is investigated in the present study. It is found that direct Li2S deposition is energetically favored over Li2S2 deposition and reduction process. PMID:25752296

  17. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOEpatents

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  18. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOEpatents

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  19. On the hyperfine structures of the ground state(s) in the 6Li and 7Li atoms

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.

    2016-06-01

    The hyperfine structure of the ground 22 S-states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus, we determine the hyperfine structure of the ground (doublet) 22 S-state(s) in the 6Li and 7Li atoms. Our predicted values (228.2058 and 803.5581 MHz, respectively) agree well with the experimental values 228.20528(8) MHz (6Li) and 803.50404(48) MHz (7Li [R.G. Schlecht and D.W. McColm, Phys. Rev. 142, 11 (1966)]). The hyperfine structures of a number of lithium isotopes with short lifetimes, including 8Li, 9Li, and 11Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron 7Be+ and 9Be+ ions in their ground 22 S-states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n 3 S-states of the four-electron atoms and ions.

  20. Y-doped Li8ZrO6: A Li-Ion Battery Cathode Material with High Capacity.

    PubMed

    Huang, Shuping; Wilson, Benjamin E; Wang, Bo; Fang, Yuan; Buffington, Keegan; Stein, Andreas; Truhlar, Donald G

    2015-09-01

    We study--experimentally and theoretically--the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li8ZrO6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li(+) for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/discharge cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO2, and O2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li6ZrO6 and Li5ZrO6 delithiation products can be thermodynamically metastable to release of O2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole. PMID:26264394

  1. OH - absorption in off-congruent LiNbO 3 crystals prepared by Li-poor vapor transport equilibration

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Hua, Ping-Rang; Pun, Edwin Yue-Bun

    2009-06-01

    An X-cut and a Z-cut Li-deficient, non-congruent LiNbO 3 crystal were prepared by carrying out Li-poor vapor transport equilibration (VTE) treatment on one mm thick congruent plates at 1100 °C for 170 h. From the measured optical absorption edges (OAE), the Li 2O content is evaluated to be 47.74 ± 0.13 mol% in the X-cut plate and 47.61 ± 0.13 mol% in the Z-cut VTE crystal. The composition homogeneity is verified by measuring the OAE as a function of the crystal thickness. The visible optical absorption and powder X-ray diffraction studies allow to conclude that both VTE crystals retain still the LiNbO 3 phase. OH - absorption characteristics of the two VTE crystals were investigated in comparison with those of the as-grown crystals. The results show that the Li-poor VTE treatment only slightly modifies the area, spectral width, spectral shape and background absorption of the OH - band. Comparison shows that the Li-poor VTE effects on the OH - absorption have large differences from the Li-rich VTE effects in bandwidth and areas of three component peaks at 3466, 3481 and 3488 cm -1. These spectral differences are explained on the basis of the H + site occupation and crystal defect models taking into account the VTE effect on crystal defect concentration. The Li-poor VTE effects are attributed to the VTE inducing the redistribution of OH - ions in different sites.

  2. Lithium and Isotopic Ratio Li6/Li7 in Magnetic roAp Stars as an Indicator of Active Processes

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shavrina, A.; Lyashko, D.; Nesvacil, N.; Drake, N.; Smirnova, M.

    2015-04-01

    The lines of lithium at 6708 Å and 6103 Å are analyzed in high resolution spectra of some sharp-lined and slowly rotating roAp stars. Three spectral synthesis codes— STARSP, ZEEMAN2, and SYNTHM—were used. New lines of rare earth elements (REE) from the DREAM database and the lines calculated on the basis of the NIST energy levels were included. Magnetic splitting and other line broadening processes were taken into account. For both lithium lines, the enhanced abundances of lithium in the atmospheres of the stars studied are obtained. The lithium abundance determined from the Li 6103 Å line is higher than that from the Li 6708 Å for all the stars. This may be evidence of vertical lithium stratification, abnormal temperature distribution, or unidentified blending of the 6103 Å line. Our work on two roAp stars, HD 83368 and HD 60435 (Shavrina et al. 2001) provides evidence of an enhanced lithium abundance near the magnetic-field poles. We can expect similar effects in the sharp-lined roAp stars. High lithium abundance for all the stars and the estimates of the 6Li/7Li ratio (0.2-0.5) can be explained by production of Li in the cosmic ray spallation reactions in the interstellar medium where the stars were born, and by preservation of the original 6Li and 7Li by strong magnetic fields of these stars. The values of the 6Li/7Li ratio expected from production by cosmic rays are about 0.5-0.8 (Knauth et al. 2003; Webber et al. 2002). New laboratory and theoretical gf-values for REE lines are necessary in order to refine our estimates of lithium abundances and the isotopic ratio.

  3. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  4. An iodide-based Li7P2S8I superionic conductor.

    PubMed

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Zhou, Wei; Wu, Hui; Greenbaum, Steve; Liang, Chengdu

    2015-02-01

    In an example of stability from instability, a Li(7)P(2)S(8)I solid-state Li-ion conductor derived from β-Li(3)PS(4) and LiI demonstrates electrochemical stability up to 10 V vs Li/Li(+). The oxidation instability of I is subverted via its incorporation into the coordinated structure. The inclusion of I also creates stability with the metallic Li anode while simultaneously enhancing the interfacial kinetics and ionic conductivity. Low-temperature membrane processability enables facile fabrication of dense membranes, making this conductor suitable for industrial adoption.

  5. Deposition studies of lithium and bismuth at tungsten microelectrodes in LiCl:KCl eutectic

    NASA Astrophysics Data System (ADS)

    Carlin, Richard T.; Osteryoung, Robert A.

    1989-05-01

    Tungsten microelectrodes (diam = 25 microns) have been used to study the deposition and stripping behavior of Li/Li(+) and Bi/Bi(3+) in the LiCl:KCl eutectic at 400 C. The Li deposition current can be simulated assuming the growth of a single hemisphere of liquid metal on the microelectrode. High stripping current densities were observed and quantitated using standard electrochemical equipment. An inverted microscope assembly was employed for in situ observation of the Li/Li(+) deposition and stripping processes at the microelectrode. A precipitate appears to form in the melt surrounding the electrode during Li deposition.

  6. Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Huang, Bingxin; Yao, Xiayin; Huang, Zhen; Guan, Yibiao; Jin, Yi; Xu, Xiaoxiong

    2015-06-01

    70Li2S·(30-x)P2S5·xLi3PO4 (mol%) amorphous powders are prepared by a high-energy ball milling technique, and the glass-ceramics are obtained by the crystallization of as-prepared amorphous samples. The XRD patterns show that a crystalline phase with a Li7P3S11 structure is obtained for x ≤ 3, while a structure change is observed for x = 5. The Li+-ion conductivity is enhanced by the substitution of Li3PO4 for P2S5, and the 70Li2S·29P2S5·1Li3PO4 glass-ceramics exhibit the highest total conductivity of 1.87 × 10-3 S cm-1 at 25 °C and the lowest activation energy of 18 kJ mol-1. The LiCoO2 in the all-solid-state cell of In-Li/70Li2S·29P2S5·1Li3PO4/LiCoO2 exhibits a discharge capacity of 108 mAh g-1, which is 20% higher than that in the In-Li/70Li2S·30P2S5/LiCoO2 cell. The higher discharge capacity of the LiCoO2 electrode is attributed to the higher Li+-ion conductivity of the solid electrolyte and lower interface resistance of electrode-electrolyte.

  7. Reversible lithium intercalation in a lithium-rich layered rocksalt Li2RuO3 cathode through a Li3PO4 solid electrolyte

    NASA Astrophysics Data System (ADS)

    Zheng, Yueming; Hirayama, Masaaki; Taminato, Sou; Lee, Soyeon; Oshima, Yoshifumi; Takayanagi, Kunio; Suzuki, Kota; Kanno, Ryoji

    2015-12-01

    Li2RuO3 (001) films with a lithium-rich layered rocksalt structure are epitaxially grown on a Al2O3(0001) substrate through pulsed laser deposition, followed by stacking of an amorphous Li3PO4 solid electrolyte. A half solid-state battery with a Li3PO4/Li2RuO3 cathode, liquid electrolyte, and lithium anode exhibits two redox peak pairs at 3.4 and 3.6 V, demonstrating lithium intercalation in the Li2RuO3 through the Li3PO4 solid electrolyte. All-solid-state batteries are fabricated by Li or In metal anode deposition on the Li3PO4/Li2RuO3. The Li/Li3PO4/Li2RuO3 cell delivers an initial discharge capacity of 101 mAh g-1, which does not fade significantly over 30 cycles. Furthermore, the Li2RuO3 rate capability is comparable to that of a liquid-type battery. Lithium-rich layered materials are available for use as cathodes in all-solid-state batteries.

  8. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes.

    PubMed

    Zhai, Xuesong; Lei, Pengpeng; Zhang, Peng; Wang, Zhuo; Song, Shuyan; Xu, Xia; Liu, Xiuling; Feng, Jing; Zhang, Hongjie

    2015-10-01

    Multimodal imaging can compensate for the deficiencies and incorporate the advantages of individual imaging modalities. In this paper, we demonstrated the synthesis of core-shell nanocomposites LiLuF4@LiGdF4:Yb,Er/Tm constituted of tetragonal LiLuF4 nanoparticles as core and Yb,Er/Tm-codoped LiGdF4 as shell. LiLuF4@LiGdF4:Yb,Er/Tm nanoparticles display brighter upconversion luminescence (UCL) than NaGdF4:Yb,Er/Tm nanoparticles with the same size under continuous-wave excitation at 980 nm. The active shell layer of LiGdF4:Yb,Er/Tm not only provide the UCL center, but also serve as magnetic resonance (MR) imaging contrast agent. To further improve the UCL intensity, the inert LiGdF4 shell was coated on the LiLuF4@LiGdF4:Yb,Er/Tm nanoparticles. Furthermore, LiLuF4@LiGdF4:Yb,Tm@LiGdF4 nanoparticles have been successfully applied to UCL/X-ray computed tomography (CT)/MR tri-modal imaging on the modal of tumor-bearing mice. PMID:26148475

  9. Electrochemical Investigation of Al–Li/LixFePO4 Cells in Oligo(ethylene glycol) Dimethyl Ether/LiPF6

    SciTech Connect

    Wang, X.J.; Zhou, Y.N.; Lee, H.S.; Nam, K.W.; Yang, X.Q.; Haas, O.

    2011-02-01

    1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol{sup -1} (OEGDME500, 1 M LiPF{sub 6}), was investigated as an electrolyte in experimental Al-Li/LiFePO{sub 4} cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al-Li alloy as an anode sandwiched between two Li x FePO{sub 4} electrodes (cathodes). Charging efficiencies of 96-100% and energy efficiencies of 86-89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC{sub 6} anodes are replaced by Al-Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm{sup -2} about 160 mWh g{sup -1} can be reached with Al-Li/LiFePO{sub 4} batteries. Power limiting diffusion processes are discussed, and the power capability of Al-Li/LiFePO{sub 4} cells was experimentally evaluated using conventional electrolytes.

  10. Electrochemical performance of LiCoO2/SrLi2Ti6O14 batteries for high-power applications

    NASA Astrophysics Data System (ADS)

    Liu, Jianhong; Sun, Xiaoman; Li, Yanan; Wang, Xingqin; Gao, Yun; Wu, Ke; Wu, Ningning; Wu, Borong

    2014-01-01

    LiCoO2/SrLi2Ti6O14 Li-ion rechargeable batteries with ∼6 Ah capacities are designed and assembled for use in hybrid electric vehicle (HEV) applications. For comparison, LiCoO2/Li4Ti5O12 batteries are also constructed using similar processing parameters. Power tests are carried out using the hybrid pulse power characterization (HPPC) method. Experimental results show that the LiCoO2/SrLi2Ti6O14 batteries have better power performance and more stable charge/discharge direct current (DC) resistances compared with the LiCoO2/Li4Ti5O12 batteries. At a 50% depth of discharge (DOD), LiCoO2/SrLi2Ti6O14 batteries have an excellent specific charge power density of 3973 W kg-1, which can be attributed to the high Li diffusion capability and high electronic conductivity of the SrLi2Ti6O14 material.

  11. Measurement of the absolute and differential cross sections for 7Li(γ, n0)6Li

    SciTech Connect

    W.A. Wurtz, R.E. Pywell, B.E. Norum, S. Kucuker, B.D. Sawatzky, H.R. Weller, M.W. Ahmed, S. Stave

    2011-10-01

    We have measured the cross section of the photoneutron reaction channel {sup 7}Li+{gamma}{yields}{sup 6}Li(g.s.)+n where the progeny nucleus is the ground state of {sup 6}Li. We obtained the absolute cross section at photon energies 10, 11, 12, 13, 15, 20, 25, 30, and 35 MeV and also the dependence of the cross section on polar angle for all but the highest photon energy. For the energies 10 to 15 MeV we were able to use linearly polarized photons to obtain the dependence of the cross section on the photon polarization.

  12. Viscosity and carbon dioxide solubility for LiPF6, LiTFSI, and LiFAP in alkyl carbonates: lithium salt nature and concentration effect.

    PubMed

    Dougassa, Yvon Rodrigue; Jacquemin, Johan; El Ouatani, Loubna; Tessier, Cécile; Anouti, Mérièm

    2014-04-10

    In this paper, we have reported the CO2 solubility in different pure alkyl carbonate solvents (EC, DMC, EMC, DEC) and their binary mixtures as EC/DMC, EC/EMC, and EC/DEC and for electrolytes [solvent + lithium salt] LiX (X = LiPF6, LiTFSI, or LiFAP) as a function of the temperature and salt concentration. To understand the parameters that influence the structure of the solvents and their ability to dissolve CO2, through the addition of a salt, we first analyzed the viscosities of EC/DMC + LiX mixtures by means of a modified Jones-Dole equation. The results were discussed considering the order or disorder introduced by the salt into the solvent organization and ion solvation sphere by calculating the effective solute ion radius, rs. On the basis of these results, the analysis of the CO2 solubility variations with the salt addition was then evaluated and discussed by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the CO2 solubility has been affected by the shape, charge density, and size of the ions, which influence the structuring of the solvents through the addition of a salt and the type of solvation of the ions.

  13. Ion hopping in crystalline and glassy spodumene LiAl Si2 O6 : 7Li spin-lattice relaxation and 7Li echo NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, F.; Rier, C.; Böhmer, R.; Franke, W.; Heitjans, P.

    2005-09-01

    Nuclear magnetic resonance spectroscopy was used to study polycrystalline β -spodumene (β-LiAlSi2O6) as well as glassy specimens with the same chemical composition. Li7 spin-lattice relaxation measurements were carried out in a broad temperature range and for several Larmor frequencies. In addition to a pronounced rate maximum at high temperatures, stemming from the long-range Li motion in these aluminosilicates, we found a weak maximum in the crystalline modification near 120K . The latter result confirms the existence of a local double-well structure in which the Li ions reside. The ionic motion was also monitored by solid- and stimulated-echo spectra as well as by the decay of the Jeener-Broekaert echo. Under conditions which are discussed in detail, the latter is a direct measure of the hopping correlation function. For the glass this function was found to decay faster and more stretched than that of the crystal at a given temperature. Furthermore, the relevant barriers against the high-temperature long-range Li motion are larger in the crystal as compared to the glass.

  14. LiCaAl/sub 6/:Cr/sup 3+/

    SciTech Connect

    Payne, S.A.; Chase, L.L.; Newkirk, H.W.; Smith, L.K.; Krupke, W.F. )

    1988-11-01

    The authors report the discovery of a new laser, LiCaAIF/sub 6/:Cr/sup 3/ (Cr/sup 3+/ :LiCAF). The intrinsic (extrapolated maximum) slope efficiency was found to be 67 percent. For comparison, they also measured the intrinsic slope efficiencies of BeAl/sub 2/O/sub 4/:Cr/sup 3+/ (alexandrite), Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/, and ScBO/sub 3/:Cr/sup 3+/, and obtained values of 65,28, and 26 percent, respectively. The tuning range of LiCaAIF/sub 6/:Cr/sup 3+/ was determined to be at least 720-840 nm. The conventional spectroscopic properties, such as the absorption, emission, and emission lifetimes as a function of temperature, are reported as well.

  15. 20-Gbps optical LiFi transport system.

    PubMed

    Ying, Cheng-Ling; Lu, Hai-Han; Li, Chung-Yi; Cheng, Chun-Jen; Peng, Peng-Chun; Ho, Wen-Jeng

    2015-07-15

    A 20-Gbps optical light-based WiFi (LiFi) transport system employing vertical-cavity surface-emitting laser (VCSEL) and external light injection technique with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. Good bit error rate (BER) performance and clear constellation map are achieved in our proposed optical LiFi transport systems. An optical LiFi transport system, delivering 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 20 Gbps, is successfully demonstrated. Such a 20-Gbps optical LiFi transport system provides the advantage of a free-space communication link for high data rates, which can accelerate the visible laser light communication (VLLC) deployment. PMID:26176448

  16. Stability of polymer binders in Li-O2 batteries

    SciTech Connect

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Li, Xiaohong S.; Zhang, Jiguang

    2013-06-24

    A number of polymers with various chemical structures were studied as binders for air electrodes in Li-O2 batteries. The nature of the polymer significantly affects the binding properties in the carbon electrodes thus altering the discharge performance of Li-O2 batteries. Stability of polymers to the aggressive reduced oxygen species generated during discharge was tested by ball milling them with KO2 and Li2O2, respectively. Most of the polymers decomposed under these conditions and mechanisms of the decompositions are proposed for some of the polymers. Polyethylene was found to have excellent stability and is suggested as robust binder for air electrodes in Li-O2 batteries.

  17. LiBr passivation effect of porous nanocrystalline hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Amor, Sana Ben; Haddadi, Ikbel; Seif, El Whibi; Daik, Ridha; Bousbih, Rabaa; Dimassi, Wissem; Ezzaouia, Hatem

    2015-12-01

    Nanocrystalline hydrogenated silicon (nc-Si:H) films were deposited on a p-type silicon substrate by plasma enhanced chemical vapor deposition (PECVD), using SiH4 and H2 as reactive gases. Porous (nc-Si:H) layers were afterward obtained and immersed in a lithium bromide (LiBr) aqueous solution in order to enhance their optical and electrical properties for a potential solar cells application. A decrease in the reflectivity to about 9% for Li/porous nc-Si:H layer deposited at 75 sccm against an increase in the minority carrier lifetime were obtained. We correlate these results to the change in crystalline characteristics and chemical composition of the layers in order to understand the effect of LiBr coating on nc-Si:H Through optical and electrical characterization we have demonstrated the possibility of using such LiBr treatment to improve the properties of porous nc-Si:H.

  18. Observation of interspecies 6Li-133Cs Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Repp, M.; Pires, R.; Ulmanis, J.; Heck, R.; Kuhnle, E. D.; Weidemüller, M.; Tiemann, E.

    2013-01-01

    We report on the observation of 19 interspecies Feshbach resonances in an optically trapped ultracold Bose-Fermi mixture of 133Cs and 6Li in the two energetically lowest spin states. We assign the resonances to s- and p-wave molecular channels by a coupled-channels calculation, resulting in an accurate determination of LiCs ground-state potentials. Fits of the resonance position based on the undressed asymptotic bound state model do not provide the same level of accuracy as the coupled-channels calculation. Several broad s-wave resonances provide prospects to create fermionic LiCs molecules with a large dipole moment via Feshbach association followed by stimulated Raman passage. Two of the s-wave resonances overlap with a zero crossing of the Cs scattering length, which offers prospects for the investigation of polarons in an ultracold Li-Cs mixture.

  19. Methods and preliminary measurement results of liquid Li wettability

    SciTech Connect

    Zuo, G. Z. Hu, J. S.; Ren, J.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Mansfield, D. K.

    2014-02-15

    A test of lithium wettability was performed in high vacuum (< 3 × 10{sup −4} Pa). High magnification images of Li droplets on stainless steel substrates were produced and processed using the MATLAB{sup ®} program to obtain clear image edge points. In contrast to the more standard “θ/2” or polynomial fitting methods, ellipse fitting of the complete Li droplet shape resulted in reliable contact angle measurements over a wide range of contact angles. Using the ellipse fitting method, it was observed that the contact angle of a liquid Li droplet on a stainless steel substrate gradually decreased with increasing substrate temperature. The critical wetting temperature of liquid Li on stainless steel was observed to be about 290 °C.

  20. Oxygen Selective Membranes for Li-Air (O2) Batteries

    PubMed Central

    Crowther, Owen; Salomon, Mark

    2012-01-01

    Lithium-air (Li-air) batteries have a much higher theoretical energy density than conventional lithium batteries and other metal air batteries, so they are being developed for applications that require long life. Water vapor from air must be prevented from corroding the lithium (Li) metal negative electrode during discharge under ambient conditions, i.e., in humid air. One method of protecting the Li metal from corrosion is to use an oxygen selective membrane (OSM) that allows oxygen into the cell while stopping or slowing the ingress of water vapor. The desired properties and some potential materials for OSMs for Li-air batteries are discussed and the literature is reviewed. PMID:24958173

  1. Automatic registration method for mobile LiDAR data

    NASA Astrophysics Data System (ADS)

    Wang, Ruisheng; Ferrie, Frank P.

    2015-01-01

    We present an automatic mutual information (MI) registration method for mobile LiDAR and panoramas collected from a driving vehicle. The suitability of MI for registration of aerial LiDAR and aerial oblique images has been demonstrated under an assumption that minimization of joint entropy (JE) is a sufficient approximation of maximization of MI. We show that this assumption is invalid for the ground-level data. The entropy of a LiDAR image cannot be regarded as approximately constant for small perturbations. Instead of minimizing the JE, we directly maximize MI to estimate corrections of camera poses. Our method automatically registers mobile LiDAR with spherical panoramas over an approximate 4-km drive, and is the first example we are aware of that tests MI registration in a large-scale context.

  2. Characteristics of Li diffusion on silicene and zigzag nanoribbon

    NASA Astrophysics Data System (ADS)

    Yan-Hua, Guo; Jue-Xian, Cao; Bo, Xu

    2016-01-01

    We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from 0.1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074212 and 11204123) and the Natural Science Foundation of Jiangsu province, China (Grant No. BK20130945).

  3. An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor

    DOE PAGES

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Zhou, Wei; Wu, Hui; Greenbaum, Steve; Liang, Chengdu

    2015-01-20

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  4. The Li isotope composition of modern biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  5. New Anode Material for Rechargeable Li-ION Cells

    NASA Technical Reports Server (NTRS)

    Huang, C. -K.; Smart, M.; Halpert, G.; Surampudi, S.; Wolfenstine, J.

    1995-01-01

    Carbon materials, such as graphite, cokes, pitch and PAN fibers, are being evaluated in lithium batteries as alternate anode materials with some degree of success. There is an effort to look for other non-carbon anode materials which have larger Li capacity, higher rate capability, smaller first charge capacity loss and better mechanical stability during cycling. A Li-Mg-Si material is evaluated.

  6. Lost in Translation (LiT): IUPHAR Review 6.

    PubMed

    Dollery, Colin T

    2014-05-01

    Translational medicine is a roller coaster with occasional brilliant successes and a large majority of failures. Lost in Translation 1 ('LiT1'), beginning in the 1950s, was a golden era built upon earlier advances in experimental physiology, biochemistry and pharmacology, with a dash of serendipity, that led to the discovery of many new drugs for serious illnesses. LiT2 saw the large-scale industrialization of drug discovery using high-throughput screens and assays based on affinity for the target molecule. The links between drug development and university sciences and medicine weakened, but there were still some brilliant successes. In LiT3, the coverage of translational medicine expanded from molecular biology to drug budgets, with much greater emphasis on safety and official regulation. Compared with R&D expenditure, the number of breakthrough discoveries in LiT3 was disappointing, but monoclonal antibodies for immunity and inflammation brought in a new golden era and kinase inhibitors such as imatinib were breakthroughs in cancer. The pharmaceutical industry is trying to revive the LiT1 approach by using phenotypic assays and closer links with academia. LiT4 faces a data explosion generated by the genome project, GWAS, ENCODE and the 'omics' that is in danger of leaving LiT4 in a computerized cloud. Industrial laboratories are filled with masses of automated machinery while the scientists sit in a separate room viewing the results on their computers. Big Data will need Big Thinking in LiT4 but with so many unmet medical needs and so many new opportunities being revealed there are high hopes that the roller coaster will ride high again. PMID:24428732

  7. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote

  8. Shipborne LiDAR system for coastal change monitoring

    NASA Astrophysics Data System (ADS)

    Kim, chang hwan; Park, chang hong; Kim, hyun wook; hyuck Kim, won; Lee, myoung hoon; Park, hyeon yeong

    2016-04-01

    Coastal areas, used as human utilization areas like leisure space, medical care, ports and power plants, etc., are regions that are continuously changing and interconnected with oceans and land and the sea level has risen by about 8cm (1.9mm / yr) due to global warming from 1964 year to 2006 year in Korea. Coastal erosion due to sea-level rise has caused the problem of marine ecosystems and loss of tourism resources, etc. Regular monitoring of coastal erosion is essential at key locations with such volatility. But the survey method of land mobile LiDAR (light detection and ranging) system has much time consuming and many restrictions. For effective monitoring beach erosion, KIOST (Korea Institute of Ocean Science & Technology) has constructed a shipborne mobile LiDAR system. The shipborne mobile LiDAR system comprised a land mobile LiDAR (RIEGL LMS-420i), an INS (inertial navigation system, MAGUS Inertial+), a RTKGPS (LEICA GS15 GS25), and a fixed platform. The shipborne mobile LiDAR system is much more effective than a land mobile LiDAR system in the measuring of fore shore areas without shadow zone. Because the vessel with the shipborne mobile LiDAR system is continuously moved along the shoreline, it is possible to efficiently survey a large area in a relatively short time. Effective monitoring of the changes using the constructed shipborne mobile LiDAR system for seriously eroded coastal areas will be able to contribute to coastal erosion management and response.

  9. Luminescence in Li2BaP2O7.

    PubMed

    Hatwar, L R; Wankhede, S P; Moharil, S V; Muthal, P L; Dhopte, S M

    2015-09-01

    The photo-, thermo- and optically stimulated luminescence in Li2BaP2O7 activated with Eu(2+) /Cu(+) are reported. Strong thermoluminescence, which is about two times greater than LiF-TLD 100 was observed in the Eu(2+) -activated sample. It also exhibited optically stimulated luminescence sensitivity of ~20% that of commercial Al2O3:C phosphor. PMID:25351563

  10. Repetitively pulsed Cr:LiSAF laser for lidar applications

    SciTech Connect

    Shimada, Tsutomu; Early, J.W.; Lester, C.S.; Cockroft, N.J.

    1994-03-01

    A Cr:LiSAF laser has been successfully operated at time averaged powers up to 11 W and at pulse repetition rates to 12 Hz. During Q-switch operation, output energy as high as 450 mJ (32 ns FWHM) was obtained. Finally, line narrowed Q-switched pulses (< 0.1 nm) from the Cr:LiSAF laser were successfully used as a tunable light source for lidar to measure atmospheric water content.

  11. Double and triple photoionization of Li and Be

    SciTech Connect

    Colgan, J.; Pindzola, M.S.; Robicheaux, F.

    2005-08-15

    We present calculations for the double photoionization (with excitation) and the triple photoionization of Li and Be. We extend and more fully discuss the previous calculations made for Li by Colgan et al. [Phys. Rev. Lett. 93, 053201 (2004)] and present calculations for Be. The Be triple photoionization cross sections are compared with previous double shake-off model calculations of Kheifets and Bray [J. Phys. B 36, L211 (2003)], and our calculations are found to be significantly lower.

  12. Investigation of interfacial resistance between LiCoO 2 cathode and LiPON electrolyte in the thin film battery

    NASA Astrophysics Data System (ADS)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug; Nam, Sang Cheol; Cho, Sungbaek

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO 2/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al 2O 3 thin film at the interface of LiCoO 2/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo 1- yAl yO 2 at the interface of LiCoO 2/LiPON.

  13. Te/C nanocomposites for Li-Te Secondary Batteries

    PubMed Central

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm−3), excellent cyclability (ca. 705 mA h cm−3 over 100 cycles), and fast rate capability (ca. 550 mA h cm−3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems. PMID:25609035

  14. Georeferenced LiDAR 3D Vine Plantation Map Generation

    PubMed Central

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth®, providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  15. Li and Be depletion in metal-poor subgiants

    NASA Astrophysics Data System (ADS)

    García Pérez, A. E.; Primas, F.

    2006-02-01

    A sample of metal-poor subgiants has been observed with the UVES spectrograph at the Very Large Telescope and abundances of Li and Be have been determined. Typical signal-to-noise per spectral bin values for the co-added spectra are of the order of 500 for the ion{Li}{i} line (670.78 nm) and 100 for the ion{Be}{ii} doublet lines (313.04 nm). The spectral analysis of the observations was carried out using the Uppsala suite of codes and marcs (1D-LTE) model atmospheres with stellar parameters from photometry, parallaxes, isochrones and Fe ii lines. Abundance estimates of the light elements were corrected for departures from local thermodynamic equilibrium in the line formation. Effective temperatures and Li abundances seem to be correlated and Be abundances correlate with [O/H]. Standard models predict Li and Be abundances approximately one order of magnitude lower than main-sequence values which is in general agreement with the observations. On average, our observed depletions seem to be 0.1 dex smaller and between 0.2 and 0.4 dex larger (depending on which reference is taken) than those predicted for Li and Be, respectively. This is not surprising since the initial Li abundance, as derived from main-sequence stars on the Spite plateau, may be systematically in error by 0.1 dex or more, and uncertainties in the spectrum normalisation and continuum drawing may affect our Be abundances systematically.

  16. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes.

  17. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium-air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox- (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg-1, a mass density exceeding 2.2 g cm-3, and a practical discharge capacity of 587 Ah kg-1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  18. Te/C nanocomposites for Li-Te Secondary Batteries.

    PubMed

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li(+)/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm(-3)), excellent cyclability (ca. 705 mA h cm(-3) over 100 cycles), and fast rate capability (ca. 550 mA h cm(-3) at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  19. Te/C nanocomposites for Li-Te Secondary Batteries

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Uk; Seong, Gun-Kyu; Park, Cheol-Min

    2015-01-01

    New battery systems having high energy density are actively being researched in order to satisfy the rapidly developing market for longer-lasting mobile electronics and hybrid electric vehicles. Here, we report a new Li-Te secondary battery system with a redox potential of ~1.7 V (vs. Li+/Li) adapted on a Li metal anode and an advanced Te/C nanocomposite cathode. Using a simple concept of transforming TeO2 into nanocrystalline Te by mechanical reduction, we designed an advanced, mechanically reduced Te/C nanocomposite electrode material with high energy density (initial discharge/charge: 1088/740 mA h cm-3), excellent cyclability (ca. 705 mA h cm-3 over 100 cycles), and fast rate capability (ca. 550 mA h cm-3 at 5C rate). The mechanically reduced Te/C nanocomposite electrodes were found to be suitable for use as either the cathode in Li-Te secondary batteries or a high-potential anode in rechargeable Li-ion batteries. We firmly believe that the mechanically reduced Te/C nanocomposite constitutes a breakthrough for the realization and mass production of excellent energy storage systems.

  20. Synthesis and characterisation of copper doped Ca-Li hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pogosova, M. A.; Kazin, P. E.; Tretyakov, Y. D.

    2012-08-01

    Hydroxyapapites M10(PO4)6(OH)2 (MHAP), where M is an alkaline earth metal, colored by incorporation of copper ions substituting protons, were discovered recently [1]. Now this kind of apatite-type materials can be used as inorganic pigments. Until now blue (BaHAP), violet (SrHAP) and wine-red (CaHAP) colors were achieved by the copper ions introduction [2]. The task of the present work was to study possibility of further M-ion substitution to affect the color and shift it toward the red-orange tint. Polycrystalline hydroxyapatites Ca10-xLix+yCuz(PO4)6O2H2-y-z-σ (Ca-LiHAP) were synthesized by solid state reaction at 1150 °C (ceramic method) and studied by X-ray powder diffraction (XRD), infrared absorption and diffuse-reflectance spectroscopy. Refinement of the X-ray diffraction patterns by the Rietveld method shows that CaHAP unit cell parameters are a little bigger, than Ca-LiHAP ones. Small difference between unit cell parameters could be caused by two ways of the Li+ ions introduction: (1) at the Ca2+ sites (Ca-Li substitution); (2) into hexagonal channels (H-Li substitution). The Li ions doping changes the color of the copper doped CaHAP from wine-red to pink and red.

  1. Georeferenced LiDAR 3D vine plantation map generation.

    PubMed

    Llorens, Jordi; Gil, Emilio; Llop, Jordi; Queraltó, Meritxell

    2011-01-01

    The use of electronic devices for canopy characterization has recently been widely discussed. Among such devices, LiDAR sensors appear to be the most accurate and precise. Information obtained with LiDAR sensors during reading while driving a tractor along a crop row can be managed and transformed into canopy density maps by evaluating the frequency of LiDAR returns. This paper describes a proposed methodology to obtain a georeferenced canopy map by combining the information obtained with LiDAR with that generated using a GPS receiver installed on top of a tractor. Data regarding the velocity of LiDAR measurements and UTM coordinates of each measured point on the canopy were obtained by applying the proposed transformation process. The process allows overlap of the canopy density map generated with the image of the intended measured area using Google Earth(®), providing accurate information about the canopy distribution and/or location of damage along the rows. This methodology was applied and tested on different vine varieties and crop stages in two important vine production areas in Spain. The results indicate that the georeferenced information obtained with LiDAR sensors appears to be an interesting tool with the potential to improve crop management processes. PMID:22163952

  2. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium–air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox‑ (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg‑1, a mass density exceeding 2.2 g cm‑3, and a practical discharge capacity of 587 Ah kg‑1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  3. Neutron detection with LiInSe2

    NASA Astrophysics Data System (ADS)

    Bell, Zane W.; Burger, A.; Matei, Liviu; Groza, Michael; Stowe, Ashley; Tower, Joshua; Kargar, Alireza; Hong, Huicong

    2015-08-01

    The detection of thermal neutrons has traditionally been accomplished with 3He-tubes, but with the recent shortage of 3He, much research has gone into finding suitable replacements. Both relatively inefficient 10B- and 6LiF-coated silicon diodes and HgI2 have been known for many years, and engineered structures in Si that have been filled with 10B and 6LiF have shown promise. These devices are intended to realize an optimal juxtaposition of neutron-sensitive material and semiconductor and thereby simulate a semiconductor containing B or Li. Such material has been realized for the first time in the form of 6LiInSe2 in which collectable charge from the 6Li(n,t) reaction indicates a neutron event. In this paper we report neutron and gamma responses of 6LiInSe2, we show pulse height spectra from pure gamma sources and from a thermal neutron source, and we derive the μτ product from the position of spectral features as a function of bias voltage. In addition, we demonstrate the observation of the beta decay of 116mIn in samples exposed to thermal neutrons. This feature of the response serves as an additional confirmation of exposure to neutrons.

  4. Investigations of the safety of Li/SOCl2 batteries

    NASA Astrophysics Data System (ADS)

    Abraham, K. M.; Mank, R. M.; Holleck, G. L.

    1980-02-01

    Forced overdischarge behavior of Li/SOCl2 cells was studied using spirally wound C-size and small prismatic cells. Cathode and anode limited cells were tested. Cathode limited cells could be forcibly overdischarged for long periods of time without explosions. Anode limited cells, on the other hand, were found to be potentially hazardous. Our data suggest that anode limited cells are likely to explode during forced overdischarge. The behavior of Li/SOCl2 cells during application of a (charge) current was investigated using C-size cells. It was possible to subject either new or partially discharged cells to a (charging) current without apparent hazard. The charging reactions involve a sequence of regenerative processes so that only small amounts of chemicals accumulate in the cells. On the basis of materials characterized from IR spectral and cyclic voltammetry data, a mechanism is proposed for the oxidation reactions in SOCl2/LiAlCl4 solutions. Preliminary studies indicated that Li2S/AlCl3 based electrolytes may be useful as alternatives to LiAlCl4 in Li/SOCl2 batteries.

  5. Towards a Li barometer for bimineralic eclogites: experiments in CMAS

    NASA Astrophysics Data System (ADS)

    Hanrahan, Margaret; Brey, Gerhard; Woodland, Alan; Altherr, Rainer; Seitz, Hans-Micheal

    2009-08-01

    An eclogite barometer has profound importance in the study of upper mantle processes and potential application to diamond prospecting. Studies on the partitioning of Li between clinopyroxene (cpx) and garnet (grt) in natural samples have shown that this particular element is very sensitive to changes in pressure and could be calibrated as the barometer demanded for bimineralic eclogites. Experiments were performed from 4 to 13 GPa and 1,100-1,400°C in the CMAS (CaO, MgO, Al2O3, SiO2) system with Li added as Li3PO4 to quantify this pressure dependence into a barometer expressed in the following equation: P = (0.00255 T - ln K d)/0.2351 where P is in GPa, T is in °C and K d is defined as the partition coefficient of Li (in ppm) between clinopyroxene and garnet. The experimental pressures are reproduced to ±0.38 GPa (1σ) by this equation. This barometer is strictly applicable only to CMAS. Experiments at 1,300°C, 8-12 GPa showed that Henry’s Law is fulfilled for Li partitioning between cpx and grt in the concentration range of approximately 0.01-1 wt% Li. Direct application of the equation to experiments in natural systems performed at 1,300°C from 4 to 13 GPa consistently overestimates pressures by approximately 2 GPa.

  6. Lithium hydroxide, LiOH, at elevated densities

    SciTech Connect

    Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald

    2014-07-14

    We discuss the high-pressure phases of crystalline lithium hydroxide, LiOH. Using first-principles calculations, and assisted by evolutionary structure searches, we reproduce the experimentally known phase transition under pressure, but we suggest that the high-pressure phase LiOH-III be assigned to a new hydrogen-bonded tetragonal structure type that is unique amongst alkali hydroxides. LiOH is at the intersection of both ionic and hydrogen bonding, and we examine the various ensuing structural features and their energetic driving mechanisms. At P = 17 GPa, we predict another phase transition to a new phase, Pbcm-LiOH-IV, which we find to be stable over a wide pressure range. Eventually, at extremely high pressures of 1100 GPa, the ground state of LiOH is predicted to become a polymeric structure with an unusual graphitic oxygen-hydrogen net. However, because of its ionic character, the anticipated metallization of LiOH is much delayed; in fact, its electronic band gap increases monotonically into the TPa pressure range.

  7. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  8. Li+ ion transport studies in Li2O-Li2SO4-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Kolavekar, Sangeeta B.; Lakshmikantha, R.; Ayachit, N. H.; Anavekar, R. V.

    2013-06-01

    Li+ ion transport studies have been carried in Li2O-Li2SO4-ZnO-B2O3 glass system. Electrical conductivity has been measured out over a wide range of temperature (450K-500K) and frequencies (40 Hz - 10 MHz). The dc conductivities show Arrhenius behavior and show compositional dependence. The ac conductivity behavior has been analyzed using Almond-West power law using a single exponent. The exponent `s' obtained from the power law fits is found to have values ranging from 0.36 - 0.45 in these glasses and shows temperature dependence, which is attributed to high degree of modification in the glass network.

  9. Mg2Si As Li-Intercalation Host For Li Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1993-01-01

    Compound Mg2Si shows promise as lithium-intercalation host for ambient-temperature rechargeable lithium electrochemical cells. As anode reactant material, LiXMg2Si chemically stable in presence of organic electrolyte used in such cells and stores large amounts of lithium. Intercalation reactions highly reversible at room temperature. Also retains sufficient mechanical strength during charge/discharge cycling. Lithium cells containing LixMg2Si anodes prove useful in spacecraft, military, communications, automotive, and other applications in which high energy-storage densities of lithium cells in general and rechargeability of cells needed.

  10. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    PubMed

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  11. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    SciTech Connect

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  12. Laser performance of in-band pumped Er : LiYF4 and Er : LiLuF4 crystals

    NASA Astrophysics Data System (ADS)

    Gorbachenya, K. N.; Kurilchik, S. V.; Kisel, V. E.; Yasukevich, A. S.; Kuleshov, N. V.; Nizamutdinov, A. S.; Korableva, S. L.; Semashko, V. V.

    2016-02-01

    Spectroscopic properties of Er : LiLuF4 and Er : LiYF4 crystals in the spectral region near 1.5 μm and the lasing characteristics of these crystals under in-band pumping at a wavelength of 1522 nm are studied. With the Er : LiLuF4 crystal, the maximum slope efficiency with respect to the absorbed pump power was 44% at a wavelength of 1609 nm. Continuous-wave operation of an inband pumped Er : LiYF4 laser is obtained for the first time. The output power at a wavelength of 1606 nm was 58 mW with a slope efficiency of 21%.

  13. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  14. Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive?

    PubMed

    Vilarinho, Paula Maria; Barroca, Nathalie; Zlotnik, Sebastian; Félix, Pedro; Fernandes, Maria Helena

    2014-06-01

    The use of functional materials, such as ferroelectrics, as platforms for tissue growth in situ or ex situ, is new and holds great promise. But the usage of materials in any bioapplication requires information on biocompatibility and desirably on bioactive behavior when bone tissue engineering is envisaged. Both requirements are currently unknown for many ferroelectrics. Herein the bioactivity of LiNbO3 and LiTaO3 is reported. The formation of apatite-like structures on the surface of LiNbO3 and LiTaO3 powders after immersion in simulated body fluid (SBF) for different soaking periods indicates their bioactive potential. The mechanism of apatite formation is suggested. In addition, the significant release of lithium ions from the ferroelectric powders in the very first minutes of soaking in SBF is examined and ways to overcome this likely hurdle addressed.

  15. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed Field Gradient NMR

    SciTech Connect

    Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri; Liang, Chengdu

    2014-01-01

    The ceramic lithium ion conductor -Li3PS4 has a disordered and nanoporous structure that leads to an enhancement in ionic conductivity by some three orders of magnitude compared to the crystalline phase. The phase is prepared by thermal treatment of an inorganic-organic complex based on Li3PS4 and THF. Multinuclear (1H, 6,7Li, 31P) solid state NMR spectroscopy is used to characterize the structural phase evolution of the starting material at various steps in the thermal treatment. The phase formed after high temperature treatment is recognized as spectroscopically distinct from the bulk -Li3PS4 compound. Also formed is an amorphous lithium thiophosphate phase that is metastable as verified by annealing over an extended period. Lithium ion self-diffusion coefficients are measurable by standard pulsed gradient NMR methods at 100oC and with values consistent with the high ionic conductivity previously reported for this material.

  16. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    SciTech Connect

    Kessinger, G.; Missimer, D.

    2009-11-13

    The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li{sub 2}O, and CaO, must all be liquid at the reaction temperature so the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li{sub 2}O is in the range 1427-1700 C and the melting temperature of CaO is 2654 C, the Li{sub 2}O-CaO (lithium oxidecalcium oxide) pseudo-binary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 C. In the 1200-1500 C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO{sub 2} crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li{sub 2}O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al{sub 2}O{sub 3}), magnesia (MgO), zirconia (ZrO{sub 2}), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the conclusions that: (1) The melting temperature of Li{sub 2}O may be as low as 1250 C, which is considerably lower than the previously published values in the range 1427-1700 C; (2) Lithium oxide (Li{sub 2}O) vaporizes congruently; (3) Lithium carbonate and Li2O react with 95% Pt-5% Au, and also reacts with pure Pt; and (4

  17. Thermochemical properties of Li 6Zr 2O 7(s) by a mass-spectrometric Knudsen effusion method

    NASA Astrophysics Data System (ADS)

    Kato, Yoshinari; Asano, Mitsuru; Harada, Toshio; Mizutani, Yasuo

    1993-12-01

    Partial pressures of Li(g), LiO(g), Li 2O(g), Li 2O 2(g), Li 3O(g) and O 2(g) over Li 6Zr 2O 7(s) are studied by a mass-spectrometric Knudsen effusion method. From enthalpies of reaction for gas-solid equilibria, the enthalpies of formation for Li 6Zr 2O 7(s) are determined to be ΔfH°298( Li6Zr2O7, s) = -(4092.5 ± 14.2) kJmol-1 from the elements and ΔfoxH°298( Li6Zr2O7, s) = -(101.4 ± 15.9) kJmol-1 from the constituent oxides, Li 2O(s) and ZrO 2(s). Over various lithiumcontaining complex oxides, the partial pressures of Li 2O(g) decrease as follows: Li 2O > Li 5AlO 4 ⋍ Li 4TiO 4 ⋍ Li 8PbO 6 > Li 6Zr 2O 7 > Li 2SnO 3 > Li 4SiO 4 > Li 2TiO 3 ⋍ Li 2ZrO 3 > LiAlO 2 = Li 2SiO 3 > LiNbO 3. From the results of the partial pressures of Li 2O(g), thermodynamic activities and activity coefficients of the pseudo Li 2O component are discussed in relation to the molar fraction of Li 2O in each binary Li2O- MOx system (M = Al, Si, Ti and Zr).

  18. Measuring the ratio of aqueous diffusion coefficients between 6Li +Cl - and 7Li +Cr - by osmometry

    NASA Astrophysics Data System (ADS)

    Fritz, Steven J.

    1992-10-01

    Osmotic equilibrium is a singular occurrence in the evolution of an osmotic cell because at this event the net solution flux is zero such that -J w · V¯w = J s · V¯s. At this juncture, the diffusion coefficient of the solute through the membrane (ω) equals the solute flux ( Js) divided by the osmotic pressure (ΔΠ). Because the solute permeability coefficient (ω) is related to the Fickian diffusion coefficient ( D) through the gas constant, temperature, and the membrane's thickness and tortuosity, the ratio of ω values for individual isotopic species equals the ratio of D values for the same isotopic components. A 0.9450 molal LiCl solution was placed within sealed dialysis tubing and osmoted against a kilogram of deionized water at 22°C. Osmotic equilibrium occurred at 164 ± 10 min. The ratio of ω6Li +Cl -/ω7Li +Cl - was measured to be 1.011 ± 0.003 - a value close to the square root of the mass ratio between 7LiCl and 6LiCl (= 1.012) as calculated by Graham's Law. The measured diffusion coefficient ratio was used to predict the degree of hyperfiltration-induced fractionation of Li isotopes as a function of membrane ideality. When a membrane's σ exceeds 0.95 (as is likely for low-porosity shales) the 6Li /7Li ratio on the high-pressure side of the membrane can theoretically vary by more than 0.0017.

  19. The Origin of Capacity Fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study.

    PubMed

    Chen, Chih-Jung; Pang, Wei Kong; Mori, Tatsuhiro; Peterson, Vanessa K; Sharma, Neeraj; Lee, Po-Han; Wu, She-Huang; Wang, Chun-Chieh; Song, Yen-Fang; Liu, Ru-Shi

    2016-07-20

    The mechanism of capacity fade of the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) composite positive electrode within a full cell was investigated using a combination of operando neutron powder diffraction and transmission X-ray microscopy methods, enabling the phase, crystallographic, and morphological evolution of the material during electrochemical cycling to be understood. The electrode was shown to initially consist of 73(1) wt % R3̅m LiMO2 with the remaining 27(1) wt % C2/m Li2MnO3 likely existing as an intergrowth. Cracking in the Li2MnO3·LiMO2 electrode particle under operando microscopy observation was revealed to be initiated by the solid-solution reaction of the LiMO2 phase on charge to 4.55 V vs Li(+)/Li and intensified during further charge to 4.7 V vs Li(+)/Li during the concurrent two-phase reaction of the LiMO2 phase, involving the largest lattice change of any phase, and oxygen evolution from the Li2MnO3 phase. Notably, significant healing of the generated cracks in the Li2MnO3·LiMO2 electrode particle occurred during subsequent lithiation on discharge, with this rehealing being principally associated with the solid-solution reaction of the LiMO2 phase. This work reveals that while it is the reduction of lattice size of electrode phases during charge that results in cracking of the Li2MnO3·LiMO2 electrode particle, with the extent of cracking correlated to the magnitude of the size change, crack healing is possible in the reverse solid-solution reaction occurring during discharge. Importantly, it is the phase separation during the two-phase reaction of the LiMO2 phase that prevents the complete healing of the electrode particle, leading to pulverization over extended cycling. This work points to the minimization of behavior leading to phase separation, such as two-phase and oxygen evolution, as a key strategy in preventing capacity fade of the electrode.

  20. The Origin of Capacity Fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) Microsphere Positive Electrode: An Operando Neutron Diffraction and Transmission X-ray Microscopy Study.

    PubMed

    Chen, Chih-Jung; Pang, Wei Kong; Mori, Tatsuhiro; Peterson, Vanessa K; Sharma, Neeraj; Lee, Po-Han; Wu, She-Huang; Wang, Chun-Chieh; Song, Yen-Fang; Liu, Ru-Shi

    2016-07-20

    The mechanism of capacity fade of the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) composite positive electrode within a full cell was investigated using a combination of operando neutron powder diffraction and transmission X-ray microscopy methods, enabling the phase, crystallographic, and morphological evolution of the material during electrochemical cycling to be understood. The electrode was shown to initially consist of 73(1) wt % R3̅m LiMO2 with the remaining 27(1) wt % C2/m Li2MnO3 likely existing as an intergrowth. Cracking in the Li2MnO3·LiMO2 electrode particle under operando microscopy observation was revealed to be initiated by the solid-solution reaction of the LiMO2 phase on charge to 4.55 V vs Li(+)/Li and intensified during further charge to 4.7 V vs Li(+)/Li during the concurrent two-phase reaction of the LiMO2 phase, involving the largest lattice change of any phase, and oxygen evolution from the Li2MnO3 phase. Notably, significant healing of the generated cracks in the Li2MnO3·LiMO2 electrode particle occurred during subsequent lithiation on discharge, with this rehealing being principally associated with the solid-solution reaction of the LiMO2 phase. This work reveals that while it is the reduction of lattice size of electrode phases during charge that results in cracking of the Li2MnO3·LiMO2 electrode particle, with the extent of cracking correlated to the magnitude of the size change, crack healing is possible in the reverse solid-solution reaction occurring during discharge. Importantly, it is the phase separation during the two-phase reaction of the LiMO2 phase that prevents the complete healing of the electrode particle, leading to pulverization over extended cycling. This work points to the minimization of behavior leading to phase separation, such as two-phase and oxygen evolution, as a key strategy in preventing capacity fade of the electrode. PMID:27314640

  1. Electrochemical performances of co-substituted (La and Li) LiLa{sub x−y}Li{sub y}Ni{sub 1−x}O{sub 2} cathode materials for rechargeable lithium-ion batteries

    SciTech Connect

    Mohan, P.; Paruthimal Kalaignan, G.

    2013-09-01

    Graphical abstract: - Highlights: • LiLa{sub x−y}Li{sub x}Ni{sub 1−x}O{sub 2} powders were prepared by a sol–gel method at 600 °C for 10 h. • LiLa{sub x−y}Li{sub x}Ni{sub 1−x}O{sub 2} powder materials had well defined layer structure, and no impurities. • LiLa{sub 0.10}Li{sub 0.10}Ni{sub 0.80}O{sub 2} crystallite size was reduced compared with those of LiNiO{sub 2}. • Li/LiPF{sub 6}/LiLa{sub x−y}Li{sub x}Ni{sub 1−x}O{sub 2} cells were of high charge/discharge capacity, with columbic efficiency at 25 °C and 45 °C. • LiLa{sub 0.10}Li{sub 0.10}Ni{sub 0.80}O{sub 2} good cyclic stability, rate capability and better 45 °C. - Abstract: Co-substituted LiLa{sub x−y}Li{sub y}Ni{sub 1−x}O{sub 2} cathode materials were synthesized by sol–gel method using aqueous solutions of metal nitrates and tartaric acid as chelating agent at 600 °C for 10 h. The structure and electrochemical properties of the synthesized materials were characterized by using XRD, SEM, EDAX, TEM, cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy. XRD studies revealed a well defined layer structure and a linear variation of lattice parameters with the addition of lanthanum and lithium confirmed phase pure compounds in a rhombohedral structure. TEM and SEM analysis shows that LiLa{sub 0.10}Li{sub 0.10}Ni{sub 0.80}O{sub 2} has smaller particle size and regular morphological structure with narrow size distribution than those of LiNiO{sub 2}. Variations of dual mixing and hexagonal ordering with the substituted elements have enhanced the charge/discharge capacities at both room (25 °C) and elevated temperatures (45 °C), respectively. LiLa{sub 0.10}Li{sub 0.10}Ni{sub 0.80}O{sub 2} had high charge/discharge capacity, low irreversible capacity and better elevated temperature performance.

  2. Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries.

    PubMed

    Subban, Chinmayee V; Ati, Mohamed; Rousse, Gwenaëlle; Abakumov, Artem M; Van Tendeloo, Gustaaf; Janot, Raphaël; Tarascon, Jean-Marie

    2013-03-01

    The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li(+) at an average potential of 3.6 V vs Li(+)/Li(0), slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li(+)/Li(0). Besides, these compounds can be easily made at temperatures near 200 °C via a synthesis process that enlists a new intermediate phase of composition M3(SO4)2(OH)2 (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.

  3. Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries

    PubMed Central

    Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka; Morito, Haruhiko; Yamane, Hisanori; Nara, Hiroki; Osaka, Tetsuya; Kyotani, Takashi

    2015-01-01

    Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell. PMID:25626879

  4. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE PAGES

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  5. Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries.

    PubMed

    Jung, Yongjo; Kang, Byoungwoo

    2016-08-01

    In this study, electrochemical behaviors of Li2S such as a large potential barrier at the beginning of the 1st charging process and a continuous increase in potential to ∼4 V during the rest of this process were understood through X-ray photoelectron spectroscopy measurements and electrochemical evaluations for a full utilization of Li2S. The large potential barrier to the 1st charge in Li2S can be caused by the presence of insulating oxidized products (Li2SO3 or Li2SO4-like structures) on the surface; simple surface etching can remove them and thereby reduce the potential barrier. Even though the potential barrier was substantially reduced, the electrochemical activity of Li2S might not be improved due to the continuous increase in potential. This increase in potential was related to the polarization caused by the Li2S-conversion reaction; the polarization can affect the utilization of Li2S in subsequent cycles. We speculate that the increase in potential is related to the decomposition of oxidized products such as Li2CO3-like or Li2O-like structures on the surface of the Li2S particles. These findings indicate that the full utilization of Li2S can be achieved by controlling their surface characteristics, especially the surface oxidation products. PMID:27426215

  6. A New 6Li Detection in a Halo Subgiant, and Constraints for the Depletion of the Big Bang 7Li Abundance

    NASA Astrophysics Data System (ADS)

    Deliyannis, C. P.; Ryan, S. G.

    2000-05-01

    We present measurements of the 6Li/7Li isotope ratio in ten metal-poor stars derived from very high resolution (100,000) and S/N (300-800/pixel) McDonald 2.7-meter coude spectra, including two possible 6Li detections. We present specific new evidence that we have indeed detected the 6Li absorption feature, and not a convective asymmetry of the 7Li feature. One of our detections argues in favor of a protostellar (and not a surface-spallated) origin for this 6Li. We find that 6Li has either not evolved strongly with metallicity, in contrast to what is observed for Be and B, or else concurrent 6Li production is matched by stellar depletion. While such fine-tuning seems unlikely, no models can explain the origin of 6Li without such depletion. In the context of the observed 9Be/7Li depletion correlation and its slow-mixing explanation, taking our data at face value implies that the Big Bang 7Li abundance is no more than 0.2-0.3 dex higher than the values observed in the halo Li plateau.

  7. Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Marriott, Caedmon S.; Henderson, Gideon M.; Belshaw, Nick S.; Tudhope, Alexander W.

    2004-05-01

    Lithium and calcium isotope ratios, together with the Li/Ca element ratio, have been measured in calcites precipitated inorganically at temperatures ranging from 5 to 30 °C, and on seasonal growth bands from a coral. These measurements indicate the potential uses of these three environmental proxies. Carbonate Li isotopes are lighter than the solution from which they grow, probably due to equilibrium fractionation. This fractionation is not significantly influenced by temperature and, because Li is not involved in any known biological process, this suggests that carbonates will provide a recorder for the past Li-isotope composition of natural waters and hence for past weathering conditions. As has been observed previously for inorganic aragonite, the Ca-isotopes in inorganic calcite are lighter than the growth solution, and are only weakly dependent on temperature. This confirms that the temperature dependence observed in some species of foraminifera [Geochem. Geophys. Geosyst. 1 (2001)] reflects additional isotope fractionation due to biological processes during mineralization. Ca isotopes may therefore provide a powerful tool with which to investigate the processes of biomineralization. Finally, Li/Ca ratios in inorganic and biogenic carbonates increase as temperatures decrease with a sensitivity of ≈4% per °C. This temperature dependence of Li/Ca may prove useful to assess past temperatures in cold environments such as the deep ocean.

  8. First principles lattice thermal conductivity of Li2Se, Li2Te and alloys: phase space guidelines for thermal transport

    NASA Astrophysics Data System (ADS)

    Lindsay, Lucas; Mukhopadhyay, Saikat; Parker, David

    The lattice thermal conductivities (k) of Li2Se, Li2Te and alloys are examined using a first-principles Peierls-Boltzmann transport methodology. The dominant resistance to heat-carrying acoustic phonons in Li2Se and Li2Te comes from the interactions of these modes with two optic phonons, aoo scattering. In typical cubic and hexagonal materials (e . g . , Si, GaAs, AlN) aoo scattering does not play a considerable role in determining k, as it requires significant bandwidth and dispersion of the optic phonon branches, both present in Li2Se and Li2Te. We discuss how these properties and other features of the phonon dispersion (e . g . , bunching of the acoustic branches and an acoustic-optic frequency gap) combine to determine the overall conductivity of a material. Thus, microscopic scattering phase space arguments are generalized to give a more comprehensive view of intrinsic thermal transport in crystalline solids. We note that these general considerations are important for the discovery and design of new `high k' and `low k' materials for thermal management applications. L. L., S. M. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  9. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  10. ON INFRARED EXCESSES ASSOCIATED WITH Li-RICH K GIANTS

    SciTech Connect

    Rebull, Luisa M.; Carlberg, Joleen K.; Gibbs, John C.; Cashen, Sarah; Datta, Ashwin; Hodgson, Emily; Lince, Megan; Deeb, J. Elin; Larsen, Estefania; Altepeter, Shailyn; Bucksbee, Ethan; Clarke, Matthew; Black, David V.

    2015-10-15

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ∼20 μm (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, {sup 12}C/{sup 13}C. IR excesses by 20 μm, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the

  11. On Infrared Excesses Associated with Li-rich K Giants

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Carlberg, Joleen K.; Gibbs, John C.; Deeb, J. Elin; Larsen, Estefania; Black, David V.; Altepeter, Shailyn; Bucksbee, Ethan; Cashen, Sarah; Clarke, Matthew; Datta, Ashwin; Hodgson, Emily; Lince, Megan

    2015-10-01

    Infrared (IR) excesses around K-type red giants (RGs) have previously been discovered using Infrared Astronomy Satellite (IRAS) data, and past studies have suggested a link between RGs with overabundant Li and IR excesses, implying the ejection of circumstellar shells or disks. We revisit the question of IR excesses around RGs using higher spatial resolution IR data, primarily from the Wide-field Infrared Survey Explorer. Our goal was to elucidate the link between three unusual RG properties: fast rotation, enriched Li, and IR excess. Our sample of RGs includes those with previous IR detections, a sample with well-defined rotation and Li abundance measurements with no previous IR measurements, and a large sample of RGs asserted to be Li-rich in the literature; we have 316 targets thought to be K giants, about 40% of which we take to be Li-rich. In 24 cases with previous detections of IR excess at low spatial resolution, we believe that source confusion is playing a role, in that either (a) the source that is bright in the optical is not responsible for the IR flux, or (b) there is more than one source responsible for the IR flux as measured in IRAS. We looked for IR excesses in the remaining sources, identifying 28 that have significant IR excesses by ∼20 μm (with possible excesses for 2 additional sources). There appears to be an intriguing correlation in that the largest IR excesses are all in Li-rich K giants, though very few Li-rich K giants have IR excesses (large or small). These largest IR excesses also tend to be found in the fastest rotators. There is no correlation of IR excess with the carbon isotopic ratio, 12C/13C. IR excesses by 20 μm, though relatively rare, are at least twice as common among our sample of Li-rich K giants. If dust shell production is a common by-product of Li enrichment mechanisms, these observations suggest that the IR excess stage is very short-lived, which is supported by theoretical calculations. Conversely, the Li

  12. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    PubMed Central

    Park, Jae-Wan; Park, Cheol-Min

    2016-01-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7–2.0 V) and a conversion (0.0–2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7–2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm−3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm−3 over 100 cycles), and fast rate capability (550 mA h cm−3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs. PMID:27775090

  13. Photoionization of Li and radiative recombination of Li{sup +} in Debye plasmas

    SciTech Connect

    Qi, Y. Y.; Wu, Y.; Wang, J. G.

    2009-03-15

    The photoionization cross sections in the photoelectron energy below 2 Ry are calculated for the ground and n{<=}4 excited states of Li embedded in plasma environments and the radiative-recombination (RR) rate coefficients for Li{sup +} were presented for temperature T=100-32 000 K in a wide range of plasma parameters. The plasma screening interaction is described by the Debye-Hueckel model and the energy levels and wave functions including both the bound and continuum states are calculated by solving the Schroedinger equation numerically in a symplectic integration scheme. The screening of Coulomb interactions remarkably changes the photoionization cross sections near the ionization threshold, and especially for the ns states, the Cooper minimum is uncovered and shifted to the higher energy as the screening interaction increases. The RR rate coefficients at low temperature have a complex variation on the Debye lengths; whereas at higher temperature the RR rate coefficients decrease with the increasing of screening effects. Comparison of present results with those of other authors when available is made.

  14. Degradation diagnosis of aged Li4Ti5O12/LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Castaing, Rémi; Reynier, Yvan; Dupré, Nicolas; Schleich, Donald; Jouanneau Si Larbi, Séverine; Guyomard, Dominique; Moreau, Philippe

    2014-12-01

    Li4Ti5O12/LiFePO4 cells are cycled under 4 different conditions of discharge profile (galvanostatic or driving-based) and cycling rates (C/8 or 1C) during 4-5 months. All the cells exhibit capacity fade whose extent is not correlated with the aging condition. In order to understand aging phenomena, cells are disassembled at the end of cycle life and the recovered electrodes are analyzed using electrochemistry, electron microscopy, XRD and MAS-NMR. Positive and negative electrodes show no loss in active material and no change in electrochemical activity, active material structure and composite electrode structure. This rules out any irreversible electrode degradation. Lithium stoichiometry estimated by both XRD and electrochemistry is unexpectedly low in the positive electrode when the aging is stopped at full discharge. That indicates a loss of cyclable lithium or electrons leading to cell balancing evolution. That loss may have been caused by parasitic reactions occurring at both electrodes, in accordance with their rich surface chemistry as evidenced by MAS-NMR.

  15. Growth and characterization of nanocrystalline PbS:Li thin films

    NASA Astrophysics Data System (ADS)

    Portillo, M. Chávez; Mathew, X.; Juárez Santiesteban, H.; Pacio Castillo, M.; Portillo Moreno, O.

    2016-10-01

    The structural, electrical and opto-electronic properties of PbS thin films doped with Li+ ion were investigated. The crystallite size showed a strong dependence on Li doping, the crystal size changed from 36 nm to 12 nm due to Li incorporation in PbS. Optical band gap showed a shift in the range ∼1.5-2.3 eV with Li incorporation. Urbach tailing in the band gap was observed and the Urbach energy has a dependence on the amount of incorporated Li. SEM images showed a notable change in grain size with Li doping, however the morphology changes from large grains to agglomerations of smaller grains when doped with Li. The electric conductivity of the films showed a dependence on Li doping, reached a maximum value and later decreased for higher Li containing films. The doped samples showed better photosensitivity.

  16. Interstitial lithium diffusion pathways in γ-LiAlO2: a computational study.

    PubMed

    Islam, Mazharul M; Bredow, Thomas

    2015-11-19

    Although the Li diffusion in single crystalline γ-LiAlO2 was studied with temperature-dependent Li-7 NMR spectroscopy and conductivity measurements recently, the exact diffusion pathways are not yet clearly identified. Therefore, the present study aims at elucidating the diffusion pathways in γ-LiAlO2 theoretically from first principles. Competing pathways for Li diffusion are investigated using the climbing-image nudged-elastic-band approach with periodic quantum-chemical density functional theory (DFT) method. Li can migrate between two regular LiO4 tetrahedral sites via Li point defect (VLi) and via a Li Frenkel defect (VLi + Lii). On the basis of calculated activation energies for Li diffusion pathways, it is concluded that Li conductivity is strongly dependent on the distribution of Li vacancies and interstitial Li in the lattice. For Frenkel defects where Lii is far away from the migrating Li atom, the calculated activation energies for jumps to nearest-neighbor vacant sites agree with experimental values.

  17. Neutron transfer reactions induced by {sup 8}Li on {sup 9}Be

    SciTech Connect

    Guimaraes, V.; Lichtenthaeler, R.; Camargo, O.; Barioni, A.; Assuncao, M.; Kolata, J. J.; Amro, H.; Becchetti, F. D.; Jiang, Hao; Aguilera, E. F.; Lizcano, D.; Martines-Quiroz, E.; Garcia, H.

    2007-05-15

    Angular distributions for the elastic scattering of {sup 8}Li on {sup 9}Be and the neutron transfer reactions {sup 9}Be({sup 8}Li,{sup 7}Li){sup 10}Be and {sup 9}Be({sup 8}Li,{sup 9}Li){sup 8}Be were measured with a 27 MeV {sup 8}Li radioactive nuclear beam. Spectr- oscopic factors for {sup 8}Li (multiply-in-circle sign)n{sup 9}Li and {sup 7}Li (multiply-in-circle sign)n{sup 8}Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range distorted-wave Born approximation calculations with the code FRESCO. The spectroscopic factors obtained were compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions {sup 7}Li(n,{gamma}){sup 8}Li and {sup 8}Li(n,{gamma}){sup 9}Li were calculated in the framework of a potential model.

  18. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. PMID:27181758

  19. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.

  20. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai; Guhathakurta, Puragra

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-rich red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.

  1. Influence of post-grown Li-rich and Li-poor vapor transport equilibration on composition, OH- absorption and optical-damage threshold of Mg (5 mol%) : LiNbO3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Wang, Zhen; Hua, Ping-Rang; Pun, Edwin Yue-Bun

    2010-09-01

    Li-rich (Li-poor) vapor transport equilibration (VTE) treatments on a number of Z-cut 0.47 mm thick congruent MgO (5 mol% in melt) : LiNbO3 crystals were carried out at 1100°C over different durations ranging in 1-172 (40-395) h. Neutron activation analysis shows that neither Li-rich nor Li-poor VTE-induced Mg and Nb loss from the crystal occurred. The Li2O content in the crystal was measured as a function of VTE duration by the gravimetric method. The Li-rich/Li-poor VTE effects on OH- absorption were studied in comparison with the as-grown crystal. The study shows that the Li-rich VTE results in OH- absorption band annihilation. After further oxidation treatment the band reemerges and peaks at the same wavenumber as that of the as-grown crystal (˜3535.6 cm-1), showing that the MgO concentration in the Li-rich VTE crystal is still above the optical-damage threshold. The Li-poor VTE causes OH- band shift to 3486.3-3491.6 cm-1, indicating that the MgO concentration in all Li-poor VTE crystals is all below the optical-damage threshold. Further successive Li-rich VTE and oxidation treatments on the Li-poor VTE-treated crystal lead the band to shift back to 3535.6 cm-1, showing that the post Li-rich VTE brought the Li-poor VTE-treated crystal above the optical-damage threshold again. It is found that the peaking position, band width, peaking absorption and band area of the absorption at ˜3486 cm-1 all increase monotonously with the decrease of the Li2O content arising from prolonged Li-poor VTE, and quantitative relationships to the Li2O content are established for the latter two parameters. The VTE effects on the OH- absorption are conducted with the VTE-induced OH- content alteration and charge redistribution.

  2. Synthesis and characterization of lithium oxonitrate (LiNO)

    PubMed Central

    Switzer, Christopher H.; Miller, Thomas W.; Farmer, Patrick J.; Fukuto, Jon M.

    2012-01-01

    The oxonitrate (1−) anion (NO−), the one-electron reduction product of nitric oxide and conjugate base of HNO, has not been synthesized and isolated due to the inherent reactivity of this anion. The large scale synthesis and characterization of a stable NO− salt is described here. The lithium salt of oxonitrate (LiNO) was formed by the deprotonation of N-hydroxybenzenesulfonamide with phenyllithium in aprotic, deoxygenated conditions. LiNO exhibited antiferromagnetic paramagnetism as determined by SQUID magnetometry, consistent with a triplet ground state of NO−. LiNO reacted with HCl to yield nitrous oxide consistent with HNO formation and dimerization. LiNO consumed O2 in a pH-dependent manner to initially produce peroxynitrite and eventually nitrite. Consistent with the reduction potential of NO, LiNO exhibited an oxidation potential of approximately +0.80 V as determined by reactions with a series of viologen electron acceptors. LiNO also reacted with ferric tetraphenylporphyrin chloride (Fe(TPP)Cl), potassium tetracyanonickelate (K2Ni(CN)4) and nitrosobenzene in a manner that is identical to other HNO/NO− donors. We conclude that the physical and chemical characteristics of LiNO are indistinguishable from the experimentally and theoretically derived data on oxonitrrate (1−) anion. The bulk synthesis and isolation of a stable 3NO− salt described here allows the chemical and physical properties of this elusive nitrogen oxide to be thoroughly studied as this once elusive nitrogen oxide is now attainable. PMID:23107606

  3. Uas Topographic Mapping with Velodyne LiDAR Sensor

    NASA Astrophysics Data System (ADS)

    Jozkow, G.; Toth, C.; Grejner-Brzezinska, D.

    2016-06-01

    Unmanned Aerial System (UAS) technology is nowadays willingly used in small area topographic mapping due to low costs and good quality of derived products. Since cameras typically used with UAS have some limitations, e.g. cannot penetrate the vegetation, LiDAR sensors are increasingly getting attention in UAS mapping. Sensor developments reached the point when their costs and size suit the UAS platform, though, LiDAR UAS is still an emerging technology. One issue related to using LiDAR sensors on UAS is the limited performance of the navigation sensors used on UAS platforms. Therefore, various hardware and software solutions are investigated to increase the quality of UAS LiDAR point clouds. This work analyses several aspects of the UAS LiDAR point cloud generation performance based on UAS flights conducted with the Velodyne laser scanner and cameras. The attention was primarily paid to the trajectory reconstruction performance that is essential for accurate point cloud georeferencing. Since the navigation sensors, especially Inertial Measurement Units (IMUs), may not be of sufficient performance, the estimated camera poses could allow to increase the robustness of the estimated trajectory, and subsequently, the accuracy of the point cloud. The accuracy of the final UAS LiDAR point cloud was evaluated on the basis of the generated DSM, including comparison with point clouds obtained from dense image matching. The results showed the need for more investigation on MEMS IMU sensors used for UAS trajectory reconstruction. The accuracy of the UAS LiDAR point cloud, though lower than for point cloud obtained from images, may be still sufficient for certain mapping applications where the optical imagery is not useful.

  4. Compounds of 6Li and natural Li for EPR dosimetry in photon/neutron mixed radiation fields.

    PubMed

    Lund, E; Gustafsson, H; Danilczuk, M; Sastry, M D; Lund, A

    2004-05-01

    Formates and dithionates of 6Li, enriched and 7Li in natural composition of Li offer a possibility to measure the absorbed dose from photons and thermal neutrons in a mixed radiation field for instance at a boron neutron capture therapy (BNCT) facility. Tests with formates and dithionates of enriched 6Li and lithium compounds with natural composition have been performed at the BNCT facility at Studsvik, Sweden. Irradiations have been performed at 3 cm depth in a Perspex phantom in a fluence rate of thermal neutrons 1.8 x 10(9) n cm(-2) s(-1). The compounds were also irradiated in a pure X-ray field from a 4MV linear accelerator at 5 cm depth in a phantom with accurately determined absorbed doses. The signal intensity and shape was investigated within 3 h after the irradiation. A single line spectrum attributed to the CO2- radical was observed after irradiation of lithium formate. An increase in line width occurring after neutron irradiation in comparison with photon irradiation of the 6Li sample was attributed to dipolar broadening between CO2- radicals trapped in the tracks of the alpha particles. A spectrum due to the SO3- radical anion was observed after irradiation of lithium dithionate. The signal amplitude increased using the 6Li in place of the Li with natural composition of isotopes, in studies with low energy X-ray irradiation. Due to the decreased line width, caused by the difference in g(N) and I between the isotopes, the sensitivity with 6Li dithionate may be enhanced by an order of magnitude compared to alanine dosimetry. After comprehensive examination of the different combinations of compounds with different amounts of 6Li and 7Li regarding dosimetry, radiation chemistry and EPR properties these dosimeter material might be used for dose determinations at BNCT treatments and for biomedical experiments. Interesting properties of the radical formation might be visible due to the large difference in ionization density of neutrons compared to photons.

  5. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  6. {sup 10}Li low-lying resonances populated by one-neutron transfer

    SciTech Connect

    Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.

    2015-10-15

    The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  7. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    NASA Astrophysics Data System (ADS)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  8. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  9. Cr and Si Substituted-LiCo0.9Fe0.1PO4: Structure, full and half Li-ion cell performance

    NASA Astrophysics Data System (ADS)

    Allen, Jan L.; Allen, Joshua L.; Thompson, Travis; Delp, Samuel A.; Wolfenstine, Jeff; Jow, T. Richard

    2016-09-01

    The use of LiCoPO4 as a Li-ion cathode material can enable high energy 5 V batteries. However, LiCoPO4 shows limited cycle life and much less than theoretical energy density. In order to address these shortcomings, Fe, Cr and Si substituted-LiCoPO4(Cr,Si-LiCo0.9Fe0.1PO4) was investigated as an improved LiCoPO4 based cathode material. Fe substitution greatly improves the cycle life and increases the energy density. Cr substitution further increases the energy density, cycle life and rate capability. Si substitution reduces the reactivity of the cathode with electrolyte thereby increasing cycle life. In combination, the substituents lead to a LiCoPO4 based cathode material with no capacity fade over 250 cycles in Li/Cr,Si-LiCo0.9Fe0.1PO4 half cells, a discharge capacity of 140 mAh g-1 at C/3 at an average discharge voltage of 4.78 V giving an energy density of 670 Wh per kg of cathode. In graphite/Cr,Si-LiCo0.9Fe0.1PO4 full Li-ion cells, the cathode material shows an energy density of 550 Wh per kg of cathode material at 1C rate for the initial cycles and 510 Wh per kg of cathode material at the 250th cycle.

  10. Synthesis of LiFePO4/Li2SiO3/reduced Graphene Oxide (rGO) Composite via Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Iskandar, F.; Aimon, A. H.; Munir, M. M.; Nuryadin, B. W.

    2016-08-01

    LiFePO4 is a type of cathode active material used for lithium ion batteries. It has a high electrochemical performance. However, it suffers from certain disadvantages such as a very low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to increase the conductivity of LiFePO4. We have investigated the addition of Li2SiO3 and reduced graphene oxide (rGO) to LiFePO4. The objective of this research was to synthesize LiFePO4/Li2SiO3/rGO via hydrothermal method. Fourier transform infrared spectroscopy (FTIR) measurement showed that the peaks corresponded to the vibration of LiFePO4/Li2SiO3. Further, X-ray diffraction (XRD) measurement confirmed a single phase of LiFePO4. Finally, scanning electron microscopy (SEM) images showed that rGO was distributed on the LiFePO4/Li2SiO3 structure.

  11. High Performance Cathodes for Li-Air Batteries

    SciTech Connect

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  12. Li abundance in the stars with solar-type activity

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    Li abundances, atmospheric parameters and rotational velocities for 150 dwarfs have been determined from the high resolution, high signal to noise echelle spectra, obtained with the ELODIE spectrograph at the OHP (France). Among them, there are 101 stars with a determined level of activity, a large part of them being of the BY Dra type. The level of chromospheric and coronal activity of the targets has been evaluated through the logR'_HK index and X-ray flux. We examined the Li abundance behavior with T_eff, vsini and level of the activity. Some correlations between the Li abundances, level of the chromospheric activity and rotational velocities vsini are confirmed. The correlation between the Li abundances and index of the chromospheric activity logR'_HK was found, especially for dwarfs with 5700>T_eff> 5200 K. Those correlations mainly demonstrate that measurable values of the lithium content (higher than the upper limit) refer to the stars with large spot areas in their photospheres. Considering the wider set of stars with high activity levels one can affirm that such a conclusion is valid also for the cooler, earlier K dwarfs. Our results confirm that basic factors of formation of detectable Li abundance and high activity are determined principally by smaller age and fast axial rotation, respectively; and apparently by the depth of the convective zone.

  13. Using LiDAR technology in forestry activities.

    PubMed

    Akay, Abdullah Emin; Oğuz, Hakan; Karas, Ismail Rakip; Aruga, Kazuhiro

    2009-04-01

    Managing natural resources in wide-scale areas can be highly time and resource consuming task which requires significant amount of data collection in the field and reduction of the data in the office to provide the necessary information. High performance LiDAR remote sensing technology has recently become an effective tool for use in applications of natural resources. In the field of forestry, the LiDAR measurements of the forested areas can provide high-quality data on three-dimensional characterizations of forest structures. Besides, LiDAR data can be used to provide very high quality and accurate Digital Elevation Model (DEM) for the forested areas. This study presents the progress and opportunities of using LiDAR remote sensing technology in various forestry applications. The results indicate that LiDAR based forest structure data and high-resolution DEMs can be used in wide-scale forestry activities such as stand characterizations, forest inventory and management, fire behaviour modeling, and forest operations. PMID:18365761

  14. Degradation Reactions in SONY-Type Li-Ion Batteries

    SciTech Connect

    Nagasubramanian, G.; Roth, E. Peter

    1999-05-04

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC: PC: DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt and the PVDF. These reactions were followed by a high- temperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medhun. Cathode exotherrnic reactions with the PVDF binder were observed above 200oC and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  15. Biomass Estimation for Individual Trees using Waveform LiDAR

    NASA Astrophysics Data System (ADS)

    Wang, K.; Kumar, P.; Dutta, D.

    2015-12-01

    Vegetation biomass information is important for many ecological models that include terrestrial vegetation in their simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Traditionally biomass estimation requires intensive, and often destructive, field measurements. However, with advances in technology, airborne LiDAR has become a convenient tool for acquiring such information on a large scale. In this study, we use infrared full waveform LiDAR to estimate biomass information for individual trees in the Sangamon River basin in Illinois, USA. During this process, we also develop automated geolocation calibration algorithms for raw waveform LiDAR data. In the summer of 2014, discrete and waveform LiDAR data were collected over the Sangamon River basin. Field measurements commonly used in biomass equations such as diameter at breast height and total tree height were also taken for four sites across the basin. Using discrete LiDAR data, individual trees are delineated. For each tree, a voxelization methods is applied to all waveforms associated with the tree to result in a pseudo-waveform. By relating biomass extrapolated using field measurements from a training set of trees to waveform metrics for each corresponding tree, we are able to estimate biomass on an individual tree basis. The results can be especially useful as current models increase in resolution.

  16. Degradation reactions in SONY-type Li-ion batteries

    SciTech Connect

    Roth, E.P.; Nagasubramanian, G.

    2000-07-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 C involving the solid electrolyte interface (SEI) layer and the LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/LiPF{sub 6}). These reactions could account for the thermal runaway observed in these cells beginning at 100 C. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  17. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    PubMed

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  18. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Singh, Preetam; Kuang, Quan; Peng, Hongjian

    2016-07-01

    Mg-doped composite, Li2.97Mg0.03VO4, with an orthorhombic structure was prepared by a sol-gel method. The effects of the Mg doping on the structure and electrochemical performance of Li3VO4 were investigated. The X-ray diffraction pattern shows that the Mg doping does not change the crystal structure of Li3VO4. The EDS mappings indicated the fairly uniform distribution of Mg throughout the grains of Li2.97Mg0.03VO4. Electronic conductivity of Mg-doped Li3VO4 increased by two orders of magnitude compared to that of pure Li3VO4. CV and EIS measurement confirms that the Li2.97Mg0.03VO4 sample exhibits a smaller polarization and transfer resistance and a higher lithium diffusion coefficient compared with the pure Li3VO4. Due to the better electrochemical kinetics properties, Mg-doped Li3VO4 showed a significant improved performance compared to the pure Li3VO4, especially for the high rate capability. At the higher discharge/charge rate (2C), the discharge and charge capacities of 415.5 and 406.1 mAh/g have been obtained for the Li2.97Mg0.03VO4 which is more than three times higher the discharge/charge capacities of Li3VO4. The discharge and charge capacities of pure Li3VO4 are only 126.4 and 125.8 mAh/g respectively. The excellent electrochemical performance of Li2.97Mg0.03VO4 enables it as a promising anode material for rechargeable lithium-ion batteries.

  19. Lithium oxide in Li(Si)/FeS2 thermal batteries

    SciTech Connect

    Searcy, J.Q.; Armijo, J.R.; Neiswander, P.

    1981-10-01

    The formation of Li/sub 2/O in Li(Si)/FeS/sub 2/ thermal batteries has been considered deleterious to performance. This paper presents the results of a study to determine performance degradation caused by Li/sub 2/O and to determine an acceptable level of Li/sub 2/O to define dryness of battery parts and allowable leak rates. The significant results are (1) Excessive Li/sub 2/O causes an abrupt end of life during discharge of Li/sub 7/Si/sub 3/ to Li/sub 12/Si/sub 7/. This effect is first observed at 15 wt% and always occurs if the Li/sub 2/O content of the anode reaches 30 wt%. (2) A layer of Li/sub 2/O on anode pellet surfaces adjacent to the current collectors causes the same abrupt end of life if that layer represents 6-8 wt% Li/sub 2/O in the anode pellet. (3) Li/sub 2/O increases the ''wetness'' of separator pellets. This effect reaches a plateau at about2.5 wt% Li/sub 2/O in a separator pellet which is 65 wt% LiC1. KC1 eutectic blended with 35 wt% MgO.

  20. Lithium oxide in Li(Si)/FeS/sub 2/ thermal batteries

    SciTech Connect

    Searcy, J.Q.; Neiswander, P.; Armijo, J.R.

    1981-01-01

    The formation of Li/sub 2/O in Li(Si)/FeS/sub 2/ thermal batteries has been considered deleterious to performance. The results of a study designed to determine performance degradation caused by Li/sub 2/O and to determine an acceptable level of Li/sub 2/O to use in defining dryness of battery parts and allowable leak rates are presented. The significant results are: (1) excessive Li/sub 2/O causes an abrupt end of life on that part of the discharge corresponding to Li/sub 7/Si/sub 3/ discharging to Li/sub 12/Si/sub 7/. This effect always occurs if the Li/sub 2/O wt % in the anode is as high as 30, and was observed at 15 wt %; (2) a layer of Li/sub 2/O on anode pellet surfaces adjacent to the current collectors causes the same abrupt end of life if that layer represents 6 to 8 wt % Li/sub 2/O in the anode pellet; and (3) Li/sub 2/O increases the wetness of separator pellets. This effect reaches a plateau at approx. 2.5 wt % Li/sub 2/O in a separator pellet which is 65 wt % LiCl.KCl eutectic blended with 35 wt % MgO.

  1. Reaction Pathways in the Reactive Composite Mg(NH 2)2 + LiH

    NASA Astrophysics Data System (ADS)

    Cakir, Deniz; de Wijs, Gilles A.; Brocks, Geert

    2011-03-01

    Chen et al reported reversible hydrogen storage in a mixture of LiH + Li NH2 with a storage capacity of 6.5 wt %. However, this system requires an operating temperature in excess of 250 C to achieve a hydrogen pressure of 1 bar. Several efforts including cation substitution have been considered in order to improve the operating conditions, which is necessary for onboard applications. For instance, replacing LiH with Mg H2 markedly reduces the operating temperature through the reaction Mg H2 + 2 Li NH2 --> Li 2 Mg(NH)2 + 2 H2 <--> Mg(NH2)2 + 2 LiH. Recent experimental results however indicate that the latter is not a simple one-step reaction and full hydrogenation of Li 2 Mg(NH)2 occurs in a two-step sequence via an intermediate Li 2 Mg 2 (NH)3. In this work we examine the stability and structure of possible intermediates compounds, namely Li 2-2x Mg x NH, Li 1-2x Mg x NH2 , and Li 2-x Mg(NH)2-x (NH2)x , by means of first-principles DFT calculations. All intermediate compounds are thermodynamically stable with respect to the elements. The hydrogenation reaction of Li 2 Mg(NH)2 via the intermediate imides Li 2-2x Mg x NH is energetically favorable compared to other intermediates.

  2. Impedance characteristics of nanoparticle-LiCoO2+PVDF

    NASA Astrophysics Data System (ADS)

    Panjaitan, Elman; Kartini, Evvy; Honggowiranto, Wagiyo

    2016-02-01

    The impendance of np-LiCoO2+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysis showed that the relaxation times of the nanostructured LiCoO2 with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO2.

  3. Review on Current State of Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  4. Screening Li-Ion Batteries for Internal Shorts

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  5. Thin Film Li Ion Microbatteries for NASA Applications

    NASA Technical Reports Server (NTRS)

    West, W. C.; Ratnakumar, B. V.; Brandon, E.; Blosiu, J. O.; Surampudi, S.

    1999-01-01

    Rechargeable thin film microbatteries have recently become the topic of widespread research for use in low power applications such as battery-backed CMOS memory, miniaturized implantable medical devices and smart cards. In particular, the Center for Integrated Space Microsystems (CISM) at NASA's Jet Propulsion Laboratory has interest in applying this technology for secondary power systems in miniaturized satellites, microsensors, microactuators and other remote MEMS applications. The general requirements of the microbatteries for these applications are high specific energy, wide range of temperature stability. low self-discharge rate, and flexibility of cell design. The thin film Li ion materials system using LiCoO2(LiPO(x)N(1-x))SnO is expected to fulfill these requirements.

  6. Electrolytes for Li-Ion Cells in Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.

  7. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    PubMed Central

    Antipov, Evgeny V.; Khasanova, Nellie R.; Fedotov, Stanislav S.

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4)n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications. PMID:25610630

  8. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    PubMed

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-21

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

  9. Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chen; Hsu, Hsin-Yi; Hsu, Chen-Ruei

    2007-11-01

    In the present work some transport properties of the binary room temperature molten salt (RTMS) lithium bis(trifluoromethane sulfone)imide (LiTFSI)-acetamide [LiN(SO2CF3)2-CH3CONH2], applied in an Li-ion battery, have been investigated. The phase diagram was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result reveals that the binary RTMS has an eutectic point at 201 K and the 30 mol% LiTFSI composition. The electric conductivity was measured using a direct current computerized method. The result shows that the conductivities of the melts increase with increasing temperature and acetamide content. The densities of all melts decrease with increasing temperature and acetamide content. The equivalent conductivities were fitted by the Arrhenius equation, where the activation energies were 18.15, 18.52, 20.35, 25.08 kJ/mol for 10, 20, 30, 40 mol% LiTFSI, respectively. Besides the relationships between conductivity, density composition and temperature, of the ion interaction is discussed.

  10. Native defects affecting the Li atom distribution tune the optical emission of ZnO:Li epitaxial thin film

    SciTech Connect

    Sahu, R.; Dileep, K.; Loukya, B.; Datta, R.

    2014-02-03

    It is found that the oxygen vacancy (V{sub O}) defect concentration affecting the separation between individual species in Li{sub Zn}-Li{sub i} complex influences the optical emission property of Li{sub 0.06}Zn{sub 0.94}O epitaxial thin film grown by pulsed laser deposition. The film grown under low oxygen partial pressure (n-type conductivity)/higher partial pressure (resistive-type) has broad emission at ∼2.99 eV/∼2.1 eV and a narrower emission at 3.63 eV/3.56 eV, respectively. First principle based mBJLDA electronic structure calculation suggests that the emission at 2.99 eV is due to the Li{sub Zn}-Li{sub i} pair complex and the emission at 2.1 eV is when the component species are away from each other.

  11. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    PubMed Central

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements. PMID:26395323

  12. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  13. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  14. The cosmological 7Li problem from a nuclear physics perspective

    NASA Astrophysics Data System (ADS)

    Broggini, C.; Canton, L.; Fiorentini, G.; Villante, F. L.

    2012-06-01

    The primordial abundance of 7Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect assumptions about the nuclear reaction cross sections relevant for BBN. To do this, we introduce an efficient method to calculate the changes in the 7Li abundance produced by arbitrary (temperature dependent) modifications of the nuclear reaction rates. Then, considering that 7Li is mainly produced from 7Be via the electron capture process 7Be+e- → 7Li+νe, we assess the impact of the various channels of 7Be destruction. Differently from previous analysis, we consider the role of unknown resonances by using a complete formalism which takes into account the effect of Coulomb and centrifugal barrier penetration and that does not rely on the use of the narrow-resonance approximation. As a result of this, the possibility of a nuclear physics solution to the 7Li problem is significantly suppressed. Given the present experimental and theoretical constraints, it is unlikely that the 7Be+n destruction rate is underestimated by the 2.5 factor required to solve the problem. We exclude, moreover, that resonant destruction in the channels 7Be+t and 7Be+3He can explain the 7Li puzzle. New unknown resonances in 7Be+d and 7Be+α could potentially produce significant effects. Recent experimental results have ruled out such a possibility for 7Be+d. On the other hand, for the 7Be+α channel very favorable conditions are required. The possible existence of a partially suitable resonant level in 11C is studied in the framework of a coupled-channel model and the possibility of a direct measurement is considered.

  15. Microstructural characterization of rapidly solidified Al-Li-Co powders

    NASA Astrophysics Data System (ADS)

    Samuel, Fawzy H.

    1986-01-01

    A study of the combined effect of alloying elements and melt superheat has been carried out on the as-solidified structure of rapidly solidified Al-Li-Co powders. Three alloys, viz., Al-3 pct Li, Al-3 pct Li-0.4 pct Co, and Al-3 pct Li-0.8 pct Co were chosen, and the liquid melt in each alloy atomized from the temperatures 1173 and 1073 K, using the centrifugal atomization technique. The microstructural characterization was done using light, scanning, and transmission electron microscopy. Four types of microstructures, viz., dendritic, cellular, equiaxed-type, and featureless structures, were observed by light microscopy. The cooling rate, as determined from the same, lay in the range 104 to 106 Ks-1, but was seen to go beyond 107 Ks-1 when estimated from TEM micrographs. On the micro-level, the Al-Li powders were found to exhibit dendritic structures with differing morphologies, whereas low-angle cell walls with perturbed interfaces were the main structural features observed in the Al-Li-Co alloys. Increasing both cobalt content and powder particle diameter favored transition from dendritic into cellular structure. The featureless zone was comprised mainly of elongated columnar grains (0.2 μm width and 1.5 μm length). A mechanism describing the cellular structure formation has been proposed. Aging of the melt-quenched powders at 473 K for times up to 100 hours results in the dissolution of the cellular structure. A mechanism for the same has been postulated. The difference in the superheats chosen in the present work is found not sufficient to cause drastic microstructural changes.

  16. TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries.

    PubMed

    Bergner, Benjamin J; Schürmann, Adrian; Peppler, Klaus; Garsuch, Arnd; Janek, Jürgen

    2014-10-22

    Nonaqueous Li-O2 batteries are an intensively studied future energy storage technology because of their high theoretical energy density. However, a number of barriers prevent a practical application, and one of the major challenges is the reduction of the high charge overpotential: Whereas lithium peroxide (Li2O2) is formed during discharge at around 2.7 V (vs Li(+)/Li), its electrochemical decomposition during the charge process requires potentials up to 4.5 V. This high potential gap leads to a low round-trip efficiency of the cell, and more importantly, the high charge potential causes electrochemical decomposition of other cell constituents. Dissolved oxidation catalysts can act as mobile redox mediators (RM), which enable the oxidation of Li2O2 particles even without a direct electric contact to the positive electrode. Herein we show that the addition of 10 mM TEMPO (2,2,6,6-tetramethylpiperidinyloxyl), homogeneously dissolved in the electrolyte, provides a distinct reduction of the charging potentials by 500 mV. Moreover, TEMPO enables a significant enhancement of the cycling stability leading to a doubling of the cycle life. The efficiency of the TEMPO mediated catalysis was further investigated by a parallel monitoring of the cell pressure, which excludes a considerable contribution of a parasitic shuttle (i.e., internal ionic short circuit) to the anode during cycling. We prove the suitability of TEMPO by a systematic study of the relevant physical and chemical properties, i.e., its (electro)chemical stability, redox potential, diffusion coefficient and the influence on the oxygen solubility. Furthermore, the charging mechanisms of Li-O2 cells with and without TEMPO were compared by combining different electrochemical and analytical techniques.

  17. Integrating LiDAR Data into Earth Science Education

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; de Groot, R. M.; Crosby, C. J.; Whitesides, A. S.; Colunga, J.

    2010-12-01

    The use of high-resolution topography derived from Light Detection and Ranging (LiDAR) in the study of active tectonics is widespread and has become an indispensable tool to better understand earthquake hazards. For this reason and the spectacular representation of the phenomena the data provide, it is appropriate to integrate these data into the Earth science education curriculum. A collaboration between Arizona State University, the OpenTopography Facility, and the Southern California Earthquake Center are developing, three earth science education products to inform students and other audiences about LiDAR and its application to active tectonics research. First, a 10-minute introductory video titled LiDAR: Illuminating Earthquakes was produced and is freely available online through the OpenTopography portal and SCEC. The second product is an update and enhancement of the Wallace Creek Interpretive Trail website (www.scec.org/wallacecreek). LiDAR topography data products have been added along with the development of a virtual tour of the offset channels at Wallace Creek using the B4 LiDAR data within the Google Earth environment. The virtual tour to Wallace Creek is designed as a lab activity for introductory undergraduate geology courses to increase understanding of earthquake hazards through exploration of the dramatic offset created by the San Andreas Fault (SAF) at Wallace Creek and Global Positioning System-derived displacements spanning the SAF at Wallace Creek . This activity is currently being tested in courses at Arizona State University. The goal of the assessment is to measure student understanding of plate tectonics and earthquakes after completing the activity. Including high-resolution topography LiDAR data into the earth science education curriculum promotes understanding of plate tectonics, faults, and other topics related to earthquake hazards.

  18. Optimization of Carbon Coatings on LiFePO4

    SciTech Connect

    Doeff, Marca M.; Wilcox, James D.; Kostecki, Robert; Lau, Grace

    2005-07-14

    The electrochemical performance of LiFePO{sub 4} in lithium cells is strongly dependent on the structure (disordered/graphene or D/G ratio) of the in situ carbon produced during synthesis from carbon-containing precursors. Addition of pyromellitic acid (PA) prior to final calcination results in lower D/G ratios, yielding a higher-rate material. Further, improvements in electrochemical performance are realized when graphitization catalysts such as ferrocene are also added during LiFePO{sub 4} preparation, although overall carbon content is still less than 2 wt.%.

  19. Modeling loblolly pine dominant height using airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Maceyka, Andy

    The dominant height of 73 georeferenced field sample plots were modeled from various canopy height metrics derived by means of a small-footprint laser scanning technology, known as light detection and ranging (or just LiDAR), over young and mature forest stands using regression analysis. LiDAR plot metrics were regressed against field measured dominant height using Best Subsets Regression to reduce the number of models. From those models, regression assumptions were evaluated to determine which model was actually the best. The best model included the 1st and 90th height percentiles as predictors and explained 95% of the variance in average dominant height.

  20. Raster Vs. Point Cloud LiDAR Data Classification

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, N.; Shaker, A.

    2014-09-01

    Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the

  1. Toward Triplet Ground State NaLi Molecules

    NASA Astrophysics Data System (ADS)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  2. First observation of excited states in Li12

    NASA Astrophysics Data System (ADS)

    Hall, C. C.; Lunderberg, E. M.; Deyoung, P. A.; Baumann, T.; Bazin, D.; Blanchon, G.; Bonaccorso, A.; Brown, B. A.; Brown, J.; Christian, G.; Denby, D. H.; Finck, J.; Frank, N.; Gade, A.; Hinnefeld, J.; Hoffman, C. R.; Luther, B.; Mosby, S.; Peters, W. A.; Spyrou, A.; Thoennessen, M.

    2010-02-01

    The neutron-unbound ground state and two excited states of Li12 were formed by the two-proton removal reaction from a 53.4-MeV/u B14 beam. The decay energy spectrum of Li12 was measured with the Modular Neutron Array (MoNA) and the Sweeper dipole superconducting magnet at the National Superconducting Cyclotron Laboratory. Two excited states at resonance energies of 250 ± 20 keV and 555 ± 20 keV were observed for the first time and the data are consistent with the previously reported s-wave ground state with a scattering length of as=-13.7 fm.

  3. Diode-Pumped Mode-Locked LiSAF Laser

    SciTech Connect

    1996-02-01

    Under this contract we have developed Cr{sup 3+}:LiSrAlF{sub 6} (Cr:LiSAF, LiSAF) mode-locked lasers suitable for generation of polarized electrons for CEBAF. As 670 nm is an excellent wavelength for optical pumping of Cr:LiSAF, we have used a LIGHTWAVE developed 670 nm diode pump module that combines the output of ten diode lasers and yields approximately 2 Watts of optical power. By the use of a diffraction limited pump beam however, it is possible to maintain a small mode size through the length of the crystal and hence extract more power from Cr:LiSAF laser. For this purpose we have developed a 1 Watt, red 660nm laser (LIGHTWAVE model 240R) which serves as an ideal pump for Cr:LiSAF and is a potential replacement of costly and less robust krypton laser. This new system is to compliment LIGHTWAVE Series 240, and is currently being considered for commercialization. Partially developed under this contract is LIGHTWAVEs product model 240 which has already been in our production lines for a few months and is commercially available. This laser produces 2 Watts of output at 532 nm using some of the same technology developed for production of the 660nm red system. It is a potential replacement for argon ion lasers and has better current and cooling requirements and is an excellent pump source for Ti:Al{sub 2}O{sub 3}. Also, as a direct result of this contract we now have the capability of commercially developing a mode-locked 100MHz Cr:LiSAF system. Such a laser could be added to our 100 MHz LIGHTWAVE Series 131. The Series 131 lasers provide pico second pulses and were originally developed under another DOE SBIR. Both models of LIGHTWAVE Series 240 lasers, the fiber coupled pump module and the 100MHz LiSAF laser of Series 131 have been partially developed under this contract, and are commercially competitive products.

  4. Characterisation of a Si(Li) orthogonal-strip detector

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nolan, P. J.; Sweeney, A.; Beau, J.; Lampert, M.; Pirard, B.; Zuvic, M.

    2013-10-01

    A Compton camera composed of an orthogonal-strip Si(Li) detector and an orthogonal-strip HPGe SmartPET detector is under investigation at the University of Liverpool. To optimise the performance of the system, it is essential to quantify the response of the detectors to gamma irradiation. Such measurements have previously been reported for the SmartPET detector and in this work we report on the experimental characterisation of the Si(Li) detector. Precision scans of the detector have been performed using a finely collimated 241Am gamma-ray source to determine the uniformity and charge collection properties of the detector.

  5. Improved Li/BCX Primary Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Spillman, David M.; Waite, N. M.; Pyszczek, M. F.; Takeuchi, E. S.

    1998-01-01

    Li/BCX (bromine chloride in thionyl chloride) primary cells have been qualified for flight aboard the space shuttle for over fifteen years. These cells provide high energy density while maintaining an excellent safety record. Recently, changes to the electrolyte have resulted in an improved Li/BCX II system with a lower self-discharge rate. The use of low molarity electrolytes in programs unique to NASA have improved the safety hazards tolerance of these cells while maintaining or increasing their energy density.

  6. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE PAGES

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  7. Preparation of Li3BO3-Li2SO4 glass-ceramic electrolytes for all-oxide lithium batteries

    NASA Astrophysics Data System (ADS)

    Tatsumisago, Masahiro; Takano, Ryohei; Tadanaga, Kiyoharu; Hayashi, Akitoshi

    2014-12-01

    Newly designed oxide glass-ceramic electrolyte of Li2.9B0.9S0.1O3.1 with high Li+ ion conductivity and low melting property was prepared by mechanical milling and subsequent heat treatment at 290 °C. This material showed 1.4 × 10-5 S cm-1 at room temperature and excellent deformation properties to obtain powder-compressed pellets with low interfacial resistance like in the case of sulfide solid electrolytes. The glass-ceramic exhibited favorable mechanical properties to form favorable solid-solid contacts in solid-state batteries by pressing without high temperature heat treatments. All-solid-state In/LiCoO2 cells using these oxide glass-ceramic electrolytes operated as secondary batteries at room temperature.

  8. Transformation of Al2O3 to LiAlO2 in Pb-17Li at 800?C

    SciTech Connect

    Pint, Bruce A; More, Karren Leslie

    2008-01-01

    A FeCrAl substrate was pre-oxidized for 2 h at 1000 C to thermally grow an external Al{sub 2}O{sub 3} scale and then isothermally exposed to Pb-17 at.% Li for 1000 h at 800 C to determine if this layer would protect the underlying alloy from dissolution. After exposure, a small mass gain was measured, indicating that the layer did inhibit dissolution. However, characterization of the external layer determined that it had transformed to LiAlO{sub 2} with an increased thickness and a much larger grain size than the original layer. This observation has implications for the use of Al{sub 2}O{sub 3} as a permeation barrier in Pb-Li cooled fusion blanket systems.

  9. LiCuS, an intermediate phase in the electrochemical conversion reaction of CuS with Li: A potential environment-friendly battery and solar cell material

    NASA Astrophysics Data System (ADS)

    Beleanu, Andreea; Kiss, Janos; Baenitz, Michael; Majumder, Mayukh; Senyshyn, Anatoliy; Kreiner, Guido; Felser, Claudia

    2016-05-01

    The crystal structure of a ternary sulfide with the approximate composition LiCuS, which is a promising candidate for environment-friendly battery and solar cell materials is reported. The crystal structure was solved by a combination of neutron and X-ray powder diffraction data, and 7Li solid-state NMR analysis. A yellow powder, Li1.1Cu0.9S, was obtained by the reaction of CuS with a slight excess of Li metal. The compound crystallizes in the Na3AgO2 structure type in the space group Ibam. An idealized crystal structure of Li1.1Cu0.9S can be derived from the cubic Li2S structure by moving a part of the Li along the c axis so that these Li atoms become linearly coordinated by S. All the metal sites are occupied by randomly mixed Li and Cu atoms; however, there is a strong preference for linear coordination by Cu. The density functional theory calculations show that Li1.1Cu0.9S is a direct band-gap semiconductor with an energy gap of 1.95 eV in agreement with experimental data.

  10. First-principles calculations on structure and properties of amorphous Li5P4O8N3 (LiPON)

    NASA Astrophysics Data System (ADS)

    Sicolo, Sabrina; Albe, Karsten

    2016-11-01

    The structural, electronic and ion transport properties of an amorphous member of the LiPON family with non-trivial composition and cross-linking are studied by means of electronic structure calculations within Density Functional Theory. By a combination of an evolutionary algorithm followed by simulated annealing and alternatively by a rapid quenching protocol, structural models of disordered Li5P4O8N3 are generated, which are characterized by a local demixing in Li-rich and Li-poor layers. These structures have a composition close to what is found experimentally in thin films and contain all the expected diversely coordinated atoms, namely triply- and doubly-coordinated nitrogens and bridging and non-bridging oxygens. The issue of ionic conductivity is addressed by calculating defect formation energies and migration barriers of neutral and charged point defects. Li+ interstitials are energetically much preferred over vacancies, both when the lithium reservoir is metallic lithium and LiCoO2. The competitive formation of neutral Li interstitials when LiPON is contacted with metallic Li results in the chemical reduction of LiPON and the disruption of the network, as recently observed in experiments.

  11. Improved performance of Co-doped Li2O cathodes for lithium-peroxide batteries using LiCoO2 as a dopant source

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Hibino, Mitsuhiro; Ogasawara, Yoshiyuki; Yamaguchi, Kazuya; Kudo, Tetsuichi; Okuoka, Shin-ichi; Yonehara, Koji; Ono, Hironobu; Sumida, Yasutaka; Oshima, Masaharu; Mizuno, Noritaka

    2016-02-01

    We recently proposed a new battery system based on the redox of lithium peroxide (Li2O2)/lithium oxide (Li2O) at the cathode (lithium-peroxide battery system). In this system, the use of Li2O with cobalt ions partially substituted for lithium ions (Co-doped Li2O) is key to its realization. In this study, to further improve the cell performance, we prepare various Co-doped Li2O samples by a mechanochemical process using different cobalt source materials (e.g., LiCoO2, Co3O4, and CoO) and comparatively investigate them. Amongst the investigated cathode materials, the Co-doped Li2O sample prepared using LiCoO2 with a Co/(Co + Li) ratio of 0.09 exhibits the best performance. Monitoring of the pressure in the cell reveals that this Co-doped Li2O cathode can be charged to 270 mAh g-1 without O2 evolution involving its decomposition. Charge and discharge at 270 mAh g-1 is repeated more than 50 times. In addition, the rate-capability tests reveals that the redox reaction between peroxide and oxide ions is fast and that the cathode can be discharged at a high current density of 1000 mA g-1.

  12. LiCuS, an intermediate phase in the electrochemical conversion reaction of CuS with Li: A potential environment-friendly battery and solar cell material

    NASA Astrophysics Data System (ADS)

    Beleanu, Andreea; Kiss, Janos; Baenitz, Michael; Majumder, Mayukh; Senyshyn, Anatoliy; Kreiner, Guido; Felser, Claudia

    2016-05-01

    The crystal structure of a ternary sulfide with the approximate composition LiCuS, which is a promising candidate for environment-friendly battery and solar cell materials is reported. The crystal structure was solved by a combination of neutron and X-ray powder diffraction data, and 7Li solid-state NMR analysis. A yellow powder, Li1.1Cu0.9S, was obtained by the reaction of CuS with a slight excess of Li metal. The compound crystallizes in the Na3AgO2 structure type in the space group Ibam. An idealized crystal structure of Li1.1Cu0.9S can be derived from the cubic Li2S structure by moving a part of the Li along the c axis so that these Li atoms become linearly coordinated by S. All the metal sites are occupied by randomly mixed Li and Cu atoms; however, there is a strong preference for linear coordination by Cu. The density functional theory calculations show that Li1.1Cu0.9S is a direct band-gap semiconductor with an energy gap of 1.95 eV in agreement with experimental data.

  13. Density functional theory insights into the structural stability and Li diffusion properties of monoclinic and orthorhombic Li2FeSiO4 cathodes

    NASA Astrophysics Data System (ADS)

    Lu, Xia; Chiu, Hsien-Chieh; Bevan, Kirk H.; Jiang, De-Tong; Zaghib, Karim; Demopoulos, George P.

    2016-06-01

    Lithium iron orthosilicate (Li2FeSiO4) is an important alternative cathode for next generation Li-ion batteries due to its high theoretical capacity (330 mA h/g). However, its development has faced great challenges arising from significant structural complexity, including the disordered arrangement/orientation of Fe/Si tetrahedra, polytypes and its poorly understood Li storage and transport properties. In this context, ab-initio calculations are employed to investigate the phase stability and Li diffusion profiles of both monoclinic (P21) and orthorhombic (Pmn21) Li2FeSiO4 orthosilicates. The calculations demonstrate that formation of Lisbnd Fe antisites can induce a metastability competition between both phases, with neither dominating across nearly the entire discharging profile from Li2FeSiO4 through to LiFeSiO4. Furthermore, structural instability is shown to be a serious concern at discharge concentrations below LiFeSiO4 (1 Li extraction) due to the shared occupation of Li donated electrons with oxygen 2p orbitals - rather than the hypothesized transition to a tetravalent Fe4+ state. This finding is further supported by diffusion calculations that have determined a high activation energy barrier towards fast charging and rapid phase transitions. In summary, these theoretical results provide critical and timely insight into the structural dynamics of lithium iron orthosilicate, in pursuit of high energy density cathodes.

  14. Conversion from Li2SO4 to Li2S@C on carbon paper matrix: A novel integrated cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-11-01

    Integral construction of lithium sulfide (Li2S) cathode is indispensable and vital for developing high-performance lithium-sulfur (Li-S) batteries. Herein we have demonstrated a facile strategy for fabricating free-standing carbon paper supported Li2S@C (P-Li2S@C) integrated cathode. The P-Li2S@C cathode is synthesized through simple pyrolysis of low-cost lithium sulfate (Li2SO4) and chitosan, and embedded in the double carbon matrixes with carbon paper support and outer CVD-carbon layer. Li2S nanoparticles are homogeneously dispersed in the above designed double carbon matrixes. The P-Li2S@C cathode exhibits an initial discharge capacity of 820 mAh g-1 at 0.1 C and still maintains 430 mAh g-1after 100 cycles, superior to the P-Li2S counterpart (480 mAh g-1 at 0.1 C and 150 mAh g-1 after 100 cycles). Our research verifies the effectiveness of double carbon modification on the Li2S, especially, the outer carbon coating not only improves the electrical conductivity of electrode, but also further prohibits the "shuttle effect" of polysulfides.

  15. Synthesis and characterization of a new family of aryl-trifluoromethanesulfonylimide Li-Salts for Li-ion batteries and beyond

    NASA Astrophysics Data System (ADS)

    Ladouceur, Sébastien; Paillet, Sabrina; Vijh, Ashok; Guerfi, Abdelbast; Dontigny, Martin; Zaghib, Karim

    2015-10-01

    The battery energy-storage industry is evolving rapidly so new battery components are needed with high stability and improved energy density, as well as enhanced safety. In this paper, results on new salts, safer degradation and good electrochemical performances are reported. Four organic anions for Li-salts were synthesized and their conductivity, viscosity and electrochemical potential window in EC/DEC (3/7) solutions were examined. These salts have high thermal stability and safer degradation products (compared to LiPF6 and Li-TFSI), which were identified by TGA-MS. Cyclic voltammetry measurements showed their electrochemical window and oxidation limits were at least 4.3 and 4.5 V vs Li/Li+ using a platinum and high surface area carbon material working electrode, respectively. The salts passivated the common aluminum current collector at 4.4 V vs Li/Li+ and without corrosion. The properties of one Li salts were evaluated in half cell configuration as a model system using lithium iron phosphate (LFP), lithium titanate oxide (LTO) and graphite as electrodes. The performance of the salt showed promising behavior in the model system, compared to benchmark salts such as LiPF6 and Li-TFSI.

  16. Direction-dependent RBS channelling studies in ion implanted LiNbO3

    NASA Astrophysics Data System (ADS)

    Wendler, E.; Becker, G.; Rensberg, J.; Schmidt, E.; Wolf, S.; Wesch, W.

    2016-07-01

    Damage formation in ion implanted LiNbO3 was studied by Rutherford backscattering spectrometry (RBS) along various directions of the LiNbO3 crystal. From the results obtained it can be unambiguously concluded that Nb atoms being displaced during ion implantation preferably occupy the free octahedron sites of the LiNbO3 lattice structure and most likely also form NbLi antisite defects.

  17. Temperature-Dependent Morphology, Magnetic and Optical Properties of Li-Doped MgO

    SciTech Connect

    Myrach, Philipp; Niklas, Nilius; Levchenko, Sergey; Gonchar, Anastasia; Risse, Thomas; Klaus-Peter, Dinse; Boatner, Lynn A; Frandsen, Wiebke; Horn, Raimund; Hans-Joachim, Freund; Schlçgl, Robert; Scheffler, Matthias

    2010-01-01

    Li-doped MgO is a potential catalyst for the oxidative coupling of methane, whereby surface Li+ O centers are suggested to be the chemically active species. To elucidate the role of Li in the MgO matrix, two model systems are prepared and their morphological, optical and magnetic properties as a function of Li doping are investigated. The first is an MgO film deposited on Mo(001) and doped with various amounts of Li, whereas the second is a powder sample fabricated by calcination of Li and Mg precursors in an oxygen atmosphere. Scanning tunneling and transmission electron microscopy are performed to characterize the morphology of both samples. At temperatures above 700 K, Li starts segregating towards the surface and forms irregular Li-rich oxide patches. Above 1050 K, Li desorbs from the MgO surface, leaving behind a characteristic defect pattern. Traces of Li also dissolve into the MgO, as concluded from a distinct optical signature that is absent in the pristine oxide. No electron paramagnetic resonance signal that would be compatible with Li+O centers is detected in the two Li/ MgO samples. Density-functional theory calculations are used to determine the thermodynamic stability of various Li-induced defects in the MgO. The calculations clarify the driving forces for Li segregation towards the MgO surface, but also rationalize the absence of Li+O centers. From the combination of experimental and theoretical results, a detailed picture arises on the role of Li for the MgO properties, which can be used as a starting point to analyze the chemical behavior of the doped oxide in future.

  18. Volume production of Li/sup -/ in a multicusp ion source

    SciTech Connect

    Walther, S.R.; Leung, K.N.; Kunkel, W.B.

    1987-07-01

    A neutral 100kev Li beam has been used as a diagnostic tool for determining current, plasma density, and magnetic pitch angle on the Texas EXperimental Tokamak. Scale up of this diagnostic for the Tokomak Fusion Test Reactor would require use of a Li/sup -/ beam because of the inefficiency of neutralizing Li/sup +/ at the high energies required. This paper discusses effects to generate Li/sup -/ beams from a plasma discharge. 8 refs.

  19. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    NASA Astrophysics Data System (ADS)

    Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Nørskov, J. K.

    2010-02-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li2O2 electrode and show that in the presence of Li vacancies Li2O2 becomes a conductor.

  20. New measurement of the 10B(n,α)7 Li through the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Spartá, Roberta

    2016-04-01

    B(n,α) Li reaction cross section has been measured using the Trojan Horse method, with the specific aim to separate the α1 contribution (coming from the first Li excited level) by the αo (related to the Li ground state), using a very thin target. Preliminary results are shown of the three-body B(d,α7 Li)H cross section.

  1. Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations.

    PubMed

    Yang, Yanhan; Wu, Qu; Cui, Yanhua; Chen, Yongchang; Shi, Siqi; Wang, Ru-Zhi; Yan, Hui

    2016-09-28

    The improved ionic conductivity (1.64 × 10(-4) S cm(-1) at room temperature) and excellent electrochemical stability of nanoporous β-Li3PS4 make it one of the promising candidates for rechargeable all-solid-state lithium-ion battery electrolytes. Here, elastic properties, defect thermodynamics, phase diagram, and Li(+) migration mechanism of Li3PS4 (both γ and β phases) are examined via the first-principles calculations. Results indicate that both γ- and β-Li3PS4 phases are ductile while γ-Li3PS4 is harder under volume change and shear stress than β-Li3PS4. The electrochemical window of Li3PS4 ranges from 0.6 to 3.7 V, and thus the experimentally excellent stability (>5 V) is proposed due to the passivation phenomenon. The dominant diffusion carrier type in Li3PS4 is identified over its electrochemical window. In γ-Li3PS4 the direct-hopping of Lii(+) along the [001] is energetically more favorable than other diffusion processes, whereas in β-Li3PS4 the knock-off diffusion of Lii(+) along the [010] has the lowest migration barrier. The ionic conductivity is evaluated from the concentration and the mobility calculations using the Nernst-Einstein relationship and compared with the available experimental results. According to our calculated results, the Li(+) prefers to transport along the [010] direction. It is suggested that the enhanced ionic conductivity in nanostructured β-Li3PS4 is due to the larger possibility of contiguous (010) planes provided by larger nanoporous β-Li3PS4 particles. By a series of motivated and closely linked calculations, we try to provide a portable method, by which researchers could gain insights into the physicochemical properties of solid electrolyte. PMID:27588896

  2. Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations.

    PubMed

    Yang, Yanhan; Wu, Qu; Cui, Yanhua; Chen, Yongchang; Shi, Siqi; Wang, Ru-Zhi; Yan, Hui

    2016-09-28

    The improved ionic conductivity (1.64 × 10(-4) S cm(-1) at room temperature) and excellent electrochemical stability of nanoporous β-Li3PS4 make it one of the promising candidates for rechargeable all-solid-state lithium-ion battery electrolytes. Here, elastic properties, defect thermodynamics, phase diagram, and Li(+) migration mechanism of Li3PS4 (both γ and β phases) are examined via the first-principles calculations. Results indicate that both γ- and β-Li3PS4 phases are ductile while γ-Li3PS4 is harder under volume change and shear stress than β-Li3PS4. The electrochemical window of Li3PS4 ranges from 0.6 to 3.7 V, and thus the experimentally excellent stability (>5 V) is proposed due to the passivation phenomenon. The dominant diffusion carrier type in Li3PS4 is identified over its electrochemical window. In γ-Li3PS4 the direct-hopping of Lii(+) along the [001] is energetically more favorable than other diffusion processes, whereas in β-Li3PS4 the knock-off diffusion of Lii(+) along the [010] has the lowest migration barrier. The ionic conductivity is evaluated from the concentration and the mobility calculations using the Nernst-Einstein relationship and compared with the available experimental results. According to our calculated results, the Li(+) prefers to transport along the [010] direction. It is suggested that the enhanced ionic conductivity in nanostructured β-Li3PS4 is due to the larger possibility of contiguous (010) planes provided by larger nanoporous β-Li3PS4 particles. By a series of motivated and closely linked calculations, we try to provide a portable method, by which researchers could gain insights into the physicochemical properties of solid electrolyte.

  3. Data products of NASA Goddard's LiDAR, hyperspectral, and thermal airborne imager (G-LiHT)

    NASA Astrophysics Data System (ADS)

    Corp, Lawrence A.; Cook, Bruce D.; McCorkel, Joel; Middleton, Elizabeth M.

    2015-06-01

    Scientists in the Biospheric Sciences Laboratory at NASA's Goddard Space Flight Center have undertaken a unique instrument fusion effort for an airborne package that integrates commercial off the shelf LiDAR, Hyperspectral, and Thermal components. G-LiHT is a compact, lightweight and portable system that can be used on a wide range of airborne platforms to support a number of NASA Earth Science research projects and space-based missions. G-LiHT permits simultaneous and complementary measurements of surface reflectance, vegetation structure, and temperature, which provide an analytical framework for the development of new algorithms for mapping plant species composition, plant functional types, biodiversity, biomass, carbon stocks, and plant growth. G-LiHT and its supporting database are designed to give scientists open access to the data that are needed to understand the relationship between ecosystem form and function and to stimulate the advancement of synergistic algorithms. This system will enhance our ability to design new missions and produce data products related to biodiversity and climate change. G-LiHT has been operational since 2011 and has been used to collect data for a number of NASA and USFS sponsored studies, including NASA's Carbon Monitoring System (CMS) and the American ICESat/GLAS Assessment of Carbon (AMIGA-Carb). These acquisitions target a broad diversity of forest communities and ecoregions across the United States and Mexico. Here, we will discuss the components of G-LiHT, their calibration and performance characteristics, operational implementation, and data processing workflows. We will also provide examples of higher level data products that are currently available.

  4. Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Sun, Shuwei; Wu, Qing; Wan, Ning; Pan, Du; Bai, Ying

    2015-05-01

    A conductive Li2ZrO3 layer is successfully coated on the surface of Li-rich layered cathode Li[Li0.2Ni0.17Co0.07Mn0.56]O2 to enhance its electrochemical performances. The crystal structures, electrochemical properties and thermal stabilities of the bare and coated materials are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), inductively coupled plasma (ICP), galvanostatic cycling, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). It has been found that the electrochemical performances of Li-rich cathode material are obviously improved by Li2ZrO3 surface modification. Especially, the 1 wt.% Li2ZrO3-coated material demonstrates the best cycling performance, with capacity retention of 89% after 50 cycles, much better than that of the pristine one, 64%. Intensive explorations indicate that the improved electrochemical properties can be attributed to the Li2ZrO3 surface layer, which not only stabilizes the cathode structure by decreasing the loss of oxygen, but also protects the Li-rich cathode material from side reaction(s) with the electrolyte and thus suppressing the fast growth of solid electrolyte interface (SEI) film on the surface of oxide particles.

  5. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery

    DOE PAGES

    Sun, Shuwei; Wan, Ning; Wu, Qing; Zhang, Xiaoping; Pan, Du; Bai, Ying; Lu, Xia

    2015-10-01

    Li-rich layered materials hold lots of promise as cathode for next-generation high performance Li-ion batteries. Here, surface-modified layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2 (Li-rich) nanoparticles are employed as cathode for Li storage and transport studies. Moreover, our results demonstrate that 1 wt.% MgF2-modified Li-rich electrode exhibits the best cycling capability, with capacity retention ratio of 86% after 50 cycles, much higher than that of pristine one (only 66%). In the meantime, the 1 wt.% MgF2 surface modified Li-rich electrode shows superior rate performance and thermal abuse treatments as well. Subsequent investigation indicates that the coated MgF2 layer can suppress the undesirable growth of solidmore » electrolyte interphase (SEI) film and enhance the structure stability upon cycling. Finally, this coating technique provides the potentially rewarding avenue towards the development of high capacity Li-ion cathodes.« less

  6. Li-ion storage performance and electrochemically induced phase evolution of layer-structured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhang, Hong; Ma, Zhiyuan; Wang, Gaomin; Li, Zhicheng

    2016-06-01

    Li-rich Li[Li0.2Mn0.54Ni0.13Co0.13]O2 (LMNC) powders were synthesized by a gel-combustion method. The related microstructure, electrochemical performance and electrochemically induced phase evolution were characterized. The 900°C calcined powders have a hexagonal layered structure with high ordered degree and low cationic mixing level. The calcined materials as cathode electrode for Li-ion battery deliver the high electrochemical properties with an initial discharge capacity of 243.5 mA•h•g-1 at 25 mA•g-1 and 249.2 mA•h•g-1 even after 50 cycles. The electrochemically induced phase evolution investigated by a transmission electron microscopy indicates that Li+ ions deintercalated first from the LiMO2 (M = Mn, Co, Ni) component and then from Li2MnO3 component in the LMNC during the charge process, while Li+ ions intercalated into Li1-xMO2 component followed by into MnO2 component during the discharge process.

  7. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  8. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  9. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  10. Density functional theory study of LiFeTiO4

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Shamik; Thakur, Awalendra K.; Biswas, K.

    2016-05-01

    Electrochemical characteristics of spinel cubic LiFeTiO4 are evaluated through Density Functional Theory (DFT) study. Li+ intercalation/de-intercalation behavior of LiFeTiO4 is studied in accordance to the electrochemical relation; LiFeTiO4+LiLi2FeTiO4 and LiFeTiO4-0.5LiLi0.5FeTiO4 respectively. Effect of Li+ ion exchange on geometrical and electronic structure in terms of volume strain and density of states are respectively studied. It is found that there would be 4% volume strain in charge-discharge cycle accompanying 1.5 Li+ ions exchange per cycle producing high structural rigidity and hence electrochemical safety. The intercalation/de-intercalation voltages are estimated to be 2.6 V and 3.7 V respectively, and are in accordance with earlier experimental reports. The redox active couple corresponding to the intercalation reaction is identified to be Fe+3/Fe+2 while those corresponds to the de-intercalation reaction are identified to be Fe+3/Fe+(3+δ) and O-2/O-2+γ. The electrochemical capacity is estimated to be 230 mA h g-1 per cycle enabling 1.5 Li+ exchange.

  11. Structural Stability of LiCoO 2 at 400°C

    NASA Astrophysics Data System (ADS)

    Shao-Horn, Y.; Hackney, S. A.; Kahaian, A. J.; Thackeray, M. M.

    2002-10-01

    The relative stability of the lithiated-spinel structure, Li 2[Co 2]O 4, at 400°C to the layered LiCoO 2 structure has been investigated. "Low-temperature" LT-LiCoO 2 samples were synthesized at 400°C by the solid-state reaction of Li 2CO 3 with CoCO 3 (or Co 3O 4) for various times between 10 min and 232 days. Least-squares refinements of X-ray powder diffraction patterns were used to determine the fractions of lithiated-spinel Li 2[Co 2]O 4 and layered LiCoO 2 in the samples. X-ray powder diffraction and transmission electron microscope data show that Li 2[Co 2]O 4 nucleates from an intermediate Li xCo 1- x[Co 2]O 4 spinel product before transforming very slowly to layered LiCoO 2. The experimental data confirm the theoretical prediction that layered LiCoO 2 is thermodynamically more stable than the lithiated-spinel structure at 400°C and support the arguments that a non-ideal cation distribution in Li 2[Co 2]O 4, non-stoichiometry and kinetic factors restrict the transformation of the lithiated-spinel structure to layered LiCoO 2 at this temperature.

  12. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  13. 40 CFR 721.4587 - Lithium manganese oxide (LiMn204) (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium manganese oxide (LiMn204... Specific Chemical Substances § 721.4587 Lithium manganese oxide (LiMn204) (generic name). (a) Chemical... as lithium manganese oxide (LiMn204) (P-96-175) is subject to reporting under this section for...

  14. Operando X-ray diffraction analysis for a glyme-based Li-O2 battery

    NASA Astrophysics Data System (ADS)

    Yogi, C.; Takao, N.; Watanabe, T.; Kubobuchi, K.; Matsumoto, M.; Mogi, M.; Imai, H.

    2016-08-01

    We investigated the effect of the carbon species in the air (oxygen) electrode, electrolyte concentration, and humidity in the supplied O2 gas on the Li-O2 reactions by using the operando XRD analysis. Regarding carbon species, we found that the over-potentials in the galvanostatic discharge-charge process were suppressed when using the KB carbon in the air electrode. The results of operando XRD measurements revealed that the Li2O2 formed on the KB had the smaller crystalline or more amorphous like structures, which could be one reason for faster reaction kinetics of Li2O2 dissolution. The discharge-charge curves of the cells with different concentration of LiTFSI/(G4)n electrolyte showed the slight difference but less differences in the Li2O2 formation and dissolution behaviors. In addition to the nature of Li2O2 products, reaction of Li-salts would also have ineligible effects. We also found that the higher humidity in oxygen produced more the LiOH and promoted the Li2O2 dissolution, which indicate that the LiOH formation could affect the Li2O2 morphologies or surface chemistries. Our present results demonstrated that the operando XRD measurement are useful for analyzing the reaction mechanism of Li-O2 battery.

  15. A CBNM 6Li spike isotopic reference material CBNM-IRM-615

    NASA Astrophysics Data System (ADS)

    Lamberty, A.; Verbruggen, A.; Hendrickx, F.; de Bièvre, P.

    1992-04-01

    A 6Li spike isotopic reference material CBNM-IRM-615 has been prepared in the form of Li2CO3 in HCl. The lithium concentration, (4.001 ± 0.028) × 10-3 mol Li kg-1, was determined by isotope dilution mass spectrometry against NBS SRM 924 Li2CO3. CBNM-IRM-615 is certified for its isotopic composition: 95.610 ± 0.025 amount % 6Li; 4.390 ± 0.025 amount % 7Li; and for its 6Li concentration: 3.825 ± 0.027 × 10-3 mol 6Li kg-1 of solution. Uncertainties are 2s or the equivalent estimate thereof. The isotopic reference material is available in quartz ampoules containing approximately 5 g of solution. Using this spike isotopic reference material. 7Li or total Li concentrations in unknown samples can be determined by isotope dilution mass spectrometry via a measurement of the molar isotope dilution ratio RB = 6Li/7Li in the blend.

  16. The Basic Understanding of Lithium Superoxide in Li-O2 Battery

    NASA Astrophysics Data System (ADS)

    Lau, Kah Chun; Zhai, Dengyun; Wang, Hsien-Hau; Luo, Xiangyi; Wen, Jianguo; Miller, Dean; Redfern, Paul; Lu, Jun; Curtiss, Larry; Amine, Khalil

    The electrochemical and chemical processes that involved in Li-O2 battery are complex, and depend heavily on electrode materials, electrolytes, interfaces, and cell operating conditions. In non-aqueous Li-O2 battery, the main discharge products are commonly known to be lithium peroxide (Li2O2) , and possibly some other parasitic components (i.e. Li2CO3, LiOH, Li2O). However, the superoxide intermediates and lithium superoxide (O2-, LiO2) which are commonly known to be metastable can also be found as reported. Relative to these compounds (i.e. Li2CO3, Li2O,LiOH,Li2O2) in discharge products, little is known about LiO2. To have a basic understanding of lithium superoxide, both theoretical studies and experimental characterizations are important. In this presentation, the recent developments, studies and findings of this exotic species will be discussed. This work was primarily supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy.

  17. Determination of the lattice site of Fe in photorefractive LiNbO 3

    NASA Astrophysics Data System (ADS)

    Prieto, C.; Zaldo, C.

    1992-09-01

    The coordination of Fe ions in LiNbO 3 single crystals has been investigated by Extended X-ray Absorption Fine Structure technique. From the analysis of the data it is found that Fe 3+ sits in the Li-site and that the displacement of Fe along the c-axis is very similar to that of Li +.

  18. Calculations of long-range three-body interactions for Li (2 2S)-Li (2 2S)-Li (2 2P)

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.

    2016-08-01

    General formulas for calculating the several leading long-range interactions among three identical atoms where two atoms are in identical S states and the other atom is in a P state are obtained using perturbation theory for the energies up to second order. The first-order (dipolar) interactions depend on the geometrical configurations of the three atoms. In second order, additive and nonadditive dispersion interactions are obtained. The nonadditive interactions depend on the geometrical configurations in marked contrast to the case where all three atoms are in identical S states, for which the nonadditive (also known as triple-dipole or as Axilrod-Muto-Teller) dispersion interactions appear at the third order. The formalism is demonstrated by the calculation of the coefficients for the Li (2 2S)-Li (2 2S)-Li (2 2P) system using variationally generated atomic lithium wave functions in Hylleraas coordinates. The present dipolar coefficients and additive and nonadditive dispersion coefficients may be useful in constructing precise potential energy surfaces for this three lithium atom system.

  19. Calculations of long-range three-body interactions for Li(2 S)-Li(2 S)-Li(2 P)

    NASA Astrophysics Data System (ADS)

    Yan, Pei-Gen; Tang, Li-Yan; Yan, Zong-Chao; Babb, James F.

    2016-05-01

    With the rapid developments in ultracold atomic and molecular physics, accurate determinations of long-range interactions between two and three atoms are important in, for example, analyzing atomic photoassociation. Long-range interactions of two-body systems were extensively studied for S and P state atoms, however, for three-body systems studies are limited to S-state atoms. In this work, a general formula for calculating the long-range interactions among three like atoms is presented using perturbation theory up to second order, where two atoms are in identical S states and the other atom is in a P state. Unlike the case where the three atoms are in identical S states, here the first order interaction coefficients already show a dependence on the geometrical configuration of the three atoms, and nonadditive terms start to appear at the second order in energy corrections. For the Li(22 S)-Li(22 S)-Li(22 P) system, we perform precision evaluation of various dispersion coefficients using variationally generated atomic lithium wave functions in Hylleraas coordinates. These additive and nonadditive long-range dispersion coefficients may be useful in constructing a precise potential energy surface of this three lithium system. Work supported in part by NSERC, CAS/SAFEA, NBRPC, NNSF, and NSF.

  20. Spectroscopic properties of K 5Li 2UF 10

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Gajek, Z.; Drożdżyński, J.

    2005-04-01

    A new uranium (III) fluoro-complex of the formula K 5Li 2UF 10 has been synthesised and characterised by X-ray powder diffraction and electronic absorption spectra measurements. The compound crystallises in the orthorhombic system, space group Pnma, with a = 20.723, b = 7.809, c = 6.932 Å, V = 1121.89 Å 3, Z = 4 and is isostructural with its K 5Li 2NdF 10 and K 5Li 2LaF 10 analogous. The absorption spectrum of a polycrystalline sample of K 5Li 2UF 10 was recorded at 4.2 K in the 3500-45,000 cm -1 range and is discussed. The observed crystal-field levels were assigned and fitted to parameters of the simplified angular overlap model (AOM) and next to those of a semi-empirical Hamiltonian, which was representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra enabled the assignment of 71 crystal-field levels of U 3+ with a relatively small r.m.s. deviation of 37 cm -1. The total splitting of 714 cm -1 was calculated for the 4I 9/2 ground multiplet.

  1. Conductively Cooled Ho:Tm:LuLiF Laser Amplifier

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Yu, Jirong; Trieu, Bo; Petros, M.; Petzar, Paul; Lee, Hyung; Singh, U.

    2008-01-01

    A conductively-cooled Ho:Tm:LuLiF laser head can amplify 80mJ/340ns probe pulses into 400mJ when the pump pulse energy is close to amplified spontaneous emission (ASE) threshold, 5.6J. For a small signal, the double-pass amplification exceeds 25.

  2. The solidification behavior of 8090 Al-Li alloy

    SciTech Connect

    Liu, Y.L.; Hu, Z.Q.; Zhang, Y.; Shi, C.X. . Inst. of Metal Research)

    1993-10-01

    In this work, the solidification and segregation behaviors of 8090 Al-Li alloy have been investigated with differential thermal analysis (DTA) and the metallographic-electron microprobe method. The results show that 8090 Al-Li alloy has a much more complex solidification path than Al-Li binary alloy due to the addition of many alloying elements and the presence of impure elements. Solidification begins at about 635 C with the reaction of L [yields] [alpha]-Al + L[prime], and this reaction goes on to termination. The alloying element Cu and impure elements Fe and Si have a strong segregation tendency. During solidification, Cu segregates to the interdendrite and finally forms [alpha]-Al + T[sub 2] eutectic. As a result, the solidification temperature range is greatly extended. Iron and Si form the insoluble constituents Al[sub 7]Cu[sub 2]Fe, AlLiSi, etc., although their concentrations in the alloy are quite low. With the increase of Fe content, there is a eutectic reaction of [alpha]-Al/Al[sub 3]Fe at about 595 C. The formation of insoluble constituents is influenced by both concentrations of impure elements in the alloy and the cooling rate.

  3. Reaction mechanisms in the 6Li+ 52Cr system

    NASA Astrophysics Data System (ADS)

    Pandey, Bhawna; Prajapati, P. M.; Patel, D.; Desai, V. V.; Kumar, H.; Suranarayana, S. V.; Nayak, B. K.; Saxena, Alok; Jakhar, S.; Rao, CVS; Basu, T. K.

    2015-01-01

    Reactions induced by the weakly bound 6Li projectile interacting with the intermediate mass target 52Cr are investigated. The choice of this particular reaction in our study is because it is proposed as a surrogate reaction [6Li(52Cr, d)56Fe*] for the measurement of 55Fe(n,p) reaction cross-section, which has been found to be very important in fusion reactor studies. All the conditions which have to be satisfied for using the surrogate method have been checked. The energy of 6Li beam is selected in a way so as to get equivalent neutron energy in the region of 9-14 MeV, which is of primary interest in fusion reactor application. In the present work, statistical model calculations PACE (Projection-Angular-Momentum-Coupled-Evaporation), ALICE and Continuum-Discretized-Coupled-Channel (CDCC: FRESCO) have been used to provide information for the 6Li + 52Cr system and the respective contributions of different reaction mechanisms. The present theoretical work is an important step in the direction towards studying the cross-section of the 55Fe(n, p)55Mn reaction by surrogate method.

  4. Barrier distributions for the 7Li+27Al reaction

    NASA Astrophysics Data System (ADS)

    Cárdenas, W. H. Z.

    2010-08-01

    Barrier distributions can be obtained from the first derivative of the elastic and quasielastic (QEL) backward angle excitation functions [1]. In this work we present a study of the barrier distribution for the 7Li+27Al reaction from a Coupled-Channels Born Approximation (CCBA) calculations using the code FRESCO [2].

  5. Anode Materials for Rechargeable Li-Ion Batteries

    SciTech Connect

    Fultz, B.

    2001-01-12

    This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

  6. The solidification behavior of 8090 Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Hu, Z. Q.; Zhang, Y.; Shi, C. X.

    1993-10-01

    In this work, the solidification and segregation behaviors of 8090 Al-Li alloy have been investigated with differential thermal analysis (DTA) and the metallographic-electron microprobe method. The results show that 8090 Al-Li alloy has a much more complex solidification path than Al-Li binary alloy due to the addition of many alloying elements and the presence of impure elements. Solidification begins at about 635 °C with the reaction of L → α-Al + L', and this reaction goes on to termination. The alloying element Cu and impure elements Fe and Si have a strong segregation tendency. During solidification, Cu segregates to the interdendrite and finally forms α-Al + T2 eutectic. As a result, the solidification temperature range is greatly extended. Iron and Si form the insoluble constituents Al7Cu2Fe, AlLiSi, etc., although their concentrations in the alloy are quite low. With the increase of Fe content, there is a eutectic reaction of α-Al/Al3Fe at about 595 °C. The formation of insoluble constituents is influenced by both concentrations of impure elements in the alloy and the cooling rate.

  7. Cycle life characteristics of Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  8. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  9. Non-Gaussian error distribution of 7Li abundance measurements

    NASA Astrophysics Data System (ADS)

    Crandall, Sara; Houston, Stephen; Ratra, Bharat

    2015-07-01

    We construct the error distribution of 7Li abundance measurements for 66 observations (with error bars) used by Spite et al. (2012) that give A(Li) = 2.21 ± 0.065 (median and 1σ symmetrized error). This error distribution is somewhat non-Gaussian, with larger probability in the tails than is predicted by a Gaussian distribution. The 95.4% confidence limits are 3.0σ in terms of the quoted errors. We fit the data to four commonly used distributions: Gaussian, Cauchy, Student’s t and double exponential with the center of the distribution found with both weighted mean and median statistics. It is reasonably well described by a widened n = 8 Student’s t distribution. Assuming Gaussianity, the observed A(Li) is 6.5σ away from that expected from standard Big Bang Nucleosynthesis (BBN) given the Planck observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution reduces the discrepancy to 4.9σ, which is still significant.

  10. Facile synthesis of 3D hierarchical foldaway-lantern-like LiMnPO4 by nanoplate self-assembly, and electrochemical performance for Li-ion batteries.

    PubMed

    Chen, Dezhi; Wei, Wei; Wang, Ruining; Lang, Xiu-Feng; Tian, Yu; Guo, Lin

    2012-08-01

    Olivine-structured LiMnPO(4) with 3D foldaway-lantern-like hierarchical structures have been prepared via a one-step, template-free, solvothermal approach in ethylene glycol. The foldaway-lantern-like LiMnPO(4) microstructures are composed of numerous nanoplates with thickness of about 20 nm. A series of electron microscopy characterization results indicate that the obtained primary LiMnPO(4) nanoplates are single crystalline in nature, growing along the [010] direction in the (100) plane. Time-dependent morphology evolution suggests that ethylene glycol plays dual roles in oriented growth and self-assembly of such unique structures. After carbon coating, the as-prepared LiMnPO(4) cathode demonstrated a flat potential at 4.1 V versus Li/Li(+) with a specific capacity close to 130 mA h g(-1) at 0.1 C, along with excellent cycling stability.

  11. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    1999-10-18

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm{sup 2} using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} system exhibited thermal runaway. Thermal analytical tests showed that the Ag{sub 2}CrO{sub 4} cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications.

  12. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    NASA Astrophysics Data System (ADS)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  13. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields

    NASA Astrophysics Data System (ADS)

    Fartaria, M. J.; Reis, C.; Pereira, J.; Pereira, M. F.; Cardoso, J. V.; Santos, L. M.; Oliveira, C.; Holovey, V.; Pascoal, A.; Alves, J. G.

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23–40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined

  14. Assessment of the mean glandular dose using LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu TL detectors in mammography radiation fields.

    PubMed

    Fartaria, M J; Reis, C; Pereira, J; Pereira, M F; Cardoso, J V; Santos, L M; Oliveira, C; Holovey, V; Pascoal, A; Alves, J G

    2016-09-01

    The aim of this paper is the characterization of four thermoluminescence detectors (TLD), namely, LiF:Mg,Ti, LiF:Mg,Cu,P, Li2B4O7:Mn and Li2B4O7:Cu for the measurement of the entrance surface air kerma (ESAK) and estimation of the mean glandular dose (MGD) in digital mammography examinations at hospitals and clinics. Low-energy x-ray beams in the typical energy ranges of mammography, produced with a tungsten target and additional 60 µm molybdenum filtration were implemented and characterized at the Laboratory of Metrology of Ionizing Radiation at Instituto Superior Técnico. These beams were used for the characterization of the TLDs in terms of sensitivity, linearity, reproducibility, energy dependence and fading at 40 °C. The energy dependence test was further extended using clinical beams produced by mammography units at hospitals and clinics. The method proposed by the International Atomic Energy Agency was used for the measurement of ESAK and assessment of MGD. The combined standard uncertainty for the measurement of ESAK (and MGD) was determined in accordance to the Guide to the expression of uncertainty in measurement. The x-ray beams generated in the 23-40 kVp range presented HVL values from 0.36 to 0.46 mm Al. The beam produced at 28 kVp (HVL 0.39 mm Al) was considered as reference. The radiation field defined a circle with 84 mm diameter with a maximum variation of the beam intensity of less than 1% at the top flat (plateau) within 4 cm of the central axis. The estimated total uncertainty for the measurement of air kerma was 0.42%. All the TL detectors tested showed good performance except the commercial Li2B4O7:Mn (or TLD-800) which was excluded due to its poor sensitivity in our experimental set up. Both lithium fluorides showed better linearity and reproducibility as well as lower energy dependence and fading when compared to lithium borates. The stable behaviour of LiF:Mg,Ti and LiF:Mg,Cu,P detectors is reflected in the low combined standard

  15. Forest structures retrieval from LiDAR onboard ULA

    NASA Astrophysics Data System (ADS)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Following the United Nations Framework Convention on Climate Change, the assessment of forest carbon stock is one of the main elements for a better understanding of the carbon cycle and its evolution following the climate change. The forests sequester 80% of the continental biospheric carbon and this efficiency is a function of the tree species and the tree health. The airborne backscatter LiDAR onboard the ultra light aircraft (ULA) can provide the key information on the forest vertical structures and evolution in the time. The most important structural parameter is the tree top height, which is directly linked to the above-ground biomass using non-linear relationships. In order to test the LiDAR capability for retrieving the tree top height, the LiDAR ULICE (Ultraviolet LIdar for Canopy Experiment) has been used over different forest types, from coniferous (maritime pins) to deciduous (oaks, hornbeams ...) trees. ULICE works at the wavelength of 355 nm with a sampling along the line-of-sight between 15 and 75 cm. According to the LiDAR signal to noise ratio (SNR), two different algorithms have been used in our study. The first algorithm is a threshold method directly based on the comparison between the LiDAR signal and the noise distributions, while the second one used a low pass filter by fitting a Gaussian curve family. In this paper, we will present these two algorithms and their evolution as a function of the SNR. The main error sources will be also discussed and assessed for each algorithm. The results show that these algorithms have great potential for ground-segment of future space borne LiDAR missions dedicated to the forest survey at the global scale. Acknowledgements: the canopy LiDAR system ULICE has been developed by CEA (Commissariat à l'Energie Atomique). It has been deployed with the support of CNES (Centre National d'Etude Spariales) and ANR (Agence Nationale de la Recherche). We acknowledge the ULA pilots Franck Toussaint for logistical help

  16. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  17. Reaction of LiD with moisture by temperature programmed reaction (TPR)

    SciTech Connect

    Dinh, L N; Balooch, M; Cecala, C M; Leckey, J H

    2000-09-14

    The temperature programmed reaction technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process has an activation energy barrier of 30 to 33.1 kcal/mol. The LiOH structure is stable at 320 K for 100 years. However, LiOH structures formed on the surface of LiD during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 30 kcal/mol. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of dangling bonds, cracks, and other long range disorders in the LiOH structures formed at low levels of moisture exposure. These defective LiOH structures may decompose significantly over the next 100 years of storage even at room temperature. At high moisture exposure levels, LiOH.H{sub 2}O formation is observed. The release of H{sub 2}O molecules from LiOH.H{sub 2}O structure has small activation energy barriers in the range of 13.8 kcal/mol to 16.0 kcal/mol. The loosely bonded H{sub 2}O molecules in the LiOH.H{sub 2}O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth of LiOH and LiOH.H{sub 2}O significantly.

  18. Mechanisms for the decomposition and dehydrogenation of Li amide/imide

    NASA Astrophysics Data System (ADS)

    Hoang, Khang; Janotti, Anderson; van de Walle, Chris G.

    2012-02-01

    Reversible reaction involving Li amide (LiNH2) and Li imide (Li2NH) is a potential mechanism for hydrogen storage. Recent synchrotron x-ray diffraction experiments [W. I. David , J. Am. Chem. Soc.JACSAT0002-786310.1021/ja066016s 129, 1594 (2007)] suggest that the transformation between LiNH2 and Li2NH is a bulk reaction that occurs through nonstoichiometric processes and involves the migration of Li+ and H+ ions. In order to understand the atomistic mechanisms behind these processes, we carry out comprehensive first-principles studies of native point defects and defect complexes in the two compounds. We find that both LiNH2 and Li2NH are prone to Frenkel disorder on the Li sublattice. Lithium interstitials and vacancies have low formation energies and are highly mobile, and therefore play an important role in mass transport and ionic conduction. Hydrogen interstitials and vacancies, on the other hand, are responsible for forming and breaking N-H bonds, which is essential in the Li amide/imide reaction. Based on the structure, energetics, and migration of hydrogen-, lithium-, and nitrogen-related defects, we propose that LiNH2 decomposes into Li2NH and NH3 according to two competing mechanisms with different activation energies: one mechanism involves the formation of native defects in the interior of the material, the other at the surface. As a result, the prevailing mechanism and hence the effective activation energy for decomposition depend on the surface-to-volume ratio or the specific surface area, which changes with particle size during ball milling. These mechanisms also provide an explanation for the dehydrogenation of LiNH2 + LiH mixtures.

  19. Structural evolution, sintering behavior and microwave dielectric properties of (1−x)Li{sub 2}TiO{sub 3} + xLiF ceramics

    SciTech Connect

    Ding, Yaomin; Bian, Jianjiang

    2013-08-01

    Graphical abstract: - Highlights: • Structure, sinterability and dielectric properties of LiF-doped Li{sub 2}TiO{sub 3} were studied. • Li{sub 2}TiO{sub 3} can be densitied (TD 98%) at lower sintering temperature by LiF additions. • Excellent microwave dielectric properties could be obtained. - Abstract: Structural evolution, sintering behavior, and microwave dielectric properties of (1−x)Li{sub 2}TiO{sub 3} + xLiF (0.05 ≤ x ≤ 0.70) ceramics have been studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Raman spectra, thermal dilatometry and microwave resonant measurement at the frequency of about 7–11 GHz. The results show that Li{sub 2}TiO{sub 3} can form limited solid solution with LiF (x ≤ 0.4) and LiF second phase appeared when x{sup 3}0.5. The structure of the solid solution transformed from ordered monoclinic phase (β-Li{sub 2}TiO{sub 3} (ss)) to disordered cubic rock salt (α-Li{sub 2}TiO{sub 3} (ss)) when x{sup 3}0.15. The presence of short range ordering was confirmed for the cubic phase. The sinterability was considerably improved by doping with LiF. Densified ceramics with about 95–98% theoretical density could be obtained for the doped compositions after sintering at 900–1150 °C/2 h. An optimized microwave dielectric properties with ε{sub r} of ∼23.6, Q × f of ∼108,000 GHz and τ{sub f} of ∼4.2 ppm/°C could be obtained for the x = 0.1 composition after sintering at 1100 °C/2 h.

  20. Layered-to-Tunnel Structure Transformation and Oxygen Redox Chemistry in LiRhO2 upon Li Extraction and Insertion.

    PubMed

    Mikhailova, Daria; Karakulina, Olesia M; Batuk, Dmitry; Hadermann, Joke; Abakumov, Artem M; Herklotz, Markus; Tsirlin, Alexander A; Oswald, Steffen; Giebeler, Lars; Schmidt, Marcus; Eckert, Jürgen; Knapp, Michael; Ehrenberg, Helmut

    2016-07-18

    Layered Li(M,Li)O2 (where M is a transition metal) ordered rock-salt-type structures are used in advanced metal-ion batteries as one of the best hosts for the reversible intercalation of Li ions. Besides the conventional redox reaction involving oxidation/reduction of the M cation upon Li extraction/insertion, creating oxygen-located holes because of the partial oxygen oxidation increases capacity while maintaining the oxidized oxygen species in the lattice through high covalency of the M-O bonding. Typical degradation mechanism of the Li(M,Li)O2 electrodes involves partially irreversible M cation migration toward the Li positions, resulting in gradual capacity/voltage fade. Here, using LiRhO2 as a model system (isostructural and isoelectronic to LiCoO2), for the first time, we demonstrate an intimate coupling between the oxygen redox and M cation migration. A formation of the oxidized oxygen species upon electrochemical Li extraction coincides with transformation of the layered Li1-xRhO2 structure into the γ-MnO2-type rutile-ramsdellite intergrowth LiyRh3O6 structure with rutile-like [1 × 1] channels along with bigger ramsdellite-like [2 × 1] tunnels through massive and concerted Rh migration toward the empty positions in the Li layers. The oxidized oxygen dimers with the O-O distances as short as 2.26 Å are stabilized in this structure via the local Rh-O configuration reminiscent to that in the μ-peroxo-μ-hydroxo Rh complexes. The LiyRh3O6 structure is remarkably stable upon electrochemical cycling illustrating that proper structural implementation of the oxidized oxygen species can open a pathway toward deliberate employment of the anion redox chemistry in high-capacity/high-voltage positive electrodes for metal-ion batteries.